WO2019104614A1 - 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴 - Google Patents

一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴 Download PDF

Info

Publication number
WO2019104614A1
WO2019104614A1 PCT/CN2017/113872 CN2017113872W WO2019104614A1 WO 2019104614 A1 WO2019104614 A1 WO 2019104614A1 CN 2017113872 W CN2017113872 W CN 2017113872W WO 2019104614 A1 WO2019104614 A1 WO 2019104614A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidant
fuel
burner
supply system
passage
Prior art date
Application number
PCT/CN2017/113872
Other languages
English (en)
French (fr)
Inventor
阎韬
奇亚瓦·瑞米
万凯姆潘·彼得
刘奔
侯蒙
赵春茹
Original Assignee
乔治洛德方法研究和开发液化空气有限公司
阎韬
奇亚瓦·瑞米
万凯姆潘·彼得
刘奔
侯蒙
赵春茹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乔治洛德方法研究和开发液化空气有限公司, 阎韬, 奇亚瓦·瑞米, 万凯姆潘·彼得, 刘奔, 侯蒙, 赵春茹 filed Critical 乔治洛德方法研究和开发液化空气有限公司
Priority to PCT/CN2017/113872 priority Critical patent/WO2019104614A1/zh
Priority to CN201780097302.7A priority patent/CN111417822B/zh
Priority to CN201811434692.5A priority patent/CN109489038B/zh
Publication of WO2019104614A1 publication Critical patent/WO2019104614A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/005Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply
    • F23D2204/20Burners adapted for simultaneous or alternative combustion having more than one fuel supply gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously

Definitions

  • the present invention relates to a combustion apparatus, and more particularly to a multi-fuel (gas fuel/solid fuel) burner for adjusting flame length and direction, area, stiffness and local atmosphere, the burner can control the burning speed,
  • the fuel can be selected from solid fuels such as petroleum coke or pulverized coal or gaseous fuels such as natural gas, and can be applied to glass, metallurgy, cement, ceramics and other manufacturing fields.
  • Solid fuels such as petroleum coke breeze and pulverized coal, have been widely used in glass kiln, metallurgy, cement, ceramics and other manufacturing fields as inexpensive fuels.
  • petroleum coke powder Compared with traditional fuels such as heavy oil and natural gas, petroleum coke powder has a higher proportion of sulfur components, and petroleum coke contains a large number of solid particles of different particle sizes. If blown into the regenerator, it will aggravate the blockage of the regenerator grid; if the flame length and rigidity are not ideal, it may directly impact the refractory, lining or product; if the flame coverage is not ideal, it will affect the heat distribution and product performance; When large particles are directly blown into the kiln and scattered on the surface of the product (such as glass), they can cause pollution to the product and cause various defects. The above factors may have a serious impact on the production, quality and service life of the combustion process equipment, as summarized below:
  • the product line with flexible product design has different requirements for product type, production capacity and product quality. To meet these needs, the production line needs to selectively replace the fuel.
  • the local combustion atmosphere has a small adjustment range
  • the flame ignition temperature lower limit is poorly adaptable
  • the object of the present invention is to solve the technical problem of pure oxygen-multiple fuel (gas, solid) combustion, and to design a multi-fuel (gas fuel, solid fuel) burner capable of adjusting flame length and direction, area, rigidity and local atmosphere. , you can also control the rate of combustion, reduce NO x (nitrogen oxide) product.
  • an oxidant-multifuel burner which can be used for solid fuels and gaseous fuels, comprising:
  • a fuel-oxidant supply system a fuel-oxidant supply system, a first oxidant supply system, and a second oxidant supply system respectively defined by the refractory unit and the metal member, wherein the first oxidant supply system and the second oxidant supply system are respectively located at an upper portion of the fuel-oxidant supply system And lower part;
  • the first oxidant supply system includes a plurality of first oxidant passages, and the second oxidant supply system includes a plurality of second oxidant passages;
  • the fuel-oxidant supply system includes: a plurality of fuel-oxidant passages, and a fuel nozzle disposed in the fuel-oxidant passage, the fuel nozzle having a connection portion and at least two fuel injection conduits, the fuel being connected to the inlet end of the connection portion Entering, flowing out through the outlet end of the fuel injection pipe;
  • the inner diameter of the fuel-oxidant passage is larger than the outer diameter of the fuel injection pipe
  • the outlet end of the first oxidant passage has a first steering structure that causes the outlet end of the first oxidant passage to be downward and has a first offset angle with the body extension of the first oxidant passage, The first offset angle is less than 90°; the outlet end of the second oxidant passage has a second steering structure that causes the outlet end of the second oxidant passage to be upward and the body extension of the second oxidant passage There is a second offset angle that is less than 90°.
  • the first offset angle is 1-15°.
  • the first offset angle is 1.5-8°.
  • the second offset angle is 0-15°.
  • the second offset angle is 0-4°.
  • the first offset angle is not equal to the second offset angle.
  • the outlet end of the fuel injection conduit has a steering structure such that it has a third offset angle with the body extension of the fuel injection conduit, the third offset angle being less than 90°.
  • the third offset angle is less than 20°.
  • the fuel injection conduits are symmetrically distributed along a symmetrical centerline, the outlet end of the fuel injection conduit being oriented toward a symmetrical centerline of the fuel injection conduit.
  • the first oxidant supply system is formed by symmetrical arrangement of two or more first oxidant passages, and has a first symmetrical center line.
  • the outlet end of the first oxidant passage is also disposed toward the first symmetrical center line.
  • the second oxidant supply system is formed by two or more second oxidant passages symmetrically arranged, and has a second symmetrical center line.
  • the outlet end of the second oxidant passage is also disposed toward the second symmetrical center line.
  • At least one of the outlet end of the fuel-oxidant passage, the outlet end of the first oxidant passage, and the outlet end of the second oxidant passage has a variable diameter structure.
  • the burner further comprises a plurality of control units for adjusting the flow rate and flow rate of the oxidant in the first oxidant supply system, the second oxidant supply system, and the fuel-oxidant supply system.
  • the burner further comprises a control unit for controlling the proportion of the oxidant of each of the first oxidant passages in the first oxidant supply system.
  • the burner further comprises a control unit for controlling the proportion of the oxidant of each of the second oxidant passages in the second oxidant supply system.
  • the burner further comprises a control unit that controls the proportion of fuel in each fuel injection conduit in the fuel-oxidant supply system.
  • the metal member comprises:
  • the first control unit can control the communication between the first connection end and the second connection end to adjust the oxidant flow rate and the flow rate in the first oxidant passage and the second oxidant passage; and the second control unit can control the first connection end and the fuel -
  • the oxidant passage is connected to control the flow rate and flow rate of the oxidant in the fuel-oxidant passage.
  • the first control unit and the second control unit respectively select an automatic valve or a manual valve.
  • the cross-sectional shape of the first oxidant passage is circular, elliptical, square or irregular; the cross-sectional shape of the second oxidant passage is circular, elliptical, square or irregular. Shape; the cross-sectional shape of the fuel-oxidant passage is circular, elliptical, square or irregular.
  • the oxidant of the first oxidant system selects oxygen, air or oxygen-enriched air
  • the oxidant of the second oxidant system selects oxygen, air or oxygen-enriched air
  • the oxidant selection of the fuel-oxidant supply system Oxygen, air or oxygen-enriched air.
  • the fuel of the fuel-oxidant supply system is a solid fuel or a gaseous fuel
  • the carrier of the solid fuel is air, carbon dioxide or a mixture of the two.
  • the oxidant-multi-fuel (gas fuel and/or solid fuel) burner which can be used for solid fuels and gaseous fuels can realize the combustion length and direction, control the combustion speed, and reduce the combustion effect of NOx products, etc. To say:
  • the local oxidation and reduction atmosphere of the kiln can be adjusted to avoid local high temperature
  • the flame coverage area is adjustable
  • Figure 1 is a schematic view showing the structure of an oxidant-multifuel burner which can be used for solid fuels and gaseous fuels.
  • FIG. 2 is a schematic view showing the structure of the fuel-oxidant supply system 11, the first oxidant supply system 12, and the second oxidant supply system 13 defined by the refractory unit and the metal member of the present invention.
  • Figure 3 is a right side view of Figure 2 (as viewed from the fuel or oxidant inlet direction).
  • Figure 4 is a left side view of Figure 2 (as viewed from the direction of the fuel or oxidant outlet).
  • Figure 5 is a schematic view showing the structure of a fuel nozzle of the present invention.
  • Fig. 6a is a schematic view showing the effect of increasing the proportion of the oxidant in the upper first oxidant passage on the flame
  • Fig. 6b is a schematic diagram showing the effect of increasing the proportion of the oxidant in the lower second oxidant passage on the flame.
  • Figure 7 is a schematic view showing the structure of another fuel nozzle of the present invention.
  • Figure 8 shows the effect of the cycle change of the horseshoe flame on the conventional oxygen burners on both sides of the horseshoe flame glass furnace.
  • Fig. 9 is a structural schematic view showing the addition of the pure oxygen burner of the present invention to the horseshoe flame glass furnace.
  • the first oxidant supply system 12 and the second oxidant supply system 13 are respectively located at upper and lower portions of the fuel-oxidant supply system 11, as shown in FIG.
  • the first oxidant supply system 12 includes a plurality of first oxidant passages, preferably at least two, symmetrically disposed left and right, having a first symmetrical centerline, as shown in FIGS. 3-4, the first oxidant passage has a first inlet end 1211 and a first outlet end 1212.
  • the second oxidant supply system 13 includes a plurality of second oxidant passages; preferably at least two, symmetrically disposed bilaterally, having a second symmetrical centerline, as shown in FIGS. 3-4, the second oxidant passage having a second inlet end 1311 And a second outlet end 1312.
  • the fuel-oxidant supply system 11 includes: at least two fuel-oxidant passages, and Fuel nozzle 112.
  • the fuel-oxidant passage has a third inlet end 1111 and a third outlet end 1112.
  • the fuel nozzle 112 has a connecting portion 1121 and at least two fuel injection pipes 1122 arranged in parallel symmetrically.
  • Each fuel injection pipe 1122 is disposed in a fuel-oxidant passage, and the fuel is connected to the inlet end 1123 of the fuel nozzle. Ingress, exits through the outlet end 1124 of the fuel nozzle.
  • the inner diameter of the fuel-oxidant passage is larger than the outer diameter of the fuel injection conduit 1122 such that there is a gap between the inner wall of the fuel-oxidant passage and the outer wall of the fuel injection conduit 1122 to facilitate passage of the oxidant.
  • the outlet end 1124 of the fuel nozzle is located within the fuel-oxidant passage, i.e., the third outlet end 1112 of the fuel-oxidant passage is located outside the outlet end 1124 of the fuel burner, and the fuel is at the outlet end 1124 of the fuel burner. Mixing with the oxidant in the fuel-oxidant path to pre-ignite the point at which combustion begins.
  • the first outlet end 1212 of the first oxidant passage has a first steering structure 1213.
  • the first steering structure 1213 causes the first outlet end 1212 to turn downward (ie, downward toward the fuel-oxidant passage) and has a first offset angle with the body extension of the first oxidant passage, the first offset The angle of less than 90° (preferably 1-15°, more preferably 1.5-8°) allows the oxidant ejected from the first oxidant passage to mix with the fuel ejected from the fuel-oxidant passage at the intersection.
  • the second outlet end 1312 of the second oxidant passage has a second steering structure 1313 that causes the second outlet end 1312 to turn upward (toward the fuel-oxidant passage) and to the second oxidant passage
  • the body extension has a second offset angle that is less than 90 (preferably 0-15, more preferably 0-4).
  • the third outlet end 1112 of the fuel-oxidant passage has a steering structure having a third offset angle with the body extension of the fuel-oxidant passage, the third offset angle being less than 90°, preferably The third offset angle is less than 20°. Accordingly, the outlet end 1124 of the fuel nozzle nested within the fuel-oxidant passage also has a steering configuration such that the outlet end 1124 of the fuel nozzle has a third offset angle with the body extension of the fuel injection conduit 1122.
  • the fuel injection conduits 1122 are symmetrically distributed, and a third outlet end of the fuel injection conduit is steered toward a symmetrical centerline of the fuel injection conduit.
  • the first outlet end of the first oxidant passage is also disposed toward the first symmetrical centerline, that is, the first outlet end faces downward and inward simultaneously.
  • the second outlet end of the second oxidant passage is also disposed toward the second symmetrical center line, that is, the second outlet end is simultaneously upward and inward.
  • At least one of the third outlet end 1112 of the fuel-oxidant passage, the first outlet end 1212 of the first oxidant passage, and the second outlet end 1312 of the second oxidant passage have a tapered structure.
  • the burner further includes a plurality of control units for adjusting a flow rate and a flow rate of the oxidant in the first oxidant supply system, the second oxidant supply system, and the fuel-oxidant supply system, such that the first oxidant supply system, The oxidant in the second oxidant supply system and the fuel-oxidant supply system maintains the desired ratio.
  • the burner further includes a control unit that controls the proportion of oxidant in each of the first oxidant passages in the first oxidant supply system.
  • the burner further includes a control unit that controls the proportion of oxidant in each of the second oxidant passages in the second oxidant supply system.
  • the burner further includes a control unit that controls the proportion of fuel in each fuel injection conduit in the fuel-oxidant supply system.
  • the metal member 20 comprises:
  • the first control unit 32 can control the communication between the first connection end and the second connection end to adjust the oxidant flow rate and the flow rate in the first oxidant passage and the second oxidant passage; the second control unit 31 can control the first connection end and The fuel-oxidant passage is in communication to control the flow and flow rate of the oxidant in the fuel-oxidant passage.
  • This embodiment realizes the proportional regulation of the upper, middle and lower oxidants by two control units.
  • the first control unit 32 and the second control unit 31 each select one of an automatic valve or a manual valve to achieve the required commutation and/or oxidant proportional regulation.
  • the oxidants in the fuel-oxidant supply system 11, the first oxidant supply system 12, and the second oxidant supply system 13 are independent of each other before the discharge port, and are not mixed.
  • the oxidant is input through the total inlet 30, and then distributed by the first control unit 32 and the second control unit 31, such as controlling the first oxidant supply system 12.
  • the proportion of the oxidizing agent is 60% (volume ratio)
  • the proportion of the oxidizing agent in the second oxidizing agent supply system 13 is 30% (volume ratio)
  • the proportion of the oxidizing agent in the fuel-oxidizing agent supply system 11 is 10% (volume ratio).
  • the first bias angle is not equal to the second bias angle such that the oxidant of the first oxidant passage, the oxidant of the second oxidant passage, and the mixing position and time of the fuel are different.
  • the combustion effect is evaluated to achieve the desired effect: increasing the proportion of the oxidant in the upper first oxidant passage can achieve a closer proximity of the flame to the glass surface, as shown in Figure 6a; increasing the lower second oxidant passage The oxidant ratio allows the flame to be farther away from the glass surface, as shown in Figure 6b.
  • the outlet end 1124 of the fuel nozzle has a steering configuration such that the outlet end 1124 of the fuel nozzle has a third offset angle with the body extension of the fuel injection conduit 1122.
  • the third offset angle is 0-20°.
  • a control unit may be further disposed on the connecting portion 1121 of the fuel nozzle to control the proportion of fuel in each fuel injection pipe.
  • a reduced diameter structure 1113 is provided in the fuel-oxidant passage, as shown in FIG.
  • the reducer structure is disposed at a third outlet end of the fuel-oxidant passage.
  • the outlet end of the first oxidant passage is provided with a reduced diameter structure.
  • the outlet end of the second oxidant passage is provided with a reduced diameter structure.
  • the cross-sectional shape of the first oxidant passage is circular, elliptical, square or irregular; the cross-sectional shape of the second oxidant passage is circular, elliptical, square or irregular;
  • the cross-sectional shape of the fuel-oxidant passage is circular, elliptical, square or irregular.
  • the effective cross-sectional areas of the first oxidant passage, the second oxidant passage, and the fuel-oxidant passage may be the same or different.
  • the oxidant of the first oxidant system selects oxygen, air or oxygen-enriched air
  • the oxidant of the second oxidant system selects oxygen, air or oxygen-enriched air
  • the oxidant of the fuel-oxidant supply system selects oxygen, air or Oxygen-rich air.
  • the oxidizing agent may be at room temperature or After heat treatment, the temperature range is 5 ° C to 700 ° C.
  • the fuel of the fuel-oxidant supply system is a solid fuel or a gaseous fuel
  • the carrier of the solid fuel ie, conveying air
  • the conveying air may be at normal temperature or may be subjected to heat treatment at a temperature ranging from 5 ° C to 700 ° C.
  • the conveying wind ratio coefficient range is: 100Kg of fuel with a wind of 20 to 80 standard cubic meters.
  • the oxidant-multifuel burner of the present invention which can be used for solid fuels and gaseous fuels is used as follows:
  • the solid fuel is transported from the fuel inlet of the fuel-oxidant supply system located in the middle of the burner to mix with the conveying air to form a pollen fuel stream (or gaseous fuel stream) passing through its internal fuel injection conduit to the fuel outlet;
  • the control unit controls the flow rate and flow rate of the oxidant between the outer wall of the fuel injection pipe and the fuel-oxidant passage, thereby controlling the starting point of combustion; and controlling the communication between the first oxidant passage and the second oxidant passage by the first control unit to adjust The oxidant flow rate and flow rate in the first oxidant passage, the second oxidant passage, mixing the oxidant with the fuel at a desired time and position, and maintaining the desired direction of the flame; and controlling the supply of oxidant upwardly toward the fuel flow to cause the oxidant and fuel Mix as needed and time to maintain the desired flame direction and horizontal angle.
  • the burner of the invention can be used for adjusting the flame length by adjusting the distribution, direction and oxidant-fuel direction of the oxidant to achieve flame elongation, increased flame coverage area, flame hot spot away from the sidewall refractory material, and avoiding local overheating of the flame.
  • Application scenarios such as flame coverage area, rigidity, and local atmosphere of the flame. The application thereof will be described below by way of specific examples.
  • the oxidant-multi-fuel burner shown in FIG. 1 is used, and the first outlet end of the first oxidant passage of the burner has a first offset angle, and the first offset angle is selected as 2 8°, the second outlet end of the second oxidant passage of the burner has a second offset angle, the second offset angle is 1-5°, and the nozzle selects the nozzle structure shown in FIG. 5, that is, the outlet end of the nozzle Does not have a steering structure.
  • the oxidant is input from the total inlet 30 by pure oxygen, and the oxidant flow distribution in the first oxidant supply system, the second oxidant supply system, and the fuel-oxidant supply system is controlled by the first control unit 32 and the second control unit 31, respectively, to make the oxidant Mix with fuel as needed and at the desired time and maintain the desired direction of the flame.
  • the flames are required to have different characteristics.
  • the flame is easy to be blown or impacted to the pile.
  • the flame angle is appropriately adjusted, and the fuel injection pipe has a certain upward angle offset (for example, the third offset angle is 3-
  • the nozzle of 5° can realize the process of adjusting the pure oxygen burner flame in the vertical direction.
  • the pure oxygen burner that is fluxed at the hot spot (the highest temperature point), if the proportion of the total energy of the glass furnace is low, the existing pure oxygen burner design, the pure oxygen flame will be shaped by the horseshoe flame blown from the side
  • the impact of the air flame (airflow), which is deflected, as shown in Figure 8 can cause a pure oxygen flame to deflect near the sidewall refractory material; due to the need for a pair of regenerators in the horseshoe flame glass furnace Periodically commutating combustion to fully utilize the residual heat of the combustion exhaust gas, so that the pure oxygen burner flame is periodically deflected with the air flame commutation, resulting in unstable glass hot spot, which is not conducive to the stability of the glass quality.
  • a pure oxygen burner (burner power 0.6-1.5 MW) having the first offset angle, the second offset angle and the third offset angle of the present invention is used for the horseshoe flame glass kiln.
  • Furnace fluxing The above-mentioned pure oxygen burner is arranged on both sides of the air-burning horseshoe flame glass kiln, and the oxygen and fuel inside the burner can be adjusted and distributed with the air flame commutation (horse flame), as shown in FIG. 9 (pure
  • the oxygen distribution on the side of the solid dot on the oxygen burner and the side of the hollow dot is 70%: 30%, in volume percent. For the pure oxygen burner near the air flame, increase the side close to the fluid hole.
  • the proportion of oxygen in the first oxidant passage at the same time, for the pure oxygen burner away from the air flame, increasing the proportion of oxygen away from the first oxidant passage on the side of the fluid hole, thereby reducing the flame deflection caused by the impact of the air flame
  • the non-deflecting length of the flame is extended by 1-2 times, the erosion of the refractory material near the burner is also reduced, the blockage of the regenerator or the damage of the lattice body is avoided, and the stability of the hot spot of the molten glass is enhanced, which is favorable to the glass. Quality improvement.
  • the oxidant-multi-fuel burner of the present invention which can be used for solid fuels and gaseous fuels is composed of a plurality of functional modules including a plurality of oxidant passages or fuel (gas) Body, solid) pathway, or pathway shared by oxidant and solid fuel; achieve different combinations of combustion factors such as oxidant, fuel (gas, solid); adjust the flame length and flame horizontal (or vertical) direction through modular combination , flame rigidity, flame coverage area, control of burning speed, local atmosphere inside the furnace, control of the internal temperature of the furnace and avoid local overheating, reduce NOx production and other combustion effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,包含:耐火单元(10),金属件(20),包含燃料烧嘴及若干燃料-氧化剂通路的燃料-氧化剂供给***(11),包含若干第一氧化剂通路的第一氧化剂供给***(12),及包含若干第二氧化剂通路的第二氧化剂供给***(13),第一氧化剂通路的第一出口端(1212)具有第一转向结构(1213),使得第一氧化剂通路的第一出口端(1212)向下,并与第一氧化剂通路的本体延长线具有第一偏置角度;第二氧化剂通路的第二出口端(1312)具有第二转向结构(1313),使得第二氧化剂通路的第二出口端(1312)向上,并与第二氧化剂通路的本体延长线具有第二偏置角度。提供的烧嘴能用于固体或气体多燃料的窑炉,能实现调整火焰长度和方向、控制燃烧速度、降低NO X生成物等燃烧效果。

Description

一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴 技术领域
本发明涉及一种燃烧设备,具体来说,涉及一种用于调整火焰长度和方向、面积、刚度和局部气氛的多燃料(气体燃料/固体燃料)烧嘴,该烧嘴可以控制燃烧速度、降低NOx生成物,燃料可选用石油焦粉或煤粉等固体燃料或天然气等气态燃料,可以应用于玻璃、冶金、水泥、陶瓷等制造领域。
背景技术
固体燃料,如石油焦粉和煤粉等,作为廉价的燃料,已经在玻璃窑炉、冶金、水泥、陶瓷等制造领域广泛应用。
石油焦粉相比重油、天然气等传统燃料,硫成分所占比例较高,而且石油焦包含大量粒径不等的固体颗粒。如果吹入蓄热室,将加重蓄热室格子体的堵塞;如果火焰长度和刚性不理想,可能直接冲击耐火材料、炉衬或产品;如果火焰覆盖面不理想,会影响热量分布和产品性能;尤其是大颗粒直接吹入窑内散落在产品(如玻璃液)表面时,它们可对在产品形成污染、产生多种缺陷。以上因素,可能对产量、质量以及燃烧工艺设备使用寿命造成较严重的影响,概括如下:
1.对产品质量的影响;
2.对耐火材料侵蚀以及燃烧工艺设备(如玻璃池炉)的影响;
3.对生产成本以及能耗的影响;
4.对废气排放的影响。
产品品种质量柔性化设计的生产线,对产品种类、产能、产品品质等提出不同的要求,为适应这些需求,生产线需要对燃料进行选择性更换。
目前市场上已经存在成熟的纯氧-气体燃料烧嘴以及与其匹配的烧嘴砖,但同时兼容固体燃料和气体燃料的多燃料烧嘴,仍旧存在许多不足之处。
目前已有的纯氧-多燃料(气体、固体)燃烧解决方案存在操作不灵活、可调范围小、难以适应工艺变化需要等问题。如:
1.火焰刚性、长度、火焰覆盖面调整范围小;
2.火焰燃烧位置、燃烧速度不可调整;
3.局部燃烧气氛调整范围小;
4.纯氧浓度调整不方便;
5.火焰着火温度下限适应性差;
6.火焰方向(水平或垂直)调整困难。
发明的公开
本发明的目的是解决纯氧-多燃料(气体、固体)燃烧的技术问题,设计一种多燃料(气体燃料、固体燃料)烧嘴,其能调整火焰长度和方向、面积、刚度和局部气氛,还可以控制燃烧速度、降低NOx(氮氧化物)生成物。
为了达到上述目的,本发明提供了一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其包含:
耐火单元;
金属件;及
分别由耐火单元及金属件限定的燃料-氧化剂供给***、第一氧化剂供给***、第二氧化剂供给***,所述的第一氧化剂供给***、第二氧化剂供给***分别位于燃料-氧化剂供给***的上部和下部;
所述的第一氧化剂供给***包含若干第一氧化剂通路,所述的第二氧化剂供给***包含若干第二氧化剂通路;
所述的燃料-氧化剂供给***包含:若干燃料-氧化剂通路,及,设置在燃料-氧化剂通路中的燃料喷嘴,该燃料喷嘴具有连接部及至少两个燃料喷射管道,燃料由连接部的入口端进入,经燃料喷射管道的出口端流出;
所述的燃料-氧化剂通路的内径大于燃料喷射管道的外径;
所述第一氧化剂通路的出口端具有第一转向结构,该第一转向结构使得该第一氧化剂通路的出口端向下,并与第一氧化剂通路的本体延长线具有第一偏置角度,该第一偏置角度小于90°;所述第二氧化剂通路的出口端具有第二转向结构,该第二转向结构使得该第二氧化剂通路的出口端向上,并与第二氧化剂通路的本体延长线具有第二偏置角度,该第二偏置角度小于90°。
较佳地,所述的第一偏置角度为1-15°。
更优地,所述的第一偏置角度为1.5-8°。
较佳地,所述的第二偏置角度为0-15°。
更优地,所述的第二偏置角度为0-4°。
较佳地,第一偏置角度与第二偏置角度不相等。
较佳地,所述燃料喷射管道的出口端具有转向结构,使其与燃料喷射管道的本体延长线具有第三偏置角度,该第三偏置角度小于90°。
较佳地,所述的第三偏置角度小于20°。
较佳地,所述的燃料喷射管道沿对称中心线对称分布,所述燃料喷射管道的出口端朝向该燃料喷射管道的对称中心线。
较佳地,所述的第一氧化剂供给***由两路以上的第一氧化剂通路左右对称设置构成,具有第一对称中心线。
较佳地,第一转向结构中,所述第一氧化剂通路的出口端还朝向第一对称中心线设置。
较佳地,所述的第二氧化剂供给***由两路以上的第二氧化剂通路左右对称设置构成,具有第二对称中心线。
较佳地,第二转向结构中,所述第二氧化剂通路的出口端还朝向第二对称中心线设置。
较佳地,所述的燃料-氧化剂通路的出口端、第一氧化剂通路的出口端、及第二氧化剂通路的出口端至少一个具有变径结构。
较佳地,所述的烧嘴还包含若干控制单元,以调整控制第一氧化剂供给***、第二氧化剂供给***及燃料-氧化剂供给***中氧化剂的流量和流速。
较佳地,所述的烧嘴还包含控制第一氧化剂供给***中各路第一氧化剂通路的氧化剂比例的控制单元。
较佳地,所述的烧嘴还包含控制第二氧化剂供给***中各路第二氧化剂通路的氧化剂比例的控制单元。
较佳地,所述的烧嘴还包含控制燃料-氧化剂供给***中各燃料喷射管道的燃料比例的控制单元。
较佳地,所述的金属件包含:
连通并固定第一氧化剂通路的第一连接端;
连通并固定第二氧化剂通路的第二连接端;
第一控制单元;
第二控制单元;及
安装固定燃料喷嘴的安装孔;
其中,第一控制单元能控制第一连接端与第二连接端的连通,以调整第一氧化剂通路、第二氧化剂通路中的氧化剂流量和流速;第二控制单元能控制第一连接端与燃料-氧化剂通路的连通,以控制燃料-氧化剂通路中氧化剂的流量和流速。
较佳地,所述的第一控制单元、第二控制单元均选择自动阀或手动阀。
较佳地,所述的第一氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的第二氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的燃料-氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状。
较佳地,所述的第一氧化剂***的氧化剂选择氧气、空气或富氧空气,所述的第二氧化剂***的氧化剂选择氧气、空气或富氧空气;所述燃料-氧化剂供给***的氧化剂选择氧气、空气或富氧空气。
较佳地,所述燃料-氧化剂供给***的燃料为固体燃料或气体燃料,该固体燃料的载体为空气、二氧化碳或者二者的混合气。
本发明提供的能用于固体燃料和气体燃料的氧化剂-多燃料(气体燃料和/或固体燃料)烧嘴,能实现调整火焰长度和方向、控制燃烧速度、降低NOx生成物等燃烧效果,具体来说:
1.可调整火焰长度、火焰刚性、火焰水平或垂直角度;
2.窑炉局部氧化和还原气氛可调整,避免局部高温;
3.火焰覆盖面积可调;
4.提高热效率,降低单位产品燃料消耗;
5.增强对燃料种类适应能力;
6.延长窑炉等工艺设备寿命;
7.提高产量,改善产品质量;
8.降低废气排放以及NOx生成。
附图的简要说明
图1为本发明的一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴的结构示意图。
图2为本发明由耐火单元及金属件限定的燃料-氧化剂供给***11、第一氧化剂供给***12、第二氧化剂供给***13的结构示意图。
图3为图2的右视图(从燃料或氧化剂入口方向观察)。
图4为图2的左视图(从燃料或氧化剂出口方向观察)。
图5为本发明的一种燃料喷嘴的结构示意图。
图6a为增加上部第一氧化剂通路中氧化剂比例对火焰的影响示意图;图6b为增加下部第二氧化剂通路中氧化剂比例对火焰的影响示意图。
图7为本发明的另一种燃料喷嘴的结构示意图。
图8为马蹄焰玻璃窑炉中马蹄焰周期变化对两侧常规氧气烧嘴的影响。
图9为马蹄焰玻璃窑炉中增加本发明的纯氧烧嘴助熔的结构示意图。
实现本发明的最佳方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
如图1所示,本发明的一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴包含:
耐火单元10;
金属件20;及
分别由耐火单元及金属件限定的燃料-氧化剂供给***11、第一氧化剂供给***12、第二氧化剂供给***13。
所述的第一氧化剂供给***12、第二氧化剂供给***13分别位于燃料-氧化剂供给***11的上部和下部,如图2所示。
所述的第一氧化剂供给***12包含若干第一氧化剂通路,优选至少2个,左右对称设置,具有第一对称中心线,如图3-4所示,该第一氧化剂通路具有第一入口端1211及第一出口端1212。
所述的第二氧化剂供给***13包含若干第二氧化剂通路;优选至少2个,左右对称设置,具有第二对称中心线,如图3-4所示,第二氧化剂通路具有第二入口端1311和第二出口端1312。
所述的燃料-氧化剂供给***11包含:至少两个燃料-氧化剂通路,及, 燃料喷嘴112。燃料-氧化剂通路具有第三入口端1111及第三出口端1112。如图5所示,该燃料喷嘴112具有连接部1121及至少两个平行对称设置的燃料喷射管道1122,每个燃料喷射管道1122设置在一个燃料-氧化剂通路内,燃料由燃料喷嘴的入口端1123进入,经燃料喷嘴的出口端1124流出。所述的燃料-氧化剂通路的内径大于燃料喷射管道1122的外径,使得燃料-氧化剂通路的内壁与燃料喷射管道1122外壁之间具有空隙,便于氧化剂通过。而且,所述的燃料喷嘴的出口端1124位于燃料-氧化剂通路内,即燃料-氧化剂通路的第三出口端1112位于燃料烧嘴的出口端1124的外部,燃料在燃料烧嘴的出口端1124即与燃料-氧化剂通路内的氧化剂混合,以提前燃烧开始的点。
所述第一氧化剂通路的第一出口端1212具有第一转向结构1213。该第一转向结构1213使得第一出口端1212向下(即,朝着燃料-氧化剂通路向下)转向,并与第一氧化剂通路的本体延长线具有第一偏置角度,该第一偏置角度小于90°(优选1-15°,更优地选择1.5-8°),可使得第一氧化剂通路喷出的氧化剂与燃料-氧化剂通路喷出的燃料在相交处混合。
所述第二氧化剂通路的第二出口端1312具有第二转向结构1313,该第二转向结构1313使得该第二出口端1312向上(朝着燃料-氧化剂通路向上)转向,并与第二氧化剂通路的本体延长线具有第二偏置角度,该第二偏置角度小于90°(优选0-15°,更优地选择0-4°)。
所述燃料-氧化剂通路的第三出口端1112具有转向结构,使其与燃料-氧化剂通路的本体延长线具有第三偏置角度,该第三偏置角度小于90°,较佳地,所述的第三偏置角度小于20°。相应地,套置在燃料-氧化剂通路内的所述燃料喷嘴的出口端1124也具有转向结构,使得燃料喷嘴的出口端1124与燃料喷射管道1122的本体延长线具有第三偏置角度。
一些实施例中,所述的燃料喷射管道1122对称分布,所述燃料喷射管道的第三出口端朝向该燃料喷射管道的对称中心线转向设置。
一些实施例中,第一转向结构1213中,所述第一氧化剂通路的第一出口端还朝向第一对称中心线设置,即第一出口端同时朝下、朝内。
一些实施例中,第二转向结构1313中,所述第二氧化剂通路的第二出口端还朝向第二对称中心线设置,即第二出口端同时朝上、朝内。
一些实施例中,所述的燃料-氧化剂通路的第三出口端1112、第一氧化剂通路的第一出口端1212、及第二氧化剂通路的第二出口端1312至少一个具有变径结构。
一些实施例中,所述的烧嘴还包含若干控制单元,以调整控制第一氧化剂供给***、第二氧化剂供给***及燃料-氧化剂供给***中氧化剂的流量和流速,使得第一氧化剂供给***、第二氧化剂供给***及燃料-氧化剂供给***中氧化剂保持需要的比例。
一些实施例中,所述的烧嘴还包含控制第一氧化剂供给***中各路第一氧化剂通路的氧化剂比例的控制单元。
一些实施例中,所述的烧嘴还包含控制第二氧化剂供给***中各路第二氧化剂通路的氧化剂比例的控制单元。
一些实施例中,所述的烧嘴还包含控制燃料-氧化剂供给***中各燃料喷射管道的燃料比例的控制单元。
一些实施例中,所述的金属件20包含:
连通并固定第一氧化剂通路的第一连接端;
连通并固定第二氧化剂通路的第二连接端;
第一控制单元32;
第二控制单元31;及
安装固定燃料喷嘴的安装孔;
其中,第一控制单元32能控制第一连接端与第二连接端的连通,以调整第一氧化剂通路、第二氧化剂通路中的氧化剂流量和流速;第二控制单元31能控制第一连接端与燃料-氧化剂通路的连通,以控制燃料-氧化剂通路中氧化剂的流量和流速。该实施例通过两个控制单元实现了对上、中、下三路氧化剂的比例调控。
所述的第一控制单元32、第二控制单元31均选择自动阀或手动阀中的一种,以实现需求的换向和/或氧化剂比例调控。
燃料-氧化剂供给***11、第一氧化剂供给***12、第二氧化剂供给***13中的氧化剂在喷出出口前均相互独立,不相混合。
本发明的一些实施例中,氧化剂通过总入口30输入,再经第一控制单元32、第二控制单元31进行流量比例分配,如控制第一氧化剂供给***12中 氧化剂比例为60%(体积比),第二氧化剂供给***13中氧化剂比例为30%(体积比),燃料-氧化剂供给***11中氧化剂比例为10%(体积比)。
为了使得氧化剂更均匀有序地与燃料混合,第一偏置角度不等于第二偏置角度,使得第一氧化剂通路的氧化剂、第二氧化剂通路的氧化剂与燃料的混合位置、时间不同。
通过计算机***模拟玻璃熔制燃烧空间,对相同玻璃熔制工艺条件下的烧嘴(该烧嘴具有第一转向结构和第二转向结构,其中,第一转向结构具有第一偏置角度,第二转向结构具有第二偏置角度)燃烧效果进行评估,达到预期效果:增加上部第一氧化剂通路中氧化剂比例可实现火焰更贴近玻璃液面,如图6a所示;增加下部第二氧化剂通路中氧化剂比例可实现火焰更远离玻璃液面,如图6b所示。
一些实施例中,如图7所示,所述燃料喷嘴的出口端1124具有转向结构,使得该燃料喷嘴的出口端1124与燃料喷射管道1122的本体延长线具有第三偏置角度。较佳地,该第三偏置角度为0-20°。所述的燃料喷嘴的连接部1121上还可以设置控制单元,以控制各路燃料喷射管道内燃料的比例。
一些实施例中,为了调节火焰的刚度,所述的燃料-氧化剂通路中设有变径结构1113,如图2所示。优选地,该变径结构设置在所述的燃料-氧化剂通路的第三出口端。
一些实施例中,为了调节上部氧化剂喷出的速度和强度,所述的第一氧化剂通路的出口端设有变径结构。
一些实施例中,为了调节下部氧化剂喷出的速度和强度,所述的第二氧化剂通路的出口端设有变径结构。
所述的第一氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的第二氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的燃料-氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状。第一氧化剂通路、第二氧化剂通路及燃料-氧化剂通路的有效截面积可以相同或不同。
所述的第一氧化剂***的氧化剂选择氧气、空气或富氧空气,所述的第二氧化剂***的氧化剂选择氧气、空气或富氧空气;所述燃料-氧化剂供给***的氧化剂选择氧气、空气或富氧空气。所述的氧化剂可以是常温,也可以 经过加热处理,温度范围5℃到700℃。
所述燃料-氧化剂供给***的燃料为固体燃料或气体燃料,该固体燃料的载体(即,输送风)为空气、二氧化碳或者二者的混合气或其他气体(如窑炉排出的燃烧废气)。该输送风可以是常温,也可以经过加热处理,温度范围5℃到700℃。对于固体燃料,输送风配比系数范围:100Kg燃料用风20~80标准立方米。
本发明的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴使用方法如下:
从位于烧嘴中部的燃料-氧化剂供给***的燃料入口输送固体燃料与输送风混合形成风粉燃料流(或气体燃料流),使其经过其内部的燃料喷射管道,到达燃料出口;通过第二控制单元控制燃料喷射管道外壁与燃料-氧化剂通路之间氧化剂的流量和流速,从而控制燃烧的开始点;通过第一控制单元分别控制第一氧化剂通路和第二氧化剂通路之间的连通,以调整第一氧化剂通路、第二氧化剂通路中的氧化剂流量和流速,使氧化剂与燃料按照需要的时间和位置混合,并保持需要的火焰方向;并控制供应向燃料流方向向上的氧化剂,使氧化剂与燃料按照需要的时间和位置混合,保持需要的火焰方向和水平角度。
本发明的烧嘴通过对氧化剂分布、方向以及氧化剂-燃料方向等调整,达到火焰加长、火焰覆盖面积加大、火焰热点远离侧壁耐火材料、避免火焰局部过热等目的,可用于需要调整火焰长度、火焰覆盖面积、刚性以及火焰的局部气氛等应用场景。以下通过具体实施例说明其应用。
实施例1
在玻璃熔制工艺过程中,采用图1所示的氧化剂-多燃料烧嘴,该烧嘴的第一氧化剂通路的第一出口端具有第一偏置角度,该第一偏置角度选择2-8°,该烧嘴的第二氧化剂通路的第二出口端具有第二偏置角度,该第二偏置角度选择1-5°,喷嘴选择图5所示的喷嘴结构,即喷嘴的出口端不具有转向结构。氧化剂采用纯氧,从总入口30输入,通过第一控制单元32、第二控制单元31分别控制第一氧化剂供给***、第二氧化剂供给***及燃料-氧化剂供给***中的氧化剂流量分配,使氧化剂与燃料按照需要的时间和位置混合,并保持需要的火焰方向。
实施例2
在玻璃熔制工艺过程中,根据工艺不同需求,需要火焰具有不同的特性。
对于料山比较高的状况,火焰容易吹扫或冲击到料堆,为了避免其不利影响,将火焰角度适当上调,采用燃料喷射管道具有一定向上角度偏置(如第三偏置角度为3-5°)的喷嘴,即可实现在垂直方向调整纯氧烧嘴火焰的工艺目的。
实施例3
在空气燃烧的马蹄焰玻璃窑炉上,由于以下原因需要进行热点处纯氧燃烧助熔:蓄热室堵塞或格子体损坏,需要提升出料量,需要改善玻璃质量,需要降低燃料用量,降低窑炉废气排放量等。
在热点(最高温度点)处助熔的纯氧烧嘴,如果占玻璃窑炉总能量的比例较低,现有的纯氧烧嘴设计,纯氧火焰会由于侧边吹过来的马蹄焰形状的空气火焰(气流)的冲击,发生偏转,如图8所示,严重时会导致纯氧火焰偏转到接近侧壁耐火材料的情况发生;由于马蹄焰玻璃窑炉配备的一对蓄热室需要周期性换向燃烧以达到燃烧废气余热的充分利用,使纯氧烧嘴火焰随空气火焰换向而周期性的偏转,导致玻璃液热点不稳定,不利于玻璃质量稳定。
为解决上述缺陷,将本发明的一种同时具有第一偏置角度、第二偏置角度和第三偏置角度的纯氧烧嘴(烧嘴功率0.6-1.5MW)用于马蹄焰玻璃窑炉助熔。在空气燃烧的马蹄焰玻璃窑炉两侧分别布置上述的纯氧烧嘴,该烧嘴内部的氧气以及燃料可随空气火焰换向(马蹄焰)而左右调整分布,如图9所示(纯氧烧嘴上的实心圆点一侧与空心圆点一侧的氧气分布比例为70%:30%,以体积百分数计),对于靠近空气火焰的纯氧烧嘴,增加靠近流液洞一侧的第一氧化剂通路的氧气比例,与此同时,对于远离空气火焰的纯氧烧嘴,增加远离流液洞一侧的第一氧化剂通路的氧气比例,从而降低因空气火焰冲击引起的火焰偏斜,使得火焰的非偏转长度延长1-2倍,还降低了对烧嘴附近耐火材料的侵蚀,避免了蓄热室堵塞或格子体损坏,同时加强了玻璃液热点位置的稳定性,有利于玻璃质量提升。
综上所述,本发明的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴由多个功能模块组合构成,所述多个功能模块包含为多个氧化剂通路或燃料(气 体、固体)通路,或者氧化剂与固体燃料共用的通路;实现对氧化剂、燃料(气体、固体)等燃烧要素条件不同组合选择;通过模块化组合,实现调整火焰长度、火焰水平(或垂直)方向、火焰刚性、火焰覆盖面积、控制燃烧速度、窑炉内部局部气氛、控制窑炉内部温度并避免局部过热、降低NOx生成物等燃烧效果。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (23)

  1. 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的烧嘴包含:
    耐火单元;
    金属件;及
    分别由耐火单元及金属件限定的燃料-氧化剂供给***、第一氧化剂供给***、第二氧化剂供给***,所述的第一氧化剂供给***、第二氧化剂供给***分别位于燃料-氧化剂供给***的上部和下部;
    所述的第一氧化剂供给***包含若干第一氧化剂通路,所述的第二氧化剂供给***包含若干第二氧化剂通路;
    所述的燃料-氧化剂供给***包含:若干燃料-氧化剂通路,及,设置在燃料-氧化剂通路中的燃料喷嘴,该燃料喷嘴具有连接部及至少两个燃料喷射管道,燃料由连接部的入口端进入,经燃料喷射管道的出口端流出;
    所述的燃料-氧化剂通路的内径大于燃料喷射管道的外径;
    所述第一氧化剂通路的出口端具有第一转向结构,该第一转向结构使得该第一氧化剂通路的出口端向下,并与第一氧化剂通路的本体延长线具有第一偏置角度,该第一偏置角度小于90°;所述第二氧化剂通路的出口端具有第二转向结构,该第二转向结构使得该第二氧化剂通路的出口端向上,并与第二氧化剂通路的本体延长线具有第二偏置角度,该第二偏置角度小于90°。
  2. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一偏置角度为1-15°。
  3. 如权利要求2所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一偏置角度为1.5-8°。
  4. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第二偏置角度为0-15°。
  5. 如权利要求4所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第二偏置角度为0-4°。
  6. 如权利要求1-5中任意一项所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,第一偏置角度与第二偏置角度不相等。
  7. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述燃料喷射管道的出口端具有转向结构,使得其与燃料喷射管道的本体延长线具有第三偏置角度,该第三偏置角度小于90°。
  8. 如权利要求7所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第三偏置角度小于20°。
  9. 如权利要求7或8所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的燃料喷射管道沿对称中心线对称分布,所述燃料喷射管道的出口端朝向该燃料喷射管道的对称中心线。
  10. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一氧化剂供给***由两路以上的第一氧化剂通路左右对称设置构成,具有第一对称中心线。
  11. 如权利要求10所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,第一转向结构中,所述第一氧化剂通路的出口端还朝向第一对称中心线设置。
  12. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第二氧化剂供给***由两路以上的第二氧化剂通路左右对称设置构成,具有第二对称中心线。
  13. 如权利要求12所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,第二转向结构中,所述第二氧化剂通路的出口端还朝向第二对称中心线。
  14. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的燃料-氧化剂通路的出口端、第一氧化剂通路的出口端、及第二氧化剂通路的出口端至少一个具有变径结构。
  15. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的烧嘴还包含若干控制单元,以调整控制第一氧化剂供给***、第二氧化剂供给***及燃料-氧化剂供给***中氧化剂的流量和流速。
  16. 如权利要求15所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的烧嘴还包含控制第一氧化剂供给***中各路第一氧化剂通路的氧化剂比例的控制单元。
  17. 如权利要求15或16所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的烧嘴还包含控制第二氧化剂供给***中各路第二氧化剂通路的氧化剂比例的控制单元。
  18. 如权利要求15所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的烧嘴还包含控制燃料-氧化剂供给***中各燃料喷射管道的燃料比例的控制单元。
  19. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的金属件包含:
    连通并固定第一氧化剂通路的第一连接端;
    连通并固定第二氧化剂通路的第二连接端;
    第一控制单元;
    第二控制单元;及
    安装固定燃料喷嘴的安装孔;
    其中,第一控制单元能控制第一连接端与第二连接端的连通,以调整第一氧化剂通路、第二氧化剂通路中的氧化剂流量和流速;第二控制单元能控制第一连接端与燃料-氧化剂通路的连通,以控制燃料-氧化剂通路中氧化剂的流量和流速。
  20. 如权利要求19所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一控制单元、第二控制单元均选择自动阀或手动阀。
  21. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的第二氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状;所述的燃料-氧化剂通路的横截面形状为圆形、椭圆形、方形或不规则形状。
  22. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述的第一氧化剂***的氧化剂选择氧气、空气或富氧空气,所述的第二氧化剂***的氧化剂选择氧气、空气或富氧空气;所述燃料-氧化剂供给***的氧化剂选择氧气、空气或富氧空气。
  23. 如权利要求1所述的能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴,其特征在于,所述燃料-氧化剂供给***的燃料为固体燃料或气体燃料,该固体燃料的载体为空气、二氧化碳或者二者的混合气。
PCT/CN2017/113872 2017-11-30 2017-11-30 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴 WO2019104614A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/113872 WO2019104614A1 (zh) 2017-11-30 2017-11-30 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴
CN201780097302.7A CN111417822B (zh) 2017-11-30 2017-11-30 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴
CN201811434692.5A CN109489038B (zh) 2017-11-30 2018-11-28 一种可调节多种燃料进料比例的燃烧器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113872 WO2019104614A1 (zh) 2017-11-30 2017-11-30 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴

Publications (1)

Publication Number Publication Date
WO2019104614A1 true WO2019104614A1 (zh) 2019-06-06

Family

ID=65698069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113872 WO2019104614A1 (zh) 2017-11-30 2017-11-30 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴

Country Status (2)

Country Link
CN (2) CN111417822B (zh)
WO (1) WO2019104614A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086512A4 (en) * 2019-12-31 2024-01-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude COMBUSTION CHAMBER FOR FUEL COMBUSTION AND COMBUSTION PROCESS THEREOF

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020237680A1 (zh) * 2019-05-31 2020-12-03 乔治洛德方法研究和开发液化空气有限公司 一种气体燃料燃烧器
CN110529878B (zh) * 2019-07-31 2021-02-09 中国航发南方工业有限公司 多燃料***
CN110980645A (zh) * 2019-12-27 2020-04-10 乔治洛德方法研究和开发液化空气有限公司 一种蒸汽烃类重整方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849532B1 (de) * 1996-12-19 2002-04-10 Alstom Verfahren zum Betrieb eines Brenners
US20100101204A1 (en) * 2008-10-29 2010-04-29 General Electric Company Diluent shroud for combustor
US20120282558A1 (en) * 2011-05-05 2012-11-08 General Electric Company Combustor nozzle and method for supplying fuel to a combustor
EP2523899A1 (de) * 2010-01-16 2012-11-21 Lurgi GmbH Verfahren und brenner zur herstellung von synthesegas
CN202610199U (zh) * 2012-06-02 2012-12-19 新煤化工设计院(上海)有限公司 一种含碳燃料部分氧化制备合成气的烧嘴
CN103062804A (zh) * 2011-10-21 2013-04-24 通用电气公司 用于低氧燃料喷嘴组件的扩射式喷嘴以及方法
CN103672886A (zh) * 2014-01-06 2014-03-26 南京凯盛国际工程有限公司 一种水泥窑炉局部富氧燃烧器
JP2014101844A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 発電システム、発電システムの駆動方法及び燃焼器
CN205919355U (zh) * 2016-07-20 2017-02-01 北京神雾环境能源科技集团股份有限公司 用于蓄热式燃烧器的点火烧嘴以及燃烧器
EP3228937A1 (en) * 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657631A (en) * 1995-03-13 1997-08-19 B.B.A. Research & Development, Inc. Injector for turbine engines
RU2267706C1 (ru) * 2004-10-18 2006-01-10 Михаил Дмитриевич Акульшин Горелка печная двухтопливная
DE102006011326C5 (de) * 2006-03-09 2015-03-19 Alstom Technology Ltd. Rundbrenner
CN102353058A (zh) * 2011-09-14 2012-02-15 魏伯卿 用于富氧局部增氧射流助燃的燃油燃气富氧混烧喷嘴
CN206398720U (zh) * 2016-12-30 2017-08-11 武汉武锅能源工程有限公司 交叉混合式旋流配风器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849532B1 (de) * 1996-12-19 2002-04-10 Alstom Verfahren zum Betrieb eines Brenners
US20100101204A1 (en) * 2008-10-29 2010-04-29 General Electric Company Diluent shroud for combustor
EP2523899A1 (de) * 2010-01-16 2012-11-21 Lurgi GmbH Verfahren und brenner zur herstellung von synthesegas
US20120282558A1 (en) * 2011-05-05 2012-11-08 General Electric Company Combustor nozzle and method for supplying fuel to a combustor
CN103062804A (zh) * 2011-10-21 2013-04-24 通用电气公司 用于低氧燃料喷嘴组件的扩射式喷嘴以及方法
CN202610199U (zh) * 2012-06-02 2012-12-19 新煤化工设计院(上海)有限公司 一种含碳燃料部分氧化制备合成气的烧嘴
JP2014101844A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 発電システム、発電システムの駆動方法及び燃焼器
CN103672886A (zh) * 2014-01-06 2014-03-26 南京凯盛国际工程有限公司 一种水泥窑炉局部富氧燃烧器
EP3228937A1 (en) * 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
CN205919355U (zh) * 2016-07-20 2017-02-01 北京神雾环境能源科技集团股份有限公司 用于蓄热式燃烧器的点火烧嘴以及燃烧器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086512A4 (en) * 2019-12-31 2024-01-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude COMBUSTION CHAMBER FOR FUEL COMBUSTION AND COMBUSTION PROCESS THEREOF

Also Published As

Publication number Publication date
CN111417822A (zh) 2020-07-14
CN109489038B (zh) 2019-12-27
CN111417822B (zh) 2021-06-29
CN109489038A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2019104614A1 (zh) 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴
US5823769A (en) In-line method of burner firing and NOx emission control for glass melting
JP4112646B2 (ja) ガラス炉の装入物を加熱する方法
CN103471101B (zh) 一种多喷嘴分散燃烧的低NOx燃气燃烧器
CN201269526Y (zh) 顶燃式热风炉高效旋流扩散式燃烧器
CN103047654A (zh) 空气煤气双蓄热燃烧装置
CN111006508A (zh) 一种水泥生产线低氮分解炉和水泥生产线低氮脱硝技术方法
CN111780106B (zh) 轧钢加热炉无焰燃烧器及其应用
CN106090894A (zh) 一种低NOx的全氧燃烧装置及其燃烧方法和应用
CN104154532A (zh) 中心风环浓缩型旋流燃烧器
CN105135430A (zh) 一种稳焰低氮固体燃料富氧燃烧器
CN103807869B (zh) 一种用于锅炉的燃尽风喷口及锅炉
CN206861508U (zh) 一种锅炉及其侧墙水冷壁防高温腐蚀结焦装置
WO2021136218A1 (zh) 用于燃料燃烧的燃烧器及其燃烧方法
CN101381196B (zh) 玻璃熔窑全氧燃烧燃料分级加入装置
WO2021043241A1 (zh) 燃烧器底置煤粉锅炉及其控制方法
CN103672870A (zh) 用于加热炉的燃烧装置和具有其的加热炉
CN100427824C (zh) 邻角错位直流燃烧器
WO2020237680A1 (zh) 一种气体燃料燃烧器
CN203656910U (zh) 一种w火焰锅炉的燃烧装置及w 火焰锅炉
CN206739285U (zh) 一种采用全炉膛多级燃烧的旋流煤粉燃烧装置
CN207035105U (zh) 一种冶炼窑炉上的粉煤全氧燃烧装置
CN205245170U (zh) 一种燃气化铁炉的四通道燃气富氧燃烧器
CN204254619U (zh) 辐射管用烧嘴
CN210980793U (zh) 一种水泥生产线低氮分解炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933516

Country of ref document: EP

Kind code of ref document: A1