WO2019098151A1 - Reflective liquid crystal display device - Google Patents

Reflective liquid crystal display device Download PDF

Info

Publication number
WO2019098151A1
WO2019098151A1 PCT/JP2018/041791 JP2018041791W WO2019098151A1 WO 2019098151 A1 WO2019098151 A1 WO 2019098151A1 JP 2018041791 W JP2018041791 W JP 2018041791W WO 2019098151 A1 WO2019098151 A1 WO 2019098151A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
electrode
liquid crystal
pixel
reflective
Prior art date
Application number
PCT/JP2018/041791
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 岩佐
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2019098151A1 publication Critical patent/WO2019098151A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements

Definitions

  • the present invention relates to a reflective liquid crystal display device, and more particularly to a reflective liquid crystal display device suitable for improving the quality of black display.
  • a sub-frame driving method is known as one of the halftone display methods in liquid crystal display devices.
  • the sub-frame driving method which is a type of time-axis modulation method
  • a predetermined period for example, one frame which is a display unit of one image in the case of a moving image
  • the pixel is driven by the combination of the corresponding subframes.
  • the gradation to be displayed is determined by the ratio of the driving period of the pixel to the predetermined period, and this ratio is specified by the combination of subframes.
  • each pixel is configured by a master latch and a slave latch, a liquid crystal display element, and a plurality of switching transistors.
  • the first switching transistor when the first data of 1 bit is applied to the input terminal of the master latch through the first switching transistor and the row selection signal applied through the row scanning line becomes active, the first switching transistor is turned on. When turned on, the first data is written to the master latch.
  • each pixel can perform desired gray scale display by a combination of a plurality of subframes constituting one frame.
  • periods of a plurality of subframes constituting one frame are allocated in advance to the same or different predetermined periods. For example, in the case where maximum gradation display is performed (white is displayed) in each pixel, display is performed in all of a plurality of subframes constituting one frame, and minimum gradation display is performed (black is displayed). In the case of not performing display in all of the plurality of sub-frames constituting one frame, in the case of performing gradation display other than that, the subframe to be displayed is selected according to the gradation to be displayed.
  • a liquid crystal display device adopting this conventional method uses, as input data, digital data representing gradation, and also adopts a digital driving method of a two-stage latch configuration (see, for example, Patent Document 1).
  • the frame electrode of the frame portion provided so as to surround the outer periphery of the image display portion is considered to be a solid electrode, and the effect is that the image display portion is provided.
  • the level of black displayed by each pixel may be different from the level of black displayed by the frame portion. Therefore, there is a possibility that black displayed by the frame portion may be emphasized more black than black displayed by each pixel provided in the image display unit.
  • black displayed by the frame portion is overemphasized more than black displayed by the image display portion.
  • there is a problem that the quality of the image is degraded.
  • the present invention has been made in view of the above points, and an object thereof is to provide a reflective liquid crystal display device capable of improving the quality of black display.
  • the reflective liquid crystal display device is provided so as to surround an image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions partitioned in a matrix and an outer periphery of the image display unit. And a frame portion in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement areas partitioned in a matrix, and in each of the electrode arrangement areas, a reflective electrode of the pixels occupying each pixel arrangement area
  • the frame electrode is disposed such that the difference in area ratio is 5% or less based on the area ratio of.
  • the reflective liquid crystal display device is provided so as to surround an image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions partitioned in a matrix and an outer periphery of the image display unit. And a frame portion in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement areas partitioned in a matrix, and in each of the electrode arrangement areas, a reflective electrode of the pixels occupying each pixel arrangement area
  • the frame electrode is disposed such that the difference is within 30% of the peripheral length with respect to the peripheral length of the frame.
  • FIG. 1 is a block diagram showing a liquid crystal display device according to a first embodiment. It is a circuit diagram which shows the specific structure of the pixel provided in the liquid crystal display device shown in FIG. It is a circuit diagram which shows the specific structure of the inverter which comprises the 1st data holding part provided in the pixel shown in FIG. It is a schematic sectional drawing of the pixel shown in FIG. It is a timing chart which shows operation
  • RMS voltage applied voltage
  • FIG. 7 is a schematic plan view of a reflective electrode of a pixel and a frame electrode provided in a liquid crystal display device according to Embodiment 2. It is a schematic sectional drawing of the reflective electrode of the pixel shown in FIG. 14, and a frame electrode. It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 14, and a frame electrode.
  • FIG. 18 is a schematic plan view of a reflective electrode of a pixel and a frame electrode provided in a liquid crystal display device according to a third embodiment.
  • FIG. 17 It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 17, and a frame electrode. It is a figure which shows the relationship of the difference of the perimeter length of each of a reflective electrode and a frame electrode, and the difference of the black level displayed by each of an image display part and a frame part.
  • FIG. 1 is a block diagram showing a reflective liquid crystal display device 10 according to the first embodiment.
  • the reflective liquid crystal display device 10 includes an image display unit 11, a timing generator 13, a vertical shift register 14, a data latch circuit 15, and a horizontal driver 16.
  • the horizontal driver 16 includes a horizontal shift register 161, a latch unit 162, and a level shifter / pixel driver 163.
  • the image display unit 11 has a plurality of pixels 12 regularly arranged in each of a plurality of pixel arrangement regions partitioned in a matrix.
  • the plurality of pixels 12 are connected to one end of the vertical shift register 14 and extend in the row direction (X direction) by m (m is a natural number of 2 or more) row scanning lines g1 to gm; Are arranged in a two-dimensional matrix at a plurality of intersections where n (n is a natural number of 2 or more) column data lines d1 to dn each having one end connected thereto and extending in the column direction (Y direction) It is done. All the pixels 12 in the image display unit 11 are commonly connected to trigger lines trig and trigb whose one ends are connected to the timing generator 13.
  • the timing generator 13 receives external signals such as the vertical synchronization signal Vst, the horizontal synchronization signal Hst, and the basic clock CLK output from the higher-level device 20 as input signals, and generates alternating current signals FR and V based on these external signals.
  • Various internal signals such as the start pulse VST, the H start pulse HST, the clock signals VCK and HCK, the latch pulse LT, and the trigger pulses TRI and TRIB are generated.
  • the alternating signal FR is a signal whose polarity is inverted every one sub-frame, and is supplied as a common electrode voltage Vcom to be described later to a common electrode of the liquid crystal display element in the pixel 12 constituting the image display unit 11.
  • the start pulse VST is a pulse signal that is output at the start timing of each subframe to be described later, and the switching of subframes is controlled by the start pulse VST.
  • the start pulse HST is a pulse signal output to the horizontal shift register 161 at the start timing of the horizontal shift register 161.
  • the clock signal VCK is a shift clock defining one horizontal scanning period (1H) in the vertical shift register 14.
  • the vertical shift register 14 performs a shift operation at the timing of the clock signal VCK.
  • the clock signal HCK is a shift clock in the horizontal shift register 161, and is a signal for shifting data with a 32-bit width.
  • the latch pulse LT is a pulse signal that is output at the timing when the horizontal shift register 161 has finished shifting the data for the number of pixels in one row in the horizontal direction.
  • the non-inverted trigger pulse TRI and the inverted trigger pulse TRIB are pulse signals supplied to all the pixels 12 in the image display unit 11 via the trigger lines trig and trigb, respectively.
  • the normal rotation trigger pulse TRI and the inversion trigger pulse TRIB are output from the timing generator 13 after data is written to the first data holding unit in all the pixels 12 in the image display unit 11 in a certain subframe period. Be done. As a result, in the sub-frame period, the data held in the first data holding units in all the pixels 12 in the image display unit 11 are simultaneously transferred to the second data holding units in the corresponding pixels 12. Ru.
  • Vertical shift register 14 transfers V start pulse VST supplied at the start timing of each sub-frame in accordance with clock signal VCK, and sequentially and exclusively supplies the row scanning signal to row scanning lines g1 to gm in 1 H units. .
  • the row scanning lines are sequentially selected one by one in units of 1H from the uppermost row scanning line g1 to the lowermost row scanning line gm of the image display unit 11.
  • Data latch circuit 15 latches 32-bit wide data in units of one subframe supplied from an external circuit (not shown) based on basic clock CLK from host device 20, and then horizontally shifts in synchronization with basic clock CLK. Output to the register 161.
  • the reflective liquid crystal display device 10 divides one frame of a video signal into a plurality of subframes having a display period shorter than one frame period of the video signal, and performs gradation display by a combination of these subframes. ing. Therefore, the above external circuit converts gradation data indicating the gradation of each pixel into a plurality of 1-bit subframe data corresponding to a plurality of subframes. Furthermore, the above external circuit collectively supplies subframe data for 32 pixels belonging to the same subframe to the data latch circuit 15 as data of 32 bits width.
  • the horizontal shift register 161 When viewed as a processing system of 1-bit serial data, the horizontal shift register 161 starts shifting by the start pulse HST supplied from the timing generator 13 at the initial stage of 1H, and data of 32-bit width supplied from the data latch circuit 15 In synchronization with the clock signal HCK.
  • the latch unit 162 synchronizes with the latch pulse LT supplied from the timing generator 13 when the horizontal shift register 161 finishes shifting data of n bits equal to the number n of pixels in one row of the image display unit 11.
  • Data of n bits supplied in parallel from the horizontal shift register 161 (that is, subframe data of n pixels) is latched and output to the level shifter of the level shifter / pixel driver 163.
  • the start pulse HST is output again from the timing generator 13, and the horizontal shift register 161 resumes the shift of 32-bit data from the data latch circuit 15 according to the clock signal HCK.
  • the level shifter of the level shifter / pixel driver 163 shifts the signal levels of n pieces of subframe data corresponding to n pixels in one row transferred from the latch unit 162 to the liquid crystal drive voltage amplitude.
  • the pixel driver of the level shifter / pixel driver 163 outputs n pieces of subframe data corresponding to n pixels in one row after level shift in parallel to n column data lines d1 to dn.
  • the horizontal driver 16 outputs the sub-frame data directed to the pixels of the row selected as the data writing target in one horizontal scanning period and the pixels of the row selected as the data writing target in the next one horizontal scanning period. Shifting of subframe data in parallel is performed. Then, in a horizontal scanning period, n sub-frame data corresponding to n pixels in one row are simultaneously output in parallel to n column data lines d1 to dn as data signals.
  • n pixels 12 in one row selected by the row scanning signal from the vertical shift register 14 among the plurality of pixels 12 constituting the image display unit 11 are one row output simultaneously from the level shifter / pixel driver 163.
  • a portion of n sub-frame data is sampled via n column data lines d1 to dn and written to a first data holding unit described later in each pixel 12.
  • inverted data of the input data held in the storage unit SM1 is applied to the reflective electrode PE. That is, the pixel 12 has a function of inverting input data supplied from the level shifter / pixel driver 163.
  • FIG. 2 is a circuit diagram showing a specific configuration of the pixel 12.
  • the pixel 12 may be any of row scan lines g1 to gm (hereinafter referred to as row scan line g) and any of column data lines d1 to dn (hereinafter referred to as column data line d). And are provided at the intersections where they intersect.
  • the pixel 12 includes an SRAM cell 201, a DRAM cell 202, and a liquid crystal display element LC.
  • the SRAM cell 201 is configured of a switch SW1 which is a first switch, and a storage unit SM1 which is a first data holding unit.
  • the DRAM cell 202 includes a switch SW2 which is a second switch, and a storage unit DM2 which is a second data holding unit.
  • the liquid crystal display element LC has a well-known structure in which a liquid crystal LCM is filled and sealed in a space between a reflective electrode PE which is a pixel electrode having light reflection characteristics and disposed to be separated and opposed, and a common electrode CE having light transparency. It is.
  • the switch SW1 is configured of, for example, an N-channel MOS transistor (hereinafter, referred to as an NMOS transistor) MN1.
  • NMOS transistor MN1 N-channel MOS transistor
  • the source is connected to the input terminal (node a) of the storage unit SM1
  • the drain is connected to the column data line d
  • the gate is connected to the row scanning line g.
  • the storage unit SM1 is a self-holding memory including two inverters INV11 and INV12 in which one output terminal is connected to the other input terminal. More specifically, the input terminal of the inverter INV11 is connected to the output terminal of the inverter INV12 and the source of the NMOS transistor MN1 forming the switch SW1. The input terminal of the inverter INV12 is connected to the switch SW2 and the output terminal of the inverter INV11.
  • FIG. 3 is a circuit diagram showing a specific configuration of the inverter INV11.
  • the inverter INV11 includes a P-channel MOS transistor (hereinafter referred to as a PMOS transistor) MP11 and an NMOS transistor MN11 connected in series, and inverts the input signals supplied to the respective gates.
  • a PMOS transistor P-channel MOS transistor
  • MN11 NMOS transistor
  • Is a known CMOS inverter that outputs from the drain of
  • the inverter INV12 is a known CMOS inverter that includes a PMOS transistor MP12 and an NMOS transistor MN12 connected in series, and inverts an input signal supplied to each gate and outputs the inverted signal from each drain.
  • the drive capabilities of the inverters INV11 and INV12 are different. Specifically, among the inverters INV11 and INV12 that constitute the storage unit SM1, the drivability of the transistors MP11 and MN11 in the inverter INV11 on the input side as viewed from the switch SW1 is the inverter on the output side as viewed from the switch SW1. It is larger than the driving capability of the transistors MP12 and MN12 in the INV12. As a result, data easily propagates from the column data line d to the storage unit SM1 via the switch SW1, while data hardly propagates from the storage unit DM2 to the storage unit SM1 via the switch SW2.
  • the drive capability of the NMOS transistor MN1 configuring the switch SW1 is larger than the drive capability of the NMOS transistor MN12 configuring the inverter INV12.
  • a current flowing from column data line d to the input terminal (node a) of storage unit SM1 via switch SW1 is Since the current flowing from the input terminal of the storage unit SM1 to the ground voltage terminal GND via the NMOS transistor MN12 is larger than the current, data can be accurately stored in the storage unit SM1.
  • the switch SW2 is a known transmission gate composed of an NMOS transistor MN2 and a PMOS transistor MP2 connected in parallel. More specifically, in the NMOS transistor MN2 and the PMOS transistor MP2, their respective sources are commonly connected to the output terminal of the storage unit SM1, and their respective drains are the input terminal of the storage unit DM2 and the reflective electrode PE of the liquid crystal display element LC. Commonly connected.
  • the gate of the NMOS transistor MN2 is connected to the non-inversion trigger pulse trigger line trig, and the gate of the PMOS transistor MP2 is connected to the inversion trigger pulse trigger line trigb.
  • the switch SW2 is turned on when the forward rotation trigger pulse supplied via the trigger line trig is at the H level (the inversion trigger pulse supplied via the trigger line trigb is at the L level), and from the storage unit SM1 The read data is transferred to the storage unit DM2 and the reflective electrode PE.
  • the switch SW2 is turned off when the forward rotation trigger pulse supplied via the trigger line trig is at L level (the inversion trigger pulse supplied via the trigger line trigb is at H level), and the switch SW2 Reading stored data is not performed.
  • switch SW2 Since switch SW2 is a known transmission gate, it can transfer a wide range of voltage from ground voltage GND to power supply voltage VDD in the on state. More specifically, when the voltage applied from the storage unit SM1 to the sources of the transistors MN2 and MP2 is at the ground voltage GND level (L level), instead of the source / drain of the PMOS transistor MP2 not conducting, The source and drain can be conducted with low resistance. On the other hand, when the voltage applied from the storage unit SM1 to the sources of the transistors MN2 and MP2 is at the power supply voltage VDD level (H level), the source and drain of the PMOS transistor MP2 are It can be conducted with low resistance. As described above, in the switch SW2, since the source and drain of the transmission gate can be conducted with low resistance, a wide range of voltages from the ground voltage GND to the power supply voltage VDD can be transferred in the on state.
  • the storage unit DM2 is configured of a capacity C1.
  • the capacitance C1 may be, for example, an MIM (Metal Insulator Metal) capacitance that forms a capacitance between interconnections, a Diffusion capacitance that forms a capacitance between the substrate and polysilicon, or a PIP (Poly) that forms a capacitance between two-layer polysilicon. Insulator Poly) capacity etc. can be used.
  • the switch SW2 When the switch SW2 is turned on, the data stored in the storage unit SM1 is read out and transferred to the capacitance C1 and the reflective electrode PE in the storage unit DM2 via the switch SW2. Thereby, the data stored in the storage unit DM2 is rewritten.
  • the data held in the capacitor C1 also affects the input gate of the inverter INV12 that configures the storage unit SM1.
  • the inverter INV11 since the drive capacity of the inverter INV11 is larger than the drive capacity of the inverter INV12, the inverter INV11 rewrites the data of the capacity C1 before the inverter INV12 is affected by the data of the capacity C1. Therefore, the data stored in the storage unit SM1 is not unintentionally rewritten due to the stored data of the capacity C1.
  • the reflective liquid crystal display device 10 uses the pixel 12 including one SRAM cell and one DRAM cell, as compared to the case where a pixel including two SRAM cells is used, By reducing the number of transistors constituting a pixel, miniaturization of the pixel is realized.
  • the present invention is not limited to this.
  • the switch SW2 can be appropriately changed to a configuration in which any one of the PMOS transistor MP2 and the NMOS transistor MN2 is provided. In that case, only one of the trigger lines trig and trigb is provided.
  • the storage portions SM1 and DM2 and the reflective electrode PE are elements. Pixels can be miniaturized also by arranging them effectively in the height direction. Hereinafter, this will be described in detail with reference to FIG.
  • FIG. 4 is a schematic cross-sectional view showing the main part of the pixel 12. Further, in FIG. 4, a case where the capacitor C1 is formed by an MIM which forms a capacitor between the wirings will be described as an example.
  • an N well 101 and a P well 102 are formed on a silicon substrate 100.
  • the PMOS transistor MP2 of the switch SW2 and the PMOS transistor MP11 of the inverter INV11 are formed on the N well 101. More specifically, a common diffusion layer serving as the source of each of the PMOS transistors MP2 and MP11 and two diffusion layers serving as the drain are formed on the N well 101, and the common diffusion layer and the two diffusion layers are formed. On the channel region between them, polysilicon serving as the gate of each of the PMOS transistors MP2 and MP11 is formed via the gate oxide film.
  • an NMOS transistor MN2 of the switch SW2 and an NMOS transistor MN11 of the inverter INV11 are formed on the P well 102. More specifically, a common diffusion layer serving as the source of each of the NMOS transistors MN2 and MN11 and two diffusion layers serving as the drain are formed on the P well 102, and the common diffusion layer and the two diffusion layers are formed. On the channel region between them, polysilicon serving as the gate of each of the NMOS transistors MN2 and MN11 is formed via the gate oxide film.
  • a device isolation oxide film 103 is formed between the active region (diffusion layer and channel region) on the N well and the active region on the P well.
  • An interlayer insulating film 105 is interposed between metals above the transistors MP2, MP11, MN2, and MN11, and the first metal 106, the second metal 108, the third metal 110, the MIM electrode 112, the fourth metal 114, and The fifth metal 116 is stacked.
  • the fifth metal 116 constitutes a reflective electrode PE formed for each pixel.
  • the diffusion layers constituting the drains of the transistors MN2 and MP2 are the contact 118, the first metal 106, the through hole 119a, the second metal 108, the through hole 119b, the third metal 110, the through hole 119c, the fourth metal 114, And, the through holes 119 e are electrically connected to the fifth metal 116. Further, the diffusion layers constituting the drains of the transistors MN2 and MP2 are the contact 118, the first metal 106, the through hole 119a, the second metal 108, the through hole 119b, the third metal 110, the through hole 119c, the fourth metal It is electrically connected to the MIM electrode 112 through the through hole 119 d and the through hole 119 d. That is, the sources of the transistors MN2 and MP2 constituting the switch SW2 are electrically connected to the reflective electrode PE and the MIM electrode 112.
  • the reflective electrode PE (fifth metal 116) is disposed to face the common electrode CE, which is a transparent electrode, through a passivation film (PSV) 117, which is a protective film formed on the upper surface of the reflective electrode PE.
  • a liquid crystal LCM is filled and sealed between the reflective electrode PE and the common electrode CE.
  • a liquid crystal display element LC is configured by the reflective electrode PE, the common electrode CE, and the liquid crystal LCM between them.
  • the MIM electrode 112 is formed on the third metal 110 via the interlayer insulating film 105.
  • a capacitance C1 is formed by the MIM electrode 112, the third metal 110, and the interlayer insulating film 105 between them. Therefore, while the switches SW1 and SW2 and the storage unit SM1 are formed using the first metal 106 and the second metal 108, which are the first and second layer wirings, and the transistor, the storage unit DM2 Is formed using the third metal 110 and the MIM electrode 112 which are upper layers of That is, the switches SW1 and SW2, the storage unit SM1, and the storage unit DM2 are formed in different layers.
  • Light from a light source is transmitted through the common electrode CE and the liquid crystal LCM, is incident on the reflective electrode PE (fifth metal 116) and is reflected, and travels backward along the original incident path and is emitted through the common electrode CE .
  • the reflective liquid crystal display device 10 uses the fifth metal 116, which is the fifth layer wiring, as the reflective electrode PE, and uses the third metal 110, which is the third layer wiring, as a part of the storage unit DM2.
  • the first metal 106 and the second metal 108, which are the first and second layer wiring, and the transistor as the memory unit SM1 or the like
  • the memory unit SM1, the memory unit DM2 and the reflective electrode PE are effectively arranged in the height direction. This makes it possible to further miniaturize the pixel.
  • a pixel with a pitch of 3 ⁇ m or less can be configured by a transistor with a power supply voltage of 3.3V.
  • the pixels with a pitch of 3 ⁇ m or less it is possible to realize a liquid crystal display panel having a diagonal length of 0.55 inch, 4000 horizontal pixels and 2000 vertical pixels.
  • FIG. 5 is a timing chart showing the operation of the reflective liquid crystal display device 10.
  • the row scanning signals g1 to gm are sequentially selected one by one in units of 1 H by the row scanning signal from the vertical shift register 14. Therefore, the image display unit 11 is configured. Data is written to the plurality of pixels 12 in units of n pixels in one row commonly connected to the selected row scanning line. Then, when data is written to all of the plurality of pixels 12 constituting the image display unit 11, thereafter, the data of all the pixels 12 are read out simultaneously based on the trigger pulses TRI and TRIB (more specifically, The data of the storage unit SM1 in all the pixels 12 are simultaneously transferred to the storage unit DM2 and the reflective electrode PE).
  • FIG. 5 shows a change of subframe data stored in each pixel 12.
  • the vertical axis represents line numbers, and the horizontal axis represents time.
  • the boundary line of the sub-frame data is downward to the right. This means that the subframe data is written later as the row number of the pixel is larger.
  • a period from one end of the boundary to the other end corresponds to a writing period of subframe data.
  • B0b, B1b, and B2b indicate inverted data of subframe data of bits B0, B1, and B2, respectively.
  • FIG. 5 shows the output timing (rising timing) of the trigger pulse TRI.
  • the trigger pulse TRIB is omitted because it always indicates a value obtained by logically inverting the trigger pulse TRI.
  • FIG. 5C schematically shows bits of subframe data applied to the reflective electrode PE.
  • D) of FIG. 5 shows the change of the value of the common electrode voltage Vcom.
  • E) of FIG. 5 shows the change of the voltage applied to the liquid crystal LCM.
  • the non-inverted subframe data of bit B0 output from the horizontal driver 16 to the column data line d is sampled by the switch SW1 and stored Written to SM1.
  • normal subframe data of bit B0 is written to the storage units SM1 of all the pixels 12 constituting the image display unit 11.
  • the trigger pulse TRI at the H level (and the trigger pulse TRIB at the L level) is simultaneously supplied to all the pixels 12 constituting the image display unit 11 (time T1).
  • a holding period of non-inverted subframe data of bit B0 by storage unit DM2 Is one subframe period of time (time T2) until trigger signal TRI becomes H level (time T1) and then becomes H level again next time.
  • the power supply voltage VDD (here, 3.3 V) is applied to the reflective electrode PE
  • the bit value is "0" that is, L level
  • the ground voltage GND (0 V) is applied to the reflective electrode PE.
  • a free voltage can be applied to the common electrode CE as the common electrode voltage Vcom without being limited to the ground voltage GND and the power supply voltage VDD, and an H level normal rotation trigger pulse TRI is input.
  • the common electrode voltage Vcom is controlled to be switched to a predetermined voltage in synchronization.
  • the common electrode voltage Vcom is the threshold voltage Vtt of the liquid crystal more than 0 V as shown in FIG. 5D during the sub-frame period in which the non-inverted sub-frame data of bit B0 is applied to the reflective electrode PE. It is set to a low voltage.
  • the liquid crystal display element LC performs gradation display according to the applied voltage of the liquid crystal LCM, which is the absolute value of the difference voltage between the applied voltage of the reflective electrode PE and the common electrode voltage Vcom. Therefore, in the sub-frame period (time T1 to T2) in which the non-inverted sub-frame data of bit B0 is applied to the reflective electrode PE, the applied voltage of the liquid crystal LCM is, as shown in FIG.
  • FIG. 6 shows the relationship between the applied voltage (RMS voltage) of the liquid crystal and the gray scale value of the liquid crystal.
  • the gray scale value of black corresponds to the RMS voltage of the threshold voltage Vtt of the liquid crystal
  • the storage portion SM1 of all the pixels 12 constituting the image display portion 11 is Writing of the inverted subframe data of bit B0 is sequentially started. Then, when the inverted subframe data of bit B0 is written to the storage unit SM1 of all the pixels 12 constituting the image display unit 11, the H level is then applied to all the pixels 12 constituting the image display unit 11.
  • the trigger pulse TRI (and the L level trigger pulse TRIB) are simultaneously supplied (time T2).
  • the inverted subframe data of the bit B0 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held.
  • Inverted subframe data is applied to the reflective electrode PE.
  • the holding period of the inverted subframe data of bit B0 by storage unit DM2 is This is one subframe period (time T3) from when the trigger pulse TRI turns to H level (time T2) to next time it turns to H level again (time T3).
  • the inverted subframe data of bit B0 since the inverted subframe data of bit B0 always has an inverse logical value relationship with the non-inverted subframe data of bit B0, “0” when the non-inverted subframe data of bit B0 is “1”. It is "1" when the non-inverted subframe data of B0 is "0".
  • the common electrode voltage Vcom is higher than 3.3 V by the threshold voltage Vtt of the liquid crystal during the sub-frame period in which the inverted sub-frame data of the bit B0 is applied to the reflective electrode PE.
  • the bit value of the non-inverted subframe data of bit B0 is "1"
  • the bit value of the inverted subframe data of bit B0 applied subsequently is "0".
  • the voltage applied to the liquid crystal LCM is ⁇ (3.3 V + Vtt), and the direction of the potential is opposite but the absolute value is the same as compared with the case where the non-inverted subframe data of bit B0 is applied. . Therefore, also when the inverted subframe data of bit B0 is applied, the pixel 12 displays white in the same manner as when the non-inverted frame data of bit B0 is applied.
  • the bit value of the non-inverted subframe data of bit B0 is "0"
  • the bit value of the inverted subframe data of bit B0 applied subsequently is "1".
  • the voltage applied to the liquid crystal LCM is ⁇ Vtt, and the direction of the potential is opposite but the absolute value is the same as compared with the case where the non-inverted subframe data of bit B0 is applied. Therefore, also when the inverted subframe data of bit B0 is applied, the pixel 12 displays black in the same manner as when the non-inverted frame data of bit B0 is applied.
  • the pixel 12 displays the same gradation with the bit B0 and the complementary bit B0b of the bit B0 during two sub-frame periods from time T1 to T3, and Since AC driving is performed in which the potential direction is reversed every subframe, burn-in of the liquid crystal LCM can be prevented.
  • the common electrode voltage Vcom is a voltage lower than 0 V by the threshold voltage Vtt of the liquid crystal during the subframe period in which the normal subframe data of bit B1 is applied to the reflective electrode PE.
  • the voltage applied to the liquid crystal LCM is, as shown in FIG.
  • the bit B1 for the storage part SM1 of all the pixels 12 constituting the image display part 11 Writing of the inverted subframe data of is sequentially started. Then, when the inverted subframe data of bit B1 is written to the storage unit SM1 of all the pixels 12 constituting the image display unit 11, then, H level is applied to all the pixels 12 constituting the image display unit 11
  • the trigger pulse TRI (and the L level trigger pulse TRIB) are simultaneously supplied (time T4).
  • the inverted subframe data of the bit B1 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held.
  • Inverted subframe data is applied to the reflective electrode PE.
  • the holding period of the inverted subframe data of bit B1 by storage unit DM2 is This is one subframe period (time T5) from when the trigger pulse TRI turns to H level (time T4) to next time it turns to H level again (time T5).
  • the inverted subframe data of bit B1 is always in a reverse logical value relationship with the non-inverted subframe data of bit B1.
  • the common electrode voltage Vcom is higher than 3.3 V by the threshold voltage Vtt of the liquid crystal during the sub-frame period in which the inverted sub-frame data of the bit B1 is applied to the reflective electrode PE.
  • the pixel 12 displays the same gradation with the bit B1 and the complementary bit B1b of the bit B1 during two sub-frame periods from time T3 to T5, and the liquid crystal LCM Since the potential drive direction of the liquid crystal is reversed drive every subframe, burn-in of the liquid crystal LCM can be prevented. The same operation is repeated for bit B2 and thereafter.
  • the reflective liquid crystal display device 10 performs gradation display by combining a plurality of sub-frames.
  • each display period of bit B0 and complementary bit B0b is the same first subframe period, and each display period of bit B1 and complementary bit B1b is also the same second subframe period, but the first display period is the same.
  • the subframe period and the second subframe period are not necessarily the same.
  • the second subframe period is set to twice the first subframe period.
  • the third sub-frame period which is each display period of the bit B2 and the complementary bit B2 b is set to be twice as long as the second sub-frame period. The same is true for the other subframe periods.
  • the length of each subframe period and the number of subframes can be arbitrarily set according to the specification of the system and the like.
  • the frame unit 21 is a unit that displays black in the outer frame area (frame area) of the image displayed by the image display unit 11 when the image is enlarged and projected by, for example, a projector or the like.
  • FIG. 7 is a schematic plan view of the reflective liquid crystal display device 10.
  • the image display unit 11 is provided on the chip CHP 1
  • the frame unit 21 is provided so as to surround the outer periphery of the image display unit 11.
  • a horizontal driver 16 for driving each pixel 12, a vertical shift register 14, a timing generator 13, a data latch circuit 15 and the like are formed in the lower hierarchy of the frame electrode G1 of the frame portion 21.
  • a plurality of pads PD1 are provided around the periphery of the chip CHP1.
  • Each functional block on the chip CHP1 is connected to, for example, a flexible printed circuit (FPC) via a plurality of pads PD1 and bonding wires, and the image display unit 11 is controlled by a control signal from a host device configured by the FPC. To display an image or to display black by the frame portion 21.
  • FPC flexible printed circuit
  • FIG. 8 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device according to the comparative example, and the frame electrode G5 of the frame portion 51.
  • the reflective electrode PE of each of the plurality of pixels 12 provided at the corner of the image display unit 11 and the frame electrode G5 of the frame 51 provided at the periphery thereof are shown.
  • the frame electrode G ⁇ b> 5 is a solid electrode that spreads without a gap over the entire surface of the frame portion 51 and is formed in the same layer as the reflective electrode PE of the pixel 12.
  • the common electrode CE is disposed to be separated and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and the frame electrode G5.
  • a liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G5, and the liquid crystal LCM.
  • the same voltage Vcom as that of the common electrode CE is applied to the frame electrode G5.
  • the potential difference between the frame electrode G5 and the common electrode CE becomes 0 V, so black is displayed on the frame portion 51.
  • the level of black displayed by the frame unit 51 is the same as the level of black displayed by the image display unit 11 so as not to hinder the improvement of the quality of the image displayed by the image display unit 11 preferable.
  • the black displayed by the frame 51 is displayed more black than the black displayed by the image display unit 11. Therefore, in the reflection type liquid crystal display device in which the frame portion 51 is mounted, there is a problem that the image quality is deteriorated due to, for example, the black displayed by the frame portion 51 being overemphasized.
  • the problem is that the aperture ratio of the reflective electrode PE of the pixel 12 (the ratio of the arrangement area of the reflective electrode PE to occupy in the pixel arrangement region A1) and the aperture ratio of the frame electrode G5 of the frame 51 (an electrode equivalent to the pixel arrangement region A1) This is because the ratio of the arrangement area of the frame electrode G5 to the arrangement area A5 is different. This will be described below with reference to FIG.
  • the reflective electrode PE of the pixel 12 needs to be formed separately from the reflective electrode PE of the adjacent pixel 12, a pixel gap is formed between the reflective electrodes PE. As a result, the aperture ratio of the reflective electrode PE of the pixel 12 is reduced. Specifically, the aperture ratio of the reflective electrode PE of the pixel 12 is such that the length of one side of the square pixel arrangement region A1 (that is, the pixel pitch) L1 is 3.8 ⁇ m and the pixel gap L2 is 0.2 ⁇ m. , 89.75% (see the left figure in FIG. 9).
  • the frame electrode G5 of the frame portion 51 is a solid electrode which spreads without a gap over the entire frame portion 51 as described above. Therefore, the aperture ratio of the frame electrode G5 is 100% (see the right of FIG. 9).
  • FIG. 10 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 and the plurality of frame electrodes G1 of the frame unit 21. Note that, in the example of FIG. 10, only the reflection electrodes PE of the plurality of pixels 12 provided at the corner of the image display unit 11 and the plurality of frame electrodes G1 of the frame portion 21 provided around the same are shown. It is done.
  • the frame portion 21 has a plurality of frame electrodes G1 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix.
  • the electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged.
  • the plurality of frame electrodes G1 are formed in the same layer as the reflective electrode PE of the pixel 12.
  • each frame electrode G1 In the upper layer of each frame electrode G1, a common electrode CE is disposed so as to be spaced apart and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G1.
  • a liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G1, and the liquid crystal LCM.
  • Each frame electrode G1 is configured by a rectangular main body portion G1a in plan view, and two connecting portions G1b provided so as to protrude from one side of the main body portion and the other side orthogonal thereto. There is.
  • Each frame electrode G1 is electrically connected to the adjacent frame electrode G1 by the connecting portion G1b. Thereby, the application voltage of all the frame electrodes G1 of the frame part 21 can be made the same.
  • each frame electrode G1 the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G1.
  • the potential difference between each frame electrode G1 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 21.
  • FIG. 11 is a schematic cross-sectional view of a portion XI-XI of the schematic plan view shown in FIG.
  • a liquid crystal display element including the frame electrode G1 and a circuit portion in a lower layer than the frame electrode G1 are electrically separated. Therefore, the same voltage Vcom as that of the common electrode CE can be supplied to the frame electrode G1 regardless of the circuit portion in the lower layer than the frame electrode G1.
  • the other cross-sectional structures are the same as the contents described in FIG.
  • the level of black displayed by the frame unit 21 is as close as possible to the level of black displayed by the image display unit 11 (ideally, so as not to hinder the improvement of the quality of the image displayed by the image display unit 11). Is the same).
  • the aperture ratio of the frame electrode G1 (the ratio of the arrangement area of the frame electrode G1 occupied in the electrode arrangement region A2 equivalent to the pixel arrangement region A1) It is as close as possible to the ratio of the arrangement area of the reflective electrode PE occupied in the pixel arrangement area A1 (ideally the same). This will be described below with reference to FIG.
  • the aperture ratio of the reflective electrode PE of the pixel 12 is 3.8 ⁇ m for the length of one side of the square pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 ⁇ m for the pixel gap L2, 89.75. % (See the left figure in FIG. 12).
  • the aperture ratio of the frame electrode G1 is 89.68, assuming that the length L1 of one side of the square electrode arrangement region A2 is 3.8 ⁇ m, the gap L3 is 0.28 ⁇ m, and the width L4 of the connecting portion G1 b is 1 ⁇ m. % (See the right figure in FIG. 12). This is close to the aperture ratio 89.75% of the reflective electrode PE of the pixel 12.
  • the aperture ratio of each frame electrode G1 is as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12.
  • the reflective liquid crystal display device 10 according to the present embodiment can bring the level of black displayed by the frame portion 21 closer to the level of black displayed by the image display unit 11, so Deterioration can be prevented.
  • the reflective liquid crystal display device 10 according to the present embodiment can equalize the level of black displayed by each of the frame portion 21 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
  • FIG. 13 shows experimental results showing the relationship between the difference in the aperture ratio of each of the reflective electrode PE and the frame electrode G1, and the difference in the black level displayed by each of the image display unit 11 and the frame unit 21.
  • the difference in the aperture ratio between the reflective electrode PE and the frame electrode G1 decreases, the difference in the black level displayed by the image display unit 11 and the frame unit 21 decreases.
  • the difference in the aperture ratio between the reflective electrode PE and the frame electrode G1 becomes 5% or less, the image display unit 11 and The difference in black level displayed by each of the frame portions 21 apparently disappeared.
  • FIG. 14 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 according to the second embodiment and a plurality of frame electrodes G2 of the frame portion 31.
  • the frame portion 31 corresponds to the frame portion 21 and the frame electrode G2 corresponds to the frame electrode G1.
  • only the reflection electrodes PE of the plurality of pixels 12 provided at the corner of the image display unit 11 and the plurality of frame electrodes G2 of the frame portion 31 provided around the same are shown. It is done.
  • the frame portion 31 has a plurality of frame electrodes G2 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix.
  • the electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged.
  • the plurality of frame electrodes G2 are formed in the same layer as the reflective electrode PE of the pixel 12.
  • each frame electrode G2 a common electrode CE is disposed so as to be separated and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G2.
  • a liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G2, and the liquid crystal LCM.
  • Each frame electrode G2 has the same shape as the reflective electrode PE of the pixel 12 in plan view.
  • Each frame electrode G2 is electrically connected to the adjacent frame electrode G2 by the wiring of the circuit portion formed in the lower layer of these frame electrodes G2. Thereby, the applied voltage of all the frame electrodes G2 of the frame part 31 can be made the same.
  • each frame electrode G2 the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G2.
  • the potential difference between each frame electrode G2 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 31.
  • FIG. 15 is a schematic cross-sectional view of the XV-XV portion of the schematic plan view shown in FIG.
  • the adjacent frame electrodes G2 are electrically connected to each other through the fourth metal 114 and the through holes 119e formed in the lower layer of the frame electrodes G2. .
  • the applied voltage of all the frame electrodes G2 of the frame part 31 can be made the same.
  • the other cross-sectional structures are the same as the contents described in FIG.
  • the level of black displayed by the frame section 31 is as close as possible to the level of black displayed by the image display section 11 (ideally, so as not to hinder the improvement of the quality of the image displayed by the image display section 11). Is the same).
  • the aperture ratio of the frame electrode G2 (the ratio of the arrangement area of the frame electrode G2 occupied in the electrode arrangement region A2 equivalent to the pixel arrangement region A1) It is as close as possible to the ratio of the arrangement area of the reflective electrode PE occupied in the pixel arrangement area A1 (ideally the same). This will be described below with reference to FIG.
  • the aperture ratio of the reflective electrode PE of the pixel 12 is 3.8 ⁇ m for the length of one side of the square pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 ⁇ m for the pixel gap L2, 89.75. % (See the left figure in FIG. 16).
  • the aperture ratio of the frame electrode G2 is 89.75% when the length L1 of one side of the square electrode arrangement region A2 is 3.8 ⁇ m and the pixel gap L2 is 0.2 ⁇ m (right view in FIG. 16). reference). This is the same as the aperture ratio 89.75% of the reflective electrode PE of the pixel 12.
  • the aperture ratio of each frame electrode G2 is as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12.
  • the reflective liquid crystal display device 10 according to the second embodiment can bring the level of black displayed by the frame portion 31 closer to the level of black displayed by the image display portion 11, Deterioration can be prevented.
  • the reflective liquid crystal display device 10 according to the second embodiment can equalize the level of black displayed by each of the frame portion 31 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
  • the level of black displayed by the frame unit 51 is the level of black displayed by the image display unit 11 so as not to hinder the improvement of the quality of the image displayed by the image display unit 11. Is preferably the same as
  • the black displayed by the frame 51 is displayed more black than the black displayed by the image display unit 11. Therefore, in the liquid crystal display device in which the frame portion 51 is mounted, there is a problem that the image quality is deteriorated due to, for example, the black displayed by the frame portion 51 being overemphasized.
  • the reflective electrode PE of the pixel 12 needs to be formed separately from the reflective electrode PE of the adjacent pixel 12, a pixel gap is formed between the reflective electrodes PE of the pixel 12.
  • the perimeter of the reflective electrode PE of the pixel 12 is increased.
  • the peripheral length of the edge portion of the reflective electrode PE of the pixel 12 is 3.8 ⁇ m for the length of one side of the square-shaped pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 ⁇ m for the pixel gap L2 If it is, it becomes 14.44 ⁇ m (see the left figure of FIG. 9).
  • the frame electrode G5 of the frame portion 51 is a solid electrode which spreads without a gap over the entire frame portion 51 as described above. Therefore, the perimeter of the edge portion of the frame electrode G5 is 0 ⁇ m (see the right of FIG. 9).
  • the amount of diffuse reflection increases, so that the amount of reflected light different from the light deflection direction increases, and as a result, the displayed black becomes bright.
  • the amount of diffuse reflection decreases, so that the reflected light different from the light deflection direction decreases, and as a result, the displayed black becomes dark.
  • FIG. 17 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 and the plurality of frame electrodes G3 of the frame unit 41. Note that, in the example of FIG. 17, only the reflection electrodes PE of the plurality of pixels 12 provided in the corner of the image display unit 11 and the plurality of frame electrodes G3 of the frame portion 41 provided in the periphery thereof are shown. It is done.
  • the frame portion 41 has a plurality of frame electrodes G3 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix.
  • the electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged.
  • the plurality of frame electrodes G3 are formed in the same layer as the reflective electrode PE of the pixel 12.
  • each frame electrode G3 a common electrode CE is disposed so as to be spaced apart and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G3.
  • a liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G3, and the liquid crystal LCM.
  • Each frame electrode G3 is configured by a rectangular main body portion G3a in plan view, and two connecting portions G3b provided so as to respectively project from one side of the main body portion and the other side orthogonal thereto. There is.
  • Each frame electrode G3 is electrically connected to the adjacent frame electrode G3 by the connecting portion G3b. Thereby, the applied voltage of all the frame electrodes G3 of the frame part 41 can be made the same.
  • each frame electrode G3 the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G3.
  • the potential difference between each frame electrode G3 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 41.
  • the level of black displayed by the frame section 41 is as close as possible to the level of black displayed by the image display section 11 so as not to hinder the improvement of the quality of the image displayed by the image display section 11 (ideally Is the same).
  • the peripheral length of the frame electrode G3 is as close as possible to the peripheral length of the reflective electrode PE of each pixel 12 (they are ideally the same). This will be described below with reference to FIG.
  • the peripheral length of the reflective electrode PE of the pixel 12 is 14.44 ⁇ m, assuming that the length of one side (that is, pixel pitch) L1 of the square pixel arrangement region A1 is 3.8 ⁇ m and the pixel gap L2 is 0.2 ⁇ m. (See the left figure of FIG. 18).
  • the aperture ratio of the frame electrode G1 is 14.44 ⁇ m, assuming that the length L1 of one side of the square electrode arrangement region A2 is 3.8 ⁇ m, the gap L3 is 0.28 ⁇ m, and the width L4 of the connecting portion G1 b is 1 ⁇ m. (See the right side of FIG. 18). This is the same length as the peripheral length of the reflective electrode PE of the pixel 12.
  • the peripheral length (the length of the edge portion) of each frame electrode G3 is as close as possible to the peripheral length of the reflective electrode PE of each pixel 12.
  • the reflective liquid crystal display device 10 according to the third embodiment can bring the level of black displayed by the frame portion 41 closer to the level of black displayed by the image display unit 11, and Deterioration can be prevented.
  • the reflective liquid crystal display device 10 according to the third embodiment can equalize the level of black displayed by each of the frame portion 31 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
  • FIG. 19 is an experimental result showing the relationship between the difference in perimeter of each of the reflective electrode PE and the frame electrode G3 and the difference in black level displayed by each of the image display unit 11 and the frame unit 41.
  • the difference between the black levels displayed by the image display unit 11 and the frame portion 41 decreases as the difference between the perimeters of the reflective electrode PE and the frame electrode G3 decreases.
  • the difference in peripheral length between the reflective electrode PE and the frame electrode G3 difference in peripheral length of the frame electrode G3 based on the peripheral length of the reflective electrode PE
  • the image display unit 11 and The difference in black level displayed by each of the frame portions 41 apparently disappeared.
  • the aperture ratio of each frame electrode is made as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12.
  • the reflective liquid crystal display device 10 according to the third embodiment can bring the level of black displayed by the frame portion closer to the level of black displayed by the image display unit. It can prevent.
  • the reflective liquid crystal display device 10 according to the third embodiment can equalize the level of black displayed by each of the frame portion and the image display portion, a video with no sense of incongruity is displayed for the user. be able to.
  • the present invention can be suitably applied to a liquid crystal display device mounted on a projector or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

According to one embodiment, a reflective liquid crystal display device (10) is provided with: an image display part (11) in which a plurality of pixels (12) are respectively disposed in a plurality of pixel disposition regions (A1) divided in a matrix; and a frame part (21) which is provided so as to surround the outer periphery of the image display part (11) and in which a plurality of frame electrodes (G1) are respectively disposed in a plurality of electrode disposition regions (A2) divided in a matrix, wherein in each of the electrode disposition regions (A2), the frame electrode (G1) is disposed such that the area ratio thereof has a difference of 5% or less with reference to the area ratio of a reflecting electrode (PE) of the pixel (12) to each of the pixel disposition regions (A1).

Description

反射型液晶表示装置Reflective liquid crystal display
 本発明は、反射型液晶表示装置に関し、黒表示の品質を向上させるのに適した反射型液晶表示装置に関する。 The present invention relates to a reflective liquid crystal display device, and more particularly to a reflective liquid crystal display device suitable for improving the quality of black display.
 液晶表示装置における中間調表示方式の1つとして、サブフレーム駆動方式が知られている。時間軸変調方式の一種であるサブフレーム駆動方式では、所定の期間(例えば、動画の場合には1画像の表示単位である1フレーム)を複数のサブフレームに分割し、表示すべき階調に応じたサブフレームの組み合わせにより画素を駆動する。表示される階調は、所定の期間に占める画素の駆動期間の割合によって決まり、この割合は、サブフレームの組み合わせによって特定される。 A sub-frame driving method is known as one of the halftone display methods in liquid crystal display devices. In the sub-frame driving method, which is a type of time-axis modulation method, a predetermined period (for example, one frame which is a display unit of one image in the case of a moving image) is divided into a plurality of sub-frames. The pixel is driven by the combination of the corresponding subframes. The gradation to be displayed is determined by the ratio of the driving period of the pixel to the predetermined period, and this ratio is specified by the combination of subframes.
 サブフレーム駆動方式が採用された液晶表示装置の中には、各画素が、マスターラッチ及びスレーブラッチと、液晶表示素子と、複数のスイッチングトランジスタと、によって構成されているものがある。 Among liquid crystal display devices in which the sub-frame driving method is adopted, there is one in which each pixel is configured by a master latch and a slave latch, a liquid crystal display element, and a plurality of switching transistors.
 この画素では、マスターラッチの入力端子に1ビットの第1のデータが第1のスイッチングトランジスタを通して印加され、行走査線を介して印加される行選択信号がアクティブになると、第1のスイッチングトランジスタがオン状態になり、第1のデータがマスターラッチに書き込まれる。 In this pixel, when the first data of 1 bit is applied to the input terminal of the master latch through the first switching transistor and the row selection signal applied through the row scanning line becomes active, the first switching transistor is turned on. When turned on, the first data is written to the master latch.
 全ての画素に設けられたマスターラッチへのデータの書き込みが完了すると、そのサブフレーム期間内において、全ての画素に設けられた第2のスイッチングトランジスタがオン状態になる。それにより、全ての画素に設けられたマスターラッチのデータが一斉に読み出されてスレーブラッチに書き込まれるとともに、当該スレーブラッチに書き込まれたデータが液晶表示素子の画素電極に印加される。各サブフレーム期間において、全ての画素に対して同様の処理が行われる。その結果、各画素は、1フレームを構成する複数のサブフレームの組み合わせにより所望の階調表示を行うことができる。 When the writing of data to the master latch provided in all the pixels is completed, the second switching transistors provided in all the pixels are turned on within the sub-frame period. As a result, data of the master latch provided in all the pixels is simultaneously read and written to the slave latch, and the data written to the slave latch is applied to the pixel electrode of the liquid crystal display element. The same processing is performed on all pixels in each subframe period. As a result, each pixel can perform desired gray scale display by a combination of a plurality of subframes constituting one frame.
 なお、1フレームを構成する複数のサブフレームの期間は、それぞれ同一又は異なる所定の期間に予め割り当てられている。例えば、各画素において、最大階調表示を行う(白を表示させる)場合には1フレームを構成する複数のサブフレームの全てにおいて表示を行い、最小階調表示を行う(黒を表示させる)場合には1フレームを構成する複数のサブフレームの全てにおいて表示を行わず、それ以外の階調表示を行う場合には、表示する階調に応じて表示するサブフレームを選択する。この従来からの手法を採用した液晶表示装置は、階調を示すデジタルデータを入力データとしており、また、2段ラッチ構成のデジタル駆動方式を採用している(例えば、特許文献1参照)。 Note that periods of a plurality of subframes constituting one frame are allocated in advance to the same or different predetermined periods. For example, in the case where maximum gradation display is performed (white is displayed) in each pixel, display is performed in all of a plurality of subframes constituting one frame, and minimum gradation display is performed (black is displayed). In the case of not performing display in all of the plurality of sub-frames constituting one frame, in the case of performing gradation display other than that, the subframe to be displayed is selected according to the gradation to be displayed. A liquid crystal display device adopting this conventional method uses, as input data, digital data representing gradation, and also adopts a digital driving method of a two-stage latch configuration (see, for example, Patent Document 1).
特許第5733154号公報Patent No. 5733154 gazette
 しかしながら、特許文献1に開示された液晶表示装置では、画像表示部の外周を囲むように設けられた額縁部の額縁電極がベタ電極であると考えられ、その影響で、画像表示部に設けられた各画素によって表示される黒のレベルと、額縁部によって表示される黒のレベルと、が異なってしまう可能性があった。そのため、額縁部によって表示される黒が、画像表示部に設けられた各画素によって表示される黒よりも黒く強調されてしまう可能性があった。それにより、例えばプロジェクターを視聴している場合、同じレベルの黒を表示しているつもりでも、額縁部によって表示される黒が、画像表示部によって表示される黒よりも強調され過ぎてしまい、その結果、映像の品質が低下してしまう、という問題があった。 However, in the liquid crystal display device disclosed in Patent Document 1, the frame electrode of the frame portion provided so as to surround the outer periphery of the image display portion is considered to be a solid electrode, and the effect is that the image display portion is provided. There is a possibility that the level of black displayed by each pixel may be different from the level of black displayed by the frame portion. Therefore, there is a possibility that black displayed by the frame portion may be emphasized more black than black displayed by each pixel provided in the image display unit. As a result, for example, when viewing a projector, even if black of the same level is intended to be displayed, black displayed by the frame portion is overemphasized more than black displayed by the image display portion. As a result, there is a problem that the quality of the image is degraded.
 本発明は以上の点に鑑みなされたもので、黒表示の品質を向上させることが可能な反射型液晶表示装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a reflective liquid crystal display device capable of improving the quality of black display.
 本実施形態の一態様にかかる反射型液晶表示装置は、行列状に区画された複数の画素配置領域に複数の画素がそれぞれ配置された画像表示部と、前記画像表示部の外周を囲むようにして設けられ、行列状に区画された複数の電極配置領域に複数の額縁電極がそれぞれ配置された額縁部と、を備え、各前記電極配置領域には、各前記画素配置領域に占める前記画素の反射電極の面積率を基準にして、差分が5%以内の面積率となるように前記額縁電極が配置されている。 The reflective liquid crystal display device according to one aspect of the present embodiment is provided so as to surround an image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions partitioned in a matrix and an outer periphery of the image display unit. And a frame portion in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement areas partitioned in a matrix, and in each of the electrode arrangement areas, a reflective electrode of the pixels occupying each pixel arrangement area The frame electrode is disposed such that the difference in area ratio is 5% or less based on the area ratio of.
 本実施形態の一態様にかかる反射型液晶表示装置は、行列状に区画された複数の画素配置領域に複数の画素がそれぞれ配置された画像表示部と、前記画像表示部の外周を囲むようにして設けられ、行列状に区画された複数の電極配置領域に複数の額縁電極がそれぞれ配置された額縁部と、を備え、各前記電極配置領域には、各前記画素配置領域に占める前記画素の反射電極の周囲長を基準にして、差分が30%以内の周囲長となるように前記額縁電極が配置されている。 The reflective liquid crystal display device according to one aspect of the present embodiment is provided so as to surround an image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions partitioned in a matrix and an outer periphery of the image display unit. And a frame portion in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement areas partitioned in a matrix, and in each of the electrode arrangement areas, a reflective electrode of the pixels occupying each pixel arrangement area The frame electrode is disposed such that the difference is within 30% of the peripheral length with respect to the peripheral length of the frame.
 本実施形態によれば、黒表示の品質を向上させることが可能な反射型液晶表示装置を提供することができる。 According to the present embodiment, it is possible to provide a reflective liquid crystal display device capable of improving the quality of black display.
実施の形態1にかかる液晶表示装置を示すブロック図である。FIG. 1 is a block diagram showing a liquid crystal display device according to a first embodiment. 図1に示す液晶表示装置に設けられた画素の具体的構成を示す回路図である。It is a circuit diagram which shows the specific structure of the pixel provided in the liquid crystal display device shown in FIG. 図2に示す画素に設けられた第1データ保持部を構成するインバータの具体的構成を示す回路図である。It is a circuit diagram which shows the specific structure of the inverter which comprises the 1st data holding part provided in the pixel shown in FIG. 図2に示す画素の概略断面図である。It is a schematic sectional drawing of the pixel shown in FIG. 図1に示す液晶表示装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the liquid crystal display device shown in FIG. 液晶の印加電圧(RMS電圧)と液晶のグレースケール値との関係を示す図である。It is a figure which shows the relationship between the applied voltage (RMS voltage) of a liquid crystal, and the gray scale value of a liquid crystal. 図1に示す液晶表示装置の概略平面図である。It is a schematic plan view of the liquid crystal display device shown in FIG. 比較例にかかる液晶表示装置に設けられた画素の反射電極、及び、額縁電極の概略平面図である。It is a schematic plan view of the reflective electrode of the pixel provided in the liquid crystal display device concerning a comparative example, and a frame electrode. 図8に示す画素の反射電電極、及び、額縁電極を拡大した概略平面図である。It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 8, and a frame electrode. 図1に示す液晶表示装置に設けられた画素の反射電極、及び、額縁電極の概略平面図である。It is a schematic plan view of the reflective electrode of the pixel provided in the liquid crystal display device shown in FIG. 1, and a frame electrode. 図10に示す画素の反射電極、及び、額縁電極の概略断面図である。It is a schematic sectional drawing of the reflective electrode of the pixel shown in FIG. 10, and a frame electrode. 図10に示す画素の反射電極、及び、額縁電極を拡大した概略平面図である。It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 10, and a frame electrode. 反射電極及び額縁電極のそれぞれの開口率の差と、画像表示部及び額縁部のそれぞれによって表示される黒レベルの差と、の関係を示す図である。It is a figure which shows the relationship of the difference of the aperture ratio of each of a reflective electrode and a frame electrode, and the difference of the black level displayed by each of an image display part and a frame part. 実施の形態2にかかる液晶表示装置に設けられた画素の反射電極、及び、額縁電極の概略平面図である。FIG. 7 is a schematic plan view of a reflective electrode of a pixel and a frame electrode provided in a liquid crystal display device according to Embodiment 2. 図14に示す画素の反射電極、及び、額縁電極の概略断面図である。It is a schematic sectional drawing of the reflective electrode of the pixel shown in FIG. 14, and a frame electrode. 図14に示す画素の反射電極、及び、額縁電極を拡大した概略平面図である。It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 14, and a frame electrode. 実施の形態3にかかる液晶表示装置に設けられた画素の反射電極、及び、額縁電極の概略平面図である。FIG. 18 is a schematic plan view of a reflective electrode of a pixel and a frame electrode provided in a liquid crystal display device according to a third embodiment. 図17に示す画素の反射電極、及び、額縁電極を拡大した概略平面図である。It is the schematic plan view which expanded the reflective electrode of the pixel shown in FIG. 17, and a frame electrode. 反射電極及び額縁電極のそれぞれの周囲長の差と、画像表示部及び額縁部のそれぞれによって表示される黒レベルの差と、の関係を示す図である。It is a figure which shows the relationship of the difference of the perimeter length of each of a reflective electrode and a frame electrode, and the difference of the black level displayed by each of an image display part and a frame part.
<実施の形態1>
 以下、図面を用いて本発明の実施形態について説明する。
Embodiment 1
Hereinafter, embodiments of the present invention will be described using the drawings.
 図1は、実施の形態1に係る反射型液晶表示装置10を示すブロック図である。
 図1に示すように、反射型液晶表示装置10は、画像表示部11と、タイミングジェネレータ13と、垂直シフトレジスタ14と、データラッチ回路15と、水平ドライバ16と、を備える。水平ドライバ16は、水平シフトレジスタ161と、ラッチ部162と、レベルシフタ/画素ドライバ163と、により構成される。
FIG. 1 is a block diagram showing a reflective liquid crystal display device 10 according to the first embodiment.
As shown in FIG. 1, the reflective liquid crystal display device 10 includes an image display unit 11, a timing generator 13, a vertical shift register 14, a data latch circuit 15, and a horizontal driver 16. The horizontal driver 16 includes a horizontal shift register 161, a latch unit 162, and a level shifter / pixel driver 163.
 画像表示部11は、行列状に区画された複数の画素配置領域のそれぞれに規則的に配置された複数の画素12を有する。 The image display unit 11 has a plurality of pixels 12 regularly arranged in each of a plurality of pixel arrangement regions partitioned in a matrix.
 複数の画素12は、垂直シフトレジスタ14に一端が接続されて行方向(X方向)に延在するm本(mは2以上の自然数)の行走査線g1~gmと、レベルシフタ/画素ドライバ163に一端が接続されて列方向(Y方向)に延在するn本(nは2以上の自然数)の列データ線d1~dnと、がそれぞれ交差する複数の交差部に二次元マトリクス状に配置されている。画像表示部11内の全ての画素12は、一端がタイミングジェネレータ13に接続されたトリガ線trig,trigbに共通接続されている。 The plurality of pixels 12 are connected to one end of the vertical shift register 14 and extend in the row direction (X direction) by m (m is a natural number of 2 or more) row scanning lines g1 to gm; Are arranged in a two-dimensional matrix at a plurality of intersections where n (n is a natural number of 2 or more) column data lines d1 to dn each having one end connected thereto and extending in the column direction (Y direction) It is done. All the pixels 12 in the image display unit 11 are commonly connected to trigger lines trig and trigb whose one ends are connected to the timing generator 13.
 なお、正転トリガパルス用トリガ線trigが伝送する正転トリガパルスTRIと、反転トリガパルス用トリガ線trigbが伝送する反転トリガパルスTRIBとは、常に逆論理値の関係(相補的な関係)にある。 It should be noted that the relation (complementary relation) between the non-inverted trigger pulse TRI transmitted by the non-inverted trigger pulse trigger line trig and the inverted trigger pulse TRIB transmitted by the inverted trigger pulse trigger line trigb is always reverse logic value. is there.
 タイミングジェネレータ13は、上位装置20から出力された垂直同期信号Vst、水平同期信号Hst、及び、基本クロックCLK等の外部信号を入力信号として受け取り、これら外部信号に基づいて、交流化信号FR、VスタートパルスVST、HスタートパルスHST、クロック信号VCK,HCK、ラッチパルスLT、及び、トリガパルスTRI,TRIB等の各種の内部信号を生成する。 The timing generator 13 receives external signals such as the vertical synchronization signal Vst, the horizontal synchronization signal Hst, and the basic clock CLK output from the higher-level device 20 as input signals, and generates alternating current signals FR and V based on these external signals. Various internal signals such as the start pulse VST, the H start pulse HST, the clock signals VCK and HCK, the latch pulse LT, and the trigger pulses TRI and TRIB are generated.
 交流化信号FRは、1サブフレーム毎に極性反転する信号であり、画像表示部11を構成する画素12内の液晶表示素子の共通電極に、後述する共通電極電圧Vcomとして供給される。 The alternating signal FR is a signal whose polarity is inverted every one sub-frame, and is supplied as a common electrode voltage Vcom to be described later to a common electrode of the liquid crystal display element in the pixel 12 constituting the image display unit 11.
 スタートパルスVSTは、後述する各サブフレームの開始タイミングで出力されるパルス信号であり、このスタートパルスVSTによって、サブフレームの切替わりが制御される。 The start pulse VST is a pulse signal that is output at the start timing of each subframe to be described later, and the switching of subframes is controlled by the start pulse VST.
 スタートパルスHSTは、水平シフトレジスタ161の開始タイミングで当該水平シフトレジスタ161に対して出力されるパルス信号である。 The start pulse HST is a pulse signal output to the horizontal shift register 161 at the start timing of the horizontal shift register 161.
 クロック信号VCKは、垂直シフトレジスタ14における1水平走査期間(1H)を規定するシフトクロックであり、クロック信号VCKのタイミングで垂直シフトレジスタ14がシフト動作を行う。 The clock signal VCK is a shift clock defining one horizontal scanning period (1H) in the vertical shift register 14. The vertical shift register 14 performs a shift operation at the timing of the clock signal VCK.
 クロック信号HCKは、水平シフトレジスタ161におけるシフトクロックであり、32ビット幅でデータをシフトさせるための信号である。 The clock signal HCK is a shift clock in the horizontal shift register 161, and is a signal for shifting data with a 32-bit width.
 ラッチパルスLTは、水平シフトレジスタ161が水平方向の1行の画素数分のデータをシフトし終わったタイミングで出力されるパルス信号である。 The latch pulse LT is a pulse signal that is output at the timing when the horizontal shift register 161 has finished shifting the data for the number of pixels in one row in the horizontal direction.
 正転トリガパルスTRI及び反転トリガパルスTRIBは、それぞれトリガ線trig,trigbを介して、画像表示部11内の全ての画素12に供給されるパルス信号である。 The non-inverted trigger pulse TRI and the inverted trigger pulse TRIB are pulse signals supplied to all the pixels 12 in the image display unit 11 via the trigger lines trig and trigb, respectively.
 ここで、正転トリガパルスTRI及び反転トリガパルスTRIBは、あるサブフレーム期間において、画像表示部11内の全ての画素12内の第1データ保持部にデータが書き込まれた後にタイミングジェネレータ13から出力される。それにより、そのサブフレーム期間において、画像表示部11内の全ての画素12内の第1データ保持部に保持されたデータが、それぞれ対応する画素12内の第2データ保持部に一斉に転送される。 Here, the normal rotation trigger pulse TRI and the inversion trigger pulse TRIB are output from the timing generator 13 after data is written to the first data holding unit in all the pixels 12 in the image display unit 11 in a certain subframe period. Be done. As a result, in the sub-frame period, the data held in the first data holding units in all the pixels 12 in the image display unit 11 are simultaneously transferred to the second data holding units in the corresponding pixels 12. Ru.
 垂直シフトレジスタ14は、各サブフレームの開始タイミングで供給されるVスタートパルスVSTをクロック信号VCKに従って転送し、行走査信号を行走査線g1~gmに対して1H単位で順次排他的に供給する。それにより、画像表示部11の最も上にある行走査線g1から最も下にある行走査線gmにかけて、行走査線が1本ずつ1H単位で順次選択されていく。 Vertical shift register 14 transfers V start pulse VST supplied at the start timing of each sub-frame in accordance with clock signal VCK, and sequentially and exclusively supplies the row scanning signal to row scanning lines g1 to gm in 1 H units. . Thus, the row scanning lines are sequentially selected one by one in units of 1H from the uppermost row scanning line g1 to the lowermost row scanning line gm of the image display unit 11.
 データラッチ回路15は、図示しない外部回路から供給される1サブフレーム単位の32ビット幅のデータを、上位装置20からの基本クロックCLKに基づいてラッチした後、基本クロックCLKに同期して水平シフトレジスタ161へ出力する。 Data latch circuit 15 latches 32-bit wide data in units of one subframe supplied from an external circuit (not shown) based on basic clock CLK from host device 20, and then horizontally shifts in synchronization with basic clock CLK. Output to the register 161.
 なお、反射型液晶表示装置10は、映像信号の1フレームを、その映像信号の1フレーム期間より短い表示期間を持つ複数のサブフレームに分割し、これらサブフレームの組み合わせにて階調表示を行っている。そのため、上記の外部回路は、各画素の階調を示す階調データを、複数のサブフレームに対応する複数の1ビットのサブフレームデータに変換している。さらに、上記の外部回路は、同じサブフレームに属する32画素分のサブフレームデータをまとめて32ビット幅のデータとしてデータラッチ回路15に供給している。 The reflective liquid crystal display device 10 divides one frame of a video signal into a plurality of subframes having a display period shorter than one frame period of the video signal, and performs gradation display by a combination of these subframes. ing. Therefore, the above external circuit converts gradation data indicating the gradation of each pixel into a plurality of 1-bit subframe data corresponding to a plurality of subframes. Furthermore, the above external circuit collectively supplies subframe data for 32 pixels belonging to the same subframe to the data latch circuit 15 as data of 32 bits width.
 水平シフトレジスタ161は、1ビットシリアルデータの処理系としてみた場合、タイミングジェネレータ13から1Hの初期に供給されるスタートパルスHSTによりシフトを開始し、データラッチ回路15から供給される32ビット幅のデータをクロック信号HCKに同期してシフトする。 When viewed as a processing system of 1-bit serial data, the horizontal shift register 161 starts shifting by the start pulse HST supplied from the timing generator 13 at the initial stage of 1H, and data of 32-bit width supplied from the data latch circuit 15 In synchronization with the clock signal HCK.
 ラッチ部162は、水平シフトレジスタ161が画像表示部11の1行分の画素数nと同じnビット分のデータをシフトし終わると、タイミングジェネレータ13から供給されるラッチパルスLTに同期して、水平シフトレジスタ161から並列に供給されるnビット分のデータ(即ち、n画素分のサブフレームデータ)をラッチし、レベルシフタ/画素ドライバ163のレベルシフタへ出力する。なお、ラッチ部162のデータ転送が終了すると、タイミングジェネレータ13からスタートパルスHSTが再び出力され、水平シフトレジスタ161はクロック信号HCKに従ってデータラッチ回路15からの32ビット幅のデータのシフトを再開する。 The latch unit 162 synchronizes with the latch pulse LT supplied from the timing generator 13 when the horizontal shift register 161 finishes shifting data of n bits equal to the number n of pixels in one row of the image display unit 11. Data of n bits supplied in parallel from the horizontal shift register 161 (that is, subframe data of n pixels) is latched and output to the level shifter of the level shifter / pixel driver 163. When the data transfer of the latch unit 162 is completed, the start pulse HST is output again from the timing generator 13, and the horizontal shift register 161 resumes the shift of 32-bit data from the data latch circuit 15 according to the clock signal HCK.
 レベルシフタ/画素ドライバ163のレベルシフタは、ラッチ部162から転送された1行のn画素に対応するn個のサブフレームデータの信号レベルを液晶駆動電圧振幅までレベルシフトする。レベルシフタ/画素ドライバ163の画素ドライバは、レベルシフト後の1行のn画素に対応したn個のサブフレームデータをn本の列データ線d1~dnに並列に出力する。 The level shifter of the level shifter / pixel driver 163 shifts the signal levels of n pieces of subframe data corresponding to n pixels in one row transferred from the latch unit 162 to the liquid crystal drive voltage amplitude. The pixel driver of the level shifter / pixel driver 163 outputs n pieces of subframe data corresponding to n pixels in one row after level shift in parallel to n column data lines d1 to dn.
 水平ドライバ16は、1水平走査期間において、データ書き込み対象として選択されている行の画素に向けたサブフレームデータの出力と、次の1水平走査期間にデータ書き込み対象として選択される行の画素のためのサブフレームデータのシフトと、を並行して行っている。そして、ある水平走査期間において、1行のn画素に対応するn個のサブフレームデータが、データ信号としてそれぞれn本の列データ線d1~dnに並列に、かつ、一斉に出力される。 The horizontal driver 16 outputs the sub-frame data directed to the pixels of the row selected as the data writing target in one horizontal scanning period and the pixels of the row selected as the data writing target in the next one horizontal scanning period. Shifting of subframe data in parallel is performed. Then, in a horizontal scanning period, n sub-frame data corresponding to n pixels in one row are simultaneously output in parallel to n column data lines d1 to dn as data signals.
 画像表示部11を構成する複数の画素12のうち、垂直シフトレジスタ14からの行走査信号により選択された1行のn個の画素12は、レベルシフタ/画素ドライバ163から一斉に出力された1行分のn個のサブフレームデータをn本の列データ線d1~dnを介してサンプリングして各画素12内の後述する第1データ保持部に書き込む。 The n pixels 12 in one row selected by the row scanning signal from the vertical shift register 14 among the plurality of pixels 12 constituting the image display unit 11 are one row output simultaneously from the level shifter / pixel driver 163. A portion of n sub-frame data is sampled via n column data lines d1 to dn and written to a first data holding unit described later in each pixel 12.
 画素12の詳細については後述するが、画素12では、記憶部SM1に保持された入力データの反転データが反射電極PEに印加される。つまり、画素12は、レベルシフタ/画素ドライバ163から供給された入力データを反転する機能を有している。 Although the details of the pixel 12 will be described later, in the pixel 12, inverted data of the input data held in the storage unit SM1 is applied to the reflective electrode PE. That is, the pixel 12 has a function of inverting input data supplied from the level shifter / pixel driver 163.
(画素12の具体的構成)
 続いて、画素12の具体的構成について説明する。
 図2は、画素12の具体的構成を示す回路図である。
(Specific configuration of the pixel 12)
Subsequently, a specific configuration of the pixel 12 will be described.
FIG. 2 is a circuit diagram showing a specific configuration of the pixel 12.
 図2に示すように、画素12は、行走査線g1~gmの何れか(以下、行走査線gと称す)と、列データ線d1~dnの何れか(以下、列データ線dと称す)と、が交差する交差部分に設けられている。 As shown in FIG. 2, the pixel 12 may be any of row scan lines g1 to gm (hereinafter referred to as row scan line g) and any of column data lines d1 to dn (hereinafter referred to as column data line d). And are provided at the intersections where they intersect.
 画素12は、SRAMセル201と、DRAMセル202と、液晶表示素子LCと、を備える。SRAMセル201は、第1スイッチであるスイッチSW1と、第1データ保持部である記憶部SM1と、により構成されている。DRAMセル202は、第2スイッチであるスイッチSW2と、第2データ保持部である記憶部DM2と、により構成されている。液晶表示素子LCは、離間対向配置された光反射特性を有する画素電極である反射電極PEと、光透過性を有する共通電極CEとの間の空間に、液晶LCMが充填封入された公知の構造である。 The pixel 12 includes an SRAM cell 201, a DRAM cell 202, and a liquid crystal display element LC. The SRAM cell 201 is configured of a switch SW1 which is a first switch, and a storage unit SM1 which is a first data holding unit. The DRAM cell 202 includes a switch SW2 which is a second switch, and a storage unit DM2 which is a second data holding unit. The liquid crystal display element LC has a well-known structure in which a liquid crystal LCM is filled and sealed in a space between a reflective electrode PE which is a pixel electrode having light reflection characteristics and disposed to be separated and opposed, and a common electrode CE having light transparency. It is.
(SRAMセル201の構成)
 スイッチSW1は、例えばNチャネルMOS型トランジスタ(以下、NMOSトランジスタという)MN1により構成されている。スイッチSW1を構成するNMOSトランジスタMN1では、ソースが記憶部SM1の入力端子(ノードa)に接続され、ドレインが列データ線dに接続され、ゲートが行走査線gに接続されている。
(Configuration of SRAM cell 201)
The switch SW1 is configured of, for example, an N-channel MOS transistor (hereinafter, referred to as an NMOS transistor) MN1. In the NMOS transistor MN1 configuring the switch SW1, the source is connected to the input terminal (node a) of the storage unit SM1, the drain is connected to the column data line d, and the gate is connected to the row scanning line g.
 記憶部SM1は、一方の出力端子が他方の入力端子に接続された2つのインバータINV11,INV12からなる自己保持型メモリである。より具体的には、インバータINV11の入力端子は、インバータINV12の出力端子及びスイッチSW1を構成するNMOSトランジスタMN1のソースに接続されている。インバータINV12の入力端子は、スイッチSW2及びインバータINV11の出力端子に接続されている。 The storage unit SM1 is a self-holding memory including two inverters INV11 and INV12 in which one output terminal is connected to the other input terminal. More specifically, the input terminal of the inverter INV11 is connected to the output terminal of the inverter INV12 and the source of the NMOS transistor MN1 forming the switch SW1. The input terminal of the inverter INV12 is connected to the switch SW2 and the output terminal of the inverter INV11.
 図3は、インバータINV11の具体的構成を示す回路図である。
 図3に示すように、インバータINV11は、直列接続されたPチャネルMOS型トランジスタ(以下、PMOSトランジスタという)MP11及びNMOSトランジスタMN11を有し、それぞれのゲートに供給された入力信号を反転してそれぞれのドレインから出力する公知のCMOSインバータである。同じく、インバータINV12は、直列接続されたPMOSトランジスタMP12及びNMOSトランジスタMN12を有し、それぞれのゲートに供給された入力信号を反転してそれぞれのドレインから出力する公知のCMOSインバータである。
FIG. 3 is a circuit diagram showing a specific configuration of the inverter INV11.
As shown in FIG. 3, the inverter INV11 includes a P-channel MOS transistor (hereinafter referred to as a PMOS transistor) MP11 and an NMOS transistor MN11 connected in series, and inverts the input signals supplied to the respective gates. Is a known CMOS inverter that outputs from the drain of Similarly, the inverter INV12 is a known CMOS inverter that includes a PMOS transistor MP12 and an NMOS transistor MN12 connected in series, and inverts an input signal supplied to each gate and outputs the inverted signal from each drain.
 ここで、インバータINV11,INV12の駆動能力は異なる。具体的には、記憶部SM1を構成するインバータINV11,INV12のうち、スイッチSW1から見て入力側となるインバータINV11内のトランジスタMP11,MN11の駆動能力は、スイッチSW1から見て出力側となるインバータINV12内のトランジスタMP12,MN12の駆動能力よりも大きい。それにより、列データ線dからスイッチSW1を介して記憶部SM1にデータが伝搬しやすくなり、一方で、スイッチSW2を介して記憶部DM2から記憶部SM1にデータが伝搬しにくくなる。 Here, the drive capabilities of the inverters INV11 and INV12 are different. Specifically, among the inverters INV11 and INV12 that constitute the storage unit SM1, the drivability of the transistors MP11 and MN11 in the inverter INV11 on the input side as viewed from the switch SW1 is the inverter on the output side as viewed from the switch SW1. It is larger than the driving capability of the transistors MP12 and MN12 in the INV12. As a result, data easily propagates from the column data line d to the storage unit SM1 via the switch SW1, while data hardly propagates from the storage unit DM2 to the storage unit SM1 via the switch SW2.
 さらに、スイッチSW1を構成するNMOSトランジスタMN1の駆動能力は、インバータINV12を構成するNMOSトランジスタMN12の駆動能力よりも大きい。それにより、例えば、列データ線d上でHレベルを示すデータを記憶部SM1に記憶させる場合、列データ線dからスイッチSW1を介して記憶部SM1の入力端子(ノードa)に流れる電流が、記憶部SM1の入力端子からNMOSトランジスタMN12を介して接地電圧端子GNDに流れる電流よりも大きくなるため、データを正確に記憶部SM1に記憶させることができる。 Further, the drive capability of the NMOS transistor MN1 configuring the switch SW1 is larger than the drive capability of the NMOS transistor MN12 configuring the inverter INV12. Thus, for example, when storing data indicating H level on column data line d in storage unit SM1, a current flowing from column data line d to the input terminal (node a) of storage unit SM1 via switch SW1 is Since the current flowing from the input terminal of the storage unit SM1 to the ground voltage terminal GND via the NMOS transistor MN12 is larger than the current, data can be accurately stored in the storage unit SM1.
(DRAMセル202の構成)
 スイッチSW2は、並列接続されたNMOSトランジスタMN2及びPMOSトランジスタMP2からなる公知のトランスミッションゲートである。より具体的には、NMOSトランジスタMN2及びPMOSトランジスタMP2では、それぞれのソースが記憶部SM1の出力端子に共通接続され、それぞれのドレインが記憶部DM2の入力端子及び液晶表示素子LCの反射電極PEに共通接続されている。そして、NMOSトランジスタMN2のゲートは、正転トリガパルス用トリガ線trigに接続され、PMOSトランジスタMP2のゲートは、反転トリガパルス用トリガ線trigbに接続されている。
(Configuration of DRAM Cell 202)
The switch SW2 is a known transmission gate composed of an NMOS transistor MN2 and a PMOS transistor MP2 connected in parallel. More specifically, in the NMOS transistor MN2 and the PMOS transistor MP2, their respective sources are commonly connected to the output terminal of the storage unit SM1, and their respective drains are the input terminal of the storage unit DM2 and the reflective electrode PE of the liquid crystal display element LC. Commonly connected. The gate of the NMOS transistor MN2 is connected to the non-inversion trigger pulse trigger line trig, and the gate of the PMOS transistor MP2 is connected to the inversion trigger pulse trigger line trigb.
 例えば、スイッチSW2は、トリガ線trigを介して供給される正転トリガパルスがHレベル(トリガ線trigbを介して供給される反転トリガパルスがLレベル)の場合にオン状態となり、記憶部SM1から読み出されたデータを記憶部DM2及び反射電極PEへ転送する。また、スイッチSW2は、トリガ線trigを介して供給される正転トリガパルスがLレベル(トリガ線trigbを介して供給される反転トリガパルスがHレベル)の場合にオフ状態となり、記憶部SM1の記憶データの読み出しは行わない。 For example, the switch SW2 is turned on when the forward rotation trigger pulse supplied via the trigger line trig is at the H level (the inversion trigger pulse supplied via the trigger line trigb is at the L level), and from the storage unit SM1 The read data is transferred to the storage unit DM2 and the reflective electrode PE. The switch SW2 is turned off when the forward rotation trigger pulse supplied via the trigger line trig is at L level (the inversion trigger pulse supplied via the trigger line trigb is at H level), and the switch SW2 Reading stored data is not performed.
 スイッチSW2は、公知のトランスミッションゲートであるため、オン状態において接地電圧GNDから電源電圧VDDまでの広範囲の電圧を転送することができる。より具体的には、記憶部SM1からトランジスタMN2,MP2のソースに印加される電圧が接地電圧GNDレベル(Lレベル)の場合、PMOSトランジスタMP2のソース・ドレインが導通しない代わりに、NMOSトランジスタMN2のソース・ドレインは低抵抗で導通することができる。一方、記憶部SM1からトランジスタMN2,MP2のソースに印加される電圧が電源電圧VDDレベル(Hレベル)の場合、NMOSトランジスタMN2のソース・ドレインが導通しない代わりに、PMOSトランジスタMP2のソース・ドレインは低抵抗で導通することができる。このように、スイッチSW2では、トランスミッションゲートのソース・ドレインが低抵抗で導通することができるため、オン状態において接地電圧GNDから電源電圧VDDまでの広範囲の電圧を転送することができる。 Since switch SW2 is a known transmission gate, it can transfer a wide range of voltage from ground voltage GND to power supply voltage VDD in the on state. More specifically, when the voltage applied from the storage unit SM1 to the sources of the transistors MN2 and MP2 is at the ground voltage GND level (L level), instead of the source / drain of the PMOS transistor MP2 not conducting, The source and drain can be conducted with low resistance. On the other hand, when the voltage applied from the storage unit SM1 to the sources of the transistors MN2 and MP2 is at the power supply voltage VDD level (H level), the source and drain of the PMOS transistor MP2 are It can be conducted with low resistance. As described above, in the switch SW2, since the source and drain of the transmission gate can be conducted with low resistance, a wide range of voltages from the ground voltage GND to the power supply voltage VDD can be transferred in the on state.
 記憶部DM2は、容量C1により構成されている。容量C1には、例えば、配線間で容量を形成するMIM(Metal Insulator Metal)容量、基板-ポリシリコン間で容量を形成するDiffusion容量、又は、2層ポリシリコン間で容量を形成するPIP(Poly Insulator Poly)容量等を用いることができる。 The storage unit DM2 is configured of a capacity C1. The capacitance C1 may be, for example, an MIM (Metal Insulator Metal) capacitance that forms a capacitance between interconnections, a Diffusion capacitance that forms a capacitance between the substrate and polysilicon, or a PIP (Poly) that forms a capacitance between two-layer polysilicon. Insulator Poly) capacity etc. can be used.
 スイッチSW2がオンすると、記憶部SM1に記憶されたデータが読み出され、スイッチSW2を介して、記憶部DM2内の容量C1及び反射電極PEへ転送される。それにより、記憶部DM2に記憶されたデータが書き換えられる。 When the switch SW2 is turned on, the data stored in the storage unit SM1 is read out and transferred to the capacitance C1 and the reflective electrode PE in the storage unit DM2 via the switch SW2. Thereby, the data stored in the storage unit DM2 is rewritten.
 ここで、スイッチSW2がオンしている場合、容量C1に保持されたデータは記憶部SM1を構成するインバータINV12の入力ゲートにも影響を与える。しかしながら、インバータINV11の駆動能力をインバータINV12の駆動能力より大きくしているため、インバータINV12が容量C1のデータの影響を受ける前に、インバータINV11が容量C1のデータを書き換えてしまう。したがって、容量C1の保持データによって記憶部SM1のデータが意図せず書き換えられてしまうことはない。 Here, when the switch SW2 is turned on, the data held in the capacitor C1 also affects the input gate of the inverter INV12 that configures the storage unit SM1. However, since the drive capacity of the inverter INV11 is larger than the drive capacity of the inverter INV12, the inverter INV11 rewrites the data of the capacity C1 before the inverter INV12 is affected by the data of the capacity C1. Therefore, the data stored in the storage unit SM1 is not unintentionally rewritten due to the stored data of the capacity C1.
 このように、本実施の形態に係る反射型液晶表示装置10は、SRAMセル及びDRAMセルを1つずつ備えた画素12を用いることにより、SRAMセルを2つ備えた画素を用いる場合よりも、画素を構成するトランジスタの数を少なくして、画素の小型化を実現している。 Thus, the reflective liquid crystal display device 10 according to the present embodiment uses the pixel 12 including one SRAM cell and one DRAM cell, as compared to the case where a pixel including two SRAM cells is used, By reducing the number of transistors constituting a pixel, miniaturization of the pixel is realized.
 本実施の形態では、スイッチSW2がPMOSトランジスタMP2及びNMOSトランジスタMN2により構成される場合について説明したが、これに限られない。スイッチSW2は、PMOSトランジスタMP2及びNMOSトランジスタMN2の何れか一つが設けられた構成に適宜変更可能である。その場合、トリガ線trig,trigbの一方のみが設けられることとなる。 Although the case where the switch SW2 is configured by the PMOS transistor MP2 and the NMOS transistor MN2 has been described in the present embodiment, the present invention is not limited to this. The switch SW2 can be appropriately changed to a configuration in which any one of the PMOS transistor MP2 and the NMOS transistor MN2 is provided. In that case, only one of the trigger lines trig and trigb is provided.
 なお、反射型液晶表示装置10は、画素を構成するトランジスタの数を少なくすることで画素の小型化を実現できるだけでなく、以下に説明するように記憶部SM1,DM2及び反射電極PEを素子の高さ方向に有効に配置することによっても画素の小型化を実現することができる。以下、図4を用いて、詳細に説明する。 In the reflective liquid crystal display device 10, not only can the miniaturization of the pixel be realized by reducing the number of transistors constituting the pixel, but as will be described below, the storage portions SM1 and DM2 and the reflective electrode PE are elements. Pixels can be miniaturized also by arranging them effectively in the height direction. Hereinafter, this will be described in detail with reference to FIG.
(画素12の断面構造)
 図4は、画素12の要部を示す概略断面図である。また、図4では、容量C1が配線間で容量を形成するMIMにより構成された場合を例に説明する。
(Sectional structure of pixel 12)
FIG. 4 is a schematic cross-sectional view showing the main part of the pixel 12. Further, in FIG. 4, a case where the capacitor C1 is formed by an MIM which forms a capacitor between the wirings will be described as an example.
 図4に示すように、シリコン基板100上にはNウエル101及びPウエル102が形成されている。 As shown in FIG. 4, an N well 101 and a P well 102 are formed on a silicon substrate 100.
 Nウエル101上には、スイッチSW2のPMOSトランジスタMP2、及び、インバータINV11のPMOSトランジスタMP11が形成されている。より具体的には、Nウエル101上には、PMOSトランジスタMP2,MP11のそれぞれのソースとなる共通拡散層、及び、ドレインとなる2つの拡散層が形成され、共通拡散層と2つの拡散層との間のチャネル領域上には、PMOSトランジスタMP2,MP11のそれぞれのゲートとなるポリシリコンがゲート酸化膜を介して形成されている。 On the N well 101, the PMOS transistor MP2 of the switch SW2 and the PMOS transistor MP11 of the inverter INV11 are formed. More specifically, a common diffusion layer serving as the source of each of the PMOS transistors MP2 and MP11 and two diffusion layers serving as the drain are formed on the N well 101, and the common diffusion layer and the two diffusion layers are formed. On the channel region between them, polysilicon serving as the gate of each of the PMOS transistors MP2 and MP11 is formed via the gate oxide film.
 Pウエル102上には、スイッチSW2のNMOSトランジスタMN2、及び、インバータINV11のNMOSトランジスタMN11が形成されている。より具体的には、Pウエル102上には、NMOSトランジスタMN2,MN11のそれぞれのソースとなる共通拡散層、及び、ドレインとなる2つの拡散層が形成され、共通拡散層と2つの拡散層との間のチャネル領域上には、NMOSトランジスタMN2,MN11のそれぞれのゲートとなるポリシリコンがゲート酸化膜を介して形成されている。 On the P well 102, an NMOS transistor MN2 of the switch SW2 and an NMOS transistor MN11 of the inverter INV11 are formed. More specifically, a common diffusion layer serving as the source of each of the NMOS transistors MN2 and MN11 and two diffusion layers serving as the drain are formed on the P well 102, and the common diffusion layer and the two diffusion layers are formed. On the channel region between them, polysilicon serving as the gate of each of the NMOS transistors MN2 and MN11 is formed via the gate oxide film.
 なお、Nウエル上の活性領域(拡散層及びチャネル領域)と、Pウエル上の活性領域と、の間には、素子分離酸化膜103が形成されている。 A device isolation oxide film 103 is formed between the active region (diffusion layer and channel region) on the N well and the active region on the P well.
 トランジスタMP2,MP11,MN2,MN11の上方には、層間絶縁膜105をメタル間に介在させて第1メタル106、第2メタル108、第3メタル110、MIM電極112、第4メタル114、及び、第5メタル116が積層されている。 An interlayer insulating film 105 is interposed between metals above the transistors MP2, MP11, MN2, and MN11, and the first metal 106, the second metal 108, the third metal 110, the MIM electrode 112, the fourth metal 114, and The fifth metal 116 is stacked.
 第5メタル116は、画素毎に形成される反射電極PEを構成している。 The fifth metal 116 constitutes a reflective electrode PE formed for each pixel.
 トランジスタMN2,MP2の各ドレインを構成する各拡散層は、コンタクト118、第1メタル106、スルーホール119a、第2メタル108、スルーホール119b、第3メタル110、スルーホール119c、第4メタル114、及び、スルーホール119eを介して、第5メタル116に電気的に接続されている。さらに、トランジスタMN2,MP2の各ドレインを構成する各拡散層は、コンタクト118、第1メタル106、スルーホール119a、第2メタル108、スルーホール119b、第3メタル110、スルーホール119c、第4メタル114、及び、スルーホール119dを介してMIM電極112に電気的に接続されている。即ち、スイッチSW2を構成するトランジスタMN2,MP2の各ソースは、反射電極PE及びMIM電極112に電気的に接続されている。 The diffusion layers constituting the drains of the transistors MN2 and MP2 are the contact 118, the first metal 106, the through hole 119a, the second metal 108, the through hole 119b, the third metal 110, the through hole 119c, the fourth metal 114, And, the through holes 119 e are electrically connected to the fifth metal 116. Further, the diffusion layers constituting the drains of the transistors MN2 and MP2 are the contact 118, the first metal 106, the through hole 119a, the second metal 108, the through hole 119b, the third metal 110, the through hole 119c, the fourth metal It is electrically connected to the MIM electrode 112 through the through hole 119 d and the through hole 119 d. That is, the sources of the transistors MN2 and MP2 constituting the switch SW2 are electrically connected to the reflective electrode PE and the MIM electrode 112.
 反射電極PE(第5メタル116)は、その上面に形成された保護膜であるパッシベーション膜(PSV)117を介して、透明電極である共通電極CEに離間対向配置されている。反射電極PEと共通電極CEとの間には、液晶LCMが充填封止されている。反射電極PE、共通電極CE、及び、それらの間の液晶LCMによって液晶表示素子LCが構成される。 The reflective electrode PE (fifth metal 116) is disposed to face the common electrode CE, which is a transparent electrode, through a passivation film (PSV) 117, which is a protective film formed on the upper surface of the reflective electrode PE. A liquid crystal LCM is filled and sealed between the reflective electrode PE and the common electrode CE. A liquid crystal display element LC is configured by the reflective electrode PE, the common electrode CE, and the liquid crystal LCM between them.
 ここで、MIM電極112は、第3メタル110上に層間絶縁膜105を介して形成されている。このMIM電極112、第3メタル110、及び、それらの間の層間絶縁膜105によって容量C1が構成される。そのため、スイッチSW1,SW2及び記憶部SM1が、第1,2層配線である第1メタル106及び第2メタル108と、トランジスタと、を用いて形成されるのに対し、記憶部DM2は、それらの上層である第3メタル110及びMIM電極112を用いて形成されることとなる。つまり、スイッチSW1,SW2及び記憶部SM1と、記憶部DM2とは、それぞれ異なる層にて形成されることとなる。 Here, the MIM electrode 112 is formed on the third metal 110 via the interlayer insulating film 105. A capacitance C1 is formed by the MIM electrode 112, the third metal 110, and the interlayer insulating film 105 between them. Therefore, while the switches SW1 and SW2 and the storage unit SM1 are formed using the first metal 106 and the second metal 108, which are the first and second layer wirings, and the transistor, the storage unit DM2 Is formed using the third metal 110 and the MIM electrode 112 which are upper layers of That is, the switches SW1 and SW2, the storage unit SM1, and the storage unit DM2 are formed in different layers.
 図示しない光源からの光は、共通電極CE及び液晶LCMを透過して反射電極PE(第5メタル116)に入射して反射され、元の入射経路を逆進して共通電極CEを通して出射される。 Light from a light source (not shown) is transmitted through the common electrode CE and the liquid crystal LCM, is incident on the reflective electrode PE (fifth metal 116) and is reflected, and travels backward along the original incident path and is emitted through the common electrode CE .
 このように、反射型液晶表示装置10は、第5層配線である第5メタル116を反射電極PEとして用い、第3層配線である第3メタル110を記憶部DM2の一部として用い、第1,2層配線である第1メタル106及び第2メタル108とトランジスタとを記憶部SM1等として用いることで、記憶部SM1、記憶部DM2及び反射電極PEを高さ方向に有効に配置することが可能になるため、画素をさらに小型化することができる。それにより、例えば、3μm以下のピッチの画素を電源電圧3.3Vのトランジスタで構成できる。この3μm以下のピッチの画素を用いることで、対角の長さ0.55インチの横方向4000画素、縦方向2000画素の液晶表示パネルを実現できる。 Thus, the reflective liquid crystal display device 10 uses the fifth metal 116, which is the fifth layer wiring, as the reflective electrode PE, and uses the third metal 110, which is the third layer wiring, as a part of the storage unit DM2. By using the first metal 106 and the second metal 108, which are the first and second layer wiring, and the transistor as the memory unit SM1 or the like, the memory unit SM1, the memory unit DM2 and the reflective electrode PE are effectively arranged in the height direction. This makes it possible to further miniaturize the pixel. Thus, for example, a pixel with a pitch of 3 μm or less can be configured by a transistor with a power supply voltage of 3.3V. By using the pixels with a pitch of 3 μm or less, it is possible to realize a liquid crystal display panel having a diagonal length of 0.55 inch, 4000 horizontal pixels and 2000 vertical pixels.
(反射型液晶表示装置10の動作)
 次に、図5を用いて、反射型液晶表示装置10の動作について説明する。
 図5は、反射型液晶表示装置10の動作を示すタイミングチャートである。
(Operation of reflective liquid crystal display device 10)
Next, the operation of the reflective liquid crystal display device 10 will be described with reference to FIG.
FIG. 5 is a timing chart showing the operation of the reflective liquid crystal display device 10.
 前述したように、反射型液晶表示装置10では、垂直シフトレジスタ14からの行走査信号により、行走査線g1~gmが1本ずつ1H単位で順次選択されていくため、画像表示部11を構成する複数の画素12には、選択された行走査線に共通に接続された1行のn個の画素単位でデータが書き込まれる。そして、画像表示部11を構成する複数の画素12の全てにデータが書き込まれると、その後、トリガパルスTRI,TRIBに基づき、全ての画素12のデータが一斉に読み出される(より具体的には、全ての画素12内の記憶部SM1のデータが一斉に記憶部DM2及び反射電極PEに転送される)。 As described above, in the reflective liquid crystal display device 10, the row scanning signals g1 to gm are sequentially selected one by one in units of 1 H by the row scanning signal from the vertical shift register 14. Therefore, the image display unit 11 is configured. Data is written to the plurality of pixels 12 in units of n pixels in one row commonly connected to the selected row scanning line. Then, when data is written to all of the plurality of pixels 12 constituting the image display unit 11, thereafter, the data of all the pixels 12 are read out simultaneously based on the trigger pulses TRI and TRIB (more specifically, The data of the storage unit SM1 in all the pixels 12 are simultaneously transferred to the storage unit DM2 and the reflective electrode PE).
 図5の(A)は、各画素12に記憶されるサブフレームデータの変化を示している。なお、縦軸が行番号を表し、横軸が時間を表している。図5の(A)に示すように、サブフレームデータの境界線は右下がりとなっている。これは、行番号の大きな画素ほどサブフレームデータが遅れて書き込まれることを表している。この境界線の一端から他端までの期間がサブフレームデータの書き込み期間に相当する。なお、B0b,B1b,B2bは、それぞれビットB0,B1,B2のサブフレームデータの反転データを示している。 (A) of FIG. 5 shows a change of subframe data stored in each pixel 12. The vertical axis represents line numbers, and the horizontal axis represents time. As shown in (A) of FIG. 5, the boundary line of the sub-frame data is downward to the right. This means that the subframe data is written later as the row number of the pixel is larger. A period from one end of the boundary to the other end corresponds to a writing period of subframe data. B0b, B1b, and B2b indicate inverted data of subframe data of bits B0, B1, and B2, respectively.
 図5の(B)は、トリガパルスTRIの出力タイミング(立ち上がりタイミング)を示している。なお、トリガパルスTRIBは、常にトリガパルスTRIを論理反転した値を示すため、省略されている。図5の(C)は、反射電極PEに印加されるサブフレームデータのビットを模式的に示している。図5の(D)は、共通電極電圧Vcomの値の変化を示している。図5の(E)は、液晶LCMに印加される電圧の変化を示している。 (B) of FIG. 5 shows the output timing (rising timing) of the trigger pulse TRI. The trigger pulse TRIB is omitted because it always indicates a value obtained by logically inverting the trigger pulse TRI. FIG. 5C schematically shows bits of subframe data applied to the reflective electrode PE. (D) of FIG. 5 shows the change of the value of the common electrode voltage Vcom. (E) of FIG. 5 shows the change of the voltage applied to the liquid crystal LCM.
 まず、行走査信号により選択された画素12では、スイッチSW1がオンするため、水平ドライバ16から列データ線dに出力されたビットB0の正転サブフレームデータが、スイッチSW1によりサンプリングされて記憶部SM1に書き込まれる。同様にして、画像表示部11を構成する全ての画素12の記憶部SM1に対してビットB0の正転サブフレームデータが書き込まれる。その後、画像表示部11を構成する全ての画素12に対してHレベルのトリガパルスTRI(及びLレベルのトリガパルスTRIB)が同時に供給される(時刻T1)。 First, in the pixel 12 selected by the row scanning signal, since the switch SW1 is turned on, the non-inverted subframe data of bit B0 output from the horizontal driver 16 to the column data line d is sampled by the switch SW1 and stored Written to SM1. Similarly, normal subframe data of bit B0 is written to the storage units SM1 of all the pixels 12 constituting the image display unit 11. Thereafter, the trigger pulse TRI at the H level (and the trigger pulse TRIB at the L level) is simultaneously supplied to all the pixels 12 constituting the image display unit 11 (time T1).
 これにより、全ての画素12のスイッチSW2がオンするため、記憶部SM1に記憶されているビットB0の正転サブフレームデータがスイッチSW2を通して記憶部DM2に一斉に転送されて保持されるとともに、ビットB0の正転サブフレームデータが反射電極PEに印加される。ここで、図5の(C)を見てもわかるように、記憶部DM2によるビットB0の正転サブフレームデータの保持期間(反射電極PEへのビットB0の正転サブフレームデータの印加期間)は、トリガパルスTRIがHレベルとなってから(時刻T1)、次に再びHレベルとなるまで(時刻T2)の1サブフレーム期間である。 As a result, since the switches SW2 of all the pixels 12 are turned on, the forward subframe data of the bit B0 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held. The forward subframe data of B0 is applied to the reflective electrode PE. Here, as can be understood also from FIG. 5C, a holding period of non-inverted subframe data of bit B0 by storage unit DM2 (application period of non-inverted subframe data of bit B0 to reflective electrode PE) Is one subframe period of time (time T2) until trigger signal TRI becomes H level (time T1) and then becomes H level again next time.
 ここで、サブフレームデータのビット値が「1」、すなわちHレベルのときには反射電極PEには電源電圧VDD(ここでは3.3V)が印加され、ビット値が「0」、すなわちLレベルのときには反射電極PEには接地電圧GND(0V)が印加される。一方、共通電極CEには、接地電圧GND及び電源電圧VDDに制限されることなく、自由な電圧が共通電極電圧Vcomとして印加できるようになっており、Hレベルの正転トリガパルスTRIの入力に同期して共通電極電圧Vcomが所定電圧に切り替わるように制御される。本例では、共通電極電圧Vcomは、ビットB0の正転サブフレームデータが反射電極PEに印加されるサブフレーム期間中、図5(D)に示すように、0Vよりも液晶の閾値電圧Vttだけ低い電圧に設定される。 Here, when the bit value of subframe data is "1", that is, H level, the power supply voltage VDD (here, 3.3 V) is applied to the reflective electrode PE, and when the bit value is "0", that is, L level The ground voltage GND (0 V) is applied to the reflective electrode PE. On the other hand, a free voltage can be applied to the common electrode CE as the common electrode voltage Vcom without being limited to the ground voltage GND and the power supply voltage VDD, and an H level normal rotation trigger pulse TRI is input. The common electrode voltage Vcom is controlled to be switched to a predetermined voltage in synchronization. In this example, the common electrode voltage Vcom is the threshold voltage Vtt of the liquid crystal more than 0 V as shown in FIG. 5D during the sub-frame period in which the non-inverted sub-frame data of bit B0 is applied to the reflective electrode PE. It is set to a low voltage.
 液晶表示素子LCは、反射電極PEの印加電圧と共通電極電圧Vcomとの差電圧の絶対値である液晶LCMの印加電圧に応じた階調表示を行う。したがって、ビットB0の正転サブフレームデータが反射電極PEに印加されるサブフレーム期間(時刻T1~T2)では、液晶LCMの印加電圧は、図5(E)に示すように、サブフレームデータのビット値が「1」のときは3.3V+Vtt(=3.3V-(-Vtt))となり、サブフレームデータのビット値が「0」のときは+Vtt(=0V-(-Vtt))となる。 The liquid crystal display element LC performs gradation display according to the applied voltage of the liquid crystal LCM, which is the absolute value of the difference voltage between the applied voltage of the reflective electrode PE and the common electrode voltage Vcom. Therefore, in the sub-frame period (time T1 to T2) in which the non-inverted sub-frame data of bit B0 is applied to the reflective electrode PE, the applied voltage of the liquid crystal LCM is, as shown in FIG. When the bit value is “1”, it is 3.3V + Vtt (= 3.3V − (− Vtt)), and when the bit value of subframe data is “0”, it is + Vtt (= 0V − (− Vtt)) .
 図6は、液晶の印加電圧(RMS電圧)と液晶のグレースケール値との関係を示す。
 図6を参照すると、グレースケール値曲線は、黒のグレースケール値が液晶の閾値電圧VttのRMS電圧に対応し、かつ、白のグレースケール値が液晶の飽和電圧Vsat(=3.3V+Vtt)のRMS電圧に対応するようにシフトされる。グレースケール値を液晶応答曲線の有効部分に一致させることが可能である。したがって、液晶表示素子LCは上記のように液晶LCMの印加電圧が(3.3V+Vtt)のときは白を表示し、+Vttのときは黒を表示する。
FIG. 6 shows the relationship between the applied voltage (RMS voltage) of the liquid crystal and the gray scale value of the liquid crystal.
Referring to FIG. 6, in the gray scale value curve, the gray scale value of black corresponds to the RMS voltage of the threshold voltage Vtt of the liquid crystal, and the gray scale value of white is the saturation voltage Vsat of the liquid crystal (= 3.3 V + Vtt). It is shifted to correspond to the RMS voltage. It is possible to match the gray scale values to the active part of the liquid crystal response curve. Therefore, as described above, the liquid crystal display element LC displays white when the applied voltage of the liquid crystal LCM is (3.3 V + Vtt), and displays black when + Vtt.
 図5に戻り、液晶表示素子LCがビットB0の正転サブフレームデータを表示しているサブフレーム期間(時刻T1~T2)において、画像表示部11を構成する全ての画素12の記憶部SM1に対するビットB0の反転サブフレームデータの書き込みが順次開始される。そして、画像表示部11を構成する全ての画素12の記憶部SM1に対してビットB0の反転サブフレームデータが書き込まれると、その後、画像表示部11を構成する全ての画素12に対してHレベルのトリガパルスTRI(及びLレベルのトリガパルスTRIB)が同時に供給される(時刻T2)。 Returning to FIG. 5, in the sub-frame period (time T1 to T2) in which the liquid crystal display element LC is displaying the non-inverted sub-frame data of bit B0, the storage portion SM1 of all the pixels 12 constituting the image display portion 11 is Writing of the inverted subframe data of bit B0 is sequentially started. Then, when the inverted subframe data of bit B0 is written to the storage unit SM1 of all the pixels 12 constituting the image display unit 11, the H level is then applied to all the pixels 12 constituting the image display unit 11. The trigger pulse TRI (and the L level trigger pulse TRIB) are simultaneously supplied (time T2).
 これにより、全ての画素12のスイッチSW2がオンするため、記憶部SM1に記憶されているビットB0の反転サブフレームデータがスイッチSW2を通して記憶部DM2に一斉に転送されて保持されるとともに、ビットB0の反転サブフレームデータが反射電極PEに印加される。ここで、図5の(C)を見てもわかるように、記憶部DM2によるビットB0の反転サブフレームデータの保持期間(反射電極PEへのビットB0の反転サブフレームデータの印加期間)は、トリガパルスTRIがHレベルとなってから(時刻T2)、次に再びHレベルとなるまで(時刻T3)の1サブフレーム期間である。ここで、ビットB0の反転サブフレームデータはビットB0の正転サブフレームデータと常に逆論理値の関係にあるため、ビットB0の正転サブフレームデータが「1」のときは「0」、ビットB0の正転サブフレームデータが「0」のときは「1」である。 As a result, since the switches SW2 of all the pixels 12 are turned on, the inverted subframe data of the bit B0 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held. Inverted subframe data is applied to the reflective electrode PE. Here, as can be understood also from FIG. 5C, the holding period of the inverted subframe data of bit B0 by storage unit DM2 (the application period of the inverted subframe data of bit B0 to reflective electrode PE) is This is one subframe period (time T3) from when the trigger pulse TRI turns to H level (time T2) to next time it turns to H level again (time T3). Here, since the inverted subframe data of bit B0 always has an inverse logical value relationship with the non-inverted subframe data of bit B0, “0” when the non-inverted subframe data of bit B0 is “1”. It is "1" when the non-inverted subframe data of B0 is "0".
 一方、共通電極電圧Vcomは、ビットB0の反転サブフレームデータが反射電極PEに印加されるサブフレーム期間中、図5(D)に示すように、3.3Vよりも液晶の閾値電圧Vttだけ高い電圧に設定される。したがって、ビットB0の反転サブフレームデータが反射電極PEに印加されるサブフレーム期間(時刻T2~T3)では、液晶LCMの印加電圧は、サブフレームデータのビット値が「1」のときは-Vtt(=3.3V-(3.3V+Vtt))となり、サブフレームデータのビット値が「0」のときは-3.3V-Vtt(=0V-(3.3V+Vtt))となる。 On the other hand, as shown in FIG. 5D, the common electrode voltage Vcom is higher than 3.3 V by the threshold voltage Vtt of the liquid crystal during the sub-frame period in which the inverted sub-frame data of the bit B0 is applied to the reflective electrode PE. Set to voltage. Therefore, in the sub-frame period (time T2 to T3) in which the inverted sub-frame data of bit B0 is applied to the reflective electrode PE, the applied voltage of the liquid crystal LCM is -Vtt when the bit value of the sub-frame data is "1". (= 3.3 V-(3.3 V + Vtt)), and when the bit value of subframe data is "0",-3.3 V-Vtt (= 0 V-(3.3 V + Vtt)).
 例えば、ビットB0の正転サブフレームデータのビット値が「1」であった場合には続いて印加されるビットB0の反転サブフレームデータのビット値は「0」となる。このとき、液晶LCMの印加電圧は、-(3.3V+Vtt)となり、ビットB0の正転サブフレームデータが印加されたときと比較して、電位の方向が逆になるが絶対値が同じになる。そのため、画素12は、ビットB0の反転サブフレームデータが印加されたときも、ビットB0の正転フレームデータが印加されたときと同様に、白を表示する。また、ビットB0の正転サブフレームデータのビット値が「0」であった場合には続いて印加されるビットB0の反転サブフレームデータのビット値は「1」となる。このとき、液晶LCMの印加電圧は、-Vttとなり、ビットB0の正転サブフレームデータが印加されたときと比較して、電位の方向が逆になるが絶対値が同じになる。そのため、画素12は、ビットB0の反転サブフレームデータが印加されたときも、ビットB0の正転フレームデータが印加されたときと同様に、黒を表示する。 For example, when the bit value of the non-inverted subframe data of bit B0 is "1", the bit value of the inverted subframe data of bit B0 applied subsequently is "0". At this time, the voltage applied to the liquid crystal LCM is − (3.3 V + Vtt), and the direction of the potential is opposite but the absolute value is the same as compared with the case where the non-inverted subframe data of bit B0 is applied. . Therefore, also when the inverted subframe data of bit B0 is applied, the pixel 12 displays white in the same manner as when the non-inverted frame data of bit B0 is applied. When the bit value of the non-inverted subframe data of bit B0 is "0", the bit value of the inverted subframe data of bit B0 applied subsequently is "1". At this time, the voltage applied to the liquid crystal LCM is −Vtt, and the direction of the potential is opposite but the absolute value is the same as compared with the case where the non-inverted subframe data of bit B0 is applied. Therefore, also when the inverted subframe data of bit B0 is applied, the pixel 12 displays black in the same manner as when the non-inverted frame data of bit B0 is applied.
 したがって、画素12は、図5の(E)に示すように、時刻T1~T3の2サブフレーム期間中、ビットB0とビットB0の相補ビットB0bとで同じ階調を表示するとともに、液晶LCMの電位方向がサブフレーム毎に反転する交流駆動を行うため、液晶LCMの焼き付きを防止することができる。 Therefore, as shown in (E) of FIG. 5, the pixel 12 displays the same gradation with the bit B0 and the complementary bit B0b of the bit B0 during two sub-frame periods from time T1 to T3, and Since AC driving is performed in which the potential direction is reversed every subframe, burn-in of the liquid crystal LCM can be prevented.
 続いて、液晶表示素子LCがビットB0の反転サブフレームデータを表示しているサブフレーム期間(時刻T2~T3)において、全ての画素12の記憶部SM1に対するビットB1の正転サブフレームデータの書き込みが順次開始される。そして、画像表示部11の全画素12の記憶部SM1に対してビットB1の正転サブフレームデータが書き込まれると、その後、画像表示部11を構成するすべての画素12に対してHレベルのトリガパルスTRI(及びLレベルのトリガパルスTRIB)が同時に供給される(時刻T3)。 Subsequently, in the subframe period (time T2 to T3) in which the liquid crystal display element LC is displaying inverted subframe data of the bit B0, writing of normal subframe data of bit B1 to the storage unit SM1 of all the pixels 12 Are sequentially started. Then, when the non-inverted subframe data of bit B1 is written in the storage unit SM1 of all the pixels 12 of the image display unit 11, then, trigger of H level for all the pixels 12 constituting the image display unit 11 is performed. The pulse TRI (and the trigger pulse TRIB at L level) are simultaneously supplied (time T3).
 これにより、全ての画素12のスイッチSW2がオンするため、記憶部SM1に記憶されているビットB1の正転サブフレームデータがスイッチSW2を通して記憶部DM2に一斉に転送されて保持されるととともに、ビットB1の正転サブフレームデータが反射電極PEに印加される。ここで、図5の(C)を見てもわかるように、記憶部DM2によるビットB1の正転サブフレームデータの保持期間(反射電極PEへのビットB1の正転サブフレームデータの印加期間)は、トリガパルスTRIがHレベルとなってから(時刻T3)、次に再びHレベルとなるまで(時刻T4)の1サブフレーム期間である。 As a result, since the switches SW2 of all the pixels 12 are turned on, the forward subframe data of the bit B1 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held. Normal subframe data of bit B1 is applied to the reflective electrode PE. Here, as can be seen also from FIG. 5C, a holding period of non-inverted subframe data of bit B1 by storage unit DM2 (application period of non-inverted subframe data of bit B1 to reflective electrode PE) Is one subframe period of time (time T4) until trigger signal TRI becomes H level next time (time T3) and then becomes H level again.
 一方、共通電極電圧Vcomは、ビットB1の正転サブフレームデータが反射電極PEに印加されるサブフレーム期間は、図5(D)に示すように、0Vよりも液晶の閾値電圧Vttだけ低い電圧に設定される。したがって、ビットB1の正転サブフレームデータが反射電極PEに印加されるサブフレーム期間(時刻T3~T4)では、液晶LCMの印加電圧は、図5(E)に示すように、サブフレームデータのビット値が「1」のときは3.3V+Vtt(=3.3V-(-Vtt))となり、サブフレームデータのビット値が「0」のときは+Vtt(=0V-(-Vtt))となる。 On the other hand, as shown in FIG. 5D, the common electrode voltage Vcom is a voltage lower than 0 V by the threshold voltage Vtt of the liquid crystal during the subframe period in which the normal subframe data of bit B1 is applied to the reflective electrode PE. Set to Therefore, in the subframe period (time T3 to T4) in which the normal subframe data of bit B1 is applied to the reflective electrode PE, the voltage applied to the liquid crystal LCM is, as shown in FIG. When the bit value is “1”, it is 3.3V + Vtt (= 3.3V − (− Vtt)), and when the bit value of subframe data is “0”, it is + Vtt (= 0V − (− Vtt)) .
 続いて、液晶表示素子LCがビットB1の正転サブフレームデータを表示しているサブフレーム期間(時刻T3~T4)において、画像表示部11を構成する全ての画素12の記憶部SM1に対するビットB1の反転サブフレームデータの書き込みが順次開始される。そして、画像表示部11を構成する全ての画素12の記憶部SM1に対してビットB1の反転サブフレームデータが書き込まれると、その後、画像表示部11を構成する全ての画素12に対してHレベルのトリガパルスTRI(及びLレベルのトリガパルスTRIB)が同時に供給される(時刻T4)。 Subsequently, in the sub-frame period (time T3 to T4) in which the liquid crystal display element LC is displaying the non-inverted sub-frame data of bit B1, the bit B1 for the storage part SM1 of all the pixels 12 constituting the image display part 11 Writing of the inverted subframe data of is sequentially started. Then, when the inverted subframe data of bit B1 is written to the storage unit SM1 of all the pixels 12 constituting the image display unit 11, then, H level is applied to all the pixels 12 constituting the image display unit 11 The trigger pulse TRI (and the L level trigger pulse TRIB) are simultaneously supplied (time T4).
 これにより、全ての画素12のスイッチSW2がオンするため、記憶部SM1に記憶されているビットB1の反転サブフレームデータがスイッチSW2を通して記憶部DM2に一斉に転送されて保持されるとともに、ビットB1の反転サブフレームデータが反射電極PEに印加される。ここで、図5の(C)を見てもわかるように、記憶部DM2によるビットB1の反転サブフレームデータの保持期間(反射電極PEへのビットB1の反転サブフレームデータの印加期間)は、トリガパルスTRIがHレベルとなってから(時刻T4)、次に再びHレベルとなるまで(時刻T5)の1サブフレーム期間である。ここで、ビットB1の反転サブフレームデータはビットB1の正転サブフレームデータと常に逆論理値の関係にある。 As a result, since the switches SW2 of all the pixels 12 are turned on, the inverted subframe data of the bit B1 stored in the storage unit SM1 is simultaneously transferred to the storage unit DM2 through the switch SW2 and held. Inverted subframe data is applied to the reflective electrode PE. Here, as can be seen also from FIG. 5C, the holding period of the inverted subframe data of bit B1 by storage unit DM2 (the application period of the inverted subframe data of bit B1 to reflective electrode PE) is This is one subframe period (time T5) from when the trigger pulse TRI turns to H level (time T4) to next time it turns to H level again (time T5). Here, the inverted subframe data of bit B1 is always in a reverse logical value relationship with the non-inverted subframe data of bit B1.
 一方、共通電極電圧Vcomは、ビットB1の反転サブフレームデータが反射電極PEに印加されるサブフレーム期間中、図5(D)に示すように、3.3Vよりも液晶の閾値電圧Vttだけ高い電圧に設定される。したがって、ビットB1の反転サブフレームデータが反射電極PEに印加されるサブフレーム期間(時刻T4~T5)では、液晶LCMの印加電圧は、サブフレームデータのビット値が「1」のときは-Vtt(=3.3V-(3.3V+Vtt))となり、サブフレームデータのビット値が「0」のときは-3.3V-Vtt(=0V-(3.3V+Vtt))となる。 On the other hand, as shown in FIG. 5D, the common electrode voltage Vcom is higher than 3.3 V by the threshold voltage Vtt of the liquid crystal during the sub-frame period in which the inverted sub-frame data of the bit B1 is applied to the reflective electrode PE. Set to voltage. Therefore, in the sub-frame period (time T4 to T5) in which the inverted sub-frame data of bit B1 is applied to the reflective electrode PE, the applied voltage of the liquid crystal LCM is -Vtt when the bit value of the sub-frame data is "1". (= 3.3 V-(3.3 V + Vtt)), and when the bit value of subframe data is "0",-3.3 V-Vtt (= 0 V-(3.3 V + Vtt)).
 これにより、画素12は、図5の(E)に示すように、時刻T3~T5の2サブフレーム期間中、ビットB1とビットB1の相補ビットB1bとで同じ階調を表示するとともに、液晶LCMの電位方向がサブフレーム毎に反転する交流駆動を行うため、液晶LCMの焼き付きを防止することができる。ビットB2以降についても同様の動作が繰り返される。 As a result, as shown in FIG. 5E, the pixel 12 displays the same gradation with the bit B1 and the complementary bit B1b of the bit B1 during two sub-frame periods from time T3 to T5, and the liquid crystal LCM Since the potential drive direction of the liquid crystal is reversed drive every subframe, burn-in of the liquid crystal LCM can be prevented. The same operation is repeated for bit B2 and thereafter.
 このようにして、反射型液晶表示装置10は、複数のサブフレームの組み合わせにて階調表示を行っている。 Thus, the reflective liquid crystal display device 10 performs gradation display by combining a plurality of sub-frames.
 なお、ビットB0と相補ビットB0bの各表示期間は同じ第1のサブフレーム期間であり、また、ビットB1と相補ビットB1bの各表示期間も同じ第2のサブフレーム期間であるが、第1のサブフレーム期間と第2のサブフレーム期間とは同一であるとは限らない。ここでは、一例として第2のサブフレーム期間は第1のサブフレーム期間の2倍に設定されている。また、図5(E)に示すように、ビットB2と相補ビットB2bの各表示期間である第3のサブフレーム期間は、第2のサブフレーム期間の2倍に設定されている。他のサブフレーム期間についても同様のことが言える。システムの仕様等に応じて、各サブフレーム期間の長さ、及び、サブフレーム数を任意に設定することができる。 Note that each display period of bit B0 and complementary bit B0b is the same first subframe period, and each display period of bit B1 and complementary bit B1b is also the same second subframe period, but the first display period is the same. The subframe period and the second subframe period are not necessarily the same. Here, as an example, the second subframe period is set to twice the first subframe period. Further, as shown in FIG. 5E, the third sub-frame period which is each display period of the bit B2 and the complementary bit B2 b is set to be twice as long as the second sub-frame period. The same is true for the other subframe periods. The length of each subframe period and the number of subframes can be arbitrarily set according to the specification of the system and the like.
(額縁部21の詳細な説明)
 続いて、額縁部21について説明する。額縁部21は、例えばプロジェクター等によって画像を拡大投影する場合において、画像表示部11によって表示される画像の外枠領域(額縁領域)に黒を表示する部である。
(Detailed Description of the Frame 21)
Subsequently, the frame portion 21 will be described. The frame unit 21 is a unit that displays black in the outer frame area (frame area) of the image displayed by the image display unit 11 when the image is enlarged and projected by, for example, a projector or the like.
 図7は、反射型液晶表示装置10の概略平面図である。図7に示すように、反射型液晶表示装置10では、チップCHP1上に、画像表示部11が設けられるとともに、画像表示部11の外周を囲むようにして額縁部21が設けられている。なお、図示されていないが、額縁部21の額縁電極G1の下位階層には、各画素12を駆動する水平ドライバ16、垂直シフトレジスタ14、タイミングジェネレータ13、データラッチ回路15等が形成されている。また、チップCHP1の外周辺には、複数のパッドPD1が設けられている。チップCHP1上の各機能ブロックは、複数のパッドPD1及びボンディングワイヤを介して、例えばFPC(Flexible Printed Circuit)に接続されており、FPCによって構成された上位装置からの制御信号により、画像表示部11によって映像を表示したり、額縁部21によって黒を表示したりする。 FIG. 7 is a schematic plan view of the reflective liquid crystal display device 10. As shown in FIG. 7, in the reflective liquid crystal display device 10, the image display unit 11 is provided on the chip CHP 1, and the frame unit 21 is provided so as to surround the outer periphery of the image display unit 11. Although not shown, a horizontal driver 16 for driving each pixel 12, a vertical shift register 14, a timing generator 13, a data latch circuit 15 and the like are formed in the lower hierarchy of the frame electrode G1 of the frame portion 21. . Further, a plurality of pads PD1 are provided around the periphery of the chip CHP1. Each functional block on the chip CHP1 is connected to, for example, a flexible printed circuit (FPC) via a plurality of pads PD1 and bonding wires, and the image display unit 11 is controlled by a control signal from a host device configured by the FPC. To display an image or to display black by the frame portion 21.
 まず、額縁部21の比較例である額縁部51について説明する。
 図8は、比較例にかかる反射型液晶表示装置に設けられた画像表示部11の各画素12の反射電極PE、及び、額縁部51の額縁電極G5の概略平面図である。図8の例では、画像表示部11の角部に設けられた複数の画素12のそれぞれの反射電極PE、及び、その周辺に設けられた額縁部51の額縁電極G5のみが示されている。
First, the frame portion 51 which is a comparative example of the frame portion 21 will be described.
FIG. 8 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device according to the comparative example, and the frame electrode G5 of the frame portion 51. In the example of FIG. 8, only the reflective electrode PE of each of the plurality of pixels 12 provided at the corner of the image display unit 11 and the frame electrode G5 of the frame 51 provided at the periphery thereof are shown.
 図8に示すように、額縁電極G5は、額縁部51の全面にわたって隙間なく広がるベタ電極であって、画素12の反射電極PEと同一階層に形成されている。なお、額縁電極G5の上層には、共通電極CEが離間対向配置され、共通電極CEと額縁電極G5との間には液晶LCMが充填封止されている。これら共通電極CE、額縁電極G5、及び、液晶LCMによって液晶表示素子LC_Bが構成されている。 As shown in FIG. 8, the frame electrode G <b> 5 is a solid electrode that spreads without a gap over the entire surface of the frame portion 51 and is formed in the same layer as the reflective electrode PE of the pixel 12. In the upper layer of the frame electrode G5, the common electrode CE is disposed to be separated and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and the frame electrode G5. A liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G5, and the liquid crystal LCM.
 ここで、額縁電極G5には、共通電極CEと同じ電圧Vcomが印加されている。それにより、額縁電極G5と共通電極CEとの間の電位差が0Vになるため、額縁部51には黒が表示される。 Here, the same voltage Vcom as that of the common electrode CE is applied to the frame electrode G5. As a result, the potential difference between the frame electrode G5 and the common electrode CE becomes 0 V, so black is displayed on the frame portion 51.
 なお、画像表示部11によって表示される画像の品質向上の妨げとならないように、額縁部51によって表示される黒のレベルは、画像表示部11によって表示される黒のレベルと同じであることが好ましい。しかしながら、実際には、額縁部51によって表示される黒は、画像表示部11によって表示される黒よりも黒く表示されてしまう。そのため、額縁部51が搭載された反射型液晶表示装置では、例えば額縁部51によって表示される黒が強調され過ぎてしまう等の理由により、映像品質が劣化してしまうという問題があった。 Note that the level of black displayed by the frame unit 51 is the same as the level of black displayed by the image display unit 11 so as not to hinder the improvement of the quality of the image displayed by the image display unit 11 preferable. However, in practice, the black displayed by the frame 51 is displayed more black than the black displayed by the image display unit 11. Therefore, in the reflection type liquid crystal display device in which the frame portion 51 is mounted, there is a problem that the image quality is deteriorated due to, for example, the black displayed by the frame portion 51 being overemphasized.
 この問題は、画素12の反射電極PEの開口率(画素配置領域A1に占める反射電極PEの配置面積の割合)と、額縁部51の額縁電極G5の開口率(画素配置領域A1と等価の電極配置領域A5に占める額縁電極G5の配置面積の割合)と、が違うことに起因する。以下、図9を参照しつつ説明する。 The problem is that the aperture ratio of the reflective electrode PE of the pixel 12 (the ratio of the arrangement area of the reflective electrode PE to occupy in the pixel arrangement region A1) and the aperture ratio of the frame electrode G5 of the frame 51 (an electrode equivalent to the pixel arrangement region A1) This is because the ratio of the arrangement area of the frame electrode G5 to the arrangement area A5 is different. This will be described below with reference to FIG.
 まず、画素12の反射電極PEは、隣接する画素12の反射電極PEと分離して形成される必要があるため、反射電極PE間には画素間隙が形成される。それにより、画素12の反射電極PEの開口率は低下する。具体的には、画素12の反射電極PEの開口率は、正方形状の画素配置領域A1の一辺の長さ(即ち、画素ピッチ)L1が3.8μm、画素間隙L2が0.2μmである場合、89.75%となる(図9の左図参照)。 First, since the reflective electrode PE of the pixel 12 needs to be formed separately from the reflective electrode PE of the adjacent pixel 12, a pixel gap is formed between the reflective electrodes PE. As a result, the aperture ratio of the reflective electrode PE of the pixel 12 is reduced. Specifically, the aperture ratio of the reflective electrode PE of the pixel 12 is such that the length of one side of the square pixel arrangement region A1 (that is, the pixel pitch) L1 is 3.8 μm and the pixel gap L2 is 0.2 μm. , 89.75% (see the left figure in FIG. 9).
 それに対し、額縁部51の額縁電極G5は、既に説明したように、額縁部51の全体にわたって隙間なく広がるベタ電極である。そのため、額縁電極G5の開口率は、100%になる(図9の右図参照)。 On the other hand, the frame electrode G5 of the frame portion 51 is a solid electrode which spreads without a gap over the entire frame portion 51 as described above. Therefore, the aperture ratio of the frame electrode G5 is 100% (see the right of FIG. 9).
 そのため、反射電極PE及び額縁電極G5のそれぞれに同じレベルの黒階調の電圧を印加した場合でも、開口率の違いにより、画像表示部11の各画素12によって表示される黒のレベルと、額縁部51によって表示される黒のレベルと、が異なってしまう。 Therefore, even when black gradation voltage of the same level is applied to each of the reflective electrode PE and the frame electrode G5, the black level displayed by each pixel 12 of the image display unit 11 and the frame due to the difference in aperture ratio The level of black displayed by the unit 51 is different.
 より具体的には、液晶表示素子LC,LC_Bに垂直に入射された光は、液晶LCMを通過して、反射電極PEや額縁電極G5において垂直に反射し、液晶LCMによって変調された後、出射される。例えば、黒の表示を行う場合、液晶LCMによる変調によって、光の偏向方向を位相差にして90度ずらす。それにより、光の進行が遮られるため、黒が表示される。ここで、画像表示部11の各画素12と額縁部51とでは、光を反射する反射電極PE及び額縁電極G5のそれぞれの開口率が異なるため、液晶LCMによって変調される光の量が異なってしまい、その結果、表示される黒のレベルが互いに異なってしまう。 More specifically, light vertically incident on the liquid crystal display elements LC and LC_B passes through the liquid crystal LCM, is vertically reflected by the reflective electrode PE and the frame electrode G5, is modulated by the liquid crystal LCM, and then exits. Be done. For example, in the case of displaying in black, the polarization direction of light is shifted by 90 degrees as a phase difference by modulation by the liquid crystal LCM. As a result, the progress of light is blocked, so black is displayed. Here, in each pixel 12 of the image display unit 11 and the frame portion 51, the aperture ratio of the reflective electrode PE that reflects light and the frame electrode G5 are different, so the amount of light modulated by the liquid crystal LCM is different. As a result, the displayed black levels will differ from one another.
 次に、本実施の形態にかかる額縁部21について具体的に説明する。
 図10は、反射型液晶表示装置10に設けられた画像表示部11の各画素12の反射電極PE、及び、額縁部21の複数の額縁電極G1の概略平面図である。なお、図10の例では、画像表示部11の角部に設けられた複数の画素12のそれぞれの反射電極PE、及び、その周辺に設けられた額縁部21の複数の額縁電極G1のみが示されている。
Next, the frame portion 21 according to the present embodiment will be specifically described.
FIG. 10 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 and the plurality of frame electrodes G1 of the frame unit 21. Note that, in the example of FIG. 10, only the reflection electrodes PE of the plurality of pixels 12 provided at the corner of the image display unit 11 and the plurality of frame electrodes G1 of the frame portion 21 provided around the same are shown. It is done.
 図10に示すように、額縁部21は、行列状に区画された複数の電極配置領域A2のそれぞれに規則的に配置された複数の額縁電極G1を有する。なお、電極配置領域A2は、画素12が配置される画素配置領域A1と同一サイズ(ピッチ)である。これら複数の額縁電極G1は、画素12の反射電極PEと同一階層に形成されている。 As shown in FIG. 10, the frame portion 21 has a plurality of frame electrodes G1 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix. The electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged. The plurality of frame electrodes G1 are formed in the same layer as the reflective electrode PE of the pixel 12.
 なお、各額縁電極G1の上層には、共通電極CEが離間対向配置され、共通電極CEと各額縁電極G1との間には液晶LCMが充填封止されている。これら共通電極CE、額縁電極G1、及び、液晶LCMによって液晶表示素子LC_Bが構成されている。 In the upper layer of each frame electrode G1, a common electrode CE is disposed so as to be spaced apart and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G1. A liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G1, and the liquid crystal LCM.
 各額縁電極G1は、平面視上、矩形状の本体部G1aと、本体部の一辺及びそれに直交する他の一辺からそれぞれ突出するようにして設けられた2つの連結部G1bと、によって構成されている。各額縁電極G1は、隣接する額縁電極G1と、連結部G1bにより電気的に接続されている。それにより、額縁部21の全ての額縁電極G1の印加電圧を同じにすることができる。 Each frame electrode G1 is configured by a rectangular main body portion G1a in plan view, and two connecting portions G1b provided so as to protrude from one side of the main body portion and the other side orthogonal thereto. There is. Each frame electrode G1 is electrically connected to the adjacent frame electrode G1 by the connecting portion G1b. Thereby, the application voltage of all the frame electrodes G1 of the frame part 21 can be made the same.
 ここで、各額縁電極G1には、共通電極CEと同じ電圧Vcomが印加されている。それにより、各額縁電極G1と共通電極CEとの間の電位差が0Vになるため、額縁部21には黒が表示される。 Here, the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G1. As a result, the potential difference between each frame electrode G1 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 21.
 図11は、図10に示す概略平面図のXI-XI部分を切り出した概略断面図である。
 図11に示すように、額縁部21では、額縁電極G1を含む液晶表示素子と、額縁電極G1より下位階層の回路部分とが、電気的に分離して形成されている。そのため、額縁電極G1には、額縁電極G1より下位階層の回路部分に関係なく、共通電極CEと同じ電圧Vcomを供給することができる。その他の断面構造については、図4で説明した内容と同様であるため、その説明を省略する。
11 is a schematic cross-sectional view of a portion XI-XI of the schematic plan view shown in FIG.
As shown in FIG. 11, in the frame portion 21, a liquid crystal display element including the frame electrode G1 and a circuit portion in a lower layer than the frame electrode G1 are electrically separated. Therefore, the same voltage Vcom as that of the common electrode CE can be supplied to the frame electrode G1 regardless of the circuit portion in the lower layer than the frame electrode G1. The other cross-sectional structures are the same as the contents described in FIG.
 なお、画像表示部11によって表示される画像の品質向上の妨げとならないように、額縁部21によって表示される黒のレベルは、画像表示部11によって表示される黒のレベルにできるだけ近い(理想的には同じ)ことが好ましい。 Note that the level of black displayed by the frame unit 21 is as close as possible to the level of black displayed by the image display unit 11 (ideally, so as not to hinder the improvement of the quality of the image displayed by the image display unit 11). Is the same).
 そこで、本実施の形態では、額縁電極G1の開口率(画素配置領域A1と等価の電極配置領域A2に占める額縁電極G1の配置面積の割合)を、各画素12の反射電極PEの開口率(画素配置領域A1に占める反射電極PEの配置面積の割合)にできるだけ近づけている(理想的には同じにしている)。以下、図12を参照しつつ説明する。 Therefore, in the present embodiment, the aperture ratio of the frame electrode G1 (the ratio of the arrangement area of the frame electrode G1 occupied in the electrode arrangement region A2 equivalent to the pixel arrangement region A1) It is as close as possible to the ratio of the arrangement area of the reflective electrode PE occupied in the pixel arrangement area A1 (ideally the same). This will be described below with reference to FIG.
 まず、画素12の反射電極PEの開口率は、正方形状の画素配置領域A1の一辺の長さ(即ち、画素ピッチ)L1が3.8μm、画素間隙L2が0.2μmとすると、89.75%となる(図12の左図参照)。 First, assuming that the aperture ratio of the reflective electrode PE of the pixel 12 is 3.8 μm for the length of one side of the square pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 μm for the pixel gap L2, 89.75. % (See the left figure in FIG. 12).
 それに対し、額縁電極G1の開口率は、正方形状の電極配置領域A2の一辺の長さL1が3.8μm、間隙L3が0.28μm、連結部G1bの幅L4が1μmとすると、89.68%となる(図12の右図参照)。これは、画素12の反射電極PEの開口率89.75%に近い。 On the other hand, the aperture ratio of the frame electrode G1 is 89.68, assuming that the length L1 of one side of the square electrode arrangement region A2 is 3.8 μm, the gap L3 is 0.28 μm, and the width L4 of the connecting portion G1 b is 1 μm. % (See the right figure in FIG. 12). This is close to the aperture ratio 89.75% of the reflective electrode PE of the pixel 12.
 このように、本実施の形態にかかる反射型液晶表示装置10は、各額縁電極G1の開口率を、各画素12の反射電極PEの開口率にできるだけ近づけている。それにより、本実施の形態にかかる反射型液晶表示装置10は、額縁部21によって表示される黒のレベルを、画像表示部11によって表示される黒のレベルに近づけることができるため、映像品質の劣化を防ぐことができる。換言すると、本実施の形態にかかる反射型液晶表示装置10は、額縁部21及び画像表示部11のそれぞれによって表示される黒のレベルを均一化することができるため、ユーザにとって違和感のない映像を表示させることができる。 As described above, in the reflective liquid crystal display device 10 according to the present embodiment, the aperture ratio of each frame electrode G1 is as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12. As a result, the reflective liquid crystal display device 10 according to the present embodiment can bring the level of black displayed by the frame portion 21 closer to the level of black displayed by the image display unit 11, so Deterioration can be prevented. In other words, the reflective liquid crystal display device 10 according to the present embodiment can equalize the level of black displayed by each of the frame portion 21 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
(実験結果)
 図13は、反射電極PE及び額縁電極G1のそれぞれの開口率の差と、画像表示部11及び額縁部21のそれぞれによって表示される黒レベルの差と、の関係を示す実験結果である。図13の実験結果に示すように、反射電極PE及び額縁電極G1のそれぞれの開口率の差が小さくなるほど、画像表示部11及び額縁部21のそれぞれによって表示される黒レベルの差は小さくなる。そして、反射電極PE及び額縁電極G1のそれぞれの開口率の差(反射電極PEの開口率を基準にした場合の額縁電極G1の開口率の差分)が5%以下になると、画像表示部11及び額縁部21のそれぞれによって表示される黒レベルの差は、見かけ上、無くなった。
(Experimental result)
FIG. 13 shows experimental results showing the relationship between the difference in the aperture ratio of each of the reflective electrode PE and the frame electrode G1, and the difference in the black level displayed by each of the image display unit 11 and the frame unit 21. As shown in the experimental result of FIG. 13, as the difference in the aperture ratio between the reflective electrode PE and the frame electrode G1 decreases, the difference in the black level displayed by the image display unit 11 and the frame unit 21 decreases. When the difference in the aperture ratio between the reflective electrode PE and the frame electrode G1 (the difference in the aperture ratio of the frame electrode G1 based on the aperture ratio of the reflective electrode PE) becomes 5% or less, the image display unit 11 and The difference in black level displayed by each of the frame portions 21 apparently disappeared.
<実施の形態2>
 図14は、実施の形態2に係る反射型液晶表示装置10に設けられた画像表示部11の各画素12の反射電極PE、及び、額縁部31の複数の額縁電極G2の概略平面図である。額縁部31は、額縁部21に対応し、額縁電極G2は、額縁電極G1に対応する。なお、図14の例では、画像表示部11の角部に設けられた複数の画素12のそれぞれの反射電極PE、及び、その周辺に設けられた額縁部31の複数の額縁電極G2のみが示されている。
Second Embodiment
FIG. 14 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 according to the second embodiment and a plurality of frame electrodes G2 of the frame portion 31. . The frame portion 31 corresponds to the frame portion 21 and the frame electrode G2 corresponds to the frame electrode G1. In the example of FIG. 14, only the reflection electrodes PE of the plurality of pixels 12 provided at the corner of the image display unit 11 and the plurality of frame electrodes G2 of the frame portion 31 provided around the same are shown. It is done.
 図14に示すように、額縁部31は、行列状に区画された複数の電極配置領域A2のそれぞれに規則的に配置された複数の額縁電極G2を有する。なお、電極配置領域A2は、画素12が配置される画素配置領域A1と同一サイズ(ピッチ)である。これら複数の額縁電極G2は、画素12の反射電極PEと同一階層に形成されている。 As shown in FIG. 14, the frame portion 31 has a plurality of frame electrodes G2 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix. The electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged. The plurality of frame electrodes G2 are formed in the same layer as the reflective electrode PE of the pixel 12.
 なお、各額縁電極G2の上層には、共通電極CEが離間対向配置され、共通電極CEと各額縁電極G2との間には液晶LCMが充填封止されている。これら共通電極CE、額縁電極G2、及び、液晶LCMによって液晶表示素子LC_Bが構成されている。 In the upper layer of each frame electrode G2, a common electrode CE is disposed so as to be separated and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G2. A liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G2, and the liquid crystal LCM.
 各額縁電極G2は、平面視上、画素12の反射電極PEと同一形状を有している。各額縁電極G2は、隣接する額縁電極G2と、これら額縁電極G2の下位階層に形成された回路部の配線によって電気的に接続されている。それにより、額縁部31の全ての額縁電極G2の印加電圧を同じにすることができる。 Each frame electrode G2 has the same shape as the reflective electrode PE of the pixel 12 in plan view. Each frame electrode G2 is electrically connected to the adjacent frame electrode G2 by the wiring of the circuit portion formed in the lower layer of these frame electrodes G2. Thereby, the applied voltage of all the frame electrodes G2 of the frame part 31 can be made the same.
 ここで、各額縁電極G2には、共通電極CEと同じ電圧Vcomが印加されている。それにより、各額縁電極G2と共通電極CEとの間の電位差が0Vになるため、額縁部31には黒が表示される。 Here, the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G2. As a result, the potential difference between each frame electrode G2 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 31.
 図15は、図14に示す概略平面図のXV-XV部分を切り出した概略断面図である。
 図15に示すように、額縁部31では、隣接する額縁電極G2同士が、これら額縁電極G2の下位階層に形成された第4メタル114及びスルーホール119eを介して、電気的に接続されている。それにより、額縁部31の全ての額縁電極G2の印加電圧を同じにすることができる。なお、第4メタル114とそれより下位階層の回路部分とは、電気的に分離して形成されている。そのため、額縁電極G2には、下位階層の回路部分に関係なく、共通電極CEと同じ電圧Vcomを供給することができる。その他の断面構造については、図4で説明した内容と同様であるため、その説明を省略する。
FIG. 15 is a schematic cross-sectional view of the XV-XV portion of the schematic plan view shown in FIG.
As shown in FIG. 15, in the frame portion 31, the adjacent frame electrodes G2 are electrically connected to each other through the fourth metal 114 and the through holes 119e formed in the lower layer of the frame electrodes G2. . Thereby, the applied voltage of all the frame electrodes G2 of the frame part 31 can be made the same. Note that the fourth metal 114 and the circuit portion in the lower hierarchy than that are electrically separated. Therefore, the same voltage Vcom as that of the common electrode CE can be supplied to the frame electrode G2 regardless of the circuit portion of the lower layer. The other cross-sectional structures are the same as the contents described in FIG.
 なお、画像表示部11によって表示される画像の品質向上の妨げとならないように、額縁部31によって表示される黒のレベルは、画像表示部11によって表示される黒のレベルにできるだけ近い(理想的には同じ)ことが好ましい。 Note that the level of black displayed by the frame section 31 is as close as possible to the level of black displayed by the image display section 11 (ideally, so as not to hinder the improvement of the quality of the image displayed by the image display section 11). Is the same).
 そこで、本実施の形態では、額縁電極G2の開口率(画素配置領域A1と等価の電極配置領域A2に占める額縁電極G2の配置面積の割合)を、各画素12の反射電極PEの開口率(画素配置領域A1に占める反射電極PEの配置面積の割合)にできるだけ近づけている(理想的には同じにしている)。以下、図16を参照しつつ説明する。 Therefore, in the present embodiment, the aperture ratio of the frame electrode G2 (the ratio of the arrangement area of the frame electrode G2 occupied in the electrode arrangement region A2 equivalent to the pixel arrangement region A1) It is as close as possible to the ratio of the arrangement area of the reflective electrode PE occupied in the pixel arrangement area A1 (ideally the same). This will be described below with reference to FIG.
 まず、画素12の反射電極PEの開口率は、正方形状の画素配置領域A1の一辺の長さ(即ち、画素ピッチ)L1が3.8μm、画素間隙L2が0.2μmとすると、89.75%となる(図16の左図参照)。 First, assuming that the aperture ratio of the reflective electrode PE of the pixel 12 is 3.8 μm for the length of one side of the square pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 μm for the pixel gap L2, 89.75. % (See the left figure in FIG. 16).
 また、額縁電極G2の開口率は、正方形状の電極配置領域A2の一辺の長さL1が3.8μm、画素間隙L2が0.2μmとすると、89.75%となる(図16の右図参照)。これは、画素12の反射電極PEの開口率89.75%と同じである。 In addition, the aperture ratio of the frame electrode G2 is 89.75% when the length L1 of one side of the square electrode arrangement region A2 is 3.8 μm and the pixel gap L2 is 0.2 μm (right view in FIG. 16). reference). This is the same as the aperture ratio 89.75% of the reflective electrode PE of the pixel 12.
 このように、実施の形態2にかかる反射型液晶表示装置10は、各額縁電極G2の開口率を、各画素12の反射電極PEの開口率にできるだけ近づけている。それにより、実施の形態2にかかる反射型液晶表示装置10は、額縁部31によって表示される黒のレベルを、画像表示部11によって表示される黒のレベルに近づけることができるため、映像品質の劣化を防ぐことができる。換言すると、実施の形態2にかかる反射型液晶表示装置10は、額縁部31及び画像表示部11のそれぞれによって表示される黒のレベルを均一化することができるため、ユーザにとって違和感のない映像を表示させることができる。 Thus, in the reflective liquid crystal display device 10 according to the second embodiment, the aperture ratio of each frame electrode G2 is as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12. As a result, since the reflective liquid crystal display device 10 according to the second embodiment can bring the level of black displayed by the frame portion 31 closer to the level of black displayed by the image display portion 11, Deterioration can be prevented. In other words, the reflective liquid crystal display device 10 according to the second embodiment can equalize the level of black displayed by each of the frame portion 31 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
<実施の形態3>
 実施の形態3にかかる反射型液晶表示装置10に設けられた額縁部41について説明する前に、再び額縁部51について説明する。
Embodiment 3
Before describing the frame portion 41 provided in the reflective liquid crystal display device 10 according to the third embodiment, the frame portion 51 will be described again.
 既に説明しているように、画像表示部11によって表示される画像の品質向上の妨げとならないように、額縁部51によって表示される黒のレベルは、画像表示部11によって表示される黒のレベルと同じであることが好ましい。しかしながら、実際には、額縁部51によって表示される黒は、画像表示部11によって表示される黒よりも黒く表示されてしまう。そのため、額縁部51が搭載された液晶表示装置では、例えば額縁部51によって表示される黒が強調され過ぎてしまう等の理由により、映像品質が劣化してしまうという問題があった。 As already described, the level of black displayed by the frame unit 51 is the level of black displayed by the image display unit 11 so as not to hinder the improvement of the quality of the image displayed by the image display unit 11. Is preferably the same as However, in practice, the black displayed by the frame 51 is displayed more black than the black displayed by the image display unit 11. Therefore, in the liquid crystal display device in which the frame portion 51 is mounted, there is a problem that the image quality is deteriorated due to, for example, the black displayed by the frame portion 51 being overemphasized.
 この問題は、画素12の反射電極PEの開口率と、額縁部51の額縁電極G5の開口率と、が違うことに起因するだけでなく、画素配置領域A1当たりの反射電極PEの周囲長(エッジ部分の長さ)と、電極配置領域A5当たりの額縁電極G5の周囲長と、が違うことに起因する。以下、図9を参照しつつ説明する。 This problem is caused not only because the aperture ratio of the reflective electrode PE of the pixel 12 and the aperture ratio of the frame electrode G5 of the frame portion 51 are different, but also the peripheral length of the reflective electrode PE per pixel arrangement region A1 This is because the length of the edge portion is different from the peripheral length of the frame electrode G5 per electrode arrangement area A5. This will be described below with reference to FIG.
 まず、画素12の反射電極PEは、隣接する画素12の反射電極PEと分離して形成される必要があるため、画素12の反射電極PE間には画素間隙が形成される。それにより、画素12の反射電極PEの周囲長は増加する。具体的には、画素12の反射電極PEのエッジ部分の周囲長は、正方形状の画素配置領域A1の一辺の長さ(即ち、画素ピッチ)L1が3.8μm、画素間隙L2が0.2μmである場合、14.44μmとなる(図9の左図参照)。 First, since the reflective electrode PE of the pixel 12 needs to be formed separately from the reflective electrode PE of the adjacent pixel 12, a pixel gap is formed between the reflective electrodes PE of the pixel 12. Thus, the perimeter of the reflective electrode PE of the pixel 12 is increased. Specifically, the peripheral length of the edge portion of the reflective electrode PE of the pixel 12 is 3.8 μm for the length of one side of the square-shaped pixel arrangement area A1 (that is, pixel pitch) L1 and 0.2 μm for the pixel gap L2 If it is, it becomes 14.44 μm (see the left figure of FIG. 9).
 それに対し、額縁部51の額縁電極G5は、既に説明したように、額縁部51の全体にわたって隙間なく広がるベタ電極である。そのため、額縁電極G5のエッジ部分の周囲長は、0μmである(図9の右図参照)。 On the other hand, the frame electrode G5 of the frame portion 51 is a solid electrode which spreads without a gap over the entire frame portion 51 as described above. Therefore, the perimeter of the edge portion of the frame electrode G5 is 0 μm (see the right of FIG. 9).
 そのため、反射電極PE及び額縁電極G5のそれぞれに同じレベルの黒階調の電圧を印加した場合でも、周囲長の違いにより、画像表示部11の各画素12によって表示される黒のレベルと、額縁部51によって表示される黒のレベルと、が異なってしまう。 Therefore, even when black gradation voltage of the same level is applied to each of the reflective electrode PE and the frame electrode G5, the black level displayed by each pixel 12 of the image display unit 11 and the frame due to the difference in peripheral length. The level of black displayed by the unit 51 is different.
 より具体的には、液晶表示素子LC,LC_Bに垂直に入射された光は、液晶LCMを通過して、反射電極PEや額縁電極G5において垂直に反射し、液晶LCMによって変調された後、出射される。例えば、黒の表示を行う場合、液晶LCMによる変調によって、光の偏向方向を位相差にして90度ずらす。それにより、光の進行が遮られるため、黒が表示される。ここで、画像表示部11の各画素12と額縁部51とでは、光を反射する反射電極PE及び額縁電極G5のそれぞれの周囲長(エッジ部分の長さ)が異なるため、エッジ部分における乱反射の度合いが異なってしまい、その結果、表示される黒のレベルが互いに異なってしまう。例えば、エッジ部分の長さが長いと、乱反射の量が多くなるため、光の偏向方向とは異なる反射光が増加し、その結果、表示される黒は明るくなる。他方、エッジ部分の長さが短いと、乱反射の量が少なくなるため、光の偏向方向とは異なる反射光が減少し、その結果、表示される黒は暗くなる。 More specifically, light vertically incident on the liquid crystal display elements LC and LC_B passes through the liquid crystal LCM, is vertically reflected by the reflective electrode PE and the frame electrode G5, is modulated by the liquid crystal LCM, and then exits. Be done. For example, in the case of displaying in black, the polarization direction of light is shifted by 90 degrees as a phase difference by modulation by the liquid crystal LCM. As a result, the progress of light is blocked, so black is displayed. Here, since peripheral lengths (lengths of edge portions) of the reflective electrode PE that reflects light and the frame electrodes G5 are different between each pixel 12 of the image display unit 11 and the frame portion 51, irregular reflection at the edge portion As a result, the displayed black levels are different from one another. For example, when the length of the edge portion is long, the amount of diffuse reflection increases, so that the amount of reflected light different from the light deflection direction increases, and as a result, the displayed black becomes bright. On the other hand, when the length of the edge portion is short, the amount of diffuse reflection decreases, so that the reflected light different from the light deflection direction decreases, and as a result, the displayed black becomes dark.
 次に、本実施の形態にかかる額縁部41について具体的に説明する。
 図17は、反射型液晶表示装置10に設けられた画像表示部11の各画素12の反射電極PE、及び、額縁部41の複数の額縁電極G3の概略平面図である。なお、図17の例では、画像表示部11の角部に設けられた複数の画素12のそれぞれの反射電極PE、及び、その周辺に設けられた額縁部41の複数の額縁電極G3のみが示されている。
Next, the frame portion 41 according to the present embodiment will be specifically described.
FIG. 17 is a schematic plan view of the reflective electrode PE of each pixel 12 of the image display unit 11 provided in the reflective liquid crystal display device 10 and the plurality of frame electrodes G3 of the frame unit 41. Note that, in the example of FIG. 17, only the reflection electrodes PE of the plurality of pixels 12 provided in the corner of the image display unit 11 and the plurality of frame electrodes G3 of the frame portion 41 provided in the periphery thereof are shown. It is done.
 図17に示すように、額縁部41は、行列状に区画された複数の電極配置領域A2のそれぞれに規則的に配置された複数の額縁電極G3を有する。なお、電極配置領域A2は、画素12が配置される画素配置領域A1と同一サイズ(ピッチ)である。これら複数の額縁電極G3は、画素12の反射電極PEと同一階層に形成されている。 As shown in FIG. 17, the frame portion 41 has a plurality of frame electrodes G3 regularly arranged in each of the plurality of electrode arrangement areas A2 partitioned in a matrix. The electrode arrangement area A2 has the same size (pitch) as the pixel arrangement area A1 in which the pixels 12 are arranged. The plurality of frame electrodes G3 are formed in the same layer as the reflective electrode PE of the pixel 12.
 なお、各額縁電極G3の上層には、共通電極CEが離間対向配置され、共通電極CEと各額縁電極G3との間には液晶LCMが充填封止されている。これら共通電極CE、額縁電極G3、及び、液晶LCMによって液晶表示素子LC_Bが構成されている。 In the upper layer of each frame electrode G3, a common electrode CE is disposed so as to be spaced apart and opposed, and a liquid crystal LCM is filled and sealed between the common electrode CE and each frame electrode G3. A liquid crystal display element LC_B is configured by the common electrode CE, the frame electrode G3, and the liquid crystal LCM.
 各額縁電極G3は、平面視上、矩形状の本体部G3aと、本体部の一辺及びそれに直交する他の一辺からそれぞれ突出するようにして設けられた2つの連結部G3bと、によって構成されている。各額縁電極G3は、隣接する額縁電極G3と、連結部G3bにより電気的に接続されている。それにより、額縁部41の全ての額縁電極G3の印加電圧を同じにすることができる。 Each frame electrode G3 is configured by a rectangular main body portion G3a in plan view, and two connecting portions G3b provided so as to respectively project from one side of the main body portion and the other side orthogonal thereto. There is. Each frame electrode G3 is electrically connected to the adjacent frame electrode G3 by the connecting portion G3b. Thereby, the applied voltage of all the frame electrodes G3 of the frame part 41 can be made the same.
 ここで、各額縁電極G3には、共通電極CEと同じ電圧Vcomが印加されている。それにより、各額縁電極G3と共通電極CEとの間の電位差が0Vになるため、額縁部41には黒が表示される。 Here, the same voltage Vcom as that of the common electrode CE is applied to each frame electrode G3. As a result, the potential difference between each frame electrode G3 and the common electrode CE becomes 0 V, so black is displayed in the frame portion 41.
 なお、画像表示部11によって表示される画像の品質向上の妨げとならないように、額縁部41によって表示される黒のレベルは、画像表示部11によって表示される黒のレベルにできるだけ近い(理想的には同じ)ことが好ましい。 It should be noted that the level of black displayed by the frame section 41 is as close as possible to the level of black displayed by the image display section 11 so as not to hinder the improvement of the quality of the image displayed by the image display section 11 (ideally Is the same).
 そこで、本実施の形態では、額縁電極G3の周囲長を、各画素12の反射電極PEの周囲長にできるだけ近づけている(理想的には同じにしている)。以下、図18を参照しつつ説明する。 Therefore, in the present embodiment, the peripheral length of the frame electrode G3 is as close as possible to the peripheral length of the reflective electrode PE of each pixel 12 (they are ideally the same). This will be described below with reference to FIG.
 まず、画素12の反射電極PEの周囲長は、正方形状の画素配置領域A1の一辺の長さ(即ち、画素ピッチ)L1が3.8μm、画素間隙L2が0.2μmとすると、14.44μmとなる(図18の左図参照)。 First, the peripheral length of the reflective electrode PE of the pixel 12 is 14.44 μm, assuming that the length of one side (that is, pixel pitch) L1 of the square pixel arrangement region A1 is 3.8 μm and the pixel gap L2 is 0.2 μm. (See the left figure of FIG. 18).
 それに対し、額縁電極G1の開口率は、正方形状の電極配置領域A2の一辺の長さL1が3.8μm、間隙L3が0.28μm、連結部G1bの幅L4が1μmとすると、14.44μmとなる(図18の右図参照)。これは、画素12の反射電極PEの周囲長と同じ長さである。 On the other hand, the aperture ratio of the frame electrode G1 is 14.44 μm, assuming that the length L1 of one side of the square electrode arrangement region A2 is 3.8 μm, the gap L3 is 0.28 μm, and the width L4 of the connecting portion G1 b is 1 μm. (See the right side of FIG. 18). This is the same length as the peripheral length of the reflective electrode PE of the pixel 12.
 このように、実施の形態3にかかる反射型液晶表示装置10は、各額縁電極G3の周囲長(エッジ部分の長さ)を、各画素12の反射電極PEの周囲長にできるだけ近づけている。それにより、実施の形態3にかかる反射型液晶表示装置10は、額縁部41によって表示される黒のレベルを、画像表示部11によって表示される黒のレベルに近づけることができるため、映像品質の劣化を防ぐことができる。換言すると、実施の形態3にかかる反射型液晶表示装置10は、額縁部31及び画像表示部11のそれぞれによって表示される黒のレベルを均一化することができるため、ユーザにとって違和感のない映像を表示させることができる。 As described above, in the reflective liquid crystal display device 10 according to the third embodiment, the peripheral length (the length of the edge portion) of each frame electrode G3 is as close as possible to the peripheral length of the reflective electrode PE of each pixel 12. As a result, the reflective liquid crystal display device 10 according to the third embodiment can bring the level of black displayed by the frame portion 41 closer to the level of black displayed by the image display unit 11, and Deterioration can be prevented. In other words, the reflective liquid crystal display device 10 according to the third embodiment can equalize the level of black displayed by each of the frame portion 31 and the image display portion 11, so that the user does not feel uncomfortable for the user. It can be displayed.
(実験結果)
 図19は、反射電極PE及び額縁電極G3のそれぞれの周囲長の差と、画像表示部11及び額縁部41のそれぞれによって表示される黒レベルの差と、の関係を示す実験結果である。図19の実験結果に示すように、反射電極PE及び額縁電極G3のそれぞれの周囲長の差が小さくなるほど、画像表示部11及び額縁部41のそれぞれによって表示される黒レベルの差は小さくなる。そして、反射電極PE及び額縁電極G3のそれぞれの周囲長の差(反射電極PEの周囲長を基準にした場合の額縁電極G3の周囲長の差分)が30%以下になると、画像表示部11及び額縁部41のそれぞれによって表示される黒レベルの差は、見かけ上、無くなった。
(Experimental result)
FIG. 19 is an experimental result showing the relationship between the difference in perimeter of each of the reflective electrode PE and the frame electrode G3 and the difference in black level displayed by each of the image display unit 11 and the frame unit 41. As shown in the experimental result of FIG. 19, the difference between the black levels displayed by the image display unit 11 and the frame portion 41 decreases as the difference between the perimeters of the reflective electrode PE and the frame electrode G3 decreases. When the difference in peripheral length between the reflective electrode PE and the frame electrode G3 (difference in peripheral length of the frame electrode G3 based on the peripheral length of the reflective electrode PE) becomes 30% or less, the image display unit 11 and The difference in black level displayed by each of the frame portions 41 apparently disappeared.
 以上のように、実施の形態1~3にかかる反射型液晶表示装置10は、各額縁電極の開口率を、各画素12の反射電極PEの開口率にできるだけ近づけている。それにより、実施の形態3にかかる反射型液晶表示装置10は、額縁部によって表示される黒のレベルを、画像表示部によって表示される黒のレベルに近づけることができるため、映像品質の劣化を防ぐことができる。換言すると、実施の形態3にかかる反射型液晶表示装置10は、額縁部及び画像表示部のそれぞれによって表示される黒のレベルを均一化することができるため、ユーザにとって違和感のない映像を表示させることができる。 As described above, in the reflective liquid crystal display device 10 according to the first to third embodiments, the aperture ratio of each frame electrode is made as close as possible to the aperture ratio of the reflective electrode PE of each pixel 12. As a result, the reflective liquid crystal display device 10 according to the third embodiment can bring the level of black displayed by the frame portion closer to the level of black displayed by the image display unit. It can prevent. In other words, since the reflective liquid crystal display device 10 according to the third embodiment can equalize the level of black displayed by each of the frame portion and the image display portion, a video with no sense of incongruity is displayed for the user. be able to.
 この出願は、2017年11月15日に出願された日本出願特願2017-219857を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-219857 filed on Nov. 15, 2017, the entire disclosure of which is incorporated herein.
 本発明は、プロジェクター等に搭載される液晶表示装置に好適に適用することができる。 The present invention can be suitably applied to a liquid crystal display device mounted on a projector or the like.
 10 反射型液晶表示装置
 11 画像表示部
 12 画素
 13 タイミングジェネレータ
 14 垂直シフトレジスタ
 15 データラッチ回路
 16 水平ドライバ
 20 上位装置
 21 額縁部
 31 額縁部
 41 額縁部
 100 シリコン基板
 101 Nウエル
 102 Pウエル
 103 素子分離酸化膜
 105 層間絶縁膜
 106 第1メタル
 108 第2メタル
 110 第3メタル
 112 MIM電極
 114 第4メタル
 116 第5メタル
 117 パッシベーション膜(PSV)
 118 コンタクト
 119a~119e スルーホール
 161 水平シフトレジスタ
 162 ラッチ部
 163 レベルシフタ/画素ドライバ
 164 ラッチ回路
 1641~1643 ラッチ回路群
 201 SRAMセル
 202 DRAMセル
 d1~dn 列データ線
 dL,dM,dR 列データ線群
 g1~gm 行走査線
 trig,trigb トリガ線
 BF1 バッファ
 C1 容量
 CE 共通電極
 CHP1 チップ
 DM2 記憶部
 G1~G3 額縁電極
 G1a,G3a 本体部
 G1b,G3b 連結部
 INV11,INV12 インバータ
 LC,LC_B 液晶表示素子
 LCM 液晶
 MN1,MN2 NMOSトランジスタ
 MN11,MN12 NMOSトランジスタ
 MN21,MN22 NMOSトランジスタ
 MP2 PMOSトランジスタ
 MP11,MP12 PMOSトランジスタ
 MP21,MP22 PMOSトランジスタ
 PE 反射電極
 SM1 記憶部
 SW1,SW2 スイッチ
 SW21,SW22 スイッチ
DESCRIPTION OF SYMBOLS 10 reflection type liquid crystal display device 11 image display part 12 pixel 13 timing generator 14 vertical shift register 15 data latch circuit 16 horizontal driver 20 host device 21 frame part 31 frame part 41 frame part 100 silicon substrate 101 N well 102 P well 103 isolation Oxide film 105 Interlayer insulating film 106 First metal 108 Second metal 110 Third metal 112 MIM electrode 114 Fourth metal 116 Fifth metal 117 Passivation film (PSV)
118 contacts 119a to 119e through holes 161 horizontal shift register 162 latch section 163 level shifter / pixel driver 164 latch circuit 1641 to 1643 latch circuit group 201 SRAM cell 202 DRAM cell d1 to dn column data line dL, dM, dR column data line group g1 Gm gm line scan line trig, trigb trigger line BF1 buffer C1 capacity CE common electrode CHP1 chip DM2 storage unit G1 to G3 frame electrode G1a, G3a main unit G1b, G3b connection unit INV11, INV12 inverter LC, LC_B liquid crystal display element LCM liquid crystal liquid crystal MN1 , MN2 NMOS transistor MN11, MN12 NMOS transistor MN21, MN22 NMOS transistor MP2 PMOS transistor MP11, MP 2 PMOS transistors MP21, MP22 PMOS transistors PE reflective electrode SM1 storage unit SW1, SW2 switches SW21, SW22 switch

Claims (6)

  1.  行列状に区画された複数の画素配置領域に複数の画素がそれぞれ配置された画像表示部と、
     前記画像表示部の外周を囲むようにして設けられ、行列状に区画された複数の電極配置領域に複数の額縁電極がそれぞれ配置された額縁部と、
     を備え、
     各前記電極配置領域には、各前記画素配置領域に占める前記画素の反射電極の面積率を基準にして、差分が5%以内の面積率となるように前記額縁電極が配置されている、
     反射型液晶表示装置。
    An image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions divided in a matrix;
    A frame portion provided so as to surround the outer periphery of the image display portion, in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement regions partitioned in a matrix shape;
    Equipped with
    In each of the electrode arrangement regions, the frame electrodes are arranged such that the difference in area ratio is 5% or less on the basis of the area ratio of the reflective electrode of the pixel occupied in each of the pixel arrangement regions.
    Reflective liquid crystal display.
  2.  各前記額縁電極は、各前記反射電極の面積率と同一の面積率となるように形成されている、
     請求項1に記載の反射型液晶表示装置。
    Each of the frame electrodes is formed to have the same area ratio as the area ratio of each of the reflective electrodes.
    The reflective liquid crystal display device according to claim 1.
  3.  行列状に区画された複数の画素配置領域に複数の画素がそれぞれ配置された画像表示部と、
     前記画像表示部の外周を囲むようにして設けられ、行列状に区画された複数の電極配置領域に複数の額縁電極がそれぞれ配置された額縁部と、
     を備え、
     各前記電極配置領域には、各前記画素配置領域に占める前記画素の反射電極の周囲長を基準にして、差分が30%以内の周囲長となるように前記額縁電極が配置されている、
     反射型液晶表示装置。
    An image display unit in which a plurality of pixels are arranged in a plurality of pixel arrangement regions divided in a matrix;
    A frame portion provided so as to surround the outer periphery of the image display portion, in which a plurality of frame electrodes are respectively arranged in a plurality of electrode arrangement regions partitioned in a matrix shape;
    Equipped with
    In each of the electrode arrangement regions, the frame electrodes are arranged such that the difference is within 30% of the peripheral length of the reflective electrode of the pixel in each of the pixel arrangement regions.
    Reflective liquid crystal display.
  4.  各前記額縁電極は、各前記反射電極の周囲長と同一の周囲長となるように形成されている、
     請求項3に記載の反射型液晶表示装置。
    Each of the frame electrodes is formed to have the same peripheral length as the peripheral length of each of the reflective electrodes.
    The reflective liquid crystal display device according to claim 3.
  5.  各前記額縁電極は、
     矩形状の本体部と、
     前記本体部の外周辺の一部から突出するようにして設けられた連結部と、
     を有し、
     前記連結部によって、隣接する他の前記額縁電極と電気的に接続されている、
     請求項1~4の何れか一項に記載の反射型液晶表示装置。
    Each of the frame electrodes is
    A rectangular main body,
    A connecting portion provided to protrude from a part of the outer periphery of the main body portion;
    Have
    It is electrically connected to the other adjacent frame electrode by the connecting portion,
    A reflective liquid crystal display device according to any one of claims 1 to 4.
  6.  各前記額縁電極は、
     前記反射電極と同じ平面形状を有し、
     下位階層に形成された配線によって、隣接する他の前記額縁電極と電気的に接続されている、
     請求項1~4の何れか一項に記載の反射型液晶表示装置。
    Each of the frame electrodes is
    It has the same planar shape as the reflective electrode,
    It is electrically connected to the other adjacent frame electrode by the wiring formed in the lower layer,
    A reflective liquid crystal display device according to any one of claims 1 to 4.
PCT/JP2018/041791 2017-11-15 2018-11-12 Reflective liquid crystal display device WO2019098151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219857A JP7052309B2 (en) 2017-11-15 2017-11-15 Reflective liquid crystal display device
JP2017-219857 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098151A1 true WO2019098151A1 (en) 2019-05-23

Family

ID=66539177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041791 WO2019098151A1 (en) 2017-11-15 2018-11-12 Reflective liquid crystal display device

Country Status (2)

Country Link
JP (1) JP7052309B2 (en)
WO (1) WO2019098151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11347095B2 (en) * 2019-01-21 2022-05-31 Beijing Boe Technology Development Co., Ltd. Array substrate and display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070292A1 (en) * 2022-09-30 2024-04-04 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267937A (en) * 2005-03-25 2006-10-05 Victor Co Of Japan Ltd Reflection type liquid crystal display device
JP2012108464A (en) * 2010-10-25 2012-06-07 Seiko Epson Corp Electro-optic device and electronic apparatus
JP2014092726A (en) * 2012-11-06 2014-05-19 Seiko Epson Corp Electro-optic device and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180819A (en) 2015-03-23 2016-10-13 キヤノン株式会社 Liquid crystal display device and picture display unit using the liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267937A (en) * 2005-03-25 2006-10-05 Victor Co Of Japan Ltd Reflection type liquid crystal display device
JP2012108464A (en) * 2010-10-25 2012-06-07 Seiko Epson Corp Electro-optic device and electronic apparatus
JP2014092726A (en) * 2012-11-06 2014-05-19 Seiko Epson Corp Electro-optic device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11347095B2 (en) * 2019-01-21 2022-05-31 Beijing Boe Technology Development Co., Ltd. Array substrate and display apparatus

Also Published As

Publication number Publication date
JP2019090935A (en) 2019-06-13
JP7052309B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5733154B2 (en) Liquid crystal display
US9437150B2 (en) Liquid crystal display (LCD) device
JP6255709B2 (en) Liquid crystal display
JP5765205B2 (en) Liquid crystal display device and pixel inspection method thereof
WO2019107197A1 (en) Liquid crystal display apparatus and method for driving same
JP2004309669A (en) Active matrix type display device and its driving method
WO2019098151A1 (en) Reflective liquid crystal display device
US8115719B2 (en) Electro-optical device
JP6394716B2 (en) Liquid crystal display device and method for inspecting liquid crystal display device
JP6774599B2 (en) Liquid crystal display device
US7675499B2 (en) Display device
JP6115056B2 (en) Liquid crystal display
JP2015161836A (en) liquid crystal display device
JP6753670B2 (en) Liquid crystal display device
JP6319138B2 (en) Liquid crystal display device and manufacturing method thereof
JP2011232697A (en) Liquid crystal display device
WO2019044165A1 (en) Reflective liquid crystal display device
JP2022046626A (en) Reflection type liquid crystal display device
JP2014132355A (en) Liquid crystal display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879621

Country of ref document: EP

Kind code of ref document: A1