WO2019098764A1 - Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material - Google Patents

Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material Download PDF

Info

Publication number
WO2019098764A1
WO2019098764A1 PCT/KR2018/014125 KR2018014125W WO2019098764A1 WO 2019098764 A1 WO2019098764 A1 WO 2019098764A1 KR 2018014125 W KR2018014125 W KR 2018014125W WO 2019098764 A1 WO2019098764 A1 WO 2019098764A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
irreversible additive
secondary battery
electrode material
lithium
Prior art date
Application number
PCT/KR2018/014125
Other languages
French (fr)
Korean (ko)
Inventor
전혜림
김슬기
이상욱
정왕모
강민석
백소라
노은솔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019554625A priority Critical patent/JP7094598B2/en
Priority to CN201880018354.5A priority patent/CN110431109B/en
Priority to EP18879058.8A priority patent/EP3604229B1/en
Priority to PL18879058.8T priority patent/PL3604229T3/en
Priority to ES18879058T priority patent/ES2946509T3/en
Priority to US16/613,728 priority patent/US11476466B2/en
Priority claimed from KR1020180141758A external-priority patent/KR102346153B1/en
Publication of WO2019098764A1 publication Critical patent/WO2019098764A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a method for producing an irreversible additive contained in a cathode material for a lithium secondary battery comprising: a cathode material comprising an irreversible additive produced thereby; and a lithium secondary battery including a cathode material
  • the present invention comprises the increasing the fraction of the material to provide a non-reversible capacity in the irreversible additives by minimizing Lyrium by-product manufacturing method of the non-reversible additive for significantly reducing the gelling of the positive electrode material composition containing the same In a nonreciprocal 15 additive prepared by A cathode material, and a lithium secondary battery comprising the same.
  • lithium secondary batteries having high energy 20 densities and voltages, long cycle life, and low self-discharge rates are commercially available and widely used.
  • a negative electrode material for a lithium secondary battery a carbon-based material is mainly used
  • a negative electrode made of a carbon-based material is the theoretical maximum capacity limited to 372 -1 1 / ⁇ (844 ⁇ X) , there is a limit to increase the capacity.
  • 25 reviewed Lyrium metal was as a negative electrode material, but can implement a high-capacity, the energy density is very high, during the repeated charge and discharge dendritic growth ((1611 (11: there are safety issues and the short problems cycle life by 6).
  • the material reversibly intercalates and deintercalates lyrium through compound formation reaction with lyrium and is promising as a high capacity cathode material because its theoretical maximum capacity is about 4200 ( 9366 ⁇ / , specific gravity 2.23 ) .
  • the lithium nickel based oxide is mainly there is prepared a nickel oxide, nickel carbonate, is reacted with an excess of Lyrium oxide, wherein the unreacted lithium oxide (Nishi 0), or niye, Nishi-products such as 03 ⁇ 4 the final lithium nickel produced system will remain in the oxide 15.
  • Lithium oxide and by-products remaining in the lithium nickel oxide are decomposed at the initial battery cycle to generate an excessive amount of gas such as 0 , and in the case of by-products such as niobium, react with the binder component in preparing a composition for electrode production It is difficult to uniformly apply the electrode composition for forming the active material layer 20 and consequently to deteriorate the characteristics of the battery.
  • the glass cloth The glass needle derived from Ei has a problem of lowering the cycle efficiency of the anode.
  • Patent Document 1 Korean Patent Laid-Open No. 2003-0076153 (published on September 26, 2003)
  • the present invention solves the above problems, and it is an object of the present invention to increase the fraction of the iridium nickel-based oxide of the irreversible additive and reduce the content of the nickel by-product such as unreacted lithium oxide by 30 , 2019/098764 1 » (: 1 ⁇ ⁇ 2018/014125
  • an object of the present invention is to provide a method for producing an irreversible additive.
  • the present invention also provides a cathode material for a lithium secondary battery comprising an irreversible additive which is produced according to the above-described method and has a reduced content of a nickel by-product such as unreacted materials, and a lithium secondary battery exhibiting excellent electrochemical characteristics, .
  • Needle 2+ 2+ 1 ⁇ 0, 0 ⁇ mitni 20 is X:.: A Lyrium excess precursor combined physically in a molar ratio of 2, in combination with an additional 0, and the heat treatment, 11 to 2 ⁇ 1 ⁇ 0 ⁇ 2 , 0, and Ni 20 are physically bonded with a molar ratio of X : ': to produce a lyrium-excess transition metal oxide.
  • the manufacturing method according to this embodiment is manufactured by the conventional method
  • Nishi 2 + 1 102+ (: and, based on the total mole ratio of from 0 Needle 20 is relatively high.
  • the addition amount of 0 added further in the above-mentioned production method is determined by considering the molar ratio of 0 and 0 to 20 present in the lithium-excess precursor, and the molar ratio Is not limited to an amount that can be 0.93 or more, that is, 93% or more based on the entire amount of 11 2 11 -0 2 2 and 0, and is not limited to a molar ratio of unreacted Ni 20 to 1 mol of larium excess precursor It can be added from a small range to a certain degree. 2019/098764 1 » (: 1 ⁇ ⁇ 2018/014125
  • the heat treatment is performed under an inert atmosphere at 500 to 800 ° C ( for 12 to 24 hours).
  • the heat treatment is carried out in an inert atmosphere
  • the heat treatment when the heat treatment is performed within the temperature range described above, it is possible to easily react with unreacted materials existing in the precursor of lyrium in excess of the amount of added 0 , while the side reaction is further generated by the additional heat treatment , The reaction material is not decomposed. At this time, it is preferable that the ratio of Ni 2 + 3 1 : 0 2 + ⁇ : 2 + 3: 1 is satisfied without deteriorating the discharge capacity per unit weight, lowering the cycle characteristics, And the molar ratio of Ni 2 O 4 can be decreased. More specifically, considering that the effect of heating temperature control is excellent, the heat treatment can be performed at a temperature of 600 to 700 ° C , more specifically 650 to 700 ° C.
  • the heat treatment may be performed for 12 to 24 hours. remind 2019/098764 1 » (: 1 ⁇ ⁇ 2018/014125
  • the lithium-excess precursor for producing the irreversible additive according to the present invention is prepared by mixing a raw material of a lithium source material, a nickel raw material and an element, for example, followed by heat treatment.
  • the reaction between the lithium source material and the raw material of the element can sufficiently occur and the unreacted material can be minimized.
  • the lithium source material is a lithium-containing oxide sulphate nitrate, acetate a carbonate, oxalate, citrate halide hydroxides or oxy-hydroxide
  • the lithium source material is a lithium-containing oxide sulphate nitrate, acetate a carbonate, oxalate, citrate halide hydroxides or oxy-hydroxide
  • the raw material when considering the dual-in during the reaction with the nickel raw material reaction efficiency and secondary reaction generation reducing effect, the raw material may Lyrium you 0 days.
  • the nickel raw material may be a nickel-containing oxide or hydroxide such as nickel oxide ( 0 ) or nickel hydroxide ((fine)).
  • Oxa hydroxides and the like can be used.
  • the above is by being included by substituting part of nickel contained Lyrium nickel oxide to be finally produced that serve to improve the thermal stability and structural stability, specifically, & 1,,, 3 ⁇ 43 ⁇ 4,, ⁇ , 0 0, or 3 ⁇ 4
  • a transition metal element having a divalent, trivalent or pentasaccharide number such as the following;
  • the lithium source material, the nickel source material, and the raw material of the element as described above may be used in an amount to satisfy the composition ratio of the ten metal elements including the lithium and nickel in the lithium-nickel composite oxide of formula ( 1 ).
  • a sintering agent may be optionally added when mixing the above raw materials.
  • the sintering agent is specifically ⁇ , ⁇ 41 ⁇ 3, or ( ⁇ a compound containing ammonium ions, such as ⁇ filtered; 3 ⁇ 4 or 03 metal oxides such as 203; Or a metal halide such as 12 or 0 (: 12 , any one or two or more of which may be a mixture of 15 or more).
  • the sintering may be used in an amount of 0.01 to 0.2 mol based on 1 mol of the nickel raw material. It is possible to improve the performance of the cathode material and prevent the initial capacity of the battery from lowering during the charge / discharge process because the sintering property improving effect is excellent when used within the above-mentioned content range.
  • a moisture removing agent may optionally be added to the amount of 20 more.
  • the moisture removing agent include citric acid, tartaric acid, glycolic acid, and maleic acid, and any one or a mixture of two or more thereof may be used.
  • the moisture-removing agent may be added in an amount of 0 to 1 mol of the nickel raw material . Can be used in an amount of from about 0.2 mol to about 0.2 mol.
  • the irreversible additives prepared as may the unreacted Lyrium than 3% based on the weight of the non-reversible additive total weight, as measured by titration, of lithium by-products such as oxides specifically comprises less than 2% by weight, further more specifically, 52 % or less specifically ⁇ 0 and 0 to 0.5% by weight of not more than 1.5% by weight, and in detail may include senior from 0 to 0.3% by weight.
  • lithium by-products such as oxides specifically comprises less than 2% by weight, further more specifically, 52 % or less specifically ⁇ 0 and 0 to 0.5% by weight of not more than 1.5% by weight, and in detail may include senior from 0 to 0.3% by weight.
  • the present invention also provides a positive electrode material comprising an irreversible additive and a positive electrode active material according to the present invention.
  • the content of the irreversible additive may be 0.1 wt % to 10 wt % , specifically 1 wt % to 5 wt % , and more specifically 1 wt % to 3 wt % based on the total weight of the cathode material.
  • the positive electrode material containing the irreversible additive according to the present invention has
  • the present invention also relates to a positive electrode comprising the positive electrode material coated on the positive electrode current collector; A negative electrode having a negative electrode active material coated on the negative electrode collector;
  • the lithium secondary battery has a structure in which the electrode assembly including the electrode assembly is embedded in the battery case together with the electrolyte solution.
  • the cathode material may further include a conductive material and a binder together with the irreversible additive and the cathode active material as described above.
  • the positive electrode active material is, for example, needle (0 0 2,
  • the conductive material is used for imparting conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change in the battery and has electronic conductivity.
  • Specific examples thereof include carbon-based materials such as carbon black acetylene black, Ketjen black, channel black, furnace black lamp black summer black and carbon fiber, graphite such as natural graphite and artificial graphite, metal powder such as copper nickel, Conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives.
  • carbon-based materials such as carbon black acetylene black, Ketjen black, channel black, furnace black lamp black summer black and carbon fiber, graphite such as natural graphite and artificial graphite, metal powder such as copper nickel, Conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives.
  • One or more of these may be used alone or as a mixture of two or more
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride-based, vinylidene fluoride-nucleus fluoropropylene
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery, and may be formed of, for example, stainless steel, aluminum nickel, titanium fired carbon or aluminum or stainless steel with carbon,
  • the 5 positive electrode current collectors may have a thickness of 3 to 500 , and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil net, a porous body, a foam nonwoven fabric, and the like.
  • the negative electrode may also be manufactured such that the negative electrode material including the negative electrode active material is applied on the negative electrode current collector 10, and the negative electrode material may further include a conductive material and a binder as described above together with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of being alloyed with lyrium such as Si, Al, Sn, Pb, 15 Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Si alloys;
  • a Si-C composite, or as Sn-C bokhapchegwa may be made of composites such as containing a metallic compound and a carbonaceous material, there is one or two or more of these 20 mixtures may be used.
  • a metal lyrium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallin
  • hard carbon is a typical, high crystalline carbon roneun amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish graphite), pyrolysis 25 carbon (pyrolyt ic carbon), liquid crystal pitch based carbon High temperature calcined carbon such as meso phase pitch based carbon fiber, meso-carbon microbeads, meso phase pitches and petroleum or coal tar pitch derived cokes are representative.
  • the irreversible additive according to the present invention compensates for low efficiency such as a 30 Si-based cathode.
  • 2019/098764 1 » (: 1 ⁇ ⁇ 2018/014125
  • the negative electrode active material may specifically include a compound represented by the following general formula ( 1 ).
  • the secondary negative electrode active material may be contained in an amount of 5 wt % or more based on the total weight of the negative electrode active material.
  • the anode current collector is without causing chemical changes in the battery if it has suitable conductivity not particularly limited, for example, copper, stainless steel, aluminum, nickel, carbon on the surface of titanium, sintered carbon, copper or stainless 10 steel, Nickel, titanium, silver, etc., aluminum-cadmium alloy, etc.
  • the anode current collector may have a thickness of 3 to 500 times / Fine unevenness may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • film sheets, foils, nets, porous structures such as foamed non-woven material 15 may be used in various forms.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion.
  • the separation membrane can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Especially, the separation membrane has low resistance against electrolyte migration, desirable.
  • a porous polymer film made of a polyolefin-based polymer such as a 20 porous polymer film such as an ethylene homopolymer propylene homopolymer ethylene / butene copolymer ethylene / nucleus copolymer and an ethylene / methacrylate copolymer, or a 2 Layered structure or a laminated structure of 25 layers or more may be used as the non-woven fabric.
  • a conventional porous nonwoven fabric for example, a 25- woven fabric made of glass fiber polyethylene terephthalate fiber having a high melting point may be used.
  • a coated separator containing the material may be used and may optionally be used as a single layer or a multilayer structure.
  • the electrolytic solution may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent is methyl acetate, and (meth yl acetate), ethyl acetate (eth yl acetate), y- lactone butyronitrile (y-but yrolactone), £ - ester-based solvents such as caprolactone (£ -caprolactone) ; Dibutyl ether (dibut yl ether) or tetrahydrofuran (tetrah ydrofuran) ether-based solvents, and the like; Cyclo hex rice (yclohexanone c) a ketone-based solvents, and the like; &Quot; benzene,
  • Aromatic hydrocarbon solvents such as 10 fluorobenzene; Dimethyl car Bonnet art (dimeth ylcarbonate, DMC), diethyl carbonate (dieth ylcarbonate, DEC), methyl ethyl carbonate (meth ylethylcarbonate, MEC), ethylmethyl carbonate (eth y 1 met hy 1 car bonat e, EMC), ethylene carbonate (et <> ene 15 carbonate, EC), propyl ene carbonate (PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group of C2 to C2 ⁇ , which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; or
  • sulfolane may be used.
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.) is more preferable than 25.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.
  • mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the 30 lithium salt may be LiPF s, LiC104, LiAsFe , LiBF4 , LiSbF6, LiA104 , LiAlCl4 , LiCF3S03> LiC 4F9S03, LiN (C 2F5S03) 2, LiN (C 2F5S02) 2, Li N (CF3S02) 2.
  • LiB (C204 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1M to 2.0M .
  • the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance,
  • Lithium ion can move effectively.
  • the electrolytic solution may contain, for example, a haloalkylene carbonate compound such as difluoroethylene carbonate or the like, pyridine, triethylamine, or the like for the purpose of improving lifetime characteristics of the battery, suppressing the battery capacity decrease, phosphite, triethanolamine, cyclic ether, ethylenediamine, n- 10 glyme (glyme), hex triamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N- substituted oxazolidinone, N, N- substituted already Jolly Dean, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxyethanol, or more than one type of additive, such as aluminum trichloride may be further included.
  • the additive may be included in an amount of 0.1 wt % to 5 wt % based on the total weight of the electrolytic solution.
  • the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles vehicle, HEV), and the like.
  • the calculation is performed as follows.
  • a titrant of 1 is obtained, and this 176 has an inflection point. Twice (Needle (1) of the two ⁇ ) of the acid corresponding to the back on the basis of these inflection point 3 obtains the 5 content of your 20) 3 from because it requires twice the acid, 2), corresponding to the front
  • the amount of niacin was determined from the amount of 0 (B) in which the amount of the acid corresponding to the rear portion of the acid ( X ) was subtracted from the amount of the acid subtracted from the amount of the acid, and each of them was converted into weight % based on the total weight of the irreversible additive.
  • the irreversible additives of Examples 1 and 2 had a very low irritant amount of irritant excipients (crime content was measured to be less than 2.5 wt % and the content of Ni 3 was also very low to 0.35 10 wt % or less.
  • any process of Comparative Example 1 is also not a content of more than 4% by weight to you can be sure that you content of not less than 2 ⁇ 0.4% by weight.
  • Comparative Example 2 also reduce slightly the amount of Lyrium by-product is one you are more than 3 wt% of the, needle (.
  • the molar ratio is obtained as follows.
  • the size of the conductive material and the binder is too small to be considered, 2019/098764 1 » (: 1 ⁇ ⁇ 2018/014125
  • the mole ratio of Ni 20 was calculated by analyzing the peak density through charging of 0.1 to 4.2 to 4.2 and analysis of the charged anode. The results are shown in Table 1 below.
  • the sample used for the crime analysis was the anode obtained by disassembling 0 mi 1 after charging and analyzed as follows.
  • the ratio of 1 to 20 is 2.5 mol % when the peak intensity of the peak at 20 is 50 .
  • a positive electrode slurry was prepared by mixing LiNio.Smno.iCoo.i02, a carbon black conductive material and a positive binder as a cathode active material in a methylpyrrolidone solvent at a weight ratio of 4.6: 87.9: 3.5: 4 .
  • Example 10 The results of Example 1, a positive electrode slurry containing the additive of the non-reversible 2 Needle 0.8 1 ⁇ 11 (). 1 0 0 (). 1 0 2 , whereas the positive electrode slurries containing the irreversible additives of Comparative Examples 1 and 2 have a relatively high viscosity. From this, it can be expected that, as in Comparative Examples 1 and 2 , when the lyrium by-product still exceeds 4 % by weight, improvement in the gelation of the composition is less than 15 % .
  • the embodiment was prepared Lyrium secondary battery in the same manner as in Examples 1 and 2 and Comparative Examples 1 to 20 by using a non-reversible additives prepared in 2.
  • the cathode slurry prepared in Experimental Example 3 was used. Further, as the negative electrode active material, artificial graphite mixed with 10 % by weight of 0 (Carbon black conductive material), carbon black conductive material, and I (positive binder in a weight ratio of 90: 5: 5 in a solvent of methylpyrrolidone to prepare an anode composition 25 , .
  • An electrode assembly was fabricated between the positive electrode and the negative electrode prepared as described above with a separator of porous polyethylene interposed therebetween.
  • the electrode assembly was positioned inside the case and an electrolyte was injected into the case to manufacture a lithium secondary battery. At this time,
  • the manufactured secondary batteries 0.1 (: a 4 to 0: ⁇ : V is charged, 0.005 (: was charged to until the cut-off, 0.1 (: to 2 to (X discharge by measuring the charge capacity, and the results The results are shown in Table 1 below.
  • the method for producing an irreversible additive according to the present invention is characterized in that the content of the lithium nickel oxide in the irreversible additive is increased and the content of the nickel by-product such as unreacted lithium oxide is reduced by further mixing and heat- The viscosity increase or the gelation can be reduced. Accordingly, the lithium secondary battery manufactured using the cathode material containing the same can exhibit more excellent electrochemical characteristics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides: a method for preparing an irreversible additive capable of reducing the content of Li-based byproducts, such as unreacted lithium oxide, generated during a preparation procedure, to significantly reduce the gelation of a composition containing the Li-byproducts; a positive electrode material containing an irreversible additive prepared by the method; and a lithium secondary battery comprising a positive electrode material.

Description

2019/098764 1»(:1^1{2018/014125 2019/098764 1 » (: 1 ^ {2018/014125
【발명의 명칭】 Title of the Invention
리륨 이차전지용 양극재에 포함되는 비가역 첨가제의 제조방법 이에 의해 제조된 비가역 첨가제를 포함하는 양극재, 및 양극재를 포함하는 리튬 이차전지  A method for producing an irreversible additive contained in a cathode material for a lithium secondary battery comprising: a cathode material comprising an irreversible additive produced thereby; and a lithium secondary battery including a cathode material
5  5
【기술분야】  TECHNICAL FIELD
관련출원(들)과의 상호인용  Cross-reference with related application (s)
본출원은 2017년 11월 17일자한국특허 출원제 10-2017-0154184호및 2018년 11월 16일자 한국 특허 출원 제 10-2018-0141758호에 기초한우선권의 10 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on 10 Nov. 17 issue of Korea Patent Application No. 10-2017-0154184, and November 16, 2018 Date of Korea Patent Application No. 10-2018-0141758 and 2017, the Korea Patent Application All of which are incorporated herein by reference.
본 발명은 비가역 첨가제에서 비가역 용량을 제공하는 물질의 분율을 높이고 리륨부산물을 최소화함으로써 이를포함하는 양극재 조성물의 겔화를 현저히 저감시킬 수 있는 비가역 첨가제의 제조방법 이에 의해 제조된 비가역 15 첨가제를포함하는 양극재, 및 이를포함하는 리튬 이차전지에 관한 것이다. The present invention comprises the increasing the fraction of the material to provide a non-reversible capacity in the irreversible additives by minimizing Lyrium by-product manufacturing method of the non-reversible additive for significantly reducing the gelling of the positive electrode material composition containing the same In a nonreciprocal 15 additive prepared by A cathode material, and a lithium secondary battery comprising the same.
【배경기술】 BACKGROUND ART [0002]
모바일 기기에 대한기술개발과수요가증가함에 따라에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 20 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리륨 이차전지가상용화되어 널리사용되고있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Of these secondary batteries, lithium secondary batteries having high energy 20 densities and voltages, long cycle life, and low self-discharge rates are commercially available and widely used.
리튬이차전지의 음극재료로서는탄소계 물질이 주로이용되고 있지만, 탄소계 물질로 이루어지는 음극은 이론적 최대 용량이 372 —11/§(844 八 X)으로 제한되어 용량 증대에 한계가 있다. 또한, 음극 재료로서 25 검토되었던 리륨금속은에너지밀도가매우높아고용량을구현할수 있지만, 반복된 충방전시 수지상성장((1611116)에 의한안전성 문제와사이클수명이 짧은문제점이 있다. But as the negative electrode material for a lithium secondary battery, a carbon-based material is mainly used, a negative electrode made of a carbon-based material is the theoretical maximum capacity limited to 372 -1 1 / § (844八 X) , there is a limit to increase the capacity. In addition, 25 reviewed Lyrium metal was as a negative electrode material, but can implement a high-capacity, the energy density is very high, during the repeated charge and discharge dendritic growth ((1611 (11: there are safety issues and the short problems cycle life by 6).
따라서, 고용량을나타내고리륨금속을대치할수있는물질로서 높은 에너지 밀도를 가지는 음극 활물질의 사용이 불가피해졌으며, 실리콘, 주석, 30 또는이들의 합금에 대한많은연구와제안이 있어 왔다. 예를들어, 실리콘계 2019/098764 1»(:1^1{2018/014125 Accordingly, a material that can replace the ring of cerium metal exhibit high dose was not harm the use of the negative electrode active material having a high energy density, there has been a number of studies and suggestions on silicon, tin, or an alloy of these 30. For example, 2019/098764 1 » (: 1 ^ {2018/014125
물질은 리륨과의 화합물 형성반응을통해 리륨을가역적으로흡장 및 방출하며 이론적 최대 용량이 약 4200 ^八 (9366 ^/ , 비중 2.23)으로서 탄소계 물질에 비해서 매우크기 때문에, 고용량음극 재료로서 유망하다. The material reversibly intercalates and deintercalates lyrium through compound formation reaction with lyrium and is promising as a high capacity cathode material because its theoretical maximum capacity is about 4200 ( 9366 ^ / , specific gravity 2.23 ) .
그러나 이들 음극 재료는 초기 효율이 낮아 초기 충방전 동안의 5 비가역 용량손실이 크다는문제가 있다.  However, these cathode materials have low initial efficiency and thus have a problem of large irreversible capacity loss during initial charge and discharge.
이에 대해 양극 재료에 리튬 이온 공급원 또는 저장소를 제공할 수 있으며 전지 전체의 성능을 저하시키지 않도록 최초 사이클 후에 전기화학적으로 활성을나타내는 재료를사용하여, 음극의 비가역 용량손실을 극복하고자 하는 방법이 연구 제안되었다. 구체적으로 희생 양극재 또는 10 비가역 첨가제(또는 과방전 방지제)로서 니 0와 같이 과량의 리튬을 포함하는 리툼니켈계 산화물을 양극에 사용하는방법이 있다. In order to overcome the irreversible capacity loss of the cathode using a material that can provide a lithium ion source or a storage material to the cathode material and exhibit electrochemical activity after the first cycle so as not to deteriorate the performance of the entire battery, . Specifically, there is a method for use in a nickel-based positive electrode ritum oxide including excess lithium as you 0 as the sacrificial anode material or additive 10 irreversible (or over-discharge agent).
그러나 상기 리튬 니켈계 산화물은 주로 니켈 산화물이나 니켈 탄산염 등을, 과량의 리륨 산화물과 반응시켜 제조되는데, 이때 미반응 리튬 산화물(니0), 또는니예, 니과같은부산물이 최종 제조되는 리튬 니켈계 15 산화물에 잔류하게 된다. 리륨 니켈계 산화물에 잔류하는 리튬 산화물 및 부산물들은 초기 전지 사이클시 분해되어 0, ¥ 등의 과량의 가스를 발생시킬 뿐 아니라 니에와 같은 부산물의 경우 전극 제조를 위한 조성물 제조시 바인더 성분과 반응하여 조성물의 점도 상승 또는 겔화를 초래하고 이로 인해 활물질층 형성을위한 전극조성물의 도포시 균일한도포가어렵고 20 그 결과로서 전지의 특성이 저하되는 문제가 있다.또한, 유리 니(犯 및/또는 니에에서 유래하는유리 니는 양극의 사이클효율을 저하시키는문제도 있다. However, the lithium nickel based oxide is mainly there is prepared a nickel oxide, nickel carbonate, is reacted with an excess of Lyrium oxide, wherein the unreacted lithium oxide (Nishi 0), or niye, Nishi-products such as the final lithium nickel produced system will remain in the oxide 15. Lithium oxide and by-products remaining in the lithium nickel oxide are decomposed at the initial battery cycle to generate an excessive amount of gas such as 0 , and in the case of by-products such as niobium, react with the binder component in preparing a composition for electrode production It is difficult to uniformly apply the electrode composition for forming the active material layer 20 and consequently to deteriorate the characteristics of the battery. In addition, there is a problem that the glass cloth The glass needle derived from Ei has a problem of lowering the cycle efficiency of the anode.
[선행기술문헌] [Prior Art Literature]
(특허문헌 1)한국특허공개 제 2003-0076153호(2003.09.26공개) (Patent Document 1) Korean Patent Laid-Open No. 2003-0076153 (published on September 26, 2003)
2525
【발명의 상세한설명】  DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명은 상기한 문제를 해결하여, 비가역 첨가제의 리륨 니켈계 산화물의 분율을 높이고 미반응 리튬 산화물 등의 니계 부산물의 함량을 30 감소시켜, 전극 제조에 따른 조성물의 점도 상승 또는 겔화를 감소시킬 수 2019/098764 1»(:1^1{2018/014125 The present invention solves the above problems, and it is an object of the present invention to increase the fraction of the iridium nickel-based oxide of the irreversible additive and reduce the content of the nickel by-product such as unreacted lithium oxide by 30 , 2019/098764 1 » (: 1 ^ {2018/014125
있는 비가역 첨가제의 제조방법을제공하는 것을목적으로 한다. And an object of the present invention is to provide a method for producing an irreversible additive.
본 발명은또한상기한 제조방법에 따라 제조되어, 미반응물 등의 니계 부산물의 함량이 감소한 비가역 첨가제를 포함하는 리튬 이차전지용 양극재, 그리고 이를 포함하여 우수한 전기화학적 특성을 나타내는 리륨 이차전지를 제공하는 것을목적으로 한다.  The present invention also provides a cathode material for a lithium secondary battery comprising an irreversible additive which is produced according to the above-described method and has a reduced content of a nickel by-product such as unreacted materials, and a lithium secondary battery exhibiting excellent electrochemical characteristics, .
【기술적 해결방법】 [Technical Solution]
본 명세서 및 청구범위에 사용된 용어나 단어는통상적이거나사전적인 의미로 한정해서 해석되어서는 아니되며 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만한다.  The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may properly define the concept of the term to describe its invention in the best possible way And should be construed in accordance with the principles and meanings and concepts consistent with the technical idea of the present invention.
이하 본 발명의 일 구현예에 따른 리륨 이차전지용 양극재에 포함되는 비가역 첨가제의 제조방법, 상기 제조방법으로 제조된 비가역 첨가제를 포함하는 양극재 그리고 이를포함하는 리륨 이차전지에 대해 설명한다.  Hereinafter, a method for preparing an irreversible additive included in a cathode material for a lithium secondary battery according to an embodiment of the present invention, a cathode material including an irreversible additive manufactured by the manufacturing method, and a lithium secondary battery including the same will be described.
본 발명의 일 구현예에 따른 리튬 이차전지용 양극재에 포함되는 비가역 첨가제를 제조하는방법은  A method for producing an irreversible additive included in a cathode material for a lithium secondary battery according to an embodiment of the present invention includes:
2+ 1-^02+。, 附0및니20X : : 2의 몰비로물리적으로결합된 리륨과량의 전구체를, 추가적으로 0와혼합하고열처리하여, 112^1-^02^ , 0 및 니20X : ’ : 의 몰 비로 물리적으로 결합된 리륨 과량의 전이금속산화물을제조하는과정을포함한다. Needle 2+ 2+ 1 ^ 0, 0附mitni 20 is X:.: A Lyrium excess precursor combined physically in a molar ratio of 2, in combination with an additional 0, and the heat treatment, 11 to 2 ^ 1 ^ 0 ^ 2 , 0, and Ni 20 are physically bonded with a molar ratio of X : ': to produce a lyrium-excess transition metal oxide.
단, 상기 식에서, -0.2<3<0.2, 0<1)<1, 0<(:<0.2이고, In the above formula, -0.2 < 3 <0 .2, 0 <1 ) <1, 0 < ( : <0.2,
X + = 1이고, X’ + ’ = 1인 기준으로, 는 0.8이상이고, X’는 0.93
Figure imgf000005_0001
With reference to X + = 1 and X '+' = 1, is greater than or equal to 0.8 and X 'is equal to 0.93
Figure imgf000005_0001
선택되는 1종이상의 원소이다. It is one or more elements selected.
이와 같이 상기 일 구현예에 따른 제조방법은, 종래 방법으로 제조되어
Figure imgf000005_0002
As described above, the manufacturing method according to this embodiment is manufactured by the conventional method
Figure imgf000005_0002
0를 추가적으로 혼합하고 열처리하여, 미반응으로 남아있던 니0를 2019/098764 1»(:1^1{2018/014125 0 In addition to the mixing and heat treatment, the knee was 0 remains unreacted 2 019/098764 1 »(: 1 ^ 1 {2 018/014125
추가적으로반응시킴으로써, 비가역 첨가제의 니2+1-1¾02+(;의 분율을높이고, 상대적으로 , 미반응 리륨산화물 등의 니계 부산물의 양을 감소시킬 수 있는 바, 음극에 니의 제공이 더욱 유리하여 음극의 낮은 효율을 효과적으로 보상해줄뿐 아니라, 리륨화합물의 존재에 의해 발생하는 전극조성물에서의 겔화를현저히 저감시킬수있다. By additionally reacting, it is possible to increase the proportion of iridium additive to Ni + 2 + 1 ( + ) and to reduce the amount of Ni byproducts such as unreacted lyrium oxide, It is possible not only to effectively compensate the low efficiency of the negative electrode but also to significantly reduce the gelation in the electrode composition caused by the presence of the lyrium compound.
상기 리튬과량의 전구체 및 리튬과량의 전이금속산화물을구성하는 물질들의 몰 비는분율에 비례하는 개념으로, 본 발명에서는 X + = 1이고, X’ + / = 1인기준으로하여, X , 7,
Figure imgf000006_0001
X’, ’, 2 '의 값이 결정된다.
The molar ratio of the materials constituting the lithium excess precursor and the lithium-excess of the transition metal oxide is a concept that is proportional to the fraction, in the present invention is the X + = 1, X '+ / = 1 to the popular Zune, X, 7 ,
Figure imgf000006_0001
And X ',' 2 'are determined.
구체적으로, X + = 1이고, X 1 + / = 1인 기준으로, X는 0.8 이상이고, X’는 0.93이상이며 , X < X' , 7 > V ' 및 > 의 관계를충족하고, å0초과 0.21이하이며, ’는 0이상 0.09이하이며, 상세하게는, 는 0.8 이상 0.9이하이고, X0.93이상내지 1.0이하일 수 있으며, 상기 는 0 이상 0.055이하일수있다. Specifically, X + = 1, X 1 + / = 1 as the standard, X is 0.8 or more, X 'is at least 0.93, X <X' satisfy the relationship of, 7> V 'and>, and å is zero or less than 0.21, "it is is not less than 0 but not more than 0.09, specifically, is 0.8 or less 0.9 or more, X may be equal to or less than 0.93 or more to 1.0, and the can is less than zero or 0.055.
즉, 상기 종래 방법으로 제조된 리툼 과량의 전구체의 경우, 실질적으로, 비가역 용량을 제공해주는 니2+ 1- 02+(;의 몰 비가 니 山 02+(; 및 0의 전체를 기준으로 80% 내지 90% 이하로 낮은 편인 반면, 니2+ 1- 102+(:및 0의 전체를기준으로한니20의 몰비는상대적으로높다. 그러나, 본 발명과 같이, 잔여 니20와 반응할 수 있는 0를 추가적으로 혼합하여 열처리하는 경우, 리툼 과량의 전구체에 원래 존재하고 있던 0와 추가된 0가 잔여 니20와 더 반응함으로써, 니2+1- 102+。의 몰 비를 112^1^02, 및 出0의 전체를 기준으로, X’0.93 이상인, 93% 이상까지 상승시키고, 니20의 몰비는상대적으로낮춰 상기 조건, X < X7 > 7'å '이며, 는 0이상 0.09이하, 상세하게는, 는 0이상 0.055 이하인조건을만족시킬수있다. That is, in the case of the retort excess precursor prepared by the conventional method, the molar ratio of Ni 2+ 1 +0 2+ (; providing substantially irreversible capacity, based on the whole of 0 2+ while lower than 80% to 90% ally, Nishi 2 + 1 102+ (: and, based on the total mole ratio of from 0 Needle 20 is relatively high. However, since, if further mixed with heat-treated for 0, which can react with residual Needle 20, in the ritum excess precursor is a 0 and add that was originally present remaining 0 Needle further reaction with 20, as in the present invention, did 2+ ; The molar ratio of 1 - 102 + is increased to 112 ^ 1 ^ 0 2 and the total of the outlets is increased to 93% or more, where X ' is 0.93 or more, and the molar ratio of Ni 20 is relatively lowered, X &lt; X , 7 & gt; 7 ' and X ' , and 0 or more and 0.09 or less, and more specifically 0 or more and 0.055 or less.
한편, 상기 제조방법에서 추가로혼합되는 0의 첨가량은리튬과량의 전구체에 존재하고 있던 0의 몰 비와, 니20의 몰 비를 고려하여 , 주가 열처리에 의한 반응에 의해 니 ]“의 몰 비를 112^11-^02^ 및 0의 전체를 기준으로 0.93 이상, 즉, 93% 이상이 될 수 있는 양이라면 한정되지 아니하고, 리륨 과량의 전구체 1몰 대비 미반응 니20의 몰 비보다 작은 범위부터, 일정 부분큰정도까지 추가될수있다. 2019/098764 1»(:1^1{2018/014125 On the other hand, the addition amount of 0 added further in the above-mentioned production method is determined by considering the molar ratio of 0 and 0 to 20 present in the lithium-excess precursor, and the molar ratio Is not limited to an amount that can be 0.93 or more, that is, 93% or more based on the entire amount of 11 2 11 -0 2 2 and 0, and is not limited to a molar ratio of unreacted Ni 20 to 1 mol of larium excess precursor It can be added from a small range to a certain degree. 2019/098764 1 » (: 1 ^ {2018/014125
다만, ◦가 너무 많이 추가되는 경우에는, 오히려 니20와 반응하지 못하고 남아있는 0가 많게 되므로, 전체적으로 니 山 의 몰 비가 감소하고, 0의 몰 비가 높아지는 바, 실질적으로, 동일 중량을 기준으로 니을제공해줄수있는물질이 줄어들게 되어 바람직하지 않다. However, ◦ that if added too much, but rather you 20 and therefore does not react remains zero lot that, overall reduction in your山molar ratio, and increased from 0 molar ratio of the bar substantially, whilst the basis of the same weight It is undesirable to reduce the amount of material that can be provided.
따라서, 추가되는 0는 리륨 과량의 전구체 1몰 대비 미반응니20의 몰 비보다작은 범위부터, 일정 부분큰정도에서 반응이 완료된 후니 - 山2+ᄃ의 몰 비가증가하는정도로추가될 수 있고, 상세하게는, 리튬과량의 전구체 1몰대비 0.12내지 의 몰비, 더욱상세하게는, 리튬과량의 전구체 1몰 대비 0.52 내지 2의 몰 비로 혼합될 수 있고, 구체적인 첨가량은, 상기에서 설명한 바와 같이, 리튬 과량의 전구체에 존재하고 있던 0의 몰 비와, 니20의 몰 비를 고려하여, 추가 열처리에 의한 반응에 의해 112^11-
Figure imgf000007_0001
Therefore, the added 0 can be added to the extent that the molar ratio of the finished hunie-peak 2+ 반응 increases from a range smaller than the molar ratio of the unreacted Ni 20 to 1 mol of the lyrium excess precursor to a certain large extent, Specifically, it can be mixed at a molar ratio of 0.12 to 1 mol of the lithium-excess precursor, more specifically 0.52 to 2 mol per 1 mol of the lithium-excess precursor, and the specific addition amount is, as described above, Considering the molar ratio of 0 present in the excess precursor and the molar ratio of 20 , the reaction of 112 &lt; RTI ID = 0.0 &gt; 11-
Figure imgf000007_0001
이상이 될수있는양으로혼합될수있다. Or more.
상기 열처리는구체적으로, 불활성 분위기 하, 500내지 800° (:에서 12 시간내지 24시간동안수행된다. Specifically, the heat treatment is performed under an inert atmosphere at 500 to 800 ° C ( for 12 to 24 hours).
상기 열처리는 부반응 생성 억제를 위해 불활성 분위기 하에서
Figure imgf000007_0002
The heat treatment is carried out in an inert atmosphere
Figure imgf000007_0002
분위기 하에서 수행될수 있으며, 이중에서도반응효율증가및 부반응생성 억제 효과의 우수함을고려할때 ¾분위기 또는 분위기 하에서 수행될 수 있다. It is carried out in the atmosphere and may be carried out in the atmosphere or in an atmosphere ¾ given the superiority of double increase in the reaction efficiency and side reactions generate inhibitory effect.
또, 상기한 온도 범위 내에서 열처리가 수행되는 경우, 종래 리륨 과량의 전구체에 존재하는미반응물질들과, 추가되는 0의 반응이 용이하게 이루어질 수 있는 한편, 추가 열처리에 의해 오히려 부반응이 발생한다거나, 반응물질이 분해되지 아니하므로, 이때, 나타날 수 있는 단위무게당 방전 용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하에 대한 우려 없이 우수한 효율로, 니2+3 1대¾02+<:의 몰 비를 증가시키고, 니20의 몰 비를 감소시킬수있다. 보다구체적으로는가열온도제어에 따른효과의 우수함을 고려할 때, 상기 열처리는 600°〔 내지 700。:, 보다 더 구체적으로는 650^ 내지 700° (:의 온도조건에서 수행될수있다. In addition, when the heat treatment is performed within the temperature range described above, it is possible to easily react with unreacted materials existing in the precursor of lyrium in excess of the amount of added 0 , while the side reaction is further generated by the additional heat treatment , The reaction material is not decomposed. At this time, it is preferable that the ratio of Ni 2 + 3 1 : 0 2 + <: 2 + 3: 1 is satisfied without deteriorating the discharge capacity per unit weight, lowering the cycle characteristics, And the molar ratio of Ni 2 O 4 can be decreased. More specifically, considering that the effect of heating temperature control is excellent, the heat treatment can be performed at a temperature of 600 to 700 ° C , more specifically 650 to 700 ° C.
또 상기 열처리는 12 시간 내지 24 시간동안 수행될 수 있다. 상기 2019/098764 1»(:1^1{2018/014125 The heat treatment may be performed for 12 to 24 hours. remind 2019/098764 1 » (: 1 ^ {2018/014125
열처리의 수행시간이 12 시간 미만인 경우, 짧은 반응시간으로 인해 미반응 리튬 산화물과 0과의 충분한 반응이 일어나기 어렵고, 또 반응 효율이 저하로 인해 양극재 내 리륨계 부산물 감소 효과가 미미할 수 있다. 반면, 열처리의 수행 시간이 24시간을초과할경우, 과반응발생의 우려가있고, 또 5 소성 시간이 지나치게 길어지는 등 공정상 비효율적일 수 있다. 보다 구체적으로는 15시간내지 20시간동안수행될수있다.When the heat treatment is performed for less than 12 hours, a sufficient reaction between the unreacted lithium oxide and 0 is difficult to occur due to a short reaction time, and the effect of reducing the lithium peroxide by-products in the cathode material may be insignificant due to a decrease in the reaction efficiency. On the other hand, when the heat treatment is performed for more than 24 hours, there is a risk of occurrence of excessive reaction, and the baking time may become excessively long. More specifically 15 to 20 hours.
Figure imgf000008_0001
Figure imgf000008_0001
0X7 ' : 의 몰 비로 물리적으로 결합된 리륨 과량의 전이금속 산화물을 포함하고 _0.2£ £0.2, 01, 0£(:£0.2이고, X+1And a £ 0.2, X, + 1 of: Come 0, X: 7 ': including the Lyrium excess transition metal oxide combined with mole ratio of physical and _ 0.2 £ £ 0.2, 0 < 1, 0 £ (
10 기준으로, X0.93이상이고 는 0이상 0.09이하이며, 상기 은(X . 1 , 아 시 00 , ?,8로이루어진군에서 선택되는 1종이상의 원소일수있다. 한편 본 발명에 따른 비가역 첨가제를 제조하기 위한 리튬 과량의 전구체는 예를 들어 리튬원료물질, 니켈 원료물질 및 원소 의 원료물질을 혼합한후열처리함으로써 제조된다. 10 , X is 0.93 or more, and 0 or more and 0.09 or less . 1, O: 00,?, And has an element number of days on the one member selected from the group consisting of 8. Meanwhile, the lithium-excess precursor for producing the irreversible additive according to the present invention is prepared by mixing a raw material of a lithium source material, a nickel raw material and an element, for example, followed by heat treatment.
15 상기 리륨과량의 전구체를제조하기 위한열처리는 불활성 분위기 하 15 The heat treatment for producing the above-mentioned precursor of lyrium is carried out in an inert atmosphere
650내지 700 °(:에서 12시간내지 24시간동안수행된다. 650 to 700 ° C (for 12 to 24 hours).
상기 열처리시 온도및 시간범위 내에서 제조되어야 리튬원료물질과 원소 의 원료물질과의 반응이 충분히 일어날 수 있으며 미반응 물질을 최소화시킬수있다.  The reaction between the lithium source material and the raw material of the element can sufficiently occur and the unreacted material can be minimized.
20 상기 리튬원료물질은리튬함유산화물 황산염 질산염, 아세트산염 탄산염, 옥살산염, 시트르산염 할라이드 수산화물 또는 옥시수산화물 등이 사용될 수 있으며 구체적으로 니¥, 니 , 어, 니예, 니抑 . ¾0, 니比 니 1^1 , 니 니1 , 抑期011 0, 니必여 抑(:00니, 또는나(:¾0 등을 들 수 있다. 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 20 wherein the lithium source material is a lithium-containing oxide sulphate nitrate, acetate a carbonate, oxalate, citrate halide hydroxides or oxy-hydroxide may be used, and specifically, you ¥, needle, air, niye, you抑. ¾ 0, did you比1 ^ 1, needle Needle 1 Needle抑期0 11 0, you open必抑(:, and the like ¾0: Needle 00, or (b) (. Any one or a mixture of two or more of them may be used.
25 이중에서도 상기한 니켈 원료물질과의 반응시 반응 효율 및 부반응물 생성 감소효과를고려할때, 상기 리륨원료물질은니0일수있다. 25 when considering the dual-in during the reaction with the nickel raw material reaction efficiency and secondary reaction generation reducing effect, the raw material may Lyrium you 0 days.
상기 니켈원료물질은산화니켈( 0) 또는수산화니켈( (細))과같이 니켈포함산화물또는수산화물일수있다.The nickel raw material may be a nickel-containing oxide or hydroxide such as nickel oxide ( 0 ) or nickel hydroxide ((fine)).
Figure imgf000008_0002
Figure imgf000008_0002
30 아세트산염 탄산염 옥살산염 시트르산염, 할라이드, 수산화물 또는 2019/098764 1»(:1^1{2018/014125 30 Acetic Acid Carbonate Oxalate Citrate, halide, hydroxide or 2019/098764 1 » (: 1 ^ {2018/014125
옥사수산화물등이 사용될 수 있다. 이때 상기 은 최종 제조되는 리륨 니켈 포함 산화물에서 니켈의 일부를 치환하여 포함됨으로써 열 안정성 및 구조 안정성을 향상시키는 역할을 하는 것으로, 구체적으로는 &1, , , ¾¾, , ^ , 00, 또는 ¾과같은 2가, 3가또는 5가산화수를갖는전이금속원소;Oxa hydroxides and the like can be used. The above is by being included by substituting part of nickel contained Lyrium nickel oxide to be finally produced that serve to improve the thermal stability and structural stability, specifically, & 1,,, ¾¾,, ^, 0 0, or ¾ A transition metal element having a divalent, trivalent or pentasaccharide number such as the following;
5 시과 같은 3과 산화수를 갖는 양쪽성 원소; 그리고 , 및 묘로 이루어진 군에서 선택되는것일수있으며, 이중에서도상기 은 &1. ¾位,마,시, 00 , ?,8로이루어진군에서 선택되는것일수있다. An amphoteric element having a trivalent oxidation number such as 5 o'clock; And, and, and myoro doeneungeot days selected from the group consisting of, in double above & 1. ¾位, town, city, 0, 0,?, And is selected from the group consisting of 8 doeneungeot days.
상기와 같은 리튬 원료물질, 니켈 원료물질 및 원소 의 원료물질은 최종제조되는화학식 1의 리튬니켈복합산화물에서의 리툼과니켈을비롯한 10 금속원소의 조성비를충족하도록하는함량으로사용될수있다. The lithium source material, the nickel source material, and the raw material of the element as described above may be used in an amount to satisfy the composition ratio of the ten metal elements including the lithium and nickel in the lithium-nickel composite oxide of formula ( 1 ).
또한, 상기한원료물질들의 혼합시 소결제가선택적으로 더 첨가될 수 있다. 상기 소결제는 구체적으로■ , ■413, 또는 (■^여과 같은 암모늄 이온을 함유한 화합물; ¾03 또는이203과 같은 금속산화물; 또는附(:12 또는 0크(:12과 같은 금속 할로겐화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 15 이상의 혼합물이 사용될수 있다. 상기 소결제는니켈원료물질 1몰에 대하여 0.01몰내지 0.2몰의 함량으로사용될수있다. 상기한함량범위 내로사용시 소결 특성 향상 효과가 우수하여, 양극재의 성능 개선 및 충방전 진행시 전지의 초기 용량저하를방지할수있다. In addition, a sintering agent may be optionally added when mixing the above raw materials. The sintering agent is specifically ■, ■ 413, or (■ a compound containing ammonium ions, such as ^ filtered; ¾ or 03 metal oxides such as 203; Or a metal halide such as 12 or 0 (: 12 , any one or two or more of which may be a mixture of 15 or more). The sintering may be used in an amount of 0.01 to 0.2 mol based on 1 mol of the nickel raw material. It is possible to improve the performance of the cathode material and prevent the initial capacity of the battery from lowering during the charge / discharge process because the sintering property improving effect is excellent when used within the above-mentioned content range.
더욱이, 상기한 원료물질들의 혼합시, 수분제거제가 선택적으로 더 20 첨가될수도있다. 구체적으로상기 수분제거제로는구연산, 주석산, 글리콜산 또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 수분제거제는 니켈 원료물질 1몰에 대하여 0.이몰내지 0.2몰의 함량으로사용될수있다. Furthermore, in the mixing of the raw materials described above, a moisture removing agent may optionally be added to the amount of 20 more. Specifically, examples of the moisture removing agent include citric acid, tartaric acid, glycolic acid, and maleic acid, and any one or a mixture of two or more thereof may be used. The moisture-removing agent may be added in an amount of 0 to 1 mol of the nickel raw material . Can be used in an amount of from about 0.2 mol to about 0.2 mol.
상기와 같은 제조방법에 따라 리륨 과량의 전구체가 제조될 수 있고, 25 이때, 상기 리륨 과량의 전구체는, 1[ 2, ^1 1-^02^0 와 같은 조성식을 갖는 화합물과 함께, 니20와 같은 미반응 리륨 산화물, 및 니켈 산화물이 반응 생성물중에 포함되어 존재한다. Depending on the production method as described above, and an excess of precursor Lyrium be prepared, 25 In this case, the Lyrium excess precursor, 1 [2 ^ 11 - ^ 02 ^ 0 and with a compound having the same formula, you Unreacted lyrium oxide such as &lt; RTI ID = 0.0 &gt; 20 , &lt; / RTI &gt; and nickel oxide are present in the reaction product.
따라서, 본 발명에 따르면, 이러한 미반응 리튬 산화물의 양을 감소시키고, 실질적으로리륨을 제공하여 비가역 효율을 보상해주는丄 山 - 30 02+(;의 양을 늘리기 위해, 상기와 같은 0의 추가 혼합 열처리 과정을 2019/098764 1»(:1^1{2018/014125 Therefore, according to the present invention, these non-reducing the amount of reaction of lithium oxide,丄山that substantially provides to compensate for the irreversible efficiency Lyrium - 30 02+ (; 0 Additional mixing, such as to increase the amount of, and the Heat treatment process 2019/098764 1 » (: 1 ^ {2018/014125
수행한다 Perform
이와 같이 제조된 비가역 첨가제는 미반응 리륨 산화물 등의 리튬 부산물들을 적정법에 의해 측정했을 때 비가역 첨가제 총중량 대비 3중량% 이하 구체적으로는 2중량% 이하로 포함할 수 있고, 보다 더 구체적으로는 5 2중량% 이하 상세하게는 1.5중량% 이하의 니0比 및 0 내지 0.5중량%, 상세하게는 0 내지 0.3중량%의 니 어를 포함할 수 있다. 미반응 리튬 산화물의 경우 적정법에 따라측정하기 위해 증류수에서 교반하면, 니에와 니2 )3으로 분해되는 바, 상기 니에와 니2(03의 함량으로부터도 미반응 리튬 산화물의 함량이 많은지 적은지를 확인할수 있다. In the irreversible additives prepared as may the unreacted Lyrium than 3%, based on the weight of the non-reversible additive total weight, as measured by titration, of lithium by-products such as oxides specifically comprises less than 2% by weight, further more specifically, 52 % or less specifically比0 and 0 to 0.5% by weight of not more than 1.5% by weight, and in detail may include senior from 0 to 0.3% by weight. When stirred in distilled water for unreacted lithium oxide, measured according to titration method for, you and the Needle 2) bars, and you in the Needle 2 (which is decomposed with 3: maneunji this from the amount of 03 Fig content of unreacted lithium oxide You can check if it is small.
10 이와 같이 현저히 감소된 리튬 부산물로 인해, 이를 포함하는 양극 제조를 위한 믹싱 공정시 겔화의 우려가 없다.이에 따라상기 양극재는 종래 비가역 첨가제를사용하는 경우보다우수한효과를나타낼 수 있다. 10 Due to the remarkably reduced lithium by-product, there is no fear of gelation in the mixing process for preparing the positive electrode containing the lithium by-product, so that the positive electrode material can exhibit an effect superior to that of the conventional non-reversible additive.
한편 본 발명은 또한, 본 발명에 따른 비가역 첨가제 및 양극 활물칠을 포함하는 양극재를 제공한다.  The present invention also provides a positive electrode material comprising an irreversible additive and a positive electrode active material according to the present invention.
15 이때 상기 비가역 첨가제의 함량은 양극재 총 중량 대비 0.1중량% 내지 10중량%, 구체적으로 1중량% 내지 5중량%, 더욱 구체적으로는 1중량% 내지 3중량%일 수 있다. 15, wherein the content of the irreversible additive may be 0.1 wt % to 10 wt % , specifically 1 wt % to 5 wt % , and more specifically 1 wt % to 3 wt % based on the total weight of the cathode material.
상기 범위를 벗어나, 0.1 중량% 보다 작은 경우, 비가역 첨가제를 추가함에 따른 음극 효율 보상 효과를 얻을 수 없고 10 중량%를 초과하는 20 경우에는, 계열 음극의 사용이 증가함에 따라 음극으로부터 오는 전극 부피 팽창, 수명 퇴하등와문제를초래할수 있다. Out of the range, is lower than 0.1% by weight, 20 if not obtained a cathode efficiency compensation effect of the addition to the irreversible additive exceeds 10 wt%, the electrode volume expansion coming from the cathode, as the use of a series negative increase , It may cause problems such as degradation of life span.
본 발명에 따른 비가역 첨가제를 포함하는 상기 양극재는 종래 대비
Figure imgf000010_0001
The positive electrode material containing the irreversible additive according to the present invention has
Figure imgf000010_0001
M0+의 함량을 증가시킬 수 있는 바, 감소된 니0의 함량으로 인해 양극재의 25 제조시 또는 양극을 제조하기 위한 양극재의 집전체에의 도포시 조성물의 겔화를현저히 감소시킬 수 있고, 사이클특성 또한향상시킬 수 있다. Bars which can increase the amount of M 0+, and due to the reduced content of 0 you can significantly reduce the gelation of the coating composition during the entire positive electrode material for the production of home or when the positive electrode 25 prepared positive electrode material, the cycle The characteristics can also be improved.
본발명은또한 상기 양극재가양극집전체 상에 도포되어 있는 양극; 음극 활물질을 포함하는 음극재가 음극 집전체 상에 도포되어 있는 음극;및  The present invention also relates to a positive electrode comprising the positive electrode material coated on the positive electrode current collector; A negative electrode having a negative electrode active material coated on the negative electrode collector;
30 상기 양극과음극사이에 개재되는분리막; 2019/098764 1»(:1^1{2018/014125 30 a separator interposed between the anode and the cathode; 2019/098764 1 » (: 1 ^ {2018/014125
을 포함하는 전극조립체가 전지케이스에 전해액과 함께 내장된 구조의 리튬 이차전지를제공한다. The lithium secondary battery has a structure in which the electrode assembly including the electrode assembly is embedded in the battery case together with the electrolyte solution.
또, 상기 양극재는앞서 설명한비가역 첨가제 및 양극활물질과함께, 도전재 및바인더를더 포함할수있다.  In addition, the cathode material may further include a conductive material and a binder together with the irreversible additive and the cathode active material as described above.
구체적으로상기 양극활물질로는, 예를들어, 니(:002 ,
Figure imgf000011_0001
Specifically, as the positive electrode active material is, for example, needle (0 0 2,
Figure imgf000011_0001
니1]1202, 니 (1^30¾¾1¾)02 (0<크<1, 0<1)<1, 0<0<1 , 8 ~比+。=1) , 니 1-^(¾02, 11001- ! ,니 1서1\111102(0<(1< 1), I ( 예)04 (0<3<2, 0<1)<2, 0<0<2 , Si+b+c=2) , 匕 ¾-4, 니 ¾-004 (0<6<2), 니(:0灰)4
Figure imgf000011_0002
있으며, 이들중 어느하나또는둘 이상의 혼합물이 사용될 수 있다.
Needle 1 12 0 2, Needle (1 ^ 3 0 ¾ ¾1 ¾ ) 0 2 (0 < size <1, 0 <1) < 1, 0 <0 <1, 8 ~比+. = 1), you 1 -! ^ (¾0 2, 01- 110, first stand 1 \ 1 0 111 2 (0 <(1 <1), I (example) 04 (0 <3 <2, 0 <1) <2,0 <0 <2, Si + b + c = 2),匕¾-4, you ¾- 004 o (0 <6 <2), needle (: 0灰) 4,
Figure imgf000011_0002
And any one or a mixture of two or more thereof may be used.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 카본 블랙 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙 램프 블랙 서머 블랙, 탄소섬유등의 탄소계 물질;천연 흑연이나 인조흑연 등의 흑연;구리 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유;산화아연, 티탄산 칼륨 등의 도전성 위스키;산화 티탄등의 도전성 금속 산화물;또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.상기 도전재는 양극재 총 중량에 대하여 1중량% 내지 30중량%로포함될 수 있다. The conductive material is used for imparting conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change in the battery and has electronic conductivity. Specific examples thereof include carbon-based materials such as carbon black acetylene black, Ketjen black, channel black, furnace black lamp black summer black and carbon fiber, graphite such as natural graphite and artificial graphite, metal powder such as copper nickel, Conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives. One or more of these may be used alone or as a mixture of two or more thereof The conductive material may be included in an amount of 1 to 30 % by weight based on the total weight of the cathode material.
상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드 쌔的, 비닐리덴플루오라이드-핵사플루오로프로필렌
Figure imgf000011_0003
The binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride-based, vinylidene fluoride-nucleus fluoropropylene
Figure imgf000011_0003
히드록시프로필셀룰로우즈, 재생 셀룰로우즈 폴리비닐피롤리돈 테트라플루오로에틸렌, 폴리에틸렌 폴리프로필렌 에틸렌-프로필렌-디엔 폴리머犯?· 술폰화-표 , 스티렌 부타디엔 고무 묘幻 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.상기 바인더는 양극재 총 중량에 대하여 1중량%내지 30중량%로포함될 수 있다. 상기 양극 집전체는 전지에 화학적 변화를유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며 예를 들어 스테인리스 스틸, 알루미늄 니켈, 티탄 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈 티탄, 은등으로 표면 처리한 것 등이 사용될 수 있다.또, 상기 5 양극 집전체는 3im 내지 500_의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일 네트, 다공질체 발포체 부직포체 등 다양한 형태로 사용될 수 있다. Hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone tetrafluoroethylene, polyethylene polypropylene ethylene-propylene-diene polymer ? Sulphonated-table, styrene-butadiene rubber seedlings幻fluorine rubber, or the like of these various copolymers, and there is a singly or as mixtures of two or more thereof may be used of which the binder is one with respect to the cathode material the total weight It may be included in% by weight to 30% by weight. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery, and may be formed of, for example, stainless steel, aluminum nickel, titanium fired carbon or aluminum or stainless steel with carbon, The 5 positive electrode current collectors may have a thickness of 3 to 500 , and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil net, a porous body, a foam nonwoven fabric, and the like.
상기 음극 또한, 음극 활물질을 포함하는 음극재가 음극 집전체 상에 10 도포되는 형태로 제조될 수 있고 상기 음극재는 역시 음극 활물질과 함께, 상기에서 설명한바와같은도전재 및 바인더를더 포함할수 있다. The negative electrode may also be manufactured such that the negative electrode material including the negative electrode active material is applied on the negative electrode current collector 10, and the negative electrode material may further include a conductive material and a binder as described above together with the negative electrode active material.
상기 음극 활물질은, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한화합물이사용될수있다. 구체적인 예로는인조흑연, 천연흑연, 흑연화탄소섬유, 비정질탄소등의 탄소질 재료; Si , Al , Sn, Pb, 15 Zn, Bi , In, Mg, Ga, Cd, Si합금, Sn합금 또는시합금 등 리륨과 합금화가 가능한금속질 화합물; Si0x(0 < x < 2) , ¾1¾, 바나듐산화물, 리튬 바나듐 산화물과 같이 리툼을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 20 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리륨 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of being alloyed with lyrium such as Si, Al, Sn, Pb, 15 Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Si alloys; Metal oxides capable of doping and dedoping lithium, such as Si0 x (0 < x < 2), 3/4 , vanadium oxide, lithium vanadium oxide; Or a Si-C composite, or as Sn-C bokhapchegwa may be made of composites such as containing a metallic compound and a carbonaceous material, there is one or two or more of these 20 mixtures may be used. Further, a metal lyrium thin film may be used as the negative electrode active material. The carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include soft carbon and hard carbon
(hard carbon)가대표적이며, 고결정성 탄소로는무정형, 판상, 인편상, 구형 또는섬유형의 천연 흑연 또는 인조흑연, 키시흑연 (Kish graphite) , 열분해 25 탄소 (pyrolyt ic carbon) , 액정피치계 탄소섬유 (mesophase pitch based carbon fiber) , 탄소 미소구체 (meso-carbon microbeads) , 액정피치 (Mesophase pitches) 및 석유와석탄계 코크스 (petroleum or coal tar pitch derived cokes)등의 고온소성탄소가대표적이다. (hard carbon) is a typical, high crystalline carbon roneun amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish graphite), pyrolysis 25 carbon (pyrolyt ic carbon), liquid crystal pitch based carbon High temperature calcined carbon such as meso phase pitch based carbon fiber, meso-carbon microbeads, meso phase pitches and petroleum or coal tar pitch derived cokes are representative.
다만, 본 발명에 따른 비가역 첨가제는, 상기에서 설명한 바와 같이, 30 Si계 음극과 같이 낮은 효율을 보상해주는 것으로, 이 경우, 가장 우수한 2019/098764 1»(:1^1{2018/014125 However, as described above, the irreversible additive according to the present invention compensates for low efficiency such as a 30 Si-based cathode. In this case, 2019/098764 1 » (: 1 ^ {2018/014125
효과를 발휘할수 있는바 상기 음극활물질은, 구체적으로, 하기 화학식 1로 표현되는 ^계 물질을포함할수 있다. The negative electrode active material may specifically include a compound represented by the following general formula ( 1 ).
1) Ratio 1)
여기서, 0 < X < 2이다. Here, 0 < X < 2 .
5 이때, 상기 ¾계 음극 활물질은 음극 활물질 전체 중량 대비 5중량% 이상포함될 수 있다. 5 At this time, the secondary negative electrode active material may be contained in an amount of 5 wt % or more based on the total weight of the negative electrode active material.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리 스테인레스 스틸, 알루미늄 니켈, 티탄, 소성 탄소 구리나 스테인레스 10 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처라한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.또 상기 음극 집전체는 통상적으로 3_내지 500/때의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름 시트, 호일, 네트, 다공질체 발포체 부직포체 등 다양한 15 형태로사용될 수 있다. The anode current collector is without causing chemical changes in the battery if it has suitable conductivity not particularly limited, for example, copper, stainless steel, aluminum, nickel, carbon on the surface of titanium, sintered carbon, copper or stainless 10 steel, Nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. The anode current collector may have a thickness of 3 to 500 times / Fine unevenness may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material. For example, film sheets, foils, nets, porous structures such as foamed non-woven material 15 may be used in various forms.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 통상 리튬이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 20 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체 프로필렌 단독중합체 에틸렌/부텐 공중합체 에틸렌/핵센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층구조체가사용될 수 있다.또통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유 폴리에틸렌테레프탈레이트 섬유 등으로 된 25 부직포가사용될 수도 있다.또, 내열성 또는 기계적 강도 확보를위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층또는다층구조로사용될 수 있다. The separator separates the negative electrode and the positive electrode and provides a passage for lithium ion. The separation membrane can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Especially, the separation membrane has low resistance against electrolyte migration, desirable. Specifically, a porous polymer film made of a polyolefin-based polymer such as a 20 porous polymer film such as an ethylene homopolymer propylene homopolymer ethylene / butene copolymer ethylene / nucleus copolymer and an ethylene / methacrylate copolymer, or a 2 Layered structure or a laminated structure of 25 layers or more may be used as the non-woven fabric. Further, a conventional porous nonwoven fabric, for example, a 25- woven fabric made of glass fiber polyethylene terephthalate fiber having a high melting point may be used. A coated separator containing the material may be used and may optionally be used as a single layer or a multilayer structure.
또한, 본 발명에서 사용되는 전해액으로는 리륨 이차전지 제조시 사용 가능한 유기계 액체 전해질 무기계 액체 전해질, 고체 고분자 전해질, 겔형 30 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은아니다. Further, the electrolytic solution used in the present invention and the like Lyrium secondary battery manufacturing usable organic liquid electrolyte, an inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolyte 30, an inorganic solid electrolyte, a melt-type inorganic electrolyte, But are not limited thereto.
구체적으로 상기 전해액은유기 용매 및 리튬염을포함할수 있다. 상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할수 있는매질 역할을할수 있는것이라면특별한제한없이 사용될수 5 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트 (methyl acetate) , 에틸 아세테이트 (ethyl acetate) , y-부티로락톤 (y-butyrolactone)£- 카프로락톤 (£-caprolactone) 등의 에스테르계 용매; 디부틸 에테르 (dibutyl ether) 또는 테트라히드로퓨란 (tetrahydrofuran) 등의 에테르계 용매; 시클로핵사논 (cyclohexanone) 등의 케톤계 용매; "벤젠 (benzene),Specifically, the electrolytic solution may include an organic solvent and a lithium salt. The organic solvent may be used without particular limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent is methyl acetate, and (meth yl acetate), ethyl acetate (eth yl acetate), y- lactone butyronitrile (y-but yrolactone), £ - ester-based solvents such as caprolactone (£ -caprolactone) ; Dibutyl ether (dibut yl ether) or tetrahydrofuran (tetrah ydrofuran) ether-based solvents, and the like; Cyclo hex rice (yclohexanone c) a ketone-based solvents, and the like; &Quot; benzene,
10 플루오로벤젠 (f luorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네아트 (dimethylcarbonate, DMC), 디에틸카보네이트 (diethylcarbonate, DEC) , 메틸에틸카보네이트 (methylethylcarbonate, MEC) , 에틸메틸카보네이트 ( e t hy 1 met hy 1 car bonat e , EMC ) , 에틸렌카보네이트 ( et hy 1 ene 15 carbonate, EC) , 프로필렌카보네이트 (propyl ene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R- CN(R은 C2 내지 C2◦의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3 -디옥솔란 등의 디옥솔란류; 또는Aromatic hydrocarbon solvents such as 10 fluorobenzene; Dimethyl car Bonnet art (dimeth ylcarbonate, DMC), diethyl carbonate (dieth ylcarbonate, DEC), methyl ethyl carbonate (meth ylethylcarbonate, MEC), ethylmethyl carbonate (eth y 1 met hy 1 car bonat e, EMC), ethylene carbonate (et &lt;&gt; ene 15 carbonate, EC), propyl ene carbonate (PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group of C2 to C2◦, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; or
20 설포란 (sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트 (예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물 (예를 들면, 에틸메틸카보네이트 , 디메틸카보네이트또는디에틸카보네이트등)의 혼합물이 25 보다 바람직하다 . 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날수있다. 20 sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.) is more preferable than 25. [ In this case, mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
상기 리륨염은 리륨 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 30 리튬염은, LiPFs, LiC104, LiAsFe, LiBF4, LiSbF6, LiA104, LiAlCl4, LiCF3S03> LiC4F9S03, LiN(C2F5S03)2, LiN(C2F5S02)2, LiN(CF3S02)2. LiCl , Li I, 또는The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the 30 lithium salt may be LiPF s, LiC104, LiAsFe , LiBF4 , LiSbF6, LiA104 , LiAlCl4 , LiCF3S03> LiC 4F9S03, LiN (C 2F5S03) 2, LiN (C 2F5S02) 2, Li N (CF3S02) 2. LiCl, LiI, or
LiB(C204)2등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M내지 2.0M범위 내에서사용하는것이 좋다. 리툼염의 농도가상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고,LiB (C204 ) 2, and the like may be used. The concentration of the lithium salt is preferably in the range of 0.1M to 2.0M . When the concentration of the rutonium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance,
5 리튬이온이 효과적으로이동할수있다. 5 Lithium ion can move effectively.
상기 전해액에는상기 구성 성분들외에도전지의 수명특성 향상, 전지 용량감소억제, 전지의 방전용량향상등을목적으로예를들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n- 10 글라임 (glyme) , 핵사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2 -메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해액 총 중량에 대하여 0.1중량%내지 5중량%로포함될수있다. The electrolytic solution may contain, for example, a haloalkylene carbonate compound such as difluoroethylene carbonate or the like, pyridine, triethylamine, or the like for the purpose of improving lifetime characteristics of the battery, suppressing the battery capacity decrease, phosphite, triethanolamine, cyclic ether, ethylenediamine, n- 10 glyme (glyme), hex triamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N- substituted oxazolidinone, N, N- substituted already Jolly Dean, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxyethanol, or more than one type of additive, such as aluminum trichloride may be further included. The additive may be included in an amount of 0.1 wt % to 5 wt % based on the total weight of the electrolytic solution.
15 상기와같이 본발명에 따른 리튬 이차전지는우수한방전용량, 출력 특성 및용량유지율을안정적으로나타내기 때문에, 휴대전화, 노트북컴퓨터, 디지털 카메라등의 휴대용 기기, 및 하이브리드 전기자동차 (hybr id electr i c vehicle , HEV)등의 전기 자동차분야등에 디바이스전원으로이용될수 있다. As described above, since the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles vehicle, HEV), and the like.
20 【도면의 간단한설명】 20 [Brief Description of Drawings]
1은실험예 3에 따른점도측정 결과를나타낸그래프이다. 1 is a graph showing the results of viscosity measurement according to Experimental Example 3. Fig.
【발명의실시를위한형태】 DETAILED DESCRIPTION OF THE INVENTION
이하 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 25 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는실시예에 한정되지 않는다. It will be described in detail below an embodiment of the present invention to be able to perform the self-25 easily with ordinary skill in the art invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
<비교예 1> &Lt; Comparative Example 1 &
Figure imgf000015_0001
Figure imgf000015_0001
30 5.5g과혼합한후, N2분위기하에 섭씨 685도에서 18시간동안 열처리한후, 2019/098764 1»(:1^1{2018/014125 30, and then heat-treated at 685 degrees Celsius for 18 hours under an N 2 atmosphere. Thereafter, 2019/098764 1 » (: 1 ^ {2018/014125
결과의 반응물을냉각하여 비가역 첨가제 입자를수득하였다. The resulting reaction was cooled to yield irreversible additive particles.
<비교예 2> &Lt; Comparative Example 2 &
1120 50§ 0 136§, 그리고 원소 의 원료물질로서 (■)2四04를 5 5.5§과 혼합한 후, ¾ 분위기하에 섭씨 685도에서 18시간 동안 열처리하고, 섭씨 685도에서 18시간동안한번 더 열처리한후 결과의 반응물을냉각하여 비가역 첨가제 입자를수득하였다. 1 120 50§ 0 136§, and as a raw material of the element (■) 2四0 4 for the 5 and 5.5§ mixed and then, heat treated at 685 ° C also for 18 h under ¾ atmosphere, and at 685 ° C Figure 18 hours After one more heat treatment, the resulting reaction was cooled to yield irreversible additive particles.
<실시예 1> &Lt; Example 1 >
10 1120 50§, 0 136당 그리고 원소 의 원료물질로서 4),04 10 1 120 50 §, 0 136 and 4 ) as the raw material of the element, 0 4
5.5§과 혼합한 후, ¾ 분위가하에 섭씨 685도에서 18시간 동안 열처리하고 수득된 반응물에 0 7.6§(이는수득된 반응물에 존재하는니20의 몰 비 기준 0.5배임)을 추가 혼합한 후 섭씨 685도에서 18시간 동안 열처리하고 결과물을냉각하여 비가역 첨가제 입자를수득하였다. After mixing and 5.5§, ¾ heat treatment for 18 hours at 685 degree Celsius and 0 bunwiga 7.6§ the resultant reaction (which is a molar ratio basis Needle 20 .5 times the present in the obtained reaction product) added then a solution of Heat treatment was performed at 685 degrees Celsius for 18 hours, and the resultant was cooled to obtain irreversible additive particles.
15  15
<실시예 2>  &Lt; Example 2 >
1 20 50§, 0 136§, 그리고 원소 의 원료물질로서 (쌔42四04를 5.5요과 혼합한 후 ¾ 분위기하에 섭씨 685도에서 18시간 동안 열처리하고, 수득된 반응물에 0 2.6§(이는수득된 반응물에 존재하는니20의 몰 비 기준1 20 50§, 0 136§, and as a raw material of the element (ssae 4) 2四0 4 to 5.5 yogwa the mixed after heat treatment for 18 hours in a ¾ atmosphere at 685 ° C, and also, to yield reaction product 0 2.6 § (This mole ratio basis of your 20 present in the resultant reaction
20 0.17배임)을 추가 혼합한 후 섭씨 685도에서 18시간 동안 열처리하고 결과물을냉각하여 비가역 첨가제 입자를수득하였다. 20 &lt; / RTI &gt; 0.17 times) were further mixed and heat-treated at 685 degrees Celsius for 18 hours, and the resultant was cooled to obtain irreversible additive particles.
<실험예 1> <Experimental Example 1>
油적정에 따른리툼부산물의 함량측정  Determination of the content of Lewis byproducts by oil titration
25 상기 실시예 12 및 비교예 12에서 제조한 비가역 첨가제 입자에 대해 적정을수행하여 리튬부산물함량을즉정하였다. 25 The irreversible additive particles prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to titration to give an immediate lithium byproduct.
구체적으로 증류수 100此에 비가역 첨가제 1¾을넣고 5분간교반시켜 리툼부산물을녹인후 0.1을사용하여산염기 적정법으로적정하였다. 녹아 나온 리튬 부산물을 수득된 비가역 첨가제 전체 중량 대비 30 중량%로환산하여 값을계산하였다. 2019/098764 1»(:1^1{2018/014125 Specifically, 1 part of irreversible additive ( ¾) was added to distilled water 100 , and the mixture was stirred for 5 minutes to dissolve the lysine byproduct. The mixture was titrated by acid-base titration using 0. l / l . The value of the lithium by-product, which was dissolved, was calculated as 30 % by weight based on the total weight of the obtained irreversible additive. 2019/098764 1 » (: 1 ^ {2018/014125
계산은 다음과 같이 수행한다. 상기 실시예들 및 비교예들의 비가역 첨가제를 산염기 적정법으로 적정하면 적정 1 근를 얻을 수 있고, 이러한 1176는 변곡점을 갖는다. 이러한 변곡점을 기준으로 그 뒷부분에 해당되는 산의 양竹)의 두배(니(1)32배의 산이 필요하기 때문, 2)로부터 니203의 5 함량을구하고, 그앞부분에 해당되는산의 양(X)에서 뒷부분에 해당되는산의 양竹)을뺀산의 양 0(나)으로부터,니에의 함량을구한뒤, 이들각각을비가역 첨가제 전체중량대비 중량%로환산하였다. The calculation is performed as follows. When the irreversible additives of the above Examples and Comparative Examples are titrated by an acid base titration method, a titrant of 1 is obtained, and this 176 has an inflection point. Twice (Needle (1) of the two竹) of the acid corresponding to the back on the basis of these inflection point 3 obtains the 5 content of your 20) 3 from because it requires twice the acid, 2), corresponding to the front The amount of niacin was determined from the amount of 0 (B) in which the amount of the acid corresponding to the rear portion of the acid ( X ) was subtracted from the amount of the acid subtracted from the amount of the acid, and each of them was converted into weight % based on the total weight of the irreversible additive.
분석 결과, 실시예 12의 비가역 첨가제에서는, 비가역 첨가제 총 중량대비니(犯의 함량은 2.5중량%이하로측정되고 니¥3의 함량역시 0.35 10 중량%이하로매우낮아진것을확인할수있다. As a result of the analysis, it was confirmed that the irreversible additives of Examples 1 and 2 had a very low irritant amount of irritant excipients (crime content was measured to be less than 2.5 wt % and the content of Ni 3 was also very low to 0.35 10 wt % or less.
반면, 어떠한처리도하지 않은비교예 1의 경우니에의 함량이 4중량% 이상이며 니2¥의 함량도 0.4중량%이상인것을확인할수있다. On the other hand, any process of Comparative Example 1 is also not a content of more than 4% by weight to you can be sure that you content of not less than 2 ¥ 0.4% by weight.
비교예 2 역시 리륨 부산물의 함량이 소폭 감소하기는 하나 니에의 함량이 3중량%이상이며, 니(:0의 함량도 0.3중량%이상으로 여전히 소망하는 15 정도의 감소효과를얻지 못하였다. Was not obtained 0 15 degree decrease in still desired to also at least 0.3% by weight content of the effect: Comparative Example 2 also reduce slightly the amount of Lyrium by-product is one you are more than 3 wt% of the, needle (.
<실험예 2> <Experimental Example 2>
¾¾)분석  Analysis
상기 실시예 1내지 2, 및 비교예 1내지 2에서 제조한비가역 첨가제 20 카본블랙 도전재 및 바인더를 메틸피롤리돈 용매 중에서 중량비로 92.5:3.5:4의 비율로 혼합하여 양극 슬러리를 제조하고, 이를 알루미늄 집전체에 도포한후 건조압연하여 양극을제조하였다.
Figure imgf000017_0001
The above embodiments 1 and 2, and Comparative irreversible additive 20 carbon black conductive material and a binder prepared in Examples 1 and 2 in a weight ratio from methyl pyrrolidone solvent 9 2.5: 3.5: mixed in a ratio of 4 to prepare a positive electrode slurry , And this was applied to an aluminum current collector, followed by drying and rolling to prepare a positive electrode.
Figure imgf000017_0001
25 분석 장비를사용하였다.그결과를표 1에 나타냈다. 25 the analysis equipment was used. The results are shown in Table 1.
상기와 같이 충전 전의 양극으로부터는 비가역 첨가제에서 니 *02+ 및 0의 몰비를구할수있다. From the anode before charging as described above, the molar ratio of Ni * O 2+ and O in the irreversible additive can be obtained.
상기 몰비는 하기와 같이 구한다. 상기 양극의 _ 분석을 수행하면 도전재와바인더의괴크는너무작게나타나므로고려대상이 되지 않으며 상기
Figure imgf000017_0002
2019/098764 1»(:1^1{2018/014125
The molar ratio is obtained as follows. When the analysis of the anode is performed, the size of the conductive material and the binder is too small to be considered,
Figure imgf000017_0002
2019/098764 1 » (: 1 ^ {2018/014125
폭(피크의 중간에서의 폭)으로부터 - 61(1 방법을 기반으로 계산하여 이들의 몰비를구한다. Based on the width (width in the middle of the peak) - 61 (1 method, calculate the molar ratio of these.
이와 같이 수행하였을 때, 본 발명에 따른 방법으로 제조한 비가역 첨가제(실시예 12)는, 니2+ 1아 02+。의 함량이 1[2^ 1-^02+ 및 0의 5 전체를 기준으로 93% 이상으로 증가하는 것을 확인할수 있다. 반면, 비교예
Figure imgf000018_0001
When done this way, non-reversible additive prepared by the process according to the invention (Examples 1 and 2), 2 + 1 Oh you the amount of 0 2 + 1 In the 2 ^ 1 ^ 0 2 + and 0 based on the total 5 it can be confirmed that increased to more than 93%. On the other hand,
Figure imgf000018_0001
에도 미치지 못하였으며, 비교예 2의 경우에는니2+; 녜02+:의 함량이 소폭 상승했으나, 93%에는미치지못하였다. Also was not reached, the case of Comparative Example 2, Needle 2+; nye 0 2+: Although the content of a slight rise, did not fall short of 93%.
니必함량분석  Analysis of essential content
10 상기와 같이 제조된 양극들을 어比
Figure imgf000018_0002
제작하여 (X八: V 1110(16
10 The positive electrodes prepared as described above were mixed in a ratio
Figure imgf000018_0002
(X 8: V 1110 (1 to 6
4.2 까지 0.1(:로 충전하고, 충전된 양극의 _ 분석을 통해 피크 밀도를 분석하여니20의 몰비를계산하였다. 그결과를하기 표 1에 나타냈다. The mole ratio of Ni 20 was calculated by analyzing the peak density through charging of 0.1 to 4.2 to 4.2 and analysis of the charged anode. The results are shown in Table 1 below.
여기서, )犯 분석에 사용한 시료는 충전 후 0미1을 분해하여 얻은 양극이며 다음과같이 분석하였다. Here, the sample used for the crime analysis was the anode obtained by disassembling 0 mi 1 after charging and analyzed as follows.
15 상기 충전에 의해, 니2+1-1¾02+(; 의 경우 구조가 변화하게 되고, 피크의 위치가 변하므로 충전 전 0 피크의 강도와 충전 후 1 20 피크의 강도를 비교해 상기 야161(1 방법으로부터 얻은 0의 함량을 기준으로, 니20의 몰수를주정한다. 15 by the filled, you 2+1-1¾02 + (; the case structure is changed, the position of the peak variable, so compared to the intensity of the 120 peak strength after the filling of the filling 0 the peak's 161 ( Based on the content of 0 obtained from the 1 method, the molar number of Ni 20 is determined.
얻어진 니20의 몰수를 상기에서 얻어진 1[2+^11-^02+ + 0 1몰 20 기준으로하여 환산하였다. 1, obtained the number of moles of the obtained Needle 20 from above was converted to the [2 + 1 ^ 1 ^ 0 2 + 0 + 1 20 mole basis.
예를 들어 충전 전 0 피크의 강도가 10◦이고 이때 0가 차지하는 비율이 5%라하면니20의 피크의 강도가 50일 경우 1]20의 비율이 2.5%라 추정한다. For example, if the intensity of the 0 peak before charging is 10 ◦ and the ratio of zero occupied is 5 mol % , it is estimated that the ratio of 1 to 20 is 2.5 mol % when the peak intensity of the peak at 20 is 50 .
이로부터 얻어진 값을 비교하며, 본원발명에 따른 실시예들의 니2025 함량은 0.09몰 이하인 반면, 비교예들의 함량은 0.14를초과하는 것을확인할 수있다. The values obtained therefrom were compared. It can be seen that the content of 25 of Ni 20 of the examples according to the present invention is 0.09 mol or less, while the content of Comparative Examples exceeds 0.14 .
<실험예 3> <Experimental Example 3>
점도측정  Viscosity measurement
30 상기 실시예 1내지 2, 및 비교예 1내지 2에서 제조한비가역 첨가제, 2019/098764 1»(:1^1{2018/014125 30, the exemplary one irreversible additives prepared in Examples 1 and 2, and Comparative Examples 1 to 2, 2019/098764 1 » (: 1 ^ {2018/014125
양극 활물질로서 LiNio.sMno.iCoo.i02, 카본블랙 도전재 및 (正 바인더를 메틸피롤리돈 용매 중에서 중량비로 4.6:87.9:3.5:4의 비율로 혼합하여 양극 슬러리를제조하였다. A positive electrode slurry was prepared by mixing LiNio.Smno.iCoo.i02, a carbon black conductive material and a positive binder as a cathode active material in a methylpyrrolidone solvent at a weight ratio of 4.6: 87.9: 3.5: 4 .
상기 양극 슬러리들의 점도를 측정하기 위해, 브룩필드사의 2孔 5 점도계를 사용하였고, 30(加1의 슬러리를 제조하여 약 120001으로 점도계의 블레이드를회전시켜 점도를측정하고, 그결과를도 1에 나타냈다. To measure the viscosity of the positive electrode slurry, it was used for 2孔5 viscometer's Brookfield, to thereby prepare a slurry of 30 (加1 rotating blade of a viscometer at about 120001 to measure the viscosity, also the result 1 .
참조를 위해, 비가역 첨가제를 포함하지 않고 양극 활물질로서 사용하는 니 必 만을 요요 중량^로 포함하는 슬러리를 참조예로 하여 함께 측정하였다. For reference, it was measured with the slurry containing only you必used as a positive electrode active material, not including the weight of the yo-yo to irreversible additives ^ as a reference example.
10 분석 결과, 실시예 1, 2의 비가역 첨가제를 포함하는 양극 슬러리는 니 0.81^11().100().102만을 포함하는 양극 슬러리와 유사한 점도 특성을 나타내는 반면, 비교예 12의 비가역 첨가제를 포함하는 양극 슬러리들은 점도가 상대적으로높은것을확인할수 있다. 이로부터, 비교예 12와같이 리륨 부산물이 여전히 4중량% 이상으로 많은 경우에는 조성물의 겔화에 개선이 15 미미하다는것을예상할수있다. 10 The results of Example 1, a positive electrode slurry containing the additive of the non-reversible 2 Needle 0.8 1 ^ 11 (). 1 0 0 (). 1 0 2 , whereas the positive electrode slurries containing the irreversible additives of Comparative Examples 1 and 2 have a relatively high viscosity. From this, it can be expected that, as in Comparative Examples 1 and 2 , when the lyrium by-product still exceeds 4 % by weight, improvement in the gelation of the composition is less than 15 % .
<실험예 4> <Experimental Example 4>
리툼이차전지의 제조  Manufacture of lithium secondary battery
상기 실시예 12 및 비교예 1 내지 2에서 제조한 비가역 첨가제를 20 이용하여 하기와같은 방법으로 리륨 이차전지를제조하였다. The embodiment was prepared Lyrium secondary battery in the same manner as in Examples 1 and 2 and Comparative Examples 1 to 20 by using a non-reversible additives prepared in 2.
상세하게는, 상기 실험예 3에서 제조된양극슬러리를사용하였다. 또한, 음극 활물질로서 010 중량%로 혼합된 인조흑연인
Figure imgf000019_0001
근크선), 카본블랙 도전재 및 I (正 바인더를 - 메틸피롤리돈 용매 중에서 중량비로 90: 5: 5의 비율로 혼합하여 음극 형성용 25 조성물을제조하고, 이를구리 집전체에 도포하여 음극을제조하였다.
Specifically, the cathode slurry prepared in Experimental Example 3 was used. Further, as the negative electrode active material, artificial graphite mixed with 10 % by weight of 0
Figure imgf000019_0001
(Carbon black conductive material), carbon black conductive material, and I (positive binder in a weight ratio of 90: 5: 5 in a solvent of methylpyrrolidone to prepare an anode composition 25 , .
상기와같이 제조된 양극과음극사이에 다공성 폴리에틸렌의분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨후 케이스내부로전해액을주입하여 리륨이차전지를제조하였다. 이때 전해액은 An electrode assembly was fabricated between the positive electrode and the negative electrode prepared as described above with a separator of porous polyethylene interposed therebetween. The electrode assembly was positioned inside the case and an electrolyte was injected into the case to manufacture a lithium secondary battery. At this time,
30 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(防/01:/묘1:의 혼합 2019/098764 1»(:1^1{2018/014125 30 mixture of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (water / 01: 2019/098764 1 » (: 1 ^ {2018/014125
부피비 =3/4/3)로 이루어진 유기 용매에 1.^ 농도의 리튬핵사플루오로포스페이트(니 )를용해시켜 제조하였다. Volume ratio = 3/4/3 ) to dissolve lithium nucleus fluorophosphate (Ni) at a concentration of 1 : 1 .
충전용량측정  Measuring charge capacity
제조한 이차전지를 0.1(:로 4. 까지 0:八: V 충전하고, 0.005(:로 컷오프시까지 충전하였으며, 0.1(:로 2. 까지 (X 방전하여 충전 용량을 측정하고, 그결과를하기 표 1에 나타내었다. The manufactured secondary batteries 0.1 (: a 4 to 0:八: V is charged, 0.005 (: was charged to until the cut-off, 0.1 (: to 2 to (X discharge by measuring the charge capacity, and the results The results are shown in Table 1 below.
분석 결과, 실시예 12의 비가역 첨가제를 포함하는 양극을 사용하는 경우, 충전용량이 상승하는 것을 확인할수 있다. 이는 본 발명에 따른 비가역 첨가제를 사용하는 경우, 니+ -+:의 함량이 상대적으로 증가되어 초기 효율이 낮아초기 충방전동안의 비가역 용량손실이 큰 0계 음극 활물질에 니을 보다 우수하게 공급할 수 있으며, 리륨 부산물이 적어 겔화를방지함으로써 양극활물질의 용량발현을가능하게하기 때문이다. As a result of the analysis, it was confirmed that the charge capacity increased when the positive electrode containing the irreversible additives of Examples 1 and 2 was used. This means that if you are using a non-reversible additive according to the invention, you + -+: the content is increased in the relatively initial efficiency can be excellently supplied than low whilst the irreversible capacity loss of a large O-based negative active material during the first charge and discharge And the capacity of the cathode active material can be expressed by preventing the gelation due to a small amount of lyrium by-product.
【표 11 [Table 11
Figure imgf000020_0001
Figure imgf000020_0001
【산업상이용가능성】 [Industrial applicability]
본 발명에 따른 비가역 첨가제의 제조방법은, ◦를 추가 혼합, 열처리함으로써, 비가역 첨가제의 리튬 니켈계 산화물의 분율을 높이고, 미반응 리튬 산화물 등의 니계 부산물의 함량을 감소시켜, 전극 제조에 따른 조성물의 점도 상승 또는 겔화를 감소시킬 있다. 이에 따라 이를 포함하는 양극재를 이용하여 제조된 리륨 이차전지는 보다 우수한 전기화학적 특성을 나타낼수 있다  The method for producing an irreversible additive according to the present invention is characterized in that the content of the lithium nickel oxide in the irreversible additive is increased and the content of the nickel by-product such as unreacted lithium oxide is reduced by further mixing and heat- The viscosity increase or the gelation can be reduced. Accordingly, the lithium secondary battery manufactured using the cathode material containing the same can exhibit more excellent electrochemical characteristics

Claims

2019/098764 1»(:1^1{2018/014125 【청구의 범위】 2019/098764 1 »(: 1 ^ {2018/014125)
【청구항 1】  [Claim 1]
리툼이차전지용양극재에 포함되는비가역 첨가제를제조하는  To prepare an irreversible additive contained in a cathode material for a lithium secondary battery
방법으로서, As a method,
2+ 1- 02+ 0및니20X : V : 2의 몰비로물리적으로결합된 리륨과량의 전구체를, 추가적으로附0와혼합하고열처리하여, 1 2+^ 1 - ^02+ , 0및니20X : 7' : '와몰비로물리적으로결합된리륨과량의 Needle 2 + 0 2 + 0 1- mitni 20 is X: V: the combined physically in a molar ratio of 2 Lyrium excess precursor, in combination with heat treatment and further附0, 1, 2 + ^ 1 ^ 0 2 +, 0 &lt; / RTI &gt; and 20 are physically bonded to the molar ratio X : 7 &apos;
전이금속산화물을제조하는과정을포함하는비가역 첨가제 제조방법: A method for producing an irreversible additive comprising the step of preparing a transition metal oxide:
단, 상기 식에서, _0.2<3<0.2, 0<於1, 0£(:<0.2이고, In the above formula,? 0.2 < 3 <0.2, 0 <1, 0 (: <0.2,
X + = 1이고, X ' + = 1인기준으로, X는 0.8이상이고, X 1는 0.93 이상이며, X < X’ , > 및 ¾ ñ ’의 관계를충족하고, X + 의 1을 And X = + 1, X '= a + per person, X is 0.8 or more, X 1 is at least 0.93, X <X'a,> ñ ¾ and 1 satisfy the relation, and the + X of the "
기준으로 2는 0초과 0.21이하이며, X’ + 의 1을기준으로 는 0이상 0.09이하이고, 상기 은어. !始,마,시 ,€0, 및·단로이루어진군에서 선택되는 1종이상의 원소이다. 2 is not less than 0 and not more than 0.21, and is not less than 0 and not more than 0.09 based on 1 of X '+ . And is one or more elements selected from the group consisting of star, star, star, € 0, and star.
【청구항 2】 [Claim 2]
제 1항에 았어서, X + = 1이고, X’ + = 1인기준으로, X는 0.8 이상 0.9이하이고, X’는 0.93이상내지 1.0이하인, 비가역 첨가제 제조방법. 1. A method for producing an irreversible additive according to claim 1, wherein X + = 1 and X '+ = 1, wherein X is not less than 0.8 and not more than 0.9, and X' is not less than 0.93 and not more than 1.0.
【청구항 3] [3]
제 1항에 있어서, X’ + 의 1을기준으로 는 0이상 0.055이하인, 비가역 첨가제제조방법 . The method for producing an irreversible additive according to claim 1, wherein X &lt; 1 &gt;
【청구항 4】 Claim 4
제 1항에 있어서, 상기 제조방법에서 추가로혼합되는 0는리튬 과량의 전구체 1몰대비 0.比내지 2의 몰비로혼합되는, 비가역 첨가제 제조방법 . 3. The method of claim 1, wherein 0 is further mixed in the molar ratio of 0. to 2 relative to 1 mole of lithium-excess precursor.
【청구항 5] [Claim 5]
제 1항에 있어서, 상기 열처리는, 불활성 분위기 하, 500내지 2019/098764 1»(:1^1{2018/014125 2. The method according to claim 1, wherein the heat treatment is performed under an inert atmosphere at a temperature of 500 - 2019/098764 1 » (: 1 ^ {2018/014125
800°(:에서, 12시간내지 24시간동안수행되는, 비가역 첨가제 제조방법 . At 800 [deg.] (Deg.), For 12 to 24 hours.
【청구항 6] [Claim 6]
제 5항에 있어서, 상기 불활성 분위기는 ¾분위기 또는 분위기인, 5 비가역 첨가제 제조방법 .  6. The method of producing a non-irreversible additive according to claim 5, wherein the inert atmosphere is a ¾ atmosphere or an atmosphere.
【청구항 7] [7]
제 5항에 있어서, 상기 열처리는 650내지 700°(:에서, 12시간내지 24시간동안수행되는, 비가역 첨가제 제조방법.  6. The method of claim 5, wherein the heat treatment is performed at a temperature of 650 to 700 DEG C (for 12 to 24 hours).
1010
【청구항 8]  [8]
1항에 따른제조방법으로 제조된 비가역 첨가제, 및 양극활물질을 포함하는 양극재로서An irreversible additive produced by the production method according to claim 1 , and a cathode material comprising a cathode active material
Figure imgf000022_0001
Figure imgf000022_0001
15 몰비로물리적으로결합된리륨과량의 전이금속산화물을포함하고, - 0.2<3<0.2, 0<1<1, 0<(:<0.2이고, X’ + '의 1을기준으로, X’는 0.93 - 이상이고, 2’는 0이상 0.09이하이며, 상기 은( . 1此,아,시, 00) I3, 및 3로이루어진군에서 선택되는 1종이상의 원소인양극재. 1 to 5 mole ratio includes a Lyrium excess transition metal oxide combined physically, and - 0.2 <3 <0.2, 0 <1) <1, 0 <(<based on 1 of 0.2, and, X '+', X ' is 0.93 - or more, 2' is 0 or more and 0.09 or less, and silver (. 1此, Oh, when, 0 0) I 3, and one element of the anode material on a member selected from the group consisting of 3.
2020
【청구항 9] 9]
8항에 따른 양극재가 양극 집전체 상에 도포되어 있는 양극 음극활물질을포함하는음극재가음극집전체 상에 도포되어 있는 음극 및 A negative electrode comprising a negative electrode material comprising a positive electrode active material coated with a positive electrode material according to claim 8 on a positive electrode collector,
상기 양극과음극사이에 개재되는분리막  A separator interposed between the anode and the cathode,
25 을포함하는 전극조립체가전지케이스에 전해액과함께 내장된 구조의 리튬 이차전지. Wherein the electrode assembly is embedded in the battery case together with the electrolyte solution.
【청구항 10】 Claim 10
제 9항에 있어서, 음극활물질은, 하기 화학식 1로표현되는 계 30 물질을포함하는리튬이차전지: 2019/098764 1»(:1/10公018/014125 ¾ (1) The lithium secondary battery according to claim 9, wherein the negative electrode active material comprises a Group 30 material represented by the following Formula 1: 2019/098764 1 » (: 1/10 公 018/014125 ¾ (1)
여기서, 0 < X < 2이다. Here, 0 < X < 2 .
PCT/KR2018/014125 2017-11-17 2018-11-16 Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material WO2019098764A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019554625A JP7094598B2 (en) 2017-11-17 2018-11-16 A method for producing an irreversible additive contained in a positive electrode material for a lithium secondary battery, a positive electrode material containing the irreversible additive produced thereby, and a lithium secondary battery containing the positive electrode material.
CN201880018354.5A CN110431109B (en) 2017-11-17 2018-11-16 Method for preparing irreversible additive, positive electrode material comprising irreversible additive, and lithium secondary battery
EP18879058.8A EP3604229B1 (en) 2017-11-17 2018-11-16 Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
PL18879058.8T PL3604229T3 (en) 2017-11-17 2018-11-16 Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
ES18879058T ES2946509T3 (en) 2017-11-17 2018-11-16 Preparation method of irreversible additive included in cathode material for lithium secondary battery, cathode material including the irreversible additive prepared by it, and lithium secondary battery including the cathode material
US16/613,728 US11476466B2 (en) 2017-11-17 2018-11-16 Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0154184 2017-11-17
KR20170154184 2017-11-17
KR1020180141758A KR102346153B1 (en) 2017-11-17 2018-11-16 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
KR10-2018-0141758 2018-11-16

Publications (1)

Publication Number Publication Date
WO2019098764A1 true WO2019098764A1 (en) 2019-05-23

Family

ID=66538725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014125 WO2019098764A1 (en) 2017-11-17 2018-11-16 Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material

Country Status (1)

Country Link
WO (1) WO2019098764A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007947A (en) * 1996-11-27 1999-12-28 Polystor Corporation Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
KR20030076153A (en) 2002-03-22 2003-09-26 주식회사 엘지화학 Lithium ion secondary battery comprising overdischarge retardant
US20110175021A1 (en) * 2005-04-13 2011-07-21 Lg Chem, Ltd. Process of making cathode material containing ni-based lithium transition metal oxide
US20130011727A1 (en) * 2002-03-22 2013-01-10 Sung Kyun Chang Cathode active material for lithium secondary battery
KR20160131069A (en) * 2014-03-06 2016-11-15 우미코르 Doped and coated lithium transition metal oxide cathode materials for batteries in automotive applications
WO2017045817A1 (en) * 2015-09-17 2017-03-23 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Lithium-nickel-manganese-based transition metal oxide particles, production thereof, and use thereof as an electrode material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007947A (en) * 1996-11-27 1999-12-28 Polystor Corporation Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
KR20030076153A (en) 2002-03-22 2003-09-26 주식회사 엘지화학 Lithium ion secondary battery comprising overdischarge retardant
US20130011727A1 (en) * 2002-03-22 2013-01-10 Sung Kyun Chang Cathode active material for lithium secondary battery
US20110175021A1 (en) * 2005-04-13 2011-07-21 Lg Chem, Ltd. Process of making cathode material containing ni-based lithium transition metal oxide
KR20160131069A (en) * 2014-03-06 2016-11-15 우미코르 Doped and coated lithium transition metal oxide cathode materials for batteries in automotive applications
WO2017045817A1 (en) * 2015-09-17 2017-03-23 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Lithium-nickel-manganese-based transition metal oxide particles, production thereof, and use thereof as an electrode material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604229A4 *

Similar Documents

Publication Publication Date Title
JP6945879B2 (en) Positive electrode active material for secondary batteries, their manufacturing methods, and lithium secondary batteries containing them
KR102379596B1 (en) Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
EP3608293A2 (en) Method for manufacturing positive electrode additive for lithium secondary battery
EP3604229B1 (en) Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
JP2019522882A (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
JP7009015B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
KR102270119B1 (en) Method for preparing of positive electrode active material for secondary battery
JP7258409B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery and positive electrode active material manufactured by said manufacturing method
JP2021527924A (en) Method for manufacturing positive electrode additive for lithium secondary battery and positive electrode additive for lithium secondary battery manufactured from it
WO2019103488A1 (en) Positive electrode active material for lithium secondary battery and manufacturing method therefor
JP7005097B2 (en) Manufacturing method of positive electrode active material for secondary batteries
KR102622330B1 (en) Manufacturing method of positive electrode active material
KR102132878B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP7335053B2 (en) Irreversible additive, positive electrode containing said irreversible additive, lithium secondary battery containing said positive electrode
JP2017027772A (en) Lithium ion secondary battery and method for manufacturing the same
JP7350414B2 (en) Positive electrode active material for secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JP7297377B2 (en) Positive electrode active material for lithium secondary battery and method for producing the positive electrode active material
JP2023542856A (en) Method for producing positive electrode active material for lithium secondary battery
KR102351245B1 (en) Preparing method of the positive electrode active material for lithium secondary battery
KR102120393B1 (en) Method for preparing positive electrode active material, positive electrode active material for secondary battery prepared by the same and lithium secondary battery comprising the same
WO2019098764A1 (en) Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material
KR102608040B1 (en) Lithium transition metal oxide, positive electrode additive for lithium secondary battery, lithium secondary battery comprising the same
JP2024503158A (en) Lithium transition metal oxide, positive electrode additive for lithium secondary batteries, and lithium secondary batteries containing the same
KR20230142678A (en) Positive electrode active material and lithium secondary battery comprising the same
JP2024505837A (en) lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554625

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879058

Country of ref document: EP

Effective date: 20191030

NENP Non-entry into the national phase

Ref country code: DE