WO2019103575A1 - Positive electrode mixture, positive electrode comprising same and lithium secondary battery - Google Patents

Positive electrode mixture, positive electrode comprising same and lithium secondary battery Download PDF

Info

Publication number
WO2019103575A1
WO2019103575A1 PCT/KR2018/014724 KR2018014724W WO2019103575A1 WO 2019103575 A1 WO2019103575 A1 WO 2019103575A1 KR 2018014724 W KR2018014724 W KR 2018014724W WO 2019103575 A1 WO2019103575 A1 WO 2019103575A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
weight
platinum
secondary battery
mixture
Prior art date
Application number
PCT/KR2018/014724
Other languages
French (fr)
Korean (ko)
Inventor
송주용
김석구
김인철
김주리
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18881949.4A priority Critical patent/EP3598535B1/en
Priority to US16/607,309 priority patent/US11316149B2/en
Priority to PL18881949T priority patent/PL3598535T3/en
Priority to JP2019554642A priority patent/JP6827559B2/en
Priority to CN201880023953.6A priority patent/CN110506349B/en
Priority claimed from KR1020180148220A external-priority patent/KR102434256B1/en
Publication of WO2019103575A1 publication Critical patent/WO2019103575A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode and a lithium secondary battery including the positive electrode mixture.
  • an electrode active material capable of reversibly intercalating and deintercalating lithium ions is applied to the negative electrode and the positive electrode, respectively, and the transfer of the lithium ion through the electrolyte is realized. By the oxidation and reduction reactions at the respective electrodes, .
  • Lithium ions which are released (battery discharged) after inserting into the negative electrode (battery charging) and lithium ions which can not be recovered (discharged from the battery) after being desorbed from the positive electrode (battery discharge) are inevitably generated. This is linked to the irreversible capacity of the two electrodes.
  • the positive electrode mixture of this embodiment comprises the larium peroxide (Ni 0 ) and the additive comprising the platinum;
  • the positive electrode active material and the conductive material robol 100% by weight of the platinum and the conductive material in the total amount, by controlling the amount of the platinum is less than or equal to 20% by weight of at least 7% by weight,
  • step or step 5 of the degree used throughout the specification does not imply a step for.
  • combination (s) thereof in the expression of the machine form means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the machine form, And the like.
  • the cathode mix according to one embodiment of the present invention, based on experimental evidence, comprises 15 cathode active materials; Conductive material; And an additive including lithium peroxide (Ni 0 ) and platinum (E), wherein the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt % .
  • the one embodiment of the platinum and 100% by weight of the conductive material in a total amount as a positive electrode material mixture the amount of the platinum or more specifically 8 wt% more or less to 20% by weight of at least 720% by weight 17 % by weight or less, more specifically 10 % by weight or more, and 15 % by weight or less,
  • a silicon-based negative electrode active material having a larger theoretical capacity than the 30 carbon- When applied, the irreversible capacity imbalance of the two electrodes is increased, and the charging capacity of the anode before and after the initial charging can be reduced.
  • One embodiment of the present invention provides a positive electrode material mixture, which is derived from the above-described problem recognition, which can cancel the irreversible capacity imbalance of the two electrodes and increase the initial efficiency of the anode by five.
  • the positive electrode mixture of this embodiment includes an additive including Li.sub.2 O.sub.3 Li.sub.0 ) and platinum ( Pt) , thereby effectively canceling the irreversible capacity imbalance of the two electrodes and further increasing the initial charge capacity of the anode.
  • the lithium peroxide ( Li 0) contains an excessive amount of lithium in comparison with a conventional positive electrode active material having a molar amount of 1 mol, and can discharge such excess lithium.
  • the lithium peroxide ( Li ()) is capable of irreversibly releasing lyrium ion and oxygen.
  • the reaction can be irreversibly released by the ion Lyrium with two moles of oxygen to the oxygen generating reaction of Scheme 1 15 (Oxygen Evolution Reaction, 0ER), the lithium peroxide (Li 3 ⁇ 4) 1 mol per mol.
  • Lyrium peroxide (Li 0) is a lithium secondary battery is added to the positive electrode is able to reduce the irreversible capacity in the initial charge and discharge negative electrode and is the irreversible capacity unbalance of the negative electrode and 20 the anode solved accordingly increase the initial efficiency of the positive electrode have.
  • the platinum ( Pt) is applied as a catalyst to improve the efficiency of Scheme 1 . That is, it is the case that, in addition to the positive electrode 30, the addition of the platinum to the ridge tumpeo oxide in the event that alone is added to the positive electrode of the lithium peroxide, the efficiency of the scheme 1 increases. This is because lithium peroxide (Li 0) is according as the progress of the oxygen generating reaction (Oxygen Evolution Reaction, 0ER) of Scheme 1, the platinum is to act as a reaction catalyst, to contribute to the reaction efficiency of the scheme 1.
  • the cathode active material when the cathode active material is not extremely mixed but the initial performance of the battery is improved and the long- Depending on the characteristics, the cathode active material may be mixed with the anode additive of one embodiment in an appropriate blending ratio.
  • the positive electrode active material Conductive material; And an additive including lithium peroxide ( Li 0) and 25 platinum ( Pt) , wherein the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt % even if the control to be specifically less than 17% by weight or more than 8% by weight% by weight or less, it is inferred that there is an initial charge capacity of the anode effect remarkably improved.
  • Li 0 lithium peroxide
  • Pt platinum
  • the content of the conductive material in the weight ratio of lithium peroxide: platinum to the positive electrode mixture may be considered.
  • the weight ratio of the lithium peroxide and the platinum is from 100: 0.1 to 100: 50, for example from 100: 0.5 to 100: 20, 100: 1 to 100: 10 or 100: 7 - 100 : 20 .
  • the content of the conductive material in the positive electrode mixture may range from 0.1 to 10 % by weight , for example, from 0.5 to 3 % by weight based on the total amount of the positive electrode mixture ( 100 % by weight).
  • the positive electrode in the conductive material content of the positive electrode material mixture a total amount of mixture (100 wt%) of the 0.1 to 10 % by weight, for example 0.5 to 3 % by weight;
  • the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt %, more specifically 8 wt % to 17 wt % , more specifically 10 wt % to 15 wt % ;
  • the total platinum () and a positive electrode additive comprising the lithium peroxide (Nishi 202) may be from 1 to 20% by weight, for example 1 to 10% by weight or 5 to 10% by weight.
  • the initial charging capacity of the anode can be further increased when the respective content ranges are simultaneously satisfied, but the present invention is not limited thereto. Manufacturing method of additive
  • the raw materials and the methods for producing the additive are not particularly limited.
  • each of powders of lyrium peroxide (Ni 202 ) and platinum () may be used as a raw material, and these powders may be dry-mixed to form a simple mixed powder as a positive electrode additive of the above embodiment.
  • the positive electrode additive of this embodiment is mixed with a simple mixed phase 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • each powder of lithium peroxide (Ni 4 ) and platinum (La) is dried together with other cathode mix components (for example, cathode active material conductive material and / or binder) Can be mixed.
  • cathode mix components for example, cathode active material conductive material and / or binder
  • each powder of lyrium peroxide (Ni 0 ) and platinum (E) may be first dry mixed and then dry mixed with the other 5 cathode mix components.
  • the positive electrode additive of the embodiment can also be produced by a method commonly known in the art.
  • Types of conductive materials are not limited.
  • the kind of the conductive material is not particularly limited.
  • the conductive material is used for imparting conductivity to the electrode. Any conductive material may be used without causing any chemical change.
  • the conductive material include natural graphite, artificial graphite carbon black, acetylene black ketjen black Carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber
  • the kind of the positive electrode active material is the kind of the positive electrode active material
  • 25 is not particularly limited as long as it is a material capable of reversibly intercalating and deintercalating lyrium ions, which comprises at least one of a metal of cobalt, manganese, nickel or a combination thereof, and a complex oxide of lyrium. g., cobalt, nickel or manganese metal of a combination thereof; it may be one containing at least one of composite oxide of; and Li
  • any of the following formula as the positive electrode active material 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • the coating may comprise, as a coating element compound, an oxide hydroxide of the coating element, an oxyhydroxide of the coating element, an oxycarbonate of the coating element, 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • the coating layer forming step may be carried out by any of coating methods such as spray coating, dipping, and the like without adversely affecting the physical properties of the cathode active material by using these elements in the above compound. It is a content that can be well understood by people engaged in the field, so detailed explanation will be omitted.
  • the content of the cathode active material in the total amount of the cathode mixture may be 80 to 99.5% by weight regardless of the kind of the cathode active material. However, But is not limited thereto.
  • the positive electrode material mixture of one embodiment may further include a binder.
  • the binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector.
  • Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropylcellulose,
  • the positive electrode material mixture of this embodiment can be generally manufactured by a method known in the art, and a detailed description thereof will be omitted.
  • a positive electrode comprising the positive electrode mixture described above, and a lithium secondary battery including such a positive electrode.
  • the lithium secondary battery of the embodiment is a lithium secondary battery in which the above-described positive electrode additive is applied to the positive electrode, the initial irreversible capacity of the negative electrode decreases, the initial efficiency of the positive electrode increases, Can be excellent.
  • the lithium secondary battery in a normal temperature from 2.5 to 4.25 V (: VI you / your +) charge capacity of the positive electrode hansanggi once filled with the 600 m ⁇ h / g or more, specifically
  • the present invention can be generally carried out according to matters known in the art.
  • the positive electrode of one embodiment may include a positive electrode collector and a positive electrode mixture layer disposed on the positive electrode collector and including the positive electrode mixture described above.
  • examples anode the one implementation may be prepared by the positive electrode collector to the entire image, applying the mixture of the electrode material mixture of the aforementioned 20, the positive electrode additives conductive material, the positive electrode active material, and / or binder and then drying, if necessary, , A filler may be further added to the mixture.
  • the cathode current collector may be formed to have a thickness of 3 500 < 0 >.
  • the positive electrode current collector is not particularly limited as long as it has a high conductivity of 25 without causing a chemical change in the battery.
  • the positive electrode current collector may be made of stainless steel, aluminum nickel titanium-fired carbon, or a surface of aluminum or stainless steel Treated with carbon, nickel titanium, silver, or the like may be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet foil, a net, a porous body 30, a foam nonwoven fabric, and the like are possible. 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • the conductive material is usually added in an amount of 1 to 50 % by weight based on the total weight of the mixture containing the cathode active material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery, Graphite carbon black such as natural graphite or artificial graphite carbon black such as acetylene 5 black ketchen black channel black and black carbon black such as carbon black which is conductive fiber carbon fiber such as carbon fiber or metal fiber black metal powder such as nickel powder zinc oxide , And conductive whiskey titanium oxide such as potassium titanate, and the like can be used.
  • the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt % based on the total weight of the mixture containing the cathode active material.
  • binders include
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethylcellulose 01 starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propyleneglycol and the like ⁇ 3 ⁇ 41, styrene beuti butylene rubber, fluoro rubber and various copolymers:-diene terpolymer (£ ⁇ , sulfonated £.
  • the filler is not particularly limited as long as it is a fibrous material which is used selectively as a component for suppressing the expansion of the anode and does not cause chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material examples include a carbonaceous anode active material, an alloy of lithium metal lithium metal, 310 x ( 0 ⁇ X ⁇ 2 ), a complex, an alloy (the alkali metal, the alkaline earth metal, the group 13 to 16 element, Metals, rare earth elements or their
  • alkaline earth metal Group 13 to Group 16 elements, transition metals, rare earth element or a combination of, but not 3 ⁇ 41) can be used for the negative electrode active material at least one member selected from the group comprising.
  • the negative electrode collector may generally be made to have a thickness of 3 - 500 .
  • the negative electrode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and may be formed on the surface of copper stainless steel, aluminum nickel, titanium, sintered carbon, copper or stainless steel carbon, nickel, titanium, is a treatment would be an aluminum surface, such as - cadmium alloys also as in the positive electrode current collector, to form fine 10 uneven surface may enhance the bonding strength between the negative electrode active material, the film sheet , Foil net, porous body foam, nonwoven fabric, and the like.
  • the lithium secondary battery of one embodiment may be a lithium ion battery, a lithium ion polymer battery or a 15 lithium polymer battery depending on the type of electrolyte and / or the type of separator.
  • the separator may be impregnated with the liquid electrolyte.
  • the separator is interposed between the anode and the cathode, and has a high ion permeability and mechanical strength A thin insulating thin film is used.
  • the pore diameter of the separator is generally 20 0.01 10 and the thickness is generally 5 300.
  • Examples of such separator include olefin polymers such as polypropylene, which is chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used.
  • a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
  • the liquid electrolyte can be a non-aqueous electrolyte containing a lithium salt.
  • Additive lithium salt-containing non-aqueous electrolyte is non-aqueous and composed of the electrolyte and Lyrium, the non-aqueous electrolyte is used, such as the non-aqueous organic solvent, an organic solid electrolyte, inorganic solid electrolyte, but only those But is not limited thereto.
  • organic solid electrolyte for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester 10 polymer, poly-edge presentation lysine (a gi tat ion l ysine), polyester sulfide, polyvinyl alcohol, Polyvinylidene fluoride, a polymer containing an ionic dissociation group, or the like can be used.
  • polyethylene derivatives polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester 10 polymer, poly-edge presentation lysine (a gi tat ion l ysine), polyester sulfide, polyvinyl alcohol, Polyvinylidene fluoride, a polymer containing an ionic dissociation group, or the like
  • poly-edge presentation lysine a gi tat ion l ysine
  • polyester sulfide polyvinyl alcohol
  • Examples of the inorganic solid electrolyte include Li 3 N , Lil, Li 5 Ni 2, LisN-Li 1- LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2SiS 3, Li 4SiO 4 , Li 4SiO 4 -Li I-LiOH , Li 3P04- 15 Li 2S- SiS 2 , and the like can be used.
  • the Li salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4, LiBF4, LiB1QCl1Q, LiPF 6, LiCF3S03, LiCF3C02, LiAsF e, LiSbF 6 LiAlCU, CH 3S03Li, ( CF3SO2) 2NLi, chloroboranlium, lower aliphatic carboxylic acid lithium, lithium 4-phenylborate, imide, and the like can be used.
  • the lithium salt-containing nonaqueous electrolyte may further contain, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme ( gl , e N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy 25 ethanol , Aluminum trichloride, etc. may be added.
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added in order to impart nonflammability.
  • carbon dioxide gas may be further added.
  • FEC Fluoro- Ethylene Carbonate
  • PRS Provide sul tone
  • LiPF 6, LiC10 4 LiBF 4 , LiN (S0 2CF3) 2 , etc. 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • the lithium salt is dissolved in a high-boiling solvent and a low-viscosity solvent,
  • a non-aqueous electrolyte can be produced.
  • the lyrium secondary battery of the embodiment may be implemented as a battery module including a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device may be, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a power storage system, but is not limited thereto.
  • the positive electrode material mixture of this embodiment includes the additive positive electrode active material including the lyrium peroxide (Na 0 ) and the platinum; And the conductive material, wherein the content of the platinum in the total amount of 100 % by weight of the platinum and the conductive material is controlled to be not less than 7 % by weight and not more than 20 % by weight, thereby effectively canceling irregularities in capacity between the electrode and the irreversible capacity, There is a critical significance.
  • FIG. 2 is a graph showing initial charging / discharging characteristics of each of the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Example 1 (and the conductive material in the total amount 100% by weight content of 10% by weight of 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • a positive electrode material mixture containing lithium peroxide ( Ni2O ), platinum (E), a conductive material and a binder was prepared, and the compounding ratio was controlled so that the total amount of the conductive material and the conductive material became 10% by weight.
  • Example 1 80: 0.8: 7.2: 12, and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mix of Example 1.
  • An organic solvent () was added to the positive electrode mixture of Example 1 to form a slurry phase.
  • the slurry was applied on an aluminum current collector and vacuum-dried in a vacuum oven at 120 ° C for 12 hours to obtain a positive electrode of Example 2 .
  • Example 2 (and when the content of the conductive material is 100% by weight and the content is 15% by weight) 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • Lee ryumpeo oxide (Needle 202), the platinum content in the (), the conductive material, and a positive electrode material mixture was prepared containing the binder, the conductive material la and the total amount 100% by weight of the blend ratio was controlled to be 15% by weight.
  • Example 2 80 : 1.2 : 6.8 : 12 , and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mixture of Example 2 .
  • Example 2 Using the cathode mixture of Example 2 instead of the positive electrode material mixture 10 in Example 1, and the rest in the same manner as in Example 1, to thereby prepare a positive electrode and Lyrium secondary battery of the second embodiment. Comparative Example 1 (when not used at all)
  • Example 2 Was used as the cathode active material, and the cathode active material of Comparative Example was prepared in the same manner as in Example 1 , except that the anode active material was not used at all.
  • Comparative Example 2 (and of the conductive material in the total amount of 10 0% by weight, if the O content is 5% by weight)
  • a mixture of lithium peroxide (Ni 2 O ), platinum (C), and a binder was prepared, and the mixing ratio was controlled so that the total amount of the conductive material was 100 wt % , and the content of t was 5 wt % .
  • Example 1 For each cell of Example 1 and Comparative Example 1 , the initial charge-discharge characteristics were evaluated under the following 10 conditions at room temperature. The evaluation results are shown in Fig.
  • Example 1 and Comparative Example 1 in order to confirm the influence of the initial performance of the battery 15 by the additives of the Examples, the cathode active material was not extremely mixed, Was prepared in the same amount as that of the conventional cathode active material to prepare each of the positive electrode mixture of Example 1 and Comparative Example 1, and each positive electrode mixture was applied to manufacture a positive electrode and a lithium secondary battery.
  • the initial charge capacity of the positive electrode 1 can be confirmed that the improved 30 to about 700 mAh / g. From these results, it can be seen that the platinum Pt) is applied to the anode together with the lyrium peroxide Li0 to improve the reaction efficiency of the Reaction Scheme 1, thereby effectively dissipating the irreversible capacity imbalance of the anode, It can be seen that the initial efficiency of the anode can be further increased.
  • the cathode active material was not extremely mixed in order to confirm the effect of the initial performance of the battery by the additive of the Example.
  • the cathode active material may be mixed with the anode additive of one embodiment in an appropriate blending ratio.
  • the platinum (P t) but only the effect of improving the initial charge capacity and initial efficiency of the positive electrode is applied to a positive electrode material mixture, in particular, the platinum and the conductive material in the total amount 100% by weight, the content of the platinum-7 wt. To 20 % by weight or more, more specifically 15 % by weight or more and 8 % by weight or more and 17 % by weight or less, and still more specifically 10 % by weight or more to 15 % by weight or less.
  • Comparative Examples voltage during the initial charging of the first battery for example, 2.5 to 4. 25 V 25 from (v s. Li / Li + )
  • the reaction efficiency is not good and the initial charge capacity of the anode is only about 195 mAh / g .
  • Example 2 Li ryumpeo oxide (Li 202) Platinum (P t) to, but added 10 weight% of P t content of P t and the conductive material in the total amount 100% by weight, in addition to Example 1 and 15% by weight (Example 2) in contrast to the case of Comparative example 1 as a control, the initial charge capacity of the positive electrode 30 of about 699 mA h / g (example 1) and each increased by about 702 mAh / g (example 2) 2019/103575 1 » (: 1 ⁇ ⁇ 2018/014724
  • the positive electrode material mixture in addition to the peroxide (Nishi 02) was added to platinum (e)
  • the effect of improving the initial charge capacity and initial efficiency of the positive electrode is, but the addition of platinum () and the conductive material in a total amount of 100 % by weight bisulfite content of 7 to 10% by weight or more to 20 wt%, more specifically, to be controlled so that more specific or less to 15 wt% or more and 10% by weight or less than 17% by weight at least 8% by weight
  • the positive electrode active material of one embodiment may be mixed with the positive electrode active material in an appropriate blending ratio.

Abstract

The present invention relates to a positive electrode mixture, a positive electrode comprising same and a lithium secondary battery. Specifically, the positive electrode mixture comprises lithium peroxide (Li202) and platinum (Pt), and thus an imbalance in irreversible capacity between two electrodes may be effectively canceled out, and the 1st cycle charge capacity of the positive electrode may be further increased.

Description

2019/103575 1»(:1^1{2018/014724 2019/103575 1 » (: 1 ^ {2018/014724
【발명의 명칭】 Title of the Invention
양극합제, 이를포함하는양극, 및 리튬이차전지 【기술분야】  A positive electrode material mixture, a positive electrode material containing the same, and a lithium secondary battery
관련출원(들)과의 상호인용  Cross-reference with related application (s)
본 출원은 2017년 11월 27일자 한국 특허 출원 제 10-2017-0159733호 및 2018년 11월 27일자 한국 특허 출원 제 10-2018-0148220호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다.  The present application claims the benefit of priority based on Korean Patent Application No. 10-2017-0159733, dated November 27, 2017, and Korean Patent Application No. 10-2018-0148220, dated November 27, 2018, The entire contents of which are incorporated herein by reference.
본발명은양극합제 이를포함하는 양극, 및 리툼 이차전지에 관한 것이다.  The present invention relates to a positive electrode and a lithium secondary battery including the positive electrode mixture.
【배경기술】 BACKGROUND ART [0002]
리튬 이차전지는, 리튬 이온의 가역적인 삽입 및 탈리가가능한전극 활물질을음극및 양극에 각각적용하고, 전해질을매개로리륨이온의 이동을 구현하며, 각 전극에서의 산화 및 환원 반응에 의하여 전기적 에너지를 생성한다. In the lithium secondary battery, an electrode active material capable of reversibly intercalating and deintercalating lithium ions is applied to the negative electrode and the positive electrode, respectively, and the transfer of the lithium ion through the electrolyte is realized. By the oxidation and reduction reactions at the respective electrodes, .
Figure imgf000003_0001
Figure imgf000003_0001
음극에 삽입(전지 충전)된후탈리(전지 방전)되는리륨이온및 양극으로부터 탈리(전지 충전)된 후 다시 회수(전지 방전)되지 못하는 리튬 이온이 각각 필연적으로발생한다. 이는, 두전극의 비가역 용량과연계된다. Lithium ions which are released (battery discharged) after inserting into the negative electrode (battery charging) and lithium ions which can not be recovered (discharged from the battery) after being desorbed from the positive electrode (battery discharge) are inevitably generated. This is linked to the irreversible capacity of the two electrodes.
두 전극의 비가역용량차이가클수록, 양극의 초기 효율이 감소하며, 전지의 구동중에너지 밀도가점차감소하여, 전지 수명이 감소할수있다. 【발명의 상세한설명】  The greater the difference between the irreversible capacitances of the two electrodes, the lower the initial efficiency of the anode and the energy density during operation of the battery gradually decreases, thus reducing the battery life. DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명의 일 구현예에서는, 전지의 초기 충전 시 리륨 이온(니 +)을 비가역적으로 방출함으로써 음극의 비가역 용량을 보상하는 리튬 퍼옥사이드(니) 및 상기 리튬 이온(니 +)의 방줄 반응의 효율을 개선하는 촉매인백금(아)을포함하는양극합제를제공한다. 2019/103575 1»(:1^1{2018/014724 In one embodiment of the present invention, since the initial charging of the battery when Lyrium ion (Nishi +) irreversibly release the lithium to compensate for the irreversible capacity of the negative electrode peroxide (Nishi 2¾) and bangjul reaction of the lithium ion (Nishi +) (A) which is a catalyst that improves the efficiency of the cathode mixture. 2019/103575 1 » (: 1 ^ {2018/014724
구체적으로, 상기 일 구현예의 양극 합제는, 상기 리륨 퍼옥사이드(니0) 및 상기 백금을 포함하는 첨가제; 양극 활물질 및 도전재를포함하되 상기 백금및 상기 도전재의 총량을 100중량%로볼 때, 상기 백금의 함량이 7중량%이상내지 20중량%이하가되도록제어함으로써,Specifically, the positive electrode mixture of this embodiment comprises the larium peroxide (Ni 0 ) and the additive comprising the platinum; When comprising the positive electrode active material and the conductive material robol 100% by weight of the platinum and the conductive material in the total amount, by controlling the amount of the platinum is less than or equal to 20% by weight of at least 7% by weight,
5 전극의 비가역 용량 불균형을 효과적으로 상쇄시키며 양극의 초기 충전 용량을현저하게 증가시키는임계적 의의가있다. There is a critical significance in effectively canceling the irreversible capacity imbalance of the 5- electrode and remarkably increasing the initial charge capacity of the anode.
【기술적 해결방법】 [Technical Solution]
본 발명의 구현예들의 이점 및 특징, 그리고 그것들을달성하는 방법은, 10 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.그러나, 본 발명은 이하에서 개시되는실시예들에 한정되는 것이 아니라서로다른다양한 형태로 구현될 수 있으며 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 15 의해 정의될 뿐이다. Methods of accomplishing the advantages and features, and those of the embodiments of the present invention is, with reference to the embodiments that are described later to 10 details will become apparent. However, the invention is not limited to the embodiments set forth herein. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The invention is only defined by 15 in the claims.
이하 본 발명에서 사용되는 기술용어 및 과학용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.또한 종래와 동일한 기술적 구성 및 작용에 대한반복되는설명은 생략하기로 한다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Repeated explanations will be omitted.
20 본원 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도포함한다. 20 In the entire specification of the present application, when a part is connected to another part, it includes not only a direct connection but also a case where the part is electrically connected with another part in between.
본원 명세서 전체에서, 어떤 부재가 다른 부재 상에 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 25 사이에 또다른부재가존재하는 경우도포함한다. Throughout this specification, when a member is located on another member, this includes not only the case where the member is in contact with the other member but also the case where another member exists between the two members 25 .
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라다른구성 요소를더 포함할수 있는 것을 의미한다. Throughout this specification , when a section includes a constituent element, it is understood that it may include other constituents, not the exclusion of any other element unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 약, 실질적으로 등은 The term " substantially " as used herein throughout,
30 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 2019/103575 1»(:1^1{2018/014724 30 When the manufacturing and material tolerances inherent in the meanings mentioned are presented, 2019/103575 1 » (: 1 ^ {2018/014724
그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양삼적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. Is used in close proximity to its numerical value and is used to prevent unauthorized use by an infringing person of an infringement of the disclosure in which the exact or absolute numerical value is mentioned in order to facilitate the understanding of the present application.
본원 명세서 전체에서 사용되는 정도의 용어 (하는) 단계 또는 의 5 단계는 를위한단계를의미하지 않는다.  The term (do) step or step 5 of the degree used throughout the specification does not imply a step for.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 이들의 조합(들)의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는하나 이상의 혼합또는조합을 의미하는 것으로서 상기 구성 요소들로 이루어진 군에서 선택되는하나 이상을포함하는 것을 의미한다.  Throughout this specification, the term combination (s) thereof in the expression of the machine form means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the machine form, And the like.
10 본원 명세서 전체에서, 및/또는묘 "의 기재는, 1또는 8, 또는쇼및 10 throughout the present description, and / or the description of the grave "means 1 or 8,
3 "를의미한다. 양극합제 3 ". The positive electrode mixture
본 발명의 일 구현예에 따른 양극 합제는, 실험적 근거를 기반으로, 15 양극 활물질; 도전재; 및 리튬 퍼옥사이드(니0) 및 백금(마)을 포함하는 첨가제;를 포함하되, 상기 백금 및 상기 도전재의 총량 100 중량% 중 상기 백금의 함량이 7중량%이상내지 20중량%이하가되도록제어하는것이다. 구체적으로, 실험적 근거에 따르면, 상기 일 구현예의 양극 합제와 같이 상기 백금및 상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7 20 중량%이상내지 20중량%이하 보다구체적으로 8중량%이상 17중량%이하, 보다더 구체적으로 10중량%이상내자 15중량%이하가되도록 제어할 때,
Figure imgf000005_0001
The cathode mix according to one embodiment of the present invention, based on experimental evidence, comprises 15 cathode active materials; Conductive material; And an additive including lithium peroxide (Ni 0 ) and platinum (E), wherein the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt % . Specifically, according to the experimental basis, the one embodiment of the platinum and 100% by weight of the conductive material in a total amount as a positive electrode material mixture, the amount of the platinum or more specifically 8 wt% more or less to 20% by weight of at least 720% by weight 17 % by weight or less, more specifically 10 % by weight or more, and 15 % by weight or less,
Figure imgf000005_0001
보다더 구체적으로 690 /용이상으로확보하는임계적 의의가있다.
Figure imgf000005_0002
More specifically, there is a critical significance of securing more than 690 / s.
Figure imgf000005_0002
두 전극의 비가역 용량이 필연적으로 발생하지만 두 전극의 비가역 용량 차이가 클수록, 양극의 초기 효율이 감소하며 전지의 수명을 저해함을 앞서 지적하였다.  The irreversible capacity of the two electrodes inevitably arises, but the larger the difference in the irreversible capacity between the two electrodes, the earlier the efficiency of the anode is reduced and the battery life is impaired.
예를 들어 동일한 양극 활물질을 양극에 적용하는 경우에 있어서 30 탄소계 음극 활물질보다 이론 용량이 큰 실리콘계 음극 활물질을 음극에 적용할때, 두전극의 비가역 용량불균형이 심화되며 초기충방전후양극의 충전용량이 감소할수있는것이다. For example, when the same positive electrode active material is applied to a positive electrode, a silicon-based negative electrode active material having a larger theoretical capacity than the 30 carbon- When applied, the irreversible capacity imbalance of the two electrodes is increased, and the charging capacity of the anode before and after the initial charging can be reduced.
본 발명의 일 구현예에서는 위와 같은 문제 인식으로부터 도출된 것으로 두 전극의 비가역 용량 불균형을 상쇄시키며, 양극의 초기 효율을 5 증가시킬수있는, 양극합제를제공한다. 상기 일 구현예의 양극합제는, 리륨퍼옥사이드 Li 0 ) 및 백금 (Pt)을 포함하는첨가제를포함함으로써 두전극의 비가역 용량불균형을효과적으로 상쇄시키며 양극의 초기 충전용량을보다증가시킬수있다. One embodiment of the present invention provides a positive electrode material mixture, which is derived from the above-described problem recognition, which can cancel the irreversible capacity imbalance of the two electrodes and increase the initial efficiency of the anode by five. The positive electrode mixture of this embodiment includes an additive including Li.sub.2 O.sub.3 Li.sub.0 ) and platinum ( Pt) , thereby effectively canceling the irreversible capacity imbalance of the two electrodes and further increasing the initial charge capacity of the anode.
10 1) 구체적으로 상기 양극 첨가제에 있어서 상기 리튬 퍼옥사이드 (Li 0 )는, 리툼 1몰수준인통상의 양극활물질에 대비하여 과량의 리튬을포함하며, 이러한과량의 리튬을방줄할수있다. 10 1) Specifically, in the positive electrode additive, the lithium peroxide ( Li 0) contains an excessive amount of lithium in comparison with a conventional positive electrode active material having a molar amount of 1 mol, and can discharge such excess lithium.
보다구체적으로, 상기 리륨퍼옥사이드 (Li () )는, 리륨이온및산소를 비가역적으로 방출할수 있는 것이다. 그 반응은 하기 반응식 1의 산소 발생 15 반응 (Oxygen Evolution Reaction, 0ER)으로, 상기 리튬 퍼옥사이드 (Li ¾) 1몰당 1몰의 산소와함께 2몰의 리륨이온을비가역적으로방출할수있다. More specifically, the lithium peroxide ( Li ()) is capable of irreversibly releasing lyrium ion and oxygen. The reaction can be irreversibly released by the ion Lyrium with two moles of oxygen to the oxygen generating reaction of Scheme 1 15 (Oxygen Evolution Reaction, 0ER), the lithium peroxide (Li ¾) 1 mol per mol.
[반응식 1] Li2Li + + 0 [Reaction Formula 1] Li2Li + + 0
따라서 상기 리륨 퍼옥사이드 (Li 0 )가 양극에 첨가된 리튬 이차 전지는, 초기 충방전 시 음극의 비가역 용량이 감소하며 이에 따라 음극과 20 양극의 비가역 용량불균형이 해소되며 양극의 초기 효율이 증가할수있다. Thus the Lyrium peroxide (Li 0) is a lithium secondary battery is added to the positive electrode is able to reduce the irreversible capacity in the initial charge and discharge negative electrode and is the irreversible capacity unbalance of the negative electrode and 20 the anode solved accordingly increase the initial efficiency of the positive electrode have.
2) 그러나, 상기 리륨 퍼옥사이드 (Li 0 ) 단독 적용 시, 전지의 초기 충전시 전압 예를들어 2.5내지 4.25 V (vs. Li/Li+)에서 상기 반응식 1의 - 효율이 좋지 않다. 이와관련하여, 후술되는 실험 결과에 따르면, 양극 합제 제조 시 상기 리륨 퍼옥사이드 (Li 02)는 사용하되 마를 전혀 사용하지 않은 25 경우 (비교예 1) , 양극의 초기 충전 용량이 180 mAh/g에 불과한 것으로 확인된다. 2) However, when the lyrium peroxide ( Li 0) alone is applied, the efficiency of the above reaction formula 1 is not good at a voltage of 2.5 to 4.25 V (vs. Li / Li +) , for example, In this regard, according to the below experiments, the positive electrode material mixture prepared when the Lyrium peroxide (Li 02) when not used at all to dry, but using 25 (Comparative Example 1), the initial charge capacity of 180 mAh / g of positive electrode .
이에, 일 구현예에서는상기 반응식 1의 효율을개선하는촉매로 상기 백금 (Pt)을 적용하였다. 즉 상기 리튬 퍼옥사이드를 양극에 단독으로 첨가하는경우에 대비하여, 상기 리툼퍼옥사이드에 더해 상기 백금을 양극에 30 첨가하는경우, 상기 반응식 1의 효율이 증가할수있다. 이는 리튬 퍼옥사이드 (Li 0 )가 상기 반응식 1의 산소 발생 반응 (Oxygen Evolution Reaction, 0ER)를진행함에 있어서, 상기 백금이 반응 촉매 역할을하여, 상기 반응식 1의 반응효율향상에 기여하기 때문이다. Thus, in one embodiment, the platinum ( Pt) is applied as a catalyst to improve the efficiency of Scheme 1 . That is, it is the case that, in addition to the positive electrode 30, the addition of the platinum to the ridge tumpeo oxide in the event that alone is added to the positive electrode of the lithium peroxide, the efficiency of the scheme 1 increases. This is because lithium peroxide (Li 0) is according as the progress of the oxygen generating reaction (Oxygen Evolution Reaction, 0ER) of Scheme 1, the platinum is to act as a reaction catalyst, to contribute to the reaction efficiency of the scheme 1.
3) 다만 상기 리륨 퍼옥사이드 (Li 0 ) 및 상기 백금을 양극에 5 첨가하더라도, 상기 도전재에 대한상기 백금의 상대적인중량에 따라, 양극의 초기 충전용량특성이 현저하게달라질수있다. 3) However, even if the lyrium peroxide ( Li 0) and the platinum are added to the anode in an amount of 5, the initial charge capacity characteristics of the anode may be significantly changed depending on the relative weight of the conductive material to the platinum.
이와 관련하여, 후술되는 실험 결과에 따르면 도전재; 및 리륨 퍼옥사이드 (Li 02) 및 백금 (Pt)을포함하는 첨가제;를포함하도록양극합제를 제조하면서 상기 백금 및 상기 도전재의 총량 100 중량% 중 상기 백금의 10 함량이 5 중량%이 되도록 제어한 경우 (비교예 2), 마를 전혀 사용하지 않은 경우 (비교예 1)에 대비하여 양극의 초기 충전 용량이 개선되었지만 약 315 mAh/g수준에 머무르는것으로확인된다. In this connection, according to the experimental results described later, the conductive material; And an additive including lyrium peroxide ( Li 02) and platinum ( Pt) , while controlling the amount of the platinum to be 10 wt % in the total amount of 100 wt % of the platinum and the conductive material to be 5 wt % (Comparative Example 2) , it was confirmed that the initial charge capacity of the anode was improved but remained at about 315 m Ah / g level in comparison with the case where no marl was used at all ( Comparative Example 1) .
그에 반면, 상기 백금 및 상기 도전재의 총량 100 중량% 중, 상기 백금의 함량이 7 중량% 이상 내지 20 중량% 이하 보다구체적으로 8 중량% 15 이상 17중량%이하 보다더 구체적으로 10중량%이상내지 15중량%이하가 되도록 제어한 경우 (실시예 12) , 상기 백금의 함량이 5 중량%인 경우 (비교예 2) 대비 2배 이상인 양극 초기 충전 용량을 확보할 수 있는 것이다. Therefore, while the platinum and the content of platinum in 100 weight% of the conductive material in the total volume, or more specifically 10% by weight, more specifically more than 8 wt.% 15 or more 17% or less than or less to 20% over 7% to It is possible to secure the anode initial charging capacity of 2 times or more as compared with the case where the content of platinum is 5 wt % (Comparative Example 2) in the case where the content is controlled to be 15 wt % or less (Examples 1 and 2) .
후술되는 실험에서는, 상기 첨가제에 의한 전지 초기 성능의 영향을 20 확인하기 위하여, 극단적으로 양극활물질은배합하지 않았지만 전지의 초기 성능을 향상시킴과 동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극 첨가제와 함께 양극 활물질을 적절한 배합비로혼합하여사용할수있다. In the experiment described below, in order to confirm the influence of the initial performance of the battery by the additive 20 , when the cathode active material is not extremely mixed but the initial performance of the battery is improved and the long- Depending on the characteristics, the cathode active material may be mixed with the anode additive of one embodiment in an appropriate blending ratio.
따라서, 양극 활물질; 도전재; 및 리튬 퍼옥사이드 (Li 0 )25 백금 (Pt)을 포함하는 첨가제;를 포함하도록 양극 합제를 제조하면서 상기 백금및 상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7중량%이상 내지 20중량%이하 보다구체적으로 8중량%이상 17중량% 이하가되도록 제어하더라도, 양극의 초기 충전 용량이 현저하게 개선되는 효과가 있을 것으로추론된다. Therefore, the positive electrode active material; Conductive material; And an additive including lithium peroxide ( Li 0) and 25 platinum ( Pt) , wherein the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt % even if the control to be specifically less than 17% by weight or more than 8% by weight% by weight or less, it is inferred that there is an initial charge capacity of the anode effect remarkably improved.
30 2019/103575 1»(:1^1{2018/014724 30 2019/103575 1 » (: 1 ^ {2018/014724
첨가제 및 이를포함하는 양극합제의 배합 Additive and compounding of the positive electrode mixture containing it
이 외 상기 첨가제 및 이를 포함하는 양극 합제의 배합에 있어서, 리튬 퍼옥사이드: 백금의 중량비 양극 합제 종량 중 도전재의 함량 등을 고려할수 있다. 또한, 상기 첨가제에 있어서, 상기 리튬 퍼옥사이드 및 상기 백금의 중량비는, 100 : 0.1 내지 100 : 50, 예를 들어 100 : 0.5 내지 100 : 20, 100 : 1내지 100 : 10 , 또는 100 : 7내지 100 : 20일 수 있다. 이 범위를 만족할때 전술한효과가향상될수있지만 이에 제한되지 않는다. 한편 상기 양극 합제 내 도전재의 함량은 당업계에서 통상적으로 적용하는 범위로, 상기 양극 합제 총량(100 중량%) 중 0.1 내지 10 중량%, 예를들어 0.5내지 3중량%가되도록할수있다. In the addition of the above additives and the positive electrode mixture containing the same, the content of the conductive material in the weight ratio of lithium peroxide: platinum to the positive electrode mixture may be considered. In the above additives, the weight ratio of the lithium peroxide and the platinum is from 100: 0.1 to 100: 50, for example from 100: 0.5 to 100: 20, 100: 1 to 100: 10 or 100: 7 - 100 : 20 . When the range is satisfied, the above-mentioned effect can be improved, but is not limited thereto. On the other hand, the content of the conductive material in the positive electrode mixture may range from 0.1 to 10 % by weight , for example, from 0.5 to 3 % by weight based on the total amount of the positive electrode mixture ( 100 % by weight).
상기 백금/도전재의 중량비율, 상기 리륨퍼옥사이드: 백금의 중량비, 및 상기 양극합제 총량중도전재의 함량을종합적으로고려하면, 상기 양극 합제 내 도전재의 함량을 상기 양극 합제 총량(100 중량%) 중 0.1 내지 10 중량%, 예를 들어 0.5 내지 3 중량%가 되도록하고; 상기 백금 및 상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7중량%이상내지 20중량% 이하 보다구체적으로 8중량%이상 17중량%이하 보다더 구체적으로 10 중량%이상내지 15중량%이하가되도록 하고; 상기 백금( ) 및 상기 리튬 퍼옥사이드(니202)를 포함하는 양극 첨가제 전체는 1 내지 20 중량%, 예를 들어 1 내지 10중량%또는 5내지 10중량%로 할수 있다. 각 함량 범위를 동시에 만족할 때 양극의 초기 충전 용량을보다증가시킬 수 있지만, 이에 의해본발명이 제한되는것은아니다. _ 첨가제의 제조방법 The platinum / conductive material in the weight ratio, the ridge ryumpeo oxide weight ratio of the platinum, and the cathode mix total center-Considering the content of the reproduced synthetically, the positive electrode in the conductive material content of the positive electrode material mixture a total amount of mixture (100 wt%) of the 0.1 to 10 % by weight, for example 0.5 to 3 % by weight; Wherein the content of the platinum in the total amount of 100 wt % of the platinum and the conductive material is 7 wt % to 20 wt %, more specifically 8 wt % to 17 wt % , more specifically 10 wt % to 15 wt % ; The total platinum () and a positive electrode additive comprising the lithium peroxide (Nishi 202) may be from 1 to 20% by weight, for example 1 to 10% by weight or 5 to 10% by weight. The initial charging capacity of the anode can be further increased when the respective content ranges are simultaneously satisfied, but the present invention is not limited thereto. Manufacturing method of additive
상기 첨가제를제조하는원료나방법은, 특별히 제한되지 않는다.  The raw materials and the methods for producing the additive are not particularly limited.
예를 들어 리륨 퍼옥사이드(니202) 및 백금( )의 각 분말을 원료로 하고, 이들 각분말을 건식 혼합하여 단순혼합된 분말을상기 일 구현예의 양극첨가제로할수 있다. 상기 일 구현예의 양극첨가제를단순혼합상의 2019/103575 1»(:1^1{2018/014724 For example, each of powders of lyrium peroxide (Ni 202 ) and platinum () may be used as a raw material, and these powders may be dry-mixed to form a simple mixed powder as a positive electrode additive of the above embodiment. The positive electrode additive of this embodiment is mixed with a simple mixed phase 2019/103575 1 » (: 1 ^ {2018/014724
분말로 구현할 경우 후술되는 실시예와 같이, 리튬 퍼옥사이드(니¾) 및 백금(라)의 각분말을다른양극합제성분들(예를들어, 양극활물질 도전재 및/또는 바인더)과 한꺼번에 건식으로 혼합할 수 있다. 이와 달리, 리륨 퍼옥사이드(니0) 및 백금(마)의 각 분말을 먼저 건식으로 혼합한 뒤 다른 5 양극합제성분들과건식 혼합할수도있다. Powders, each powder of lithium peroxide (Ni ) and platinum (La) is dried together with other cathode mix components (for example, cathode active material conductive material and / or binder) Can be mixed. Alternatively, each powder of lyrium peroxide (Ni 0 ) and platinum (E) may be first dry mixed and then dry mixed with the other 5 cathode mix components.
이와달리, 상기 각분말을 용매에 용해시켜 페이스트믹서어 )등의 기기를이용하여 습식 혼합하고, 40내지 150 X조건에서 열처리 또는 상기 열처리 생략 후 오븐에서 40 내지 150 X 조건으로 건조시켜 구형화된입자를수득하여, 이를상기 첨가제로할수있다. Alternatively, the above by dissolving each powder in a solvent paste mixer control) using an apparatus such as a liquid mixture, and dried in an oven and then heat-treated or not the heat treatment at 40 to 150 X conditions from 40 to 150 X conditions sphering Particles can be obtained, which can be used as the additive.
10 여기서 예시된 상기 양극첨가제를제조하는각공정 조건은제한되지 않는다. 또한, 여기서 예시된 방법 이외, 당 업계에 통상적으로 알려진 방법으로도 상기 일구현예의 양극첨가제를제조할수있다. 도전재의 종류 10 The respective process conditions for preparing the positive electrode additive exemplified here are not limited. In addition to the method exemplified here, the positive electrode additive of the embodiment can also be produced by a method commonly known in the art. Types of conductive materials
15 상기 도전재의 종류는 특별히 제한되지 않는다. 예를 들어 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며 그 예로 천연 흑연, 인조 흑연 카본 블랙 아세틸렌 블랙 케첸블랙 탄소섬유 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 15 The kind of the conductive material is not particularly limited. For example, the conductive material is used for imparting conductivity to the electrode. Any conductive material may be used without causing any chemical change. Examples of the conductive material include natural graphite, artificial graphite carbon black, acetylene black ketjen black Carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber
20 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을혼합하여 사용할수 있다. 활물질의 종류및 이의 양극합제 내 함량 And the like 20, it can be also used by mixing a conductive material to one or one or more, such as polyphenylene derivatives. Types of active materials and their contents in the positive electrode mixture
또한, 상기 일 구현예의 양극 합제에 있어서, 상기 양극 활물잘의 종류 Further, in the positive electrode material mixture of one embodiment, the kind of the positive electrode active material
25 역시, 코발트, 망간, 니켈 또는 이들의 조합의 금속;및 리륨;의 복합산화물 중 1종 이상을 포함하는 것인 리륨 이온의 가역적인 삽입 및 탈리가 가능한 물질이라면, 특별히 제한되지 않는다.예를 들어, 코발트 망간 니켈 또는 이들의 조합의 금속;및 리튬;의 복합산화물중 1종 이상을포함하는 것일 수 있다 25 is not particularly limited as long as it is a material capable of reversibly intercalating and deintercalating lyrium ions, which comprises at least one of a metal of cobalt, manganese, nickel or a combination thereof, and a complex oxide of lyrium. g., cobalt, nickel or manganese metal of a combination thereof; it may be one containing at least one of composite oxide of; and Li
30 보다 구체적인 예를 들어, 상기 양극 활물질로 하기 화학식 중 어느 2019/103575 1»(:1^1{2018/014724
Figure imgf000010_0001
A specific example less than 30, any of the following formula as the positive electrode active material 2019/103575 1 » (: 1 ^ {2018/014724
Figure imgf000010_0001
< 0 < 2이다); 니山 + «¾1?(:¾(상기 식에서, 0.90 < 3 < 1.8, 0 £ b £ 0.5,&Lt; 0 &lt; 2 ); The mountain + « ¾1? (: ¾ (in the above formula, 0.90 < 3 <1.8 , 0 £ b £ 0.5,
0 < 0 < 0.05및 0 <(X < 2이다);니曲 - 此 02 - 0 (상기 식에서, 0.90 < 3 < 1.8, 0 < I) < 0.5, 0 < 0 < 0.05 및 0 < 0( < 2이다); 니3 1- ¾1¾ 02- «¾(상기 식에서, 0.90 < 3 < 1.8, 0 £ b £ 0.5, 0 < 0 < 0.05및 0 < ( <0 <0 <0.05, and 0 <(X <2 a); you曲-0 2 - 0 (wherein, 0.90 <3 <1.8, 0 <I) <0.5, 0 <0 <0.05 , and 0 <0 ( &Lt;2); Needle 3 0 2- 1- ¾1 ¾ «¾ (wherein, 0.90 <3 <1.8, 0 £ b £ 0.5, 0 <0 <0.05 , and 0 <(<
2이다); 니3 |此¾02(상기 식에서, 0.90 < 3 < 1.8, 0 < 1) < 0.9, 0 < 0 < 2); Needle 3 |此¾0 2 (wherein 0.90 <3 <1.8, 0 <1) <0.9, 0 <0 <
0.5 및 0.001 < (1 < 0.1이다.); 니 本故八상기 식에서, 0.90 < 3 < 1.8, 0 £ b £ 0.9, 0 < 0 < 0.5 , 0 < <1 <0.5및 0.001 < ø < 0.1이다.); 0.5 and 0.001 < (1 &lt;0.1); 0.90 < 3 <1.8, 0 <b <0.9, 0 < 0 <0.5, 0 << 1 <0.5 and 0.001 <ø <0.1).
Figure imgf000010_0002
Figure imgf000010_0002
ᅭ 물론 이 화합물표면에 코팅층을 갖는 것도사용할수 있고 또는상기 화합물과코팅증을 갖는화합물을혼합하여 사용할수도 있다. 상기 코팅증은 코팅 원소 화합물로서,코팅 원소의 옥사이드 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 또는 코팅 원소의 2019/103575 1»(:1^1{2018/014724 (ᅭ) Of course, those having a coating layer on the surface of the compound may also be used, or a mixture of the compound and coating compound may be used. The coating may comprise, as a coating element compound, an oxide hydroxide of the coating element, an oxyhydroxide of the coating element, an oxycarbonate of the coating element, 2019/103575 1 » (: 1 ^ {2018/014724
하이드록시카보네이트를 포함할 수 있다. 이들 코팅층을 이루는 화합물은
Figure imgf000011_0001
Hydroxycarbonate. &Lt; / RTI &gt; The compound constituting these coating layers is
Figure imgf000011_0001
사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며,이에 대하여는당해 분야에 종사하는사람들에게 잘 이해될 수 있는 내용이므로자세한설명은 생략하기로 한다.  Can be used. The coating layer forming step may be carried out by any of coating methods such as spray coating, dipping, and the like without adversely affecting the physical properties of the cathode active material by using these elements in the above compound. It is a content that can be well understood by people engaged in the field, so detailed explanation will be omitted.
10 상기 양극 활물질의 종류를 막론하고,상기 양극 합제 총량(100중량%) 중 상기 양극 활물질의 함량을 80내지 99.5중량%로 할 수 있지만, 이는 당업계에서 적용하는 일반적인 배합량을 고려한 범위일 뿐, 이에 제한되지 않는다. 10 The content of the cathode active material in the total amount of the cathode mixture ( 100 % by weight) may be 80 to 99.5% by weight regardless of the kind of the cathode active material. However, But is not limited thereto.
15 바인더 15 binder
한편, 상기 일구현예의 양극합제는, 바인더를더 포함할수있다. 상기 바인더는양극 활물질 입자들을서로 잘부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, Meanwhile, the positive electrode material mixture of one embodiment may further include a binder. The binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector. Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropylcellulose,
20 디아세틸셀룰로즈 , 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드 , 폴리비닐플루오라이드, 에틸렌옥사이드를포함하는폴리머, 폴리비닐피롤리돈 , 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티텐-부타디엔 러버, 아크릴레이티드 스티렌_ 부타디엔 러버, 에폭시 수지, 나일론등을사용할수 있으나, 이에 한정되는 25 것은아니다. 상기 일 구현예의 양극 합제는, 일반적으로 당 업계에 알려진 방법에 따라제조될수있고, 이에 대한상세한설명은생략한다. 20 diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers comprising ethylene oxide, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styryl ten-butadiene rubber, acrylic federated _ styrene butadiene, but may be a rubber, an epoxy resin, nylon or the like, but are not 25 limited to this. The positive electrode material mixture of this embodiment can be generally manufactured by a method known in the art, and a detailed description thereof will be omitted.
30 양극및 리륨 이차전지 2019/103575 1»(:1^1{2018/014724 30 anode and lyrium secondary battery 2019/103575 1 » (: 1 ^ {2018/014724
본 발명의 또 다른구현예들로, 전술한 양극 합제를 포함하는 양극;과, 이러한 양극을포함하는 리튬 이차전지를제공한다. According to still another embodiment of the present invention, there is provided a positive electrode comprising the positive electrode mixture described above, and a lithium secondary battery including such a positive electrode.
상기 일 구현예의 리륨 이차 전지는, 전술한 양극 첨가제를 양극에 적용한 리튬 이차 전지이므로, 음극의 초기 비가역 용량이 감소하고, 양극의 5 초기 효율이 증가하며, 구동 중 에너지 밀도 저하가 억제되어 수명 특성이 우수하게 나타날수 있다.  Since the lithium secondary battery of the embodiment is a lithium secondary battery in which the above-described positive electrode additive is applied to the positive electrode, the initial irreversible capacity of the negative electrode decreases, the initial efficiency of the positive electrode increases, Can be excellent.
구체적으로, 상기 리튬 이차 전지를 상온에서 2.5 내지 4.25 V (: VI 니/니+)로 1회 충전한상기 양극의 충전 용량은 600 m^h/g 이상, 구체적으로
Figure imgf000012_0001
Specifically, the lithium secondary battery in a normal temperature from 2.5 to 4.25 V (: VI you / your +) charge capacity of the positive electrode hansanggi once filled with the 600 m ^ h / g or more, specifically
Figure imgf000012_0001
10  10
상기 일 구현예의 리튬 이차 전지에 있어서 전술한 양극 첨가제 및 양극합제 이외에 대해서는, 일반적으로 당 업계에 알려진 사항에 따라구현할 수 있다.  Other than the above-described positive electrode additive and positive electrode mixture in the lithium secondary battery of one embodiment, the present invention can be generally carried out according to matters known in the art.
이하, 일반적으로 당 업계에 알려진 사항을 간단히 제시하지만, 이는 15 예시일 뿐이며, 이에 의해 상기 일 구현예의 양극합제가제한되지 않는다. 상기 일 구현예의 양극은 양극 집전체;및 상기 양극 집전체 상에 위치하고, 전술한양극합제를포함하는 양극합제 층;을포함할수 있다. 구체적으로 상기 일 구현예의 양극은, 상기 양극 집전체 상에, 전술한 20 양극 첨가제 도전재, 양극 활물질, 및/또는 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조될 수 있고, 필요에 따라서는, 상기 혼합물에 충진제를더 첨가할수 있다. Hereinafter, generally known in the art are briefly mentioned, but this is only 15 examples, whereby the positive electrode mixture of the embodiment is not limited. The positive electrode of one embodiment may include a positive electrode collector and a positive electrode mixture layer disposed on the positive electrode collector and including the positive electrode mixture described above. Specifically, examples anode the one implementation, may be prepared by the positive electrode collector to the entire image, applying the mixture of the electrode material mixture of the aforementioned 20, the positive electrode additives conductive material, the positive electrode active material, and / or binder and then drying, if necessary, , A filler may be further added to the mixture.
상기 양극 집전체는 일반적으로 3 500 _의 두께로 만들 수 있다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 25 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄 니켈 티탄 소성 탄소, 또는 알루미늄이나 스테리인레스스틸의 표면에 카본, 니켈 티탄, 은등으로표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트 호일, 네트, 다공질체 30 발포체 부직포체 등다양한형태가가능하다. 2019/103575 1»(:1^1{2018/014724 The cathode current collector may be formed to have a thickness of 3 500 &lt; 0 &gt;. The positive electrode current collector is not particularly limited as long as it has a high conductivity of 25 without causing a chemical change in the battery. For example, the positive electrode current collector may be made of stainless steel, aluminum nickel titanium-fired carbon, or a surface of aluminum or stainless steel Treated with carbon, nickel titanium, silver, or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet foil, a net, a porous body 30, a foam nonwoven fabric, and the like are possible. 2019/103575 1 » (: 1 ^ {2018/014724
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1내지 50중량%로 첨가된다.이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 천연 흑연이나 인조 흑연 등의 흑연 카본블랙 아세틸렌 5 블랙 케첸 블랙 채널 블랙, 퍼네이스 블랙 램프 블랙 서머 블랙 등의 카본블랙 탄소 섬유나 금속 섬유 등의 도전성 섬유 불화 카본 알루미늄, 니켈 분말 등의 금속 분말 산화아연, 티탄산 칼륨 등의 도전성 위스키 산화 티탄 등의 도전성 금속 산화물 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is usually added in an amount of 1 to 50 % by weight based on the total weight of the mixture containing the cathode active material. The conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery, Graphite carbon black such as natural graphite or artificial graphite carbon black such as acetylene 5 black ketchen black channel black and black carbon black such as carbon black which is conductive fiber carbon fiber such as carbon fiber or metal fiber black metal powder such as nickel powder zinc oxide , And conductive whiskey titanium oxide such as potassium titanate, and the like can be used.
10 한편, 상기 탄성을 갖는 흑연계 물질이 도전재로사용될 수 있고, 상기 물질들과함께 사용될 수도있다. 10 On the other hand, the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는성분으로서, 통상적으로 양극활물질을포함하는혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt % based on the total weight of the mixture containing the cathode active material. Examples of such binders include
15 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈 01 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌 , 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필텐-디엔 테르 폴리머(£抑酌, 술폰화 £:卵¾1, 스티렌브티렌고무, 불소고무, 다양한공중합체 등을들수있다. 15 polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose 01 starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propyleneglycol and the like卵¾1, styrene beuti butylene rubber, fluoro rubber and various copolymers:-diene terpolymer 抑酌, sulfonated £.
20 상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계중합체; 유리섬유, 탄소섬유등의 섬유상물질이사용된다. 20 The filler is not particularly limited as long as it is a fibrous material which is used selectively as a component for suppressing the expansion of the anode and does not cause chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
25 상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며 상기 음극활물질층은음극활물질을포함할수있다. 25 The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer may include a negative electrode active material.
상기 음극 활물질로는, 탄소계 음극 활물질, 리튬 금속 리튬 금속의 합금, , 310x0 < X < 2), 복합체, 합금(상기 요는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의Examples of the negative electrode active material include a carbonaceous anode active material, an alloy of lithium metal lithium metal, 310 x ( 0 <X <2 ), a complex, an alloy (the alkali metal, the alkaline earth metal, the group 13 to 16 element, Metals, rare earth elements or their
30 조합이며, ^은아님), ¾¾02, ¾-(:복합체, 및 ¾ (상기요은알칼리 금속, 2019/103575 1»(:1^1{2018/014724 30 ), ¾ , ¾02, ¾- (: composite, and ¾ (the yttrium is an alkali metal, 2019/103575 1 » (: 1 ^ {2018/014724
알칼리 토금속 13족 내지 16족 원소 전이금속, 희토류 원소 또는 이들의 조합이며, ¾1은 아님)을 포함하는 군에서 선택되는 적어도 1종 이상의 음극 활물질을사용할수있다. And alkaline earth metal Group 13 to Group 16 elements, transition metals, rare earth element or a combination of, but not ¾1) can be used for the negative electrode active material at least one member selected from the group comprising.
상기 음극집전체는일반적으로 3 - 500 _의 두께로만들어질수있다.The negative electrode collector may generally be made to have a thickness of 3 - 500 .
5 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리 스테인레스 스틸, 알루미늄 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 알루미늄-카드뮴 합금 등이 사용될 수 있다.또한 양극 집전체와 마찬가지로, 표면에 미세한 10 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름 시트, 호일 네트, 다공질체 발포체, 부직포체 등다양한형태로사용될 수 있다. 상기 일 구현예의 리륨 이차 전지는 전해질의 종류 및/또는 세퍼레이터의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 15 리튬폴리머 전지일 수 있다. 5 The negative electrode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and may be formed on the surface of copper stainless steel, aluminum nickel, titanium, sintered carbon, copper or stainless steel carbon, nickel, titanium, is a treatment would be an aluminum surface, such as - cadmium alloys also as in the positive electrode current collector, to form fine 10 uneven surface may enhance the bonding strength between the negative electrode active material, the film sheet , Foil net, porous body foam, nonwoven fabric, and the like. The lithium secondary battery of one embodiment may be a lithium ion battery, a lithium ion polymer battery or a 15 lithium polymer battery depending on the type of electrolyte and / or the type of separator.
상기 일 구현예의 리륨 이차 전지가 액체 전해질을 적용한 리튬 이온 전지일 때, 상기 액체 전해질을 분리막에 함침시켜 적용할 수 있다.상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다.분리막의 기공 직경은 일반적으로 20 0.01 10 _이고 두께는 일반적으로 5 300,이다.이러한 분리막으로는, 예를 들어 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을겸할수도 있다. When the lithium ion secondary battery of the embodiment is a lithium ion battery using a liquid electrolyte, the separator may be impregnated with the liquid electrolyte. The separator is interposed between the anode and the cathode, and has a high ion permeability and mechanical strength A thin insulating thin film is used. The pore diameter of the separator is generally 20 0.01 10 and the thickness is generally 5 300. Examples of such separator include olefin polymers such as polypropylene, which is chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
25 상기 액체 전해질은 리튬염 함유 비수 전해질일 수 있다.상가 리튬염 함유 비수 전해질은 비수 전해질과 리륨으로 이루어져 있고, 비수 전해질로는 비수계 유기용매 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은아니다. 25, the liquid electrolyte can be a non-aqueous electrolyte containing a lithium salt. Additive lithium salt-containing non-aqueous electrolyte is non-aqueous and composed of the electrolyte and Lyrium, the non-aqueous electrolyte is used, such as the non-aqueous organic solvent, an organic solid electrolyte, inorganic solid electrolyte, but only those But is not limited thereto.
Figure imgf000014_0001
Figure imgf000014_0001
30 카르보네이트 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2 -디메톡시 에탄, 테트라히드록시 프랑 (franc) , 2 -메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3 -디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 5 디옥소런 유도체, 설포란, 메틸 설포란, 1, 3 -디메틸- 2 -이미다졸리디논, 프로필렌 카르보네이트 유도체 , 테트라하이드로푸란 유도체 , 에테르, 피로피온산메틸, 프로피온산에틸등의 비양자성 유기용매가사용될수있다. 상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 10 폴리머, 폴리 에지테이션 리신 (agi tat ion lysine) , 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화비닐리덴, 이온성 해리기를포함하는중합제등이 사용될수있다. ᅭ 30 carbonate, ethylene carbonate, butylene carbonate, dimethyl But are not limited to, carbonates, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, , Formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, 5 dioxolane derivatives, sulfolane, methyl sulfolane, An aprotic organic solvent such as dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl pyrophosphate, ethyl propionate and the like can be used. As the organic solid electrolyte, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester 10 polymer, poly-edge presentation lysine (a gi tat ion l ysine), polyester sulfide, polyvinyl alcohol, Polyvinylidene fluoride, a polymer containing an ionic dissociation group, or the like can be used. ᅭ
상기 무기 고체 전해질로는, 예를 들어, Li3N, Lil ,丄 i5NI2, LisN-Li l- LiOH, LiSi04, LiSi04-LiI-Li0H, Li2SiS3 , Li4Si04, Li4Si04-Li I-LiOH, Li3P04- 15 Li2S-SiS2등의 Li의 질화물, 할로겐화물, 황산염 등이사용될수있다. Examples of the inorganic solid electrolyte include Li 3 N , Lil, Li 5 Ni 2, LisN-Li 1- LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2SiS 3, Li 4SiO 4 , Li 4SiO 4 -Li I-LiOH , Li 3P04- 15 Li 2S- SiS 2 , and the like can be used.
상기 리륨염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl , LiBr, Lil , LiC104, LiBF4, LiB1QCl1Q, LiPF6, LiCF3S03 , LiCF3C02, LiAsFe, LiSbF6 LiAlCU, CH3S03Li , (CF3S02)2NLi , 클로로 보란 리륨, 저급 지방족카르본산리튬, 4페닐붕산리튬, 이미드등이사용될수있다. The Li salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4, LiBF4, LiB1QCl1Q, LiPF 6, LiCF3S03, LiCF3C02, LiAsF e, LiSbF 6 LiAlCU, CH 3S03Li, ( CF3SO2) 2NLi, chloroboranlium, lower aliphatic carboxylic acid lithium, lithium 4-phenylborate, imide, and the like can be used.
20 또한, 상기 리륨염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임 (gl,e) , 핵사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2 -메톡시 25 에탄올, 삼염화알루미늄등이 첨가될수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온보존특성을향상시키기 위하여 이산화탄산가스를 더 포함시킬 수도 있으며, FEC(Fluor o-Ethylene Carbonate) , PRS(Propene sul tone)등을더 포함시킬수있다. 20 The lithium salt-containing nonaqueous electrolyte may further contain, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme ( gl , e N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy 25 ethanol , Aluminum trichloride, etc. may be added. In some cases, a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added in order to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro- Ethylene Carbonate), PRS (Propane sul tone), and the like.
30 하나의 구체적인 예에서, LiPF6, LiC104 LiBF4, LiN(S02CF3)2등의 2019/103575 1»(:1^1{2018/014724 30 In one specific example, LiPF 6, LiC10 4 LiBF 4 , LiN (S0 2CF3) 2 , etc. 2019/103575 1 » (: 1 ^ {2018/014724
리륨염을, 고유전성 용매인 敗 또는 ᄄ의 환형 카보네이트와 저점도 용매인
Figure imgf000016_0001
The lithium salt is dissolved in a high-boiling solvent and a low-viscosity solvent,
Figure imgf000016_0001
비수계 전해질을제조할수 있다. A non-aqueous electrolyte can be produced.
상기 일 구현예의 리륨 이차 전지는, 이를 단위 전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스로구현될 수 있다.  The lyrium secondary battery of the embodiment may be implemented as a battery module including a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
이 때, 상기 디바이스의 구체적인 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장용 시스템일 수 있으나, 이에 한정되는 것은 아니다.  At this time, the device may be, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a power storage system, but is not limited thereto.
【발명의 효과】 【Effects of the Invention】
상기 일 구현예의 양극 합제는, 상기 리륨 퍼옥사이드(나0) 및 상기 백금을포함하는첨가제 양극활물질; 및 도전재를포함하되 상기 백금및 상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7중량%이상내지 20 중량% 이하로 제어함으로써, 전극와 비가역 용량 불균형을 효과적으로 상쇄시키며, 양극의 초기 충전 용량을 현저하게 증가시키는 임계적 의의가 있다. The positive electrode material mixture of this embodiment includes the additive positive electrode active material including the lyrium peroxide (Na 0 ) and the platinum; And the conductive material, wherein the content of the platinum in the total amount of 100 % by weight of the platinum and the conductive material is controlled to be not less than 7 % by weight and not more than 20 % by weight, thereby effectively canceling irregularities in capacity between the electrode and the irreversible capacity, There is a critical significance.
【도면의 간단한설명】 BRIEF DESCRIPTION OF THE DRAWINGS
1은, 실시예 1 및 비교예 1의 각 리튬 이차 전지에 대한 초기 충방전 특성을나타낸 그래프이다. 1 is a graph showing initial charging / discharging characteristics of each lithium secondary battery of Example 1 and Comparative Example 1. Fig.
2는, 실시예 1내지 2및 비교예 1내지 2의 각 리튬 이차 전지에 대한초기 충방전 특성을나타낸 그래프이다. 【발명의 실시를위한 형태】 2 is a graph showing initial charging / discharging characteristics of each of the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. DETAILED DESCRIPTION OF THE INVENTION
이하 발명의 구체적인 실시예를 통해 발명의 작용 효과를 보다 구체적으로설명하기로 한다.다만 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가어떠한의미로든 한정되는 것은아니다. 실시예 1 ( 및 도전재의 총량 100중량%중 함량이 10중량%인 2019/103575 1»(:1^1{2018/014724 The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. Example 1 (and the conductive material in the total amount 100% by weight content of 10% by weight of 2019/103575 1 » (: 1 ^ {2018/014724
경우) Occation)
(1)양극합제와제조  (1) Positive electrode mix and manufacture
리튬퍼옥사이드(니202), 백금(마), 도전재, 및 바인더를포함하는양극 합제를 제조하되, 마 및 도전재의 총량 100 중량%중라 함량이 10 중량%이 되도록배합비를제어하였다. A positive electrode material mixture containing lithium peroxide ( Ni2O ), platinum (E), a conductive material and a binder was prepared, and the compounding ratio was controlled so that the total amount of the conductive material and the conductive material became 10% by weight.
구체적으로, 리륨 퍼옥사이드(니202): 백금( ): 도전재 (카본블랙,
Figure imgf000017_0001
Specifically, lyrium peroxide (Ni 202 ): platinum (): conductive material (carbon black,
Figure imgf000017_0001
80 : 0.8 : 7.2 : 12의 중량비로 배합하고, 막자 사발로 유발하여 건식 혼합함으로써, 실시예 1의 양극합제를제조하였다.  80: 0.8: 7.2: 12, and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mix of Example 1.
(2)양극및리툼이차전지의 제조  (2) Preparation of anode and lithium secondary battery
실시예 1의 양극 합제에 유기 용매( )를 첨가하여 슬러리 상을 형성한 후, 알루미늄 집전체 상에 도포하여 120 。(:의 진공 오븐에서 12시간 진공건조하여, 실시예 2의 양극을수득하였다. An organic solvent () was added to the positive electrode mixture of Example 1 to form a slurry phase. The slurry was applied on an aluminum current collector and vacuum-dried in a vacuum oven at 120 ° C for 12 hours to obtain a positive electrode of Example 2 .
흑연(아크 근) : 도전재 (카본블랙, 상업명 매 065, 11111031 ;†土) :
Figure imgf000017_0002
Graphite (arc core ): conductive material (carbon black, commercial name: 065, 1 111103 1; † earth):
Figure imgf000017_0002
社) = 94.2 : 2 : 2.5 : 1.3 의 중량비로 배합하고, 건식 혼합하여, 음극 합제를제조하였다. Ltd.) = 94.2: 2: 2.5: 1.3, and dry mixed to prepare a negative electrode mixture.
상기 음극합제에 유기 용매(■미를 첨가하여 슬러리 상을 형성한후, 구리 집전체 상에 도포하여 120 。(:의 진공 오븐에서 12시간 진공 건조하여 음극을제조하였다. An organic solvent was added to the negative electrode mixture to form a slurry phase, which was then coated on a copper collector and vacuum dried in a vacuum oven at 120 ° C for 12 hours to prepare a negative electrode.
Figure imgf000017_0003
Figure imgf000017_0003
?? /? E 재질의 세퍼레이터를 전지 용기에 투입하고, 전해질을 주입하여, 통상적인 제조방법에 따라 2032 풀셀(而11-0611)의 형태로 리륨 이차 전지를 제작하였다.?? /? E separator was charged into a battery container, an electrolyte was injected, and a lithium secondary battery was produced in the form of a 2032 full cell (In 11-11 ) according to a conventional manufacturing method.
Figure imgf000017_0004
Figure imgf000017_0004
1 의 (니? 6) 용액을 용해시킨 것( 1ᅦ平6 防:»(::0 := 1 : 2 : 1 ( \0)을사용하였다. 실시예 2 ( 및 도전재의 총량 100중량%중, 함량이 15중량%인 경우) 2019/103575 1»(:1^1{2018/014724 1 (you? 6) solution in which one (1 e 6平防dissolved: »(0::: = 1: 2: 1 (\ 0) was used. Example 2 (and when the content of the conductive material is 100% by weight and the content is 15% by weight) 2019/103575 1 » (: 1 ^ {2018/014724
(1)양극합제의 제조 (1) Preparation of positive electrode mixture
리륨퍼옥사이드(니202), 백금( ), 도전재, 및 바인더를포함하는양극 합제를 제조하되, 라 및 도전재의 총량 100 중량%중 함량이 15 중량%이 되도록배합비를제어하였다. Lee ryumpeo oxide (Needle 202), the platinum content in the (), the conductive material, and a positive electrode material mixture was prepared containing the binder, the conductive material la and the total amount 100% by weight of the blend ratio was controlled to be 15% by weight.
5 구체적으로, 리륨 퍼옥사이드(니202): 백금(아): 도전재 (카본블랙
Figure imgf000018_0001
5 Specifically, lyrium peroxide (Ni 202 ): platinum (Au): conductive material (carbon black
Figure imgf000018_0001
80 : 1.2 : 6.812의 중량비로 배합하고, 막자 사발로 유발하여 건식 혼합함으로써 실시예 2의 양극합제를제조하였다. 80 : 1.2 : 6.8 : 12 , and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mixture of Example 2 .
(2)양극및리륨이차전지의 제조  (2) Preparation of a positive electrode and a lithium secondary battery
10 실시예 1의 양극 합제 대신 실시예 2의 양극 합제를 사용하고, 나머지는 실시예 1과 동일하게 하여, 실시예 2의 양극 및 리륨 이차 전지를 제조하였다. 비교예 1( 를전혀사용하지 않은경우) Using the cathode mixture of Example 2 instead of the positive electrode material mixture 10 in Example 1, and the rest in the same manner as in Example 1, to thereby prepare a positive electrode and Lyrium secondary battery of the second embodiment. Comparative Example 1 (when not used at all)
15 (1)양극합제의 제조 15 (1) Preparation of positive electrode mixture
를 전혀 사용하지 않은 점을 제외하고, 나머지는 실시예 1과 동일하게 하여 비교예 의 양극합제를 제조하였다. Was used as the cathode active material, and the cathode active material of Comparative Example was prepared in the same manner as in Example 1 , except that the anode active material was not used at all.
2) 양극및 리튬이차전지의 제조 ( 2 ) Preparation of positive electrode and lithium secondary battery
실시예 1의 양극 합제 대신 비교예 1의 양극 합제를 사용하고,Carried out using the cathode mixture of Example Comparative Example 1 instead of the positive electrode mixture 1, and
20 나머지는 실시예 1과 동일하게 하여 비교예 1의 양극 및 리튬 이차 전지를 제조하였다. 비교예 2 ( 및 도전재의 총량 100중량%중 아 함량이 5중량%인 경우) 20 rest was prepared the positive electrode and a lithium secondary battery of Comparative Example 1 in the same manner as in Example 1. Comparative Example 2 (and of the conductive material in the total amount of 10 0% by weight, if the O content is 5% by weight)
25 (1)양극합제의 제조 25 (1) Preparation of positive electrode mixture
리튬퍼옥사이드(니02), 백금(라) 도전재 및 바인더를포함하는양극 합제를 제조하되, 및 도전재의 총량 100 중량%?t 함량이 5 중량%이 되도록배합비를제어하였다. A mixture of lithium peroxide (Ni 2 O ), platinum (C), and a binder was prepared, and the mixing ratio was controlled so that the total amount of the conductive material was 100 wt % , and the content of t was 5 wt % .
구체적으로 리튬 퍼옥사이드(니202): 백금( ): 도전재 (카본블랙,
Figure imgf000018_0002
80 : 0.4 : 7.612의 중량비로 배합하고, 막자 사발로 유발하여 건식 혼합함으로써, 비교예 2의 양극합제를제조하였다.
Specifically, lithium peroxide (Ni 202 ): platinum (): conductive material (carbon black,
Figure imgf000018_0002
80 : 0.4 : 7.6 : 12 , and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mixture of Comparative Example 2 .
(2)양극및 리륨이차전지의 제조 (2) Preparation of a positive electrode and a lithium secondary battery
실시예 1의 양극 합제 대신 비교예 2의 양극 합제를 사용하고, 5 나머지는 실시예 1과 동일하게 하여, 비교예 2의 양극 및 리튬 이차 전지를 제조하였다. 실험예 1: 전지의 초기 충방전특성 평가 I Carried out using the cathode mixture of Comparative Example 1 instead of the positive electrode material mixture 2, for example, 5 rest in the same manner as in Example 1, was prepared in Comparative Example 2, a positive electrode and a lithium secondary battery. Experimental Example 1 : Evaluation of initial charging and discharging characteristics of a battery I
실시예 1 및 비교예 1의 각 전지에 대해, 상온에서 다음과 같은 10 조건으로초기 충방전특성을평가하였다. 그평가결과는도 1에 기록하였다. For each cell of Example 1 and Comparative Example 1 , the initial charge-discharge characteristics were evaluated under the following 10 conditions at room temperature. The evaluation results are shown in Fig.
Charge: 0.01C, CC/CV, 4.2V, 5% cut-off Charge: 0.01C, CC / CV, 4.2V, 5% cut-off
Discharge: 0.01C, CC, 2.5 V, cut-off 실시예 1 및 비교예 1의 경우 실시예의 첨가제에 의한 전지 초기 15 성능의 영향을 확인하기 위하여, 극단적으로 양극활물질은 배합하지 않고, 각 첨가제를 통상의 양극 활물질과 동일한 배합량으로 하여 실시예 1및 비교예 1의 각 양극 합제를 제조하고 각 양극 합제를 적용하여 양극과 리륨 이차 전지를 제조한것이다. Discharged : 0.01 C, CC, 2.5 V, cut-off In the case of Example 1 and Comparative Example 1 , in order to confirm the influence of the initial performance of the battery 15 by the additives of the Examples, the cathode active material was not extremely mixed, Was prepared in the same amount as that of the conventional cathode active material to prepare each of the positive electrode mixture of Example 1 and Comparative Example 1, and each positive electrode mixture was applied to manufacture a positive electrode and a lithium secondary battery.
앞서 설명한 바와 같이, 상기 리튬 퍼옥사이드Li0)는 이론 상 하기 20 반응식 1에 따라, 그 1 몰당, 1몰의 산소와 함께 2몰의 리륨 이온을 비가역적으로방출할수 있는화합물이다. As described above, according to the lithium peroxide Li0) is theoretically 20 to scheme 1, a compound that can irreversibly release the Lyrium ion of 2 moles per mole of with the oxygen of 1 mol.
[반응식 1] Li此 2Li + + 02 [Reaction Formula 1] Li此2Li + + 0 2
다만, 도 1에 따르면, 라를 전혀 사용하지 않은 비교예 1의 양극 합제를적용한경우, 비교예 1전지의 초기 충전시 전압, 예를들어 2.5내지 25 4.25 V (vs. Li/Li + )에서 반응효율이 좋지 않아, 양극의 초기 충전용량이 약 180 mAh/g에 불과한것으로확인된다. However, according to FIG. 1, when applying the positive electrode mixture of Comparative Example 1 in which no La is used, the voltage at the initial charging of Comparative Example 1, for example, 2.5 to 25 4.25 V (vs. Li / Li +) The reaction efficiency is not good and the initial charge capacity of the anode is found to be only about 180 mAh / g .
그에 반면, 리튬 퍼옥사이드 (Li2¾)에 더하여, 도전재 중량의 1/9의 중량으로백금 (Pt)를첨가한실시예 1의 양극합제를적용한경우, 비교예 1과 동일한조건에서, 실시예 1 양극의 초기 충전 용량이 약 700 mAh/g로 향상된 30 것을확인할수있다. 이러한 결과로부터, 백금Pt)은 리륨 퍼옥사이드Li0)와 함께 양극에 적용되어, 상기 반응식 1의 반응 효율을 개선할 수 있고, 이에 따라 방출된 리튬 이온으로 하여금 음극의 비가역 용량 불균형을 효과적으로 해소하며, 양극의 초기 효율을보다증가시킬 수 있음을 알수 있다. On the other hand, in the case of applying the positive electrode mixture of Example 1 in which platinum (Pt) was added at a weight of 1/9 of the weight of the conductive material in addition to lithium peroxide (Li 2¾) the initial charge capacity of the positive electrode 1 can be confirmed that the improved 30 to about 700 mAh / g. From these results, it can be seen that the platinum Pt) is applied to the anode together with the lyrium peroxide Li0 to improve the reaction efficiency of the Reaction Scheme 1, thereby effectively dissipating the irreversible capacity imbalance of the anode, It can be seen that the initial efficiency of the anode can be further increased.
5 본 실험예에서는 실시예의 첨가제에 의한 전지 초기 성능의 영향을 확인하기 위하여 극단적으로 양극 활물질은 배합하지 않았지만, 전지의 초기 성능을 향상시킴과 동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극 첨가제와 함께 양극 활물질을 적절한 배합비로혼합하여 사용할수 있다. 5 In this Experimental Example, the cathode active material was not extremely mixed in order to confirm the effect of the initial performance of the battery by the additive of the Example. However, in order to improve the initial performance of the battery and secure long- Depending on the characteristics, the cathode active material may be mixed with the anode additive of one embodiment in an appropriate blending ratio.
10  10
실험예 2: 전지의초기충방전특성평가 II  Experimental Example 2: Evaluation of initial charging and discharging characteristics of a battery II
한편, 백금 (Pt)을 양극합제에 적용한경우 양극의 초기 충전 용량 및 초기 효율을개선하는효과가있지만, 특히, 상기 백금및상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7중량% 이상 내지 20 중량% 이하, 보다 15 구체적으로 8중량%이상 17중량%이하, 보다더 구체적으로 10중량%이상 내지 15중량%이하가되도록제어할때, 비로소 임계적 효과가있음을알수 있다. On the other hand, the platinum (P t), but only the effect of improving the initial charge capacity and initial efficiency of the positive electrode is applied to a positive electrode material mixture, in particular, the platinum and the conductive material in the total amount 100% by weight, the content of the platinum-7 wt. To 20 % by weight or more, more specifically 15 % by weight or more and 8 % by weight or more and 17 % by weight or less, and still more specifically 10 % by weight or more to 15 % by weight or less.
이러한사실을확인하기 위해, 실시예 1내지 2 및 비교예 1내지 2의 각 전지에 대해, 상온에서 다음과 같은 조건으로 초기 중방전 특성을 20 평가하였다. 그평가결과는도 2에 기록하였다. To determine this fact, the Examples 1 to 2 and Comparative Examples 1 to the initial characteristic on condition Protective around for each cell, such as the following at room temperature for 2 20 were evaluated. The evaluation results are reported in Fig.
Charge0.01C, CC/CV, 4.2V, 5% cut-off Charge : 0.01C, CC / CV, 4.2V, 5% cut-off
Discharge0.01C, CC, 2.5 V, cut-off Discharge : 0.01C, CC, 2.5V, cut-off
2에 따르면, 라를 전혀 사용하지 않은 비교예 1의 양극 합제를 적용한경우, 비교예 1전지의 초기 충전시 전압, 예를들어 2.5내지 4.25 V 25 (vs . Li/Li+)에서 반응 효율이 좋지 않아, 양극의 초기 충전 용량이 약 195 mAh/g에 불과한것·으로확인된다. Referring to Figure 2, when applying the cathode mixture of Comparative Example 1 that did not use the LA, Comparative Examples voltage during the initial charging of the first battery, for example, 2.5 to 4. 25 V 25 from (v s. Li / Li + ) The reaction efficiency is not good and the initial charge capacity of the anode is only about 195 mAh / g .
그에 반면, 리륨퍼옥사이드 (Li202)에 더하여 백금 (Pt)을 첨가하되, Pt 및 도전재의 총량 100 중량% 중 Pt 함량을 10 중량% (실시예 1)15 중량% (실시예 2)로 제어한 경우, 비교예 1에 대비하여, 양극의 초기 충전 30 용량이 약 699 mAh/g (실시예 1) 및 약 702 mAh/g (실시예 2)으로 각각향상된 2019/103575 1»(:1^1{2018/014724 Thus, while Li ryumpeo oxide (Li 202) Platinum (P t) to, but added 10 weight% of P t content of P t and the conductive material in the total amount 100% by weight, in addition to Example 1 and 15% by weight (Example 2) in contrast to the case of Comparative example 1 as a control, the initial charge capacity of the positive electrode 30 of about 699 mA h / g (example 1) and each increased by about 702 mAh / g (example 2) 2019/103575 1 » (: 1 ^ {2018/014724
것을확인할수있다. .
다만, 리튬 퍼옥사이드(니0)에 더하여 백금(아)을 첨가하면서도 아 및 도전재의 총량 100중량%중라 함량을 5중량%(비교예 2)로제어한경우, 양극의 초기 충전 용량이 약 315 /용로, 비교예 1보다는 향상되었지만 5 실시예 12의 각전지 초기 충전용량의 약 50%수준에 불과함을확인할수 있다 However, lithium peroxide (Nishi 0) in addition to platinum (a) was added while ah and conductive material in the total amount 100% by weight of the jungra content of 5% by weight (Comparative Example 2) Rosetta control hangyeongwoo, the initial charge capacity of the positive electrode of about 315 / It is confirmed that the capacity of the battery of Example 1 is improved to about 50% of the initial charging capacity of each of the batteries of Examples 1 and 2 ,
이와 같은 결과로부터, 양극 합제에 리툼 퍼옥사이드(니02)에 더하여 백금(마)을 첨가하는 경우 양극의 초기 충전 용량 및 초기 효율을 개선하는 효과는, 백금( )을 첨가하되 및 도전재의 총량 100중량%중아 함량을 10 7중량% 이상 내지 20 중량% 이하, 보다 구체적으로 8 중량% 이상 17중량% 이하 보다더 구체적으로 10중량%이상내지 15중량%이하가되도록제어할
Figure imgf000021_0001
In case that from the results, ritum the positive electrode material mixture in addition to the peroxide (Nishi 02) was added to platinum (e) The effect of improving the initial charge capacity and initial efficiency of the positive electrode is, but the addition of platinum () and the conductive material in a total amount of 100 % by weight bisulfite content of 7 to 10% by weight or more to 20 wt%, more specifically, to be controlled so that more specific or less to 15 wt% or more and 10% by weight or less than 17% by weight at least 8% by weight
Figure imgf000021_0001
mAh/g이상으로확보하는임계적 의의가있음을알수있다. m Ah / g .
본 실험예에서는 실시예의 첨가제에 의한 전지 초기 성능의 영향을 15 확인하기 위하여, 극단적으로 양극활물질은배합하지 않았지만, 전지의 초기 성능을 향상시킴과 동시에, 장기 수명 특성을 확보하고자 할경우, 목적하는 전지 특성에 따라, 일 구현예의 양극 첨가제와 함께 양극 활물질을 적절한 배합비로혼합하여사용할수있다. In the present experimental example, in order to confirm the influence of the initial performance of the battery by the additive of the Example 15 , although the cathode active material was not extremely used, in order to improve the initial performance of the battery and secure long- Depending on the characteristics of the battery, the positive electrode active material of one embodiment may be mixed with the positive electrode active material in an appropriate blending ratio.

Claims

2019/103575 1»(:1^1{2018/014724 2019/103575 1 » (: 1 ^ {2018/014724
【청구의 범위】 Claims:
【청구항 11 Claim 11
양극활물질;  Cathode active material;
도전재; 및  Conductive material; And
리튬퍼옥사이드(니)및 백금( )을포함하는첨가제;를포함하며 상기 백금및상기 도전재의 총량 100중량%중, 상기 백금의 함량이 7 중량%이상내지 20중량%이하인 것인 Wherein the content of the platinum in the total amount of 100 % by weight of the platinum and the conductive material is not less than 7 % by weight and not more than 20 % by weight,
양극합제.  Cathode mix.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 리튬퍼옥사이드및상기 백금의 중량비는,  The weight ratio of the lithium peroxide and the platinum is,
100 : 7내지 100 : 20인 (니202: 100: 7 to 100: 20 (Nee 202:)
양극합제 .  Cathode mix.
【청구항 3] [3]
제 1항에 있어서,  The method according to claim 1,
상기 양극합제총량(100중량%)중, Of the total amount of the positive electrode mixture ( 100 % by weight)
상기 리튬퍼옥사이드(니202) 및 백금( )을포함하는 첨가제의 중량은 5내지 10중량%인, The weight of the additive comprising lithium peroxide (Ni 202 ) and platinum () is 5 to 10 % by weight,
양극합제.  Cathode mix.
【청구항 4] [ 4]
제 1항에 있어서,  The method according to claim 1,
상기 양극합제총량(100중량%)중 In the total amount of the positive electrode mixture ( 100 % by weight)
상가도전재의 중량은 0.1내지 10중량%인, Wherein the weight of the prepreg is 0.1 to 10 % by weight,
양극합제 .  Cathode mix.
【청구항 5] [Claim 5]
1항에 있어서, 2019/103575 1»(:1^1{2018/014724 The method according to claim 1 , 2019/103575 1 » (: 1 ^ {2018/014724
상기 도전재는, Preferably,
천연흑연, 인조흑연 카본블랙, 아세틸렌블랙, 케첸블랙, 탄소섬유, 금속분말 금속섬유, 및폴리페닐렌유도체를포함하는군에서 선택되는 1종 이상을포함하는것인 The haneungeot include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber and polyphenylene least one selected from the derivatives include haneungun
5 양극합제. 5 cathode mix.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 양극합제총량(100중량%)중, Of the total amount of the positive electrode mixture ( 100 % by weight)
10 상기 양극활물질의 중량은 86내지 88중량%인, 10 The weight of the cathode active material is 86 to 88 wt %
양극합제.  Cathode mix.
【청구항 7] [ 7]
제 1항에 있어서  The method of claim 1, wherein
15 상기 양극활물질은,  15 The positive electrode active material,
코발트, 망간 니켈또는이들의 조합의 금속; 및 리륨;의 복합산화물 중 1종이상을포함하는것인 Cobalt, manganese nickel or a combination thereof; Which comprises at least one of a complex oxide haneungeot '; and Lyrium
양극합제.  Cathode mix.
2020
【청구항 8] [ 8]
제 1항에 있어서,  The method according to claim 1,
바인더 ;를더 포함하는,  Binder,
양극합제.  Cathode mix.
2525
【청구항 9] 9]
제 1항의 양극합제를포함하는양극.  A positive electrode comprising the positive electrode mixture of claim 1.
【청구항 10Claim 10
9항의 양극; A positive electrode of claim 9 ;
30 음극; 및 2019/103575 1»(:1^1{2018/014724 30 cathode; And 2019/103575 1 » (: 1 ^ {2018/014724
전해질;을포함하는, An electrolyte;
리륨이차전지.  Lithium secondary battery.
【청구항 11】 Claim 11
5 제 10항의 리튬이차전지는, 5 The lithium secondary battery of Claim 10,
상온에서 2.5 내지 4.25 V (vs. 니/니+)로 1회 충전한 상기 양극의
Figure imgf000024_0001
2.5 to 4.25 V (vs. Ni / Ni +) &lt; / RTI &gt;
Figure imgf000024_0001
리튬이차전지 .  Lithium secondary battery.
10 【청구항 12】 10 [Claim 12]
제 10항에 있어서,  11. The method of claim 10,
상기 음극은,  The negative electrode,
탄소계 음극활물질, 리륨금속, 리륨금속의 합금, , 510x(0 < X < 2), 복합체, 합금(상기 0는알칼리 금속, 알칼리토금속, 13족내지 15 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, 은 아님), ¾,
Figure imgf000024_0002
A carbon-based negative electrode active material, Lyrium metal, Lyrium metal alloys,, 510 x (0 <X <2), composite, alloy (wherein 0 is an alkali metal, alkaline earth metal, a Group 13 to 15 a group 16 element, transition metal, rare earth element Or a combination thereof, and is not), ¾,
Figure imgf000024_0002
16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, ¾은 아님)을 포함하는군에서 선택되는적어도 1종이상의 음극활물질을포함하는, At least one or more negative electrode active materials selected from the group consisting of a Group 16 element, a transition metal, a rare earth element, or a combination thereof,
리튬이차전지 .  Lithium secondary battery.
PCT/KR2018/014724 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode comprising same and lithium secondary battery WO2019103575A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18881949.4A EP3598535B1 (en) 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode comprising same and lithium secondary battery
US16/607,309 US11316149B2 (en) 2017-11-27 2018-11-27 Positive electrode mix, positive electrode including the same, and lithium secondary battery
PL18881949T PL3598535T3 (en) 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode comprising same and lithium secondary battery
JP2019554642A JP6827559B2 (en) 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode containing this, and lithium secondary battery
CN201880023953.6A CN110506349B (en) 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode comprising same, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0159733 2017-11-27
KR20170159733 2017-11-27
KR10-2018-0148220 2018-11-27
KR1020180148220A KR102434256B1 (en) 2017-11-27 2018-11-27 Cathode mixture, cathode including the same, lithium recharegable battery including the same

Publications (1)

Publication Number Publication Date
WO2019103575A1 true WO2019103575A1 (en) 2019-05-31

Family

ID=66632022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014724 WO2019103575A1 (en) 2017-11-27 2018-11-27 Positive electrode mixture, positive electrode comprising same and lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2019103575A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338142B1 (en) * 2010-04-27 2013-12-06 한양대학교 산학협력단 Lithium air battery
JP5541502B2 (en) * 2010-03-30 2014-07-09 株式会社デンソー Lithium secondary battery and manufacturing method thereof
KR20150124673A (en) * 2014-04-29 2015-11-06 부산대학교 산학협력단 Oxygen reaction catalyst of secondary battery and secondary battery having the same
KR20160128014A (en) * 2015-04-28 2016-11-07 주식회사 엘지화학 Positive Electrode Mix Comprising Lithium Metal Sulfur Compound and Positive Electrode Prepared from the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541502B2 (en) * 2010-03-30 2014-07-09 株式会社デンソー Lithium secondary battery and manufacturing method thereof
KR101338142B1 (en) * 2010-04-27 2013-12-06 한양대학교 산학협력단 Lithium air battery
KR20150124673A (en) * 2014-04-29 2015-11-06 부산대학교 산학협력단 Oxygen reaction catalyst of secondary battery and secondary battery having the same
KR20160128014A (en) * 2015-04-28 2016-11-07 주식회사 엘지화학 Positive Electrode Mix Comprising Lithium Metal Sulfur Compound and Positive Electrode Prepared from the Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIE, YITIAN: "Li202 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries", CHEMICAL COMMUNICATIONS, vol. 53, no. 59, 30 June 2017 (2017-06-30), pages 8324 - 8327, XP055617194 *
See also references of EP3598535A4 *

Similar Documents

Publication Publication Date Title
JP6579530B2 (en) Secondary battery containing silicon compound
KR101056714B1 (en) Cathode active material with improved high voltage characteristics
WO2016121322A1 (en) Negative electrode plate for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said negative electrode plate
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN113066961B (en) Negative electrode sheet, electrochemical device, and electronic device
KR101334615B1 (en) Anode Active Material and Secondary Battery Comprising the Same
KR20150013101A (en) Novel Secondary Battery
WO2018123330A1 (en) Negative electrode active material and method for manufacturing same, negative electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6704457B2 (en) Lithium secondary battery
KR20120069314A (en) Anode having improved adhesion for lithium secondary battery
JP6056955B2 (en) Lithium secondary battery
KR20160036577A (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
KR102434255B1 (en) Cathode and lithium recharegable battery including the same
KR101852762B1 (en) Anode Active Material Comprising Porous Silicon and Lithium Secondary Battery Having the Same
JP2018535535A (en) Electrode including three-dimensional network electrode collector
WO2019103573A1 (en) Positive electrode and lithium secondary battery comprising same
WO2019103575A1 (en) Positive electrode mixture, positive electrode comprising same and lithium secondary battery
JP6827559B2 (en) Positive electrode mixture, positive electrode containing this, and lithium secondary battery
KR20140008956A (en) A method of preparing anode for lithium secondary battery and lithium secondary battery comprising anode prepared by the method
KR102297246B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP2004179005A (en) Lithium secondary battery
KR20160035286A (en) High-Voltage Lithium Secondary Battery of Improved Cycle Characteristics
CN115398673A (en) Method of manufacturing negative electrode having inorganic coating layer formed thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554642

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881949

Country of ref document: EP

Effective date: 20191015

NENP Non-entry into the national phase

Ref country code: DE