WO2019100238A1 - 一种断链恢复的方法及飞行器 - Google Patents

一种断链恢复的方法及飞行器 Download PDF

Info

Publication number
WO2019100238A1
WO2019100238A1 PCT/CN2017/112277 CN2017112277W WO2019100238A1 WO 2019100238 A1 WO2019100238 A1 WO 2019100238A1 CN 2017112277 W CN2017112277 W CN 2017112277W WO 2019100238 A1 WO2019100238 A1 WO 2019100238A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
loop control
control parameter
state
aircraft
Prior art date
Application number
PCT/CN2017/112277
Other languages
English (en)
French (fr)
Inventor
陈颖
马宁
刘怀宇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/112277 priority Critical patent/WO2019100238A1/zh
Priority to CN201780026928.9A priority patent/CN109075854B/zh
Publication of WO2019100238A1 publication Critical patent/WO2019100238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the invention relates to the technical field of application of an unmanned aerial vehicle, and particularly relates to a method for chain breaking recovery and an aircraft.
  • unmanned aerial vehicles began to spread in the public, and more and more people use unmanned aerial vehicles for aerial photography and other entertainment activities.
  • Unmanned aerial vehicles such as crossing machines, can rapidly cause the picture to break and break when the high-speed flight, flight attitude and surrounding environment change rapidly, or when making large maneuvers and crossing obstacles.
  • the diagram breaking chain on the aircraft is usually caused by two reasons:
  • the physical layer loses synchronization information.
  • the picture transmission service has lost the code stream.
  • the chain breaks caused by these two reasons usually take time to recover.
  • the physical layer needs to regain synchronization information and establish connection status, and the picture stream regains the starting frame (I frame).
  • the communication and aircraft image transmission system is interrupted for a long time, affecting the user experience.
  • the cost of broken chain, broken picture transmission and remote control is relatively small, but on the non-intelligent flight control through-machine, the transmission of the picture is 1 ⁇ 2 seconds. Broken remote control may cause the consequences of the bomber.
  • a method for chain splicing recovery which is applied to a digital image transmission system of an aircraft, comprising:
  • the controlling the loop control parameter of the physical layer to enter a frozen state comprises:
  • a loop control parameter that controls the physical layer maintains the frozen state for a first period of time.
  • the controlling the loop control parameter of the physical layer to release the frozen state comprises:
  • the loop control parameter of the physical layer is controlled to release the frozen state.
  • the loop control parameter of the physical layer in the frozen state keeps the loop control parameter before receiving failure unchanged.
  • the loop control parameter of the physical layer changes based on a change in received signal power of the physical layer.
  • the method further comprises:
  • the time threshold for the physical layer and the upper layer to enter the out-of-synchronization state is extended to the first time threshold.
  • the physical layer and the upper layer do not enter an out-of-synchronization state when the time interval in which the physical layer and the upper layer do not have valid data interaction is within the first time threshold.
  • the physical layer and the upper layer when a time interval in which the physical layer and the upper layer do not have valid data interaction exceeds the first time threshold, the physical layer and the upper layer enter an out-of-synchronization state.
  • the method is for video image transmission.
  • the method further comprises:
  • Cyclic GDR coding is used at the application layer to enable the receiving end to recover video images from any frame of video frames.
  • the loop control parameter includes at least one of a timing parameter, a frequency offset parameter, and a receive gain parameter.
  • an aircraft applying a digital image transmission system, including:
  • a monitoring unit configured to monitor a signal receiving state of the physical layer
  • a freezing unit configured to control a loop control parameter of the physical layer to enter a frozen state when the signal receiving state is a receiving failure
  • the thawing unit is configured to control the loop control parameter of the physical layer to release the frozen state when the signal receiving state is to resume receiving.
  • the freezing unit is configured to control a loop control parameter of the physical layer to maintain the frozen state for a first time period.
  • the defrosting unit is configured to control the loop control parameter of the physical layer to release the frozen state if the signal receiving state is monitored to be restored during the first time period;
  • the loop control parameter of the physical layer is controlled to release the frozen state.
  • the loop control parameter of the physical layer in the frozen state keeps the loop control parameter before receiving failure unchanged.
  • the loop control parameter of the physical layer changes based on a change in received signal power of the physical layer.
  • the time threshold for the physical layer and the upper layer to enter the fail state is a first time threshold.
  • the physical layer and the upper layer do not enter an out-of-synchronization state when the time interval in which the physical layer and the upper layer do not have valid data interaction is within the first time threshold.
  • the physical layer and the upper layer when a time interval in which the physical layer and the upper layer do not have valid data interaction exceeds the first time threshold, the physical layer and the upper layer enter an out-of-synchronization state.
  • the aircraft is used for video image transmission.
  • the aircraft further comprises: a coding unit;
  • the encoding unit is configured to use cyclic GDR encoding at the application layer to enable the receiving end to recover the video image from any one frame of the video frame.
  • the loop control parameter includes at least one of a timing parameter, a frequency offset parameter, and a receive gain parameter.
  • the present invention by monitoring a signal receiving state of a physical layer; when the signal receiving state is a receiving failure, controlling a loop control parameter of the physical layer to enter a frozen state; When the signal receiving state is the recovery receiving, the loop control parameter of the physical layer is controlled to release the frozen state, so that when the aircraft is broken, the loop control parameter of the physical layer of the controlling aircraft enters a frozen state, thereby avoiding
  • the long buffer time required for the chain break of the aircraft improves the efficiency of chain trip recovery, reduces the total number of broken links during flight of the aircraft, and reduces the number and duration of out-of-step physical and high-level out-of-step, thereby improving the aircraft. Controllability and security.
  • FIG. 1 is a schematic flow chart showing a method of chain break recovery according to an embodiment of the present invention
  • FIG. 2A is a schematic block diagram showing the structure of an aircraft with a broken chain recovery according to an embodiment of the present invention
  • 2B is a schematic block diagram showing the structure of a chain-recovering aircraft in accordance with another embodiment of the present invention.
  • FIG. 1 is a schematic flow chart showing a method of chain break recovery according to an embodiment of the present invention.
  • an embodiment of the present invention is applied to a digital image transmission system of an aircraft, wherein the method may include the following steps:
  • the physical layer of the aircraft can be used to receive signals, and the signal receiving state of the physical layer can include: Receive normal and receive failed.
  • a threshold may be preset. If the signal receiving power of the physical layer drops sharply, is less than the threshold, or the signal receiving power is 0, it is determined that the signal receiving state is a reception failure. When the signal receiving power of the physical layer is greater than or equal to the threshold, it is determined that the signal receiving state is to resume receiving.
  • the physical layer may be determined to be broken.
  • the signal receiving state of the physical layer is normal, the physical layer does not break.
  • the loop control parameter of the physical layer can be controlled to enter a frozen state.
  • the loop control parameter may include at least one of a timing parameter, a frequency offset parameter, and a receiving gain parameter of the physical layer.
  • the loop control parameter of the physical layer in the frozen state keeps the loop control parameter before receiving failure unchanged.
  • the timing parameter, the frequency offset parameter, and the reception gain parameter are still set to maintain the timing parameter, the frequency offset parameter, and the reception gain parameter before the signal reception failure.
  • the loop control parameter of the physical layer is set to keep the loop control parameters before the failure of the reception, so as to avoid feedback of the physical layer's broken link to the upper layer, thereby avoiding physical layer and high-level failure.
  • the received signal power of the physical layer is detected to be greater than or equal to the foregoing threshold, it may be determined that the signal reception of the physical layer is normal, that is, the signal reception state is recovery reception.
  • the loop control parameter of the physical layer may be controlled to release the frozen state.
  • the loop control parameter of the physical layer may be changed based on the received signal power variation of the physical layer, and the change of the loop control parameter of the physical layer is fed back. To the top, it will not cause the physical layer and the high level to lose.
  • the buffering improves the efficiency of chain breaking recovery, reduces the total number of broken links during flight of the aircraft, and reduces the number and duration of out-of-step physical layer and high-level out-of-step, thereby improving the controllability and safety of the aircraft.
  • the loop control parameter of the physical layer may be controlled at the first time.
  • the frozen state is maintained in the segment.
  • the loop control parameter of the control physical layer keeps the loop control parameter before receiving failure within 30 seconds.
  • the loop control parameter of the physical layer may be controlled to release the frozen state, or after the first time period is exceeded, Controlling the loop control parameters of the physical layer releases the frozen state.
  • the signal receiving state of the physical layer is monitored as the receiving failure in the first time period, it indicates that the aircraft is not in a short-time broken chain, and therefore, the first time period may be exceeded. After that, the frozen state of the physical layer loop control parameters is released.
  • the loop control parameter of the physical layer keeps the 25S of the loop control parameter before the failure of reception
  • the physical control is performed.
  • the loop control parameter of the layer releases the frozen state.
  • the loop control parameter of the physical layer may be changed based on the received signal power variation of the physical layer, and the change of the loop control parameter of the physical layer is fed back to the upper layer. It will not cause the physical layer and the high level to lose the step.
  • the loop control parameter de-freezing state of the physical layer may be controlled.
  • the loop control parameters of the physical layer may be changed based on the received signal power variation of the physical layer, and such changes in the loop control parameters of the physical layer are fed back to the upper layer, which may cause the physical layer and the upper layer to lose synchronization.
  • the aircraft since the aircraft is usually doing large maneuvers and crossing the obstacles, it is easy to cause the physical layer to be broken, and the duration of such chain scission is short. If the change of the loop control parameters is fed back to the upper layer, it will cause physics. The step of the layer and the upper layer is out of synchronization.
  • the loop control parameter of the control physical layer maintains the frozen state in the first time period, and on the other hand, in the first time period.
  • the inner loop control parameter will keep the parameters before the failure of reception from changing, thus avoiding the physical layer and the upper layer entering the failed state during the first time period, providing time for the physical layer to recover from the broken link, and avoiding the short-time chain breaking of the aircraft.
  • the long-term buffering required improves the chain-breaking recovery efficiency, reduces the total number of broken links during flight of the aircraft, reduces the number and duration of out-of-step physical layer and high-level out-of-step, thereby improving the controllability and safety of the aircraft. Sex.
  • the physical layer and the upper layer naturally enter the out-of-synchronization state, and the influence of the long-term broken chain of the physical layer on the video transmission is also avoided.
  • the time threshold of the physical layer and the upper layer entering the out-of-synchronization state may be extended to the first time threshold.
  • the high layer may include, but is not limited to, a MAC layer and an HLC layer.
  • the time interval in which the physical layer and the upper layer do not have valid data interaction is within the first time threshold, the physical layer and the upper layer do not enter the out-of-synchronization state.
  • the time interval in which the physical layer and the upper layer do not have valid data interaction exceeds the first time threshold, the physical layer and the upper layer enter an out-of-synchronization state.
  • the time threshold for determining that the physical layer and the MAC layer enter the out-of-synchronization state is 1 S.
  • the time interval in which there is no valid data interaction between the physical layer and the MAC layer is within 1 S, the physical layer and the MAC layer do not enter the out-of-synchronization state.
  • the time interval of no valid data interaction between the physical layer and the MAC layer exceeds 1 S, the physical layer and the upper layer enter an out-of-synchronization state.
  • the time threshold of the physical layer and the upper layer entering the out-of-synchronization state is extended to the first time threshold, thereby prolonging the time when the physical layer and the upper layer enter the out-of-synchronization state.
  • the time threshold 1S of the physical layer and the MAC layer entering the out-of-synchronization state is extended to 5S, the time interval between the physical layer and the MAC layer without valid data interaction is within 5 seconds, and the physical layer and the MAC layer are not lost. State, when there is no valid data interaction between the physical layer and the MAC layer, the time interval exceeds 5S, and the physical layer and the MAC layer enter an out-of-synchronization state.
  • the time threshold of the physical layer and the upper layer entering the out-of-synchronization state by extending the time threshold of the physical layer and the upper layer entering the out-of-synchronization state, on the one hand, the judgment condition of the physical layer and the upper layer entering the lost state is relaxed, and the time for the physical layer and the upper layer to enter the out-of-synchronization state is extended, which is physical.
  • Layer break chain recovery provides time to avoid the buffer time of the upper time required for short-time chain scission of the physical layer, improve the efficiency of chain-break recovery, reduce the total number of broken links during flight of the aircraft, and reduce the physical layer and The number and duration of high-level out-of-steps improve the controllability and safety of the aircraft.
  • the first time threshold after the first time threshold is exceeded, the physical layer and the upper layer naturally enter the out-of-synchronization state, and the influence of the long-term broken chain of the physical layer on the video transmission is also avoided.
  • the aircraft in the embodiments of the present invention can be used for video image transmission.
  • cyclic GDR coding can be used at the application layer to enable the receiving end to recover the video image from any frame of the video frame.
  • the application layer in the prior art usually uses GDR or IDR coding.
  • GDR Global System for Mobile Communications
  • the key frame in the IDR encoding is an I frame.
  • only one of the 30 frames is a key frame, which can be used to restore the image. That is to say, the encoding method used in the prior art enables the receiving end of the video image to recover the image from any frame after recovering the broken chain. For example, for GDR encoding, it can only start when a key frame is received.
  • the image can only be restored when the I frame is received, and the I frame is the starting frame, that is, if the I frame is not received, the image cannot be restored, resulting in frame dropping.
  • the coding mode of the cyclic GDR coding is adopted, and each frame in the cyclic GDR coding can be used to recover the image, thereby improving the probability of all frames in the video of the key frame compared to the prior art scheme. Therefore, the image recovery process can be started immediately when any frame of video frames is received at any time, which reduces the frame loss caused by the aircraft in the transmission of the video image, and improves the video image transmission efficiency of the aircraft.
  • FIG. 2A is a schematic block diagram showing the structure of an aircraft in accordance with an embodiment of the present invention.
  • the aircraft 200 in this embodiment employs a digital image transmission system.
  • aircraft 200 can include:
  • the monitoring unit 210 is configured to monitor a signal receiving state of the physical layer
  • the freezing unit 220 is configured to control the loop control parameter of the physical layer to enter a frozen state when the signal receiving state is a receiving failure;
  • the defrosting unit 230 is configured to control the loop control parameter of the physical layer to release the frozen state when the signal receiving state is recovery reception.
  • the loop control parameter of the physical layer in the frozen state keeps the loop control parameter before receiving failure unchanged.
  • the loop control parameter of the physical layer changes based on a change in received signal power of the physical layer.
  • the loop control parameter includes at least one of a timing parameter, a frequency offset parameter, and a receive gain parameter.
  • the buffering improves the efficiency of chain breaking recovery, reduces the total number of broken links during flight of the aircraft, and reduces the number and duration of out-of-step physical layer and high-level out-of-step, thereby improving the controllability and safety of the aircraft.
  • the freezing unit 220 is configured to control a loop control parameter of the physical layer to maintain the frozen state in a first time period.
  • the de-freezing unit 230 is configured to control the loop control parameter of the physical layer to release the frozen state if the signal receiving state is monitored to be restored in the first time period;
  • the loop control parameter of the physical layer is controlled to release the frozen state.
  • the loop control parameter of the control physical layer maintains the frozen state in the first time period, and on the other hand, the loop control parameter remains received during the first time period.
  • the parameters before the failure do not change, thus avoiding the physical layer and the upper layer entering the failing state in the first time period, providing time for the physical layer to recover from the broken chain, avoiding the long-term buffering required by the short-time chain breaking of the aircraft, and improving
  • the chain-breaking recovery efficiency reduces the total number of broken links during flight of the aircraft, reduces the number and duration of the physical layer and the high-level out-of-step, thereby improving the controllability and safety of the aircraft.
  • the first time period is exceeded, the physical layer and the upper layer naturally enter the out-of-synchronization state, and the influence of the long-term broken chain of the physical layer on the video transmission is also avoided.
  • the time threshold for the physical layer and the upper layer to enter the fail state is a first time threshold.
  • the physical layer and the upper layer do not enter an out-of-synchronization state when the time interval in which the physical layer and the upper layer do not have valid data interaction is within the first time threshold.
  • the physical layer and the upper layer when a time interval in which the physical layer and the upper layer do not have valid data interaction exceeds the first time threshold, the physical layer and the upper layer enter an out-of-synchronization state.
  • FIG. 2B is a schematic block diagram showing the structure of an aircraft in accordance with another embodiment of the present invention. It should be noted that the aircraft 200 is used for video image transmission.
  • the aircraft 200 in the embodiment of the present invention further includes:
  • the encoding unit 240 is configured to use cyclic GDR encoding at the application layer to enable the receiving end to recover the video image from any one frame of the video frame.
  • the coding mode of the cyclic GDR coding is adopted, and each frame in the cyclic GDR coding can be used to recover the image, thereby improving the probability of all the frames of the key frame in the video compared with the prior art scheme.
  • the image recovery process can be started immediately when any frame of video frames is received at any time, which reduces the frame loss caused by the aircraft in the transmission of the video image, and improves the video image transmission efficiency of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种断链恢复的方法及飞行器,其中,该方法包括:监测物理层的信号接收状态;当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态,实现在飞行器断链时,控制飞行器的物理层的环路控制参数进入冻结状态,避免飞行器的断链所需要的长时间的缓冲,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。

Description

一种断链恢复的方法及飞行器 技术领域
本发明涉及无人飞行器应用技术领域,尤其涉及一种断链恢复的方法及飞行器。
背景技术
随着经济发展和居民收入与生活水平的提高,无人飞行器开始在大众中普及开来,越来越多的人使用无人飞行器进行航拍等娱乐活动。
在实现本发明的过程中,发明人发现现有技术中至少存在以下技术问题:
无人飞行器例如穿越机等,在高速飞行、飞行姿态和周边环境不断快速变化时,或者在做大机动动作、穿越障碍物时,信道条件急剧恶化容易造成图传断链。
飞行器上的图传断链通常由两方面的原因引起:
1.物理层失去同步信息
2.图传业务丢失了码流
这两方面的原因造成的断链通常都需要时间来恢复,例如,物理层需要重新获得同步信息和建立连接状态,以及图传码流重新获得起始帧(I帧)。从而使通信和飞行器的图传***中断较长时间,影响用户体验。在一般航拍器中,由于有智能飞控的存在,断链、断图传、断遥控带来的代价比较小,但是在非智能飞控的穿越机上,1~2秒时间的断图传和断遥控就可能会造成炸机的后果。
发明内容
本发明的目的是提供一种断链恢复的方法及飞行器,能够快速从断链状态中恢复图传,从而克服数字图传***固有的容易断链,以及断链需要缓冲的缺陷。
根据本发明实施例的第一方面,提供一种用于断链恢复的方法,应用于飞行器的数字图传***,其中,包括:
监测物理层的信号接收状态;
当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;
当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态。
根据一些实施例,所述控制所述物理层的环路控制参数进入冻结状态包括:
控制所述物理层的环路控制参数在第一时间段内保持所述冻结状态。
根据一些实施例,所述控制所述物理层的环路控制参数解除所述冻结状态,包括:
若在所述第一时间段内监测到所述信号接收状态为恢复接收,控制所述物理层的环路控制参数解除所述冻结状态;或
超出所述第一时间段后,控制所述物理层的环路控制参数解除所述冻结状态。
根据一些实施例,所述冻结状态内所述物理层的环路控制参数保持接收失败前的环路控制参数不变。
根据一些实施例,控制所述物理层的环路控制参数解除所述冻结状态后,所述物理层的环路控制参数基于所述物理层的接收信号功率变化而变化。
根据一些实施例,所述方法还包括:
延长所述物理层和高层进入失步状态的时间门限至第一时间门限。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
根据一些实施例,所述方法用于视频图像传输。
根据一些实施例,所述方法还包括:
在应用层使用循环GDR编码,以使接收端能够从任意一帧视频帧恢复视频图像。
根据一些实施例,所述环路控制参数包括定时参数、频偏参数以及接收增益参数中的至少一个。
根据本发明实施例的第二方面,提供一种飞行器,所述飞行器应用数字图传***,其中,包括:
监测单元,配置为监测物理层的信号接收状态;
冻结单元,配置为当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;
解冻单元,配置为当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态。
根据一些实施例,所述冻结单元,配置为控制所述物理层的环路控制参数在第一时间段内保持所述冻结状态。
根据一些实施例,所述解冻单元,配置为若在所述第一时间段内监测到所述信号接收状态为恢复接收,控制所述物理层的环路控制参数解除所述冻结状态;或
超出所述第一时间段后,控制所述物理层的环路控制参数解除所述冻结状态。
根据一些实施例,所述冻结状态内所述物理层的环路控制参数保持接收失败前的环路控制参数不变。
根据一些实施例,所述解冻单元控制所述物理层的环路控制参数解除所述冻结状态后,所述物理层的环路控制参数基于所述物理层的接收信号功率变化而变化。
根据一些实施例,所述物理层和高层进入失歩状态的时间门限为第一时间门限。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
根据一些实施例,所述飞行器用于视频图像传输。
根据一些实施例,所述飞行器还包括:编码单元;
所述编码单元,配置为在应用层使用循环GDR编码,以使接收端能够从任意一帧视频帧恢复视频图像。
根据一些实施例,所述环路控制参数包括定时参数、频偏参数以及接收增益参数中的至少一个。
在本发明的一些实施例所提供的技术方案中,通过监测物理层的信号接收状态;当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态的技术方案,实现飞行器在断链时,控制飞行器的物理层的环路控制参数进入冻结状态,避免飞行器的断链所需要的长时间的缓冲时间,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。
附图说明
图1示意性示出了根据本发明的一个实施例的断链恢复的方法的流程示意图;
图2A示意性示出了根据本发明的一个实施例的断链恢复的飞行器的结构示意图;
图2B示意性示出了根据本发明的另一个实施例的断链恢复的飞行器的结构示意图。
具体实施方式
下面将参考若干示例性实施方式来描述本发明的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
下面参考本发明的若干代表性实施方式,详细阐释本发明的原理和精神,需要指出的是,图传断链的过程是从物理层断链开始的,物理层的断链导致信息流本身的断开,并逐渐将失步状态通过传递到高层和应用层,从而导致图传视频流的中断。
实施例一
图1示意性示出了根据本发明的一个实施例的一种断链恢复的方法的流程示意图。
参照图1所示,本发明实施例应用于飞行器的数字图传***,其中,该方法可以包括以下步骤:
在S110中,监测物理层的信号接收状态。
需要说明的是,飞行器的物理层可用于接收信号,物理层的信号接收状态可以包括: 接收正常和接收失败。
在S120中,当该信号接收状态为接收失败时,控制物理层的环路控制参数进入冻结状态。
可选地,可以预先设置一阈值,如果物理层的信号接收功率急剧下降,小于该阈值时或者信号接收功率为0,则判断信号接收状态为接收失败。当物理层的信号接收功率大于或者等于该阈值时,则判断信号接收状态为恢复接收。
需要指出的是,当物理层的信号接收状态为接收失败时,可以确定该物理层断链,当当物理层的信号接收状态为接收正常时,物理层未发生断链。
当物理层的信号接收状态为接收失败时,可以控制物理层的环路控制参数进入冻结状态。其中,该环路控制参数可以包括:物理层的定时参数、频偏参数以及接收增益参数中的至少一个。
可选地,冻结状态内物理层的环路控制参数保持接收失败前的环路控制参数不变。例如,当物理层的信号接收状态为接收失败时,设置定时参数、频偏参数以及接收增益参数仍然保持信号接收失败前的定时参数、频偏参数以及接收增益参数不变。
需要说明的是,当物理层的信号接收状态为接收失败时,该物理层断链,该物理层的环路控制参数原本会随着断链而发生变化,这种变化会反馈到高层,从而导致物理层与高层失步。而本实施例中设置物理层的环路控制参数保持接收失败前的环路控制参数不变,从而避免将物理层的断链反馈到高层,进而避免物理层与高层失歩。
在S130中,当该信号接收状态为恢复接收时,控制物理层的环路控制参数解除上述冻结状态。
需要说明的是,当监测到物理层的接收信号功率大于或者等于上述阈值,可以确定物理层的信号接收正常,也就是信号接收状态为恢复接收。
可选地,当信号接收状态为恢复接收时,可以控制物理层的环路控制参数解除上述冻结状态。当物理层的环路控制参数解除所述冻结状态后,物理层的环路控制参数可以基于所述物理层的接收信号功率变化而变化,而物理层的环路控制参数的这种变化,反馈到高层,也不会引起物理层与高层的失步。
上述实施例中,通过监测物理层的信号接收状态,当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态,当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态的技术方案,实现飞行器在断链时,控制飞行器的物理层的环路控制参数进入冻结状态,避免飞行器的断链所需要的长时间的缓冲,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。
下面结合其他的实施例对本发明提出的一种断链恢复的方法进行详细说明。
实施例二
可选地,当信号接收状态为接收失败时,可以控制物理层的环路控制参数在第一时间 段内保持所述冻结状态,例如,当信号接收状态为接收失败时,控制物理层的环路控制参数在30S内保持接收失败前的环路控制参数不变。
根据示例实施例,若在该第一时间段内监测到信号接收状态为恢复接收,可以控制所述物理层的环路控制参数解除所述冻结状态,或者,在超出该第一时间段后,控制物理层的环路控制参数解除所述冻结状态。
需要说明的是,如果在第一时间段内监测到该物理层的信号接收状态一直为接收失败,则说明该飞行器并不是处于短时间断链的情况,因此,可以在超过该第一时间段后,解除物理层环路控制参数的冻结状态。
例如,在物理层的环路控制参数保持接收失败前的环路控制参数不变的第25S时,在该第一时间段内,如果监测到物理层的信号接收状态为恢复接收时,控制物理层的环路控制参数解除该冻结状态,此时,物理层的环路控制参数可以基于物理层的接收信号功率变化而变化,而物理层的环路控制参数的这种变化,反馈到高层,也不会引起物理层与高层的失步。
又例如,当信号接收状态为接收失败的持续时间达到第31S,超过该第一时间段,可以控制物理层的环路控制参数解除冻结状态。此时,物理层的环路控制参数可以基于物理层的接收信号功率变化而变化,而物理层的环路控制参数的这种变化,反馈到高层,会引起物理层与高层的失步。
需要说明的是,由于飞行器通常是在做大机动动作、穿越障碍物容易造成物理层断链,而这种断链持续时间较短,如果将环路控制参数的变化反馈到高层,会引起物理层与高层的失步,而本实施中,当信号接收状态为接收失败时,控制物理层的环路控制参数在第一时间段内保持所述冻结状态,一方面,在该第一时间段内环路控制参数会保持接收失败前的参数不变化,从而避免该第一时间段内物理层与高层进入失歩状态,为物理层的断链恢复提供了时间,避免飞行器短时间断链所需要的长时间的缓冲,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。另一方面,在超过该第一时间段后,物理层与高层自然进入失步状态,也避免了物理层的长时间断链对视频传输造成的影响。
实施例三
可选地,可以延长物理层和高层进入失步状态的时间门限至第一时间门限。其中,该高层可以包括但不限于:MAC层和HLC层。当物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。当物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
需要说明的是,物理层与MAC层和/或HLC层之间存在有效数据交互,当物理层发生断链时,物理层与MAC层和/或HLC之间有效数据交互的时间变长,很容易就会超过 物理层与MAC层和/或HLC之间进入失步状态的时间门限,从而造成物理层与MAC层和/或HLC的失步。
例如,判断物理层与MAC层进入失步状态的时间门限为1S,当物理层与MAC层之间不存在有效数据交互的时间间隔在1S内时,物理层与MAC层不进入失步状态。当物理层与MAC层之间不存在有效数据交互的时间间隔超过1S时,物理层与高层进入失步状态。
本实施例中,延长物理层和高层进入失步状态的时间门限至第一时间门限,从而延长物理层和高层进入失步状态的时间。
例如,将物理层与MAC层进入失步状态的时间门限1S延长至5S,则物理层与MAC层之间不存在有效数据交互的时间间隔在5S内,物理层与MAC层不会进入失步状态,当物理层与MAC层之间不存在有效数据交互的时间间隔超过5S,物理层与MAC层进入失步状态。
本实施例中,通过延长物理层和高层进入失步状态的时间门限,一方面,放宽了物理层与高层进入失歩状态的判断条件,延长物理层与高层进入失步状态的时间,为物理层断链恢复提供了时间,从而避免物理层的短时间断链所需的上时间的缓冲时间,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。另一方面,在超过该第一时间门限后,物理层与高层自然进入失步状态,也避免了物理层的长时间断链对视频传输造成的影响。
实施例四
本发明实施例中的飞行器可以用于视频图像传输。在飞行器与视频图像的接收端进行视频图像传输的过程中,可以在应用层使用循环GDR编码,以使该接收端能够从任意一帧视频帧恢复视频图像。
需要说明的是,现有技术中应用层通常使用GDR或者IDR编码。GDR编码中关键帧较少,例如,30帧中只有5帧是关键帧,而只有关键帧可以用来恢复图像。IDR编码中关键帧是I帧,例如30帧中只有1帧是关键帧,可以用来恢复图像。也就是说,现有技术中所使用的编码方式,使得视频图像的接收端在恢复断链后,不能从任意一帧开始恢复图像,例如,对于GDR编码,只有在接收到关键帧时才能开始恢复图像,又例如,对于IDR编码,只有在接收I帧时才能开始恢复图像,而I帧为起始帧,也就是说,如果接收不到I帧,那么将不能恢复图像,从而造成丢帧。而本实施例中采用循环GDR编码的编码方式,循环GDR编码中每一帧都可以用来恢复图像,从而相比于现有技术中的方案,提高了关键帧的在视频中所有帧的概率,使得可以在任意时刻接收到任意一帧视频帧时都可以马上开始图像的恢复过程,减少了飞行器在视频图像传输时因断链而造成的丢帧,提升了飞行器的视频图像传输效率。
实施例四
图2A示意性示出了根据本发明的一个实施例的一种飞行器的结构示意图,本实施例中的飞行器200应用数字图传***。
参照图2所示,飞行器200可以包括:
监测单元210,配置为监测物理层的信号接收状态;
冻结单元220,配置为当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;
解冻单元230,配置为当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态。
根据一些实施例,所述冻结状态内所述物理层的环路控制参数保持接收失败前的环路控制参数不变。
根据一些实施例,所述解冻单元230控制所述物理层的环路控制参数解除所述冻结状态后,所述物理层的环路控制参数基于所述物理层的接收信号功率变化而变化。
根据一些实施例,所述环路控制参数包括定时参数、频偏参数以及接收增益参数中的至少一个。
上述实施例中,通过监测物理层的信号接收状态,当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态,当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态的技术方案,实现飞行器在断链时,控制飞行器的物理层的环路控制参数进入冻结状态,避免飞行器的断链所需要的长时间的缓冲,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。
可选地,所述冻结单元220,配置为控制所述物理层的环路控制参数在第一时间段内保持所述冻结状态。
根据一些实施例,所述解冻单元230,配置为若在所述第一时间段内监测到所述信号接收状态为恢复接收,控制所述物理层的环路控制参数解除所述冻结状态;或
超出所述第一时间段后,控制所述物理层的环路控制参数解除所述冻结状态。
本实施中,当信号接收状态为接收失败时,控制物理层的环路控制参数在第一时间段内保持所述冻结状态,一方面,在该第一时间段内环路控制参数会保持接收失败前的参数不变化,从而避免该第一时间段内物理层与高层进入失歩状态,为物理层的断链恢复提供了时间,避免飞行器短时间断链所需要的长时间的缓冲,提高了断链恢复效率,减少了飞行器飞行过程中的断链的总次数,减少了物理层与高层失步的次数和持续时间,从而提高了飞行器的可控制性以及安全性。另一方面,在超过该第一时间段后,物理层与高层自然进入失步状态,也避免了物理层的长时间断链对视频传输造成的影响。
可选地,所述物理层和高层进入失歩状态的时间门限为第一时间门限。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。
根据一些实施例,当所述物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
图2B示意性示出了根据本发明的另一个实施例的一种飞行器的结构示意图。需要说明的是,该飞行器200用于视频图像传输。
参照图2B所示,本发明实施例中的飞行器200还包括:
编码单元240,配置为在应用层使用循环GDR编码,以使接收端能够从任意一帧视频帧恢复视频图像。
本实施例中采用循环GDR编码的编码方式,循环GDR编码中每一帧都可以用来恢复图像,从而相比于现有技术中的方案,提高了关键帧的在视频中所有帧的概率,使得可以在任意时刻接收到任意一帧视频帧时都可以马上开始图像的恢复过程,减少了飞行器在视频图像传输时因断链而造成的丢帧,提升了飞行器的视频图像传输效率。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由所附的权利要求指出。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离申请的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (22)

  1. 一种断链恢复的方法,其特征在于,包括:
    监测物理层的信号接收状态;
    当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;
    当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态。
  2. 如权利要求1所述的断链恢复的方法,其特征在于,所述控制所述物理层的环路控制参数进入冻结状态包括:
    控制所述物理层的环路控制参数在第一时间段内保持所述冻结状态。
  3. 如权利要求2所述的断链恢复的方法,其特征在于,所述控制所述物理层的环路控制参数解除所述冻结状态,包括:
    若在所述第一时间段内监测到所述信号接收状态为恢复接收,控制所述物理层的环路控制参数解除所述冻结状态;或
    超出所述第一时间段后,控制所述物理层的环路控制参数解除所述冻结状态。
  4. 如权利要求1所述的断链恢复的方法,其特征在于,所述冻结状态内所述物理层的环路控制参数保持接收失败前的环路控制参数不变。
  5. 如权利要求1所述的断链恢复的方法,其特征在于,控制所述物理层的环路控制参数解除所述冻结状态后,所述物理层的环路控制参数基于所述物理层的接收信号功率变化而变化。
  6. 如权利要求1所述的断链恢复的方法,其特征在于,所述方法还包括:
    延长所述物理层和高层进入失步状态的时间门限至第一时间门限。
  7. 如权利要求6所述的断链恢复的方法,其特征在于,
    当所述物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。
  8. 如权利要求6所述的断链恢复的方法,其特征在于,
    当所述物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
  9. 如权利要求1所述的断链恢复的方法,其特征在于,所述方法用于视频图像传输。
  10. 如权利要求9所述的断链恢复的方法,其特征在于,所述方法还包括:
    在应用层使用循环GDR编码,以使接收端能够从任意一帧视频帧恢复视频图像。
  11. 如权利要求1所述的断链恢复的方法,其特征在于,所述环路控制参数包括定时参数、频偏参数以及接收增益参数中的至少一个。
  12. 一种飞行器,所述飞行器应用数字图传***,其特征在于,包括:
    监测单元,配置为监测物理层的信号接收状态;
    冻结单元,配置为当所述信号接收状态为接收失败时,控制所述物理层的环路控制参数进入冻结状态;
    解冻单元,配置为当所述信号接收状态为恢复接收时,控制所述物理层的环路控制参数解除所述冻结状态。
  13. 如权利要求12所述的飞行器,其特征在于,所述冻结单元,配置为控制所述物理层的环路控制参数在第一时间段内保持所述冻结状态。
  14. 如权利要求13所述的飞行器,其特征在于,
    所述解冻单元,配置为若在所述第一时间段内监测到所述信号接收状态为恢复接收,控制所述物理层的环路控制参数解除所述冻结状态;或
    超出所述第一时间段后,控制所述物理层的环路控制参数解除所述冻结状态。
  15. 如权利要求12所述的飞行器,其特征在于,所述冻结状态内所述物理层的环路控制参数保持接收失败前的环路控制参数不变。
  16. 如权利要求12所述的飞行器,其特征在于,所述解冻单元控制所述物理层的环路控制参数解除所述冻结状态后,所述物理层的环路控制参数基于所述物理层的接收信号功率变化而变化。
  17. 如权利要求12所述的飞行器,其特征在于,所述物理层和高层进入失歩状态的时间门限为第一时间门限。
  18. 如权利要求17所述的飞行器,其特征在于,当所述物理层和所述高层不存在有效数据交互的时间间隔在所述第一时间门限内,所述物理层与所述高层不进入失步状态。
  19. 如权利要求17所述的飞行器,其特征在于,当所述物理层和所述高层不存在有效数据交互的时间间隔超过所述第一时间门限,所述物理层和所述高层进入失步状态。
  20. 如权利要求12所述的飞行器,其特征在于,所述飞行器用于视频图像传输。
  21. 如权利要求20所述的飞行器,其特征在于,所述飞行器还包括:编码单元;
    所述编码单元,配置为在应用层使用循环GDR编码,以使接收端能够从任意一帧视频帧恢复视频图像。
  22. 如权利要求12所述的飞行器,其特征在于,所述环路控制参数包括定时参数、频偏参数以及接收增益参数中的至少一个。
PCT/CN2017/112277 2017-11-22 2017-11-22 一种断链恢复的方法及飞行器 WO2019100238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/112277 WO2019100238A1 (zh) 2017-11-22 2017-11-22 一种断链恢复的方法及飞行器
CN201780026928.9A CN109075854B (zh) 2017-11-22 2017-11-22 一种断链恢复的方法及飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112277 WO2019100238A1 (zh) 2017-11-22 2017-11-22 一种断链恢复的方法及飞行器

Publications (1)

Publication Number Publication Date
WO2019100238A1 true WO2019100238A1 (zh) 2019-05-31

Family

ID=64822092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112277 WO2019100238A1 (zh) 2017-11-22 2017-11-22 一种断链恢复的方法及飞行器

Country Status (2)

Country Link
CN (1) CN109075854B (zh)
WO (1) WO2019100238A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216820A1 (en) * 2002-05-20 2003-11-20 Messina Peter V. Figure eight hysteresis control method and follow-up system
CN103262543A (zh) * 2010-12-30 2013-08-21 斯凯普公司 用于视频解码的数据丢失隐蔽
CN105652891A (zh) * 2016-03-02 2016-06-08 中山大学 一种旋翼无人机移动目标自主跟踪装置及其控制方法
CN105825831A (zh) * 2016-02-22 2016-08-03 杭州中威电子股份有限公司 一种用于视频监控设备的柔性显示方法和装置
CN106843278A (zh) * 2016-11-24 2017-06-13 腾讯科技(深圳)有限公司 一种飞行器跟踪方法、装置及飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2762169B1 (fr) * 1997-04-10 1999-06-25 Aerospatiale Systeme de liaisons de donnees entre un aeronef et le sol et procede de survie a une panne
CN1855766B (zh) * 2005-04-19 2011-06-08 大唐移动通信设备有限公司 一种基于无线链路状态的物理层控制方法
CN101141183B (zh) * 2007-04-28 2011-01-19 中兴通讯股份有限公司 物理层下行链路的同步或失步状态上报方法
CN100568137C (zh) * 2008-02-27 2009-12-09 北京航空航天大学 一种无人机遥控链路中断的判断与处理方法
DE112013007751B3 (de) * 2012-10-22 2023-01-12 Intel Corporation Hochleistungs-Zusammenschaltungs-Bitübertragungsschicht
CN105049812B (zh) * 2015-08-07 2018-06-15 清华大学深圳研究生院 一种无人机便携式地面站处理方法及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216820A1 (en) * 2002-05-20 2003-11-20 Messina Peter V. Figure eight hysteresis control method and follow-up system
CN103262543A (zh) * 2010-12-30 2013-08-21 斯凯普公司 用于视频解码的数据丢失隐蔽
CN105825831A (zh) * 2016-02-22 2016-08-03 杭州中威电子股份有限公司 一种用于视频监控设备的柔性显示方法和装置
CN105652891A (zh) * 2016-03-02 2016-06-08 中山大学 一种旋翼无人机移动目标自主跟踪装置及其控制方法
CN106843278A (zh) * 2016-11-24 2017-06-13 腾讯科技(深圳)有限公司 一种飞行器跟踪方法、装置及飞行器

Also Published As

Publication number Publication date
CN109075854A (zh) 2018-12-21
CN109075854B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
RU2564396C2 (ru) Устройство приема и способ приема
CN101719809B (zh) 一种媒体数据包丢包恢复的方法及***
JP5456784B2 (ja) コンテンツ送信装置、コンテンツ受信装置、コンテンツ送信プログラム、コンテンツ受信プログラム、コンテンツ送信方法、及びコンテンツ受信方法
EP3070695B1 (en) Method and system for generating an event video sequence, and camera comprising such system
US20150312651A1 (en) System and method of optimized network traffic in video surveillance system
CN107566918A (zh) 一种视频分发场景下的低延时取流秒开方法
CN111368005B (zh) 基于区块链的数据处理方法、装置、设备及可读存储介质
WO2019100238A1 (zh) 一种断链恢复的方法及飞行器
WO2020237466A1 (zh) 视频传输方法、装置、飞行器、播放设备及存储介质
US8411755B2 (en) Video transmission apparatus and control method for video transmission apparatus
CN102572409A (zh) 一种应用于移动视频监控防止扇区切换过程视频中断的方法
CN102823263B (zh) 显示装置、眼镜装置及影像***
CN101699824B (zh) 一种故障恢复装置及方法
JP2003032689A (ja) 画像符号化装置、画像復号化装置及び動画像伝送システム
JP2009044386A (ja) 監視システム
CN105187803B (zh) 一种基于电视的安全视讯监控方法
CN105245946B (zh) 可变码率媒体流的流量控制方法、装置以及***
CN113015226A (zh) 一种网络连接方法及装置
US8667342B2 (en) Method and apparatus for reducing bit errors
US20050105639A1 (en) Wireless transmission system
JP4069125B2 (ja) 伝送方法、送信装置、および送受信システム
JP3535672B2 (ja) 映像データ伝送装置及び映像データ伝送方法
KR20100125950A (ko) 실시간 다중 영상압축 장치 및 방법
KR101820520B1 (ko) 녹화 영상 저장 방법 및 그 장치
JP2009278286A (ja) 情報通信装置、情報通信方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933019

Country of ref document: EP

Kind code of ref document: A1