WO2019103143A1 - Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film - Google Patents

Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film Download PDF

Info

Publication number
WO2019103143A1
WO2019103143A1 PCT/JP2018/043399 JP2018043399W WO2019103143A1 WO 2019103143 A1 WO2019103143 A1 WO 2019103143A1 JP 2018043399 W JP2018043399 W JP 2018043399W WO 2019103143 A1 WO2019103143 A1 WO 2019103143A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
long
crystal film
layer
polarizing plate
Prior art date
Application number
PCT/JP2018/043399
Other languages
French (fr)
Japanese (ja)
Inventor
太朗 橋爪
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66631525&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019103143(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019555396A priority Critical patent/JP6967083B2/en
Priority to KR1020207010831A priority patent/KR102394968B1/en
Publication of WO2019103143A1 publication Critical patent/WO2019103143A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a long liquid crystal film including a light alignment layer, a method for producing the same, a long polarizing plate including the long liquid crystal film, and an image display device.
  • a liquid crystal film using a polymerizable liquid crystal compound has been proposed, and has been used as a retardation film or a high-performance film (Patent Document 1).
  • Patent Document 1 a liquid crystal film using a polymerizable liquid crystal compound aligned by the alignment control force of the alignment layer provided on the support are polymerized to fix the alignment state, and various optical properties are imparted to them. It is known that a liquid crystal film of
  • Patent Document 2 In recent years, in order to obtain a liquid crystal film with few defects, it has been proposed to use a photoalignment layer in place of the conventionally used rubbing alignment layer (Patent Document 2).
  • the photo-alignment layer is expected to suppress unevenness and defects caused by foreign substances associated with rubbing, since the process of applying the alignment regulating force to the alignment layer material can be performed without contact.
  • a display device to which a liquid crystal film is applied for example, a liquid crystal display device and an organic EL (electroluminescence) display device can be mentioned.
  • a liquid crystal display device and an organic EL (electroluminescence) display device can be mentioned.
  • high definition and high dynamic range are continuously performed, There is a constant demand for finer pitch, higher white brightness, and more black display performance.
  • JP-A-8-94838 Japanese Patent Laid-Open No. 2000-86786 JP 2001-314799 A JP 2008-224968 A
  • the present invention has been made in view of such a situation, and relates to a liquid crystal film including a photoalignment layer, a liquid crystal film in which retardation unevenness is suppressed, a long polarizing plate, an image display device, and a long liquid crystal film It is an object of the present invention to provide a manufacturing method of
  • the inventors pay attention to the phenomenon that the polarized light once transmitted through the web re-enters the web due to reflection etc. during the polarized light irradiation related to the light alignment, and suppresses the light of the unexpected polarization state from entering the light alignment layer. By doing this, it was found that such phase difference unevenness could be eliminated, and the following invention was realized.
  • a long liquid crystal film comprising a long base material, a long light alignment layer, and a long liquid crystal layer having an in-plane retardation in this order,
  • the long liquid crystal layer when the long liquid crystal film is sandwiched between the linear polarizer and the analyzer and these are disposed at the quenching position and irradiated with light, there are streaky regions where light leakage occurs,
  • the slow axis fluctuation ⁇ in the intergranular region is more than 0 ° and less than 0.04 °.
  • the in-plane retardation of the long liquid crystal film is in the range of 110 nm to 160 nm, and the slow axis thereof forms 45 ° with the longitudinal direction of the long substrate, [1] to [5] The long liquid crystal film according to any of the above. [7] The long liquid crystal film according to any one of [1] to [6], wherein the long liquid crystal layer satisfies the following formula. Re (450) / Re (550) ⁇ 1.0 1.0 ⁇ Re (650) / Re (550) [8] The long liquid crystal film according to any one of [1] to [7], wherein the long liquid crystal film satisfies the following formula.
  • the absorption axis of the elongated linear polarizing plate forms 0 ° or 90 ° with the longitudinal direction of the elongated linear polarizing plate, and the crossing angle with the slow axis of the elongated liquid crystal film
  • the long polarizing plate as described in [10] which makes 45 degrees.
  • the long polarizing plate according to [11] wherein the in-plane retardation of the long liquid crystal film is in the range of 110 nm to 160 nm.
  • An image display device comprising a sheet-like polarizing plate cut out from the long polarizing plate according to any one of [10] to [12].
  • the liquid crystal layer is provided so as to be peelable at least either between the photoalignment layer and the liquid crystal layer or between the elongated base and the photoalignment layer, according to [1] to [9] The long liquid crystal film as described in any.
  • the present invention it is possible to reduce retardation unevenness of the long liquid crystal film and the long polarizing plate, and it is possible to obtain an image display device excellent in display quality. Moreover, the manufacturing method of the elongate liquid crystal film which can suppress generation
  • a numerical range represented using “to” means a range including the numerical values described before and after it as the lower limit value and the upper limit value.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent the in-plane retardation at the wavelength ⁇ and the retardation in the thickness direction, respectively.
  • Re ( ⁇ ) is measured by causing light of wavelength ⁇ nm to be incident in the film normal direction in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.).
  • the wavelength selection filter can be replaced manually, or the measured value can be converted by a program or the like for measurement.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is a film in the case where the aforementioned Re ( ⁇ ) is the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotational axis) (in the absence of the slow axis)
  • the light of wavelength ⁇ nm is made incident from the direction normal to the film normal direction of the film) and the direction of the film normal direction with an in-plane direction to the one side 50 ° in 10 ° steps to a total of 6 points Based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
  • the retardation at the inclination angle larger than the inclination angle KOBRA 21ADH or WR calculates the value after changing its sign to negative.
  • the retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, any direction in the film plane is the rotation axis).
  • Rth can also be calculated from the following equation (A) and equation (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents the retardation value in the direction inclined at an angle ⁇ from the normal direction.
  • nx represents the refractive index in the in-plane slow axis direction
  • ny represents the refractive index in the in-plane direction orthogonal to nx
  • nz represents the direction orthogonal to nx and ny Represents the refractive index.
  • d shows the thickness of a measurement film.
  • the long liquid crystal film of the present invention has a long substrate, a long light alignment layer, and a long liquid crystal layer having an in-plane retardation in this order.
  • the long liquid crystal film will be described in detail below.
  • FIG. 1 is a conceptual view showing an example of the first embodiment of the long liquid crystal film of the present invention.
  • the long liquid crystal film (also referred to simply as a liquid crystal film) 10 is formed on a long base (also referred to as a long base or simply referred to as a base) 1 and a long photoalignment layer (also referred to simply as a photoalignment layer).
  • a long liquid crystal layer (also referred to simply as a liquid crystal layer) 3 and a long liquid crystal layer 2 are provided in this order.
  • the substrate 1, the photoalignment layer 2, and the liquid crystal layer 3 are drawn in equal widths, in actual production, the substrate 1 is wider than the photoalignment layer 2, and the liquid crystal layer 3 is wider than the photoalignment layer 2. It is common to set it narrow. However, if necessary, the liquid crystal layer 3 may be wider than the photoalignment layer 2 and narrower than the support base 1.
  • the long liquid crystal film of the present invention light leakage occurs in the liquid crystal layer when the long liquid crystal film is sandwiched between the linear polarizer and the analyzer and these are disposed at the quenching position to irradiate light.
  • a streak region is present, and the slow axis fluctuation ⁇ in the streak region is more than 0 ° and less than 0.04 °. This point will be described in detail later.
  • the long liquid crystal film of the present invention can have an in-plane retardation of at least 10 nm or more of Re (550).
  • Re (550) is in the range of 100 nm to 250 nm, and in this range, it can be used as various optical compensation films or wave plates. More preferably, Re (550) is in the range of 120 nm to 160 nm, and in this range, it can be used as a ⁇ / 4 wavelength plate.
  • the in-plane retardation at each wavelength satisfy the following relationship.
  • this relationship is satisfied, uniform polarization conversion over a wide band is possible, and good performance with little tinting can be exhibited when used as various optical compensation films or wavelength plates.
  • the long base material 1 may apply various long films of transparent film materials such as TAC (triacetyl cellulose) film, acrylic film, polycarbonate film, cycloolefin film, polyethylene terephthalate film, transparent film material by glass, etc. it can. It is preferable that it is a resin film from the viewpoint of having both strength and flexibility.
  • the long base 1 can be an optically isotropic transparent film material from the viewpoint of the optical design of the entire liquid crystal film and the light alignment suitability described later.
  • the thickness of the long substrate 1 is not limited, and the thickness capable of holding the photo alignment layer 2 and the liquid crystal layer 3 according to the application of the long liquid crystal film 10 and the forming material of the long substrate 1, It may be set as appropriate.
  • the thickness of the elongated substrate 1 is preferably 1 to 250 ⁇ m, more preferably 3 to 150 ⁇ m, and still more preferably 5 to 50 ⁇ m.
  • the elongated substrate 1 preferably has a transmittance of 50% or more, more preferably 70% or more, and still more preferably 85% or more for light to which the liquid crystal layer 3 acts.
  • the light alignment layer 2 is formed on the surface of the elongated base 1.
  • the photo-alignment layer 2 is an alignment film for aligning a liquid crystal compound in a predetermined alignment pattern when the liquid crystal layer is formed by developing an alignment control force.
  • the photo alignment layer 2 is a photo alignment material irradiated with polarized light to form an alignment film.
  • the photoalignment layer 2 is formed by irradiation of linearly polarized ultraviolet light after the material layer of the photoalignment layer is formed on the substrate 1 by coating and drying of the coating liquid of the photoalignment layer. Be done.
  • the irradiation of polarized light can be performed from the perpendicular or oblique direction to the material layer.
  • the material (photo alignment material) which concerns on the photo alignment layer 2 can apply the various material which can apply the method of photo alignment.
  • photodimerization type materials in particular compounds comprising cinnamic acid derivatives.
  • photoisomerization materials such as an azo compound, a photodegradable material, etc. can also be used suitably.
  • the long liquid crystal film 10 is cured in a state in which the liquid crystal material related to the liquid crystal layer 3 is aligned by the alignment regulating force of the light alignment layer 2, and the liquid crystal layer 3 is manufactured.
  • the thickness of the photoalignment layer 2 is preferably 0.01 ⁇ m to 5 ⁇ m, and more preferably 0.05 ⁇ m to 2 ⁇ m.
  • the liquid crystal layer 3 is coated with a corresponding coating liquid (polymerizable liquid crystal composition) by a coating head such as a die, dried, and then irradiated with ultraviolet rays to be cured.
  • the liquid crystal material is solidified (hardened) in a state in which the liquid crystal material is aligned by the alignment control force.
  • the value of the in-plane retardation of the liquid crystal layer 3 can be adjusted by the refractive index anisotropy ⁇ n and the orientation control of the liquid crystal material used to obtain a target value, and the film thickness of the liquid crystal layer.
  • the in-plane retardation Re (550) is in the range of 100 to 250 nm, and for use as a quarter wave plate, preferably in the range of 120 to 160 nm.
  • the in-plane retardation at each wavelength satisfy the following relationship.
  • this relationship is satisfied, uniform polarization conversion over a wide band is possible, and good performance with little tinting can be exhibited when used as various optical compensation films or wavelength plates.
  • a streak shape in which light leakage occurs in the liquid crystal layer 3 There is a region, characterized in that the slow axis variation in this streak region is greater than 0 ° and less than 0.04 °.
  • a slow axis fluctuation region is formed in a streak shape in the liquid crystal layer 3 and the slow axis fluctuation ⁇ in that region is greater than 0 ° and less than 0.04 °.
  • the slow axis fluctuation ⁇ mentioned here is the maximum value of the angle ⁇ of the slow axis in the relevant region with respect to the average slow axis direction ⁇ of the liquid crystal layer 3.
  • (maximum value of
  • the amount of light leakage in the streak region changes with ⁇ .
  • the Jones matrix is calculated, the amount of light leakage when a retardation film is inserted into crossed Nicols is represented by I ⁇ ⁇ sin ⁇ ⁇ cos ⁇ ⁇ (1 ⁇ exp [2 ⁇ i ⁇ A / ⁇ ]) ⁇ 2 .
  • I intensity of light source
  • deviation angle of slow axis from absorption axis of polarizer or analyzer
  • A Re
  • wavelength of light source
  • the above equation neglects “scatter”, “absorption” and “reflection”. Therefore, when the orientation of the liquid crystal is bad and scatters, light leaks even when the film is rotated. On the other hand, the light leakage in the linear region of the present application can be distinguished because the light leakage can be suppressed by aligning ⁇ with the absorption axis of the polarizer.
  • the average slow axis direction ⁇ of the liquid crystal layer 3 is the average value of slow axis values (angles in the direction of the slow axis) determined by the above-mentioned KOBRA 21ADH taken at arbitrary 10 points of the film, The above-mentioned extinction position is set based on this average slow axis direction ⁇ .
  • the slow axis value ⁇ of the streak region is a slow axis value (angle in the direction of the slow axis) determined by the above-described KOBRA 21 ADH in the streak region.
  • the slow axis value ⁇ at any 10 points in the longitudinal direction of the linear region may be determined, and the maximum value may be used to determine ⁇ according to the above equation.
  • linear shape as used herein is a concept broadly including not only a single linear shape, but also a complex curved shape or one in which a plurality of lines overlap to exhibit a radial shape or a brush-like shape.
  • the width per stripe region is about 0.1 mm to about 1 mm, but when several stripes are gathered, the width may be more than this for visual recognition.
  • the length of the streaky region is indefinite, and may range from about 1 mm to several tens of meters.
  • FIG. 6 shows a failure (retardation unevenness) actually observed in the long liquid crystal film before improvement (comparative example 2 described later).
  • the image indicated by the arrow is a streak region, and the in-plane retardation and the slow axis direction are measured every 0.5 mm so as to cross this streak region (along the white line in the figure) Is FIG. In the linear region, the slow axis is shifted, and ⁇ reaches up to 0.10 °.
  • the image shown in FIG. 6 is image
  • the vertical direction of the arrangement image shown in FIG. 6 is the width direction of the long liquid crystal film, and the lines running to the left and right of the image are derived from the image processing of the photographing device.
  • the arc-shaped line is a marking mark written on the film in order to clearly indicate the streaked area at the time of measurement.
  • FIG. 8 is an image of another linear region (Comparative Example 1 described later).
  • a linear streaked area is generated from the arrow outside the image to the left.
  • the result of the measurement similar to FIG. 6 is shown in FIG. 9 so as to cross this region (along the white line in the figure).
  • the maximum value of ⁇ is slightly larger than 0.04 °, this streak-like region extends over several tens of meters in the longitudinal direction of the long liquid crystal film, and is cut out so as to include this streak-like region
  • the vertical direction of the image is the width direction of the long liquid crystal film. It is clear that the part surrounded by the arc is a defect caused by a foreign substance, and it has a completely different appearance (showing a characteristic star-like appearance) from the line-like region defined in the present invention.
  • the slow axis fluctuation ⁇ is more than 0 ° and less than 0.04 ° in such a streak region.
  • the long liquid crystal film of the present invention in which the slow axis fluctuation ⁇ in the streak region of the liquid crystal layer is more than 0 ° and less than 0.04 °, is a photoalignment process in forming a photoalignment layer, It can produce by suppressing the local polarization change resulting from the reflected light from the backup roll which supports a long base material.
  • the method for producing the long liquid crystal film of the present invention will be described in detail later.
  • the slow axis fluctuation ⁇ of the streaky region is preferably 0.01 ° to 0.04 °, and 0.01 ° to 0.03 °. More preferably, 0.01 ° to 0.02 ° is more preferable.
  • the width of the streaked region is preferably 0.1 mm to 2 mm from the viewpoint of being able to suitably suppress visual recognition of streaked unevenness. 1 mm to 1 mm is more preferable, and 0.1 mm to 0.5 mm is more preferable.
  • the length of the streaky region is preferably 2 mm to 20 mm, more preferably 2 mm to 10 mm, and still more preferably 2 mm to 5 mm.
  • the ratio of the total area of the streaked region to the area of the surface of the liquid crystal layer is preferably from the viewpoint of being able to suitably suppress streaked unevenness to be recognized visually. 6% or less is preferable, 1% to 4% is more preferable, and 1% to 3% or less is more preferable.
  • the ratio of the total area of the streaked regions to the area of the surface of the liquid crystal layer is ⁇ measured at intervals of 0.5 mm in the width direction and the length direction at five arbitrary regions of 20 mm ⁇ 30 mm, ⁇ An area of> 0.01 ° is defined as a streak area, and the width and length of the streak area are calculated.
  • the width, length, and area of the streaky region may be measured in a state in which the long liquid crystal film is sandwiched between the linear polarizer and the analyzer, these are disposed at the quenching position, and light is irradiated.
  • the liquid crystal layer 3 can be provided by applying various polymerizable liquid crystal compositions that are liquid crystal materials exhibiting optical anisotropy.
  • the polymerizable liquid crystal composition exhibits liquid crystallinity, and can contain other polymerizable compounds, an alignment stabilizer, a solvent, and the like in addition to the polymerizable liquid crystal compound having a polymerizable functional group in the molecule.
  • the polymerizable liquid crystal compound according to the liquid crystal layer 3 has refractive index anisotropy, and has a function of imparting desired retardation by arranging regularly by the alignment regulating force of the photoalignment layer 2.
  • the polymerizable liquid crystal compound include materials exhibiting a liquid crystal phase such as a nematic phase and a smectic phase.
  • polymerizable liquid crystal molecules having various structures such as a rod-like liquid crystal compound and a discotic liquid crystal compound can be used.
  • the compounds described in JP-A-2015-200877 can be used. From the viewpoint of adjusting the phase transition temperature and suppressing the crystallization of the polymerizable liquid crystal compound to obtain a liquid crystal film having a more excellent surface shape, a plurality of different polymerizable liquid crystal compounds can be mixed and used.
  • Non-liquid crystalline polyfunctional polymerizable compounds examples include ester compounds of known polyhydric alcohols and (meth) acrylic acid. The addition of these compounds increases the fluidity of the polymerizable liquid crystal composition to promote leveling, so that the liquid crystal layer 3 with less variation in retardation can be obtained. In addition, the wet heat durability of the liquid crystal layer 3 can be improved, and the scratch resistance and the film strength can be enhanced.
  • An alignment stabilizer can be added to the polymerizable liquid crystal compound according to the liquid crystal layer 3.
  • various disturbance factors are suppressed, the alignment of the liquid crystal composition is stabilized, and the liquid crystal layer 3 with few phase difference unevenness can be obtained.
  • the alignment of the liquid crystal layer can be adjusted to any alignment such as horizontal alignment, vertical alignment, hybrid alignment, and cholesteric alignment. From the viewpoint of achieving both orientation stabilization and leveling, an acrylic polymer having a fluoroaliphatic side chain is particularly preferable (paragraphs 0022 to 0063 of JP-A-2008-257205, and paragraph 0017 of JP-A-2006-91732). Can be added).
  • the polymerizable liquid crystal compound according to the liquid crystal layer 3 contains a polymerization initiator.
  • Various polymerization initiators can be selected according to the polymerizable group of the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is a (meth) acrylate compound
  • the polymerization initiator is a radical polymerization initiator.
  • various well-known polymerization initiators can be used. In order to achieve uniform orientation, it is preferable that the stability with time of the coating solution and the deep-part curability of the coating film be excellent, and from that viewpoint the oxime ester compound (US Pat. No.
  • JP-A-2001-233842 and acyl phosphine oxide compounds are preferably used.
  • solvent Various known solvents can be used as the solvent.
  • the solvent is preferably selected in consideration of the solubility of the polymerizable liquid crystal compound and the other components, and the wettability and volatilization of the coating liquid to the support. By appropriately selecting the solvent, it is possible to form a uniform coating film without unevenness and obtain the liquid crystal film 10 in which the retardation unevenness is suppressed.
  • the method for producing a long liquid crystal film of the present invention (also referred to as the production method of the present invention) is It has a photoalignment step of irradiating the material layer to be the photoalignment layer formed on the long base material with ultraviolet light while conveying the long base material in the longitudinal direction,
  • a photoalignment step when the material layer is irradiated with ultraviolet light, the surface opposite to the surface on which the material layer of the long base material is formed is supported by a backup roll,
  • the maximum height roughness Rz of the surface of the backup roll is 0.7 nm or less.
  • the ultraviolet reflectance of the surface of a backup roll is 10% or less.
  • the manufacturing method of a long liquid crystal film is The following each process is implemented, conveying the elongate base material 1 to a longitudinal direction.
  • a curing step in which the composition layer thus heated is cured by irradiation with ultraviolet light.
  • the above manufacturing method forms the long liquid crystal film 10 by forming the long light alignment layer 2 and the long liquid crystal layer 3 on the long base material 1 by sequentially carrying out the above-described steps. Make.
  • the manufacturing method of the elongate liquid crystal film of this invention is more concretely demonstrated using an example of the manufacturing apparatus which implements each said process and manufactures a elongate liquid crystal film.
  • FIG. 3 is a schematic view showing an essential part of an example of a production apparatus for carrying out the above-mentioned method for producing a long liquid crystal film.
  • the manufacturing apparatus 30 shown in FIG. 3 is for forming the photoalignment layer 2 and the liquid crystal layer 3 by roll-to-roll, and the rotating shaft 60 for loading the roll 31 formed by winding the long base material 1
  • a winding shaft 61 for winding the long liquid crystal film 10 and a die 32, a heating device 33, a light source 34, a backup roll 38, a die 35, installed in a conveyance path from the rotating shaft 60 to the winding shaft 61;
  • a heating device 36 and a light source 37 are provided.
  • the manufacturing apparatus 30 performs the first coating process with the die 32 while transporting the long base material 1 in the longitudinal direction from the rotating shaft 60 to the winding shaft 61, performs the drying process with the heating device 33, and the light source 34
  • the photo-alignment step is performed, the second coating step is performed by the die 35, the heating step is performed by the heating device 36, and the curing step is performed by the light source 37.
  • a roll 31 formed by winding the long base material 1 is loaded on the rotating shaft 60, and the long base material 1 is pulled out from the roll 31, and the die 32, the heating device 33, the light source 34, the backup roll 38, the die
  • the heating device 36 and the light source 37 pass through a predetermined transport path leading to the winding shaft 61.
  • a coating liquid to be the photoalignment layer 2 is supplied to the die 32.
  • a liquid crystal composition to be the liquid crystal layer 3 is supplied to the die 35.
  • the heating device 33 and the heating device 36 are each driven to have a predetermined temperature.
  • the light source 34 and the light source 37 are driven to emit light of a predetermined light amount and wavelength, respectively.
  • the coating liquid to be the photoalignment layer 2 is applied by the die 32 to form a material layer.
  • the coating method (coating method) of the coating liquid used as the photo-alignment layer 2 is not limited to the above-mentioned die coating method, and dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar method Various known methods such as a coating method and a gravure coating method can be used.
  • the elongated base material 1 is conveyed to the position of the heating device 33, and the coated material layer is dried and heated by the heating device 33 (drying step).
  • the heating by the heating device 33 and the drying may be performed by a known method of heating and drying the sheet-like material. For example, warm air heating, heating by a heat roller, etc. may be mentioned.
  • the long base material 1 is conveyed to the position of the light source 34 and the backup roll 38, and the material layer is cured by the irradiation of the ultraviolet light by the linearly polarized light from the light source 34 (photoalignment process).
  • the material layer is cured by the irradiation of the ultraviolet light by the linearly polarized light from the light source 34 (photoalignment process).
  • a desired alignment control force can be expressed.
  • the light source 34 is not particularly limited, and various light sources that emit light of a wavelength corresponding to the material for forming the alignment film can be used.
  • the light alignment layer 2 is formed on the long base material 1 and is further transported to the position of the die 35.
  • the photoalignment step is performed in a state where the surface opposite to the surface on which the material layer of the long substrate 1 is formed is supported by the backup roll 38. It will be. If the long base material 1 is not supported in the light alignment step, the long base material 1 fluctuates and the distance to the light source 34 fluctuates, and the plane of the alignment control force of the formed light alignment layer 2 Unevenness will occur in the internal distribution. Therefore, the photoalignment step is performed in a state where the long base material 1 is supported by the backup roll 38.
  • the present inventors have found that when forming a photoalignment layer and a liquid crystal layer while conveying a long base material in the longitudinal direction, fine streaks of unevenness (lined regions) occur in the liquid crystal layer. . As a result of further examination on this point, it was found that streak regions were generated periodically in the longitudinal direction of the produced long liquid crystal film, and so on, the backup roll supporting the long base material 1 in the photo-alignment step. It turned out that it originates in surface quality.
  • a part of the light emitted from the light source 34 and incident on the material layer to be the light alignment layer 2 is reflected by the backup roll 38 and is incident on the material layer again.
  • the polarization state of the reflected light reflected by the backup roll 38 locally changes at the position where the flaw or the like is present. Therefore, local unevenness in the direction of the alignment control force occurs in the photoalignment layer 2 to be formed, whereby fine streaks of unevenness (line-like regions) are formed in the liquid crystal layer 3 formed on the photoalignment layer 2 ) was found to occur.
  • the manufacturing method of the present invention by setting the maximum height roughness Rz of the surface of the backup roll 38 to 0.7 ⁇ m or less, the local area of the reflected light from the backup roll 38 at the time of photo alignment processing.
  • the range of the slow axis fluctuation ⁇ in the streak-like area is larger than 0 ° and less than 0.04 ° Can be suppressed.
  • the change in the state of the photoalignment layer in the photoalignment step is extremely slight and it is impossible to quantitatively grasp the in-plane distribution, but on the other hand, the liquid crystal layer aligned by the alignment control force exhibits a large retardation. Therefore, slight unevenness in alignment control force can cause large optical unevenness.
  • the inventors of the present invention have found that light is incident from the polarized light source on the long base material and the material layer, and light transmitted by the backup roll is reflected again on the material layer in a state where polarization change occurs.
  • the light alignment layer and the liquid crystal layer have a uniform thickness and cause a local retardation of the slow axis in the liquid crystal layer without being accompanied by foreign matter. Based on the hypothesis that a possible defect is generated, various measures that can suppress such a phenomenon have been studied, and the present invention has been realized.
  • the backup roll 38 may be mirror-polished, or light absorption processing such as blackening may be performed so that the reflected light from the backup roll 38 is uniform and uniform.
  • light absorption processing such as blackening
  • the site where the depolarization occurs by irradiating the green polarized light with high visibility and observing the reflected light through the linear polarizer Methods of detection and removal can be used.
  • the backup roll 38 when the backup roll 38 is a mirror surface, it is highly transparent and optically isotropic long base so that the reflected light from the backup roll and the scattered light from scratches and foreign matter on the roll are not polarization converted. It is one preferable mode to use the material 1.
  • the in-plane retardation Re (550) of the elongated base material 1 is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less.
  • the thickness direction retardation Rth (550) is preferably in the range of ⁇ 20 to 20 nm, and more preferably in the range of ⁇ 10 nm to 10 nm.
  • the polarized light reflected in a direction other than regular reflection from the backup roll 38 is again incident on the light alignment layer 2 without polarization conversion, and the direction of the alignment control force of the light alignment layer 2 It is possible to suppress the occurrence of unevenness and to efficiently impart the alignment regulating force with a small irradiation amount.
  • the reflectance (ultraviolet reflectance) of the surface of the backup roll 38 with respect to the ultraviolet light irradiated in the photoalignment step is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
  • the reflectance of the surface of the backup roll 38 was measured using a spectrophotometer (MV-3100, manufactured by JASCO Corporation), and the front reflectance to light with a wavelength of 365 nm was used.
  • the long base material 1 on which the photoalignment layer 2 is formed is conveyed to the position of the die 35, and the die 35 coats the liquid crystal composition to be the liquid crystal layer 3 on the photoalignment layer 2.
  • the composition layer is formed.
  • the liquid crystal material in the composition layer is in an aligned state by the alignment control force of the photo alignment layer 2.
  • the coating method (coating method) of the liquid crystal composition to be the liquid crystal layer 3 is not limited to the above-described die coating method, and dip coating, air knife coating, curtain coating, roller coating, wire bar coating Various known methods such as a method and a gravure coating method can be used.
  • the long base material 1 is conveyed to the position of the heating device 36, and the coated composition layer is heated and dried by the heating device 36.
  • the heating device 36 can also promote or adjust the alignment of the liquid crystal material in the composition layer. Heating by the heating device 36 and drying may be performed by a known method of heating and drying the sheet-like material. For example, warm air heating, heating by a heat roller, etc. may be mentioned.
  • the long base material 1 is conveyed to the position of the light source 37 and irradiated with ultraviolet light by the light source 37 to cure the composition layer in a state where the liquid crystal material is aligned by the alignment regulating force of the photoalignment layer 2 Liquid crystal layer 3 is manufactured.
  • this irradiation of ultraviolet light is performed from the composition layer side, whereby the composition layer is efficiently irradiated with ultraviolet light to produce the liquid crystal layer 3.
  • the light source 37 is not particularly limited, and various light sources that emit light of a wavelength corresponding to the forming material of the liquid crystal layer can be used.
  • the long film-shaped liquid crystal film 10 produced in this manner is conveyed to the winding shaft 61 and wound around the roll 39.
  • This roll 39 can be provided to further steps. For example, it can be conveyed to a manufacturing apparatus 40 in which a linear polarizing plate described later and the long liquid crystal film 10 are laminated, and a polarizing plate described later can be manufactured by roll-to-roll.
  • the long liquid crystal film of the present invention can be used as an optical component that can be used for various image display devices by combining it with a linear polarizing plate.
  • an image display device excellent in display quality by appropriately cutting and mounting on the image display device, it is possible to configure an image display device excellent in display quality.
  • bonding can be performed using various adhesives.
  • an adhesive agent an ultraviolet curable resin, a thermosetting resin, a pressure sensitive adhesive agent etc. can be illustrated, for example.
  • a long polarizing plate (also referred to simply as a polarizing plate) 20 can be configured by laminating the long liquid crystal film 10 of the present invention with the linear polarizing plate 21 with their longitudinal directions aligned with each other (see FIG. 2). ).
  • the in-plane retardation of the long liquid crystal film (and liquid crystal layer) of the present invention is preferably in the range of 110 to 160 nm, and more preferably in the range of 130 to 150 nm.
  • the slow axis of the elongate liquid crystal film (and liquid crystal layer) of this invention may be 45 degrees with the absorption axis (transmission axis) of a linear-polarizing plate.
  • the linear polarizing plate 21 is not limited, and a known linear polarizing plate can be used.
  • the linear polarization plate 21 is configured by sandwiching an optical function layer having a function as a linear polarization plate by a pair of base materials.
  • the substrate is a transparent film of TAC (triacetyl cellulose), an acrylic resin such as methyl poly (meth) acrylate or a copolymer thereof, a crosslinked polymer resin such as an epoxy compound or a (meth) acrylate compound, cycloolefin Resin, resin such as polycarbonate resin, glass, etc. can be applied.
  • TAC triacetyl cellulose
  • acrylic resin such as methyl poly (meth) acrylate or a copolymer thereof
  • a crosslinked polymer resin such as an epoxy compound or a (meth) acrylate compound
  • cycloolefin Resin resin such as polycarbonate resin, glass, etc.
  • the long base material of the long liquid crystal film of the present invention may be used as a base material, and the optical function layer, the long base material 1, the light alignment layer 2 and the liquid crystal layer 3 may be laminated in this order.
  • the optical functional layer is typically produced by adsorbing and orienting iodine compound molecules to a film material of polyvinyl alcohol (PVA), but in addition, a film using an organic dichroic dye instead of the iodine compound molecules, organic A layer in which a dichroic dye is blended in a liquid crystal composition and oriented, a layer in which a liquid crystalline organic dichroic dye is oriented, or the like may be used.
  • PVA polyvinyl alcohol
  • organic A layer in which a dichroic dye is blended in a liquid crystal composition and oriented, a layer in which a liquid crystalline organic dichroic dye is oriented, or the like may be used.
  • the various known adhesives described above can be used as the adhesive layer 22 (not shown) related to the lamination
  • FIG. 4 is a figure which shows typically the principal part of the manufacturing apparatus which implements the process of laminating
  • the long liquid crystal film 10 is provided as a roll 39 in a state of being wound in a roll.
  • the linearly polarizing plate 21 laminated body in which the adhesive layer 22 and the peeling film 41 made of a PET film are laminated is supplied as a roll 42 in a state of being wound in a roll shape.
  • the roll 39 and the roll 42 are respectively loaded on predetermined feed rotational shafts (47, 48).
  • the roll 42 is loaded such that the release film 41 is on the front side.
  • the long liquid crystal film 10 is pulled out from the roll 39 loaded on the rotating shaft 47, and is passed through a predetermined conveyance path up to a winding shaft 49 for winding the long liquid crystal film 10 on which the linear polarizing plate 21 is laminated.
  • a pressure roller 45 is disposed in the middle of the transport path of the long liquid crystal film 10. Further, the laminate is pulled out from the roll 42 loaded on the rotating shaft 48, passes through the pressure roll 45, and is passed through a predetermined transport path to the winding shaft 49.
  • a peeling roll 43 for peeling the peeling film 41 from the laminate is disposed in the middle of the path from the rotating shaft 48 to the pressure roll 45, and the peeling film 41 is peeled at the position of the peeling roll 43.
  • the release film 41 is passed through a predetermined transport path to the winding shaft 55.
  • the manufacturing apparatus 40 peels off the peeling film 41 by the peeling roll 43 while pulling out the laminate of the linear polarizing plate 21, the adhesive layer 22 and the peeling film 41 from the roll 42.
  • the peeled release film 41 is wound on a roll 44.
  • the pressure roll 45 laminates and pressurizes the liquid crystal film 10 and the laminate of the linear polarization plate 21 and the adhesive layer 22 after peeling the peeling film 41.
  • a laminate of the liquid crystal film 10, the adhesive layer 22, and the linear polarizing plate 21 (that is, the polarizing plate 20) is manufactured.
  • the laminate of the liquid crystal film 10, the adhesive layer 22, and the linear polarization plate 21 is conveyed to the winding shaft 49, and the laminate is wound on a roll 48.
  • other layers such as an adhesive layer and a separator film (not shown) may be appropriately disposed on the polarizing plate 20 depending on the application.
  • the long polarizing plate 20 can be cut into a desired size to form a sheet-like polarizing plate, and can be applied to an image display device or the like.
  • the linear polarizing plate 21 is laminated on the side of the long base material 1 of the liquid crystal film 10.
  • the present invention is not limited to this, and the linear polarizing plate 21 is laminated on the liquid crystal layer 3 side.
  • the manufacturing apparatus 40 shown in FIG. 4 was shown as an example of a manufacturing apparatus which implements the process of laminating
  • the sheet-like polarizing plate is cut out from the long polarizing plate 20.
  • the present invention is not limited thereto. After cutting a sheet-like liquid crystal film from the long liquid crystal film 10, a sheet-like linear polarizing plate may be laminated to produce a sheet-like polarizing plate.
  • FIG. 5 is a view showing an example of the image display apparatus of the present invention.
  • an anti-reflection film 52 is disposed on a panel surface (viewer side surface) of the image display panel 51, using the polarizing plate 20 as a circularly polarizing plate to prevent internally reflected light.
  • the image display panel 51 is, for example, an organic EL panel, and displays a desired color image.
  • the image display panel 51 is not limited to the organic EL panel, and various image display panels such as a liquid crystal display panel can be widely applied.
  • the antireflective film 52 is typically attached to the panel surface of the image display panel 51 by the adhesive layer 53 and held.
  • the antireflection film 52 is configured by integrally laminating a linear polarizing plate 21 and a liquid crystal film 10 having the characteristics of a ⁇ / 4 wavelength plate by an adhesive layer 22.
  • As the adhesive layer 53 a known adhesive can be used similarly to the adhesive layer 22.
  • the long liquid crystal film of the present invention is applicable not only to a circularly polarizing plate but also to various optical parts.
  • it is a polarizing plate with an optical compensation layer of a liquid crystal display device, a polarization sunglasses, a brightness enhancement plate, a decoration film, a viewing angle limiting film, a light control film, a antiglare film and the like.
  • the optical characteristics and the average slow axis direction of the elongated liquid crystal film of the present invention can be variously changed according to the application without departing from the spirit of the present invention.
  • the laminate of the liquid crystal layer 3 and the photoalignment layer 2 is peeled off and transferred by using the substrate 1 as a peelable support, or in close contact with the substrate 1
  • the photoalignment layer 2 By peeling and transferring the liquid crystal layer 3 to the liquid crystal layer 3 so as to be easily releasable, the photoalignment layer 2 provided can be applied as a functional layer to replace the liquid crystal film described above.
  • the liquid crystal layer 3 or the laminate of the liquid crystal layer 3 and the photoalignment layer 2 is replaced with the liquid crystal film 10.
  • the materials and components described in one embodiment can be used as well.
  • the substrate 1 since the substrate 1 is peeled off and removed, it is possible to use a film having an optical property that would be an obstacle when used as the liquid crystal film 10 as the substrate.
  • a film having an optical property that would be an obstacle when used as the liquid crystal film 10 As an example, in the step of polarized light irradiation in photoalignment, when the backup roll is a mirror surface, a high retardation film having an in-plane retardation of 500 nm or more is used instead of the optically isotropic long base described above. It is possible to use a long body, a highly light-scattering substrate, a light-absorbing substrate, or the like. These films have a function of depolarizing light and absorbing light, and have a function of eliminating unevenness in the alignment regulation power of photoalignment caused by reflected light.
  • the first process except that a process for peeling and removing the base material 1 or the laminate of the base material 1 and the photoalignment layer 2 is appropriately provided It can manufacture by the process similar to the manufacturing process of embodiment.
  • the long liquid crystal layer thus obtained can be transferred to a linear polarizing plate or the like to be used as the above-described optical component, particularly preferably a circularly polarizing plate.
  • An image display apparatus such as an organic EL display device configured using the circularly polarizing plate thus obtained achieves the same display quality as the image display apparatus using the circularly polarizing plate including the liquid crystal film of the first embodiment It is self-evident.
  • the anisotropy (dichroism) of light absorption is included in addition to the retardation.
  • the liquid crystal layer is in the form of a long liquid crystal film having an absorption axis in the in-plane direction.
  • the same concept as in the first and second embodiments can be applied by replacing the in-plane retardation in the first and second embodiments with the anisotropy of absorption. That is, the liquid crystal layer described above includes a streaky absorption axis abnormal area, and the maximum value of the angle formed by the absorption axis direction in the abnormal area with the average absorption axis direction of the liquid crystal layer is larger than 0 ° and 0.04 ° It is a long optical film which is less than.
  • the long base material and the long light alignment layer can be appropriately selected without departing from the concept of the present invention, and the long optical film is used for the various optical components and the image display apparatus etc. Can.
  • the organic phase is taken out and washed with a 0.2 mass% aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy-containing polyorganosiloxane Obtained as a viscous clear liquid.
  • the weight average molecular weight Mw of this epoxy-containing polyorganosiloxane was 2,200, and the epoxy equivalent was 186 g / mol. This was named photoalignable polymer A.
  • Example 1 [Preparation of Cellulose Acylate Film 1] (Preparation of core layer cellulose acylate dope) The following composition was charged into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution to be used as core layer cellulose acylate dope.
  • ⁇ ⁇ ⁇ Core Layer Cellulose Acylate Dope ⁇ ⁇ ⁇ ⁇ ⁇ Cellulose acetate having an acetyl substitution degree of 2.88 100 parts by mass Polyester compound B described in the example of JP-A-2015-227955 12 parts by mass Compound F below 2 parts by mass Methylene chloride (first solvent) 430 parts by mass Methanol (2nd solvent) 64 parts by mass ⁇ ⁇ ⁇ ⁇
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered with a filter paper having an average pore diameter of 34 ⁇ m and a sintered metal filter having an average pore diameter of 10 ⁇ m, and then the core layer cellulose acylate dope and outer layer cellulose acylate dope on both sides thereof And 3 layers were simultaneously cast from a casting port on a 20 ° C. drum (band casting machine).
  • the film was peeled off in a state of a solvent content of about 20% by mass, and both ends in the width direction of the film were fixed with a tenter clip, and the film was dried while being drawn in the transverse direction at a draw ratio of 1.1.
  • the optical film with a thickness of 40 micrometers was produced, and this was made into the elongate base material.
  • the core layer of the elongated base had a thickness of 36 ⁇ m, and the outer layers disposed on both sides of the core layer had a thickness of 2 ⁇ m.
  • the in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
  • a photoalignment layer and a liquid crystal layer are formed as follows while conveying the produced cellulose acylate film 1 in the longitudinal direction using a roll-to-roll manufacturing apparatus as shown in FIG. Was produced.
  • the following composition 1 for photo alignment film was continuously applied by a bar coater. After application, the solvent was removed by drying in a heating zone at 120 ° C. for 1 minute to form a 0.3 ⁇ m thick photoisomerization composition layer (material layer).
  • a photo-alignment layer is formed by irradiating polarized ultraviolet light (10 mJ / cm 2 , using ultra-high pressure mercury lamp) so that the polarization axis forms an angle of 45 ° in the longitudinal direction. did.
  • polarized ultraviolet light (10 mJ / cm 2 , using ultra-high pressure mercury lamp)
  • a mirror-treated backup roll was used that was previously irradiated with green light from various angles and directions to visually confirm that there are no irregular reflection sites, scratches, dents, and foreign matter on the surface.
  • the surface roughness (maximum height roughness Rz) of the mirror-treated backup roll is measured using a surface roughness tester (trade name SJ-310, manufactured by Mitutoyo Co., Ltd.) according to the method according to JIS B0601 (2001) When it did, it was 0.4 micrometer.
  • the ultraviolet reflectance (reflectance at a wavelength of 365 nm) was measured using a spectrophotometer (MV-3100, manufactured by JASCO Corporation) and found to be 1%.
  • composition 1 for photo alignment film ⁇ ⁇ ⁇ 10 parts by weight of the photo alignment polymer A Nom coat TAB (manufactured by Nisshin Oillio Co., Ltd.) 1.52 parts by weight A multifunctional epoxy compound (Epolido GT 401, manufactured by Daicel) 12.2 parts by mass Thermal acid generator (San Aid SI-60, manufactured by Sanshin Chemical Industry Co., Ltd.) 0.55 parts by mass butyl acetate 300 parts by mass-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • the composition 1 for forming an optically anisotropic layer described below was applied by a bar coater on the photoalignment layer formed in a long shape, to form a composition layer.
  • the composition layer thus formed was once heated to 110 ° C. in a heating zone and then cooled to 75 ° C. to stabilize the orientation. Thereafter, the temperature is maintained at 75 ° C., and the alignment is fixed by ultraviolet irradiation (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) under nitrogen atmosphere (oxygen concentration 100 ppm) to form a liquid crystal layer 2.3 ⁇ m thick, It wound up to a winding shaft and produced the elongate liquid crystal film.
  • the average in-plane retardation Re (550) of the obtained liquid crystal film at 140 nm satisfies Re (450) / Re (550) ⁇ 1.0 and 1.0 ⁇ Re (650) / Re (550),
  • the average slow axis was 45 ° to the longitudinal direction.
  • the slow axis fluctuation ⁇ in the streak region was less than 0.4 ° at any point, and the retardation value in the slow axis direction was 140 nm at any point.
  • the surface and cross section of each streaky region were observed with an optical microscope, but neither foreign matter nor film thickness variation was observed in any of them. Moreover, it was 2% when the area ratio of the linear region was measured by the above-mentioned method.
  • Examples 2 to 4, Comparative Examples 1 and 2 A long liquid crystal film is produced in the same manner as in Example 1 except that the maximum height roughness Rz of the backup roll and the ultraviolet reflectance are changed as shown in Table 1 below, and the slow axis direction and the in-plane direction are obtained. The phase difference was measured. The slow axis fluctuation ⁇ and the area ratio of the linear region in each Example and Comparative Example were as shown in Table 1.
  • the long liquid crystal film of each of the obtained Examples and Comparative Examples is used in the form of a liquid crystal film with the substrate side as the polarizing plate side, and the base material also functions as a polarizing plate protective film. After bonding to a plate (the absorption axis is in the longitudinal direction), the film was once wound up and further cut to obtain a circularly polarizing plate. On the liquid crystal film side of the obtained circularly polarizing plate, the positive C plate described in paragraph 0127 to paragraph 0127 of JP-A-2015-200861 (wherein Rth at 550 nm is ⁇ 65 nm, the positive C plate is The thickness is controlled and transferred) to obtain a laminate.
  • the GALAXY SII manufactured by SAMSUNG Co., Ltd. mounted with an organic EL panel is disassembled, the circularly polarizing plate is peeled off, and a laminate piece cut out so as to include a marking portion with a liquid crystal film is positive from the laminate prepared above. It pasted through a pressure sensitive adhesive so that C plate side might turn to a panel side, and produced an organic EL display.
  • the obtained organic EL display device was observed under natural light in a black display state, and whether or not an abnormality was observed was visually evaluated. The results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The invention relates to a liquid crystal film including a photoalignment layer and provides a liquid crystal film in which phase difference unevenness is suppressed, a long polarizing plate, an image display device, and a method for producing a long liquid crystal film. The long liquid crystal film has, in the order of description, a long base material, an elongated photoalignment layer, and an elongated liquid crystal layer having an in-plane phase difference. When the liquid crystal film is sandwiched between a linear polarizer and an analyzer, placed at the extinction position and irradiated with light, a streaky region where light leakage occurs is present in the elongated liquid crystal layer and the slow axis variation Δβ in the streaky region is larger than 0° and less than 0.04°.

Description

長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法Long liquid crystal film, long polarizing plate, image display device, and method of manufacturing long liquid crystal film
 本発明は、光配向層を含む長尺液晶フィルム、および、その製造方法、ならびに、この長尺液晶フィルムを含む長尺偏光板、および、画像表示装置に関する。 The present invention relates to a long liquid crystal film including a light alignment layer, a method for producing the same, a long polarizing plate including the long liquid crystal film, and an image display device.
 従来、重合性液晶化合物を用いた液晶フィルムが提案され、位相差フィルムや高機能フィルムとして利用されてきた(特許文献1)。これら液晶フィルムの典型的な例として、支持体上に設けられた配向層の配向規制力によって整列した重合性液晶化合物を重合させて配向状態を固定し、種々の光学特性を付与することでこれらの液晶フィルムを得ることができることが知られている。 Conventionally, a liquid crystal film using a polymerizable liquid crystal compound has been proposed, and has been used as a retardation film or a high-performance film (Patent Document 1). As a typical example of these liquid crystal films, the polymerizable liquid crystal compounds aligned by the alignment control force of the alignment layer provided on the support are polymerized to fix the alignment state, and various optical properties are imparted to them. It is known that a liquid crystal film of
 近年は、欠陥の少ない液晶フィルムを得るために、従来用いられてきたラビング配向層に代えて光配向層を用いることが提案されている(特許文献2)。光配向層は、配向層材料に配向規制力を付与するプロセスを非接触で行うことができるために、ラビングに伴う異物に起因するムラや欠陥を抑えることが期待されている。 In recent years, in order to obtain a liquid crystal film with few defects, it has been proposed to use a photoalignment layer in place of the conventionally used rubbing alignment layer (Patent Document 2). The photo-alignment layer is expected to suppress unevenness and defects caused by foreign substances associated with rubbing, since the process of applying the alignment regulating force to the alignment layer material can be performed without contact.
 ところで、液晶フィルムが適用される表示装置として、例えば液晶表示装置や有機EL(エレクトロルミネッセンス)表示装置が挙げられるが、これらの表示装置は高精細化、ハイダイナミックレンジ化が絶え間なく行われ、画素ピッチはより細かく、白輝度はより高く、黒表示性能はより黒くという要求が絶えず行われている。 By the way, as a display device to which a liquid crystal film is applied, for example, a liquid crystal display device and an organic EL (electroluminescence) display device can be mentioned. In these display devices, high definition and high dynamic range are continuously performed, There is a constant demand for finer pitch, higher white brightness, and more black display performance.
 こうした表示装置の高性能化に伴い、液晶フィルムにおいて異物による欠陥の他に、種々の要因によって発生する位相差ムラが及ぼす表示装置の表示品質への影響が無視できないものとなりつつある。こうした要因を排除する努力がなされているものの(例えば特許文献3、特許文献4)、液晶フィルムの高品質化への要求はとどまるところがない。 Along with the enhancement of the performance of such display devices, the influence on the display quality of the display devices exerted by the phase difference unevenness caused by various factors in addition to the defects caused by the foreign matter in the liquid crystal film is becoming non-negligible. Although efforts have been made to eliminate such factors (for example, Patent Document 3 and Patent Document 4), the demand for high quality liquid crystal films has not been stopped.
特開平8-94838号公報JP-A-8-94838 特開2000-86786号公報Japanese Patent Laid-Open No. 2000-86786 特開2001-314799号公報JP 2001-314799 A 特開2008-224968号公報JP 2008-224968 A
 本発明はこのような状況に鑑みてなされたものであり、光配向層を含む液晶フィルムに関して、位相差ムラが抑えられた液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法を提供することを課題とする。 The present invention has been made in view of such a situation, and relates to a liquid crystal film including a photoalignment layer, a liquid crystal film in which retardation unevenness is suppressed, a long polarizing plate, an image display device, and a long liquid crystal film It is an object of the present invention to provide a manufacturing method of
 発明者らは、光配向に係る偏光照射に際して、一旦ウェブを透過した偏光が反射等でウェブに再入射する現象に着目し、予期せざる偏光状態の光が光配向層に入射することを抑制することでこうした位相差ムラを解消できることを見出し、以下の発明を実現した。 The inventors pay attention to the phenomenon that the polarized light once transmitted through the web re-enters the web due to reflection etc. during the polarized light irradiation related to the light alignment, and suppresses the light of the unexpected polarization state from entering the light alignment layer. By doing this, it was found that such phase difference unevenness could be eliminated, and the following invention was realized.
[1] 長尺基材、長尺状の光配向層、及び、面内位相差を有する長尺状の液晶層をこの順に有する長尺液晶フィルムであって、
 長尺状の液晶層には、長尺液晶フィルムを直線偏光子および検光子で挟んでこれらを消光位に配置して光を照射した場合に、光漏れが生じる筋状領域が存在し、筋状領域における遅相軸変動Δβが0°より大きく0.04°未満である、長尺液晶フィルム。
[2] 長尺状の液晶層の面内位相差が100nm~250nmの範囲である[1]に記載の長尺液晶フィルム。
[3] 長尺液晶フィルムの面内位相差が100nm~250nmの範囲である[1]または[2]に記載の長尺液晶フィルム。
[4] 長尺基材が、以下の式を満たす[1]から[3]のいずれかに記載の長尺液晶フィルム。
 |Re(550)|≦10nm
 |Rth(550)|≦20nm
[5] 長尺状の液晶層の面内位相差が110nmから160nmの範囲であり、その遅相軸が長尺基材の長手方向に対して45°をなしている、[1]から[4]のいずれかに記載の長尺液晶フィルム。
[6] 長尺液晶フィルムの面内位相差が110nmから160nmの範囲であり、その遅相軸が長尺基材の長手方向に対して45°をなしている、[1]から[5]のいずれかに記載の長尺液晶フィルム。
[7] 長尺状の液晶層が下記式を満たす、[1]から[6]のいずれかに記載の長尺液晶フィルム。
 Re(450)/Re(550)<1.0
 1.0<Re(650)/Re(550)
[8] 長尺液晶フィルムが下記式を満たす、[1]から[7]のいずれかに記載の長尺液晶フィルム。
 Re(450)/Re(550)<1.0
 1.0<Re(650)/Re(550)
[9] 長尺状の液晶層の表面の面積に対する、筋状領域の合計面積の割合は6%以下である[1]~[8]のいずれかに記載の長尺液晶フィルム。
[10] [1]から[9]のいずれかに記載の長尺液晶フィルムと、長尺状の直線偏光板とを、互いの長手方向を一致させて積層した、長尺偏光板。
[11] 長尺状の直線偏光板の吸収軸が、長尺状の直線偏光板の長手方向に対して0°もしくは90°をなし、かつ、長尺液晶フィルムの遅相軸との交差角が45°を成している、[10]に記載の長尺偏光板。
[12] 長尺液晶フィルムの面内位相差が110nmから160nmの範囲である[11]に記載の長尺偏光板。
[13] [10]から[12]のいずれかに記載の長尺偏光板から切り出した枚葉状の偏光板を含む、画像表示装置。
[14] 液晶層が、光配向層と液晶層との間、もしくは、長尺基材と光配向層との間の少なくとも何れかで剥離可能に設けられた、[1]から[9]のいずれかに記載の長尺液晶フィルム。
[15] [1]~[9]、および、[14]のいずれかに記載の長尺液晶フィルムの製造方法であって、
 長尺基材を長手方向に搬送しつつ、長尺基材上に形成された光配向層となる材料層に紫外線を照射する光配向工程を有し、
 光配向工程において、材料層に紫外線を照射する際に、長尺基材の材料層が形成された面とは反対側の面はバックアップロールに支持されており、
 バックアップロールの表面の最大高さ粗さRzは0.7μm以下である長尺液晶フィルムの製造方法。
[16] 紫外線に対するバックアップロールの表面の反射率は、10%以下である[15]に記載の長尺液晶フィルムの製造方法。
[1] A long liquid crystal film comprising a long base material, a long light alignment layer, and a long liquid crystal layer having an in-plane retardation in this order,
In the long liquid crystal layer, when the long liquid crystal film is sandwiched between the linear polarizer and the analyzer and these are disposed at the quenching position and irradiated with light, there are streaky regions where light leakage occurs, In the long liquid crystal film, the slow axis fluctuation Δβ in the intergranular region is more than 0 ° and less than 0.04 °.
[2] The long liquid crystal film according to [1], wherein the in-plane retardation of the long liquid crystal layer is in the range of 100 nm to 250 nm.
[3] The long liquid crystal film according to [1] or [2], wherein the in-plane retardation of the long liquid crystal film is in the range of 100 nm to 250 nm.
[4] The long liquid crystal film according to any one of [1] to [3], wherein the long base material satisfies the following formula.
| Re (550) | ≦ 10 nm
| Rth (550) | ≦ 20 nm
[5] The in-plane retardation of the elongated liquid crystal layer is in the range of 110 nm to 160 nm, and the slow axis thereof forms 45 ° with the longitudinal direction of the elongated substrate, from [1] to [1] The long liquid crystal film in any one of 4].
[6] The in-plane retardation of the long liquid crystal film is in the range of 110 nm to 160 nm, and the slow axis thereof forms 45 ° with the longitudinal direction of the long substrate, [1] to [5] The long liquid crystal film according to any of the above.
[7] The long liquid crystal film according to any one of [1] to [6], wherein the long liquid crystal layer satisfies the following formula.
Re (450) / Re (550) <1.0
1.0 <Re (650) / Re (550)
[8] The long liquid crystal film according to any one of [1] to [7], wherein the long liquid crystal film satisfies the following formula.
Re (450) / Re (550) <1.0
1.0 <Re (650) / Re (550)
[9] The long liquid crystal film according to any one of [1] to [8], wherein the ratio of the total area of the streaked regions to the area of the surface of the long liquid crystal layer is 6% or less.
[10] A long polarizing plate obtained by laminating the long liquid crystal film according to any one of [1] to [9] and a long linear polarizing plate with their longitudinal directions aligned.
[11] The absorption axis of the elongated linear polarizing plate forms 0 ° or 90 ° with the longitudinal direction of the elongated linear polarizing plate, and the crossing angle with the slow axis of the elongated liquid crystal film The long polarizing plate as described in [10] which makes 45 degrees.
[12] The long polarizing plate according to [11], wherein the in-plane retardation of the long liquid crystal film is in the range of 110 nm to 160 nm.
[13] An image display device comprising a sheet-like polarizing plate cut out from the long polarizing plate according to any one of [10] to [12].
[14] The liquid crystal layer is provided so as to be peelable at least either between the photoalignment layer and the liquid crystal layer or between the elongated base and the photoalignment layer, according to [1] to [9] The long liquid crystal film as described in any.
[15] A method for producing a long liquid crystal film according to any one of [1] to [9] and [14],
It has a photoalignment step of irradiating the material layer to be the photoalignment layer formed on the long base material with ultraviolet light while conveying the long base material in the longitudinal direction,
In the photo-alignment step, when the material layer is irradiated with ultraviolet light, the surface opposite to the surface on which the material layer of the long base material is formed is supported by a backup roll,
The manufacturing method of the elongate liquid crystal film whose largest height roughness Rz of the surface of a backup roll is 0.7 micrometer or less.
[16] The method for producing a long liquid crystal film according to [15], wherein the reflectance of the surface of the backup roll to ultraviolet light is 10% or less.
 本発明により、長尺液晶フィルム、長尺偏光板の位相差ムラを低減することができ、表示品質に優れた画像表示装置を得ることが可能になる。また、位相差ムラの発生を抑制できる長尺液晶フィルムの製造方法を提供できる。 According to the present invention, it is possible to reduce retardation unevenness of the long liquid crystal film and the long polarizing plate, and it is possible to obtain an image display device excellent in display quality. Moreover, the manufacturing method of the elongate liquid crystal film which can suppress generation | occurrence | production of phase difference nonuniformity can be provided.
本発明の長尺液晶フィルムを表す概念図である。It is a conceptual diagram showing the elongate liquid crystal film of this invention. 本発明の長尺偏光板もしくは円偏光板を表す概念図である。It is a conceptual diagram showing the elongate polarizing plate or circularly-polarizing plate of this invention. 本発明の長尺液晶フィルムの製造装置の一例を表す概念図である。It is a conceptual diagram showing an example of the manufacturing apparatus of the elongate liquid crystal film of this invention. 本発明の長尺偏光板を製造する装置の一例を表す概念図である。It is a conceptual diagram showing an example of the apparatus which manufactures the elongate polarizing plate of this invention. 本発明にかかる表示装置を表す概念図である。It is a conceptual diagram showing the display concerning this invention. 従来の方法で得られた長尺液晶フィルムにて実際に観察された筋状の光漏れ領域周辺を撮影した画像である。It is the image which image | photographed the linear light leak area periphery observed actually with the elongate liquid crystal film obtained by the conventional method. 図6における光漏れ領域を横断する方向(図6中の白線に沿う)について、その遅相軸方向を測定した結果のグラフである。It is a graph of the result of having measured the slow axis direction about the direction (along the white line in FIG. 6) which crosses the light leakage area | region in FIG. 図6とは別の光漏れ領域を撮影した画像である。It is the image which image | photographed the light leakage area | region different from FIG. 図8における光漏れ領域を横断する方向(図8中の白線に沿う)について、その遅相軸方向を測定した結果のグラフである。It is a graph of the result of having measured the slow axis direction about the direction (along the white line in FIG. 8) which crosses the light leakage area | region in FIG.
 以下、本発明の実施の形態を挙げて詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, a numerical range represented using “to” means a range including the numerical values described before and after it as the lower limit value and the upper limit value.
 まず、本明細書で用いられる用語について説明する。
 Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。
 Rth(λ)は、前述のRe(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。 
First, terms used in the present specification will be described.
Re (λ) and Rth (λ) represent the in-plane retardation at the wavelength λ and the retardation in the thickness direction, respectively. Re (λ) is measured by causing light of wavelength λ nm to be incident in the film normal direction in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.). When selecting the measurement wavelength λ nm, the wavelength selection filter can be replaced manually, or the measured value can be converted by a program or the like for measurement. When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is a film in the case where the aforementioned Re (λ) is the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotational axis) (in the absence of the slow axis) The light of wavelength λnm is made incident from the direction normal to the film normal direction of the film) and the direction of the film normal direction with an in-plane direction to the one side 50 ° in 10 ° steps to a total of 6 points Based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated. In the above, in the case of a film having a direction in which the retardation value is zero at a certain inclination angle with the slow axis in the plane from the normal direction as the rotation axis, the retardation at the inclination angle larger than the inclination angle KOBRA 21ADH or WR calculates the value after changing its sign to negative. The retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, any direction in the film plane is the rotation axis). Rth can also be calculated from the following equation (A) and equation (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、上記式中、nxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは測定フィルムの厚みを示す。 The above Re (θ) represents the retardation value in the direction inclined at an angle θ from the normal direction. In the above equation, nx represents the refractive index in the in-plane slow axis direction, ny represents the refractive index in the in-plane direction orthogonal to nx, and nz represents the direction orthogonal to nx and ny Represents the refractive index. d shows the thickness of a measurement film.
〔長尺液晶フィルム〕
 本発明の長尺液晶フィルムは、長尺基材、長尺状の光配向層及び面内位相差を有する長尺状の液晶層をこの順に有する。この長尺液晶フィルムについて、以下詳細に説明する。なお、後述する位相差値や厚み等の物性値については、通常その後の使用に供する部分(典型的には幅方向に対して幅手方向の中央領域)におけるものとする。
[Long liquid crystal film]
The long liquid crystal film of the present invention has a long substrate, a long light alignment layer, and a long liquid crystal layer having an in-plane retardation in this order. The long liquid crystal film will be described in detail below. In addition, about physical-property values, such as retardation value and thickness which are mentioned later, shall be in the part (Typically, center area | region of the width direction with respect to the width direction) used for subsequent use.
 図1は、本発明の長尺液晶フィルムの第一の実施形態の一例を示す概念図である。この長尺液晶フィルム(単に液晶フィルムとも称する)10は、長尺状の基材(長尺基材、あるいは単に基材とも称する)1に、長尺状の光配向層(単に光配向層とも称する)2、長尺状の液晶層(単に液晶層とも称する)3がこの順に長尺状に設けられる。基材1、光配向層2、液晶層3は等幅に描画されているが、実際の製造上は、基材1は光配向層2より幅広であり、液晶層3は光配向層2より幅狭に設けるのが一般的である。ただし、必要に応じ、液晶層3が光配向層2より幅広であり、支持基材1よりは幅狭であるように設けてもよい。 FIG. 1 is a conceptual view showing an example of the first embodiment of the long liquid crystal film of the present invention. The long liquid crystal film (also referred to simply as a liquid crystal film) 10 is formed on a long base (also referred to as a long base or simply referred to as a base) 1 and a long photoalignment layer (also referred to simply as a photoalignment layer). A long liquid crystal layer (also referred to simply as a liquid crystal layer) 3 and a long liquid crystal layer 2 are provided in this order. Although the substrate 1, the photoalignment layer 2, and the liquid crystal layer 3 are drawn in equal widths, in actual production, the substrate 1 is wider than the photoalignment layer 2, and the liquid crystal layer 3 is wider than the photoalignment layer 2. It is common to set it narrow. However, if necessary, the liquid crystal layer 3 may be wider than the photoalignment layer 2 and narrower than the support base 1.
 ここで、本発明の長尺液晶フィルムにおいて、液晶層には、長尺液晶フィルムを直線偏光子および検光子で挟んでこれらを消光位に配置して光を照射した場合に、光漏れが生じる筋状領域が存在し、筋状領域における遅相軸変動Δβが0°より大きく0.04°未満である。この点については後に詳述する。 Here, in the long liquid crystal film of the present invention, light leakage occurs in the liquid crystal layer when the long liquid crystal film is sandwiched between the linear polarizer and the analyzer and these are disposed at the quenching position to irradiate light. A streak region is present, and the slow axis fluctuation Δβ in the streak region is more than 0 ° and less than 0.04 °. This point will be described in detail later.
 本発明の長尺液晶フィルムは、少なくともRe(550)が10nm以上の面内位相差を有することができる。好ましくは、Re(550)が100nm~250nmの範囲であり、この範囲であると種々の光学補償フィルムや波長板として利用することができる。より好ましくは、Re(550)が120nm~160nmの範囲であり、この範囲であると、λ/4波長板として利用することができる。 The long liquid crystal film of the present invention can have an in-plane retardation of at least 10 nm or more of Re (550). Preferably, Re (550) is in the range of 100 nm to 250 nm, and in this range, it can be used as various optical compensation films or wave plates. More preferably, Re (550) is in the range of 120 nm to 160 nm, and in this range, it can be used as a λ / 4 wavelength plate.
 また、長尺液晶フィルムの面内位相差について、各波長での面内位相差が次の関係を満たしていることが好ましい。
Re(450)/Re(550)<1.0
1.0<Re(650)/Re(550)
 この関係を満たしていると、広帯域にわたり均一な偏光変換が可能であり、種々の光学補償フィルムや波長板として用いる際に色味付きの少ない良好な性能を発揮することができる。
In addition, regarding the in-plane retardation of the long liquid crystal film, it is preferable that the in-plane retardation at each wavelength satisfy the following relationship.
Re (450) / Re (550) <1.0
1.0 <Re (650) / Re (550)
When this relationship is satisfied, uniform polarization conversion over a wide band is possible, and good performance with little tinting can be exhibited when used as various optical compensation films or wavelength plates.
 <長尺基材>
 長尺基材1は、TAC(トリアセチルセルロース)フィルム、アクリルフィルム、ポリカーボネートフィルム、シクロオレフィンフィルム、ポリエチレンテレフタレートフィルム、硝子による透明フィルム材等の各種の透明フィルム材の長尺体を適用することができる。強度と柔軟性を兼ね備える観点から、樹脂フィルムであることが好ましい。長尺基材1は、液晶フィルム全体の光学設計や後述する光配向適性の観点から光学的に等方性な透明フィルム材であることができる。
<Long base material>
The long base material 1 may apply various long films of transparent film materials such as TAC (triacetyl cellulose) film, acrylic film, polycarbonate film, cycloolefin film, polyethylene terephthalate film, transparent film material by glass, etc. it can. It is preferable that it is a resin film from the viewpoint of having both strength and flexibility. The long base 1 can be an optically isotropic transparent film material from the viewpoint of the optical design of the entire liquid crystal film and the light alignment suitability described later.
 長尺基材1の厚みには、制限はなく、長尺液晶フィルム10の用途および長尺基材1の形成材料等に応じて、光配向層2および液晶層3を保持できる厚さを、適宜、設定すればよい。
 長尺基材1の厚みは、1~250μmが好ましく、3~150μmがより好ましく、5~50μmがさらに好ましい。
The thickness of the long substrate 1 is not limited, and the thickness capable of holding the photo alignment layer 2 and the liquid crystal layer 3 according to the application of the long liquid crystal film 10 and the forming material of the long substrate 1, It may be set as appropriate.
The thickness of the elongated substrate 1 is preferably 1 to 250 μm, more preferably 3 to 150 μm, and still more preferably 5 to 50 μm.
 また、長尺基材1は、液晶層3が作用する光に対する透過率が50%以上であるのが好ましく、70%以上であるのがより好ましく、85%以上であるのがさらに好ましい。 In addition, the elongated substrate 1 preferably has a transmittance of 50% or more, more preferably 70% or more, and still more preferably 85% or more for light to which the liquid crystal layer 3 acts.
 <光配向層>
 光配向層2は長尺基材1の表面に形成される。光配向層2は、配向規制力を発現して、液晶層を形成する際に、液晶化合物を所定の配向パターンに配向するための配向膜である。光配向層2は、光配向性の素材に偏光を照射して配向膜としたものである。
 後述のように、光配向層2は、光配向層に係る塗工液の塗工、乾燥により、光配向層に係る材料層が基材1上に形成した後、直線偏光紫外線の照射により形成される。
 偏光の照射は、材料層に対して、垂直方向または斜め方向から行うことができる。
 光配向層2に係る材料(光配向材料)は、光配向の手法を適用可能な各種の材料を適用することができる。好ましい実施形態として、例えば光二量化型の材料、特に桂皮酸誘導体を含む化合物が使用できる。また、アゾ化合物等の光異性化材料、光分解性材料等も好適に用いることができる。
 後述のように、長尺液晶フィルム10は、光配向層2の配向規制力により液晶層3に係る液晶材料を配向させた状態で硬化させて液晶層3が作製される。
<Photo alignment layer>
The light alignment layer 2 is formed on the surface of the elongated base 1. The photo-alignment layer 2 is an alignment film for aligning a liquid crystal compound in a predetermined alignment pattern when the liquid crystal layer is formed by developing an alignment control force. The photo alignment layer 2 is a photo alignment material irradiated with polarized light to form an alignment film.
As described later, the photoalignment layer 2 is formed by irradiation of linearly polarized ultraviolet light after the material layer of the photoalignment layer is formed on the substrate 1 by coating and drying of the coating liquid of the photoalignment layer. Be done.
The irradiation of polarized light can be performed from the perpendicular or oblique direction to the material layer.
The material (photo alignment material) which concerns on the photo alignment layer 2 can apply the various material which can apply the method of photo alignment. As a preferred embodiment, it is possible to use, for example, photodimerization type materials, in particular compounds comprising cinnamic acid derivatives. Moreover, photoisomerization materials, such as an azo compound, a photodegradable material, etc. can also be used suitably.
As described later, the long liquid crystal film 10 is cured in a state in which the liquid crystal material related to the liquid crystal layer 3 is aligned by the alignment regulating force of the light alignment layer 2, and the liquid crystal layer 3 is manufactured.
 光配向層2の厚みには制限はなく、光配向層2の形成材料に応じて、必要な配向機能を得られる厚みを、適宜、設定すればよい。
 光配向層2の厚みは、0.01μm~5μmが好ましく、0.05μm~2μmがより好ましい。
There is no restriction | limiting in the thickness of the photo-alignment layer 2, According to the formation material of the photo-alignment layer 2, the thickness which can obtain a required orientation function may be set suitably.
The thickness of the photoalignment layer 2 is preferably 0.01 μm to 5 μm, and more preferably 0.05 μm to 2 μm.
 <液晶層>
 液晶層3は、ダイ等の塗工ヘッドにより対応する塗工液(重合性液晶組成物)を塗工した後、乾燥し、その後、紫外線を照射して硬化させることにより、光配向層2の配向規制力により液晶材料を配向させた状態で固化(硬化)して作製される。液晶層3の面内位相差は、目的の値となるように用いる液晶材料の屈折率異方性Δnと配向性制御、および、液晶層の膜厚によってその値を調整することができる。典型的には面内位相差Re(550)が100~250nmの範囲であり、四分の一波長板としての用途であれば好ましくは120~160nmの範囲である。
<Liquid crystal layer>
The liquid crystal layer 3 is coated with a corresponding coating liquid (polymerizable liquid crystal composition) by a coating head such as a die, dried, and then irradiated with ultraviolet rays to be cured. The liquid crystal material is solidified (hardened) in a state in which the liquid crystal material is aligned by the alignment control force. The value of the in-plane retardation of the liquid crystal layer 3 can be adjusted by the refractive index anisotropy Δn and the orientation control of the liquid crystal material used to obtain a target value, and the film thickness of the liquid crystal layer. Typically, the in-plane retardation Re (550) is in the range of 100 to 250 nm, and for use as a quarter wave plate, preferably in the range of 120 to 160 nm.
 また、液晶層3の面内位相差について、各波長での面内位相差が次の関係を満たしていることが好ましい。
Re(450)/Re(550)<1.0
1.0<Re(650)/Re(550)
 この関係を満たしていると、広帯域にわたり均一な偏光変換が可能であり、種々の光学補償フィルムや波長板として用いる際に色味付きの少ない良好な性能を発揮することができる。
Further, regarding the in-plane retardation of the liquid crystal layer 3, it is preferable that the in-plane retardation at each wavelength satisfy the following relationship.
Re (450) / Re (550) <1.0
1.0 <Re (650) / Re (550)
When this relationship is satisfied, uniform polarization conversion over a wide band is possible, and good performance with little tinting can be exhibited when used as various optical compensation films or wavelength plates.
 本発明では、液晶層3を含む長尺液晶フィルム10を直線偏光子および検光子で挟んでこれらを消光位に配置して光を照射した場合に、液晶層3には光漏れが生じる筋状領域が存在し、この筋状領域における遅相軸変動が0°より大きく0.04°未満であることを特徴とする。典型的には、液晶層3には、このような遅相軸変動領域が筋状に生じており、その領域での遅相軸変動Δβが0°より大きく0.04°未満である。ここでいう遅相軸変動Δβは、液晶層3の平均遅相軸方向αに対する、当該領域の遅相軸の角度βの最大値である。
Δβ = (|β|の、当該領域内における最大値)
In the present invention, when the long liquid crystal film 10 including the liquid crystal layer 3 is interposed between the linear polarizer and the analyzer and these are disposed at the quenching position and light is irradiated, a streak shape in which light leakage occurs in the liquid crystal layer 3 There is a region, characterized in that the slow axis variation in this streak region is greater than 0 ° and less than 0.04 °. Typically, such a slow axis fluctuation region is formed in a streak shape in the liquid crystal layer 3 and the slow axis fluctuation Δβ in that region is greater than 0 ° and less than 0.04 °. The slow axis fluctuation Δβ mentioned here is the maximum value of the angle β of the slow axis in the relevant region with respect to the average slow axis direction α of the liquid crystal layer 3.
Δβ = (maximum value of | β | in the region)
 ここで、筋状領域における光漏れ量はΔβによって変わる。ジョーンズ行列を計算すると、クロスニコルの中に位相差フィルムを挿入したときの光漏れ量は、I×{sinθ×cosθ×(1-exp[2πi×A/λ])}2で表わされる。(I:光源の強度、θ:偏光子or検光子の吸収軸からの遅相軸のずれ角度、A:Re、λ:光源の波長)。平均遅相軸方向αを偏光子の吸収軸に平行または垂直に挿入すると光漏れ量がゼロになり、Δβが45°±90×nに極大値を持つことになりる。
 上記の式は「散乱」「吸収」「反射」を無視したものである。したがって、液晶の配向性が悪く散乱する場合は、フィルムを回転させても常に光漏れする。一方、本願の筋状領域における光漏れは、βを偏光子の吸収軸に合わせると光漏れが抑えられるので、見分けることができる。
Here, the amount of light leakage in the streak region changes with Δβ. When the Jones matrix is calculated, the amount of light leakage when a retardation film is inserted into crossed Nicols is represented by I × {sin θ × cos θ × (1−exp [2πi × A / λ])} 2 . (I: intensity of light source, θ: deviation angle of slow axis from absorption axis of polarizer or analyzer, A: Re, λ: wavelength of light source). When the average slow axis direction α is inserted parallel or perpendicular to the absorption axis of the polarizer, the light leakage amount becomes zero, and Δβ has a maximum value at 45 ° ± 90 × n.
The above equation neglects "scatter", "absorption" and "reflection". Therefore, when the orientation of the liquid crystal is bad and scatters, light leaks even when the film is rotated. On the other hand, the light leakage in the linear region of the present application can be distinguished because the light leakage can be suppressed by aligning β with the absorption axis of the polarizer.
 ここで、液晶層3の平均遅相軸方向αは、上述したKOBRA 21ADHにより判断される遅相軸値(遅相軸の方向の角度)をフィルムの任意の10点で取った平均値とし、上述した消光位は、この平均遅相軸方向αに準拠して設定するものとする。
 また、筋状領域の遅相軸値βは、筋状領域内における、上述したKOBRA 21ADHにより判断される遅相軸値(遅相軸の方向の角度)である。1つの筋状領域内において、筋状領域の長さ方向に任意の10点での遅相軸値βを求め、その最大値を用いて上記式によってΔβを求めればよい。
 なお、遅相軸値は液晶層3の面内の任意の方向を基準として求めればよい。従って、液晶層3の平均遅相軸方向を基準にして筋状領域の遅相軸値β(=Δβ)を求めてもよい。
Here, the average slow axis direction α of the liquid crystal layer 3 is the average value of slow axis values (angles in the direction of the slow axis) determined by the above-mentioned KOBRA 21ADH taken at arbitrary 10 points of the film, The above-mentioned extinction position is set based on this average slow axis direction α.
Further, the slow axis value β of the streak region is a slow axis value (angle in the direction of the slow axis) determined by the above-described KOBRA 21 ADH in the streak region. In one linear region, the slow axis value β at any 10 points in the longitudinal direction of the linear region may be determined, and the maximum value may be used to determine Δβ according to the above equation.
The slow axis value may be determined with reference to an arbitrary direction in the plane of the liquid crystal layer 3. Therefore, the slow axis value β (= Δβ) of the linear region may be determined with reference to the average slow axis direction of the liquid crystal layer 3.
 発明者らは、光配向層を含む液晶フィルムの高品質化に取り組む中で、従来見出されてきた異物を起因とする欠陥や、製造時の条件変動に起因する広範囲な位相差ムラとは異なる微細な筋状のムラ(筋状領域)を知見した。解析の結果、これらの筋状のムラは異物や膜厚変動を伴わず、微細な領域内でわずかに遅相軸が液晶フィルムの平均遅相軸方向とずれており、それに伴う偏光変換機能の不具合が故障として目視で認知されていることがわかった。この筋状のムラは、従来知られている欠陥抑制技術やムラ抑制技術で低減することができなかった。 While working on improving the quality of a liquid crystal film including a photoalignment layer, the inventors have found that defects caused by foreign substances that have been found in the past and wide-range retardation unevenness caused by fluctuations in manufacturing conditions Different minute streak-like unevenness (muscle-like region) was found. As a result of the analysis, these streaky irregularities are not accompanied by foreign matter or film thickness variation, and the slow axis is slightly deviated from the average slow axis direction of the liquid crystal film in a fine area, It was found that the defect was visually recognized as a failure. The streak-like unevenness could not be reduced by the conventionally known defect suppression technology or unevenness suppression technology.
 なお、ここでいう筋状とは、単に一本の直線状の形状のみならず、複雑な曲線状や、複数の線が重なって放射状や刷毛状を呈するものも広汎に含む概念である。筋状領域1本あたりの幅は、概ね0.1mmから1mm程度であるが、いくつもの筋が集合している場合は視認上これ以上の幅をなすこともある。筋状領域の長さは不定であり、1mm程度から、長いもので数十mに及ぶ場合もある。 The term “line-shaped” as used herein is a concept broadly including not only a single linear shape, but also a complex curved shape or one in which a plurality of lines overlap to exhibit a radial shape or a brush-like shape. The width per stripe region is about 0.1 mm to about 1 mm, but when several stripes are gathered, the width may be more than this for visual recognition. The length of the streaky region is indefinite, and may range from about 1 mm to several tens of meters.
 より具体的に説明するため、実際の例を挙げて説明する。図6は、改良前の長尺液晶フィルムにおいて実際に観察された故障(位相差ムラ)である(後述の比較例2)。矢印で示した像が筋状領域であり、この筋状領域を横断するように(図中の白線に沿うように)、0.5mmおきに面内位相差および遅相軸方向を測定した結果が図7である。筋状領域内では遅相軸がずれてΔβが最大で0.10°にも達している。なお、図6に示す画像は長尺液晶フィルムを直線偏光子、および、検光子で挟んでこれらを消光位に配置した状態で撮影したものである。図6に示す配置画像の上下方向が長尺液晶フィルムの幅手方向であり、画像の左右に走る線は撮影装置の画像処理に由来したものである。なお、円弧状の線は測定に際して筋状領域を明示するためフィルム上に書き込んだマーキング痕である。 In order to explain more specifically, the description will be made by taking an actual example. FIG. 6 shows a failure (retardation unevenness) actually observed in the long liquid crystal film before improvement (comparative example 2 described later). The image indicated by the arrow is a streak region, and the in-plane retardation and the slow axis direction are measured every 0.5 mm so as to cross this streak region (along the white line in the figure) Is FIG. In the linear region, the slow axis is shifted, and Δβ reaches up to 0.10 °. In addition, the image shown in FIG. 6 is image | photographed in the state which pinched | interposed the elongate liquid crystal film by the linear polarizer and the analyzer, and these were arrange | positioned in the extinction position. The vertical direction of the arrangement image shown in FIG. 6 is the width direction of the long liquid crystal film, and the lines running to the left and right of the image are derived from the image processing of the photographing device. The arc-shaped line is a marking mark written on the film in order to clearly indicate the streaked area at the time of measurement.
 図8は、別の筋状領域の画像である(後述の比較例1)。画像外の矢印から真左に向かって直線状の筋状領域が発生している。この領域を横断するように(図中の白線に沿うように)、図6と同様の測定をした結果が図9に示されている。Δβの最大値は0.04°をわずかに超える程度であるが、この筋状領域は長尺液晶フィルムの長手方向に数十メートルにわたり延在しており、この筋状領域を含むように切り出した液晶フィルム片を用いて円偏光板を作製し、その反射光の光漏れを評価すると筋状領域に対応した光漏れが視認可能であった。なお、画像の上下方向が長尺液晶フィルムの幅手方向である。円弧で囲われた部分は異物に起因する欠陥であり、本発明で定義する筋状領域とは全く異なる外観(特徴的な星状の外観を呈している)であることが明確である。 FIG. 8 is an image of another linear region (Comparative Example 1 described later). A linear streaked area is generated from the arrow outside the image to the left. The result of the measurement similar to FIG. 6 is shown in FIG. 9 so as to cross this region (along the white line in the figure). Although the maximum value of Δβ is slightly larger than 0.04 °, this streak-like region extends over several tens of meters in the longitudinal direction of the long liquid crystal film, and is cut out so as to include this streak-like region When the circularly polarizing plate was produced using the liquid crystal film piece and the light leakage of the reflected light was evaluated, the light leakage corresponding to the streaky region was visible. The vertical direction of the image is the width direction of the long liquid crystal film. It is clear that the part surrounded by the arc is a defect caused by a foreign substance, and it has a completely different appearance (showing a characteristic star-like appearance) from the line-like region defined in the present invention.
 本発明の長尺液晶フィルムは、このような筋状領域において、遅相軸変動Δβが0°より大きく0.04°未満である。
 本発明はこのような構成とすることにより、液晶層の位相差ムラを抑制することができ、液晶フィルムを表示装置等に実装した際に、目視で筋状のムラが認識されることを防止できる。
In the elongated liquid crystal film of the present invention, the slow axis fluctuation Δβ is more than 0 ° and less than 0.04 ° in such a streak region.
By adopting such a configuration, the present invention can suppress the retardation unevenness of the liquid crystal layer, and when the liquid crystal film is mounted on a display device or the like, it is prevented that streak-like unevenness is visually recognized. it can.
 このような、液晶層の筋状領域における遅相軸変動Δβが0°より大きく0.04°未満である本発明の長尺液晶フィルムは、光配向層を形成する際の光配向工程において、長尺基材を支持するバックアップロールからの反射光に起因する局所的な偏光変化を抑制することによって作製できる。本発明の長尺液晶フィルムの製造方法については後に詳述する。 The long liquid crystal film of the present invention, in which the slow axis fluctuation Δβ in the streak region of the liquid crystal layer is more than 0 ° and less than 0.04 °, is a photoalignment process in forming a photoalignment layer, It can produce by suppressing the local polarization change resulting from the reflected light from the backup roll which supports a long base material. The method for producing the long liquid crystal film of the present invention will be described in detail later.
 ここで、液晶層の位相差ムラを好適に抑制できる観点から、筋状領域の遅相軸変動Δβは、0.01°~0.04°が好ましく、0.01°~0.03°がより好ましく、0.01°~ 0.02°がさらに好ましい。 Here, from the viewpoint of being able to suitably suppress the phase difference unevenness of the liquid crystal layer, the slow axis fluctuation Δβ of the streaky region is preferably 0.01 ° to 0.04 °, and 0.01 ° to 0.03 °. More preferably, 0.01 ° to 0.02 ° is more preferable.
 また、液晶フィルムを表示装置等に実装した際に、目視で筋状のムラが認識されることを好適に抑制できる観点から、筋状領域の幅は、0.1mm~2mmが好ましく、0.1mm~1mmがより好ましく、0.1mm~0.5mmがさらに好ましい。
 同様に、筋状領域の長さは、2mm~20mmが好ましく、2mm~10mmがより好ましく、2mm~5mmがさらに好ましい。
When the liquid crystal film is mounted on a display device or the like, the width of the streaked region is preferably 0.1 mm to 2 mm from the viewpoint of being able to suitably suppress visual recognition of streaked unevenness. 1 mm to 1 mm is more preferable, and 0.1 mm to 0.5 mm is more preferable.
Similarly, the length of the streaky region is preferably 2 mm to 20 mm, more preferably 2 mm to 10 mm, and still more preferably 2 mm to 5 mm.
 また、液晶フィルムを表示装置等に実装した際に、目視で筋状のムラが認識されることを好適に抑制できる観点から、液晶層の表面の面積に対する、筋状領域の合計面積の割合は、6%以下が好ましく、1%~4%がより好ましく、1%~3%以下がさらに好ましい。
 なお、液晶層の表面の面積に対する、筋状領域の合計面積の割合は、20mm×30mmの任意の領域5か所において、幅方向、長さ方向に0.5mm間隔でΔβを測定し、Δβ>0.01°の領域を筋状領域とし、筋状領域の幅、長さを算出する。各領域内に存在する筋状領域の面積を計測して、各領域ごとに筋状領域の割合を求めて平均した値である。Δβの測定方法は後述する。
 また、筋状領域の幅、長さ、および、面積は、長尺液晶フィルムを直線偏光子および検光子で挟んでこれらを消光位に配置して光を照射した状態で測定すればよい。
In addition, when the liquid crystal film is mounted on a display device or the like, the ratio of the total area of the streaked region to the area of the surface of the liquid crystal layer is preferably from the viewpoint of being able to suitably suppress streaked unevenness to be recognized visually. 6% or less is preferable, 1% to 4% is more preferable, and 1% to 3% or less is more preferable.
The ratio of the total area of the streaked regions to the area of the surface of the liquid crystal layer is Δβ measured at intervals of 0.5 mm in the width direction and the length direction at five arbitrary regions of 20 mm × 30 mm, Δβ An area of> 0.01 ° is defined as a streak area, and the width and length of the streak area are calculated. It is a value obtained by measuring the area of the linear region existing in each region and calculating the ratio of the linear region for each region and averaging them. The method of measuring Δβ will be described later.
In addition, the width, length, and area of the streaky region may be measured in a state in which the long liquid crystal film is sandwiched between the linear polarizer and the analyzer, these are disposed at the quenching position, and light is irradiated.
[重合性液晶組成物]
 液晶層3は、光学異方性を発現する液晶材料である各種の重合性液晶組成物を適用して設けることができる。ここで、重合性液晶組成物は、液晶性を示し、分子内に重合性官能基を有する重合性液晶化合物のほか、その他の重合性化合物、配向安定剤、溶媒等を含有させることができる。
[Polymerizable Liquid Crystal Composition]
The liquid crystal layer 3 can be provided by applying various polymerizable liquid crystal compositions that are liquid crystal materials exhibiting optical anisotropy. Here, the polymerizable liquid crystal composition exhibits liquid crystallinity, and can contain other polymerizable compounds, an alignment stabilizer, a solvent, and the like in addition to the polymerizable liquid crystal compound having a polymerizable functional group in the molecule.
(重合性液晶化合物)
 液晶層3に係る重合性液晶化合物は、屈折率異方性を有し、光配向層2の配向規制力により規則的に配列することにより、所望の位相差性を付与する機能を有する。重合性液晶化合物として、例えば、ネマチック相、スメクチック相等の液晶相を示す材料が挙げられる。また、棒状液晶化合物、円盤状液晶化合物など、種々の構造を有する重合性液晶分子を用いることができる。
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound according to the liquid crystal layer 3 has refractive index anisotropy, and has a function of imparting desired retardation by arranging regularly by the alignment regulating force of the photoalignment layer 2. Examples of the polymerizable liquid crystal compound include materials exhibiting a liquid crystal phase such as a nematic phase and a smectic phase. In addition, polymerizable liquid crystal molecules having various structures such as a rod-like liquid crystal compound and a discotic liquid crystal compound can be used.
 本実施形態において用いられる重合性液晶化合物として、特開平8-50206号公報、特開2007-2220号公報、特開2010-244038号公報、特開2008-19240号公報、特開2013-166879号公報、特開2014-78036号公報、特開2014-198813号公報、特開2011-6360号公報、特開2011-6361号公報、特開2011-207765号公報、特開2008-273925号公報、特開2015-200877 号公報に記載された化合物等を使用することができる。相転移温度の調整や重合性液晶化合物の結晶化抑制を行ってより面状に優れた液晶フィルムを得る観点から、複数の異なる重合性液晶化合物を混合して用いることができる。 As polymerizable liquid crystal compounds used in the present embodiment, JP-A-8-50206, JP-A2007-2220, JP-A-2010-244038, JP-A-2008-19240, and JP-A-2013-166879. JP 2014-78036 A, JP 2014-198813 A, JP 2011-6360 A, JP 2011-6361 A, JP 2011-207765 A, JP 2008-273925 A, The compounds described in JP-A-2015-200877 can be used. From the viewpoint of adjusting the phase transition temperature and suppressing the crystallization of the polymerizable liquid crystal compound to obtain a liquid crystal film having a more excellent surface shape, a plurality of different polymerizable liquid crystal compounds can be mixed and used.
(その他の重合性化合物)
 液晶層3に係る重合性液晶化合物には、その他の重合性化合物を加えることができる。好ましくは、非液晶性の多官能重合性化合物を加える。こうした非液晶性多官能重合性化合物として、公知の多価アルコール類と(メタ)アクリル酸のエステル化合物類を挙げることができる。これらの化合物の添加により重合性液晶組成物の流動性が増してレベリングが促進されるため、より位相差ムラの少ない液晶層3を得ることができる。加えて、液晶層3の湿熱耐久性の向上や、耐傷性や膜強度を高めることもできる。
(Other polymerizable compounds)
Other polymerizable compounds can be added to the polymerizable liquid crystal compound according to the liquid crystal layer 3. Preferably, a non-liquid crystalline polyfunctional polymerizable compound is added. Examples of such non-liquid crystalline polyfunctional polymerizable compounds include ester compounds of known polyhydric alcohols and (meth) acrylic acid. The addition of these compounds increases the fluidity of the polymerizable liquid crystal composition to promote leveling, so that the liquid crystal layer 3 with less variation in retardation can be obtained. In addition, the wet heat durability of the liquid crystal layer 3 can be improved, and the scratch resistance and the film strength can be enhanced.
(配向安定剤)
 液晶層3に係る重合性液晶化合物には、配向安定剤を加えることができる。配向安定剤の添加により、種々のかく乱要因が抑制されて液晶性組成物の配向が安定化され位相差ムラの少ない液晶層3を得ることができる。また、配向安定剤の構造を適切に選ぶことにより、液晶層の配向を水平配向、垂直配向、ハイブリッド配向、コレステリック配向等の任意の配向に調整できる。配向安定化とレベリングの両立の観点から、特に好ましくは、フルオロ脂肪族を側鎖に有するアクリル重合体(特開2008-257205号公報の段落0022~0063、特開2006-91732号公報の段落0017~0124に記載)を添加することができる。
(Alignment stabilizer)
An alignment stabilizer can be added to the polymerizable liquid crystal compound according to the liquid crystal layer 3. By the addition of the alignment stabilizer, various disturbance factors are suppressed, the alignment of the liquid crystal composition is stabilized, and the liquid crystal layer 3 with few phase difference unevenness can be obtained. In addition, by appropriately selecting the structure of the alignment stabilizer, the alignment of the liquid crystal layer can be adjusted to any alignment such as horizontal alignment, vertical alignment, hybrid alignment, and cholesteric alignment. From the viewpoint of achieving both orientation stabilization and leveling, an acrylic polymer having a fluoroaliphatic side chain is particularly preferable (paragraphs 0022 to 0063 of JP-A-2008-257205, and paragraph 0017 of JP-A-2006-91732). Can be added).
(重合開始剤)
 液晶層3に係る重合性液晶化合物には、重合開始剤を含む。重合性液晶化合物の重合性基にあわせて、種々の重合開始剤を選定することができる。好ましくは重合性液晶化合物が(メタ)アクリレート化合物であり、重合開始剤はラジカル重合開始剤である。こうした重合開始剤として、周知の各種重合開始剤を使用することができる。均一な配向を実現するためには、塗布液の経時安定性と、塗布膜の深部硬化性とに優れていることが好ましく、その観点でオキシムエステル化合物(米国特許第4,255,513号明細書、特開2001-233842号公報)やアシルフォスフィンオキシド化合物(特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載等)が好適に用いられる。
(Polymerization initiator)
The polymerizable liquid crystal compound according to the liquid crystal layer 3 contains a polymerization initiator. Various polymerization initiators can be selected according to the polymerizable group of the polymerizable liquid crystal compound. Preferably, the polymerizable liquid crystal compound is a (meth) acrylate compound, and the polymerization initiator is a radical polymerization initiator. As such polymerization initiators, various well-known polymerization initiators can be used. In order to achieve uniform orientation, it is preferable that the stability with time of the coating solution and the deep-part curability of the coating film be excellent, and from that viewpoint the oxime ester compound (US Pat. No. 4,255,513) And JP-A-2001-233842 and acyl phosphine oxide compounds (Japanese Patent Publication No. 5-29234, JP-A-10-95788, JP-A-10-29997, etc.) are preferably used.
(溶媒)
 溶媒としては種々の公知の溶媒を用いることができる。溶媒の選定にあたっては、重合性液晶化合物やその他の成分の溶解性と、塗布液の支持体に対する濡れ性および揮散性とを鑑みて選定することが好ましい。適切に溶媒を選定することにより、均一でムラの無い塗布膜が形成でき、位相差ムラが抑制された液晶フィルム10を得ることができる。
(solvent)
Various known solvents can be used as the solvent. The solvent is preferably selected in consideration of the solubility of the polymerizable liquid crystal compound and the other components, and the wettability and volatilization of the coating liquid to the support. By appropriately selecting the solvent, it is possible to form a uniform coating film without unevenness and obtain the liquid crystal film 10 in which the retardation unevenness is suppressed.
〔長尺液晶フィルムの製造方法〕
 本発明の長尺液晶フィルムの製造方法(本発明の製造方法ともいう)は、
 長尺基材を長手方向に搬送しつつ、長尺基材上に形成された光配向層となる材料層に紫外線を照射する光配向工程を有し、
 光配向工程において、材料層に紫外線を照射する際に、長尺基材の材料層が形成された面とは反対側の面はバックアップロールに支持されており、
 バックアップロールの表面の最大高さ粗さRzは0.7nm以下である製造方法である。
 また、バックアップロールの表面の紫外線反射率は、10%以下であることが好ましい。
 以下、本発明の長尺液晶フィルムの製造方法の一例を説明する。
[Method for producing long liquid crystal film]
The method for producing a long liquid crystal film of the present invention (also referred to as the production method of the present invention) is
It has a photoalignment step of irradiating the material layer to be the photoalignment layer formed on the long base material with ultraviolet light while conveying the long base material in the longitudinal direction,
In the photo-alignment step, when the material layer is irradiated with ultraviolet light, the surface opposite to the surface on which the material layer of the long base material is formed is supported by a backup roll,
The maximum height roughness Rz of the surface of the backup roll is 0.7 nm or less.
Moreover, it is preferable that the ultraviolet reflectance of the surface of a backup roll is 10% or less.
Hereinafter, an example of the manufacturing method of the elongate liquid crystal film of this invention is demonstrated.
 長尺液晶フィルムの製造方法は、
 長尺基材1を長手方向に搬送しつつ、以下の各工程を実施する。
 長尺基材上に光配向層となる塗工液を塗工して材料層を形成する第1塗工工程。
 長尺基材上に塗工した材料層を加熱して乾燥させる乾燥工程。
 長尺基材上に形成された乾燥後の材料層に紫外線を照射して硬化させる光配向工程。
 上記塗工工程から光配向工程によって形成された光配向層上に、液晶層となる、液晶組成物を塗工して組成物層を形成する第2塗工工程。
 塗工層を加熱して組成物層中の液晶材料の配向を促進させる加熱工程。
 加熱した組成物層に紫外線を照射して硬化させる硬化工程。
The manufacturing method of a long liquid crystal film is
The following each process is implemented, conveying the elongate base material 1 to a longitudinal direction.
The 1st coating process of coating the coating liquid used as a photo-alignment layer on a elongate base material, and forming a material layer.
A drying step of heating and drying the material layer coated on the long base material.
A photo-alignment step in which a dried material layer formed on a long base material is cured by irradiation with ultraviolet light.
A second coating step of applying a liquid crystal composition to be a liquid crystal layer on the photoalignment layer formed in the coating step to the photoalignment step to form a composition layer.
Heating the coated layer to promote alignment of the liquid crystal material in the composition layer.
A curing step in which the composition layer thus heated is cured by irradiation with ultraviolet light.
 上記製造方法は、以上の各工程を順に実施することで、長尺基材1上に長尺状の光配向層2と長尺状の液晶層3とを形成して長尺液晶フィルム10を作製する。
 以下、上記の各工程を実施して長尺液晶フィルムを製造する製造装置の一例を用いて、本発明の長尺液晶フィルムの製造方法をより具体的に説明する。
The above manufacturing method forms the long liquid crystal film 10 by forming the long light alignment layer 2 and the long liquid crystal layer 3 on the long base material 1 by sequentially carrying out the above-described steps. Make.
Hereinafter, the manufacturing method of the elongate liquid crystal film of this invention is more concretely demonstrated using an example of the manufacturing apparatus which implements each said process and manufactures a elongate liquid crystal film.
 図3は、上記の長尺液晶フィルムの製造方法を実施する製造装置の一例の要部を表した模式図である。
 図3に示す製造装置30は、ロールトゥロールによって光配向層2および液晶層3を形成するものであり、長尺基材1を巻き回してなるロール31を装填する回転軸60と、作製後の長尺液晶フィルム10を巻き取る巻取り軸61と、回転軸60から巻取り軸61に至る搬送経路中に設置される、ダイ32、加熱装置33、光源34およびバックアップロール38、ダイ35、加熱装置36、ならびに、光源37と、を有する。
FIG. 3 is a schematic view showing an essential part of an example of a production apparatus for carrying out the above-mentioned method for producing a long liquid crystal film.
The manufacturing apparatus 30 shown in FIG. 3 is for forming the photoalignment layer 2 and the liquid crystal layer 3 by roll-to-roll, and the rotating shaft 60 for loading the roll 31 formed by winding the long base material 1 A winding shaft 61 for winding the long liquid crystal film 10, and a die 32, a heating device 33, a light source 34, a backup roll 38, a die 35, installed in a conveyance path from the rotating shaft 60 to the winding shaft 61; A heating device 36 and a light source 37 are provided.
 製造装置30は、回転軸60から巻取り軸61まで長尺基材1を長手方向に搬送しつつ、ダイ32により第1塗工工程を行い、加熱装置33で乾燥工程を行い、光源34で光配向工程を行い、ダイ35により第2塗工工程を行い、加熱装置36で加熱工程を行い、光源37で硬化工程を行う。 The manufacturing apparatus 30 performs the first coating process with the die 32 while transporting the long base material 1 in the longitudinal direction from the rotating shaft 60 to the winding shaft 61, performs the drying process with the heating device 33, and the light source 34 The photo-alignment step is performed, the second coating step is performed by the die 35, the heating step is performed by the heating device 36, and the curing step is performed by the light source 37.
 まず、長尺基材1を巻き回してなるロール31が回転軸60に装填され、ロール31から長尺基材1が引き出されて、ダイ32、加熱装置33、光源34およびバックアップロール38、ダイ35、加熱装置36、ならびに、光源37を通過して巻取り軸61に至る所定の搬送経路を通される。
 ダイ32には、光配向層2となる塗工液が供給される。また、ダイ35には液晶層3となる液晶組成物が供給される。
 加熱装置33および加熱装置36はそれぞれ所定の温度となるように駆動される。また、光源34および光源37はそれぞれ所定の光量および波長の光を照射するように駆動される。
First, a roll 31 formed by winding the long base material 1 is loaded on the rotating shaft 60, and the long base material 1 is pulled out from the roll 31, and the die 32, the heating device 33, the light source 34, the backup roll 38, the die The heating device 36 and the light source 37 pass through a predetermined transport path leading to the winding shaft 61.
A coating liquid to be the photoalignment layer 2 is supplied to the die 32. Also, a liquid crystal composition to be the liquid crystal layer 3 is supplied to the die 35.
The heating device 33 and the heating device 36 are each driven to have a predetermined temperature. Further, the light source 34 and the light source 37 are driven to emit light of a predetermined light amount and wavelength, respectively.
 この状態で長尺基材1の搬送を開始すると、長尺基材1はダイ32の位置に搬送されてダイ32により光配向層2となる塗工液を塗工され材料層が形成される(第1塗工工程)。
 なお、光配向層2となる塗工液の塗工方法(塗布方法)は、上述したダイコート法に限定はされず、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法等、公知の方法が、各種、利用可能である。
When conveyance of the long base material 1 is started in this state, the long base material 1 is conveyed to the position of the die 32, and the coating liquid to be the photoalignment layer 2 is applied by the die 32 to form a material layer. (1st coating process).
In addition, the coating method (coating method) of the coating liquid used as the photo-alignment layer 2 is not limited to the above-mentioned die coating method, and dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar method Various known methods such as a coating method and a gravure coating method can be used.
 続いて、長尺基材1は、加熱装置33の位置に搬送されて、加熱装置33により、塗工した材料層が乾燥、加熱される(乾燥工程)。
 加熱装置33による加熱、乾燥は、シート状物を加熱、乾燥する公知の方法で行えばよい。例えば、温風加熱、ヒートローラによる加熱等が挙げられる。
Subsequently, the elongated base material 1 is conveyed to the position of the heating device 33, and the coated material layer is dried and heated by the heating device 33 (drying step).
The heating by the heating device 33 and the drying may be performed by a known method of heating and drying the sheet-like material. For example, warm air heating, heating by a heat roller, etc. may be mentioned.
 次に、長尺基材1は光源34およびバックアップロール38の位置に搬送されて、光源34からの直線偏光による紫外線の照射により材料層が硬化される(光配向工程)。ここで、光配向層2となる材料層に直線偏光を照射することで所望の配向規制力を発現させることができる。
 光源34としては特に限定はされず、配向膜の形成材料に応じた波長の光を照射する光源が各種、利用可能である。光配向層2の配向規制力のムラを無くす観点から、光源34として幅方向の輝度ムラ、偏光度ムラの少ない光源を用いることが好ましい。
 以上により長尺基材1上に光配向層2が形成され、さらにダイ35の位置に搬送される。
Next, the long base material 1 is conveyed to the position of the light source 34 and the backup roll 38, and the material layer is cured by the irradiation of the ultraviolet light by the linearly polarized light from the light source 34 (photoalignment process). Here, by irradiating the material layer to be the photoalignment layer 2 with linearly polarized light, a desired alignment control force can be expressed.
The light source 34 is not particularly limited, and various light sources that emit light of a wavelength corresponding to the material for forming the alignment film can be used. From the viewpoint of eliminating the nonuniformity of the alignment regulating force of the photoalignment layer 2, it is preferable to use a light source with few luminance nonuniformities in the width direction and nonuniform polarization degree as the light source 34.
Thus, the light alignment layer 2 is formed on the long base material 1 and is further transported to the position of the die 35.
 ここで、本発明の長尺液晶フィルムの製造方法においては、光配向工程は長尺基材1の材料層が形成された面とは反対側の面がバックアップロール38に支持された状態で行われる。光配向工程の際に長尺基材1が支持されていないと、長尺基材1が変動して光源34との距離が変動して、形成される光配向層2の配向規制力の面内分布にムラが生じてしまう。そのため、光配向工程は長尺基材1をバックアップロール38で支持した状態で行われる。 Here, in the method for producing the long liquid crystal film of the present invention, the photoalignment step is performed in a state where the surface opposite to the surface on which the material layer of the long substrate 1 is formed is supported by the backup roll 38. It will be. If the long base material 1 is not supported in the light alignment step, the long base material 1 fluctuates and the distance to the light source 34 fluctuates, and the plane of the alignment control force of the formed light alignment layer 2 Unevenness will occur in the internal distribution. Therefore, the photoalignment step is performed in a state where the long base material 1 is supported by the backup roll 38.
 本発明者らは、長尺基材を長手方向に搬送しつつ光配向層および液晶層を形成する場合に、液晶層に微細な筋状のムラ(筋状領域)が発生することを知見した。この点についてさらに検討を行ったところ、作製した長尺液晶フィルムの長手方向に周期的に筋状領域が発生していたことなどから、光配向工程で長尺基材1を支持するバックアップロールの表面性状に起因することがわかった。 The present inventors have found that when forming a photoalignment layer and a liquid crystal layer while conveying a long base material in the longitudinal direction, fine streaks of unevenness (lined regions) occur in the liquid crystal layer. . As a result of further examination on this point, it was found that streak regions were generated periodically in the longitudinal direction of the produced long liquid crystal film, and so on, the backup roll supporting the long base material 1 in the photo-alignment step. It turned out that it originates in surface quality.
 光源34から照射され光配向層2となる材料層に入射した光の一部はバックアップロール38によって反射されて再度、材料層に入射する。その際、バックアップロール38の表面にキズおよび/または異物の付着があると、バックアップロール38によって反射される反射光の偏光状態が、キズ等が存在する位置で局所的に変化してしまう。そのため、形成される光配向層2に配向規制力の方向の局所的なムラが生じて、これによって、光配向層2上に形成される液晶層3に微細な筋状のムラ(筋状領域)が発生することがわかった。 A part of the light emitted from the light source 34 and incident on the material layer to be the light alignment layer 2 is reflected by the backup roll 38 and is incident on the material layer again. At this time, if flaws and / or foreign matter adhere to the surface of the backup roll 38, the polarization state of the reflected light reflected by the backup roll 38 locally changes at the position where the flaw or the like is present. Therefore, local unevenness in the direction of the alignment control force occurs in the photoalignment layer 2 to be formed, whereby fine streaks of unevenness (line-like regions) are formed in the liquid crystal layer 3 formed on the photoalignment layer 2 ) Was found to occur.
 これに対して、本発明の製造方法は、バックアップロール38の表面の最大高さ粗さRzを0.7μm以下とすることで、光配向処理を行う際のバックアップロール38からの反射光の局所的な偏光状態の変化を抑制して、液晶層に生じる筋状のムラ(筋状領域)を改善して、筋状領域における遅相軸変動Δβを0°より大きく0.04°未満の範囲に抑制できる。また、局所的な偏光状態の変化を抑制することによって液晶層に存在する筋状領域の遅相軸変動Δβが0.04°未満に抑制された結果、画像表示装置への実装状態における目視で筋状のムラを認識しえなくすることができる。
 バックアップロール38の表面の最大高さ粗さRzは、0.7μm以下が好ましく、0.6μm以下がより好ましく、0.5μm以下がさらに好ましい。
 バックアップロール38の表面の最大高さ粗さRzは、表面粗さ測定器(商品名SJ-310、株式会社ミツトヨ製)を用い、JIS B0601(2001年)に準拠した方法により測定する。
On the other hand, according to the manufacturing method of the present invention, by setting the maximum height roughness Rz of the surface of the backup roll 38 to 0.7 μm or less, the local area of the reflected light from the backup roll 38 at the time of photo alignment processing. Of the polar polarization state to improve the streak-like unevenness (strike-like area) generated in the liquid crystal layer, the range of the slow axis fluctuation Δβ in the streak-like area is larger than 0 ° and less than 0.04 ° Can be suppressed. Further, as a result of suppressing the change of the local polarization state to suppress the slow axis fluctuation Δβ of the linear region existing in the liquid crystal layer to less than 0.04 °, visual observation in the mounting state on the image display device It is possible to make it impossible to recognize streaky unevenness.
0.7 micrometer or less is preferable, as for largest height roughness Rz of the surface of the backup roll 38, 0.6 micrometer or less is more preferable, and 0.5 micrometer or less is more preferable.
The maximum height roughness Rz of the surface of the backup roll 38 is measured by a method according to JIS B0601 (2001) using a surface roughness measuring device (trade name SJ-310, manufactured by Mitutoyo Co., Ltd.).
 光配向工程における光配向層の状態変化は極めて微かであり面内分布を定量的に捉えることが不可能であるが、一方で、配向規制力により配向された液晶層は大きなレターデーションを発現するため、わずかな配向規制力のムラが大きな光学的ムラを生じさせうる。発明者らは、偏光光源から長尺基材および材料層に入射、透過しバックアップロールで反射される光が、局所的に偏光変化が起こった状態で再度、材料層に入射することによって光配向層に想定外の配向規制力のムラを生じさせ、その結果、光配向層および液晶層ともに均一な厚みかつ異物を伴うことなく液晶層において局所的な遅相軸のズレを誘発して視認されうる欠陥を生じるとの仮説に基づき、こうした現象を抑制しうる各種施策を検討し本発明を実現するに至った。 The change in the state of the photoalignment layer in the photoalignment step is extremely slight and it is impossible to quantitatively grasp the in-plane distribution, but on the other hand, the liquid crystal layer aligned by the alignment control force exhibits a large retardation. Therefore, slight unevenness in alignment control force can cause large optical unevenness. The inventors of the present invention have found that light is incident from the polarized light source on the long base material and the material layer, and light transmitted by the backup roll is reflected again on the material layer in a state where polarization change occurs. In the layer, an unexpected unevenness in the alignment control force occurs, and as a result, the light alignment layer and the liquid crystal layer have a uniform thickness and cause a local retardation of the slow axis in the liquid crystal layer without being accompanied by foreign matter. Based on the hypothesis that a possible defect is generated, various measures that can suppress such a phenomenon have been studied, and the present invention has been realized.
 ここで、バックアップロール38からの反射光がムラ無く均一であるよう、例えばバックアップロール38に鏡面加工、あるいは黒色化等の光吸収加工等を施してもよい。照射光を有効に活用する観点では、鏡面加工とし、幅方向にわたり光を当てて目視で反射光を確認した際に乱反射や輝点を生じる部位が無い滑らかなバックアップロールとすることが好ましい。好適なバックアップロールの表面状態であるかどうかを確認するためには、視感度の高い緑色の偏光光を照射し、直線偏光子を介してその反射光を観察することによって偏光解消が起こる部位を検出し除去する方法を用いることができる。 Here, for example, the backup roll 38 may be mirror-polished, or light absorption processing such as blackening may be performed so that the reflected light from the backup roll 38 is uniform and uniform. From the viewpoint of effectively utilizing the irradiation light, it is preferable to use a mirror finish, and a smooth backup roll having no part where diffuse reflection or bright spots occur when the light is applied in the width direction and the reflected light is visually confirmed. In order to confirm whether it is a suitable backup roll surface condition, the site where the depolarization occurs by irradiating the green polarized light with high visibility and observing the reflected light through the linear polarizer Methods of detection and removal can be used.
 また、バックアップロール38が鏡面である場合は、バックアップロールからの反射光やロール上のキズや異物からの散乱光が偏光変換されないよう、透明性が高く、光学的に等方性の長尺基材1を用いることが好ましい一つの様態である。具体的には、長尺基材1の面内位相差Re(550)は10nm以下が好ましく、5nm以下がより好ましく、3nm以下がさらに好ましい。また、厚み方向位相差Rth(550)は-20~20nmの範囲が好ましく、-10nm~10nmの範囲がより好ましい。この範囲であると、バックアップロール38から正反射以外の方向に反射される偏光も偏光変換されることなく再度、光配向層2へ入射することとなり、光配向層2の配向規制力の方向のムラが生じることを抑え、かつ、少ない照射量で効率よく配向規制力を付与できる。 In addition, when the backup roll 38 is a mirror surface, it is highly transparent and optically isotropic long base so that the reflected light from the backup roll and the scattered light from scratches and foreign matter on the roll are not polarization converted. It is one preferable mode to use the material 1. Specifically, the in-plane retardation Re (550) of the elongated base material 1 is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less. The thickness direction retardation Rth (550) is preferably in the range of −20 to 20 nm, and more preferably in the range of −10 nm to 10 nm. Within this range, the polarized light reflected in a direction other than regular reflection from the backup roll 38 is again incident on the light alignment layer 2 without polarization conversion, and the direction of the alignment control force of the light alignment layer 2 It is possible to suppress the occurrence of unevenness and to efficiently impart the alignment regulating force with a small irradiation amount.
 また、光配向工程で照射する紫外線に対するバックアップロール38の表面の反射率(紫外線反射率)は、10%以下であることが好ましく、5%以下がより好ましく、2%以下がさらに好ましい。
 バックアップロール38の表面の紫外線反射率を10%以下とすることで、局所的に偏光状態が変化した反射光が材料層に再度入射することを抑制できる。
 バックアップロールの表面の反射率は、分光光度計(MV-3100、日本分光株式会社製)を用いて測定し、波長365nmの光に対する正面反射率を使用した。
In addition, the reflectance (ultraviolet reflectance) of the surface of the backup roll 38 with respect to the ultraviolet light irradiated in the photoalignment step is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
By setting the ultraviolet reflectance of the surface of the backup roll 38 to 10% or less, it is possible to suppress that the reflected light whose polarization state is locally changed is re-incident on the material layer.
The reflectance of the surface of the backup roll was measured using a spectrophotometer (MV-3100, manufactured by JASCO Corporation), and the front reflectance to light with a wavelength of 365 nm was used.
 製造装置30において、光配向層2が形成された長尺基材1はダイ35の位置に搬送されて、ダイ35により液晶層3となる液晶組成物を光配向層2の上に塗工されて組成物層が形成される。この際、光配向層2の配向規制力によって、組成物層中の液晶材料は配向された状態となる。
 なお、液晶層3となる液晶組成物の塗工方法(塗布方法)は、上述したダイコート法に限定はされず、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法等、公知の方法が、各種、利用可能である。
In the manufacturing apparatus 30, the long base material 1 on which the photoalignment layer 2 is formed is conveyed to the position of the die 35, and the die 35 coats the liquid crystal composition to be the liquid crystal layer 3 on the photoalignment layer 2. The composition layer is formed. At this time, the liquid crystal material in the composition layer is in an aligned state by the alignment control force of the photo alignment layer 2.
The coating method (coating method) of the liquid crystal composition to be the liquid crystal layer 3 is not limited to the above-described die coating method, and dip coating, air knife coating, curtain coating, roller coating, wire bar coating Various known methods such as a method and a gravure coating method can be used.
 次に、長尺基材1は、加熱装置36の位置に搬送されて、加熱装置36により、塗工した組成物層が加熱、乾燥される。図示しないが、加熱装置36により、組成物層中の液晶材料の配向を促進、調整することもできる。
 加熱装置36による加熱、乾燥は、シート状物を加熱、乾燥する公知の方法で行えばよい。例えば、温風加熱、ヒートローラによる加熱等が挙げられる。
Next, the long base material 1 is conveyed to the position of the heating device 36, and the coated composition layer is heated and dried by the heating device 36. Although not shown, the heating device 36 can also promote or adjust the alignment of the liquid crystal material in the composition layer.
Heating by the heating device 36 and drying may be performed by a known method of heating and drying the sheet-like material. For example, warm air heating, heating by a heat roller, etc. may be mentioned.
 続いて、長尺基材1は光源37の位置に搬送されて、光源37により紫外線を照射されて、光配向層2の配向規制力により液晶材料を配向させた状態で組成物層を硬化させて液晶層3を作製する。
 ここで、この紫外線の照射は、組成物層側から実行され、これにより組成物層に効率良く紫外線を照射して液晶層3を作製する。
 なお、光源37としては特に限定はされず、液晶層の形成材料に応じた波長の光を照射する光源が各種、利用可能である。
Subsequently, the long base material 1 is conveyed to the position of the light source 37 and irradiated with ultraviolet light by the light source 37 to cure the composition layer in a state where the liquid crystal material is aligned by the alignment regulating force of the photoalignment layer 2 Liquid crystal layer 3 is manufactured.
Here, this irradiation of ultraviolet light is performed from the composition layer side, whereby the composition layer is efficiently irradiated with ultraviolet light to produce the liquid crystal layer 3.
The light source 37 is not particularly limited, and various light sources that emit light of a wavelength corresponding to the forming material of the liquid crystal layer can be used.
 このようにして作製された長尺フィルム形状の液晶フィルム10は、巻取り軸61に搬送されてロール39に巻き取られる。
 このロール39はさらに他の工程に提供され得る。例えば、後述する直線偏光板と長尺液晶フィルム10とを積層する製造装置40に搬送し後述する偏光板をロールトゥロールで作製することができる。
The long film-shaped liquid crystal film 10 produced in this manner is conveyed to the winding shaft 61 and wound around the roll 39.
This roll 39 can be provided to further steps. For example, it can be conveyed to a manufacturing apparatus 40 in which a linear polarizing plate described later and the long liquid crystal film 10 are laminated, and a polarizing plate described later can be manufactured by roll-to-roll.
〔画像表示装置及び光学部品〕
 本発明の長尺液晶フィルムは、直線偏光板と組み合わせることにより、各種画像表示装置に用いることができる光学部品として利用することができる。また、適宜裁断して画像表示装置に実装することにより、表示品質に優れた画像表示装置を構成することができる。組合せにおいては各種の接着剤を利用して貼合することができる。このような接着剤としては、例えば紫外線硬化性樹脂、熱硬化性樹脂、感圧性接着剤等を例示することができる。
[Image display apparatus and optical parts]
The long liquid crystal film of the present invention can be used as an optical component that can be used for various image display devices by combining it with a linear polarizing plate. In addition, by appropriately cutting and mounting on the image display device, it is possible to configure an image display device excellent in display quality. In combination, bonding can be performed using various adhesives. As such an adhesive agent, an ultraviolet curable resin, a thermosetting resin, a pressure sensitive adhesive agent etc. can be illustrated, for example.
<長尺偏光板>
 本発明の長尺液晶フィルム10を直線偏光板21と、互いの長手方向を一致させて積層することにより、長尺偏光板(単に偏光板とも称する)20を構成することができる(図2参照)。例えば、長尺偏光板を円偏光板として構成する場合、本発明の長尺液晶フィルム(および液晶層)の面内位相差は110~160nmの範囲が好ましく、130~150nmの範囲がより好ましい。
 また、本発明の長尺液晶フィルム(および液晶層)の遅相軸を、直線偏光板の吸収軸(透過軸)と45°となるよう配置することが好ましい。本発明の長尺液晶フィルムの遅相軸を、長手方向、すなわち、搬送方向に対して45°とすることにより、幅方向に吸収軸(透過軸)を有する長尺状直線偏光板(すなわち、吸収軸が直線偏光板の長手方向に対して90°)、もしくは、搬送方向(長手方向)に吸収軸(透過軸)を有する長尺状直線偏光板(すなわち、吸収軸が直線偏光板の長手方向に対して0°)とロールトゥロールプロセスで貼合して長尺状の円偏光板を作製することができる。
<Long polarizing plate>
A long polarizing plate (also referred to simply as a polarizing plate) 20 can be configured by laminating the long liquid crystal film 10 of the present invention with the linear polarizing plate 21 with their longitudinal directions aligned with each other (see FIG. 2). ). For example, when the long polarizing plate is configured as a circularly polarizing plate, the in-plane retardation of the long liquid crystal film (and liquid crystal layer) of the present invention is preferably in the range of 110 to 160 nm, and more preferably in the range of 130 to 150 nm.
Moreover, it is preferable to arrange so that the slow axis of the elongate liquid crystal film (and liquid crystal layer) of this invention may be 45 degrees with the absorption axis (transmission axis) of a linear-polarizing plate. A long linear polarizing plate having an absorption axis (transmission axis) in the width direction by setting the slow axis of the long liquid crystal film of the present invention to 45 ° with respect to the longitudinal direction, ie, the transport direction An elongated linear polarizing plate having an absorption axis (transmission axis) in the transport direction (longitudinal direction) or an absorption axis of 90 ° with respect to the longitudinal direction of the linear polarizing plate (ie, the longitudinal axis of the linear polarizing plate It can be bonded by a roll-to-roll process at 0 ° with respect to the direction to produce a long circularly polarizing plate.
 直線偏光板21としては限定はなく、公知の直線偏光板を用いることができる。
 例えば、直線偏光板21は、直線偏光板として機能を担う光学機能層を1対の基材により挟持して構成される。ここで基材は、TAC(トリアセチルセルロース)による透明フィルム、ポリ(メタ)アクリル酸メチルやその共重合体等のアクリル樹脂、エポキシ化合物や(メタ)アクリレート化合物等の架橋重合体樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂等の樹脂、硝子等を適用することができる。本発明の長尺液晶フィルムの長尺基材を係る基材として使用し、光学機能層、長尺基材1、光配向層2、液晶層3の順に積層されるようにしても良い。光学機能層は、典型的にはポリビニルアルコール(PVA)によるフィルム材にヨウ素化合物分子を吸着配向させて作製されるが、その他にヨウ素化合物分子に代えて有機二色性色素を用いたフィルム、有機二色性色素を液晶組成物中に配合して配向させた層、液晶性有機二色性色素を配向させた層などを用いてもよい。積層に係る接着層22(図示せず)としては先述した各種公知の接着剤を利用することができる。
The linear polarizing plate 21 is not limited, and a known linear polarizing plate can be used.
For example, the linear polarization plate 21 is configured by sandwiching an optical function layer having a function as a linear polarization plate by a pair of base materials. Here, the substrate is a transparent film of TAC (triacetyl cellulose), an acrylic resin such as methyl poly (meth) acrylate or a copolymer thereof, a crosslinked polymer resin such as an epoxy compound or a (meth) acrylate compound, cycloolefin Resin, resin such as polycarbonate resin, glass, etc. can be applied. The long base material of the long liquid crystal film of the present invention may be used as a base material, and the optical function layer, the long base material 1, the light alignment layer 2 and the liquid crystal layer 3 may be laminated in this order. The optical functional layer is typically produced by adsorbing and orienting iodine compound molecules to a film material of polyvinyl alcohol (PVA), but in addition, a film using an organic dichroic dye instead of the iodine compound molecules, organic A layer in which a dichroic dye is blended in a liquid crystal composition and oriented, a layer in which a liquid crystalline organic dichroic dye is oriented, or the like may be used. The various known adhesives described above can be used as the adhesive layer 22 (not shown) related to the lamination.
 図4は、長尺液晶フィルム10と長尺状の直線偏光板21とを積層して長尺偏光板20を作製する工程を実施する製造装置の要部を模式的に示す図である。この製造装置40において、長尺液晶フィルム10は、ロール状に巻き回された状態のロール39として提供される。また、接着層22、および、PETフィルムからなる剥離フィルム41を積層された直線偏光板21(積層体)が、ロール状に巻き回された状態のロール42として供給される。 FIG. 4: is a figure which shows typically the principal part of the manufacturing apparatus which implements the process of laminating | stacking the elongate liquid crystal film 10 and the elongate linear polarizing plate 21, and producing the elongate polarizing plate 20. As shown in FIG. In the manufacturing apparatus 40, the long liquid crystal film 10 is provided as a roll 39 in a state of being wound in a roll. In addition, the linearly polarizing plate 21 (laminated body) in which the adhesive layer 22 and the peeling film 41 made of a PET film are laminated is supplied as a roll 42 in a state of being wound in a roll shape.
 ロール39およびロール42はそれぞれ所定の送り出し用の回転軸(47、48)に装填される。ロール42は剥離フィルム41が表面側となるように装填される。
 回転軸47に装填されたロール39から長尺液晶フィルム10が引き出されて、直線偏光板21が積層された長尺液晶フィルム10を巻き取る巻取り軸49までの所定の搬送経路に通される。長尺液晶フィルム10の搬送経路の途中には加圧ロール45が配置されている。
 また、回転軸48に装填されたロール42から積層体が引き出されて、加圧ロール45を通過して巻取り軸49までの所定の搬送経路に通される。また、回転軸48から加圧ロール45までの経路途中には、積層体から剥離フィルム41を剥離するための剥離ロール43が配置されており、剥離フィルム41は、剥離ロール43の位置で剥離されて剥離フィルム41を巻き取る巻取り軸55までの所定の搬送経路に通される。
The roll 39 and the roll 42 are respectively loaded on predetermined feed rotational shafts (47, 48). The roll 42 is loaded such that the release film 41 is on the front side.
The long liquid crystal film 10 is pulled out from the roll 39 loaded on the rotating shaft 47, and is passed through a predetermined conveyance path up to a winding shaft 49 for winding the long liquid crystal film 10 on which the linear polarizing plate 21 is laminated. . A pressure roller 45 is disposed in the middle of the transport path of the long liquid crystal film 10.
Further, the laminate is pulled out from the roll 42 loaded on the rotating shaft 48, passes through the pressure roll 45, and is passed through a predetermined transport path to the winding shaft 49. In addition, a peeling roll 43 for peeling the peeling film 41 from the laminate is disposed in the middle of the path from the rotating shaft 48 to the pressure roll 45, and the peeling film 41 is peeled at the position of the peeling roll 43. The release film 41 is passed through a predetermined transport path to the winding shaft 55.
 このような状態で各フィルムの搬送を開始すると、製造装置40は、ロール42から直線偏光板21、接着層22、剥離フィルム41の積層体を引き出しながら、剥離ロール43により剥離フィルム41を剥離し、剥離した剥離フィルム41をロール44に巻き取る。また、ロール39から液晶フィルム10を引き出しながら、加圧ロール45によって、液晶フィルム10と、剥離フィルム41を剥離後の直線偏光板21および接着層22の積層体とを積層、加圧し、これにより液晶フィルム10、接着層22、および、直線偏光板21の積層体(すなわち偏光板20)を作製する。その後、液晶フィルム10、接着層22、および、直線偏光板21の積層体を巻取り軸49まで搬送して、この積層体をロール48に巻き取る。
 その後、偏光板20には、用途に応じて粘着層、セパレータフィルム(図示せず)等の他の層を適宜配置してもよい。また、長尺状の偏光板20は、所望のサイズに切断して枚葉状の偏光板とし、画像表示装置等へ適用することができる。
When conveyance of each film is started in such a state, the manufacturing apparatus 40 peels off the peeling film 41 by the peeling roll 43 while pulling out the laminate of the linear polarizing plate 21, the adhesive layer 22 and the peeling film 41 from the roll 42. , The peeled release film 41 is wound on a roll 44. Further, while pulling out the liquid crystal film 10 from the roll 39, the pressure roll 45 laminates and pressurizes the liquid crystal film 10 and the laminate of the linear polarization plate 21 and the adhesive layer 22 after peeling the peeling film 41. A laminate of the liquid crystal film 10, the adhesive layer 22, and the linear polarizing plate 21 (that is, the polarizing plate 20) is manufactured. Thereafter, the laminate of the liquid crystal film 10, the adhesive layer 22, and the linear polarization plate 21 is conveyed to the winding shaft 49, and the laminate is wound on a roll 48.
Thereafter, other layers such as an adhesive layer and a separator film (not shown) may be appropriately disposed on the polarizing plate 20 depending on the application. In addition, the long polarizing plate 20 can be cut into a desired size to form a sheet-like polarizing plate, and can be applied to an image display device or the like.
 なお、図2に示す例では、直線偏光板21は、液晶フィルム10の長尺基材1側に積層される構成としたが、これに限定はされず、液晶層3側に積層される構成であってもよい。
 また、長尺液晶フィルム10と長尺状の直線偏光板21とを積層して長尺偏光板20を作製する工程を実施する製造装置の一例として図4に示す製造装置40を示したがこれに限定はされず、長尺なフィルム状物同士を積層する種々の公知の製造装置および工程が利用可能である。
 また、上記説明では、長尺液晶フィルム10と長尺状の直線偏光板21とを積層した長尺偏光板20を作製した後、長尺偏光板20から枚葉状の偏光板を切り出すものとしたが、これに限定はされず、長尺液晶フィルム10から枚葉状の液晶フィルムを切り出した後に、枚葉状の直線偏光板を積層して枚葉状の偏光板を作製してもよい。
In the example shown in FIG. 2, the linear polarizing plate 21 is laminated on the side of the long base material 1 of the liquid crystal film 10. However, the present invention is not limited to this, and the linear polarizing plate 21 is laminated on the liquid crystal layer 3 side. It may be
Moreover, although the manufacturing apparatus 40 shown in FIG. 4 was shown as an example of a manufacturing apparatus which implements the process of laminating | stacking the elongate liquid crystal film 10 and the elongate linear polarizing plate 21, and producing the elongate polarizing plate 20, this is shown There is no limitation to the above, and various known manufacturing apparatuses and processes for laminating long film-like materials can be used.
Further, in the above description, after producing the long polarizing plate 20 in which the long liquid crystal film 10 and the long linear polarizing plate 21 are laminated, the sheet-like polarizing plate is cut out from the long polarizing plate 20. However, the present invention is not limited thereto. After cutting a sheet-like liquid crystal film from the long liquid crystal film 10, a sheet-like linear polarizing plate may be laminated to produce a sheet-like polarizing plate.
<画像表示装置>
 図5は、本発明の画像表示装置の一例を示す図である。この画像表示装置50は、画像表示パネル51のパネル面(視聴者側面)に、偏光板20を円偏光板として内部反射光を防止する反射防止フィルム52が配置される。ここで画像表示パネル51は、例えば有機ELパネルであり、所望のカラー画像を表示する。なお画像表示パネル51は、有機ELパネルに限らず、液晶表示パネル等、種々の画像表示パネルを広く適用することができる。
<Image display device>
FIG. 5 is a view showing an example of the image display apparatus of the present invention. In the image display device 50, an anti-reflection film 52 is disposed on a panel surface (viewer side surface) of the image display panel 51, using the polarizing plate 20 as a circularly polarizing plate to prevent internally reflected light. Here, the image display panel 51 is, for example, an organic EL panel, and displays a desired color image. The image display panel 51 is not limited to the organic EL panel, and various image display panels such as a liquid crystal display panel can be widely applied.
 反射防止フィルム52は、典型的には、接着層53により画像表示パネル51のパネル面に貼り付けられて保持される。反射防止フィルム52は、直線偏光板21、λ/4波長板の特性を有する液晶フィルム10を、接着層22により積層一体化して構成される。接着層53としては、接着層22と同様に公知の接着剤を用いることができる。 The antireflective film 52 is typically attached to the panel surface of the image display panel 51 by the adhesive layer 53 and held. The antireflection film 52 is configured by integrally laminating a linear polarizing plate 21 and a liquid crystal film 10 having the characteristics of a λ / 4 wavelength plate by an adhesive layer 22. As the adhesive layer 53, a known adhesive can be used similarly to the adhesive layer 22.
<その他の光学部品>
 本発明の長尺状液晶フィルムは、円偏光板に限らず、種々の光学部品に応用することができる。例えば、液晶表示装置の光学補償層付偏光板や、偏光サングラス、輝度向上板、加飾フィルム、視野角制限フィルム、調光フィルム、映り込み防止フィルム等である。本発明の長尺状液晶フィルムの光学特性や平均遅相軸方向は、本発明の趣旨を逸脱しない範囲で、用途に合わせて種々に変更することが可能である。
<Other optical parts>
The long liquid crystal film of the present invention is applicable not only to a circularly polarizing plate but also to various optical parts. For example, it is a polarizing plate with an optical compensation layer of a liquid crystal display device, a polarization sunglasses, a brightness enhancement plate, a decoration film, a viewing angle limiting film, a light control film, a antiglare film and the like. The optical characteristics and the average slow axis direction of the elongated liquid crystal film of the present invention can be variously changed according to the application without departing from the spirit of the present invention.
〔第二の実施形態〕
 本発明の長尺液晶フィルムの第二の実施形態として、基材1を易剥離性支持体として液晶層3と光配向層2の積層体を剥離転写するか、あるいは、基材1と密着して設けた光配向層2を液晶層3に対して易剥離性として液晶層3を剥離転写することにより、上述した液晶フィルムに代わる機能層として適用することができる。この実施形態においては、上述したような易剥離性をいずれかの層に与え、液晶層3、もしくは液晶層3と光配向層2の積層体を液晶フィルム10に置き換えて配置する以外は、第一の実施形態で述べた素材、部材を同様に利用することができる。
Second Embodiment
As a second embodiment of the long liquid crystal film of the present invention, the laminate of the liquid crystal layer 3 and the photoalignment layer 2 is peeled off and transferred by using the substrate 1 as a peelable support, or in close contact with the substrate 1 By peeling and transferring the liquid crystal layer 3 to the liquid crystal layer 3 so as to be easily releasable, the photoalignment layer 2 provided can be applied as a functional layer to replace the liquid crystal film described above. In this embodiment, except that the above-described easy releasability is given to any of the layers, and the liquid crystal layer 3 or the laminate of the liquid crystal layer 3 and the photoalignment layer 2 is replaced with the liquid crystal film 10, The materials and components described in one embodiment can be used as well.
 第二の実施形態においては、基材1は剥離して除去されることから、液晶フィルム10として用いる際に障害となるような光学特性を有するフィルムも基材として利用することが可能である。一例として、光配向における偏光照射の工程において、バックアップロールが鏡面である場合に、上述した光学的に等方性の長尺基材に代えて、面内位相差が500nm以上の高レターデーションフィルムの長尺体、もしくは、光散乱性の高い基材、光吸収性の基材等を用いることが可能である。これらのフィルムは偏光を解消する、光を吸収するといった機能により、反射光に起因する光配向の配向規制力のムラを解消する機能を有する。 In the second embodiment, since the substrate 1 is peeled off and removed, it is possible to use a film having an optical property that would be an obstacle when used as the liquid crystal film 10 as the substrate. As an example, in the step of polarized light irradiation in photoalignment, when the backup roll is a mirror surface, a high retardation film having an in-plane retardation of 500 nm or more is used instead of the optically isotropic long base described above. It is possible to use a long body, a highly light-scattering substrate, a light-absorbing substrate, or the like. These films have a function of depolarizing light and absorbing light, and have a function of eliminating unevenness in the alignment regulation power of photoalignment caused by reflected light.
 また、第二の実施形態の長尺液晶フィルムを作製する製造工程においては、基材1もしくは基材1と光配向層2の積層体を剥離除去するための工程を適宜設ける以外は、第一の実施形態の製造工程と同様の工程によって作製することができる。 In addition, in the production process of producing the long liquid crystal film of the second embodiment, the first process except that a process for peeling and removing the base material 1 or the laminate of the base material 1 and the photoalignment layer 2 is appropriately provided It can manufacture by the process similar to the manufacturing process of embodiment.
 こうして得られた長尺状の液晶層は、直線偏光板等に転写されて上述した光学部品、特に好ましくは円偏光板として利用することができる。こうして得られた円偏光板を用いて構成された有機EL表示装置等の画像表示装置が第一の実施形態の液晶フィルムを含む円偏光板を用いた画像表示装置と同様の表示品質を達成しうることは自明である。 The long liquid crystal layer thus obtained can be transferred to a linear polarizing plate or the like to be used as the above-described optical component, particularly preferably a circularly polarizing plate. An image display apparatus such as an organic EL display device configured using the circularly polarizing plate thus obtained achieves the same display quality as the image display apparatus using the circularly polarizing plate including the liquid crystal film of the first embodiment It is self-evident.
〔その他の実施形態〕
 第一および第二の実施形態においては、液晶層3が面内位相差を有する場合について説明したが、本発明においては、位相差の他に光吸収の異方性(二色性)を具有することができる。すなわち、長尺基材、長尺状の光配向層、長尺状の液晶層をこの順に含み、長尺状の液晶層が可視領域から赤外領域の少なくとも一部に二色性を示す層であり、かつ、液晶層が面内方向に吸収軸を有する長尺液晶フィルムの形態である。
Other Embodiments
In the first and second embodiments, the case where the liquid crystal layer 3 has an in-plane retardation is described, but in the present invention, the anisotropy (dichroism) of light absorption is included in addition to the retardation. can do. That is, a layer including a long base material, a long photoalignment layer, and a long liquid crystal layer in this order, the long liquid crystal layer exhibiting dichroism in at least a part of the visible region to the infrared region And the liquid crystal layer is in the form of a long liquid crystal film having an absorption axis in the in-plane direction.
 この実施形態においては、上述した第一および第二の実施形態における面内位相差を、吸収の異方性に読み替えることで、第一および第二の実施形態と同様の概念が適用できる。すなわち、前述の液晶層は、筋状の吸収軸異常領域を含み、その異常領域における吸収軸方向が液晶層の平均吸収軸方向に対して成す角度の最大値が0°より大きく0.04°未満である長尺光学フィルムである。長尺基材、長尺光配向層は、本発明の概念を逸脱しない範囲で適宜選択することができ、この長尺光学フィルムは、上述した種々の光学部品や画像表示装置等に利用することができる。 In this embodiment, the same concept as in the first and second embodiments can be applied by replacing the in-plane retardation in the first and second embodiments with the anisotropy of absorption. That is, the liquid crystal layer described above includes a streaky absorption axis abnormal area, and the maximum value of the angle formed by the absorption axis direction in the abnormal area with the average absorption axis direction of the liquid crystal layer is larger than 0 ° and 0.04 ° It is a long optical film which is less than. The long base material and the long light alignment layer can be appropriately selected without departing from the concept of the present invention, and the long optical film is used for the various optical components and the image display apparatus etc. Can.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the following examples.
(光配向性ポリマーAの調製)
 撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10.0質量部を仕込み、室温で混合した。次いで、脱イオン水100質量部を滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒および水を留去することにより、エポキシ含有ポリオルガノシロキサンを粘調な透明液体として得た。
 このエポキシ含有ポリオルガノシロキサンについて、1H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。これを光配向性ポリマーAとした。
(Preparation of photoalignable polymer A)
In a reaction container equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 parts by mass of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 parts by mass of methyl isobutyl ketone, and triethylamine 10 0 parts by mass were charged and mixed at room temperature. Next, 100 parts by mass of deionized water was added dropwise over 30 minutes from the dropping funnel, and then reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic phase is taken out and washed with a 0.2 mass% aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy-containing polyorganosiloxane Obtained as a viscous clear liquid.
The epoxy-containing polyorganosiloxane was subjected to 1H-NMR analysis, and a peak based on the oxiranyl group was obtained according to theoretical strength around a chemical shift (δ) = 3.2 ppm, and a side reaction of the epoxy group occurred during the reaction. It has been confirmed that nothing has happened. The weight average molecular weight Mw of this epoxy-containing polyorganosiloxane was 2,200, and the epoxy equivalent was 186 g / mol. This was named photoalignable polymer A.
[実施例1]
〔セルロースアシレートフィルム1の作製〕
(コア層セルロースアシレートドープの作製)
 下記の組成物をミキシングタンクに投入し、攪拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
コア層セルロースアシレートドープ
─────────────────────────────────
アセチル置換度2.88のセルロースアセテート     100質量部
特開2015-227955号公報の実施例に
 記載されたポリエステル化合物B            12質量部
下記の化合物F                      2質量部
メチレンクロライド(第1溶媒)            430質量部
メタノール(第2溶剤)                 64質量部
─────────────────────────────────
Example 1
[Preparation of Cellulose Acylate Film 1]
(Preparation of core layer cellulose acylate dope)
The following composition was charged into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution to be used as core layer cellulose acylate dope.
── ─ ──
Core Layer Cellulose Acylate Dope ── コ ア ── ──
Cellulose acetate having an acetyl substitution degree of 2.88 100 parts by mass Polyester compound B described in the example of JP-A-2015-227955 12 parts by mass Compound F below 2 parts by mass Methylene chloride (first solvent) 430 parts by mass Methanol (2nd solvent) 64 parts by mass ── ── ── ──
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(外層セルロースアシレートドープの作製)
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
マット剤溶液
─────────────────────────────────
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)    2質量部
メチレンクロライド(第1溶媒)             76質量部
メタノール(第2溶剤)                 11質量部
上記のコア層セルロースアシレートドープ          1質量部
─────────────────────────────────
(Preparation of outer layer cellulose acylate dope)
10 parts by mass of the following matting agent solution was added to 90 parts by mass of the above-mentioned core layer cellulose acylate dope to prepare a cellulose acetate solution to be used as outer layer cellulose acylate dope.
── ─ ──
Matting agent solution ── ── ──
Silica particles with an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass methylene chloride (first solvent) 76 parts by mass methanol (second solvent) 11 parts by mass Core layer cellulose acylate dope 1 mass Department ── ── ──
(セルロースアシレートフィルム1の作製)
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。溶剤含有率略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmの光学フィルムを作製し、これを長尺基材とした。長尺基材のコア層は厚み36μm、コア層の両側に配置された外層はそれぞれ厚み2μmであった。得られたセルロースアシレートフィルム1の面内レターデーションは0nmであった。
(Preparation of Cellulose Acylate Film 1)
The core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered with a filter paper having an average pore diameter of 34 μm and a sintered metal filter having an average pore diameter of 10 μm, and then the core layer cellulose acylate dope and outer layer cellulose acylate dope on both sides thereof And 3 layers were simultaneously cast from a casting port on a 20 ° C. drum (band casting machine). The film was peeled off in a state of a solvent content of about 20% by mass, and both ends in the width direction of the film were fixed with a tenter clip, and the film was dried while being drawn in the transverse direction at a draw ratio of 1.1. Then, by conveying between the rolls of a heat processing apparatus, it further dried, the optical film with a thickness of 40 micrometers was produced, and this was made into the elongate base material. The core layer of the elongated base had a thickness of 36 μm, and the outer layers disposed on both sides of the core layer had a thickness of 2 μm. The in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
〔長尺液晶フィルムの作製〕
 図3に示すようなロールトゥロールの製造装置を用いて、作製したセルロースアシレートフィルム1を長手方向に搬送しつつ、以下のようにして光配向層および液晶層を形成し、長尺液晶フィルムを作製した。
 作製したセルロースアシレートフィルム1の片側の面に、下記の光配向膜用組成物1をバーコーターで連続的に塗布した。塗布後、120℃の加熱ゾーンにて1分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層(材料層)を形成した。続けて、鏡面処理バックアプロールに巻きかけながら、長手方向に偏光軸が45°の角度を成すように偏光紫外線照射(10mJ/cm2、超高圧水銀ランプ使用)することで、光配向層を形成した。この際、鏡面処理バックアップロールは事前に緑色光を様々な角度・方向から照射して表面上に乱反射部位やキズ、凹み、異物の付着が無いことを視認にて確認したものを使用した。
 鏡面処理バックアップロールの表面粗さ(最大高さ粗さRz)を、表面粗さ測定器(商品名SJ-310、株式会社ミツトヨ製)を用い、JIS B0601(2001年)に準拠した方法で測定したところ、0.4μmであった。
 また、紫外線反射率(波長365nmの反射率)を分光光度計(MV-3100、日本分光株式会社製)を用いて測定したところ、1%であった。
[Production of long liquid crystal film]
A photoalignment layer and a liquid crystal layer are formed as follows while conveying the produced cellulose acylate film 1 in the longitudinal direction using a roll-to-roll manufacturing apparatus as shown in FIG. Was produced.
On the surface on one side of the produced cellulose acylate film 1, the following composition 1 for photo alignment film was continuously applied by a bar coater. After application, the solvent was removed by drying in a heating zone at 120 ° C. for 1 minute to form a 0.3 μm thick photoisomerization composition layer (material layer). Subsequently, while being wound on the mirror-treated back-up roll, a photo-alignment layer is formed by irradiating polarized ultraviolet light (10 mJ / cm 2 , using ultra-high pressure mercury lamp) so that the polarization axis forms an angle of 45 ° in the longitudinal direction. did. At this time, a mirror-treated backup roll was used that was previously irradiated with green light from various angles and directions to visually confirm that there are no irregular reflection sites, scratches, dents, and foreign matter on the surface.
The surface roughness (maximum height roughness Rz) of the mirror-treated backup roll is measured using a surface roughness tester (trade name SJ-310, manufactured by Mitutoyo Co., Ltd.) according to the method according to JIS B0601 (2001) When it did, it was 0.4 micrometer.
The ultraviolet reflectance (reflectance at a wavelength of 365 nm) was measured using a spectrophotometer (MV-3100, manufactured by JASCO Corporation) and found to be 1%.
─────────────────────────────────
光配向膜用組成物1
─────────────────────────────────
上記の光配向ポリマーA                 10質量部
ノムコートTAB(日清オイリオ(株)製)      1.52質量部
多官能エポキシ化合物(エポリードGT401、ダイセル社製)
                          12.2質量部
熱酸発生剤(サンエイドSI-60、三新化学工業(株)製)
                          0.55質量部
酢酸ブチル                      300質量部
―――――――――――――――――――――――――――――――――
── ─ ──
Composition 1 for photo alignment film
── ─ ──
10 parts by weight of the photo alignment polymer A Nom coat TAB (manufactured by Nisshin Oillio Co., Ltd.) 1.52 parts by weight A multifunctional epoxy compound (Epolido GT 401, manufactured by Daicel)
12.2 parts by mass Thermal acid generator (San Aid SI-60, manufactured by Sanshin Chemical Industry Co., Ltd.)
0.55 parts by mass butyl acetate 300 parts by mass-------------------------
ノムコートTAB Nom Coat TAB
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 引き続き、長尺状に形成された光配向層上に、下記の光学異方性層形成用組成物1をバーコーターで塗布し、組成物層を形成した。形成した組成物層を加熱ゾーンにていったん110℃まで加熱した後、75℃に冷却させて配向を安定化させた。
 その後、75℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm2、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの液晶層を形成し、これを巻取り軸に巻き取って、長尺状の液晶フィルムを作製した。得られた液晶フィルムの平均面内レターデーションRe(550)は140nmでRe(450)/Re(550)<1.0かつ1.0<Re(650)/Re(550)を満たしており、平均遅相軸方向は長手方向に対して45°であった。
Subsequently, the composition 1 for forming an optically anisotropic layer described below was applied by a bar coater on the photoalignment layer formed in a long shape, to form a composition layer. The composition layer thus formed was once heated to 110 ° C. in a heating zone and then cooled to 75 ° C. to stabilize the orientation.
Thereafter, the temperature is maintained at 75 ° C., and the alignment is fixed by ultraviolet irradiation (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) under nitrogen atmosphere (oxygen concentration 100 ppm) to form a liquid crystal layer 2.3 μm thick, It wound up to a winding shaft and produced the elongate liquid crystal film. The average in-plane retardation Re (550) of the obtained liquid crystal film at 140 nm satisfies Re (450) / Re (550) <1.0 and 1.0 <Re (650) / Re (550), The average slow axis was 45 ° to the longitudinal direction.
―――――――――――――――――――――――――――――――――
光学異方性層用塗布液(液晶組成物)
―――――――――――――――――――――――――――――――――
・下記液晶性化合物L-3             42.00質量部
・下記液晶性化合物L-4             42.00質量部
・下記重合性化合物A-1             16.00質量部
・下記重合開始剤S-1(オキシム型)        0.50質量部
・レベリング剤(下記化合物G-1)         0.20質量部
・ハイソルブMTEM(東邦化学工業社製)      2.00質量部
・NKエステルA-200(新中村化学工業社製)   1.00質量部
・メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
 なお、下記液晶性化合物L-3およびL-4のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、下記液晶性化合物L-3およびL-4は、メチル基の位置が異なる位置異性体の混合物を表す。
――――――――――――――――――――――――――――――――――――
Coating solution for optically anisotropic layer (liquid crystal composition)
――――――――――――――――――――――――――――――――――――
Liquid crystal compound L-3 42.00 parts by mass Liquid crystal compound L-4 42.00 parts by mass Polymerizable compound A-1 16.00 parts by mass Polymerization initiator S-1 (oxime type) 0.50 parts by mass, leveling agent (the following compound G-1) 0.20 parts by mass, Hysorb MTEM (manufactured by Toho Chemical Industry Co., Ltd.) 2.00 parts by mass, NK ester A-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass and methyl ethyl ketone 424.8 parts by mass--------------------------
The group adjacent to the acryloyloxy group of the following liquid crystal compounds L-3 and L-4 represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and the following liquid crystal compounds L-3 and L-4 Represents a mixture of regioisomers different in the position of the methyl group.
液晶化合物 L-3 Liquid crystal compound L-3
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
液晶化合物 L-4 Liquid crystal compound L-4
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
重合性化合物 A-1 Polymerizable compound A-1
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
重合開始剤 S-1 Polymerization initiator S-1
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
化合物 G-1 Compound G-1
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(遅相軸方向、面内位相差および筋状領域の面積割合の測定)
 得られた長尺液晶フィルムを巻きだして、任意の1m長のウェブ上における筋状の光漏れ領域を回転検光子法の要領による自動面状検査機により検出してマーキングした後マーキング部位を含むよう液晶フィルム片を切り出して、KOBRA 21ADH(王子計測機器(株)製)で遅相軸値および遅相軸方向のレターデーション値を、筋状領域を横断する直線上にて0.5mm間隔で20点測定した。これを、同一長尺液晶フィルムの10点に対して行った。その結果、筋状領域における遅相軸変動Δβはいずれの点においても0.4°未満であり、遅相軸方向の位相差値はいずれの点も140nmであった。光学顕微鏡で各々の筋状領域の表面および断面を観察したが、いずれにおいても異物や膜厚変動は見られなかった。
 また、筋状領域の面積割合を上述の方法で測定したところ、2%であった。
(Measurement of slow axis direction, in-plane retardation and area ratio of streaky region)
After winding the obtained long liquid crystal film, streaked light leakage areas on an arbitrary 1 m long web are detected and marked by an automatic surface inspection machine according to the method of the rotary analyzer method, and then marking areas are included. A liquid crystal film piece is cut out, and the slow axis value and the retardation value in the slow axis direction are separated by 0.5 mm intervals on a straight line crossing the streak region with KOBRA 21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) 20 points were measured. This was performed on 10 points of the same long liquid crystal film. As a result, the slow axis fluctuation Δβ in the streak region was less than 0.4 ° at any point, and the retardation value in the slow axis direction was 140 nm at any point. The surface and cross section of each streaky region were observed with an optical microscope, but neither foreign matter nor film thickness variation was observed in any of them.
Moreover, it was 2% when the area ratio of the linear region was measured by the above-mentioned method.
[実施例2~4、比較例1および2]
 バックアップロールの最大高さ粗さRz、および、紫外線反射率を下記表1に示すようにそれぞれ変更した以外は実施例1と同様にして長尺液晶フィルムを作製し、遅相軸方向および面内位相差の測定を行った。
 各実施例および比較例の遅相軸変動Δβおよび筋状領域の面積割合は表1に示すとおりであった。
[Examples 2 to 4, Comparative Examples 1 and 2]
A long liquid crystal film is produced in the same manner as in Example 1 except that the maximum height roughness Rz of the backup roll and the ultraviolet reflectance are changed as shown in Table 1 below, and the slow axis direction and the in-plane direction are obtained. The phase difference was measured.
The slow axis fluctuation Δβ and the area ratio of the linear region in each Example and Comparative Example were as shown in Table 1.
(有機EL表示装置への実装での評価)
 得られた各実施例および比較例の長尺液晶フィルムを、液晶フィルムが基材側を偏光板側とし、基材が偏光板保護フィルムを兼ねる形でロールトゥロールプロセスにより長尺状の直線偏光板(吸収軸が長手方向にある)と貼合した後、一旦巻き取り、さらに裁断して円偏光板を得た。得られた円偏光板の液晶フィルム側に、特開2015-200861号公報実施例0124段落~0127段落に記載のポジティブCプレート(ただし、550nmにおけるRthが-65nmとなるように、ポジティブCプレートの厚さは制御している)を転写貼合し、積層体を得た。
(Evaluation in mounting to organic EL display)
The long liquid crystal film of each of the obtained Examples and Comparative Examples is used in the form of a liquid crystal film with the substrate side as the polarizing plate side, and the base material also functions as a polarizing plate protective film. After bonding to a plate (the absorption axis is in the longitudinal direction), the film was once wound up and further cut to obtain a circularly polarizing plate. On the liquid crystal film side of the obtained circularly polarizing plate, the positive C plate described in paragraph 0127 to paragraph 0127 of JP-A-2015-200861 (wherein Rth at 550 nm is −65 nm, the positive C plate is The thickness is controlled and transferred) to obtain a laminate.
 次に、有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、上記で作製した積層体から、液晶フィルムでのマーキング部位を含むように切り出した積層体片をポジティブCプレート側がパネル側となるよう粘着剤を介して貼合し、有機EL表示装置を作製した。得られた有機EL表示装置を黒表示状態にて自然光下で観察し、異常が見られるか否かを目視で評価した。
 結果を表1に示す。
Next, the GALAXY SII manufactured by SAMSUNG Co., Ltd. mounted with an organic EL panel is disassembled, the circularly polarizing plate is peeled off, and a laminate piece cut out so as to include a marking portion with a liquid crystal film is positive from the laminate prepared above. It pasted through a pressure sensitive adhesive so that C plate side might turn to a panel side, and produced an organic EL display. The obtained organic EL display device was observed under natural light in a black display state, and whether or not an abnormality was observed was visually evaluated.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 1 長尺基材
 2 光配向層
 3 液晶層
 10 長尺液晶フィルム
 20 偏光板
 21 直線偏光板
 22、53 接着層
 30 長尺液晶フィルムの製造装置
 31、39、42~46 ロール
 32、35 ダイ
 33、36 加熱装置
 34、37 光源
 38 バックアップロール
 40 長尺偏光板の製造装置
 41 剥離フィルム
 47、48、60 回転軸
 49、55、61 巻取り軸
 50 画像表示装置
 51 画像表示パネル
 52 反射防止フィルム
DESCRIPTION OF SYMBOLS 1 long base material 2 light orientation layer 3 liquid crystal layer 10 long liquid crystal film 20 polarizing plate 21 linear polarizing plate 22 53 adhesive layer 30 manufacturing apparatus of long liquid crystal film 31 39 42-46 roll 32 35 die 33 , 36 heating device 34, 37 light source 38 backup roll 40 manufacturing device for long polarizing plate 41 peeling film 47, 48, 60 rotating shaft 49, 55, 61 winding shaft 50 image display device 51 image display panel 52 anti-reflection film

Claims (16)

  1.  長尺基材、長尺状の光配向層、及び、面内位相差を有する長尺状の液晶層をこの順に有する長尺液晶フィルムであって、
     前記長尺状の液晶層には、前記長尺液晶フィルムを直線偏光子および検光子で挟んでこれらを消光位に配置して光を照射した場合に、光漏れが生じる筋状領域が存在し、前記筋状領域における遅相軸変動Δβが0°より大きく0.04°未満であることを特徴とする、長尺液晶フィルム。
    A long liquid crystal film comprising a long base material, a long light alignment layer, and a long liquid crystal layer having an in-plane retardation in this order,
    In the long liquid crystal layer, there are streaky regions where light leakage occurs when the long liquid crystal film is sandwiched between a linear polarizer and an analyzer and these are placed at the extinction position and light is irradiated. A long liquid crystal film characterized in that the slow axis fluctuation Δβ in the streak region is more than 0 ° and less than 0.04 °.
  2.  前記長尺状の液晶層の面内位相差が100nm~250nmの範囲である請求項1に記載の長尺液晶フィルム。 The long liquid crystal film according to claim 1, wherein the in-plane retardation of the long liquid crystal layer is in the range of 100 nm to 250 nm.
  3.  前記長尺液晶フィルムの面内位相差が100nm~250nmの範囲である請求項1または2に記載の長尺液晶フィルム。 3. The long liquid crystal film according to claim 1, wherein the in-plane retardation of the long liquid crystal film is in the range of 100 nm to 250 nm.
  4.  前記長尺基材が、以下の式を満たす請求項1から3のいずれか一項に記載の長尺液晶フィルム。
     |Re(550)|≦10nm
     |Rth(550)|≦20nm
    The long liquid crystal film according to any one of claims 1 to 3, wherein the long base material satisfies the following formula.
    | Re (550) | ≦ 10 nm
    | Rth (550) | ≦ 20 nm
  5.  前記長尺状の液晶層の面内位相差が110nmから160nmの範囲であり、その遅相軸が長尺基材の長手方向に対して45°をなしている、請求項1から4のいずれか一項に記載の長尺液晶フィルム。 The in-plane retardation of the elongated liquid crystal layer is in the range of 110 nm to 160 nm, and the slow axis thereof forms 45 ° with the longitudinal direction of the elongated substrate. The long liquid crystal film as described in or.
  6.  前記長尺液晶フィルムの面内位相差が110nmから160nmの範囲であり、その遅相軸が長尺基材の長手方向に対して45°をなしている、請求項1から5のいずれか一項に記載の長尺液晶フィルム。 The in-plane retardation of the long liquid crystal film is in the range of 110 nm to 160 nm, and the slow axis thereof forms 45 ° with the longitudinal direction of the long base material. The long liquid crystal film as described in a term.
  7.  前記長尺状の液晶層が下記式を満たす、請求項1から6のいずれか一項に記載の長尺液晶フィルム。
     Re(450)/Re(550)<1.0
     1.0<Re(650)/Re(550)
    The long liquid crystal film according to any one of claims 1 to 6, wherein the long liquid crystal layer satisfies the following formula.
    Re (450) / Re (550) <1.0
    1.0 <Re (650) / Re (550)
  8.  前記長尺液晶フィルムが下記式を満たす、請求項1から7のいずれか一項に記載の長尺液晶フィルム。
     Re(450)/Re(550)<1.0
     1.0<Re(650)/Re(550)
    The long liquid crystal film according to any one of claims 1 to 7, wherein the long liquid crystal film satisfies the following formula.
    Re (450) / Re (550) <1.0
    1.0 <Re (650) / Re (550)
  9.  前記長尺状の液晶層の表面の面積に対する、前記筋状領域の合計面積の割合は6%以下である請求項1~8のいずれか一項に記載の長尺液晶フィルム。 The long liquid crystal film according to any one of claims 1 to 8, wherein the ratio of the total area of the streaked regions to the area of the surface of the long liquid crystal layer is 6% or less.
  10.  請求項1から9のいずれか一項に記載の長尺液晶フィルムと、長尺状の直線偏光板とを、互いの長手方向を一致させて積層した、長尺偏光板。 A long polarizing plate in which the long liquid crystal film according to any one of claims 1 to 9 and a long linear polarizing plate are laminated in the same longitudinal direction of each other.
  11.  前記長尺状の直線偏光板の吸収軸が、前記長尺状の直線偏光板の長手方向に対して0°もしくは90°をなし、かつ、前記長尺液晶フィルムの遅相軸との交差角が45°を成している、請求項10に記載の長尺偏光板。 The absorption axis of the elongated linear polarizing plate makes 0 ° or 90 ° with the longitudinal direction of the elongated linear polarizing plate, and the crossing angle with the slow axis of the elongated liquid crystal film The long polarizing plate according to claim 10, wherein the angle of 45 degrees.
  12.  前記長尺液晶フィルムの面内位相差が110nmから160nmの範囲である請求項11に記載の長尺偏光板。 The long polarizing plate according to claim 11, wherein an in-plane retardation of the long liquid crystal film is in a range of 110 nm to 160 nm.
  13.  請求項10から12のいずれか一項に記載の長尺偏光板から切り出した枚葉状の偏光板を含む、画像表示装置。 The image display apparatus containing the sheet-like polarizing plate cut out from the elongate polarizing plate as described in any one of Claims 10-12.
  14.  前記液晶層が、前記光配向層と前記液晶層との間、もしくは、前記長尺基材と前記光配向層との間の少なくとも何れかで剥離可能に設けられた、請求項1から9のいずれか一項に記載の長尺液晶フィルム。 10. The liquid crystal layer according to claim 1, wherein the liquid crystal layer is provided so as to be peelable at least either between the photoalignment layer and the liquid crystal layer or between the elongated base and the photoalignment layer. The long liquid-crystal film as described in any one.
  15.  請求項1~9、および、14のいずれか一項に記載の長尺液晶フィルムの製造方法であって、
     長尺基材を長手方向に搬送しつつ、前記長尺基材上に形成された光配向層となる材料層に紫外線を照射する光配向工程を有し、
     前記光配向工程において、前記材料層に紫外線を照射する際に、前記長尺基材の前記材料層が形成された面とは反対側の面はバックアップロールに支持されており、
     前記バックアップロールの表面の最大高さ粗さRzは0.7μm以下である長尺液晶フィルムの製造方法。
    A method for producing a long liquid crystal film according to any one of claims 1 to 9 and 14, wherein
    It has a photoalignment step of irradiating the material layer to be the photoalignment layer formed on the long base material with ultraviolet light while conveying the long base material in the longitudinal direction,
    In the photo-alignment step, when the material layer is irradiated with ultraviolet light, the surface of the long base opposite to the surface on which the material layer is formed is supported by a backup roll.
    The manufacturing method of the elongate liquid crystal film whose largest height roughness Rz of the surface of the said backup roll is 0.7 micrometer or less.
  16.  紫外線に対する前記バックアップロールの表面の反射率は、10%以下である請求項15に記載の長尺液晶フィルムの製造方法。 The method for producing a long liquid crystal film according to claim 15, wherein the reflectance of the surface of the backup roll to ultraviolet light is 10% or less.
PCT/JP2018/043399 2017-11-27 2018-11-26 Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film WO2019103143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019555396A JP6967083B2 (en) 2017-11-27 2018-11-26 A long liquid crystal film, a long polarizing plate, an image display device, and a method for manufacturing a long liquid crystal film.
KR1020207010831A KR102394968B1 (en) 2017-11-27 2018-11-26 Long liquid crystal film, long polarizing plate, image display device, and manufacturing method of long liquid crystal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-226725 2017-11-27
JP2017226725 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019103143A1 true WO2019103143A1 (en) 2019-05-31

Family

ID=66631525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043399 WO2019103143A1 (en) 2017-11-27 2018-11-26 Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film

Country Status (3)

Country Link
JP (1) JP6967083B2 (en)
KR (1) KR102394968B1 (en)
WO (1) WO2019103143A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022501A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Method for producing optical element, and optical element
WO2022050003A1 (en) * 2020-09-07 2022-03-10 住友化学株式会社 Optical laminate, and ellipsoidally polarizing plate including same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164248A (en) * 2013-02-27 2014-09-08 Fujifilm Corp Method and device for manufacturing pattern film
JP2014222282A (en) * 2013-05-13 2014-11-27 大日本印刷株式会社 Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film
JP2016193966A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Polymerizable liquid crystal composition, retardation film and production method of the retardation film
JP2017037150A (en) * 2015-08-07 2017-02-16 Jxエネルギー株式会社 Phase difference plate, lamination polarizing plate using phase difference plate, and display using phase difference plate
WO2017110638A1 (en) * 2015-12-22 2017-06-29 日本ゼオン株式会社 Liquid crystalline composition, liquid crystal cured layer, method for producing same, and optical film
JP2018169479A (en) * 2017-03-29 2018-11-01 富士フイルム株式会社 Method for manufacturing retardation film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421443B2 (en) 1994-09-29 2003-06-30 富士写真フイルム株式会社 Elliptical polarizing plate and liquid crystal display
JP2000086786A (en) 1998-09-09 2000-03-28 Fuji Photo Film Co Ltd Production of sheet having oriented film and production of long optical compensatory sheet
JP2001314799A (en) 2000-05-12 2001-11-13 Fuji Photo Film Co Ltd Method and device for heat treating of coating film
KR20080041638A (en) * 2006-02-20 2008-05-13 닛토덴코 가부시키가이샤 Liquid crystal panel, liquid crystal display unit using it, and production method of liquid crystal panel
JP4716036B2 (en) 2007-03-12 2011-07-06 富士フイルム株式会社 Method for producing optical compensation film
JP5141140B2 (en) * 2007-08-22 2013-02-13 大日本印刷株式会社 Optical functional film production liner, optical functional film production method, and optical functional film.
JP2009122234A (en) * 2007-11-13 2009-06-04 Konica Minolta Opto Inc Method for manufacturing optical compensation film
KR101319664B1 (en) * 2009-02-13 2013-10-17 닛토덴코 가부시키가이샤 Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body
JP2016099540A (en) * 2014-11-25 2016-05-30 大日本印刷株式会社 Optical film, image display device, and manufacturing method of optical film
JP6524844B2 (en) * 2015-07-31 2019-06-05 日本ゼオン株式会社 Coating apparatus, method of producing coated film, and coated film
JP6582933B2 (en) * 2015-11-30 2019-10-02 日本ゼオン株式会社 Method for producing functional film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164248A (en) * 2013-02-27 2014-09-08 Fujifilm Corp Method and device for manufacturing pattern film
JP2014222282A (en) * 2013-05-13 2014-11-27 大日本印刷株式会社 Transfer body for optical film, optical film, image display device, manufacturing method of transfer body for optical film, and manufacturing method of optical film
JP2016193966A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Polymerizable liquid crystal composition, retardation film and production method of the retardation film
JP2017037150A (en) * 2015-08-07 2017-02-16 Jxエネルギー株式会社 Phase difference plate, lamination polarizing plate using phase difference plate, and display using phase difference plate
WO2017110638A1 (en) * 2015-12-22 2017-06-29 日本ゼオン株式会社 Liquid crystalline composition, liquid crystal cured layer, method for producing same, and optical film
JP2018169479A (en) * 2017-03-29 2018-11-01 富士フイルム株式会社 Method for manufacturing retardation film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022501A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Method for producing optical element, and optical element
WO2022050003A1 (en) * 2020-09-07 2022-03-10 住友化学株式会社 Optical laminate, and ellipsoidally polarizing plate including same

Also Published As

Publication number Publication date
JP6967083B2 (en) 2021-11-17
KR20200056410A (en) 2020-05-22
JPWO2019103143A1 (en) 2020-12-24
KR102394968B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
KR102443875B1 (en) Retardation film, production method of retardation film, laminate, composition, polarizing plate and liquid crystal display device
JP6055917B2 (en) Optical film, polarizing plate, image display device, and method of manufacturing optical film
US9122091B2 (en) Phase difference plate for circularly polarizing plate, circularly polarizing plate, and organic electroluminescence display apparatus
US9366793B2 (en) Circularly polarizing plate, retardation plate for circularly polarizing plate, and organic electroluminescence display apparatus
JP2006178389A (en) Method of producing elliptically polarizing plate and image display using the elliptically polarizing plate
JP2004046194A (en) Manufacturing method for optical compensator
JP6677722B2 (en) Horizontal alignment type liquid crystal display
WO2006067916A1 (en) Elliptic polarizing plate and image display employing it
US11841521B2 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
WO2019103143A1 (en) Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film
JP2004046195A (en) Manufacturing method for optical compensator
JPWO2010110090A1 (en) Optical film, polarizing plate, and liquid crystal display device
JP7440523B2 (en) Liquid crystal composition, optical film, circularly polarizing plate for organic EL display, manufacturing method of optically anisotropic layer
JP5274929B2 (en) Liquid crystal panel and liquid crystal display device
TWI421597B (en) Optical film, optically compensatory film and polarizing plate and liquid crystal display using same
TWI420159B (en) Optical compensation film and method of producing the same, polarizing plate and liquid crystal display
JP6708580B2 (en) Method for producing retardation film
JP2005105139A (en) Cellulose acylate film, and polarizing plate and liquid crystal display device obtained by using the same
WO2022030308A1 (en) Optically anisotropic layer
WO2021033631A1 (en) Optical anisotropic layer production method, laminate production method, polarizer-equipped optical anisotropic layer production method, polarizer-equipped laminate production method, composition, and optical anisotropic layer
WO2019098215A1 (en) Long liquid crystal film, long polarizing film, image display device, and method for producing long liquid crystal film
JP2005321527A (en) Liquid crystal display
TWI356212B (en) Optical compensation film, liquid crystal display
WO2023163119A1 (en) Antireflection film and organic electroluminescent display device
TW201326990A (en) Liquid crystal display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010831

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019555396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880663

Country of ref document: EP

Kind code of ref document: A1