WO2019103574A2 - Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same - Google Patents

Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019103574A2
WO2019103574A2 PCT/KR2018/014723 KR2018014723W WO2019103574A2 WO 2019103574 A2 WO2019103574 A2 WO 2019103574A2 KR 2018014723 W KR2018014723 W KR 2018014723W WO 2019103574 A2 WO2019103574 A2 WO 2019103574A2
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
oxide
lithium
nickel
additive
Prior art date
Application number
PCT/KR2018/014723
Other languages
French (fr)
Korean (ko)
Other versions
WO2019103574A3 (en
Inventor
김지혜
박병천
한정민
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180143832A external-priority patent/KR20190062209A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880066167.4A priority Critical patent/CN111226334B/en
Priority to JP2020517272A priority patent/JP7047219B2/en
Priority to US16/756,950 priority patent/US11404693B2/en
Priority to EP18881948.6A priority patent/EP3678240A4/en
Publication of WO2019103574A2 publication Critical patent/WO2019103574A2/en
Publication of WO2019103574A3 publication Critical patent/WO2019103574A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode additive, a process for producing the same, and a positive electrode and a lithium secondary battery comprising the same.
  • the lyrium secondary battery is a lithium secondary battery in which an electrode active material capable of reversibly intercalating and deintercalating lyrium ions is applied to a cathode and an anode to realize movement of lithium ions through an electrolyte, .
  • a positive electrode additive capable of canceling the irreversible capacity imbalance of the two electrodes and increasing the initial charge capacity of the anode. 2019/103574 1 »(: 1 ⁇ ⁇ 2018/014723
  • a member when a member is " on " another member, it includes not only when the member is in contact with the other member, but also when there is another member between the two members.
  • a positive electrode additive having an overall composition represented by the following Formula 1:
  • the positive electrode additive of one embodiment contains an excess of lyrium relative to a conventional positive electrode active material, which is one mole of lyrium, and is capable of irreversibly releasing lithium upon initial charge and discharge of the battery.
  • the positive electrode additive of one embodiment is applied to the positive electrode together with the positive electrode active material, thereby canceling the irreversible capacity imbalance between the two electrodes during the initial charge and discharge of the battery, and contributing to increase the initial efficiency of the positive electrode.
  • the positive electrode additive of one embodiment comprises a lithium nickel oxide, a nickel oxide ( ⁇ 0), and a lithium oxide ( 20 ) represented by the following general formula (1-1) have.
  • the positive electrode additive of this embodiment can provide extra Li to the positive electrode and further increase the initial charge capacity of the positive electrode depending on the presence of the unreacted raw material, especially lithium oxide (Li 20) .
  • the positive electrode additive of one embodiment is one obtained by blending the nickel-based oxide and the lyrium oxide (Li 20) in a stoichiometric molar ratio of 1: 1.02 to 1: 0.98 followed by heat treatment and without removing the unreacted raw material Can be.
  • the lithium nickel oxide, the nickel oxide (NiO), and the lyrium oxide (Li 20) represented by Formula 1-1 are each crystalline, and the Fe Ka X ray X-ray diffraction (XRD).
  • the main peak intensity of the lithium nickel oxide represented by Formula 1-1 is 100 (Ref.), It is more than 0 and not more than 15, specifically more than 0 and not more than 14 and not less than 0 and not more than 13, for example, The intensity may be greater than 0 and less than or equal to 12. From this, it can be seen that the content of lithium oxide (Li 20) in the total amount (100% by weight) of the positive electrode additive in one embodiment is more than 0% by weight but not more than 15% by weight, specifically more than 0% 13% by weight or less, for example, 0% by weight or more and 12% by weight or less.
  • XRD X-ray diffraction
  • the main peak intensity of the lithium nickel oxide represented by Formula 1-1 is 100 (Ref.), It is more than 0 and not more than 15, specifically more than 0 and not more than 14 and not less than 0 and not more than 13, for example, The intensity may be greater than 0 and less than or equal to 12.
  • the content of the nickel oxide (NiO) in the total amount (100 wt%) of the positive electrode additive in one embodiment is more than 0 wt% and not more than 15 wt%, specifically more than 0 wt% and not more than 14 wt% By weight or less, for example, 0% by weight or more and 12% by weight or less.
  • the main peak may appear in the range.
  • the main peak may be represented by a crystal structure of orthorhombic having a point group Im mm and may be a lithium nickel oxide represented by the formula 1-1.
  • the content of the nickel oxide (NiO) is determined by subtracting the content of the lyrium oxide (Li 20) and the content of the nickel oxide (NiO) from the total amount (100 wt%) of the positive electrode additive of one embodiment 2019/103574 1 »(: 1/10/0/0 018/014723
  • the positive electrode additive of one embodiment includes the lyrium nickel oxide, the nickel oxide (solution 0) and the lithium oxide (1 oxide 0) represented by the formula 1-1 X, X and Z are the same as those in the formula (I), and the total composition is the same as in the above formula 1. Specifically, And the weight ratio of the lithium oxide (0 20 ).
  • 0.7 is 1.0, 0 is now ⁇ 0.15, and 0 is 0.15; 0.72 ⁇ ⁇ 1.0, 0 now £ 0.14, 0 can be ⁇ 0.14; 0.74 ⁇ ⁇ 1.0, 0 now ⁇ 0.13, 0 ⁇ 0.13; 0.74 ⁇ ⁇ 1.0, 0 now ⁇ 0.13, 0 ⁇ 0.13; 0.76 ⁇ 1.0, 0 ⁇ 0.12, and 0 ⁇ 0.12, respectively.
  • the form of the lithium nickel oxide, the nickel oxide ( ⁇ 0), and the lium oxide (0 20 ) represented by Formula 1-1 is not particularly limited.
  • the term " particles " means that the primary particles or primary particles, Can be.
  • the anode additive of this embodiment irreversibly releases lyrium ion and oxygen at a voltage at the time of initial charging of the battery, for example, 2.5 to 4.25 V 0. Ni / 0 +, and thereafter, 2 < / RTI >
  • the positive electrode additive converted into the formula 2 It may be possible to reversibly insert and desorb lithium ions similarly to a conventional positive electrode active material.
  • the positive electrode additive of one embodiment can be utilized as an additive to compensate for the initial irreversible capacity of the negative electrode, and as an active material capable of reversible insertion and desorption of lithium.
  • the positive electrode additive converted into the formula (2) Due to the content and the structural limitations thereof, it is possible to have a small reversible capacity as compared with a conventional positive electrode active material, and specifically to have a reversible capacity of 300 to 350, 111 shows. Therefore, when the initial performance of the battery is improved and long-life characteristics are secured, the cathode active material may be mixed with the cathode active material of one embodiment in a proper mixing ratio depending on the desired battery characteristics.
  • a process for preparing a nickel-based oxide comprising: preparing a nickel-based oxide represented by the following Formula 3; And heat treating the mixture of the nickel-based oxide and the lyrium oxide (1-O-O). According to this production method, the above-mentioned positive electrode additive can be obtained.
  • the step of preparing the nickel-based oxide represented by the above-mentioned formula (3) comprises: a step of preparing nickel hydroxide ((03 ⁇ 4 2 ) alone; Is the number of days that the heat treatment step to; or, a nickel hydroxide ( ⁇ (03 ⁇ 4 2) and M comprises a mixture of compounds.
  • the nickel hydroxide ((011 ⁇ alone; or, a nickel hydroxide ((0, P 2) and a mixture of M containing compound, heat treatment is at a temperature ranging from 500 to 700 ⁇ can be carried out in an inert atmosphere for 5 to 20 hours.
  • the step of heat treating the mixture of nickel oxide and lithium oxide (1 run 0) comprises mixing the nickel calculated product and the lithium oxide in a molar ratio of 1: 1 (0.02) 800 X: for 10 to 20 hours in an inert atmosphere.
  • the total amount mixed does not react at a molar ratio of 1: 1, and the nickel- A part thereof and a part of the lyrium oxide (? 0) react with each other to form a nickel oxide represented by the formula (1-1), and an unreacted starting material can remain.
  • the overall composition of the resulting product and the effect thereof are as described above.
  • the above-mentioned positive electrode additive In another embodiment of the present invention, the above-mentioned positive electrode additive; And a cathode active material. Since the positive electrode additive of the embodiment is applied with the positive electrode additive described above, the initial irreversible capacity of the negative electrode can be reduced and the initial efficiency of the positive electrode can be increased. In the total amount (100% by weight) of the positive electrode mixture of one embodiment, the positive electrode additive may be applied in an amount of 1 to 30% by weight. Specifically, when the positive electrode additive is compounded in the above range, (In other words, Cycle, the initial irreversible capacity of the negative electrode is sufficiently reduced with the positive electrode additive,
  • the positive electrode mixture of this embodiment can be generally implemented according to what is known in the art.
  • the positive electrode mixture of this embodiment is not limited.
  • the cathode active material it is not particularly limited as long as it is a material capable of reversible insertion and desorption of lithium ions.
  • cathode active material a compound represented by any one of the following formulas may be used. : ⁇ (wherein, 0.90 ⁇ 3 ⁇ 4
  • Needle 11 (3 ⁇ 40 2 (wherein 0.90 ⁇ 3 ⁇
  • Combination Combination (3 is II, 0, Mn, or a combination thereof A combination thereof; Are V, 01, 3 ⁇ 4, or a combination thereof.
  • the coating layer may comprise, as a coating element compound, an oxide, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxycarbonate of a coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • As the coating element contained in the coating layer, 03, 3, show 3 ⁇ 4 or a mixture thereof.
  • the coating layer forming step may be carried out by any of coating methods such as spray coating, dipping, and the like without adversely affecting the physical properties of the cathode active material by using these elements in the above compound.
  • the positive electrode mixture of one embodiment may further include a conductive material, a binder, or a mixture thereof.
  • the conductive material may have conductivity Any material can be used as long as it is an electron conductive material without causing any chemical change.
  • Metal powders such as nickel, aluminum and silver, and metal fibers, and polyphenylene derivatives
  • a conductive material such as may be used by mixing one or at least one.
  • the binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector.
  • a lithium secondary battery including a positive electrode including the above-described positive electrode mixture, an electrolyte, and a negative electrode.
  • the above-mentioned positive electrode additive is a lyrium secondary battery which is applied to the positive electrode together with the positive electrode active material, so that the initial irreversible capacity of the negative electrode decreases, the initial efficiency of the positive electrode increases, .
  • the present invention can be generally implemented in accordance with those known in the art.
  • the positive electrode comprises: a positive electrode collector; And a positive electrode mixture layer disposed on the positive electrode collector and including the positive electrode mixture described above.
  • the positive electrode may be prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and / or a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture .
  • an electrode mixture which is a mixture of a positive electrode active material, a conductive material, and / or a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture .
  • the cathode current collector generally has a thickness of 3-500.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible. 2019/103574 1 »(: 1 ⁇ ⁇ 2018/014723
  • the conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing any chemical change in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, Conductive materials such as polyphenylene derivatives and the like can be used.
  • the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CM (its), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene , Polyethylene, polypropylene, ethylene-propylene-diene ter Styrene butadiene rubber, styrene butadiene rubber, fluorine rubber, various copolymers and the like.
  • the filler is not particularly limited as long as it is a fibrous material which is used selectively as a component for suppressing the expansion of the anode and does not cause chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as fibers and carbon fibers are used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material examples include a carbonaceous anode active material, a lithium metal, an alloy of larium metal, 3 ⁇ 4 810 x (0 ⁇ X ⁇ 2), a composite and an alloy (the above is an alkali metal, an alkaline earth metal, A transition metal, a rare earth element, or a combination thereof, and is not), 3 ⁇ 4, 3 ⁇ 40 2 , Complex, and II is an alkali metal, an alkali 2019/103574 1 »(: 1 ⁇ ⁇ 2018/014723
  • At least one kind of negative electrode active material selected from the group consisting of a rare earth element, a rare earth element, a rare earth element, a combination thereof, and the like) may be used.
  • the negative electrode collector may generally be made to have a thickness of 3 - 500.
  • Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel Aluminum, cadmium alloy, or the like may be used as the cathode collector.
  • fine unevenness may be formed on the surface to enhance the bonding force of the anode active material, A film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like.
  • the lithium secondary battery of one embodiment may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery, depending on the type of the electrolyte and / or the type of the separator.
  • the lithium secondary battery of the embodiment is a lithium ion battery using a liquid electrolyte
  • the liquid electrolyte may be impregnated into the separator.
  • the separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the membrane is generally 0.01 - 10 mm, and the thickness is generally 5 - 300 mm.
  • Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used.
  • a solid electrolyte such as a polymer is used as an electrolyte
  • the solid electrolyte may also serve as a separation membrane.
  • the non-aqueous electrolyte containing lithium salt is composed of a non-aqueous electrolyte and lithium.
  • Non-aqueous organic solvents, organic solid electrolytes, and inorganic solid electrolytes are used as the non-aqueous electrolyte.
  • the present invention is not limited thereto.
  • non-aqueous organic solvent examples include methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl But are not limited to, carbonates, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, , Formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl 2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyrophosphate, ethyl propionate and the like can be used.
  • organic solid electrolyte examples include organic polymers such as a dolly ethylene derivative, a physical ethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol A polymer containing an ionic dissociation group, and the like may be used.
  • organic polymers such as a dolly ethylene derivative, a physical ethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol A polymer containing an ionic dissociation group, and the like may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, Lil, Li 5 NI 2, LisN-Lil-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4 , Li 4 the Si0 4 -LiI-Li0H, Li 3 P0 4 -Li 2 S-SiS 2 and Li nitrides, halides, sulfates, etc. can be used.
  • the lithium salt is a material which is soluble in the non-aqueous electrolyte.
  • the lithium salt include LiCl, LiBr, Lil, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsFg , LiSbFe, LiAlCU, CH 3 SO 3 L1, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic bonsanri cerium, lithium tetraphenyl borate, may be already in use include de.
  • the lithium salt-containing non-aqueous electrolyte may further contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc.
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added in order to impart nonflammability, and a carbon dioxide gas may be further added to improve high-temperature storage characteristics, FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), and the like.
  • LiPF 6 LiC10 4, LiBF 4, LiN (S0 2 CF 3) the Li salt of 2, and so on, highly dielectric solvent of cyclic carbonate and chained trough or theft of EC PC DEC, DMC 2019/103574 1 »(: 1 ⁇ ⁇ 2018/014723
  • non-aqueous electrolyte containing lithium salt can be prepared by adding it to a mixed solvent of linear carbonate of the formula (I).
  • the lithium secondary battery of the embodiment may be implemented as a battery module including a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • concrete examples of the device, electric vehicles, hybrid electric vehicles, plug-in may be a hybrid electric vehicle, or a power storage system, and the like.
  • the lithium secondary battery to which the positive electrode additive of one embodiment is applied to the positive electrode has a problem that the initial irreversible capacity of the negative electrode is reduced and the initial capacity and efficiency of the positive electrode are effectively increased and the energy density is lowered during driving, have.
  • Nickel hydroxide precursor Ni (OH) 2 was heat-treated at 600 ° C (inert atmosphere) for 10 hours to obtain Ni calculated NiO.
  • NiO nickel-based oxide NiO was mixed with lithium oxide (Li 2 O) in a molar ratio (NiO: Li 2 O) of 1: 1.1 and heat-treated at 680 ° C (inert atmosphere) for 18 hours . At this time , the temperature rise and cooling rates were set at 5 ° C per minute.
  • a positive electrode was prepared by applying the positive electrode additive of Example 1, and a lithium secondary battery containing the positive electrode thus prepared was produced.
  • the ⁇ 0 .86 (Li 2 NiO 2 ) anode additive of Example 1) ⁇ ⁇ 0. 07N1O ⁇ - ⁇ o.ovLiiO ⁇ , a conductive material (Super-P, Denka black) and a binder (PVdF) in an organic solvent (NMP) at a weight ratio of 85: 10: 5 (anode additive: conductive material:
  • NMP organic solvent
  • Li-metal Li-metal
  • EC Ethylene Carbonate
  • DMC dimethyl carbonate
  • NiO nickel-based oxide
  • Li 2 O lithium oxide
  • Example 1 Except that the positive electrode additive of Comparative Example 1 was used in place of the positive electrode additive of Example 1, the remainder was the same as that of Example 1 to prepare a positive electrode and a lithium secondary battery of Example 1.
  • Experimental Example 1 1) Analysis X-ray diffraction (XRD) analysis by Cu Ka X ray (X-ray) was performed on each of the positive electrode additives of Examples 1 to 3 and Comparative Example 1, and the results are shown in Table 1 below.
  • XRD X-ray diffraction
  • the lithium nickel oxide and the nickel oxide (NiO) are crystalline and can be detected by X-ray diffraction (XRD) by the Fe Kx X-ray (X-m).
  • Comparative Example 1 has a determination structure of Orthorhombic with a point group of Immm. From the results of the structural analysis of Table 1, Comparative Example 1 and Example 1 Have the same crystal structure. Therefore, it can be seen that Examples 1 to 3 also include a compound represented by Li ha Ni b MuO k .
  • the positive electrode mixture was prepared by mixing each positive electrode additive in the same amount as that of the usual positive electrode active material, A battery was prepared.
  • the anode additive of one embodiment may have a voltage at the initial charge of the cell, e.g., 2.5-4.25 V. / Ni +), it is possible to irreversibly release lyrium ions and oxygen, and thereafter convert to a composition capable of reversible insertion and desorption of lyrium ions.
  • a voltage at the initial charge of the cell e.g., 2.5-4.25 V. / Ni +
  • the positive electrode active material of one embodiment and the positive electrode active material may be mixed at an appropriate ratio.
  • the positive electrode additive of Example 1 was applied together with the positive electrode active material to prepare a positive electrode, and a lithium secondary battery including the positive electrode thus prepared was produced .
  • the weight ratio of the positive electrode active material: conductive material: binder in Example 1 was 4.825: 91.675: 1.5: 2.0 (Example 4) and 9.65: 86.85: 1.5: 2.0 Example 5).
  • the positive electrode additives comprising lithium nickel oxide, nickel oxide ( ⁇ 0), and lithium oxide (1 foot 0) It can be confirmed that the initial irreversible capacity of the cathode is compensated and the initial charging capacity of the anode is increased by irreversibly releasing lyrium ion and oxygen in preference to the cathode active material at the initial charging voltage.
  • the difference in capacity retention rate becomes more severe as the number of cycles of the battery increases. Specifically, only 92.8% of the capacity is maintained as compared with the initial capacity after 100 cycles of the comparative example 2, and 89.5% Is maintained. On the other hand, in the case of Examples 3 and 4, it can be confirmed that a capacity of 94.2% or more after 100 cycles of driving is maintained, and a capacity of 91.8% or more is maintained even after driving 200 sacks, compared with the respective initial capacities.
  • the loss of capacity is reduced by the positive electrode additive of one embodiment when the cell cycle proceeds with the initial capacity of the positive electrode increased.
  • the positive electrode additive of one embodiment irreversibly releases lithium ions and oxygen at a voltage at the initial charging of the battery, and thereafter, is switched to a composition capable of reversible insertion and desorption of lithium ions, It also means that it contributes part of the capacity implementation during the process.
  • Example 4 the initial charging capacity and lifetime characteristics of the battery were further improved in Example 4 using a positive electrode material mixture having a higher content of the positive electrode additive in one embodiment.
  • a positive electrode material mixture having a high content of the positive electrode additive in one embodiment can further improve the initial charging capacity of the battery and thereby improve the life of the battery more effectively.
  • the positive electrode additive and mixed to use the positive electrode active material in the appropriate blend ratio with It will be possible.

Abstract

The present invention relates to a positive electrode additive, a manufacturing method therefor, and a positive electrode and a lithium secondary battery comprising same. Specifically, provided, according to one embodiment of the present invention, is a positive electrode additive by which an imbalance in irreversible capacity between two electrodes may be canceled out, and the 1st cycle charge capacity of the positive electrode may be increased.

Description

2019/103574 1»(:1^1{2018/014723  2019/103574 1 »(: 1 ^ {2018/014723
【발명의 명칭】 Title of the Invention
양극첨가제,이의 제조방법,이를포함하는양극및리튬이차전지 【기술분야】  BODY ADDITIVE ADHESIVE, METHOD FOR MANUFACTURING THE SAME, BODY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
관련출원(들)과의 상호인용  Cross-reference with related application (s)
본출원은 2017년 11월 27일자한국특허 출원제 10-2017-0159732호및 2018년 11월 20일자한국특허 출원 제 10-2018-0143832호에 기초한우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0159732, dated November 27, 2017, and Korean Patent Application No. 10-2018-0143832, dated November 20, 2018, The entire contents of which are incorporated herein by reference.
본발명은양극첨가제,이의 제조방법 및 이를포함하는양극및리륨 이차전지 에 관한것이다.  The present invention relates to a positive electrode additive, a process for producing the same, and a positive electrode and a lithium secondary battery comprising the same.
【배경기술】 BACKGROUND ART [0002]
리륨 이차전지는, 리륨 이온의 가역적인 삽입 및 탈리가가능한전극 활물질을음극및 양극에 각각적용하고,전해질을매개로리튬이온의 이동을 구현하며, 각 전극에서의 산화 및 환원 반응에 의하여 전기적 에너지를 생성한다.  The lyrium secondary battery is a lithium secondary battery in which an electrode active material capable of reversibly intercalating and deintercalating lyrium ions is applied to a cathode and an anode to realize movement of lithium ions through an electrolyte, .
그런데, 리튬 이차 전지의 초기 충방전
Figure imgf000003_0001
句, 음극에 삽입(전지 충전)된 후 탈리(전지 방전)되는 리튬 이온및 양극으로부터 탈리(전지 충전)된 후 다시 회수(전지 방전)되지 못하는 리륨 이온이 각각 필연적으로발생한다.이는,두전극의 비가역 용량과연계된다.
However, the initial charging / discharging of the lithium secondary battery
Figure imgf000003_0001
(Battery discharge) after being inserted (battery charging) into the cathode and lyrium ion which can not be recovered (battery discharge) after being desorbed from the anode (battery charging), respectively, Is associated with the irreversible capacity of.
두 전극의 비가역 용량 차이가 클수록, 양극의 초기 효율이 감소하며, 전지의 구동중에너지 밀도가점차감소하여,전지 수명이 감소할수있다. 【발명의 상세한설명】  The greater the difference between the irreversible capacitances of the two electrodes, the lower the initial efficiency of the anode and the energy density during operation of the battery gradually decreases, thus reducing the battery life. DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명의 일 구현예에서는, 두 전극의 비가역 용량 불균형을 상쇄시키며, 양극의 초기 충전 용량을 증가시킬 수 있는, 양극 첨가제를 제공한다. 2019/103574 1»(:1^1{2018/014723 In one embodiment of the present invention, there is provided a positive electrode additive capable of canceling the irreversible capacity imbalance of the two electrodes and increasing the initial charge capacity of the anode. 2019/103574 1 »(: 1 ^ {2018/014723
【기술적 해결방법】 [Technical Solution]
본발명의 구현예들의 이점 및특징,그리고그것들을달성하는방법은, 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은이하에서 개시되는실시예들에 한정되는것이 아니라서로다른다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며,본 발명은 청구항의 범주에 의해정의될뿐이다.  Advantages and features of implementations of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.
이하 본 발명에서 사용되는 기술용어 및 과학용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로이해하고있는의미를가진다.또한,종래와동일한기술적 구성 및 작용에 대한반복되는설명은생략하기로한다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like elements throughout. Repeated explanations will be omitted.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를사이에 두고 “전기적으로연결”되어 있는경우도포함한다.  Throughout this specification, when a part is referred to as being "connected" to another part, it is not limited to a case where it is "directly connected" but also includes the case where it is "electrically connected" do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재사이에 또다른부재가존재하는경우도포함한다.  Throughout this specification, when a member is " on " another member, it includes not only when the member is in contact with the other member, but also when there is another member between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할때,이는특별히 반대되는기재가없는한다른구성 요소를제외하는것이 아니라다른구성 요소를더 포함할수있는것을의미한다.  Throughout this specification, when an element is referred to as " comprising ", it means that it can include other elements as well, without departing from the other elements unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가제시될 때 그수치에서 또는그수치에 근접한의미로사용되고,본원의 이해를돕기 위해 정확하거나 절대적인 수치가언급된 개시 내용을비양심적인 침해자가부당하게 이용하는 것을방지하기 위해사용된다.  The terms " about ", " substantially ", etc. used to the extent that they are used throughout the specification are intended to be taken to mean the approximation of the manufacturing and material tolerances inherent in the stated sense, Accurate or absolute numbers are used to help prevent unauthorized exploitation by unauthorized intruders of the referenced disclosure.
본원 명세서 전체에서 사용되는 정도의 용어 (하는) 단계” 또는 “의 단계”는 “를위한단계”를의미하지 않는다.  The word " step " or " step " of an extent to which the term is used throughout the specification does not imply " a step for.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 2019/103574 1»(:1^1{2018/014723 Throughout this specification, the term " combination (s) thereof " included in the expression of a machine form is intended to encompass elements constituting a machine- 2019/103574 1 »(: 1 ^ {2018/014723
군에서 선택되는하나이상의 혼합또는조합을의미하는것으로서,상기 구성 요소들로이루어진군에서 선택되는하나이상을포함하는것을의미한다. 본원 명세서 전체에서, “쇼및/또는묘”의 기재는, “쇼또는 3,또는쇼 및 ’를의미한다. 양극첨가제 Means a combination or combination of one or more members selected from the group consisting of one or more members selected from the group consisting of the above elements. Throughout the present specification, the description of " show and / or grave " means " show or 3, or show ". Anode additive
본 발명의 일 구현예에서는, 전체 조성이 하기 화학식 1로 표시되는 양극첨가제를제공한다:  In one embodiment of the present invention, there is provided a positive electrode additive having an overall composition represented by the following Formula 1:
[화학식 1]
Figure imgf000005_0001
[Chemical Formula 1]
Figure imgf000005_0001
원소중 1 이상, 예를들어 ( . 1 & , 및 시를포함하는군에서 선택되는 1 이상의 금속 원소일 수 있고, -0.2£쑈0.2이고, 0.5£1?£ 1.0 이고, -0.2£쑈0.2이며, 0.7公<1.0이고, 0今£0.15이고, 0<쑈0.15이다. May be one or more metal elements selected from the group consisting of one or more of the elements, for example, (1 &amp;, and hour, and is in the range of -0.2 to 0.2, 0.5 to 1.0, and -0.2 to 0.2 , 0.7 <1.0, 0 is now 0.15, and 0 <0.15.
일 구현예의 양극 첨가제는, 리륨 1몰 수준인 통상의 양극 활물질에 대비하여 과량의 리륨을 포함하며, 전지의 초기 충방전 시 리튬을 비가역적으로방출할수있는것이다.  The positive electrode additive of one embodiment contains an excess of lyrium relative to a conventional positive electrode active material, which is one mole of lyrium, and is capable of irreversibly releasing lithium upon initial charge and discharge of the battery.
따라서, 일 구현예의 양극 첨가제는, 양극 활물질과 함께 양극에 적용되어,전지의 초기 충방전시 두전극의 비가역 용량불균형을상쇄시키며, 양극의 초기 효율을높이는데기여할수있다. 구체적으로, 일 구현예의 양극 첨가제는, 하기 화학식 1-1로 표시되는 리륨 니켈 산화물, 니켈 산화물 (^0), 및 리튬 산화물 ( 20)를 포함하며, 전체 조성이 상기 화학식 1로표시되는것일수있다. Therefore, the positive electrode additive of one embodiment is applied to the positive electrode together with the positive electrode active material, thereby canceling the irreversible capacity imbalance between the two electrodes during the initial charge and discharge of the battery, and contributing to increase the initial efficiency of the positive electrode. Specifically, the positive electrode additive of one embodiment comprises a lithium nickel oxide, a nickel oxide (^ 0), and a lithium oxide ( 20 ) represented by the following general formula (1-1) have.
[화학식 1-1]
Figure imgf000005_0002
[Formula 1-1]
Figure imgf000005_0002
양이온을형성하는금속원소, 0.5 < 1 < 1.0, 1.8 £ 2.2)및 리륨산화물 (020)을 원료로하여 제조될수있다. 이론 상으로는, 상기 니켈계 산화물 ((NidNMOx) 및 상기 리륨 산화물 (Li20)을 화학양론적 1:1의 몰비로 배합한 뒤 열처리할 때, 배합된 전량이 1:1의 몰비로반응하여상기 화학식 1-1로표시되는리튬니켈산화물을 형성할수있고,미반응원료는잔존하지 않을수있다. 0.5 < 1 < 1.0, 1.8 &lt; = 2.2) and lyrium oxide (0 2 0) as raw materials. Theoretically, when the nickel-based oxide (Ni d NMO x) and the lium oxide (Li 20) are compounded at a stoichiometric molar ratio of 1: 1 and then heat-treated, the compounded total amount is reacted at a molar ratio of 1: 1 To form the lithium nickel oxide represented by Formula 1-1, and the unreacted starting material may not remain.
하지만,실제 공정에서는,상기 니켈계 산화물 ((NidN^cg및 상기 리륨 산화물 (Li20)을 1:1의 몰비로 배합한 뒤 열처리하더라도, 배합된 전량이 1:1의 몰비로 반응하지 못하고, 미반응 원료가 필연적으로 잔존할 수 있다. 이와 관련하여, 지금까지 알려진 연구에서는, 미반응 원료를 단순히 불순물로 취급하여 이를 제거하고, 이론 조성을 가지는 물질 (즉, 상기 화학식 1-1로 표시되는리튬니켈산화물)만을회수하여 양극첨가제로삼았을뿐이다. However, in the actual process, even when the nickel-based oxide (Ni d N cg and the Li oxide (Li 20) are mixed at a molar ratio of 1: 1 and then heat-treated, the entire amount mixed does not react at a molar ratio of 1: 1 In this connection, in the studies so far known, unreacted raw materials are simply treated as impurities and removed, and a substance having the theoretical composition (that is, Lithium nickel oxide) was only recovered and used as a positive electrode additive.
그러나, 본 연구에서는, 지금까지 알려진 연구와 달리, 미반응 원료를 제거하지 않고,이론조성을가지는물질 (즉,상기 화학식 1-1로표시되는리튬 니켈 산화물)와 함께 회수하여, 일 구현예의 양극 첨가제로 삼은 것이다. 이러한 일 구현예의 양극 첨가제는, 오히려 그 미반응 원료, 특히 리튬 산화물 (Li20)의 존재에 따라,가외의 Li을 양극에 제공할수 있고, 양극의 초기 충전용량을더욱높일수있는것이다. However, in this study, in contrast to the studies known so far, the unreacted raw material is not removed, but the material having the theoretical composition (that is, the lithium nickel oxide represented by Formula 1-1) is recovered, . The positive electrode additive of this embodiment can provide extra Li to the positive electrode and further increase the initial charge capacity of the positive electrode depending on the presence of the unreacted raw material, especially lithium oxide (Li 20) .
구체적으로, 일 구현예의 양극 첨가제는, 니켈계 산화물 및 리륨 산화물 (Li20)을 1:1.02 내지 1:0.98의 화학양론적 몰비로 배합한뒤 열처리하고, 미반응원료의 제거 공정 없이 수득한것일수있다. Specifically, the positive electrode additive of one embodiment is one obtained by blending the nickel-based oxide and the lyrium oxide (Li 20) in a stoichiometric molar ratio of 1: 1.02 to 1: 0.98 followed by heat treatment and without removing the unreacted raw material Can be.
이에 따른 일 구현예의 양극 첨가제에 있어서, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리륨 산화물 (Li20)은각각결정질로, Fe Ka X선 (X-rot)에 의한 XRD(X-Ray Diffraction)로 검출될수있다. In the cathode additive of one embodiment, the lithium nickel oxide, the nickel oxide (NiO), and the lyrium oxide (Li 20) represented by Formula 1-1 are each crystalline, and the Fe Ka X ray X-ray diffraction (XRD).
다시 말해, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffiaction)를 이용하여, 일 구현예의 양극 첨가제를 정성 분석 및 정량 분석하면, 상기 화학식 1-1로 표시되는 리륨 니켈 산화물, 상기 니켈 산화물 (NiO), 및 상기 리륨 산화물 (Li20)의각존재 여부는물론,각존재량이 확인될수있다. 구체적으로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 30내지 35 인 범위, 35내지 40 ° 인범위, 55내지 60 ° 인범위 중적어도 하나 이상의 범위에서 메인 피크 (main peak)가 나타나는 것은, 상기 리튬 산화물 (Li20)에 의한것으로볼수있다. In other words, qualitative analysis and quantitative analysis of the positive electrode additive of one embodiment using X-ray diffraction (XRD) by Fe Ka X ray (X-ra) revealed that the lithium nickel oxide, The abundance of the nickel oxide (NiO) and the Li oxide (Li 20) , as well as each abundance, can be ascertained. Even Specifically, Fe Ka X-ray measurement (X-ra) XRD (X -Ray Diffraction) according to the above, 20 is in the range 30 to 35, 35 to 40 ° inbeom above, from 55 to 60 ° inbeom popularly It is seen that the main peak appears in one or more ranges due to the lithium oxide (Li 20) .
이는, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물의 메인 피크 강도 (intensity)를 100(Ref.)으로보았을 때, 0초과 15 이하,구체적으로 0초과 14이하, 0초과 13 이하,예를들어 0초과 12이하의 강도 (intensity)로나타날 수 있다. 이로부터, 일 일 구현예의 양극 첨가제 총량 (100 중량%) 중, 리튬 산화물 (Li20)의 함량이 0 중량% 초과 15 중량% 이하, 구체적으로 0 중량% 초과 14중량%이하, 0중량%초과 13중량%이하, 예를들어 0중량%초과 12중량%이하임을알수있다. 또한, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 35 내지 40° 인 범위, 40 내지 45° 인 범위 및 50 내지 55° 인 범위 중 적어도 하나 이상의 범위에서 메인 피크 (main peak)가 나타나는 것은, 상기 니켈 산화물 (NiO)에 의한것으로볼수있다. When the main peak intensity of the lithium nickel oxide represented by Formula 1-1 is 100 (Ref.), It is more than 0 and not more than 15, specifically more than 0 and not more than 14 and not less than 0 and not more than 13, for example, The intensity may be greater than 0 and less than or equal to 12. From this, it can be seen that the content of lithium oxide (Li 20) in the total amount (100% by weight) of the positive electrode additive in one embodiment is more than 0% by weight but not more than 15% by weight, specifically more than 0% 13% by weight or less, for example, 0% by weight or more and 12% by weight or less. Further, at the time of X-ray diffraction (XRD) measurement by the Fe Ka X-ray (X-ra), at least one of 20, 35 to 40 °, 40 to 45 ° and 50 to 55 ° The main peak appears in the case of the nickel oxide (NiO).
이는, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물의 메인 피크 강도 (intensity)를 100(Ref.)으로 보았을 때, 0초과 15 이하,구체적으로 0초과 14이하, 0초과 13 이하, 예를들어 0초과 12이하의 강도 (intensity)로나타날 수 있다. 이로부터, 일 구현예의 양극 첨가제 총량 (100중량%)중, 상기 니켈 산화물 (NiO)의 함량이 0 중량% 초과 15 중량% 이하, 구체적으로 0 중량% 초과 14중량%이하, 0중량%초과 13중량%이하, 예를들어 0중량%초과 12중량%이하임을알수있다. 마지막으로, Fe Ka X선 (X-ra)에 의한 XRD(X-Ray Diffraction)측정 시 , 20가 18내지 21° 인 범위, 24내지 27° 인 범위 및 43내지 46° 인범위 중적어도 하나 이상의 범위에서 메인 피크 (main peak)가 나타날 수 있다. 이러한 메인 피크는, 공간군 (point group)이 Immm인 사방정계 (Orthorhombic)의 결정 구조에 의해 나타날 수 있고, 상기 화학식 1-1로 표시되는 리튬 니켈 산화물에 의한 것일수있다.  When the main peak intensity of the lithium nickel oxide represented by Formula 1-1 is 100 (Ref.), It is more than 0 and not more than 15, specifically more than 0 and not more than 14 and not less than 0 and not more than 13, for example, The intensity may be greater than 0 and less than or equal to 12. The content of the nickel oxide (NiO) in the total amount (100 wt%) of the positive electrode additive in one embodiment is more than 0 wt% and not more than 15 wt%, specifically more than 0 wt% and not more than 14 wt% By weight or less, for example, 0% by weight or more and 12% by weight or less. Finally, in the X-ray diffraction (XRD) measurement by the Fe Ka X ray (X-ra), the range of 20 to 18 to 21 °, the range of 24 to 27 ° and the range of 43 to 46 °, The main peak may appear in the range. The main peak may be represented by a crystal structure of orthorhombic having a point group Im mm and may be a lithium nickel oxide represented by the formula 1-1.
이의 함량은, 일 구현예의 양극 첨가제의 총량 (100 중량%)으로부터, 상기 리륨산화물 (Li20)의 함량과상기 니켈산화물 (NiO)의 함량을제함으로써 2019/103574 1»(:1/10公018/014723 The content of the nickel oxide (NiO) is determined by subtracting the content of the lyrium oxide (Li 20) and the content of the nickel oxide (NiO) from the total amount (100 wt%) of the positive electrode additive of one embodiment 2019/103574 1 »(: 1/10/0/0 018/014723
구할수있다. 이러한 정량 분석 및 정성 분석 결과를 종합적으로 고려하면, 일 구현예의 양극첨가제에는상기 화학식 1-1로표시되는리륨니켈산화물,상기 니켈산화물(해0),및상기 리튬산화물(1山0)이 포함되며,그전체조성이 상기 화학식 1과같음을알수있다.구체적으로,상기 화학식 1에서, X, X, 2는각각, 상기 화학식 1-1로 표시되는 리툼 니켈 산화물, 상기 니켈 산화물( 0), 및 상기 리튬산화물(020)의 중량비와관계된다. Can be obtained. Considering these quantitative analysis and qualitative analysis results comprehensively, the positive electrode additive of one embodiment includes the lyrium nickel oxide, the nickel oxide (solution 0) and the lithium oxide (1 oxide 0) represented by the formula 1-1 X, X and Z are the same as those in the formula (I), and the total composition is the same as in the above formula 1. Specifically, And the weight ratio of the lithium oxide (0 20 ).
예를들어,상기 화학식 1에서, 0.7致£1.0이고, 0今<0.15이고, 0<숀0.15일 수 있고; 0.72쬬<1.0이고, 0今£0.14이고, 0名<0.14일 수 있고; 0.74쬬<1.0이고, 0今<0.13이고, 0<쑈0.13일수 있고; 0.74쬬<1.0이고, 0今<0.13이고, 0<숀0.13일수 있고; 0.76요<1.0이고, 0今<0.12이고, 0<建0.12일수있다.이 범위에서 각성분에 의한 시너지 효과가나타날수 있지만, 이는 예시일 뿐 이에 의해 본 발명이 제한되는것은아니다. 일 구현예의 양극 첨가제에 있어서, 상기 화학식 1-1로 표시되는 리륨 니켈산화물,상기 니켈산화물(^0),및상기 리륨산화물(020)의 존재 형태는 특별히 제한되지 않는다. 예를 들어, 상기 니켈 산화물( 0)입자 및 리튬 산화물(1 20) 입자가 상기 화학식 1-1로 표시되는 리튬 니켈 산화물 입자의 표면에 부착되어 있는복합체 형태이거나,상기 니켈산화물(1 0)입자및 리튬 산화물(020) 입자가 상기 화학식 1-1로 표시되는 리튬 니켈 산화물 입자에 부착되지 않고별도로존재하는혼합물형태일수있다.여기서 “입자”는,일차 입자또는일차입자가응집된이차입자일수있다. 한편,상기 일구현예의 양극첨가제는,전지의 초기 충전시 전압,예를 들어 2.5 내지 4.25 V 0. 니/0+)에서 리륨 이온 및 산소를 비가역적으로 방출하고,그이후전체조성이 하기 화학식 2로전환될수있다. For example, in the above formula 1, 0.7 is 1.0, 0 is now <0.15, and 0 is 0.15; 0.72 쬬 <1.0, 0 now £ 0.14, 0 can be <0.14; 0.74 쬬 <1.0, 0 now <0.13, 0 <쑈 0.13; 0.74 쬬 <1.0, 0 now <0.13, 0 ≦ 0.13; 0.76 <1.0, 0 <0.12, and 0 <0.12, respectively. In this range, synergistic effects due to each component may appear, but the present invention is not limited thereto. In the positive electrode additive of one embodiment, the form of the lithium nickel oxide, the nickel oxide (^ 0), and the lium oxide (0 20 ) represented by Formula 1-1 is not particularly limited. For example, the nickel oxide (0) particles and the lithium oxide (1 20) the particles or complex form, which is adhered to the surface of the lithium nickel oxide particles represented by the above formula 1-1, wherein the nickel oxide (10) Particles and lithium oxide (0 20 ) particles may be present in a separately existing mixture without being attached to the lithium nickel oxide particles represented by the above formula (1-1). Here, the term &quot; particles &quot; means that the primary particles or primary particles, Can be. On the other hand, the anode additive of this embodiment irreversibly releases lyrium ion and oxygen at a voltage at the time of initial charging of the battery, for example, 2.5 to 4.25 V 0. Ni / 0 +, and thereafter, 2 &lt; / RTI &gt;
[화학식 2] {¾(01+^^!^02+0)} - {^10)} {2(¾0)} [Formula 2] { ¾ (0 1+ ^^ ! ^ 0 2 + 0 )} - {^ 10)} { 2 (¾0)}
(상기 화학식
Figure imgf000008_0001
화학식 1과동일할수 있다.) 2019/103574 1»(:1^1{2018/014723
(Formula
Figure imgf000008_0001
I can work out the formula 1.) 2019/103574 1 »(: 1 ^ {2018/014723
상기 화학식 2로전환된양극첨가제에 있어서
Figure imgf000009_0001
통상의 양극활물질과마찬가지로,리튬이온의 가역적인삽입 및 탈리가가능한것일 수 있다. 이에, 일 구현예의 양극 첨가제는, 음극의 초기 비가역 용량을 보상하는 첨가제이자, 리륨의 가역적인 삽입 및 탈리를 가능하게 하는 활물질로활용될수있다.
In the positive electrode additive converted into the formula 2
Figure imgf000009_0001
It may be possible to reversibly insert and desorb lithium ions similarly to a conventional positive electrode active material. Thus, the positive electrode additive of one embodiment can be utilized as an additive to compensate for the initial irreversible capacity of the negative electrode, and as an active material capable of reversible insertion and desorption of lithium.
다만, 상기 화학식 2로 전환된 양극 첨가제는,
Figure imgf000009_0002
함량 및 그 구조적 한계로 인하여,통상의 양극활물질에 비하여 작은가역 용량을가질 수 있고, 구체적으로 300 내지 350111쇼 의 가역 용량을 가질 수 있다. 이에, 전지의 초기 성능을 향상시킴과 동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극 첨가제와 함께 양극 활물질을 적절한배합비로혼합하여 사용할수있다. 양극첨가제의 제조방법
However, the positive electrode additive converted into the formula (2)
Figure imgf000009_0002
Due to the content and the structural limitations thereof, it is possible to have a small reversible capacity as compared with a conventional positive electrode active material, and specifically to have a reversible capacity of 300 to 350, 111 shows. Therefore, when the initial performance of the battery is improved and long-life characteristics are secured, the cathode active material may be mixed with the cathode active material of one embodiment in a proper mixing ratio depending on the desired battery characteristics. Method of manufacturing anode additive
본 발명의 다른 일 구현예에서는, 하기 화학식 3으로 표시되는 니켈계 산화물을 준비하는 단계; 및 상기 니켈계 산화물 및 리륨 산화물(1石0)의 혼합물을 열처리하는 단계;를 포함하는,양극 첨가제의 제조 방법을 제공한다. 이러한제조방법에 따라,전술한양극첨가제가수득될수있다.  In another embodiment of the present invention, there is provided a process for preparing a nickel-based oxide, comprising: preparing a nickel-based oxide represented by the following Formula 3; And heat treating the mixture of the nickel-based oxide and the lyrium oxide (1-O-O). According to this production method, the above-mentioned positive electrode additive can be obtained.
[화학식 3](해 여  [Chemical Formula 3]
상기 화학식 3에서, M은 2가양이온또는 3가양이온을형성하는금속 원소이고, 0.5<(1<1.0이고, 1.8<표<2.2이다. 일 구현예의 제조 방법에서, 상기 화학식 3으로 표시되는 니켈계 산화물을 준비하는 단계;는, 니켈 수산화물( (0¾2) 단독; 또는, 니켈 수산화물(^(0¾2)및 M포함화합물의 혼합물;을열처리하는단계일수있다. 상기 니켈수산화물( (011切단독;또는,니켈수산화물( (0피2)및 M 포함화합물의 혼합물;의 열처리는, 500내지 700 方의 온도 범위에서 5 내지 20시간동안불활성 분위기에서 수행될수있다. In the formula (3), M is a metal element forming a divalent or trivalent ion, and 0.5 <(1 <1.0, 1.8 <2.2). In the production method of one embodiment, the step of preparing the nickel-based oxide represented by the above-mentioned formula (3) comprises: a step of preparing nickel hydroxide ((0¾ 2 ) alone; Is the number of days that the heat treatment step to; or, a nickel hydroxide (^ (0¾ 2) and M comprises a mixture of compounds. The nickel hydroxide ((011切alone; or, a nickel hydroxide ((0, P 2) and a mixture of M containing compound, heat treatment is at a temperature ranging from 500 to 700方can be carried out in an inert atmosphere for 5 to 20 hours.
이 단계에서, 상기 니켈 수산화물(새(아1)2)을 단독으로 열처리할 경우, 상기 화학식 3에서 (1=0인 니켈 산화물( (\)이 형성될 수 있다. 이와 달리, 상기 니켈 수산화물( (0¾2) 및 M 포함 화합물의 혼합물을 열처리할 경우, 2019/103574 1»(:1^1{2018/014723 In this step, when the nickel hydroxide (bird (a1) 2 ) is subjected to a heat treatment alone, a nickel oxide (() of (1 = 0) in the above formula (3) may be formed. On the other hand, if the heat-treating a mixture of the nickel hydroxide ((including 0¾ 2) and the compound M, 2019/103574 1 »(: 1 ^ {2018/014723
상기 화학식 (1=0이 아닌, VI이 도핑된 니켈계 산화물
Figure imgf000010_0001
형성될 수 있다. 일 구현예의 제조 방법에서, 상기 니켈계 산화물 및 리튬 산화물(1走0)의 혼합물을열처리하는단계는,상기 니켈계산화물및상기 리튬 산화물은 1:1 (±0.02) 몰비로 혼합하고, 600 내지 800 X:의 온도 범위에서 10 내지 20시간동안불활성 분위기에서 열처리하는것일수있다.
In the above formula (1 = not 0, VI-doped nickel-based oxide
Figure imgf000010_0001
. In one embodiment, the step of heat treating the mixture of nickel oxide and lithium oxide (1 run 0) comprises mixing the nickel calculated product and the lithium oxide in a molar ratio of 1: 1 (0.02) 800 X: for 10 to 20 hours in an inert atmosphere.
상기 니켈계 산화물 및 리튬 산화물(020)의 혼합물을 열처리할 때, 배합된 전량이 1:1의 몰비로 반응하지 못하고, 상기 니켈계 산화물
Figure imgf000010_0002
이의 일부와상기 리륨산화물(½0)의 일부가 반응하여 상기 화학식 1-1로 표시되는 리를 니켈 산화물을 형성하고, 미반응 원료가잔존할수 있다. 이에 따른수득물의 전체조성과그효과에 대한설명은,전술한바와같다. 양극합제
When the mixture of the nickel-based oxide and the lithium oxide (0 20 ) is heat-treated, the total amount mixed does not react at a molar ratio of 1: 1, and the nickel-
Figure imgf000010_0002
A part thereof and a part of the lyrium oxide (? 0) react with each other to form a nickel oxide represented by the formula (1-1), and an unreacted starting material can remain. The overall composition of the resulting product and the effect thereof are as described above. Cathode mixture
본 발명의 또 다른 일 구현예에서는, 전술한 양극 첨가제; 및 양극 활물질;을포함하는양극합제를제공한다. 상기 일구현예의 양극합제는,전술한양극첨가제를적용한것이므로, 이를 적용하지 않는 경우에 비하여 음극의 초기 비가역 용량을 감소시키고, 이에 따라양극의 초기 효율을증가시킬수있다. 상기 일 구현예의 양극 합제의 총량(100 중량%)에 있어서, 상기 양극 첨가제는 1 내지 30중량%로적용할수있다.구체적으로,상기 양극첨가제가 상기 범위로배합될 때, 전지의 초기 충방전에서(즉,
Figure imgf000010_0003
사이클에서)상기 양극 첨가제로써 음극의 초기 비가역 용량을 충분히 감소시킨 뒤, 이후 충방전(즉,
In another embodiment of the present invention, the above-mentioned positive electrode additive; And a cathode active material. Since the positive electrode additive of the embodiment is applied with the positive electrode additive described above, the initial irreversible capacity of the negative electrode can be reduced and the initial efficiency of the positive electrode can be increased. In the total amount (100% by weight) of the positive electrode mixture of one embodiment, the positive electrode additive may be applied in an amount of 1 to 30% by weight. Specifically, when the positive electrode additive is compounded in the above range, (In other words,
Figure imgf000010_0003
Cycle, the initial irreversible capacity of the negative electrode is sufficiently reduced with the positive electrode additive,
2 사이클후)상기 양극활물질에 의해 리륨이온의 가역적인삽입 및 탈리가 안정적으로이루어질수있다. 이 외, 상기 일 구현예의 양극 합제는, 일반적으로 당 업계에 알려진 사항에 따라 구현할 수 있다. 이하, 일반적으로 당 업계에 알려진 사항을 2019/103574 1»(:1^1{2018/014723 After 2 cycles, reversible insertion and desorption of lyrium ions can be stably performed by the cathode active material. In addition, the positive electrode mixture of this embodiment can be generally implemented according to what is known in the art. Hereinafter, generally known in the art 2019/103574 1 »(: 1 ^ {2018/014723
간단히 제시하지만, 이는 예시일 뿐이며, 이에 의해 상기 일 구현예의 양극 합제가제한되지 않는다. 상기 양극 활물질의 경우, 리튬 이온의 가역적인 삽입 및 탈리가 가능한 물질이라면, 특별히 제한되지 않는다. 예를 들어, 코발트, 망간, 니켈 또는 이들의 조합의 금속;및 리튬;의 복합산화물중 1종이상을포함하는것일 수 있다. Although briefly shown, this is merely an example, whereby the positive electrode mixture of this embodiment is not limited. In the case of the cathode active material, it is not particularly limited as long as it is a material capable of reversible insertion and desorption of lithium ions. For example, a metal of cobalt, manganese, nickel, or a combination thereof; and a composite oxide of lithium;
보다 구체적인 예를 들어, 상기 양극 활물질로, 하기 화학식 중 어느 하나로표현되는화합물을사용할수 있다. : 此^(상기 식에서, 0.90 < ¾ More specifically, as the cathode active material, a compound represented by any one of the following formulas may be used. :此^ (wherein, 0.90
< 1.8 및 0 < < 0.5이다); 니此必 比(상기 식에서, 0.90 < & < 1.8, 0 < < 0.5, 및 0 < 0 < 0.05이다); 犯 어 - (상기 식에서, 0 < 1? < 0.5, 0 < &Lt; 1.8 and 0 &lt;0.5); (Where 0.90 < < 1.8, 0 &lt; 0.5, and 0 < 0 < 0.05); - (where 0 <1? <0.5, 0 <
Figure imgf000011_0002
Figure imgf000011_0002
식에서, 0.90 < ^ < 1.8, 0 < b < 0.5, 0 < 0 < 0.05및 0 < (1 < 2이다);0.90 <^ <1.8, 0 <b <0.5, 0 < 0 <0.05 and 0 <( 1 <2 ) in the formula;
1 比¾(¾02(상기 식에서, 0.90 < & < 1.8, 0 < ¾> < 0.9, 0 < (: < 0.5 및1 ratio (0 0 2) (where 0.90 < &lt; 1.8, 0 <¾><0.9, 0 <(: <0.5 and
0.001 <(1 < 0.1이다.); 1山새1)(:0 11£602(상기 식에서, 0.90 < 3 < 1.8, 0 <0.001 < (1 &lt;0.1); 1山new 1) (: 0 11 £必 602 ( wherein 0.90 <3 <1.8, 0 <
< 0.9, 0 < 0 < 0.5, 0 < (1 <0.5및 0.001 £ < 0.1이다.); 1ᅩ쌔(¾02(상기 식에서, 0.90 £ £ I.8및 0.001 £ ¾> £ 0.1이다.); 1山0)(¾02(상기 식에서, 0.90<0.9, 0 < 0 <0.5, 0 <(1 <0.5 and 0.001 <0.1); 1 ossae (¾0 2 (in the above formula, 0.90 £ £ I. 8 and 0.001 £ ¾> £ 0.1). ; 1山0) (¾0 2 (wherein, 0.9 0
< < 1.8 및 0.001 < < 0.1이다.); 니 11(¾02(상기 식에서, 0.90 < 3 <&Lt; 1.8 and 0.001 &lt;0.1); Needle 11 (¾0 2 (wherein 0.90 <3 <
1.8 및 0.001 £ I) £ 0.1이다.); 1山1 112(¾04(상기 식에서, 0.90 £ & £ 1.8 및 0.001 < I) < 0.1이다.); ( ¾; ( 2; 0(^2; >/205; U\205; 0102; ^1¥04;니(3- 2(1,043(0 < < 2); 0(네如2 043(0 < 1, < 2); 및 1 04. 1.8 and 0.001 l) &lt; / RTI &gt; 1山1 11 2 (¾0 4 ( in the above formula, 0.90 & £ £ 1.8 and 0.001 <I) <0.1.) ; (¾; ( 2 ; 0 (^ 2; > / 205; U \ 205; 010 2; ^ 1 ¥ 04; Needle (3-2 (1, 0 4) 3 (0 <<2); 0 (Nyu 2 0 4 ) 3 (0 <1, <2); And 1 0 4 .
상기 화학식에 있어서,쇼는볘,(¾ 또는이들의조합이고; II은 , ,
Figure imgf000011_0001
희토류원소또는이들의조합이고; I)는 0,民民 ?또는 이들의 조합이고; £는 00, 11또는이들의 조합이고; å는民 또는이들의 2019/103574 1»(:1^1{2018/014723
In the above formulas, show is 볘, (¾ or a combination thereof; II &lt; / RTI &
Figure imgf000011_0001
A rare earth element or a combination thereof; I) is 0, a citizen or a combination thereof; £ is 00, 11 or a combination thereof; å The people or their 2019/103574 1 »(: 1 ^ {2018/014723
조합이
Figure imgf000012_0001
조합이고; (3는 II, 0, Mn또는이들의 조합이
Figure imgf000012_0002
이들의 조합이고; 는 V, 01, ¾ ,어또는이들의조합이다.
Combination
Figure imgf000012_0001
Combination; (3 is II, 0, Mn, or a combination thereof
Figure imgf000012_0002
A combination thereof; Are V, 01, ¾, or a combination thereof.
물론 아화합물표면에 코팅층을갖는것도사용할수 있고,또는상기 화합물과코팅층을갖는화합물을혼합하여 사용할수도 있다. 상기 코팅층은 코팅 원소 화합물로서, 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 또는 코팅 원소의 하이드록시카보네이트를 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는코팅 원소로는
Figure imgf000012_0003
Figure imgf000012_0004
03, 3,쇼 ¾또는이들의 혼합물을사용할수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법 (예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한설명은생략하기로한다. 상기 일 구현예의 양극합제는,도전재, 바인더,또는 이들의 혼합물;을 더 포함할수 있다. 상기 도전재는 전극에 도전성을부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면어떠한것도사용가능하며,그예로천연흑연,인조흑연,카본블랙, 아세틸렌 블랙, 케첸블랙,탄소섬유,구리,니켈, 알루미늄,은등의 금속분말, 금속섬유등을사용할수 있고,또한폴리페닐렌 유도체 등의 도전성 재료를 1종또는 1종이상을혼합하여사용할수있다.
Of course, those having a coating layer on the surface of the subcomponent may be used, or a mixture of the above compound and the coating layer may be used. The coating layer may comprise, as a coating element compound, an oxide, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxycarbonate of a coating element. The compound constituting these coating layers may be amorphous or crystalline. As the coating element contained in the coating layer,
Figure imgf000012_0003
Figure imgf000012_0004
03, 3, show ¾ or a mixture thereof. The coating layer forming step may be carried out by any of coating methods such as spray coating, dipping, and the like without adversely affecting the physical properties of the cathode active material by using these elements in the above compound. The positive electrode mixture of one embodiment may further include a conductive material, a binder, or a mixture thereof. The conductive material may have conductivity Any material can be used as long as it is an electron conductive material without causing any chemical change. For example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper , Metal powders such as nickel, aluminum and silver, and metal fibers, and polyphenylene derivatives A conductive material such as may be used by mixing one or at least one.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드,에틸렌옥사이드를포함하는폴리머,폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티텐-부타디엔 러버, 아크릴레이티드 스티렌- 2019/103574 1»(:1^1{2018/014723 The binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector. Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl Polyvinylpyrrolidone, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene &lt; RTI ID = 0.0 &gt; - Butadiene rubber, acrylated styrene - 2019/103574 1 »(: 1 ^ {2018/014723
부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은아니다. 리툼이차전지 Butadiene rubber, epoxy resin, nylon, and the like, but not limited thereto. Lithium secondary battery
본 발명의 또 다른 일 구현예에서는, 전술한 양극 합제를 포함하는 양극;전해질;및음극;을포함하는리튬이차전지를제공한다.  In another embodiment of the present invention, there is provided a lithium secondary battery including a positive electrode including the above-described positive electrode mixture, an electrolyte, and a negative electrode.
이는, 전술한 양극 첨가제를 양극 활물질과 함께 양극에 적용한 리륨 이차 전지이므로, 음극의 초기 비가역 용량이 감소하고, 양극의 초기 효율이 증가하며,구동중에너지 밀도저하가억제되어 수명 특성이 우수하게 나타날 수있다. 상기 일 구현예의 리튬 이차전지에 있어서, 전술한양극 첨가제 및 양극 합제 이외에 대해서는, 일반적으로 당 업계에 알려진 사항에 따라 구현할 수 있다.  This is because the above-mentioned positive electrode additive is a lyrium secondary battery which is applied to the positive electrode together with the positive electrode active material, so that the initial irreversible capacity of the negative electrode decreases, the initial efficiency of the positive electrode increases, . In the lithium secondary battery of the above embodiment, other than the above-described positive electrode additive and positive electrode mixture, the present invention can be generally implemented in accordance with those known in the art.
이하, 일반적으로 당 업계에 알려진 사항을 간단히 제시하지만, 이는 예시일뿐이며,이에 의해상기 일구현예의 양극합제가제한되지 않는다. 상기 양극은, 양극 집전체; 및 상기 양극 집전체 상에 위치하고, 전술한 양극합제를포함하는양극합제층;을포함할수있다.  Hereinafter, generally known in the art are briefly mentioned, but this is merely an example, and thus the positive electrode mixture of this embodiment is not limited. Wherein the positive electrode comprises: a positive electrode collector; And a positive electrode mixture layer disposed on the positive electrode collector and including the positive electrode mixture described above.
구체적으로,상기 양극은양극집전체상에 양극활물질,도전재 및/또는 바인더의 혼합물인 전극합제를도포한후 건조하여 제조될 수 있고, 필요에 따라서는,상기 혼합물에 충진제를더 첨가할수있다.  Specifically, the positive electrode may be prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and / or a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture .
상기 양극 집전체는 일반적으로 3 - 500 ,의 두께로 만들 수 있다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스스틸의 표면에 카본,니켈,티탄,은등으로표면처리한것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체,부직포체등다양한형태가가능하다. 2019/103574 1»(:1^1{2018/014723 The cathode current collector generally has a thickness of 3-500. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible. 2019/103574 1 »(: 1 ^ {2018/014723
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50중량%로 첨가된다. 이러한도전재는당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈분말등의 금속분말;산화아연,티탄산칼륨등의 도전성 위스키;산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될수있다. The conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing any chemical change in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, Conductive materials such as polyphenylene derivatives and the like can be used.
한편,상기 탄성을갖는흑연계 물질이 도전재로사용될 수 있고,상기 물질들과함께사용될수도있다.  On the other hand, the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CM(그), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르
Figure imgf000014_0001
스티렌 브티렌 고무, 불소 고무, 다양한 공중합체등을들수있다.
The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CM (its), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene , Polyethylene, polypropylene, ethylene-propylene-diene ter
Figure imgf000014_0001
Styrene butadiene rubber, styrene butadiene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계중합체;유리섬유,탄소섬유등의 섬유상물질이사용된다. 상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며,상기 음극활물질층은음극활물질을포함할수있다.  The filler is not particularly limited as long as it is a fibrous material which is used selectively as a component for suppressing the expansion of the anode and does not cause chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as fibers and carbon fibers are used. The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer may include a negative electrode active material.
상기 음극 활물질로는, 탄소계 음극 활물질, 리튬 금속, 리륨 금속의 합금, ¾ 810x(0 < X < 2), 복합체,와 합금(상기 는알칼리 금속,알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, 와은 아님), ¾, ¾02,
Figure imgf000014_0002
복합체, 및
Figure imgf000014_0003
II은 알칼리 금속, 알칼리 2019/103574 1»(:1^1{2018/014723
Examples of the negative electrode active material include a carbonaceous anode active material, a lithium metal, an alloy of larium metal, ¾ 810 x (0 <X <2), a composite and an alloy (the above is an alkali metal, an alkaline earth metal, A transition metal, a rare earth element, or a combination thereof, and is not), ¾, ¾0 2 ,
Figure imgf000014_0002
Complex, and
Figure imgf000014_0003
II is an alkali metal, an alkali 2019/103574 1 »(: 1 ^ {2018/014723
토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, ¾은 아님)을 포함하는 군에서 선택되는 적어도 1종 이상의 음극 활물질을 사용할수있다. At least one kind of negative electrode active material selected from the group consisting of a rare earth element, a rare earth element, a rare earth element, a combination thereof, and the like) may be used.
상기 음극집전체는일반적으로 3 - 500 _의 두께로만들어질수있다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스스틸,알루미늄,니켈,티탄,소성 탄소,구리나스테인레스스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될수 있다.또한,양극집전체와마찬가지로,표면에 미세한요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트,다공질체,발포체,부직포체등다양한형태로사용될수있다. 상기 일 구현예의 리툼 이차 전지는, 전해질의 종류 및/또는 세퍼레이터의 종류에 따라, 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬폴리머 전지일수있다.  The negative electrode collector may generally be made to have a thickness of 3 - 500. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel Aluminum, cadmium alloy, or the like may be used as the cathode collector. [0060] In addition, as in the case of the anode collector, fine unevenness may be formed on the surface to enhance the bonding force of the anode active material, A film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like. The lithium secondary battery of one embodiment may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery, depending on the type of the electrolyte and / or the type of the separator.
상기 일 구현예의 리튬 이차 전지가 액체 전해질을 적용한 리튬 이온 전지일 때, 상기 액체 전해질을 분리막에 함침시켜 적용할 수 있다. 상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 - 10쌔!이고,두께는 일반적으로 5 - 300 이다. 이러한분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을겸할수도있다.  When the lithium secondary battery of the embodiment is a lithium ion battery using a liquid electrolyte, the liquid electrolyte may be impregnated into the separator. The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the membrane is generally 0.01 - 10 mm, and the thickness is generally 5 - 300 mm. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
상기 액체 전해질은 리륨염 함유 비수 전해질일 수 있다.상기 리륨염 함유비수전해질은,비수전해질과리튬으로이루어져 있고,비수전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로한정되는것은아니다.  The non-aqueous electrolyte containing lithium salt is composed of a non-aqueous electrolyte and lithium. Non-aqueous organic solvents, organic solid electrolytes, and inorganic solid electrolytes are used as the non-aqueous electrolyte. The present invention is not limited thereto.
상기 비수계 유기용매로는, 예를 들어, 메틸- 2 -피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2 -디메톡시 에탄, 테트라히드록시 프랑 (franc), 2 -메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3 - 디옥소런,포름아미드,디메틸포름아미드,디옥소런,아세토니트릴,니트로메탄, 포름산메틸,초산메틸,인산트리에스테르,트리메톡시 메탄,디옥소런유도체, 설포란, 메틸 설포란, 1,3 -디메틸- 2 -이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸등의 비양자성 유기용매가사용될수있다. Examples of the non-aqueous organic solvent include methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl But are not limited to, carbonates, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, , Formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl 2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyrophosphate, ethyl propionate and the like can be used.
상기 유기 고체 전해질로는, 예를들어,돌리에틸렌유도체,물리에틸렌 옥사이드유도체,폴리프로필렌옥사이드유도체, 인산에스테르폴리머,폴리 에지테이션 리신 (agitation lysine), 폴리에스테르 술파이드, 들리비닐 알코올, 폴리 불화비닐리덴,이온성 해리기를포함하는중합제등이사용될수있다. 상기 무기 고체 전해질로는, 예를들어, Li3N, Lil, Li5NI2, LisN-Lil-LiOH, LiSi04, LiSi04-LiI-LiOH, Li2SiS3, Li4Si04, Li4Si04-LiI-Li0H, Li3P04-Li2S-SiS2등의 Li의 질화물,할로겐화물,황산염 등이사용될수있다. Examples of the organic solid electrolyte include organic polymers such as a dolly ethylene derivative, a physical ethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol A polymer containing an ionic dissociation group, and the like may be used. Examples of the inorganic solid electrolyte include Li 3 N, Lil, Li 5 NI 2, LisN-Lil-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4 , Li 4 the Si0 4 -LiI-Li0H, Li 3 P0 4 -Li 2 S-SiS 2 and Li nitrides, halides, sulfates, etc. can be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, Lil, LiC104, LiBF4, LiB10Cl10, LiPF6, LiCF3S03, LiCF3C02, LiAsFg, LiSbFe, LiAlCU, CH3SO3L1, (CF3S02)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산리륨, 4페닐붕산리튬,이미드등이사용될수있다. The lithium salt is a material which is soluble in the non-aqueous electrolyte. Examples of the lithium salt include LiCl, LiBr, Lil, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsFg , LiSbFe, LiAlCU, CH 3 SO 3 L1, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic bonsanri cerium, lithium tetraphenyl borate, may be already in use include de.
또한, 상기 리튬염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임 (glyme), 핵사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘,에틸렌글리콜디알킬에테르,암모늄염,피롤, 2 -메톡시 에탄올, 삼염화알루미늄등이 첨가될수도있다.경우에 따라서는,불연성을부여하기 위하여,사염화탄소,삼불화에틸렌등의 할로겐함유용매를더 포함시킬수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬수있다.  The lithium salt-containing non-aqueous electrolyte may further contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. In some cases, a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added in order to impart nonflammability, and a carbon dioxide gas may be further added to improve high-temperature storage characteristics, FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), and the like.
하나의 구체적인예에서, LiPF6, LiC104, LiBF4, LiN(S02CF3)2등의 리륨염을, 고유전성 용매인 EC또는 PC의 환형 카보네이트와저점도용매인 DEC, DMC 2019/103574 1»(:1^1{2018/014723 In one specific example, LiPF 6, LiC10 4, LiBF 4, LiN (S0 2 CF 3) the Li salt of 2, and so on, highly dielectric solvent of cyclic carbonate and chained trough or theft of EC PC DEC, DMC 2019/103574 1 »(: 1 ^ {2018/014723
또는 묘]^(:의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을제조할수있다. Or non-aqueous electrolyte containing lithium salt can be prepared by adding it to a mixed solvent of linear carbonate of the formula (I).
상기 일 구현예의 리륨 이차 전지는, 이를 단위 전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는디바이스로구현될수있다.  The lithium secondary battery of the embodiment may be implemented as a battery module including a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
이 때, 상기 디바이스의 구체적인 예로는, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템일 수 있으나,이에 한정되는것은아니다. 【발명의 효과】 Here, concrete examples of the device, electric vehicles, hybrid electric vehicles, plug-in may be a hybrid electric vehicle, or a power storage system, and the like. 【Effects of the Invention】
상기 일 구현예의 양극 첨가제를 양극에 적용한 리튬 이차 전지는, 음극의 초기 비가역 용량이 감소하고,양극의 초기 용량및 효율이 효과적으로 증가하며,구동중에너지 밀도저하가억제되어 수명 특성이 우수하게 나타날 수있다.  The lithium secondary battery to which the positive electrode additive of one embodiment is applied to the positive electrode has a problem that the initial irreversible capacity of the negative electrode is reduced and the initial capacity and efficiency of the positive electrode are effectively increased and the energy density is lowered during driving, have.
【도면의 간단한설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 1은, 실시예 1 내지 3, 및 비교예 1의 각 리륨 이차 전지에 대한 초기 충방전특성을나타낸그래프이다.  1 is a graph showing initial charging / discharging characteristics of each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1. Fig.
도 2는, 비교예 2, 실시예 4 및 5의 각 리륨 이차 전지에 대한 장기 충방전특성을나타낸그래프이다.  2 is a graph showing long-term charge-discharge characteristics of each of the lithium secondary batteries of Comparative Example 2, Examples 4 and 5.
【발명의 실시를위한최선의 형태】 BEST MODE FOR CARRYING OUT THE INVENTION
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로설명하기로한다. 다만, 이는발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가어떠한의미로든한정되는것은아니다.  BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. However, this is provided as an example of the invention, and the scope of the invention is not limited thereto in any sense.
1. 리툼 니켈 산화물, 니켈 산화물 1이, 및 리륨 산화물(1山0)을 포함하는양극첨가제의구조및이점 확인 실시예 1:
Figure imgf000017_0001
(1,이}. = 0.86. V: 0.07. 1= 0.07 (1) 양극 첨가제의 제조
1. Identification of structure and advantages of a positive electrode additive comprising lithium nickel oxide, nickel oxide 1, and lyrium oxide (1 peak 0) Example 1:
Figure imgf000017_0001
(1, i). = 0.86. V : 0.07. 1 = 0.07 (1) Preparation of a positive electrode additive
니켈 수산화물 전구체인 Ni(OH)2를 600 °C의 (불활성 분위기)에서 10시간동안열처리하여,니켈계산화물 NiO을수득하였다. Nickel hydroxide precursor Ni (OH) 2 was heat-treated at 600 ° C (inert atmosphere) for 10 hours to obtain Ni calculated NiO.
상기 니켈계 산화물 NiO를 리튬 산화물 (Li20)과 1 :1.1의 몰비 (NiO:Li20)로 혼합하고, 680 °C의 (불활성 분위기)에서 18시간 동안 열처리하였다.이때,승온및 냉각속도는분당 5 °C 로고정하였다. The nickel-based oxide NiO was mixed with lithium oxide (Li 2 O) in a molar ratio (NiO: Li 2 O) of 1: 1.1 and heat-treated at 680 ° C (inert atmosphere) for 18 hours . At this time , the temperature rise and cooling rates were set at 5 ° C per minute.
상기 열처리 종료후, {x(Li2Ni02)} - {y(Ni0)} {z(Li20)}, x= 0.86, y= 0.07, z= 0.07를최종적으로수득하고,이를실시예 1의 양극첨가제로하였다. After the heat treatment ended, {x (Li 2 Ni0 2 )} - {y (Ni0)} {z (Li 2 0)}, x = 0.86, y = 0.07, to give z = 0.07 and finally, and this embodiment 1 as a positive electrode additive.
상기 화학식은,후술되는실험예 1로부터 계산된것이다.  The above formula is calculated from Experimental Example 1 described later.
(2) 양극및 리륨이차전지 (코인 하프셀)의 제조  (2) Production of anode and lyrium secondary battery (coin half cell)
실시예 1의 양극 첨가제를 적용하여 양극을 제조하고, 상기 제조된 양극을포함하는리튬이차전지를제조하였다.  A positive electrode was prepared by applying the positive electrode additive of Example 1, and a lithium secondary battery containing the positive electrode thus prepared was produced.
구체적으로,실시예 1의 양극첨가제인 {0.86(Li2NiO2))· {0.07N1O} - {o.ovLiiO}, 도전재 (Super-P, 덴카블랙) 및 바인더 (PVdF)를 85: 10: 5 (양극 첨가제: 도전재: 바인더)의 중량비로유기용매 (NMP)내에서 혼합하여,슬러리 상의 양극합제로 제조한후, 상기 양극 합제를 알루미늄 집전체 상에 도포하여 120 OC의 진공 오븐에서 30분건조하여 양극을제조하였다. Specifically, the {0 .86 (Li 2 NiO 2 ) anode additive of Example 1) · {0. 07N1O} - {o.ovLiiO}, a conductive material (Super-P, Denka black) and a binder (PVdF) in an organic solvent (NMP) at a weight ratio of 85: 10: 5 (anode additive: conductive material: The positive electrode mixture was coated on an aluminum current collector and dried in a 120 o C vacuum oven for 30 minutes to prepare a positive electrode.
상대 전극으로는 리튬 금속 (Li-metal)을 사용하고, 전해액으로는 에틸렌 카보네이트 (EC, Ethylene Carbonate): 디메틸 카보네이트 (DMC, Demethyl Carbonate)의 부피비가 1 : 2인 혼합 용매에 VC 2 중량%를 용액에 용해시킨 것을사용하였다.  A lithium metal (Li-metal) was used as a counter electrode and a mixed solvent of ethylene carbonate (EC: Ethylene Carbonate): dimethyl carbonate (DMC, Demethyl Carbonate) Solution was used.
상기 각 구성 요소를 사용하고, 통상적인 제조방법에 따라 2032 반쪽 전지 (half coin cell)를제작하였다. 실시예 2 : [(LhNiCMWvfNiOn .ULi,Cm, x= 0.80. v= 0.10. z= 0.10 Using each of the above components, a 2032 half-coin cell was fabricated according to a conventional manufacturing method. Example 2: [(LhNiCMW v fNiOn .ULi, Cm, x = 0.80, v = 0.10, z = 0.10
(1) 양극 첨가제의 제조  (1) Preparation of a positive electrode additive
상기 니켈계 산화물 NiO를 리튬 산화물 (Li20)과 1 : 1.2의 몰비로 혼합달리한 점을 제외하고, 나머지는 실시예 1과 동일하게 하여,Except that the nickel-based oxide NiO was mixed with lithium oxide (Li 2 O) in a molar ratio of 1: 1.2, the remainder was the same as in Example 1,
{x(Li2Ni02)} {y(Ni0)} {z(Li20)}, x= 0.80, y= 0.10, z= 0.10를수득하고,이를실시예 2의 양극첨가제로하였다. 2019/103574 1>(그1'/1 ?2018/014723 {X (Li 2 Ni0 2) } {y (Ni0)} to give the {z (Li 2 0)} , x = 0.80, y = 0.10, z = 0.10 , and, As a result, a positive electrode additive of the Example 2. 2019/103574 1> (1 '/ 1? 2018/014723
상기 화학식은,후술되는실험예 1로부터 계산된것이다. The above formula is calculated from Experimental Example 1 described later.
(2)양극및리튬이차전지 (코인하프셀)의 제조  (2) Preparation of positive electrode and lithium secondary battery (coin half cell)
실시예 1의 양극 첨가제 대신 실시예 2의 양극 첨가제를사용한 점을 제외하고,나머지는실시예 1과동일하게 하여 실시예 2의 양극및 리륨 이차 전지를제조하였다. 실시예 3:
Figure imgf000019_0001
이} [(0,0사. = 0.76, V 0.12. %= 0.12
Except that the positive electrode additive of Example 2 was used in place of the positive electrode additive of Example 1, the remainder was the same as that of Example 1 to prepare a positive electrode and a lithium secondary battery of Example 2. Example 3:
Figure imgf000019_0001
(0, 0) = 0.76, V 0.12.% = 0.12
(1)양극첨가제의제조  (1) Preparation of a positive electrode additive
상기 니켈계 산화물 0를 리툼산화물 ( 20)과 1 :1.3의 몰비로혼합한 점을 제외하고, 나머지는 실시예 1과 동일하게 하여, ᄂ(02쟤02)}山(볘0)} { 0)}, = 0.76, 0.12, = 0.12를수득하고상기 화학식은,후술되는실험예 1로부터 계산된것이다. The ritum the nickel oxide 0 oxide (20) and 1: except were mixed in a molar ratio of 1.3, and the rest in the same manner as in Example 1, n (02 BOY 02)}山(bye 0) } {0}}, = 0.76, 0.12, = 0.12, and the formula is calculated from Experimental Example 1 described later.
(2)양극및리륨이차전지 (코인하프셀)의 제조  (2) Production of anode and lyrium secondary battery (coin half cell)
실시예 1의 양극 첨가제 대신 실시예 3의 양극 첨가제를 사용한 점을 제외하고,나머지는실시예 1과동일하게 하여 실시예 3의 양극 및 리륨 이차 전지를제조하였다. 비교예 1 : v(Li?NiO?). x=0.86 Except that the positive electrode additive of Example 3 was used in place of the positive electrode additive of Example 1, the remainder was the same as that of Example 1 to prepare a positive electrode and a lithium secondary battery of Example 3. Comparative Example 1: v ( Li ? NiO ?) . x = 0.86
(1)양극첨가제의 제조  (1) Preparation of a positive electrode additive
실시예 1과동일하게 제조한양극첨가제를제조한뒤,미반응된니켈계 산화물 NiO 및 리륨 산화물 (Li20)를 400 mesh의 체 (Sieve)를 통해 걸러, 공간군 (point group)이 Immm인 사방정계 (Orthorhombic)의 결정 구조를 가지는 x(Li2Ni02), x=0.86 를 최종적으로 수득하고, 이를 비교예 1의 양극 첨가제로 하였다. Example 1 A positive electrode additive prepared in the same manner as in Example 1 was prepared, and unreacted nickel-based oxide NiO and Li oxide (Li 20) were filtered through a sieve of 400 mesh, and a point group Im mm X ( Li 2 NiO 2) having an orthorhombic crystal structure , x = 0.86 was finally obtained and used as a positive electrode additive of Comparative Example 1.
(2)양극및리튬이차전지 (코인하프셀)의 제조  (2) Preparation of positive electrode and lithium secondary battery (coin half cell)
실시예 1의 양극 첨가제 대신 비교예 1의 양극 첨가제를 사용한 점을 제외하고,나머지는실시예 1과동일하게 하여 실시예 1의 양극및 리륨 이차 전지를제조하였다. 실험예 1: 1 )분석 실시예 1내지 3및비교예 1의 각양극첨가제에 대하여, Cu Ka X선 (X- ra)에 의한 XRD(X-Ray Diffraction) 분석을 실시하고, 그 결과를 하기 표 1에 기록하였다. Except that the positive electrode additive of Comparative Example 1 was used in place of the positive electrode additive of Example 1, the remainder was the same as that of Example 1 to prepare a positive electrode and a lithium secondary battery of Example 1. Experimental Example 1: 1) Analysis X-ray diffraction (XRD) analysis by Cu Ka X ray (X-ray) was performed on each of the positive electrode additives of Examples 1 to 3 and Comparative Example 1, and the results are shown in Table 1 below.
구체적으로,리툼니켈산화물및상기 니켈산화물 (NiO)은결정질로, Fe Kx X선 (X-m)에 의한 XRD(X-Ray Diffraction)로검출될수있다.  Specifically, the lithium nickel oxide and the nickel oxide (NiO) are crystalline and can be detected by X-ray diffraction (XRD) by the Fe Kx X-ray (X-m).
특히,정량분석은, XRD(X-Ray Diffiaction)즉정 후강도 (intensity)계산을 통해 얻었다.  Particularly, quantitative analysis was obtained by X-ray diffraction (XRD) and instantaneous intensity calculation.
[표 1] [Table 1]
Figure imgf000020_0001
비교예 1은 공간군 (point group)이 Immm인 사방정계 (Orthorhombic)의 결 정 구조를가지는것임을이미 알고있다.그런데,상기 표 1의 구조분석 결과 로부터,비교예 1과,실시예 1내자 3이 동일한결정 구조를가짐을알수있다. 따라서,실시예 1 내지 3 역시, LihaNibMuOk로표시되는 화합물을포함함을 알수있다.
Figure imgf000020_0001
It is already known that Comparative Example 1 has a determination structure of Orthorhombic with a point group of Immm. From the results of the structural analysis of Table 1, Comparative Example 1 and Example 1 Have the same crystal structure. Therefore, it can be seen that Examples 1 to 3 also include a compound represented by Li ha Ni b MuO k .
상기 표 1의 정량분석 결과로부터,비교예 1은 Li2◦가검출되지 않음을 확인할수있다.그러나,실시예 1내지 3은,총량 (100중량%)중 7중량% (실시 예 1), 10중량% (실시예 2),및 12중량% (실시예 3)로,각각 Li20가검출된것을 확인할수있다. 2019/103574 1»(:1/10公018/014723 From the results of the quantitative analysis of Table 1, it can be confirmed that Li 2 ◦ was not detected in Comparative Example 1. However, in Examples 1 to 3, 7 wt% of the total amount (100 wt%) (Example 1) 10% by weight (Example 2), and 12% by weight (Example 3), respectively. 2019/103574 1 »(: 1/10/0/0 018/014723
실험예 2:첨가제를적용한전지의초기충방전특성 평가 Experimental Example 2: Evaluation of initial charging / discharging characteristics of a battery using an additive
실시예 1 내지 3 및 비교예 1의 각전지에 대해,다음과같은조건으로 초기 충방전특성을평가하였다.그평가결과는도 1 및 하기 표 2에 기록하 였다.  The initial charge-discharge characteristics of each of the batteries of Examples 1 to 3 and Comparative Example 1 were evaluated under the following conditions. The evaluation results are shown in Fig. 1 and Table 2 below.
Charge: 0.1C, CC/CV, 4.25V, 0.05C cut-off  Charge: 0.1C, CC / CV, 4.25V, 0.05C cut-off
Discharge: 0.1C , CC, 2.5 V, cut-off  Discharge: 0.1C, CC, 2.5V, cut-off
도 1 및 하기 표 2에 따르면,비교예 1에 대비하여,실시예 1 내지 3에 서 음극의 초기 비가역 용량이 감소하고, 양극의 초기 효율이 증가한것을확 인할수있다.  1 and Table 2, it can be seen that the initial irreversible capacity of the negative electrode decreases and the initial efficiency of the positive electrode increases in Examples 1 to 3, as compared to Comparative Example 1.
[표 2] [Table 2]
Figure imgf000021_0001
실시예 1 내지 3에서는, 일 구현예의 양극 첨가제에 의해 전지의 초기 성능이 향상되는 효과를 확인하기 위하여, 각 양극 첨가제를 통상의 양극 활물질과 동일한 배합량으로 하여 양극 합제를 제조하고, 양극과 리튬 이차 전지를제조하였다.
Figure imgf000021_0001
In Examples 1 to 3, in order to confirm the effect of improving the initial performance of the battery by the positive electrode additive of one embodiment, the positive electrode mixture was prepared by mixing each positive electrode additive in the same amount as that of the usual positive electrode active material, A battery was prepared.
앞서 설명한바와같이, 일 구현예의 양극 첨가제는 전지의 초기 충전 시 전압, 예를 들어 2.5 내지 4.25 V . /니+)에서 리륨 이온 및 산소를 비가역적으로방출하고,그이후리륨이온의 가역적인삽입 및 탈리가가능한 조성으로 전환될수 있다.따라서,실시예 1 내지 3과같이, 일 구현예의 양극 첨가제는, 음극의 초기 비가역 용량을 보상하는 첨가제이자, 리튬의 가역적인 삽입 및 탈리를가능하게하는활물질로활물질로활용될수있다. 2019/103574 1»(:1^1{2018/014723 As noted above, the anode additive of one embodiment may have a voltage at the initial charge of the cell, e.g., 2.5-4.25 V. / Ni +), it is possible to irreversibly release lyrium ions and oxygen, and thereafter convert to a composition capable of reversible insertion and desorption of lyrium ions. Thus, as in Examples 1 to 3, , An additive for compensating the initial irreversible capacity of the cathode, and an active material capable of reversible insertion and desorption of lithium, and can be utilized as an active material. 2019/103574 1 »(: 1 ^ {2018/014723
다만, 0 함량 및 그 구조적 한계로 인하여, 통상의 양극 활물질에 비하여 작은 가역 용량을 가질 수 있기에, 전지의 초기 성능을 향상시킴과 동시에,장기 수명 특성을확보하고자할경우,목적하는전지 특성에 따라,일 구현예의 양극첨가제와함께 양극활물질을적절한배합비로혼합하여사용할 수있다. However, because of the zero content and the structural limitations thereof, it is possible to have a small reversible capacity as compared with the conventional cathode active material. Therefore, when it is desired to improve the initial performance of the battery and to secure long- , The positive electrode active material of one embodiment and the positive electrode active material may be mixed at an appropriate ratio.
II. 리툼 니켈 산화물, 니켈 산화물 1이 및 리륨 산화물 0山0)을 포함하는양극첨가제와실제적용형태 예시 실시예 4및 5:실시예 1의 양극첨가제및양극활물질혼합적용 II. Reactive Nickel Oxide, Nickel Oxide 1 and Liarium Oxide 0) Examples of Practical Application Examples Examples 4 and 5: Positive electrode additive and cathode active material mixed application of Example 1
실시예 1의 양극첨가제를실제로적용하는형태로,양극활물질과함께 실시예 1의 양극 첨가제를 적용하여 양극을 제조하고, 상기 제조된 양극을 포함하는리튬이차전지를제조하였다. In the form of actually applying the positive electrode additive of Example 1, the positive electrode additive of Example 1 was applied together with the positive electrode active material to prepare a positive electrode, and a lithium secondary battery including the positive electrode thus prepared was produced .
구체적으로,실시예 1의 양극첨가제(ᄂ(1山 02)}.{5<·))}令 必사 ᄃ 0.86, 0.07, å= 0.07),양극활물질인 NCM(0^0.8000.^¾.,02),도전재 때 斗, 덴카블랙) 및 바인더(1^(110를 유기용매어1 1>) 내에서 혼합하여 슬러리 상의 양극 합제로 제조한 후, 상기 양극 합제를 알루미늄 집전체 상에 도포하여 120 °(:의 진공오븐에서 30분건조하여,실시예 4및 5의 각양극을제조하였다. 단,실시예 4및 5에서,실시예 1의 양극 첨가제: 양극활물질: 도전재: 바인더의 중량비는각각, 4.825 : 91.675 : 1.5: 2.0(실시예 4)및 9.65 : 86.85 : 1.5 : 2.0(실시예 5)로하였다. Specifically, in Example 1 a positive electrode additive (n (1山0 2)}. {5 <·) a)}令必four d 0.86, 0.07, å = 0.07) , the positive electrode active material of NCM (0 ^ 0.8000. ^ ¾. , 02), the conductive material when斗, Denka black) and a binder (1 ^ (110 tethered organic 11>) were mixed to prepare a positive electrode mixture on the slurry within, the positive electrode material mixture on the entire aluminum house And dried in a vacuum oven at 120 DEG C for 30 minutes to prepare each of the positive electrodes of Examples 4 and 5. In Examples 4 and 5, the weight ratio of the positive electrode active material: conductive material: binder in Example 1 was 4.825: 91.675: 1.5: 2.0 (Example 4) and 9.65: 86.85: 1.5: 2.0 Example 5).
실시예 1의 양극대신실시예 4및 5의 각양극을사용하여,실시예 1과 동일한방법으로각각의 2032반쪽전지 0 比¥ 0삵1)를제작하였다. 비교예 2:양극활물질단독적용  Using the respective positive electrodes of Examples 4 and 5 instead of the positive electrode of Example 1, the respective 2032 half cells 0 ratio 0 占 1) were prepared in the same manner as in Example 1. Comparative Example 2: Cathode active material alone application
그 어떤 양극 첨가제도 사용하지 않고, 실시예 1의 양극 첨가제 대신 그와 동량의 양극 활물질( 볘 ^ ^ 여)을 사용하여, 실시예 1과 동일한 방법으로 양극을 제조하고, 상기 제조된 양극을 포함하는 리륨 이차 전지를 제조하였다. 실험예 3: 양극 첨가제의 실제 적용 형태 평가(전지의 초기 용량 및 수명특성 평가) A positive electrode was prepared in the same manner as in Example 1 except that no positive electrode additive was used and the positive electrode active material of the same amount as that of Example 1 was used instead of the positive electrode additive of Example 1, Lt; RTI ID = 0.0 &gt; Li &lt; / RTI &gt; EXPERIMENTAL EXAMPLE 3 Evaluation of Actual Application Forms of a Cathode Additive (Evaluation of Initial Capacity and Life Characteristic of Battery)
구체적으로, 25 °C 상온에서 다음과같은조건으로, 비교예 2,실시예 4 및 5의 각 전지의 충방전을 진행하였다. 그 결과를 도 2 및 하기 표 3에 나타내었다. Specifically, the batteries of Comparative Example 2, Examples 4 and 5 were charged and discharged under the following conditions at a room temperature of 25 ° C. The results are shown in Fig. 2 and Table 3 below.
Charge: 0.2C, CC/CV, 4.25V, 0.005C cut-of f  Charge: 0.2C, CC / CV, 4.25V, 0.005C cut-off
Di scharge: 0.2C , CC, 2.5 V, cut-of f 도 2 및 상기 표 3에 따르면, 양극 활물질만 적용한 경우(비교예 2)에 대비하여, 실시예 1의 양극 첨가제를 양극 활물질과 혼합하여 적용한 경우(실시예 3 및 4), 전지의 초기 충전 용량 및 수명 특성이 모두 개선되는 것으로확인된다.  Di scharge: 0.2 C, CC, 2.5 V, cut-off f According to FIG. 2 and Table 3, the cathode additive of Example 1 was mixed with the cathode active material in the case where only the cathode active material was applied (Comparative Example 2) (Examples 3 and 4), it was confirmed that the initial charge capacity and life characteristics of the battery were all improved.
또한, 첨가제: 활물질의 중량비가 동일한 경우에 있어서, 제조예 1의 양극 첨가제보다는 실시예 1의 양극 첨가제를 적용할 때, 전지의 초기 충전 용량및수명 특성이 더욱개선되는것으로확인된다.  Furthermore, it was confirmed that the initial charge capacity and life characteristics of the battery were further improved when the positive electrode additive of Example 1 was applied, compared to the positive electrode additive of Preparation Example 1, when the weight ratio of the additive and the active material was the same.
[표 3] [Table 3]
Figure imgf000023_0001
2019/103574 1»(:1^1{2018/014723
Figure imgf000023_0001
2019/103574 1 »(: 1 ^ {2018/014723
위와같은결과를실험예 1 및 2와종합하여 볼 때,리륨니켈산화물, 니켈 산화물(^0), 및 리튬산화물(1足0)을포함하는 양극 첨가제(실시예 3 및 4)는, 전지의 초기 충전 시 전압에서 양극활물질보다도우선하여 리륨 이온 및 산소를 비가역적으로 방출함으로써, 음극의 초기 비가역 용량을 보상하며, 양극의 초기 충전용량을증가시키는이점이 있음을확인할수있다. Taking the above results in combination with Experimental Examples 1 and 2, the positive electrode additives (Examples 3 and 4) comprising lithium nickel oxide, nickel oxide (^ 0), and lithium oxide (1 foot 0) It can be confirmed that the initial irreversible capacity of the cathode is compensated and the initial charging capacity of the anode is increased by irreversibly releasing lyrium ion and oxygen in preference to the cathode active material at the initial charging voltage.
나아가, 도 2 및 상기 표 3에 따르면, 전지의 사이클 진행 횟수가 동일할 때, 비교예 2 의 용량 유지율에 대비하여, 실시예 3 및 4의 용량 유지율이 현저하게높은것을확인할수있다.  Further, according to FIG. 2 and Table 3, it can be confirmed that the capacity retention ratios of Examples 3 and 4 are significantly higher than those of Comparative Example 2 when the cycle progress times of the batteries are the same.
이러한용량유지율의 차이는, 전지의 사이클 진행 횟수가증가할수록 더욱 극심해지는데, 특히, 비교예 2의 100 사이클 구동 후 초기 용량에 대비하여 92.8 %의 용량만유지되며, 200사이클구동후에는 89.5%의 용량만 유지됨을 확인할 수 있다. 그에 반면, 실시예 3 및 4의 경우, 각각의 초기 용량에 대비하여, 100 사이클 구동 후 94.2% 이상의 용량이 유지되며, 200 사아클구동후에도 91.8 %이상의 용량이 유지됨을확인할수있다.  The difference in capacity retention rate becomes more severe as the number of cycles of the battery increases. Specifically, only 92.8% of the capacity is maintained as compared with the initial capacity after 100 cycles of the comparative example 2, and 89.5% Is maintained. On the other hand, in the case of Examples 3 and 4, it can be confirmed that a capacity of 94.2% or more after 100 cycles of driving is maintained, and a capacity of 91.8% or more is maintained even after driving 200 sacks, compared with the respective initial capacities.
이는, 일 구현예의 양극 첨가제에 의해, 양극의 초기 용량이 증가한 상태에서 전지 사이클이 진행될 경우, 손실되는 용량이 감소함을 의미한다. 또한,앞서 언급한바와같이,전지의 초기 충전시 전압에서 일구현예의 양극 첨가제가리튬이온및산소를비가역적으로방출한뒤,리튬이온의 가역적인 삽입 및 탈리가 가능한 조성으로 전환되어, 전지 사이클 진행 중에도 용량 구현에 일부기여함을의미하기도한다.  This means that the loss of capacity is reduced by the positive electrode additive of one embodiment when the cell cycle proceeds with the initial capacity of the positive electrode increased. In addition, as mentioned above, the positive electrode additive of one embodiment irreversibly releases lithium ions and oxygen at a voltage at the initial charging of the battery, and thereafter, is switched to a composition capable of reversible insertion and desorption of lithium ions, It also means that it contributes part of the capacity implementation during the process.
한편,실시예 3 및 4중, 전지의 초기 충전 용량 및 수명 특성이 더욱 개신된 것은, 일 구현예의 양극 첨가제 함량이 더 높은 양극 합제를 사용한, 실시예 4이다. 이는, 일 구현예의 양극 첨가제 함량이 높은 양극 합제를 사용할수록, 전지의 초기 충전 용량을 보다 향상시키고, 그에 따라 전지의 수명을보다효과적으로개선할수있음을의미한다.  On the other hand, among Examples 3 and 4, the initial charging capacity and lifetime characteristics of the battery were further improved in Example 4 using a positive electrode material mixture having a higher content of the positive electrode additive in one embodiment. This means that the use of a positive electrode material mixture having a high content of the positive electrode additive in one embodiment can further improve the initial charging capacity of the battery and thereby improve the life of the battery more effectively.
따라서,앞서 언급한바와같이,전지의 초기 성능을향상시킴과동시에, 장기 수명 특성을 확보하고자 할 경우, 목적하는 전지 특성에 따라, 일 구현예의 양극첨가제와함께 양극활물질을적절한배합비로혼합하여 사용할 수있을것이다. Thus, as noted above, improve the initial performance of the cell Sikkim and at the same time, if you want to ensure the long-life characteristics, in accordance with the purpose battery characteristics, one embodiment the positive electrode additive and mixed to use the positive electrode active material in the appropriate blend ratio with It will be possible.

Claims

【청구의 범위】 【청구항 1] 전체조성이 하기 화학식 1로표시되는양극첨가제: Claims: What is claimed is: 1. A positive electrode additive having a total composition represented by the following formula:
[화학식 1]  [Chemical Formula 1]
{xiLii+aNibM^bOz+c)} _ {y(NiO)} . {2(Li20)} { x iLii + a Ni b M ^ b Oz + c)} _ { y ( NiO)} . { 2 ( Li &lt; 20 &gt;)}
상기 화학식 1에서,  In Formula 1,
M은 2가양이온또는 3가양이온을형성하는금속원소중 1 이상이고, -0.2£a£0.2이고, 0.5 <b £ 1.0이고, -0.2£c£0.2이며 ,  M is at least one of metal elements forming a divalent ion or a trivalent ion, is -0.2 £ a £ 0.2, 0.5 < b £ 1.0, -0.2 £ c £ 0.2,
0.7<x<1.0이고, 0<y<0.15이고, 0<z£0.15이고, x+y+z=l이다.  0 < z < 0.15, and x + y + z = l.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 양극첨가제는,  The positive-
하기 화학식 1-1로 표시되는 리륨 니켈 산화물, 니켈 산화물 (NiO), 및 리륨산화물 (Li20)를포함하며,전체조성이 상기 화학식 1로표시되는것인, 양극첨가제: A positive electrode additive comprising a lithium nickel oxide, a nickel oxide (NiO), and a lithium oxide (Li 20) represented by the following formula (1-1 )
[화학식 1-1] [ Formula 1-1]
Li2+aN ibM i -b〔)2+c Li2 + a N ibM i -b [] 2+ c
상기 화학식 1-1에서,  In Formula 1-1,
M, a, b,및 C는상기 화학식 1과동일하다.  M, a, b, and C are the same as in the general formula (1).
【청구항 3】 [Claim 3]
제 1항또는제 2항에 있어서,  3. The method according to claim 1 or 2,
y=z인것인,  y = z.
양극첨가제.  Anode additives.
【청구항 4】 Claim 4
제 2항에 있어서,  3. The method of claim 2,
상기 양극첨가제는,  The positive-
Fe Ka X선 (X-m)에 의한 XRD(X-Ray Diffraction)측정 시, 20가 30 내지 35 인 범위, 35 내지 40 인 범위, 55 내지 60 ° 인 범위 중 적어도하나이상의 범위에서,상기 리튬산화물(1灰0)에 의한피크가 검출되는것인, In X-ray diffraction (XRD) measurement by Fe Ka X-ray (Xm) Wherein a peak due to the lithium oxide (1 ash 0) is detected in at least one of a range of 20 to 30, a range of 35 to 40, and a range of 55 to 60 °.
양극첨가제.  Anode additives.
【청구항 5】 [Claim 5]
제 2항에 있어서,  3. The method of claim 2,
상기 양극 첨가제 종량(100 중량%) 중, 상기 리튬 산화물(1 20)의 함량은 0중량%초과 15중량%이하인것인, The content of the lithium oxide (1 20) of said positive electrode additive Meter-Rate (100% by weight) is more than 15% by weight 0% by weight, greater than
양극첨가제.  Anode additives.
【청구항 6] [Claim 6]
제 2항에 있어서,  3. The method of claim 2,
상기 양극첨가제는,  The positive-
Fe Ka X선(X-ra)에 의한 XRD(X-Ray Diffraction)측정 시,  When measuring X-ray diffraction (XRD) by Fe Ka X-ray (X-ra)
20가 35 내지 40° 인 범위, 40 내지 45° 인 범위 및 50 내지 55° 인 범위 중 적어도 하나 이상의 범위에서,상기 니켈산화물( 0)에 의한피크가 검출되는것인,  Wherein a peak due to the nickel oxide (0) is detected in at least one of a range of 20 to 35 °, a range of 40 to 45 °, and a range of 50 to 55 °.
양극첨가제.  Anode additives.
【청구항 7】 7.
저 12항에 있어서,  In the twelfth aspect,
상기 양극첨가제총량(100중량%)중,상기 니켈산화물( 0)의 함량은 0중량%초과 15중량%이하인것인,  Wherein the content of the nickel oxide (0) in the total amount of the positive electrode additive (100 wt%) is more than 0 wt% but not more than 15 wt%
양극첨가제.  Anode additives.
【청구항 8】 8.
하기 화학식 3으로표시되는니켈계산화물을준비하는단계;및 상기 니켈계 산화물 및 리륨 산화물(Li20)의 혼합물을 열처리하는 2019/103574 1»(:1^1{2018/014723 Preparing a nickel calcined product represented by the following formula (3), and heat treating the mixture of the nickel-based oxide and the lyrium oxide (Li 20 ) 2019/103574 1 »(: 1 ^ {2018/014723
단계;를포함하는, Comprising:
양극첨가제의 제조방법:  Method of preparing positive electrode additive:
[화학식 3]  (3)
( 어  ( uh
상기 화학식 3에서,  In Formula 3,
M은 2가양이온또는 3가양이온을형성하는금속원소이고,  M is a metal element forming a bivalent or trivalent ion,
0.5£크£ 1.0이다.  It is 0.5 pound and 1.0 pound.
【청구항 9】 [Claim 9]
제 8항에 있어서,  9. The method of claim 8,
상기 니켈계 산화물 및 리튬 산화물(1그2(3)의 혼합물을 열처리하는 단계;는, Heat-treating the mixture of the nickel-based oxide and the lithium oxide (1, 2 (3)
불활성 분위기에서 수행되는것인,  Which is carried out in an inert atmosphere,
양극첨가제의 제조방법.  A method for producing a positive electrode additive.
【청구항 10】 Claim 10
제 8항에 있어서,  9. The method of claim 8,
상기 니켈계 산화물 및 리뮴 산화물(1그20)의 혼합물을 열처리하는 단계;는, Heat treating the mixture of the nickel-based oxide and the lignite oxide (1 &lt; th &gt; 20 )
600내지 800 (:에서 수행되는것인,  600 to 800 &lt; RTI ID = 0.0 &gt; (:
양극첨가제의 제조방법.  A method for producing a positive electrode additive.
【청구항 11】 Claim 11
제 1항또는제 2항의 양극첨가제;및  A positive electrode additive of claim 1 or 2; and
양극활물질;을포함하는양극합제.  And a positive electrode active material.
【청구항 12】 Claim 12
제 11항에 있어서,  12. The method of claim 11,
상기 양극첨가제는,  The positive-
상기 합제총량(100중량%)중, 1내지 30중량%로포함되는것인, 2019/103574 1»(:1^1{2018/014723 1 to 30% by weight of the total amount of the additive (100% by weight) 2019/103574 1 »(: 1 ^ {2018/014723
양극합제. Cathode mix.
【청구항 13】 Claim 13
제 11항에 있어서,  12. The method of claim 11,
상기 양극활물질은,  The positive electrode active material,
코발트, 망간, 니켈 또는 이들의 조합의 금속; 및 리튬;의 복합산화물 중 1종이상을포함하는것인,  Cobalt, manganese, nickel or a combination thereof; And lithium; and a composite oxide of lithium,
양극합제. 【청구항 14】  Cathode mix. 14.
제 11항에 있어서,  12. The method of claim 11,
도잔재,바인더,또는이들의 혼합물;을더 포함하는것인,  A binder, or a mixture thereof.
양극합제. 【청구항 15】  Cathode mix. 15.
제 11항의 양극합제를포함하는양극;  A cathode comprising the cathode mixture of claim 11;
전해질;및  An electrolyte; and
음극;을포함하는리튬이차전지. 【청구항 16]  A lithium secondary battery comprising: a cathode; 16. The method of claim 16,
제 15항에 있어서,  16. The method of claim 15,
상기 음극은,  The negative electrode,
탄소계음극활물질,리튬금속,리튬금속의 합금, ¾ 810x(0 < X < 2),와- 0 복합체, ¾ 합금(상기 는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소,전이금속,희토류원소또는이들의 조합이며, 은아님), 811, ¾02, 811 복합체, 및 811-11(상기 II은 알칼리 금속, 알칼리 토금속, 13족내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, ¾은 아님)을 포함하는 군에서 선택되는적어도 :종이상의 음극활물질을포함하는, A lithium metal, an alloy of lithium metal, ¾ 810 x (0 <X <2), and-0 composite, ¾ alloy (the above is an alkali metal, an alkali earth metal, a group 13 to 16 group element, a transition metal, Rare earth elements or combinations thereof, 811, ¾0 2, 811 complexes, and 8 11 -11 (wherein II is an alkali metal, an alkaline earth metal, a Group 13 to Group 16 element, a transition metal, a rare earth element, A combination thereof, and not a ¾), comprising at least: a negative electrode active material on paper ,
리튬이차전지.  Lithium secondary battery.
PCT/KR2018/014723 2017-11-27 2018-11-27 Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same WO2019103574A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880066167.4A CN111226334B (en) 2017-11-27 2018-11-27 Positive electrode additive, method for preparing same, and positive electrode and lithium secondary battery comprising same
JP2020517272A JP7047219B2 (en) 2017-11-27 2018-11-27 Positive electrode additive, its manufacturing method, positive electrode including it and lithium secondary battery
US16/756,950 US11404693B2 (en) 2017-11-27 2018-11-27 Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same
EP18881948.6A EP3678240A4 (en) 2017-11-27 2018-11-27 Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0159732 2017-11-27
KR20170159732 2017-11-27
KR1020180143832A KR20190062209A (en) 2017-11-27 2018-11-20 Additives for cathode, manufacturing method of the same, cathode including the same, lithium recharegable battery including the same
KR10-2018-0143832 2018-11-20

Publications (2)

Publication Number Publication Date
WO2019103574A2 true WO2019103574A2 (en) 2019-05-31
WO2019103574A3 WO2019103574A3 (en) 2019-07-18

Family

ID=66631062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014723 WO2019103574A2 (en) 2017-11-27 2018-11-27 Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019103574A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114788053A (en) * 2020-02-26 2022-07-22 株式会社Lg新能源 Irreversible additive, positive electrode comprising the irreversible additive, and lithium secondary battery comprising the positive electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187326A (en) * 1996-01-30 2005-07-14 Showa Denko Kk Method for producing lithium nickelate
JP3403569B2 (en) * 1996-03-05 2003-05-06 シャープ株式会社 Lithium nickel composite oxide, its production method and its use
KR100280196B1 (en) * 1998-06-08 2001-03-02 이우용 Lithium nickel-based positive electrode material manufacturing method of lithium secondary battery
WO2015034257A1 (en) * 2013-09-05 2015-03-12 주식회사 엘지화학 Cathode additive for high-capacity lithium secondary battery
KR101772737B1 (en) * 2014-09-01 2017-09-12 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114788053A (en) * 2020-02-26 2022-07-22 株式会社Lg新能源 Irreversible additive, positive electrode comprising the irreversible additive, and lithium secondary battery comprising the positive electrode
CN114788053B (en) * 2020-02-26 2024-03-08 株式会社Lg新能源 Irreversible additive, positive electrode comprising the same, and lithium secondary battery comprising the positive electrode

Also Published As

Publication number Publication date
WO2019103574A3 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
KR101840541B1 (en) Positive electrode material for lithium secondary battery, method for preparing the same and secondary battery comprising the same
KR102398571B1 (en) Additives for positive electrode, method for manufacturing the same, positive electrode including the same, and lithium recharegable battery including the same
KR101452029B1 (en) Cathode active material with high capacity and lithium secondary battery comprising thereof
KR102388848B1 (en) Additives for cathode, manufacturing method of the same, cathode including the same, lithium recharegable battery including the same
KR102315787B1 (en) Additives for cathode, manufacturing method of the same, cathode including the same, and lithium recharegable battery including the same
KR20190064424A (en) Additives for cathode, manufacturing method of the same, cathode including the same, and lithium recharegable battery including the same
JP7047219B2 (en) Positive electrode additive, its manufacturing method, positive electrode including it and lithium secondary battery
KR20120100860A (en) Cathode active material comprising lithium manganese oxide capable of providing excellent charge-discharge characteristics at 3v region as well as 4v region
KR101570977B1 (en) Lithium Secondary Battery
KR20190063408A (en) Additives for cathode, manufacturing method of the same, cathode including the same, and lithium recharegable battery including the same
KR20170025874A (en) Lithium secondary battery and operating method thereof
KR20150108761A (en) Cathode Active Material and Lithium Secondary Battery Comprising the Same
KR101240174B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising the Same
KR102434255B1 (en) Cathode and lithium recharegable battery including the same
KR101239620B1 (en) Positive Active Material for Secondary Battery of Improved Rate Capability
KR20160012558A (en) Composite positive electrode active electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including the positive electrode active material
KR101852762B1 (en) Anode Active Material Comprising Porous Silicon and Lithium Secondary Battery Having the Same
WO2019103573A1 (en) Positive electrode and lithium secondary battery comprising same
KR20130050473A (en) Cathode having double coating structure for lithium secondary battery
WO2019103574A2 (en) Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same
KR20170025873A (en) Lithium secondary battery and operating method thereof
KR20150106851A (en) Cathode Active Material and Lithium Secondary Battery Comprising the Same
KR101352836B1 (en) Process for Preparing Lithium Manganese-Based Oxide of Li-excess Content and Lithium Secondary Battery Comprising the Same
WO2019103576A2 (en) Positive electrode additive, manufacturing method therefor and positive electrode and lithium secondary battery comprising same
KR101547919B1 (en) Positive Active Material for Secondary Battery Having Improved Cycle Life Characteristics and Method for Preparation the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881948

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020517272

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881948

Country of ref document: EP

Effective date: 20200331

NENP Non-entry into the national phase

Ref country code: DE