WO2019100482A1 - 基于无人机的载重控制方法、设备及无人机 - Google Patents

基于无人机的载重控制方法、设备及无人机 Download PDF

Info

Publication number
WO2019100482A1
WO2019100482A1 PCT/CN2017/117045 CN2017117045W WO2019100482A1 WO 2019100482 A1 WO2019100482 A1 WO 2019100482A1 CN 2017117045 W CN2017117045 W CN 2017117045W WO 2019100482 A1 WO2019100482 A1 WO 2019100482A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
propeller
target
lift
propeller blade
Prior art date
Application number
PCT/CN2017/117045
Other languages
English (en)
French (fr)
Inventor
林敬顺
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Priority to US16/764,351 priority Critical patent/US20200278700A1/en
Publication of WO2019100482A1 publication Critical patent/WO2019100482A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/07Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/20On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for in-flight adjustment of the base configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion

Definitions

  • the present application belongs to the field of intelligent control technology, and in particular to a drone-based load control method, device and drone
  • a drone is a non-manned aerial vehicle that uses a radio remote control, program control device, or computer control program to control flight.
  • UAVs can be used in a variety of technical fields, such as agriculture, express delivery, disaster relief, etc., which mainly utilize the carrying capacity of drones.
  • the drone mainly uses the lift generated by the rotation of the propeller blades to transport the carrying object, and the propeller blades rotate under the driving of the electric motor to generate lift.
  • the propeller blades and the propeller blades are fixedly mounted on the drone, and the propeller blades and the propeller blades are fixed in size. Therefore, the lift generated by the propeller blades under the motor is also fixed.
  • a drone can carry a carrier having a load weight less than its fixed lift, which is generally referred to as the weight of the carrier and the body of the drone. However, if the drone carries less weight, it can be carried using a fixed lift that is less than that provided by the drone.
  • the drone carries a carrier object smaller than its lift and the body of the drone, which causes waste of energy of the drone.
  • the present application provides a drone-based load control method, device, and drone to solve the waste of the drone lift caused by the unmanned aerial vehicle of the prior art.
  • the first aspect of the present application provides a UAV-based load control method
  • the UAV includes: a UAV body, a first end connected to the UAV body, and an adjustable length a propeller paddle arm, an adjustable size propeller blade coupled to the second end of the propeller paddle arm, and a processor mounted in the body of the drone;
  • the method includes:
  • the drone-based carrying object determines that the drone weight of the drone includes:
  • the determining, according to the first lifting force, determining a load weight of the drone includes:
  • Detecting whether the current first carrying height of the drone is greater than a preset height threshold if yes, determining a load gravity of the drone based on the first lift and the first carrying height; if not, adjusting The rotation speed of the propeller blade until the second carrier height of the drone is detected is greater than a preset height threshold.
  • controlling the propeller paddle arm to adjust to a target length and the propeller blade to adjust to the target size, so that the drone controls the propeller blade to rotate to carry the carrier object comprises:
  • Determining an initial length of the propeller boom before adjustment and an initial size of the propeller blade Determining an initial length of the propeller boom before adjustment and an initial size of the propeller blade; determining a first adjustment step of the propeller blade according to the target size and the initial size; according to the target length And determining, by the initial length, a second adjustment step of the propeller paddle; controlling a propeller blade of the drone to adjust a first adjustment step to the target size and adjusting a second step of the propeller paddle arm
  • the target length is counted to cause the drone to control the propeller blade to rotate to carry the carrier object.
  • a second aspect of the present application provides a drone-based load control device, the control device for controlling a drone, the drone comprising: a drone body, a first end, and the drone body a length-adjustable propeller paddle arm, an adjustable-sized propeller blade coupled to the second end of the propeller paddle arm, and a processor mounted in the drone body;
  • the device includes a processing component, a storage component coupled to the processing component, the processing component including one or more processors, the storage component including one or more memories, the storage component for storing one or more a plurality of computer instructions for execution by the processing component;
  • the processing component is used to:
  • the processing component determines that the weight of the drone of the drone is based on a carrying object of the drone:
  • the processing component determines that the weight of the drone of the drone is based on the first lift:
  • the processing assembly controls the propeller paddle arm to adjust to a target length and the propeller blade to adjust to the target size to cause the drone to control the propeller blade to rotate to carry the carrier object specifically is:
  • Determining an initial length of the propeller boom before adjustment and an initial size of the propeller blade Determining an initial length of the propeller boom before adjustment and an initial size of the propeller blade; determining a first adjustment step of the propeller blade according to the target size and the initial size; according to the target length And determining, by the initial length, a second adjustment step of the propeller paddle; controlling a propeller blade of the drone to adjust a first adjustment step to the target size and adjusting a second step of the propeller paddle arm
  • the target length is counted to cause the drone to control the propeller blade to rotate to carry the carrier object.
  • a third aspect of the present application provides a drone, including a UAV body, a propeller paddle arm coupled to the UAV body at a first end and adjustable in length, and a second end connected to the propeller paddle arm An adjustable size propeller blade, and a processor mounted within the drone body for controlling rotation of the propeller blade to generate lift to carry the carrier object; wherein the target size of the propeller blade And a target length of the propeller paddle arm, determined according to a target lift determined by a gravity of the drone of the drone.
  • the processor of the drone is further configured to:
  • the load gravity of the drone may be determined
  • the target lift of the drone may be determined based on the load gravity
  • the target size of the propeller blade and the propeller may be determined according to the target lift.
  • the target length of the paddle arm After the propeller paddle arm is adjusted to the target length and the propeller blade is adjusted to the target length, when the propeller blade is operated under the target size, corresponding target lift can be generated correspondingly.
  • the target lift is equivalent to the load gravity required to carry the carrying object, that is, the drone can be carried under the appropriate lift of the carrying object, and the energy of the drone can be reasonably used.
  • FIG. 1 is a flow chart of an embodiment of a drone-based control method according to an embodiment of the present application
  • FIG. 2 is a schematic view of a size adjustable propeller blade of an embodiment of the present application
  • FIG. 3 is a schematic view of an adjustable length propeller paddle arm of an embodiment of the present application.
  • FIG. 4 is a flow chart of still another embodiment of a drone control method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a drone-based control device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a drone according to an embodiment of the present application.
  • the embodiment of the invention is mainly applied to the control scene of the drone.
  • the drone By adjusting the size of the propeller blades of the drone, the drone can generate lift corresponding to the weight of the load, and energy waste can be avoided.
  • a fixed-size propeller paddle arm and a propeller blade are usually fixed to the drone.
  • the drone mainly generates lift by rotating the propeller blades and transports the load object. Therefore, when the propeller blades and the propeller blades are fixed, the lift generated by the drone is also fixed in the case where the rotational speed of the propeller blades is constant.
  • the drone can carry different carrying objects when the propeller blades and the blades are fixed, and at this time, the lift of the drone carrying the carrying object is fixed.
  • the weight of the different carrying objects is different, and the weight of the drone that requires the load is different.
  • the gravity of the UAV body is 10KG.
  • the gravity that the UAV needs to carry is the gravity of the gravity of the object and the gravity of the UAV body, that is, 400N and 200N, respectively.
  • the lift generated by the human machine is fixed at 500N, and the lift is less than the gravity that needs to be carried. When carrying a smaller weight object, no lift equivalent to the fixed lift is required.
  • the drone is converted into mechanical energy by a battery or fuel to control the rotation of the propeller boom of the drone to generate lift to carry the carrier.
  • the drone When the lift of the drone is fixed, the drone needs to generate corresponding power, and in order to generate power, the drone needs to consume the corresponding energy, so when the propeller blades and the paddle arm of the drone are fixed When the fixed power is generated, when carrying objects of different weights, energy is wasted.
  • the inventor has thought that the lift generated by the drone is related to the rotation speed of the propeller blade and the size of the propeller blade.
  • the size of the propeller blade is increased, the lift generated by the rotation of the propeller is increased.
  • the rotation speed is constant, the size of the propeller blade can be adjusted.
  • the generated lift force is also adjusted, and the energy consumption required to be relatively adjusted, for example, can be increased or decreased to meet the carrying objects of different weights.
  • the propeller blades are mounted on the propeller blades. When adjusting the size of the propeller blades, the length of the propeller blades needs to be adjusted accordingly so that the propeller blades can normally fly on the propeller blades, which increases the stability of the drone. Accordingly, the inventors have proposed the technical solution of the present application.
  • the lift of the drone can be adapted to the gravity of the object to be transported, and the waste energy of the drone caused by the fixed propeller blade and the paddle arm is avoided, so that the energy consumption of the drone is more reasonable.
  • FIG. 1 it is a flowchart of an embodiment of a drone-based load control method provided by an embodiment of the present application.
  • the method may be mainly used to control a drone, and the drone may include: a UAV body, a propeller paddle arm coupled to the UAV at a first end and adjustable in length, a sized adjustable propeller blade coupled to the second end of the propeller paddle arm, and mounted to the unmanned Processing component inside the machine body.
  • the method can include the following modules:
  • Unmanned aerial vehicles are unmanned aircraft operated by radio remote control equipment and self-provided program control devices. UAVs can be used for payloads, and they are widely used in express transportation, disaster relief, and material delivery.
  • the loaded object When the drone is under load, the loaded object can be placed in the body of the drone machine or suspended on the drone, and the load mode of the drone is not limited herein, and any use is not used.
  • the method in which the human machine carries the load can all belong to the embodiment of the present application.
  • the payload of the drone is usually composed of a drone body and a carrying object, and the weight of the drone of the drone may be the gravity of the body of the drone and the gravity of the carrying object.
  • the weight of the drone of the drone can be measured by a gravity gauge.
  • the weight of the drone and the carrying object may be measured by a weight measuring device, and the product of the weight and the gravitational acceleration is calculated by Newtonian mechanical force, that is, the weight of the drone.
  • a propeller is usually mounted on the drone, and the propeller may include a propeller blade and a propeller paddle.
  • the propeller blade rotates, lift can be generated to enable the drone to fly normally.
  • the propeller blades may be rotated in air or water to produce a helical structure of lift or propulsion, and the blades may be helical.
  • the lift generated when the propeller blades rotate can be related to their size and speed, and is proportional to each other.
  • An increase in the size of the propeller paddle arm may mean that the area of the propeller paddle may gradually increase according to a certain rule.
  • the propeller paddle arm refers to a supporting body supporting a section of the drone and the propeller blade, which may be a long rectangular type or a long cylindrical type structure.
  • the propeller paddle arm can be increased to ensure that the propeller blade can rotate normally, no blade collision occurs, and the UAV is normally used; the area of the propeller blade is
  • the propeller paddle arm can be shortened to ensure the normal rotation of the propeller blade, and the phenomenon that the drone is easily lost due to the excessive length of the paddle arm can be avoided.
  • Adjustable propeller blades refer to propeller blades with adjustable area.
  • the adjustable propeller paddle arm refers to a propeller paddle arm of adjustable length.
  • the propeller blades and the propeller blades can be adjusted under the control of the drone.
  • determining the carrying gravity of the drone based on the load object may include:
  • the drone is configured to carry the carrier object, and when carrying the carrier object, a corresponding target lift is required to carry the carrier object such that the lift generated by the drone is equivalent to the target lift
  • the carrying object can be carried.
  • the target lift of the drone refers to the driving force that the drone needs to generate when it can carry the carrying object to a certain height.
  • the target lift may be greater than the load gravity in consideration of air resistance or the like.
  • the drone When the drone is flying, it is also susceptible to environmental factors such as atmospheric pressure and atmospheric density. The influence of this part of environmental factors is known as the lift tolerance ⁇ .
  • the lift tolerance can be obtained by pre-testing.
  • the target lift is affected by multiple factors, which may include: lift coefficient, propeller blade speed, atmospheric density, gravity, propeller blade size, etc. In the case of the same lift coefficient, propeller blade speed, atmospheric density, gravity, the target lift is proportional to the size of the propeller blade.
  • the values of the lift coefficient, the propeller blade rotational speed, the atmospheric density, and the target lift are brought into the above-described target lift formula, and the propeller blade size S is calculated.
  • the values of the above-mentioned lift coefficient, the motor speed, and the atmospheric density can be obtained by setting, measuring, etc., and the acquisition manner is a conventional acquisition mode, and details are not described herein.
  • a user can find a propeller blade that matches the target size and mount the propeller blade on a length-adjusted propeller paddle to make the propeller paddle
  • the leaves are rotatable on the propeller arm.
  • the target size and the target length are respectively used to adjust a propeller blade and a propeller paddle of the drone.
  • the drone may control the propeller paddle arm and the propeller blade to adjust according to the target size and the target length.
  • the propeller blade may have a rhomboid shape, a streamline shape, or the like, and the spiral blade may include a first blade region, a second blade region, and the first end is connected to the first blade region, and the second end a first adjustment mechanism coupled to the second blade region.
  • a rhomboid shaped spiral blade 200 which may include a first paddle region 201, a first adjustment mechanism 202, and a second paddle region 203.
  • the target size may include a target area from which the length of the propeller blade may be determined, whereby the propeller blade may be adjusted according to the length of the propeller blade.
  • the propeller paddle arm is adjustable, and the propeller paddle may be a long rectangular structure, and may include a first paddle arm region, a second paddle arm region, and a first end connecting the first blade region to a second end connection A second adjustment mechanism for the two blade regions. As shown in FIG. 3, it is a long rectangular propeller paddle arm 300, which may include a first paddle arm region 301, a second adjustment mechanism 302, and a second paddle arm region 303.
  • the weight of the drone of the drone can be determined by the carrying object of the drone, and based on the gravity of the load, the drone can be determined based on the gravity of the load. Determining the target lift of the drone and determining a target size of the propeller blade and a target length of the propeller paddle based on the target lift. After the propeller paddle arm is adjusted to the target length and the propeller blade is adjusted to the target length, when the propeller blade is operated under the target size, corresponding target lift can be generated correspondingly.
  • the target lift is equivalent to the load gravity required to carry the carrying object, that is, the drone can be carried under the appropriate lift of the carrying object, and the energy of the drone can be reasonably used.
  • FIG. 4 is a flowchart of still another embodiment of a drone-based load control method according to an embodiment of the present application.
  • the carrying method in the embodiment may include:
  • a relatively maximum lift can be generated without changing the rotational speed, and it can be determined whether the drone can carry the carrier object at the rotational speed.
  • controlling the adjustment of the propeller blade to a maximum size may mean controlling the drone to adjust the propeller blade to a maximum size and adjusting the propeller paddle arm to a maximum extent.
  • the propeller blade rotates at a first rotational speed to generate lift to carry the carrying object, and the rotational speed does not change during the carrying.
  • the current first lift of the drone can be obtained by a lift calculation formula.
  • the propeller blade When the propeller blade is at the maximum size, its size can be represented by M1, assuming that the first rotational speed is V, at this time, the drone
  • the resulting first lift Y1 can be calculated using the following lift formula:
  • Y1 is the first lift
  • C is the lift coefficient
  • V is the first speed
  • is the atmospheric density
  • M1 is the propeller blade size
  • the determining, according to the first lifting force, determining the weight of the drone of the drone may include:
  • the rotational speed of the propeller blade is adjusted until it is detected that the second carrying height of the drone is greater than a preset height threshold.
  • the first lift of the drone may be related to the load weight and the first carry height at which the current drone is located.
  • a distance detecting component may be installed in the drone to detect the height at which the drone is located.
  • the distance detecting component may be a GPS positioning component, an infrared distance sensor, or the like.
  • the first carrying height at this time can be calculated by the following formula:
  • the formula for calculating the carrying gravity of the drone can be obtained by formulating the formula 2:
  • the formula for calculating the gravity of the drone can be obtained by bringing the calculation formula of Y1 in the formula into the formula 3:
  • C is the lift coefficient
  • V is the first speed
  • is the atmospheric density
  • M1 is the propeller blade size
  • H1 is the first carrier height
  • is the flight conversion factor of the drone.
  • the adjusted second rotational speed of the drone may be recorded.
  • the target rotational speed may be set to the second rotational speed when the drone carries the same or similar weight as the carrying object.
  • the speed of the drone can be manually set by the user and input from the human-computer interaction interface provided by the drone or the drone-based load control device before being carried. Therefore, when the second rotational speed is recorded, the load gravity may be described in association with the second rotational speed. Therefore, the correspondence between the transport weight and the second rotational speed described in the transport history may be real-time.
  • the first carrying height is less than the preset height, it indicates that even when the propeller blade is at the maximum size, it rotates at the first rotating speed, and the generated lift is insufficient to carry the carrying object, therefore, it is required Increasing the rotational speed of the propeller blade to the second rotational speed.
  • the propeller blades of the drone when determining the load weight of the drone, can be controlled to be adjusted to a maximum size and the propeller paddle arm to the maximum length, so that the drone is at The first carrier state is claimed.
  • the current first lift of the drone can be determined to determine the drone according to the first lift of the drone.
  • Load gravity The weight of the drone of the drone can determine the weight of the drone by the carrying process of the drone to determine whether the lift generated by the drone is sufficient to carry the carrying object, thereby determining whether The need to adjust the propeller blades and the propeller blades can make the drone control process of the drone more accurate and avoid blind adjustment.
  • controlling the propeller arm is adjusted to a target length and the propeller blade is adjusted to the target size to cause the drone to control the propeller blade to rotate to carry the carry Objects can include:
  • the leaves rotate to carry the carrier.
  • the propeller blades and the propeller blades can be adjusted in size and length under the control of a drive motor.
  • a first adjustment accuracy of each adjustment step of the propeller blade under the driving of the first drive motor and a second adjustment accuracy of each adjustment of the propeller paddle arm by the second drive motor may be determined.
  • Determining the first adjustment step of the propeller blade according to the target size and the initial size may include:
  • Determining, according to the target length and the initial length, the second adjustment step of the propeller paddle arm may include:
  • the first adjustment step when adjusting the propeller blade and the propeller paddle arm, the first adjustment step may be calculated according to the initial size of the propeller blade and the target size, according to the propeller paddle arm. Calculate the second adjustment step by the initial length and the target length.
  • the propeller blade of the UAV can be controlled to adjust the corresponding first step, and the propeller arm is adjusted to the corresponding second step. , improve the accuracy of the adjustment.
  • determining the target lift of the drone based on the gravity of the load may include:
  • a target lift of the drone is calculated based on the target cruising altitude and the weight of the drone.
  • the target lift of the drone may be calculated based on the target cruising altitude and the weight of the drone according to the fly height conversion coefficient of the drone.
  • the flying height conversion coefficient is ⁇
  • the target cruising altitude is H2
  • the drone weight of the drone is G
  • the target lifting force of the drone is Y2.
  • the target cruising altitude H2 can be expressed by the following formula:
  • the formula for calculating the target lift of the drone can be obtained by formula conversion:
  • the target lift Y2 can be calculated by substituting the target cruising altitude H2, the flying height conversion coefficient ⁇ , and the load gravity G into the formula 6.
  • the target size of the propeller blade may be determined by the target lift.
  • the lift of the drone may be related to the cruising altitude thereof, and the target lift of the drone determined by the cruising altitude may control the calculation process of the target lift more accurately, and may The lift generated by the man-machine can be sufficient to carry to the target cruising altitude, and the flight altitude caused by the unmanned lift caused by the estimation method is not accurate.
  • the UAV-based load control device may be a control device based on the UAV, for example, a UAV remote controller;
  • a conventional computing device of the control device such as a notebook, the computing device can be in data communication with a control device of the drone or a processor within the drone body to view the target size and Outputting the target length to the drone to control the drone to carry a load carrying object, or acquiring various data of the drone from the drone, such as sensing data of the drone; and
  • a drone-based load control device configured to control a drone, and the drone includes: a drone body, and a first end.
  • a propeller paddle arm coupled to the UAV body and adjustable in length, an adjustable size propeller blade coupled to the second end of the propeller paddle arm, and a processing assembly mounted within the UAV body.
  • the apparatus includes a processing component 501, a storage component 502 coupled to the processing component; the processing component 501 including one or more processors, the storage component 502 including one or more memories, the storage component Storing one or more computer instructions for execution by the processing component;
  • the processing component 501 can be used to:
  • control device may be a control device that is independent of the drone.
  • the control device may include a display component that can display a control process of the drone, control data, and the like.
  • the display component can be a touchable display screen.
  • the display component can also be used to input various data of the drone, for example, the initial rotational speed of the drone.
  • Unmanned aerial vehicles are unmanned aircraft operated by radio remote control equipment and self-provided program control devices. UAVs can be used for payloads, and they are widely used in express transportation, disaster relief, and material delivery.
  • the loaded object When the drone is under load, the loaded object can be placed in the body of the drone machine or suspended on the drone, and the load mode of the drone is not limited herein, and any use is not used.
  • the method in which the human machine carries the load can all belong to the embodiment of the present application.
  • the load of the drone is usually composed of a drone body and a carrying object, and the weight of the drone of the drone may be the sum of the body gravity of the drone and the gravity of the carrying object.
  • the weight of the drone of the drone can be measured by a gravity gauge.
  • the weight of the drone and the carrying object may be measured by a weight measuring device, and the product of the weight and the gravitational acceleration is calculated by Newtonian mechanical force, that is, the weight of the drone.
  • a propeller is usually mounted on the drone, and the propeller may include a propeller blade and a propeller paddle.
  • the propeller blade rotates, lift can be generated to enable the drone to fly normally.
  • the propeller blades may be rotated in air or water to produce a helical structure of lift or propulsion, and the blades may be helical.
  • the lift generated when the propeller blades rotate can be related to their size and speed, and is proportional to each other.
  • An increase in the size of the propeller paddle arm may mean that the area of the propeller paddle may gradually increase according to a certain rule.
  • the propeller paddle arm refers to a supporting body supporting a section of the drone and the propeller blade, which may be a long rectangular type or a long cylindrical type structure.
  • the propeller paddle arm can be increased to ensure that the propeller blade can rotate normally, no blade collision occurs, and the UAV is normally used; the area of the propeller blade is
  • the propeller paddle arm can be shortened to ensure the normal rotation of the propeller blade, and the phenomenon that the drone is easily lost due to the excessive length of the paddle arm can be avoided.
  • Adjustable propeller blades refer to propeller blades with adjustable area.
  • the adjustable propeller paddle arm refers to a propeller paddle arm of adjustable length.
  • the propeller blades and the propeller blades can be adjusted under the control of the drone.
  • the processing component is based on the load object, and determining that the drone's carrying gravity can be:
  • the drone is configured to carry the carrier object, and when carrying the carrier object, a corresponding target lift is required to carry the carrier object such that the lift generated by the drone is equivalent to the target lift
  • the carrying object can be carried.
  • the target lift of the drone refers to the driving force that the drone needs to generate when it can carry the carrying object to a certain height.
  • the target lift may be greater than the load gravity in consideration of air resistance or the like.
  • the drone When the drone is flying, it is also susceptible to environmental factors such as atmospheric pressure and atmospheric density. The influence of this part of environmental factors is known as the lift tolerance ⁇ .
  • the lift tolerance can be obtained by pre-testing.
  • the target lift is affected by multiple factors, which may include: lift coefficient, propeller blade speed, atmospheric density, gravity, propeller blade size, etc. In the case of the same lift coefficient, propeller blade speed, atmospheric density, gravity, the target lift is proportional to the size of the propeller blade.
  • the values of the lift coefficient, the propeller blade rotational speed, the atmospheric density, and the target lift are brought into the above-described target lift formula, and the propeller blade size S is calculated.
  • the values of the lift coefficient, the motor speed, and the atmospheric density can be obtained by setting, measuring, etc., and the acquisition manner is a conventional acquisition mode, and details are not described herein.
  • a user can find a propeller blade that matches the target size and mount the propeller blade on a length-adjusted propeller paddle to make the propeller paddle
  • the leaves are rotatable on the propeller arm.
  • the target size and the target length are respectively used to adjust a propeller blade and a propeller paddle of the drone.
  • the drone may control the propeller paddle arm and the propeller blade to adjust according to the target size and the target length.
  • the propeller blade may have a rhomboid shape, a streamline shape, or the like, and the spiral blade may include a first blade region, a second blade region, and the first end is connected to the first blade region, and the second end a first adjustment mechanism coupled to the second blade region.
  • the target size may include a target area from which the length of the propeller blade may be determined, whereby the propeller blade may be adjusted according to the length of the propeller blade.
  • the propeller paddle arm is adjustable, and the propeller paddle may be a long rectangular structure, and may include a first paddle arm region, a second paddle arm region, and a first end connecting the first blade region to a second end connection A second adjustment mechanism for the two blade regions.
  • the device may generate the target size and the target length to the drone to control the drone to adjust according to the target size and the target length.
  • the apparatus may further determine a blade control command of the propeller blade and a paddle arm control command of the propeller paddle according to the target size and the target length, and the blade control command and the A paddle arm control command is sent to the drone to cause the drone to adjust the paddle arm to the target length and the blade to the blade in response to the blade control command and the paddle arm control command Target command.
  • the weight of the drone of the drone can be determined by the carrying object of the drone, and based on the gravity of the load, the drone can be determined based on the gravity of the load. Determining the target lift of the drone and determining a target size of the propeller blade and a target length of the propeller paddle based on the target lift. After the propeller paddle arm is adjusted to the target length and the propeller blade is adjusted to the target length, when the propeller blade is operated under the target size, corresponding target lift can be generated correspondingly.
  • the target lift is equivalent to the load gravity required to carry the carrying object, that is, the drone can be carried under the appropriate lift of the carrying object, and the energy of the drone can be reasonably used.
  • the processing component is determined based on the carrying object of the drone, and determining the weight of the drone of the drone may be:
  • a relatively maximum lift can be generated without changing the rotational speed, and it can be determined whether the drone can carry the carrier at the rotational speed.
  • controlling the adjustment of the propeller blade to a maximum size may mean controlling the drone to adjust the propeller blade to a maximum size and adjusting the propeller paddle arm to a maximum extent.
  • the propeller blade rotates at a first rotational speed to generate lift to carry the carrying object, and the rotational speed does not change during the carrying.
  • the current first lift of the drone can be obtained by a lift calculation formula.
  • the propeller blade When the propeller blade is at the maximum size, its size can be represented by M1, assuming that the first rotational speed is V, at this time, the drone
  • the resulting first lift Y1 can be calculated using the following lift formula:
  • Y1 is the first lift
  • C is the lift coefficient
  • V is the first speed
  • is the atmospheric density
  • M1 is the propeller blade size
  • the processing component determines, according to the first lifting force, that the weight of the drone of the drone may be:
  • the rotational speed of the propeller blade is adjusted until it is detected that the second carrying height of the drone is greater than a preset height threshold.
  • the first lift of the drone may be related to the load weight and the first carry height of the current drone.
  • a distance detecting component may be installed in the drone to detect the height at which the drone is located.
  • the distance detecting component may be a GPS positioning component, an infrared distance sensor, or the like.
  • the first carrying height at this time can be calculated by the following formula:
  • the formula for calculating the carrying gravity of the drone can be obtained by formulating the formula 2:
  • the formula for calculating the gravity of the drone can be obtained by bringing the calculation formula of Y1 in the formula into the formula 3:
  • C is the lift coefficient
  • V is the first speed
  • is the atmospheric density
  • M1 is the propeller blade size
  • H1 is the first carrier height
  • is the flight conversion factor of the drone.
  • the adjusted second rotational speed of the drone may be recorded.
  • the target rotational speed may be set to the second rotational speed when the drone carries the same or similar weight as the carrying object.
  • the speed of the drone can be manually set by the user and input from the human-computer interaction interface provided by the drone or the drone-based load control device before being carried. Therefore, when the second rotational speed is recorded, the load gravity may be described in association with the second rotational speed. Therefore, the correspondence between the transport weight and the second rotational speed described in the transport history may be real-time.
  • the first carrying height is less than the preset height, it indicates that at this time, even when the propeller blade is rotated at the first rotational speed at the maximum size, the generated lift is insufficient to carry the carrying object, so It is necessary to increase the rotational speed of the propeller blade to the second rotational speed.
  • the propeller blades of the drone when determining the load weight of the drone, can be controlled to be adjusted to a maximum size and the propeller paddle arm to the maximum length, so that the drone is at The first carrier state is claimed.
  • the current first lift of the drone can be determined to determine the drone according to the first lift of the drone.
  • Load gravity The weight of the drone of the drone can determine the weight of the drone by the carrying process of the drone to determine whether the lift generated by the drone is sufficient to carry the carrying object, thereby determining whether The need to adjust the propeller blades and the propeller blades can make the drone control process of the drone more accurate and avoid blind adjustment.
  • the processing assembly controls the propeller boom to adjust to a target length and the propeller blade to adjust to the target size to cause the drone to control the propeller blade to rotate to carry
  • the specific carrying object can be:
  • the leaves rotate to carry the carrier.
  • the propeller blades and the propeller blades can be adjusted in size and length under the control of a drive motor.
  • a first adjustment accuracy of each adjustment step of the propeller blade under the driving of the first drive motor and a second adjustment accuracy of each adjustment of the propeller paddle arm by the second drive motor may be determined.
  • the determining, by the processing component, the first adjustment step of the propeller blade according to the target size and the initial size may be:
  • the determining, by the processing component, the second adjustment step of the propeller paddle arm according to the target length and the initial length may be:
  • the first adjustment step when adjusting the propeller blade and the propeller paddle arm, the first adjustment step may be calculated according to the initial size of the propeller blade and the target size, according to the propeller paddle arm. Calculate the second adjustment step by the initial length and the target length.
  • the propeller blade of the UAV can be controlled to adjust the corresponding first step, and the propeller arm is adjusted to the corresponding second step. , improve the accuracy of the adjustment.
  • the processing component determines that the target lift of the drone is specifically based on the weight of the load:
  • a target lift of the drone is calculated based on the target cruising altitude and the weight of the drone.
  • the target lift of the drone may be calculated based on the target cruising altitude and the weight of the drone according to the fly height conversion coefficient of the drone.
  • the flying height conversion coefficient is ⁇
  • the target cruising altitude is H2
  • the drone weight of the drone is G
  • the target lifting force of the drone is Y2.
  • the target cruising altitude H2 can be expressed by the following formula:
  • the formula for calculating the target lift of the drone can be obtained by formula conversion:
  • the target lifting force Y2 can be calculated.
  • the target size of the propeller blade may be determined by the target lift.
  • the lift of the drone may be related to the cruising altitude thereof, and the target lift of the drone determined by the cruising altitude may control the calculation process of the target lift more accurately, and may The lift generated by the man-machine can be sufficient to carry to the target cruising altitude, and the flight altitude caused by the unmanned lift caused by the estimation method is not accurate.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present disclosure.
  • the UAV may include a UAV body 601, and the first end is connected to the UAV body and the length is adjustable.
  • the target size of the propeller blade and the target length of the propeller paddle are determined according to a target lift determined by the gravity of the drone.
  • the propeller blade may have a rhomboid shape, a streamline shape, or the like, and the spiral blade may include a first blade region, a second blade region, and the first end is connected to the first blade region, and the second end a first adjustment mechanism coupled to the second blade region.
  • the target size may comprise a target area from which the length of the propeller blade may be determined, whereby the propeller blade may be adjusted according to the length of the propeller blade.
  • the propeller paddle arm is adjustable, and the propeller paddle may be a long rectangular structure, and may include a first paddle arm region, a second paddle arm region, and a first end connecting the first blade region to a second end connection A second adjustment mechanism for the two blade regions.
  • the drone can adjust the size of the propeller blade and the length of the propeller paddle.
  • the UAV may include a plurality of propeller blades and a propeller paddle.
  • the UAV shown in FIG. 6 is only a schematic diagram of an unmanned connection shown in the present application, and the shape and number of the propeller blades are The shape and the number of the propeller paddles, and the shape of the unmanned aerial vehicle body are not limited to those shown in FIG. 6.
  • the propeller blades and the propeller paddle arms are adjustable, they are all described in the present application.
  • Technical solutions are all described in the present application.
  • the propeller blades and the paddle arms of the drone can be adjusted, and the carrying gravity of the drone changes accordingly, thereby expanding the load range of the drone and improving its use. Reasonable, saving drone power consumption and saving energy.
  • the processor of the drone can also be used to:
  • the propeller boom is adjusted to the target length and the propeller blade to the target size such that the drone controls the propeller blade to rotate to generate lift to carry the carrier object.
  • the drone may calculate a target size of the propeller blade and a target length of the propeller paddle according to the obtained data, thereby controlling a blade motor to adjust a size of the propeller blade and a paddle motor adjusting the propeller paddle arm length.
  • Unmanned aerial vehicles are unmanned aircraft operated by radio remote control equipment and self-provided program control devices. UAVs can be used for payloads, and they are widely used in express transportation, disaster relief, and material delivery.
  • the loaded object When the drone is under load, the loaded object can be placed in the body of the drone machine or suspended on the drone, and the load mode of the drone is not limited herein, and any use is not used.
  • the method in which the human machine carries the load can all belong to the embodiment of the present application.
  • the load of the drone is usually composed of a drone body and a carrying object, and the weight of the drone of the drone may be the sum of the body gravity of the drone and the gravity of the carrying object.
  • the weight of the drone of the drone can be measured by a gravity gauge.
  • the weight of the drone and the carrying object may be measured by a weight measuring device, and the product of the weight and the gravitational acceleration is calculated by Newtonian mechanical force, that is, the weight of the drone.
  • a propeller is usually mounted on the drone, and the propeller may include a propeller blade and a propeller paddle.
  • the propeller blade rotates, lift can be generated to enable the drone to fly normally.
  • the propeller blades may be rotated in air or water to create a helical structure of lift or propulsion, and the blades may be helical.
  • the lift generated when the propeller blades rotate can be related to their size and speed, and is proportional to each other.
  • An increase in the size of the propeller paddle arm may mean that the area of the propeller paddle may gradually increase according to a certain rule.
  • the propeller paddle arm refers to a supporting body supporting a section of the drone and the propeller blade, which may be a long rectangular type or a long cylindrical type structure.
  • the propeller paddle arm can be increased to ensure that the propeller blade can rotate normally, no blade collision occurs, and the UAV is normally used; the area of the propeller blade is
  • the propeller paddle arm can be shortened to ensure the normal rotation of the propeller blade, and the phenomenon that the drone is easily lost due to the excessive length of the paddle arm can be avoided.
  • Adjustable propeller blades refer to propeller blades with adjustable area.
  • the adjustable propeller paddle arm refers to a propeller paddle arm of adjustable length.
  • the propeller blades and the propeller blades can be adjusted under the control of the drone.
  • the processor determines, based on the load object, that the drone's carrying gravity can be:
  • the drone is configured to carry the carrier object, and when carrying the carrier object, a corresponding target lift is required to carry the carrier object such that the lift generated by the drone is equivalent to the target lift
  • the carrying object can be carried.
  • the target lift of the drone refers to the driving force that the drone needs to generate when it can carry the carrying object to a certain height.
  • the target lift may be greater than the load gravity in consideration of air resistance or the like.
  • the drone When the drone is flying, it is also susceptible to environmental factors such as atmospheric pressure and atmospheric density. The influence of this part of environmental factors is known as the lift tolerance ⁇ .
  • the lift tolerance can be obtained by pre-testing.
  • the target lift is affected by multiple factors, which may include: lift coefficient, propeller blade speed, atmospheric density, gravity, propeller blade size, etc. In the case of the same lift coefficient, propeller blade speed, atmospheric density, gravity, the target lift is proportional to the size of the propeller blade.
  • the size of the processor propeller blade may refer to a target area of the propeller blade. Determining, according to the target lift, the target size of the propeller blade may be:
  • the values of the lift coefficient, the propeller blade rotational speed, the atmospheric density, and the target lift are brought into the above-described target lift formula, and the propeller blade size S is calculated.
  • the values of the lift coefficient, the motor speed, and the atmospheric density can be obtained by setting, measuring, etc., and the acquisition manner is a conventional acquisition mode, and details are not described herein.
  • a user can find a propeller blade that matches the target size and mount the propeller blade on a length-adjusted propeller paddle to make the propeller paddle
  • the leaves are rotatable on the propeller arm.
  • the target size and the target length are respectively used to adjust a propeller blade and a propeller paddle of the drone.
  • the drone may control the propeller paddle arm and the propeller blade to adjust according to the target size and the target length.
  • the propeller blade may have a rhomboid shape, a streamline shape, or the like, and the spiral blade may include a first blade region, a second blade region, and the first end is connected to the first blade region, and the second end a first adjustment mechanism coupled to the second blade region.
  • the target size may include a target area from which the length of the propeller blade may be determined, whereby the propeller blade may be adjusted according to the length of the propeller blade.
  • the propeller paddle arm is adjustable, and the propeller paddle may be a long rectangular structure, and may include a first paddle arm region, a second paddle arm region, and a first end connecting the first blade region to a second end connection A second adjustment mechanism for the two blade regions.
  • the device may generate the target size and the target length to the drone to control the drone to adjust according to the target size and the target length.
  • the apparatus may further determine a blade control command of the propeller blade and a paddle arm control command of the propeller paddle according to the target size and the target length, and the blade control command and the A paddle arm control command is sent to the drone to cause the drone to adjust the paddle arm to the target length and the blade to the blade in response to the blade control command and the paddle arm control command Target command.
  • the drone may further include: a paddle motor and a paddle motor; the drone may calculate the paddle according to a target size of the propeller paddle and a target length of the propeller paddle arm The leaf motor and the number of steps of the paddle motor, and generating a movement command according to the number of moving steps to control the blade motor to adjust the size and control the paddle motor to adjust the length.
  • the weight of the drone of the drone can be determined by the carrying object of the drone, and based on the gravity of the load, the drone can be determined based on the gravity of the load. Determining the target lift of the drone and determining a target size of the propeller blade and a target length of the propeller paddle based on the target lift. After the propeller paddle arm is adjusted to the target length and the propeller blade is adjusted to the target length, when the propeller blade is operated under the target size, corresponding target lift can be generated correspondingly.
  • the target lift is equivalent to the load gravity required to carry the carrying object, that is, the drone can be carried under the appropriate lift of the carrying object, and the energy of the drone can be reasonably used.
  • the drone may further include: a driving motor located at the second end of the propeller paddle arm and connected to the propeller blade;
  • the processor specifically controls the rotation of the drive motor to drive the propeller blades to rotate.
  • the propeller selection is driven by a driving motor in the drone, and then the drone can carry the load carrying object, so that the use of the drone is normalized.
  • the drone may further include: an environment detecting component connected to the processor, configured to detect current environmental information of the drone;
  • the processor is further configured to:
  • Determining current environmental information of the drone Determining current environmental information of the drone; calculating a target rotational speed of the propeller blade according to the current environmental information, the target size, and the target length;
  • the processor controlling the rotation of the propeller blade specifically controls the rotation of the propeller blade according to the target rotational speed.
  • the environment detecting component may include a distance detector, a GPS locator, and the like.
  • the target rotational speed of the drone can be determined from multiple angles, and the drone is improved.
  • the operational accuracy can in turn increase the transport efficiency of the drone.
  • the drone may further include a display component connected to the processor;
  • the processor is further configured to control the display component to output adjustment prompt information based on the target size and the target length; the adjustment prompt information is used to prompt the user that the drone has adjusted the none according to the target length
  • the propeller paddle arm of the human machine and the propeller blades of the drone are replaced according to the target size.
  • the drone may further include an output component connected to the processor;
  • the processor is further configured to control the output component to output adjustment prompt information to the display device based on the target size and the target length.
  • the adjustment prompt information may include the target size and the target length, and the user may replace the propeller blades of the drone according to the target size, and the propeller paddle arm may be adjusted according to the target length.
  • the display component can display prompt information, so that the user can obtain data information such as the target size and the target length in time, or can prompt the user to adjust the propeller paddle arm of the drone and replace the drone.
  • the propeller blades enable the user to adjust the load of the Suhuo drone in time to adjust the use of the drone and improve its efficiency.
  • the processing component is determined based on the carrying object of the drone, and determining the weight of the drone of the drone may be:
  • the propeller blade rotates at a first rotational speed to generate lift to carry the carrying object, and the rotational speed does not change during the carrying.
  • the processing component determines, according to the first lifting force, that the weight of the drone of the drone may be:
  • the rotational speed of the propeller blade is adjusted until it is detected that the second carrying height of the drone is greater than a preset height threshold.
  • the adjusted second rotational speed of the drone may be recorded.
  • the target rotational speed may be set to the second rotational speed when the drone carries the same or similar weight as the carrying object.
  • the speed of the drone can be manually set by the user and input from the human-computer interaction interface provided by the drone or the drone-based load control device before being carried. Therefore, when the second rotational speed is recorded, the load gravity may be described in association with the second rotational speed. Therefore, the correspondence between the transport weight and the second rotational speed described in the transport history may be real-time.
  • the first carrying height is less than the preset height, it indicates that at this time, even when the propeller blade is rotated at the first rotational speed at the maximum size, the generated lift is insufficient to carry the carrying object, so It is necessary to increase the rotational speed of the propeller blade to the second rotational speed.
  • the propeller blades of the drone when determining the load weight of the drone, can be controlled to be adjusted to a maximum size and the propeller paddle arm to the maximum length, so that the drone is at The first carrier state is claimed.
  • the current first lift of the drone can be determined to determine the drone according to the first lift of the drone.
  • Load gravity The weight of the drone of the drone can determine the weight of the drone by the carrying process of the drone to determine whether the lift generated by the drone is sufficient to carry the carrying object, thereby determining whether The need to adjust the propeller blades and the propeller blades can make the drone control process of the drone more accurate and avoid blind adjustment.
  • the processing assembly controls the propeller boom to adjust to a target length and the propeller blade to adjust to the target size to cause the drone to control the propeller blade to rotate to carry
  • the specific carrying object can be:
  • the leaves rotate to carry the carrier.
  • the propeller blades and the propeller blades can be adjusted in size and length under the control of a drive motor.
  • a first adjustment accuracy of each adjustment step of the propeller blade under the driving of the first drive motor and a second adjustment accuracy of each adjustment of the propeller paddle arm by the second drive motor may be determined.
  • the determining, by the processing component, the first adjustment step of the propeller blade according to the target size and the initial size may be:
  • the determining, by the processing component, the second adjustment step of the propeller paddle arm according to the target length and the initial length may be:
  • the first adjustment step when adjusting the propeller blade and the propeller paddle arm, the first adjustment step may be calculated according to the initial size of the propeller blade and the target size, according to the propeller paddle arm. Calculate the second adjustment step by the initial length and the target length.
  • the propeller blade of the UAV can be controlled to adjust the corresponding first step, and the propeller arm is adjusted to the corresponding second step. , improve the accuracy of the adjustment.
  • the processing component determines that the target lift of the drone is specifically based on the weight of the load:
  • a target lift of the drone is calculated based on the target cruising altitude and the weight of the drone.
  • the target lift of the drone may be calculated based on the target cruising altitude and the weight of the drone according to the fly height conversion coefficient of the drone.
  • the lift of the drone may be related to the cruising altitude thereof, and the target lift of the drone determined by the cruising altitude may control the calculation process of the target lift more accurately, and may The lift generated by the man-machine can be sufficient to carry to the target cruising altitude, and the flight altitude caused by the unmanned lift caused by the estimation method is not accurate.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology. The information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other memory technology
  • CD-ROM compact disk read only memory
  • DVD digital versatile disk
  • Magnetic tape cartridges magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种基于无人机的载重控制方法、设备及无人机,该无人机包括:无人机本体、第一端与无人机本体连接且长度可调节的螺旋桨桨臂、与螺旋桨桨臂的第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于无人机本体内的处理器。该控制方法包括:基于无人机的运载对象,确定无人机的载重重力;基于载重重力,确定无人机的目标升力;根据目标升力,确定螺旋桨桨叶的目标尺寸以及螺旋桨桨臂的目标长度;调整螺旋桨桨臂至目标长度以及调整螺旋桨桨叶至目标尺寸,以使无人机控制螺旋桨桨叶旋转产生升力以运载该运载对象。该控制方法避免了无人机的能源浪费,使无人机的能源得到充分利用。

Description

基于无人机的载重控制方法、设备及无人机 技术领域
本申请属于智能控制技术领域,具体地说,涉及一种基于无人机的载重控制方法、设备及无人机
背景技术
无人机是一种利用无线电遥控、程序控制装置或者计算机控制程序来操控飞行的不载人飞行器。无人机可以应用于多种技术领域,例如,农业、快递运输、灾难救援等,这些领域中主要利用无人机的运载能力。
无人机主要利用螺旋桨桨叶旋转产生的升力以运输运载对象,螺旋桨桨叶在电动马达的带动下旋转而产生升力。现有技术中,螺旋桨桨叶以及螺旋桨桨臂都是固定安装在无人机上,螺旋桨桨叶以及螺旋桨桨臂的尺寸均固定,因此,螺旋桨桨叶在马达带动下产生的升力也是固定的。
通常,无人机可以运载载重重力小于其固定升力的运载对象,所述载重重力通常是指所述运载对象以及无人机本体的重力和。但是,如果所述无人机运载的载重重力较小,使用小于该无人机提供的固定升力即可以运载。所述无人机运载小于其升力的运载对象和无人机本体,会造成无人机的能源浪费。
发明内容
有鉴于此,本申请提供一种基于无人机的载重控制方法、设备及无人机,以解决现有技术中无人机因提供固定升力载重不同重量的物体造成的无人机升力的浪费。
为了解决上述技术问题,本申请第一方面提供一种基于无人机的载重控制方法,所述无人机包括:无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器;
所述方法包括:
基于无人机的运载对象,确定所述无人机的载重重力;基于所述载重重力,确定所述无人机的目标升力;根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸, 以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
优选地,所述基于无人机的运载对象,确定所述无人机的载重重力包括:
控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;利用处于所述第一运载状态的无人机运载所述运载对象;确定所述无人机当前的第一升力;基于所述第一升力,确定所述无人机的载重重力。
优选地,所述基于所述第一升力,确定所述无人机的载重重力包括:
检测所述无人机当前的第一运载高度是否大于预设高度阈值;如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值。
优选地,所述控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象包括:
确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
本申请第二方面提供一种基于无人机的载重控制设备,所述控制设备用于控制无人机,所述无人机包括:无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器;
所述设备包括:处理组件,与所述处理组件连接的存储组件;所述处理组件包括一个或多个处理器,所述存储组件包括一个或多个存储器,所述存储组件用于存储一条或多条计算机指令,以供所述处理组件调用执行;
所述处理组件用于:
基于无人机的运载对象,确定所述无人机的载重重力;基于所述载重重力,确定所述无人机的目标升力;根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
优选地,所述处理组件基于无人机的运载对象,确定所述无人机的载重重力具体是:
控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;利用处于所述第一运载状态的无人机运载所述运载对象;确定所述无 人机当前的第一升力;基于所述第一升力,确定所述无人机的载重重力。
优选地,所述处理组件基于所述第一升力,确定所述无人机的载重重力具体是:
检测所述无人机当前的第一运载高度是否大于预设高度阈值;如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值,确定调整后无人机的第二升力,并基于所述第二运载高度以及所述第二升力确定所述无人机的载重重力。
优选地,所述处理组件控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象具体是:
确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
本申请的第三方面提供一种无人机,包括无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器,用于控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象;其中,所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,根据所述无人机的载重重力确定的目标升力确定。
优选地,所述无人机的处理器还用于:
基于无人机的运载对象,确定所述无人机的载重重力;基于所述载重重力,确定所述无人机的目标升力;根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
本申请实施例中,可以确定无人机的载重重力,基于所述载重重力可以确定所述无人机的目标升力,并根据所述目标升力确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。控制所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶调整至所述目标长度之后,所述螺旋桨桨叶在所述目标尺寸下工作时,即可以对应产生相应的目标升力,所述目标升力与运载所述运载对象需要的载重重力相当,即可以使所述无人机在与运载对象适当的升力下运载,可以使无人机的能源得到合理使用。
附图说明
图1是本申请实施例的一种基于无人机的控制方法的一个实施例的流程图;
图2是本申请实施例的一种尺寸可调整的螺旋桨桨叶的示意图;
图3是本申请实施例的一种长度可调整的螺旋桨桨臂的示意图;
图4是本申请实施例的一种基于无人机控制方法的又一个实施例的流程图;
图5是本申请实施例的一种基于无人机的控制设备的一个实施例的结构示意图;
图6是本申请实施例的一种无人机的示意图。
具体实施方式
以下将配合附图及实施例来详细说明本申请的实施方式,藉此对本申请如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明实施例主要应用于无人机的控制场景中,通过调整无人机的螺旋桨桨叶的尺寸,使所述无人机产生与载重重力相当的升力,可以避免能源浪费。
现有技术中,通常将尺寸固定的螺旋桨桨臂以及螺旋桨桨叶固定在无人机上。无人机主要通过螺旋桨桨叶旋转而产生升力,运输载重对象。因此,在螺旋桨桨叶以及螺旋桨桨臂固定时,在螺旋桨桨叶的转速速度一定的情况下,所述无人机产生的升力也是固定的。无人机在螺旋桨桨叶以及桨叶固定时,可以运载不同的运载对象,此时,无人机运载所述运载对象的升力是固定的。而不同的运载对象的重力不同,进而无人机需要载重的载重重力不同。
例如,假设运载的物体分别是30KG以及10KG,无人机本体的重力是10KG,无人机需要运载的重力分别是物体重力与无人机本体重力的重力和,也即400N以及200N,而无人机产生的升力固定是500N,升力小于需要运载的重力。运载重量较小的对象时,并不需要与所述固定升力相当的升力。无人机多通过电池或者燃料转化为机械能,以控制所述无人机的螺旋桨桨臂旋转产生升力来运载所述运载对象。所述无人机的升力固定时,需要无人机产生相对应的功率,而为了产生功率需要无人机进而需要消耗相对应的能源,因此,当无人机的螺旋桨桨叶以及桨臂固定时,产生固定的功率,运载不同重量的运载对象时,造成能源浪费。
发明人想到,无人机产生的升力,除与所述螺旋桨桨叶的转速相关,还与螺旋桨桨叶的尺寸相关,螺旋桨桨叶的尺寸增大时,螺旋桨旋转产生的升力增大,因此,在转速一定的情况下,可以调整所述螺旋桨桨叶的尺寸,调整后,产生的升力也随之调整,需要消耗的能源相对调整,例如,可以增加或减少,以满足不同重量的运载对象的运载需要。而螺旋桨桨叶安装在螺旋桨桨臂上,调整螺旋桨桨叶尺寸时,螺旋桨桨臂长度需要随之调整,以使螺旋桨桨叶能够在螺旋桨桨臂上正常飞行,增加了无人机的稳定性。据此,发明人提出了本申请的 技术方案。
本申请实施例中,基于所述无人机的运载对象,确定无人机的载重重力,以确定运载所述运载对象需要的目标升力,根据所述目标升力可以确定所述无人机的螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,进而可以调整螺旋桨桨叶至所述目标尺寸,所述螺旋桨桨臂至所述目标长度,调整后,所述螺旋桨桨叶可以产生与所述载重重力相对应的升力以运载所述运载对象。可以使无人机的升力随着运载对象的重力相适应,避免因固定螺旋桨桨叶以及桨臂固定时,造成的无人机的能源浪费,使无人机的耗能更加合理。
下面将结合附图对本申请的技术方案进行详细描述。
如图1所示,为本申请实施例提供的一种基于无人机的载重控制方法的一个实施例的流程图,该方法可以主要用于控制无人机,所述无人机可以包括:无人机本体、第一端与所述无人机连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调整的螺旋桨桨叶、以及安装于所述无人机本体内部的处理组件。
所述方法可以包括以下几个模块:
101:基于无人机的运载对象,确定所述无人机的载重重力。
无人机是指利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,无人机可以用于载重,其在快递运输、灾难救援、物资投送等领域的应用十分广泛。无人机在载重时,可以将所载物体放置与无人机机的机体中,或者悬挂于所述无人机上,所述无人机的载重方式在此不进行限定,任何一种利用无人机进行载物的方法都可以属于本申请的实施方式。
无人机的载重通常由无人机本体以及运载对象构成,所述无人机的载重重力可以是所述无人机的本体重力以及所述运载对象的重力和。
可选地,所述无人机的载重重力可以通过重力测量仪测量获得。或者还可以通过重量测量器测量所述无人机以及所述运载对象的重量,通过牛顿力学定力,计算所述重量与重力加速度的乘积,即为所述无人机的载重重力。
无人机上通常安装有螺旋桨,所述螺旋桨可以包括螺旋桨桨叶以及螺旋桨桨臂,螺旋桨桨叶转动时,可以产生升力,使无人机能够正常飞行。所述螺旋桨桨叶可以在空气或者水中旋转,产生升力或者推进力的螺旋结构,桨叶可以为螺旋结构。通常螺旋桨桨叶旋转时产生的升力可以与其尺寸大小以及转速相关,且均成正比,当螺旋桨桨叶的尺寸或者转速增大时,产生的升力增大。所述螺旋桨桨臂的尺寸增大可以指所述螺旋桨桨叶面积可以按照一定规则逐渐增大。
所述螺旋桨桨臂指连接所述无人机与所述螺旋桨桨叶的一段具有支撑作用的支撑体,其可以是长矩型或者长圆柱型结构。在所述螺旋桨桨叶面积增大时,所述螺旋桨桨臂可以增长, 以保障所述螺旋桨桨叶能够正常旋转,不产生桨叶碰撞,影响无人机正常使用;在所述螺旋桨桨叶面积减少时,所述螺旋桨桨臂可以调短,以保障螺旋桨桨叶正常旋转的同时,可以避免因桨臂过长造成无人机易失平衡的现象。
可调整的螺旋桨桨叶是指,面积可调整的螺旋桨桨叶。可调整的螺旋桨桨臂是指,长度可调整的螺旋桨桨臂。所述螺旋桨桨叶以及所述螺旋桨桨臂可以在无人机的控制下调整。
可选地,所述基于载重对象,确定无人机的运载重力可以包括:
确定所述无人机本体的本体重力以及所述载重对象的对象重力;
计算所述本体重力与所述对象重力之和,即为所述无人机的运载重力。
102:基于所述载重重力,确定所述无人机的目标升力。
所述无人机用于运载所述运载对象,其在运载所述运载对象时,需要相应的目标升力来运载所述运载对象,以使所述无人机产生的升力与所述目标升力相当,可以运载所述运载对象。
无人机的目标升力是指,所述无人机在可以运载所述运载对象至一定的高度时,需要产生的推动力。考虑空气阻力等原因,所述目标升力可以大于所述载重重力。
无人机在飞行时,还容易受到大气压强、大气密度等环境因素的影响,将这部分环境因素的影响通称为升力公差δ。所述升力公差可以预先测试获得。考虑环境因素影响时,无人机的理论升力Y>=G+δ;其中,G为无人机运载重力,δ为升力公差。
103:根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。
所述螺旋桨桨叶尺寸越大,其在一定转速旋转时产生的升力越大。目标升力受到多重因素的影响,其影响因素可以包括:升力系数、螺旋桨桨叶转速、大气密度、重力、螺旋桨桨叶尺寸等。在相同升力系数、螺旋桨桨叶转速、大气密度、重力的情况下,所述目标升力与所述螺旋桨桨叶尺寸成正比。
可选地,所述螺旋桨桨叶的尺寸可以指所述螺旋桨桨叶的目标面积。所述根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸可以包括:
确定目标升力公式:Y=1/2ρCSv 2;其中,Y为目标升力,C为升力系数,V为马达转速,ρ为大气密度,S为螺旋桨桨叶尺寸;
确定升力系数、螺旋桨桨叶转速、大气密度之后,将所述升力系数、螺旋桨桨叶转速、大气密度以及目标升力的值带入上述目标升力公式,计算获得所述螺旋桨桨叶尺寸S。
上述升力系数、马达转速、大气密度的值可以通过设定、测量等方式获得,其获取方式 为常规获取方式,在此不再进行赘述。
在确定所述螺旋桨桨叶为所述目标尺寸时,用户可以查找与所述目标尺寸匹配的螺旋桨桨叶,并将所述螺旋桨桨叶安装在长度调整的螺旋桨桨臂上,使所述螺旋桨桨叶能够在所述螺旋桨桨臂上旋转。
104:调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
所述目标尺寸与所述目标长度分别用于调整所述无人机的螺旋桨桨叶以及螺旋桨桨臂。所述无人机可以根据所述目标尺寸以及所述目标长度控制所述螺旋桨桨臂以及所述螺旋桨桨叶进行调整。
所述螺旋桨桨叶可以呈长菱形、流线型等形状,所述螺旋叶可以包括第一桨叶区域、第二桨叶区域、以及第一端与所述第一桨叶区域练连接,第二端与所述第二桨叶区域连接的第一调整机构。如图2所示,为一个长菱形形状的螺旋叶200,其中,可以包括第一桨叶区域201、第一调整机构202以及第二桨叶区域203。
可选地,所述目标尺寸可以包括目标面积,可以根据所述目标面积确定所述螺旋桨叶的长度,据此可以根据所述螺旋桨桨叶的长度调整所述螺旋桨桨叶。
所述螺旋桨桨臂可调整,所述螺旋桨桨叶可以是长矩形结构,可包括第一桨臂区域、第二桨臂区域、以及第一端连接所述第一桨叶区域第二端连接第二桨叶区域的第二调整机构。如图3所示,为一个长矩形的螺旋桨桨臂300,其中,可以包括第一桨臂区域301、第二调整机构302以及第二桨臂区域303。
本申请实施例中,通过所述无人机的运载对象,可以确定所述无人机的载重重力,并基于所述载重重力,可以确定所述无人机的基于所述载重重力可以确定所述无人机的目标升力,并根据所述目标升力确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。控制所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶调整至所述目标长度之后,所述螺旋桨桨叶在所述目标尺寸下工作时,即可以对应产生相应的目标升力,所述目标升力与运载所述运载对象需要的载重重力相当,即可以使所述无人机在与运载对象适当的升力下运载,可以使无人机的能源得到合理使用。
如图4所示,为本申请实施例提供的一种基于无人机的载重控制方法的又一个实施例的流程图,该实施例中所述运载方法可以包括:
401:控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态。
将所述螺旋桨桨叶调整至最大尺寸时,在转速不变的情况下,可以产生相对最大的升力, 可以确定所述无人机在该转速下是否能够运载所述运载对象。
可选地,所述控制所述螺旋桨桨叶调整至最大尺寸可以是指控制所述无人机将所述螺旋桨桨叶调整至最大尺寸,以及将所述螺旋桨桨臂调整至最大程度。
402:利用处于所述第一运载状态的无人机运载所述运载对象。
其中,所述无人机处于第一运载状态时,所述螺旋桨桨叶在第一转速旋转以产生升力运载所述运载对象,运载期间转速不变。
403:确定所述无人机当前的第一升力。
所述无人机的当前的第一升力可以通过升力计算公式获得,所述螺旋桨桨叶处于最大尺寸时,其尺寸可以用M1表示,假定此时第一转速为V,此时,无人机产生的第一升力Y1,可以用以下升力计算公式计算获得:
Y1=1/2ρC(M1)v 2;     公式1
其中,Y1为第一升力,C为升力系数,V为第一转速,ρ为大气密度,M1为螺旋桨桨叶尺寸。
404:基于所述第一升力,确定所述无人机的载重重力。
作为一种可能的实现方式,所述基于所述第一升力,确定所述无人机的载重重力可以包括:
检测所述无人机当前的第一运载高度是否大于预设高度阈值。
如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;
如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值。
可选地,所述无人机的第一升力可以与载重重力,以及当前无人机所处的第一运载高度相关。所述无人机中可以安装有距离检测组件,检测所述无人机所处的高度。所述距离检测组件可以是GPS定位组件、红外距离感应器等。
假设所述第一运载高度为H1,无人机的飞行转换系数为θ,第一升力Y1,无人机的运载重力为G,则此时的第一运载高度可用以下公式计算获得:
H1=θ*(Y1-G);     公式2
将公式2进行公式转换可以获得所述无人机的运载重力的计算公式:
G=Y1-H1/θ;     公式3
将所述公式中Y1的计算公式带入公式3则可以获得所述无人机运载重力计算公式:
G=1/2ρC(M1)v 2-H1/θ     公式4
其中,C为升力系数,V为第一转速,ρ为大气密度,M1为螺旋桨桨叶尺寸,H1为第一运载高度,θ为无人机的飞行转换系数。
可选地,在调整所述螺旋桨桨叶的转速之后,可以记录所述无人机调整后的第二转速。在所述无人机运载与所述运载对象重量相同或相近时,可以将所述目标转速设置为所述第二转速。所述无人机的转速可以是用户手动设置的,在运载之前从无人机或者基于无人机的载重控制设备提供的人机交互界面输入的。由于,在记录所述第二转速时,还可以将所述载重重力与所述第二转速对应记载,因此,也可以根据运载历史中记载的运载重量与所述第二转速的对应关系,实时查找无人机的运载重力与转速的对应关系,获得对应的转速,并将所述转速作为第一转速,检测螺旋桨桨叶在此转速下产生的升力是否足以运载此时的运载对象。
当所述第一运载高度小于预设高度时,说明此时,即便螺旋桨桨叶在处于最大尺寸时,其在处于第一转速下旋转,产生的升力不足以运载所述运载对象,因此,需要增大所述螺旋桨桨叶的旋转速度至所述第二转速。
405:基于所述载重重力,确定所述无人机的目标升力。
406:根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。
407:调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
本申请实施例的部分步骤与图1所示的步骤相同,在此不再赘述。
本申请实施例中,在确定所述无人机的载重重力时,可以控制无人机的螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂至所述最大长度,使所述无人机处于所诉第一运载状态,此时,利用无人机运载所述运载对象,可以定此时无人机当前的第一升力,以根据所述无人机的第一升力确定所述无人机的载重重力。所述无人机的载重重力,可以通过所述无人机的运载过程确定所述无人机的载重重力,以判断所述无人机产生的升力是否足以运载所述运载对象,进而确定是否需要调整螺旋桨叶以及螺旋桨桨臂,可以使无人机的载重控制过程更加准确,避免盲目调整。
作为又一个实施例,所述控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象可以包括:
确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;
根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;
根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;
控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调 整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
所述螺旋桨桨叶以及所述螺旋桨桨臂可以在驱动马达的控制下,调整其对应的尺寸以及长度。可以确定所述螺旋桨桨叶在第一驱动马达的驱动下每调整一步时的第一调整精度,以及所述螺旋桨桨臂在第二驱动马达的驱动下每调整一步时的第二调整精度。
所述根据目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数可以包括:
确定所述目标尺寸对应的螺旋桨桨叶的第一长度,以及所述目标尺寸对应的螺旋桨桨叶的第二长度;
计算所述第一长度与所述第二长度的差值,获得第一差值;
计算所述第一差值与所述第一调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第一调整步数。
所述根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数可以包括:
计算所述目标长度与所述初始长度的差值,获得第二差值;
计算所述第二差值与所述第二调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第二调整步数。
本申请实施例中,在调整所述螺旋桨桨叶以及所述螺旋桨桨臂时,可以通过根据所述螺旋桨桨叶的初始尺寸以及目标尺寸计算其第一调整步数,根据所述螺旋桨桨臂的初始长度以及目标长度计算其第二调整步数,通过调整步数的计算,可以控制所述无人机的螺旋桨桨叶调整相应的第一步数,螺旋桨桨臂调整至相应的第二步数,提高的调整的精度。
作为又一个实施例,所述基于所述载重重力,确定所述无人机的目标升力可以包括:
确定所述无人机的目标巡航高度;
基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
可选地,可以依据无人机的飞行高度转换系数,基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
假设所述飞行高度转换系数为θ,所述目标巡航高度为H2,所述无人机的载重重力为G,所述无人机的目标升力为Y2,
则所述目标巡航高度H2可以通过以下公式表达:
H2=θ(Y2-G)       公式5
通过公式转换,可以获得所述无人机的目标升力的计算公式:
Y2=H2/θ+G      公式6
通过将目标巡航高度H2、飞行高度转换系数θ以及载重重力G代入公式6,可以计算出 所述目标升力Y2。
可选地,计算出所述目标升力之后,即可以通过目标升力,确定所述螺旋桨桨叶的目标尺寸。
而目标升力Y2,有可以通过升力公式:Y=1/2ρCSv 2表示;其中,Y为目标升力,C为升力系数,V为马达转速,ρ为大气密度,S为螺旋桨桨叶尺寸,目标升力Y2可以用升力公式表示为Y2=1/2ρCM2v 2。其中,M2为未知的螺旋桨桨叶的目标尺寸。
本申请实施例中,所述无人机的升力可以与其巡航高度相关,通过所述巡航高度确定的所述无人机的目标升力,可以控制所述目标升力的计算过程更精确,可以使无人机产生的升力能够足以运载至目标巡航高度,避免估计方法造成的无人机升力不够而引起的飞行高度不准确。
需要说明的是,本申请实施例所述的基于无人机的载重控制设备,可以是基于所述无人机的控制设备,例如,无人机遥控器;还可以是不同于所述无人机及其控制设备的普通的计算设备,例如,笔记本,所述计算设备可以与所述无人机的控制设备或者无人机本体内的处理器进行数据通信,以将所述目标尺寸以及所述目标长度输出到所述无人机上控制所述无人机运载载重对象,或者从所述无人机上获取所述无人机的各种数据,例如无人机的感应数据;以及还可以是位于所述无人机上的模块设备,也即是所述无人机中配置有上述基于无人机的载重控制设备的模块。
如图5所示,为本申请实施例提供的一种基于无人机的载重控制设备,所述控制设备用于控制无人机,所述无人机包括:无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理组件。
所述设备包括:处理组件501,与所述处理组件连接的存储组件502;所述处理组件501包括一个或多个处理器,所述存储组件502包括一个或多个存储器,所述存储组件用于存储一条或多条计算机指令,以供所述处理组件调用执行;
所述处理组件501可以用于:
基于无人机的运载对象,确定所述无人机的载重重力;基于所述载重重力,确定所述无人机的目标升力;根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
可选地,所述控制设备可以是独立于无人机的控制设备。所述控制设备可以包括显示组件,可以显示所述无人机的控制过程以及控制数据等。所述显示组件可以为可触摸的显示屏, 此时,显示组件还可以用于输入无人机的各项数据,例如,无人机的初始转速。
无人机是指利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,无人机可以用于载重,其在快递运输、灾难救援、物资投送等领域的应用十分广泛。无人机在载重时,可以将所载物体放置与无人机机的机体中,或者悬挂于所述无人机上,所述无人机的载重方式在此不进行限定,任何一种利用无人机进行载物的方法都可以属于本申请的实施方式。
无人机的载重通常由无人机本体以及运载对象构成,所述无人机的载重重力可以是所述无人机的本体重力以及所述运载对象的重力之和。
可选地,所述无人机的载重重力可以通过重力测量仪测量获得。或者还可以通过重量测量器测量所述无人机以及所述运载对象的重量,通过牛顿力学定力,计算所述重量与重力加速度的乘积,即为所述无人机的载重重力。
无人机上通常安装有螺旋桨,所述螺旋桨可以包括螺旋桨桨叶以及螺旋桨桨臂,螺旋桨桨叶转动时,可以产生升力,使无人机能够正常飞行。所述螺旋桨桨叶可以在空气或者水中旋转,产生升力或者推进力的螺旋结构,桨叶可以为螺旋结构。通常螺旋桨桨叶旋转时产生的升力可以与其尺寸大小以及转速相关,且均成正比,当螺旋桨桨叶的尺寸或者转速增大时,产生的升力增大。所述螺旋桨桨臂的尺寸增大可以指所述螺旋桨桨叶面积可以按照一定规则逐渐增大。
所述螺旋桨桨臂指连接所述无人机与所述螺旋桨桨叶的一段具有支撑作用的支撑体,其可以是长矩型或者长圆柱型结构。在所述螺旋桨桨叶面积增大时,所述螺旋桨桨臂可以增长,以保障所述螺旋桨桨叶能够正常旋转,不产生桨叶碰撞,影响无人机正常使用;在所述螺旋桨桨叶面积减少时,所述螺旋桨桨臂可以调短,以保障螺旋桨桨叶正常旋转的同时,可以避免因桨臂过长造成无人机易失平衡的现象。
可调整的螺旋桨桨叶是指,面积可调整的螺旋桨桨叶。可调整的螺旋桨桨臂是指,长度可调整的螺旋桨桨臂。所述螺旋桨桨叶以及所述螺旋桨桨臂可以在无人机的控制下调整。
可选地,所述处理组件基于载重对象,确定无人机的运载重力可以是:
确定所述无人机本体的本体重力以及所述载重对象的对象重力;
计算所述本体重力与所述对象重力之和,即为所述无人机的运载重力。
所述无人机用于运载所述运载对象,其在运载所述运载对象时,需要相应的目标升力来运载所述运载对象,以使所述无人机产生的升力与所述目标升力相当,可以运载所述运载对象。
无人机的目标升力是指,所述无人机在可以运载所述运载对象至一定的高度时,需要产生的推动力。考虑空气阻力等原因,所述目标升力可以大于所述载重重力。
无人机在飞行时,还容易受到大气压强、大气密度等环境因素的影响,将这部分环境因素的影响通称为升力公差δ。所述升力公差可以预先测试获得。考虑环境因素影响时,无人机的理论升力Y>=G+δ;其中,G为无人机运载重力,δ为升力公差。
所述螺旋桨桨叶尺寸越大,其在一定转速旋转时产生的升力越大。目标升力受到多重因素的影响,其影响因素可以包括:升力系数、螺旋桨桨叶转速、大气密度、重力、螺旋桨桨叶尺寸等。在相同升力系数、螺旋桨桨叶转速、大气密度、重力的情况下,所述目标升力与所述螺旋桨桨叶尺寸成正比。
可选地,所述螺旋桨桨叶的尺寸可以指所述螺旋桨桨叶的目标面积。所述根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸可以包括:
确定目标升力公式:Y=1/2ρCSv 2;其中,Y为目标升力,C为升力系数,V为马达转速,ρ为大气密度,S为螺旋桨桨叶尺寸;
确定升力系数、螺旋桨桨叶转速、大气密度之后,将所述升力系数、螺旋桨桨叶转速、大气密度以及目标升力的值带入上述目标升力公式,计算获得所述螺旋桨桨叶尺寸S。
上述升力系数、马达转速、大气密度的值可以通过设定、测量等方式获得,其获取方式为常规获取方式,在此不再进行赘述。
在确定所述螺旋桨桨叶为所述目标尺寸时,用户可以查找与所述目标尺寸匹配的螺旋桨桨叶,并将所述螺旋桨桨叶安装在长度调整的螺旋桨桨臂上,使所述螺旋桨桨叶能够在所述螺旋桨桨臂上旋转。
所述目标尺寸与所述目标长度分别用于调整所述无人机的螺旋桨桨叶以及螺旋桨桨臂。所述无人机可以根据所述目标尺寸以及所述目标长度控制所述螺旋桨桨臂以及所述螺旋桨桨叶进行调整。
所述螺旋桨桨叶可以呈长菱形、流线型等形状,所述螺旋叶可以包括第一桨叶区域、第二桨叶区域、以及第一端与所述第一桨叶区域练连接,第二端与所述第二桨叶区域连接的第一调整机构。
可选地,所述目标尺寸可以包括目标面积,可以根据所述目标面积确定所述螺旋桨叶的长度,据此可以根据所述螺旋桨桨叶的长度调整所述螺旋桨桨叶。
所述螺旋桨桨臂可调整,所述螺旋桨桨叶可以是长矩形结构,可包括第一桨臂区域、第二桨臂区域、以及第一端连接所述第一桨叶区域第二端连接第二桨叶区域的第二调整机构。
可选地,所述设备可以将所述目标尺寸以及所述目标长度发生制所述无人机,以控制所述无人机根据所述目标尺寸以及所述目标长度进行调整。所述设备还可以根据所述目标尺寸 以及所述目标长度,确定所述螺旋桨桨叶的桨叶控制命令以及所述螺旋桨桨臂的桨臂控制命令,并将所述桨叶控制命令以及所述桨臂控制命令发送至无人机,以使所述无人机响应所述桨叶控制命令以及所述桨臂控制命令,调整所述桨臂至所述目标长度以及所述桨叶至所述目标命令。
本申请实施例中,通过所述无人机的运载对象,可以确定所述无人机的载重重力,并基于所述载重重力,可以确定所述无人机的基于所述载重重力可以确定所述无人机的目标升力,并根据所述目标升力确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。控制所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶调整至所述目标长度之后,所述螺旋桨桨叶在所述目标尺寸下工作时,即可以对应产生相应的目标升力,所述目标升力与运载所述运载对象需要的载重重力相当,即可以使所述无人机在与运载对象适当的升力下运载,可以使无人机的能源得到合理使用。
作为一个实施例,所述处理组件基于无人机的运载对象,确定所述无人机的载重重力具体可以是:
控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;利用处于所述第一运载状态的无人机运载所述运载对象;确定所述无人机当前的第一升力;基于所述第一升力,确定所述无人机的载重重力。
将所述螺旋桨桨叶调整至最大尺寸时,在转速不变的情况下,可以产生相对最大的升力,可以确定所述无人机在该转速下是否能够运载所述运载对象。
可选地,所述控制所述螺旋桨桨叶调整至最大尺寸可以是指控制所述无人机将所述螺旋桨桨叶调整至最大尺寸,以及将所述螺旋桨桨臂调整至最大程度。
其中,所述无人机处于第一运载状态时,所述螺旋桨桨叶在第一转速旋转以产生升力运载所述运载对象,运载期间转速不变。
所述无人机的当前的第一升力可以通过升力计算公式获得,所述螺旋桨桨叶处于最大尺寸时,其尺寸可以用M1表示,假定此时第一转速为V,此时,无人机产生的第一升力Y1,可以用以下升力计算公式计算获得:
Y1=1/2ρC(M1)v 2;     公式1
其中,Y1为第一升力,C为升力系数,V为第一转速,ρ为大气密度,M1为螺旋桨桨叶尺寸。
作为一种可能的实现方式,所述处理组件基于所述第一升力,确定所述无人机的载重重力具体可以是:
检测所述无人机当前的第一运载高度是否大于预设高度阈值。
如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;
如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值。
可选地,所述无人机的第一升力可以与载重重力,以及当前无人机的第一运载高度相关。所述无人机中可以安装有距离检测组件,检测所述无人机所处的高度。所述距离检测组件可以是GPS定位组件、红外距离感应器等。
假设所述第一运载高度为H1,无人机的飞行转换系数为θ,第一升力Y1,无人机的运载重力为G,则此时的第一运载高度可用以下公式计算获得:
H1=θ*(Y1-G);     公式2
将公式2进行公式转换可以获得所述无人机的运载重力的计算公式:
G=Y1-H1/θ;     公式3
将所述公式中Y1的计算公式带入公式3则可以获得所述无人机运载重力计算公式:
G=1/2ρC(M1)v 2-H1/θ     公式4
其中,C为升力系数,V为第一转速,ρ为大气密度,M1为螺旋桨桨叶尺寸,H1为第一运载高度,θ为无人机的飞行转换系数。
可选地,在调整所述螺旋桨桨叶的转速之后,可以记录所述无人机调整后的第二转速。在所述无人机运载与所述运载对象重量相同或相近时,可以将所述目标转速设置为所述第二转速。所述无人机的转速可以是用户手动设置的,在运载之前从无人机或者基于无人机的载重控制设备提供的人机交互界面输入的。由于,在记录所述第二转速时,还可以将所述载重重力与所述第二转速对应记载,因此,也可以根据运载历史中记载的运载重量与所述第二转速的对应关系,实时查找无人机的运载重力与转速的对应关系,获得对应的转速,并将所述转速作为第一转速,检测螺旋桨桨叶在此转速下产生的升力是否足以运载此时的运载对象。
当所述第一运载高度小于预设高度时,说明此时,即便螺旋桨桨叶在处于最大尺寸时,在其处于的第一转速下旋转时,产生的升力不足以运载所述运载对象,因此,需要增大所述螺旋桨桨叶的旋转速度至所述第二转速。
本申请实施例中,在确定所述无人机的载重重力时,可以控制无人机的螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂至所述最大长度,使所述无人机处于所诉第一运载状态,此时,利用无人机运载所述运载对象,可以定此时无人机当前的第一升力,以根据所述无人机的第一升力确定所述无人机的载重重力。所述无人机的载重重力,可以通过所述无人机的运载过程确定所述无人机的载重重力,以判断所述无人机产生的升力是否足以运载所述运载对象,进而确定是否需要调整螺旋桨叶以及螺旋桨桨臂,可以使无人机的载重控制过程更加准 确,避免盲目调整。
作为又一个实施例,所述处理组件控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象具体可以是:
确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;
根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;
根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;
控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
所述螺旋桨桨叶以及所述螺旋桨桨臂可以在驱动马达的控制下,调整其对应的尺寸以及长度。可以确定所述螺旋桨桨叶在第一驱动马达的驱动下每调整一步时的第一调整精度,以及所述螺旋桨桨臂在第二驱动马达的驱动下每调整一步时的第二调整精度。
所述处理组件根据目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数具体可以是:
确定所述目标尺寸对应的螺旋桨桨叶的第一长度,以及所述目标尺寸对应的螺旋桨桨叶的第二长度;
计算所述第一长度与所述第二长度的差值,获得第一差值;
计算所述第一差值与所述第一调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第一调整步数。
所述处理组件根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数具体可以是:
计算所述目标长度与所述初始长度的差值,获得第二差值;
计算所述第二差值与所述第二调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第二调整步数。
本申请实施例中,在调整所述螺旋桨桨叶以及所述螺旋桨桨臂时,可以通过根据所述螺旋桨桨叶的初始尺寸以及目标尺寸计算其第一调整步数,根据所述螺旋桨桨臂的初始长度以及目标长度计算其第二调整步数,通过调整步数的计算,可以控制所述无人机的螺旋桨桨叶调整相应的第一步数,螺旋桨桨臂调整至相应的第二步数,提高的调整的精度。
作为又一个实施例,所述处理组件基于所述载重重力,确定所述无人机的目标升力具体可以是:
确定所述无人机的目标巡航高度;
基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
可选地,可以依据无人机的飞行高度转换系数,基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
假设所述飞行高度转换系数为θ,所述目标巡航高度为H2,所述无人机的载重重力为G,所述无人机的目标升力为Y2,
则所述目标巡航高度H2可以通过以下公式表达:
H2=θ(Y2-G)      公式5
通过公式转换,可以获得所述无人机的目标升力的计算公式:
Y2=H2/θ+G      公式6
通过将目标巡航高度H2、飞行高度转换系数θ以及载重重力G代入公式6,可以计算出所述目标升力Y2。
可选地,计算出所述目标升力之后,即可以通过目标升力,确定所述螺旋桨桨叶的目标尺寸。
而目标升力Y2,有可以通过升力公式:Y=1/2ρCSv 2表示;其中,Y为目标升力,C为升力系数,V为马达转速,ρ为大气密度,S为螺旋桨桨叶尺寸,目标升力Y2可以用升力公式表示为Y2=1/2ρCM2v 2。其中,M2为未知的螺旋桨桨叶的目标尺寸。
本申请实施例中,所述无人机的升力可以与其巡航高度相关,通过所述巡航高度确定的所述无人机的目标升力,可以控制所述目标升力的计算过程更精确,可以使无人机产生的升力能够足以运载至目标巡航高度,避免估计方法造成的无人机升力不够而引起的飞行高度不准确。
如图6所示,为本申请实施例提供的一种无人机的结构示意图,所述无人机可以包括无人机本体601、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂602、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶603、以及安装于所述无人机本体601内的处理器(图中未示出),用于控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象;
其中,所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,根据所述无人机的载重重力确定的目标升力确定。
所述螺旋桨桨叶可以呈长菱形、流线型等形状,所述螺旋叶可以包括第一桨叶区域、第二桨叶区域、以及第一端与所述第一桨叶区域练连接,第二端与所述第二桨叶区域连接的第一调整机构。
可选地,所述目标尺寸可以包括目标面积,可以根据所述目标面积确定所述螺旋桨叶的 长度,据此可以根据所述螺旋桨桨叶的长度调整所述螺旋桨桨叶。
所述螺旋桨桨臂可调整,所述螺旋桨桨叶可以是长矩形结构,可包括第一桨臂区域、第二桨臂区域、以及第一端连接所述第一桨叶区域第二端连接第二桨叶区域的第二调整机构。
所述无人机可以调整所述螺旋桨桨叶的尺寸以及所述螺旋桨桨臂的长度。
所述无人机中可以包括多个螺旋桨桨叶以及螺旋桨桨臂,图6所示的无人机仅仅是本申请所示的一种无人接的示意图,所述螺旋桨桨叶的形状以及数量、所述螺旋桨桨臂的形状以及数量、所述无人机本体的形状并不局限于图6所示,所述螺旋桨桨叶以及所述螺旋桨桨臂可调整时,均属于本申请所表述的技术方案。
本申请实施例中,无人机的螺旋桨桨叶以及桨臂可以调整,进而所述无人机的运载重力随之改变而改变,进而可以扩展所述无人机的载重范围,提高其使用更合理,节约无人机功耗进而节约能源。
作为一种可能的实现方式,所述无人机的处理器还可以用于:
基于无人机的运载对象,确定所述无人机的载重重力;
基于所述载重重力,确定所述无人机的目标升力;
根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;
调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
无人机可以根据获得的数据计算所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,进而控制桨叶马达调整所述螺旋桨桨叶的尺寸以及桨臂马达调整所述螺旋桨桨臂的长度。
无人机是指利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,无人机可以用于载重,其在快递运输、灾难救援、物资投送等领域的应用十分广泛。无人机在载重时,可以将所载物体放置与无人机机的机体中,或者悬挂于所述无人机上,所述无人机的载重方式在此不进行限定,任何一种利用无人机进行载物的方法都可以属于本申请的实施方式。
无人机的载重通常由无人机本体以及运载对象构成,所述无人机的载重重力可以是所述无人机的本体重力以及所述运载对象的重力之和。
可选地,所述无人机的载重重力可以通过重力测量仪测量获得。或者还可以通过重量测量器测量所述无人机以及所述运载对象的重量,通过牛顿力学定力,计算所述重量与重力加速度的乘积,即为所述无人机的载重重力。
无人机上通常安装有螺旋桨,所述螺旋桨可以包括螺旋桨桨叶以及螺旋桨桨臂,螺旋桨桨叶转动时,可以产生升力,使无人机能够正常飞行。所述螺旋桨桨叶可以在空气或者水中 旋转,产生升力或者推进力的螺旋结构,桨叶可以为螺旋结构。通常螺旋桨桨叶旋转时产生的升力可以与其尺寸大小以及转速相关,且均成正比,当螺旋桨桨叶的尺寸或者转速增大时,产生的升力增大。所述螺旋桨桨臂的尺寸增大可以指所述螺旋桨桨叶面积可以按照一定规则逐渐增大。
所述螺旋桨桨臂指连接所述无人机与所述螺旋桨桨叶的一段具有支撑作用的支撑体,其可以是长矩型或者长圆柱型结构。在所述螺旋桨桨叶面积增大时,所述螺旋桨桨臂可以增长,以保障所述螺旋桨桨叶能够正常旋转,不产生桨叶碰撞,影响无人机正常使用;在所述螺旋桨桨叶面积减少时,所述螺旋桨桨臂可以调短,以保障螺旋桨桨叶正常旋转的同时,可以避免因桨臂过长造成无人机易失平衡的现象。
可调整的螺旋桨桨叶是指,面积可调整的螺旋桨桨叶。可调整的螺旋桨桨臂是指,长度可调整的螺旋桨桨臂。所述螺旋桨桨叶以及所述螺旋桨桨臂可以在无人机的控制下调整。
可选地,所述处理器基于载重对象,确定无人机的运载重力可以是:
确定所述无人机本体的本体重力以及所述载重对象的对象重力;
计算所述本体重力与所述对象重力之和,即为所述无人机的运载重力。
所述无人机用于运载所述运载对象,其在运载所述运载对象时,需要相应的目标升力来运载所述运载对象,以使所述无人机产生的升力与所述目标升力相当,可以运载所述运载对象。
无人机的目标升力是指,所述无人机在可以运载所述运载对象至一定的高度时,需要产生的推动力。考虑空气阻力等原因,所述目标升力可以大于所述载重重力。
无人机在飞行时,还容易受到大气压强、大气密度等环境因素的影响,将这部分环境因素的影响通称为升力公差δ。所述升力公差可以预先测试获得。考虑环境因素影响时,无人机的理论升力Y>=G+δ;其中,G为无人机运载重力,δ为升力公差。
所述螺旋桨桨叶尺寸越大,其在一定转速旋转时产生的升力越大。目标升力受到多重因素的影响,其影响因素可以包括:升力系数、螺旋桨桨叶转速、大气密度、重力、螺旋桨桨叶尺寸等。在相同升力系数、螺旋桨桨叶转速、大气密度、重力的情况下,所述目标升力与所述螺旋桨桨叶尺寸成正比。
可选地,所述处理器螺旋桨桨叶的尺寸可以指所述螺旋桨桨叶的目标面积。所述根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸具体可以是:
确定目标升力公式:Y=1/2ρCSv 2;其中,Y为目标升力,C为升力系数,V为马达转速,ρ为大气密度,S为螺旋桨桨叶尺寸;
确定升力系数、螺旋桨桨叶转速、大气密度之后,将所述升力系数、螺旋桨桨叶转速、大气密度以及目标升力的值带入上述目标升力公式,计算获得所述螺旋桨桨叶尺寸S。
上述升力系数、马达转速、大气密度的值可以通过设定、测量等方式获得,其获取方式为常规获取方式,在此不再进行赘述。
在确定所述螺旋桨桨叶为所述目标尺寸时,用户可以查找与所述目标尺寸匹配的螺旋桨桨叶,并将所述螺旋桨桨叶安装在长度调整的螺旋桨桨臂上,使所述螺旋桨桨叶能够在所述螺旋桨桨臂上旋转。
所述目标尺寸与所述目标长度分别用于调整所述无人机的螺旋桨桨叶以及螺旋桨桨臂。所述无人机可以根据所述目标尺寸以及所述目标长度控制所述螺旋桨桨臂以及所述螺旋桨桨叶进行调整。
所述螺旋桨桨叶可以呈长菱形、流线型等形状,所述螺旋叶可以包括第一桨叶区域、第二桨叶区域、以及第一端与所述第一桨叶区域练连接,第二端与所述第二桨叶区域连接的第一调整机构。
可选地,所述目标尺寸可以包括目标面积,可以根据所述目标面积确定所述螺旋桨叶的长度,据此可以根据所述螺旋桨桨叶的长度调整所述螺旋桨桨叶。
所述螺旋桨桨臂可调整,所述螺旋桨桨叶可以是长矩形结构,可包括第一桨臂区域、第二桨臂区域、以及第一端连接所述第一桨叶区域第二端连接第二桨叶区域的第二调整机构。
可选地,所述设备可以将所述目标尺寸以及所述目标长度发生制所述无人机,以控制所述无人机根据所述目标尺寸以及所述目标长度进行调整。所述设备还可以根据所述目标尺寸以及所述目标长度,确定所述螺旋桨桨叶的桨叶控制命令以及所述螺旋桨桨臂的桨臂控制命令,并将所述桨叶控制命令以及所述桨臂控制命令发送至无人机,以使所述无人机响应所述桨叶控制命令以及所述桨臂控制命令,调整所述桨臂至所述目标长度以及所述桨叶至所述目标命令。
可选地,所述无人机还可以包括:桨叶马达以及桨臂马达;所述无人机可以根据所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,计算所述桨叶马达以及桨臂马达的移动步数,并根据所述移动步数生成移动指令,以控制所述桨叶马达调整尺寸以及控制所述桨臂马达调整长度。
本申请实施例中,通过所述无人机的运载对象,可以确定所述无人机的载重重力,并基于所述载重重力,可以确定所述无人机的基于所述载重重力可以确定所述无人机的目标升力,并根据所述目标升力确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度。控制所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶调整至所述目标长度之后,所述螺 旋桨桨叶在所述目标尺寸下工作时,即可以对应产生相应的目标升力,所述目标升力与运载所述运载对象需要的载重重力相当,即可以使所述无人机在与运载对象适当的升力下运载,可以使无人机的能源得到合理使用。
作为一个实施例,所述无人机还可以包括:位于所述螺旋桨桨臂第二端,并与所述螺旋桨桨叶连接的驱动马达;
所述处理器具体控制所述驱动马达转动,以带动所述螺旋桨桨叶旋转。
本申请实施例中,通过无人机中的驱动马达带动所述螺旋桨选择,继而可以实现所述无人机运载载重对象,使得无人机的使用正常化。
作为又一个实施例,所述无人机还可以包括:与所述处理器连接的环境探测组件,用于探测所述无人机当前的环境信息;
所述处理器还用于:
确定所述无人机的当前环境信息;根据所述当前环境信息、所述目标尺寸以及所述目标长度,计算所述螺旋桨桨叶的目标转速;
所述处理器控制所述螺旋桨桨叶旋转具体是按照所述目标转速控制所述螺旋桨桨叶旋转。
可选地,所述环境探测组件可以包括距离检测器,GPS***等。
本申请实施例中,通过确定无人机所的环境信息,并将环境信息增加到所述无人机的运载因素中,可以实现从多角度确定无人机的目标转速,提高了无人机的运行精度,继而可以提高所述无人机的运输效率。
作为又一个实施例,所述无人机还可以包括与处理器连接的显示组件;
所述处理器还用于基于所述目标尺寸以及所述目标长度,控制所述显示组件输出调整提示信息;所述调整提示信息用于提示用户无人机已按照所述目标长度调整所述无人机的螺旋桨桨臂以及按照所述目标尺寸更换所述无人机的螺旋桨桨叶。
作为又一个实施例,所述无人机还可以包括与处理器连接的输出组件;
所述处理器还用于基于所述目标尺寸以及所述目标长度,控制所述输出组件输出调整提示信息至显示设备。
所述调整提示信息中可以包含所述目标尺寸以及所述目标长度,用户可以根据所述目标尺寸更换所述无人机的螺旋桨桨叶,可以根据所述目标长度调整所述螺旋桨桨臂。
本申请实施例中,显示组件可以显示提示信息,可以使用户及时获知目标尺寸、目标长度等数据信息,或者还可以提示用户调整所述无人机的螺旋桨桨臂以及更换所述无人机的螺旋桨桨叶,使用户及时调整苏搜狐无人机的载重,以使所述无人机调整使用,提高其使用效 率。
作为一个实施例,所述处理组件基于无人机的运载对象,确定所述无人机的载重重力具体可以是:
控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;利用处于所述第一运载状态的无人机运载所述运载对象;确定所述无人机当前的第一升力;基于所述第一升力,确定所述无人机的载重重力。
其中,所述无人机处于第一运载状态时,所述螺旋桨桨叶在第一转速旋转以产生升力运载所述运载对象,运载期间转速不变。
作为一种可能的实现方式,所述处理组件基于所述第一升力,确定所述无人机的载重重力具体可以是:
检测所述无人机当前的第一运载高度是否大于预设高度阈值。
如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;
如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值。
可选地,在调整所述螺旋桨桨叶的转速之后,可以记录所述无人机调整后的第二转速。在所述无人机运载与所述运载对象重量相同或相近时,可以将所述目标转速设置为所述第二转速。所述无人机的转速可以是用户手动设置的,在运载之前从无人机或者基于无人机的载重控制设备提供的人机交互界面输入的。由于,在记录所述第二转速时,还可以将所述载重重力与所述第二转速对应记载,因此,也可以根据运载历史中记载的运载重量与所述第二转速的对应关系,实时查找无人机的运载重力与转速的对应关系,获得对应的转速,并将所述转速作为第一转速,检测螺旋桨桨叶在此转速下产生的升力是否足以运载此时的运载对象。
当所述第一运载高度小于预设高度时,说明此时,即便螺旋桨桨叶在处于最大尺寸时,在其处于的第一转速下旋转时,产生的升力不足以运载所述运载对象,因此,需要增大所述螺旋桨桨叶的旋转速度至所述第二转速。
本申请实施例中,在确定所述无人机的载重重力时,可以控制无人机的螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂至所述最大长度,使所述无人机处于所诉第一运载状态,此时,利用无人机运载所述运载对象,可以定此时无人机当前的第一升力,以根据所述无人机的第一升力确定所述无人机的载重重力。所述无人机的载重重力,可以通过所述无人机的运载过程确定所述无人机的载重重力,以判断所述无人机产生的升力是否足以运载所述运载对象,进而确定是否需要调整螺旋桨叶以及螺旋桨桨臂,可以使无人机的载重控制过程更加准确,避免盲目调整。
作为又一个实施例,所述处理组件控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象具体可以是:
确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;
根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;
根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;
控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
所述螺旋桨桨叶以及所述螺旋桨桨臂可以在驱动马达的控制下,调整其对应的尺寸以及长度。可以确定所述螺旋桨桨叶在第一驱动马达的驱动下每调整一步时的第一调整精度,以及所述螺旋桨桨臂在第二驱动马达的驱动下每调整一步时的第二调整精度。
所述处理组件根据目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数具体可以是:
确定所述目标尺寸对应的螺旋桨桨叶的第一长度,以及所述目标尺寸对应的螺旋桨桨叶的第二长度;
计算所述第一长度与所述第二长度的差值,获得第一差值;
计算所述第一差值与所述第一调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第一调整步数。
所述处理组件根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数具体可以是:
计算所述目标长度与所述初始长度的差值,获得第二差值;
计算所述第二差值与所述第二调整精度的商,取整后与整数1的和即为所述螺旋桨桨叶的第二调整步数。
本申请实施例中,在调整所述螺旋桨桨叶以及所述螺旋桨桨臂时,可以通过根据所述螺旋桨桨叶的初始尺寸以及目标尺寸计算其第一调整步数,根据所述螺旋桨桨臂的初始长度以及目标长度计算其第二调整步数,通过调整步数的计算,可以控制所述无人机的螺旋桨桨叶调整相应的第一步数,螺旋桨桨臂调整至相应的第二步数,提高的调整的精度。
作为又一个实施例,所述处理组件基于所述载重重力,确定所述无人机的目标升力具体可以是:
确定所述无人机的目标巡航高度;
基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
可选地,可以依据无人机的飞行高度转换系数,基于所述目标巡航高度以及所述无人机的载重重力,计算所述无人机的目标升力。
本申请实施例中,所述无人机的升力可以与其巡航高度相关,通过所述巡航高度确定的所述无人机的目标升力,可以控制所述目标升力的计算过程更精确,可以使无人机产生的升力能够足以运载至目标巡航高度,避免估计方法造成的无人机升力不够而引起的飞行高度不准确。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者***中还存在另外的相同要素。
上述说明示出并描述了本申请的若干优选实施例,本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (10)

  1. 一种基于无人机的载重控制方法,其特征在于,所述无人机包括:无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器;
    所述方法包括:
    基于无人机的运载对象,确定所述无人机的载重重力;
    基于所述载重重力,确定所述无人机的目标升力;
    根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;
    调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
  2. 根据权利要求1所述的方法,其特征在于,所述基于无人机的运载对象,确定所述无人机的载重重力包括:
    控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;
    利用处于所述第一运载状态的无人机运载所述运载对象;
    确定所述无人机当前的第一升力;
    基于所述第一升力,确定所述无人机的载重重力。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述第一升力,确定所述无人机的载重重力包括:
    检测所述无人机当前的第一运载高度是否大于预设高度阈值;
    如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;
    如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象包括:
    确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;
    根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;
    根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;
    控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨 臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
  5. 一种基于无人机的载重控制设备,其特征在于,所述控制设备用于控制无人机,所述无人机包括:无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器;
    所述设备包括:处理组件,与所述处理组件连接的存储组件;所述处理组件包括一个或多个处理器,所述存储组件包括一个或多个存储器,所述存储组件用于存储一条或多条计算机指令,以供所述处理组件调用执行;
    所述处理组件用于:
    基于无人机的运载对象,确定所述无人机的载重重力;基于所述载重重力,确定所述无人机的目标升力;根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
  6. 根据权利要求5所述的设备,其特征在于,所述处理组件基于无人机的运载对象,确定所述无人机的载重重力具体是:
    控制所述螺旋桨桨叶调整至最大尺寸以及所述螺旋桨桨臂调整至最大长度,使所述无人机处于第一运载状态;
    利用处于所述第一运载状态的无人机运载所述运载对象;
    确定所述无人机当前的第一升力;
    基于所述第一升力,确定所述无人机的载重重力。
  7. 根据权利要求6所述的设备,其特征在于,所述处理组件基于所述第一升力,确定所述无人机的载重重力具体是:
    检测所述无人机当前的第一运载高度是否大于预设高度阈值;
    如果是,基于所述第一升力以及所述第一运载高度,确定所述无人机的载重重力;
    如果否,调整所述螺旋桨桨叶的转速至检测到所述无人机的第二运载高度大于预设高度阈值,确定调整后无人机的第二升力,并基于所述第二运载高度以及所述第二升力确定所述无人机的载重重力。
  8. 根据权利要求5所述的设备,其特征在于,所述处理组件控制所述螺旋桨桨臂调整至目标长度以及所述螺旋桨桨叶调整至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象具体是:
    确定调整前所述螺旋桨桨臂的初始长度以及所述螺旋桨桨叶的初始尺寸;
    根据所述目标尺寸以及所述初始尺寸,确定所述螺旋桨桨叶的第一调整步数;
    根据所述目标长度以及所述初始长度,确定所述螺旋桨桨臂的第二调整步数;
    控制所述无人机的螺旋桨桨叶调整第一调整步数至所述目标尺寸以及所述螺旋桨桨臂调整第二步数至所述目标长度,以使所述无人机控制所述螺旋桨桨叶旋转以运载所述运载对象。
  9. 一种无人机,其特征在于,包括无人机本体、第一端与所述无人机本体连接且长度可调节的螺旋桨桨臂、与所述螺旋桨桨臂第二端连接的尺寸可调节的螺旋桨桨叶、以及安装于所述无人机本体内的处理器,用于控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象;
    其中,所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度,根据所述无人机的载重重力确定的目标升力确定。
  10. 根据权利要求9所述的无人机,其特征在于,所述无人机的处理器还用于:
    基于无人机的运载对象,确定所述无人机的载重重力;
    基于所述载重重力,确定所述无人机的目标升力;
    根据所述目标升力,确定所述螺旋桨桨叶的目标尺寸以及所述螺旋桨桨臂的目标长度;
    调整所述螺旋桨桨臂调整至所述目标长度以及所述螺旋桨桨叶至所述目标尺寸,以使所述无人机控制所述螺旋桨桨叶旋转产生升力以运载所述运载对象。
PCT/CN2017/117045 2017-11-21 2017-12-18 基于无人机的载重控制方法、设备及无人机 WO2019100482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,351 US20200278700A1 (en) 2017-11-21 2017-12-18 Load control method and device based on unmanned aerial vehicle, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711166421.1 2017-11-21
CN201711166421.1A CN107972862B (zh) 2017-11-21 2017-11-21 基于无人机的载重控制方法、设备及无人机

Publications (1)

Publication Number Publication Date
WO2019100482A1 true WO2019100482A1 (zh) 2019-05-31

Family

ID=62010758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117045 WO2019100482A1 (zh) 2017-11-21 2017-12-18 基于无人机的载重控制方法、设备及无人机

Country Status (3)

Country Link
US (1) US20200278700A1 (zh)
CN (1) CN107972862B (zh)
WO (1) WO2019100482A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565989B (zh) * 2017-09-28 2020-07-10 歌尔股份有限公司 一种无人机宽频天线复用方法及装置
CN107757913B (zh) * 2017-11-21 2020-01-07 歌尔科技有限公司 基于无人机的载重控制方法、设备以及无人机
JP6996791B2 (ja) * 2018-10-30 2022-01-17 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP7269033B2 (ja) * 2019-03-01 2023-05-08 株式会社Subaru 回転翼航空機
CN111776197B (zh) * 2020-06-08 2024-06-14 宁波诺丁汉大学 一种螺旋桨稳定调速无人机及其控制方法
CN113277083A (zh) * 2021-05-26 2021-08-20 陈睿 一种巡检无人机的螺旋桨调节机构
CN115014489B (zh) * 2022-05-18 2024-03-19 杭州沛澜航空科技有限公司 无人直升机飞行重量测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570346A1 (en) * 2011-09-13 2013-03-20 Sikorsky Aircraft Corporation Rotor with blades including outer blade shell and inner structural member
CN103010456A (zh) * 2012-09-21 2013-04-03 中国空间技术研究院 一种变直径、变桨距新型螺旋桨
CN104943853A (zh) * 2015-04-27 2015-09-30 西北工业大学 一种能够变桨径的螺旋桨
CN107310715A (zh) * 2017-07-05 2017-11-03 上海未来伙伴机器人有限公司 一种可变螺距的螺旋桨及飞行机器人
WO2017201324A1 (en) * 2016-05-18 2017-11-23 Kyriacos Zachary Variable pitch propeller apparatus and variable thrust aircraft using smae

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201385780Y (zh) * 2009-04-08 2010-01-20 冯云龙 一种新型螺旋桨
CN102935890B (zh) * 2012-09-21 2015-05-27 中国空间技术研究院 一种可变直径螺旋桨
WO2015109322A1 (en) * 2014-01-20 2015-07-23 Robodub Inc. Multicopters with variable flight characteristics
US9919797B2 (en) * 2014-12-04 2018-03-20 Elwha Llc System and method for operation and management of reconfigurable unmanned aircraft
CN105129083B (zh) * 2015-08-20 2019-01-29 珠海磐磊智能科技有限公司 旋翼、桨夹和飞行器
CN205076041U (zh) * 2015-09-25 2016-03-09 黄少锋 一种适应性强的飞行器
CN105620728B (zh) * 2016-02-26 2017-08-11 西北工业大学 一种能够变桨径桨距的螺旋桨
EP3433168B1 (en) * 2016-03-23 2020-08-19 Amazon Technologies Inc. Coaxially aligned propellers of an aerial vehicle
CN105857587B (zh) * 2016-03-31 2018-10-12 英华达(上海)科技有限公司 多轴无人机与其飞行方法
CN106143888A (zh) * 2016-07-08 2016-11-23 李须真 一种长航时的多旋翼飞行器
CN106379515B (zh) * 2016-11-14 2020-03-31 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机
CN106477039A (zh) * 2016-12-21 2017-03-08 深圳市道通智能航空技术有限公司 一种旋翼无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570346A1 (en) * 2011-09-13 2013-03-20 Sikorsky Aircraft Corporation Rotor with blades including outer blade shell and inner structural member
CN103010456A (zh) * 2012-09-21 2013-04-03 中国空间技术研究院 一种变直径、变桨距新型螺旋桨
CN104943853A (zh) * 2015-04-27 2015-09-30 西北工业大学 一种能够变桨径的螺旋桨
WO2017201324A1 (en) * 2016-05-18 2017-11-23 Kyriacos Zachary Variable pitch propeller apparatus and variable thrust aircraft using smae
CN107310715A (zh) * 2017-07-05 2017-11-03 上海未来伙伴机器人有限公司 一种可变螺距的螺旋桨及飞行机器人

Also Published As

Publication number Publication date
US20200278700A1 (en) 2020-09-03
CN107972862B (zh) 2020-11-17
CN107972862A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2019100482A1 (zh) 基于无人机的载重控制方法、设备及无人机
Palomaki et al. Wind estimation in the lower atmosphere using multirotor aircraft
CN110036298B (zh) 借助多旋翼飞行器的风测量
CN110989640B (zh) 一种飞行控制方法、飞行器及飞行***
JP6995948B2 (ja) 航空機用選択式押圧推進ユニット
BR102016025416A2 (pt) método para gerar saídas de dados de ar para uma aeronave, e, sistema de dados do ar sintéticos
CN107436607B (zh) 用于处理飞行器的气动角的设备和方法
CN108475069B (zh) 农业无人飞行器的控制方法、飞行控制器及农业无人机
Aich et al. Analysis of ground effect on multi-rotors
KR20150043392A (ko) 바람 벡터 추산
CN107438751B (zh) 用于检测飞行高度的方法、装置及无人机
CN105584627A (zh) 控制飞行器水平稳定器的方法和装置
Wood et al. Distributed pressure sensing–based flight control for small fixed-wing unmanned aerial systems
Davoudi et al. A hybrid blade element momentum model for flight simulation of rotary wing unmanned aerial vehicles
WO2019061083A1 (en) SYSTEM AND METHOD FOR DETERMINING AERODYNAMIC SPEED
WO2020047068A1 (en) Six degree of freedom aerial vehicle control methods responsive to motor out situations
Mark et al. Review of microscale flow-sensor-enabled mechanosensing in small unmanned aerial vehicles
CN109398686B (zh) 旋翼无人机及其姿态控制方法
WO2018187934A1 (zh) 无人飞行器的状态检测方法、设备及无人飞行器
WO2019100483A1 (zh) 基于无人机的载重控制方法、设备以及无人机
Dantsker et al. Comparison of aerodynamic characterization methods for design of unmanned aerial vehicles
JP2022520118A (ja) 無人航空機の高度から風向および風速度の測定値を決定するためのシステムおよび方法
Moriyoshi et al. The Effect of Rigging Angle on Longitudinal Direction Motion of Parafoil‐Type Vehicle: Basic Stability Analysis and Wind Tunnel Test
CN110297511B (zh) 一种力矩控制方法、装置、电子设备及存储介质
CN108116658B (zh) 飞行器的控制方法、***和飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932582

Country of ref document: EP

Kind code of ref document: A1