WO2019097814A1 - Extending and retracting mechanism - Google Patents

Extending and retracting mechanism Download PDF

Info

Publication number
WO2019097814A1
WO2019097814A1 PCT/JP2018/032419 JP2018032419W WO2019097814A1 WO 2019097814 A1 WO2019097814 A1 WO 2019097814A1 JP 2018032419 W JP2018032419 W JP 2018032419W WO 2019097814 A1 WO2019097814 A1 WO 2019097814A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
connection member
members
actuator
connection
Prior art date
Application number
PCT/JP2018/032419
Other languages
French (fr)
Japanese (ja)
Inventor
一生 本郷
清和 宮澤
和仁 若菜
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019097814A1 publication Critical patent/WO2019097814A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible

Definitions

  • the present disclosure relates to a telescopic mechanism.
  • a rotation mechanism or a linear motion mechanism is used to realize extension and contraction operations of a robot arm and legs.
  • the joint is often configured by a rotation mechanism. A natural appearance can be obtained, and the number of parts can be reduced.
  • Patent Document 1 there is provided a linear motion mechanism which connects a plurality of block bodies in series to constitute an arm portion, and winds up the group of block bodies to realize the expansion and contraction operation of the arm portion.
  • the present disclosure proposes a new and improved extension mechanism that can improve the space efficiency when the extension operation is performed.
  • the ends of the plurality of link members are configured to be sequentially and rotatably connected to each other, and when the angles formed by the link members connected to each other change, the respective extend and contract in parallel.
  • a second connection member connected to the output shaft of the actuator, wherein the second connection member is parallel to the direction in which the at least three link structures expand and contract in response to the drive of the actuator.
  • a telescopic mechanism is provided that moves along a predetermined telescopic direction.
  • FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10.
  • FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10.
  • FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10. It is the figure which showed roughly the shape which developed the connection member 120 on the plane regarding the expansion-contraction mechanism 10 which concerns on this embodiment. It is the figure which showed an example of the shape of the connection member 120a seen from the upper surface side of the connection member 120a. It is the figure which showed an example of the shape of the connection member 120a seen from the upper surface side of the connection member 120a.
  • FIG. 1 It is the figure which showed the example as which the structure of a parallel link is used as the some link structure 110 based on the modification 5 of this embodiment. It is the figure which showed the example as which the structure of a parallel link is used as the several link structure 110 based on the modification 5.
  • FIG. It is the figure which showed the example of the expansion-contraction mechanism 10 comprised so that the number of link members for every link structure 110 may not be the same which concerns on the modification 5 of this embodiment.
  • FIG. 18 is a view showing an example in which the extension and contraction mechanism 10 is disposed inside the body portion 204 of the robot 20 according to the first application example.
  • FIG. 7 is a view showing an example in which the expansion and contraction mechanism 10 is disposed inside the body portion 204 so as to be convex toward the front of the robot 20.
  • FIG. 7 is a view showing an example in which an expansion and contraction mechanism 10 is disposed inside a neck portion 202 of a robot 20 according to the first application example.
  • FIG. 18 is a view showing an example in which the extension and contraction mechanism 10 is disposed inside the two upper arm portions 206 of the robot 20 according to the first application example.
  • a plurality of components having substantially the same functional configuration may be distinguished by attaching different alphabets to the same reference numerals.
  • a plurality of components having substantially the same functional configuration are distinguished as the connection member 120 a and the connection member 120 b as necessary.
  • the connection member 120a and the connection member 120b are simply referred to as the connection member 120 when it is not necessary to distinguish them.
  • a rotation mechanism or a linear motion mechanism is used to realize extension and contraction operations of a robot arm and legs.
  • the joint is often configured by a rotation mechanism.
  • the joint portion interferes with the surroundings, and there is a concern that the smooth motion may be inhibited.
  • a humanoid robot whose leg joints are configured by a rotation mechanism moves up and down stairs and ladders, the part corresponding to the knee joint will be bent and the bent part protrudes forward. And can interfere with stairs and ladders.
  • the arms and legs are constituted by a linear movement mechanism, and the arms and legs are extended and contracted by the linear movement mechanism.
  • a linear motion mechanism for example, one using a slider structure or a pantograph structure is known.
  • a linear motion mechanism has been proposed in which a plurality of block bodies are connected in series to constitute an arm portion, and the block body group is wound to realize the expansion and contraction operation of the arm portion.
  • the existing slider structure it is difficult to obtain a high expansion ratio, and the weight tends to be relatively large.
  • the existing pantograph structure although a high expansion ratio can be obtained, it is difficult to obtain high strength.
  • the existing linear motion mechanism requires a space for storing the wound block body, so space efficiency is poor, and its application is limited, for example, it is difficult to apply to a mobile robot. was.
  • the telescopic mechanism 10 has been created in consideration of the above circumstances.
  • ends of the plurality of link members 111 are sequentially and rotatably connected to one another, and the angles formed by the link members 111 connected to one another are changed to extend and contract in parallel.
  • the plurality of connection members 120 include a first connection member 120 a on which the main body of the actuator 130 is installed, and a second connection member 120 b connected to the output shaft of the actuator 130.
  • the second connection member 120 moves along a predetermined expansion and contraction direction parallel to the expansion and contraction direction of the at least three link structures 110.
  • FIG. 1 is a view showing an example of the appearance configuration of the extension mechanism 10.
  • FIG. 2A to 2C are diagrams showing how the expansion and contraction mechanism 10 is expanded and contracted (expansion and contraction operation).
  • FIG. 3 is a view schematically showing a shape in which a connection member 120 described later is developed in a plane with respect to the expansion and contraction mechanism 10.
  • the expansion and contraction mechanism 10 is an expansion and contraction mechanism with one degree of freedom (that is, a linear motion expansion and contraction mechanism) that can expand and contract in one direction.
  • the telescopic mechanism 10 can be positioned as an improved mechanism of a so-called magic hand pantograph.
  • the expansion and contraction direction of the expansion and contraction mechanism 10 is also referred to as a z-axis direction.
  • two directions orthogonal to each other in a plane perpendicular to the z-axis direction are also referred to as an x-axis direction and a y-axis direction, respectively.
  • the telescopic mechanism 10 includes three link structures 110 (i.e., a link structure 110-1, a link structure 110-2, and a link structure 110-3) that can extend and contract in the z-axis direction , And an actuator 130. As described later, the three link structures 110 are connected to each other by the plurality of connection members 120, whereby the expansion and contraction mechanism 10 is configured.
  • Link structure 110 As shown in FIG. 1, the configurations of the three link structures 110 may be substantially identical to one another.
  • the respective link structures 110 are configured such that the ends of the plurality of link members 111 are sequentially connected rotatably by pins 112.
  • the link structure 110 is composed of four link members 111.
  • the shapes of the link members 111 located in the same layer may be substantially the same.
  • the shapes are substantially identical.
  • the shapes of each of all the link members 111 constituting each link structure 110 may be substantially the same.
  • the shape of each of the plurality of link members 111 may be substantially the same long plate shape (or rod shape).
  • the link member 111 located closer to the rear end side (that is, the upper side in FIG. 1) in the z-axis direction may be located in a hierarchy of smaller numbers.
  • the link member 111-1a is located in the first hierarchy
  • the link member 111-1b is located in the second hierarchy
  • the link member 111-1c is located in the third hierarchy.
  • the link member 111-1a is an example of a first link member according to the present disclosure.
  • the link member 111-1b is an example of a second link member according to the present disclosure.
  • each of the two adjacent link members 111 is also referred to as “first link member 111” and “second link member 111”.
  • the other of the two link members 111 among the two ends of the plate surface of one of the two adjacent link members 111 (for example, the second link member 111) (for example, the second link member 111)
  • One end of the plate surface of another link member 111 (hereinafter also referred to as a third link member 111 for convenience of explanation) at the end opposite to the side where the first link member 111 is connected Can be superimposed and the superimposed portion can be fastened with a pin 112.
  • the link structure 110 is configured by sequentially connecting the ends of the link members 111.
  • the surface on which the third link member 111 is superimposed on the second link member 111 is the same surface as the surface on which the first link member 111 is superimposed on the second link member 111
  • These link members 111 are connected to each other. That is, the first link member 111 and the third link member 111 are respectively superimposed and connected to the same plate surface included in the second link member 111.
  • the thickness of the link structure 110 in the direction in which the link members 111 overlap with each other is equal to the thickness of the two overlapping link members 111.
  • the telescopic mechanism 10 is configured by combining these link structures 110, the telescopic mechanism 10 itself can be miniaturized.
  • the present embodiment is not limited to this example, and the plate surfaces on which the first link member 111 and the third link member 111 are superimposed on the second link member 111 may be different from each other.
  • each link structure 110 has a pantograph structure (also referred to as a magic hand structure) by changing the angle formed by the link members 111 connected to each other.
  • a pantograph structure also referred to as a magic hand structure
  • Each stretches in parallel.
  • the extending directions of the plurality of link members 111 approach a direction substantially perpendicular to the z-axis direction (that is, an angle .theta.
  • the link structure 110 can be contracted in the z-axis direction by operating the link structure 110 such that the member connection angle ⁇ approaches 0 °).
  • the link structure is made such that the extending directions of the plurality of link members 111 approach a direction substantially parallel to the z-axis direction (that is, the link member connection angle ⁇ approaches 180 degrees).
  • the link structure 110 can extend in the z-axis direction.
  • the plurality of link members 111 constituting the link structure 110 can operate on substantially one plane (hereinafter, also referred to as an expansion and contraction operation plane for the convenience of description).
  • the expansion and contraction operation plane is a plane orthogonal to the rotation axis direction (that is, the insertion direction of the pin 112) in rotating the other link member 111 with respect to one link member 111 via the pin 112 in the link structure 110.
  • the telescopic operation plane may be a plane parallel to both the extension direction of the link member 111 and the extension direction of the link structure 110 (that is, the z-axis direction).
  • the three link structures 110 extend in the z-axis direction so that they do not touch each other at substantially the same position in the z-axis direction with all of the expansion and contraction directions facing the z-axis direction.
  • a plurality of connecting members 120 may be connected to surround a predetermined space.
  • the three link structures 110 are arranged such that the telescopic operation plane corresponding to each of the three link structures 110 constitutes a substantially equilateral triangle in the xy plane.
  • the three link structures 110 be arranged such that the positions in the z-axis direction are substantially the same.
  • the extending direction of at least one link member 111 constituting a certain link structure 110a and the extending direction of each link member 111 corresponding to the at least one link member 111 constituting another link structure 110b are largely different.
  • the three link structures 110 are arranged such that the extension direction of each link member 111 constituting each link structure 110 is the same direction among these three link structures 110.
  • the extension direction of each link member 111 constituting each link structure 110 is the same direction among these three link structures 110.
  • the three link structures 110 may be arranged to be rotationally symmetric about the z axis. preferable. By arranging in this manner, interference between the link members 111 between the adjacent link structures 110 can be easily avoided. Therefore, the miniaturization of the expansion and contraction mechanism 10 can be achieved.
  • each of the plurality of connection members 120 may be coupled to each of the three link structures 110 at its outer circumferential surface.
  • each of the plurality of connection members 120 may be interposed between the three link structures 110 and may connect the three link structures 110 to each other.
  • each of the plurality of link members 111 constituting each of the three link structures 110 is connected to the outer peripheral surface of one of the plurality of connection members 120 that uniquely corresponds to the link member 111.
  • each of the plurality of connection members 120 may be hierarchically arranged along a predetermined expansion / contraction direction parallel to the expansion / contraction direction of the three link structures 110.
  • each of the plurality of connection members 120 is arranged to be orthogonal to the predetermined expansion / contraction direction and to be parallel to each other.
  • the predetermined expansion and contraction direction may be parallel to the z-axis direction.
  • the plurality of connection members 120 can move along the predetermined expansion and contraction direction in response to the drive of the actuator 130.
  • connection members 120 may be provided by the number (four in the example shown in FIG. 1) of the link members 111 constituting one link structure 110. Then, the plurality of connection members 120 are arranged at substantially equal intervals along the z-axis direction, and arranged at positions corresponding to the respective link members 111.
  • the plurality of connection members 120 are a first connection member 120 on which the main body 1300 of the actuator 130 is installed, and a second connection member connected to the output shaft 1302 of the actuator 130. And 120.
  • the first connection member 120 is a connection member 120 a located at one end of the plurality of connection members 120.
  • the present invention is not limited to such an example, and the first connection member 120 may be a connection member 120 different from any of the connection members 120 a and the connection members 120 d located at both ends of the plurality of connection members 120. .
  • connection member 120 is the connection member 120a and the second connection member 120 is the connection member 120b adjacent to the connection member 120a will be mainly described.
  • each link member 111 connected to the connection member 120 is in the circumferential direction of the outer peripheral surface of the connection member 120. They may be connected to each other at substantially equal intervals.
  • the link member 111a (more specifically, the link member 111-1a, the link member 111) among the plurality of link members 111 that configure each of the three link structures 110.
  • the link 2a and the link member 111-3a are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the connection member 120a.
  • the link member 111b (more specifically, the link member 111-1b, the link member 111-2b, and the link member 111-2c) of the plurality of link members 111 constituting each of the three link structures 110.
  • the link members 111 are mutually connected at substantially equal intervals in the circumferential direction of the outer peripheral surface of the connection member 120a.
  • the present embodiment is not limited to this example, and the link members 111 may be connected at mutually different intervals in the circumferential direction of the outer peripheral surface of the connection member 120.
  • the shape of the connection member 120 viewed from the predetermined expansion and contraction direction may be substantially triangular or substantially rounded triangle.
  • FIGS. 4A and 4B are views respectively showing an example of the shape of the connection member 120a as viewed from the upper surface side of the connection member 120a (that is, viewed from the predetermined expansion and contraction direction).
  • the shape of the connection member 120 may be a substantially equilateral triangle.
  • it may be a substantially isosceles triangle, and in this case, it may be possible to form the connecting member 120a thinner.
  • the present invention is not limited to these examples, and the shape of the connection member 120 may be another polygon such as pentagon or hexagon.
  • an installation area of the actuator 130 (eg, a hole for installing the actuator 130, etc.) is provided substantially at the center of the connection member 120a, and the actuator in the installation area is provided. 130 is installed (fixed). According to this configuration, it is easy to realize balance of force.
  • each of the plurality of connection members 120 may be provided with at least one hole 1200 penetrating in the axial direction of the connection member 120 at a position separated from the installation area 1200. .
  • one or more cables such as a signal cable and a power cable can be penetrated through the at least one hole 1200, so the cables can be used as a space inside the plurality of connection members 120a It is possible to extend inside.
  • the expansion-contraction mechanism 10 expands-contracts, the situation where the said cable is pinched
  • the expansion-contraction mechanism 10 can expand-contract several times, durability can also be improved by wiring in this way.
  • one or more cables can be routed at the tip of the telescopic mechanism 10, so that, for example, the telescopic mechanism 10 can be provided at one or more sites in a certain robot. It is useful in the scene etc. where is mounted.
  • the number of the at least one holes 1200 is three, and in each connection member 120, the three holes 1200 are substantially points with respect to the center of the connection member 120. It can be provided symmetrically. According to this configuration, it is possible to further disperse the cable disturbance.
  • the present embodiment is not limited to this example, and the connecting member 120a may not have the hole 1200 at all.
  • the wiring may be performed by fixing the one or more cables to at least one link member 111 (for example, a plate surface of the link member 111) constituting the at least one link structure 110.
  • connection parts 1210 may be provided on the outer peripheral surface of each of the plurality of connection members 120. Then, each of the three connection portions 1210 is connected to one of the plurality of link members 111 included in each of the three link structures 110 and corresponding to the connection member 120 by, for example, the pin 113. obtain. More specifically, each of the three connection portions 1210 is provided with a rotation shaft connecting the approximate center of the connection member 120 and the connection portion 1210. And the link member 111 connected to the said connection part 1210 is connected with the said connection part 1210 by the pin 113, for example so that it can rotate around the said rotating shaft.
  • the three rotation axes may be provided such that the three rotation axes are all located on the same plane in each connection member 120.
  • the present invention is not limited to this example, and in each connecting member 120, at least two of the three rotation axes may be provided so as to be located on mutually different planes arranged in parallel.
  • the three connection parts 1210 include a first connection part 1210a and a second connection part 1210b, and a distance between the first connection part 1210a and the center of the connection member 120a and a second connection.
  • the distance between the portion 1210 b and the center of the connection member 120 a may be substantially the same.
  • the distances between each of the three connection portions 1210 and the center of the connection member 120a may be substantially the same.
  • each of the three coupling portions 1210 may be substantially point symmetric with respect to the center of the connection member 120a.
  • At least two of the plurality of connecting members 120 may have substantially the same shape.
  • the shapes of the connection members 120 (the connection member 120a and the connection member 120c in the example shown in FIG. 1) located in the odd-numbered hierarchy may be substantially the same.
  • the shapes of the connection members 120 (the connection member 120a and the connection member 120c in the example shown in FIG. 1) located in the even-numbered layers may be substantially the same.
  • FIG. 1 illustrates an example in which the shape of each connecting member 120 located in the odd-numbered level is different from the shape of each connecting member 120 located in the even-numbered level.
  • the present invention is not limited to this example, and the shapes of all the connection members 120 may be substantially the same.
  • the actuator 130 uses, for example, power supplied from a power supply (not shown) external to the expansion and contraction mechanism 10 to generate power for realizing the expansion and contraction operation.
  • the actuator 130 may be a direct acting actuator.
  • the axial direction of the output shaft of the actuator 130 may be parallel to the predetermined expansion and contraction direction.
  • the axial direction of the output shaft of the actuator 130 is the same as the predetermined expansion and contraction direction.
  • the actuator 130 is configured to include a main body 1300 containing a motor and a ball screw 1302.
  • the actuator 130 may be a linear actuator. Since the extension mechanism 10 operates in only one direction, it is preferable that a ball screw 1302 or a linear actuator be used as the actuator 130.
  • a SEA Series Elastic Actuator
  • FIG. 1 an example in which the actuator 130 includes the main body 1300 and the ball screw 1302 will be mainly described.
  • the ball screw 1302 may be an output shaft of the actuator 130.
  • the ball screw 1302 comprises a screw shaft 1310 and a nut 1312.
  • one end of the ball screw 1302 is connected to the main body 1300.
  • the nut 1312 is fixed to the connecting member 120b (adjacent to the connecting member 120a).
  • the axial direction of the screw shaft 1310 is parallel to the z-axis direction.
  • connection member 120 b fixed to the nut 1312 simultaneously moves along the axial direction of the screw shaft 1310 (that is, the predetermined expansion and contraction direction). Furthermore, movement of the connection member 120b may change the angles formed by the mutually connected link members 111 that configure each of the three link structures 110 to be substantially the same.
  • the angle formed by the link member 111a and the link member 111b included in each of the three link structures 110 is the distance The angle differences corresponding to the changes change substantially in the same manner.
  • the position of each link member 111b changes substantially in the same manner, and the position of another link member 111c connected to each link member 111b and the position of the connecting member 120c change.
  • the three link structures 110 expand and contract in parallel, respectively. That is, the expansion and contraction operation of the expansion and contraction mechanism 10 is performed.
  • the relationship between the thrust at the tip of the expansion and contraction mechanism 10 and the thrust of the actuator 130 can always be kept constant. More specifically, even if the distance between the main body portion 1300 and the nut 1312 changes, the weight supported by the nut 1312 usually does not change. Therefore, if the thrust of the actuator 130 is controlled to be constant, the thrust that can be output as the expansion and contraction mechanism 10 can be constant even if the distance between the main body 1300 and the nut 1312 changes. At this time, the relationship between the thrust of the extension mechanism 10 and the thrust of the actuator 130 can be determined by the principle of leverage.
  • the length of the ball screw 1302 to the current position (more specifically, the current distance between the main body 1300 and the nut 1312) is Lb
  • the (current) length of the extension mechanism 10 Assuming that the length Lf and the (current) thrust of the ball screw 1302 are Fb, the (current) thrust Ff of the expansion and contraction mechanism 10 can be calculated as the following formula (1).
  • Lf can be calculated as in the following equation (2).
  • is the link member connection angle described above.
  • the thrust Ff of the expansion and contraction mechanism 10 can be smaller than the thrust Fb of the actuator 130.
  • an actuator that is flat and capable of outputting high torque such as a flat motor or a DD (Direct Drive) motor, is used as the actuator 130, for example.
  • DD Direct Drive
  • a higher output can be realized while downsizing the extension mechanism 10 further.
  • a control device (not shown) that controls the drive of the actuator 130 may be separately provided outside or inside the extension mechanism 10.
  • the control amount of the actuator 130 may be automatically set by the control device according to a predetermined program, or the control may be performed such that a desired operation can be realized according to an instruction externally given by the operator. It may be calculated appropriately by the device.
  • the extension mechanism 10 includes at least three link structures 110 in which the ends of the plurality of link members 111 are sequentially connected so as to be rotatable relative to each other, and the at least three link structures 110. And a plurality of connecting members 120 coupled to each of the link structures 110.
  • the plurality of connection members 120 include a connection member 120 a on which the main body of the actuator 130 is installed, and a connection member 120 b connected to the output shaft of the actuator 130, and the connection member 120 b is a part of the actuator 130. It moves along a predetermined expansion and contraction direction according to the drive. Therefore, it is possible to realize a high-strength stretch mechanism with one degree of freedom.
  • the telescopic mechanism 10 mainly includes only the link structure 110, the connection member 120, and the actuator 130 except for the members such as the pin 112 and the pin 113.
  • the expansion and contraction mechanism 10 can be easily configured, and can achieve higher strength and higher expansion ratio.
  • the expansion and contraction mechanism 10 can be configured to be lighter in weight and achieve a higher expansion and contraction ratio as compared with the existing slider structure.
  • the telescopic mechanism 10 can achieve higher strength as compared to the existing pantograph structure.
  • the expansion and contraction mechanism 10 may be manufacturable at low cost.
  • the expansion and contraction mechanism 10 can be realized as a compact structure.
  • the dimensions at the time of contraction can be compact.
  • the extension mechanism 10 the amount of extension hardly changes even when a force is applied from the outside. Furthermore, by using a linear actuator such as a ball screw, for example, as the actuator 130, the expansion and contraction mechanism 10 can always realize constant thrust and speed regardless of the length of the actuator 130.
  • a linear actuator such as a ball screw
  • a part of the extension and contraction mechanism 10 jumps out to a part other than the part where the extension and contraction mechanism 10 is mounted.
  • the expansion and contraction mechanism 10 is mounted on the body of a robot, it is not preferable that a part of the expansion and contraction mechanism 10 jumps out to the neck of the robot.
  • each of the plurality of link members 111 constituting each link structure 110 is connected to the connection member 120a on which the main body 1300 of the actuator 130 is installed.
  • the length of each link member 111 is set such that the length in the longitudinal direction of the link member 111a is smaller than the length in the longitudinal direction of the other link members 111 (for example, the link member 111b etc.) of the plurality of link members 111.
  • the According to this configuration for example, as shown in FIG. 6B, it is possible to prevent the tip of the screw shaft 1310 from jumping out from the tip of each link structure 110 even when the extension mechanism 10 is contracted.
  • the length in the longitudinal direction of the link member 111 at the portion where the ball screw 1302 is mounted in the robot is the length in the longitudinal direction of the other link member 111
  • the length of each link member 111 is determined so as to be smaller than the length.
  • a first elastic member 140 a configured to be elastically deformed along the above-described predetermined expansion and contraction direction may be disposed between the adjacent connection members 120. Additionally or alternatively, between a connection member 120 and at least one link member 111 connected to the connection member 120, along a pivoting direction of each of the at least one link member 111.
  • the second elastic members 140 b configured to be elastically deformed may be respectively disposed.
  • a compression spring or a tension spring (as the first elastic member 140a) configured to be elastically deformed along the predetermined expansion / contraction direction is connected to the connection member 120a. It may be disposed between the member 120b.
  • a torsion spring configured to be elastically deformed along the pivoting direction of the link member 111 (second The elastic member 140 b may be disposed between the connection member 120 a and the link member 111.
  • the weight of the extension and contraction mechanism 10 can be compensated.
  • the power consumption of the expansion and contraction mechanism 10 can be reduced. Furthermore, even if the supply of power to the actuator 130 suddenly stops, the posture of the extension mechanism 10 before the stop can be maintained for a certain period of time.
  • each link member 111 is in a rod shape, but the present embodiment is not limited to such an example.
  • the shape of each link member 111 located in at least one hierarchy included in each link structure 110 may be a partially bent shape.
  • FIG. 8 is a view schematically showing a shape in which the connection member 120 is developed in a plane, in the expansion and contraction mechanism 10 according to the present modification.
  • the link member 111c included in each of the three link structures 110 the link member having a shape bent at the connecting portion 1210 on the outer peripheral surface of the connecting member 120c to which the link member 111c is connected Each may be used.
  • all the other link members 111 included in each of the three link structures 110 may be rod-shaped.
  • the distance between the connection member 120 c and the connection member 120 d can be made larger than the distance between the other adjacent connection members 120. Thereby, even when the expansion and contraction mechanism 10 is contracted, for example, the user's finger can be prevented from being pinched between the connection member 120c and the connection member 120d.
  • a link member thinner than the other link members 111 is used. it can. That is, each link structure 110 can be configured such that only the tip portion of each link structure 110 is thinner than the other portions.
  • FIGS. 1 to 2C illustrates an example in which the number of the link structures 110 included in the extension and contraction mechanism 10 is three
  • the present embodiment is not limited to such an example.
  • the extension mechanism 10 is preferably configured of at least three link structures 110, but the number is not limited.
  • the number of link structures 110 included in the telescopic mechanism 10 may be more than three, such as four or five.
  • a parallel link structure may be used as the plurality of link structures 110 that constitute the extension and contraction mechanism 10. According to this configuration, it is possible to increase the strength (for example, the strength to the tip end) of the expansion and contraction mechanism 10 as compared with, for example, the expansion and contraction mechanism 10 illustrated in FIG. 1.
  • FIG. 9A and FIG. 9B are diagrams schematically showing the shape of the connecting member 120 expanded in a plane with respect to the expansion and contraction mechanism 10 according to the present modification.
  • the expansion-contraction mechanism 10 which concerns on this modification is provided with six link structure 110 which each expand-contracts in parallel.
  • the link members 111 located in the same layer included in each of the two link structures 110 are: It arrange
  • one link structure 110 and another link structure 110 included in a pair of parallel link structures with respect to the radial direction from the center of the connection member 120 May be arranged such that the distances from the center of the connection member 120 are different.
  • the link structure 110-1 and the link structure 110-4 constitute a set of parallel link structures, and the link structure 110-4 is closer to the center of the connection member 120 than the link structure 110-1. Be placed far away. According to this configuration, it is possible to prevent adjacent link structures 110 (that is, two link structures 110 included in one set of parallel link structures) from interfering with each other at the time of telescopic operation. Therefore, the movable range of each link structure 110 can be expanded.
  • each connecting member 120 is substantially triangular or substantially rounded triangle from the viewpoint of arranging a joint axis. Is preferred.
  • expansion-contraction mechanism 10 showed the example provided with 3 sets of parallel link structures (namely, six link structures 110) in FIG. 9A and 9B, it is not limited to this example.
  • the extension mechanism 10 may have four or more sets of parallel link structures. In this case, two sets of parallel link structures connected to the same connection member 120 may have substantially the same shape.
  • the number of link members 111 constituting each link structure 110 may be partially reduced or increased according to, for example, the direction of required rigidity. It may be In the example shown in FIG. 10, the number of link members 111 constituting the link structure 110-1 is five. On the other hand, the number of link members 111 constituting the link structure 110-6 is four, and the link structure 110-6 is configured not to be connected to the connection member 120e. That is, unlike the example shown in FIG. 9A, for example, the link structure 110-6 does not have the link member 111-6e.
  • an auxiliary link member 150 may be provided between two link structures 110 included in a pair of parallel link structures. According to this configuration, the rigidity between the two link structures 110 can be improved.
  • a structure in which two adjacent link structures 110 cross each other may be used as the at least three link structures 110 that constitute the extension and contraction mechanism 10. According to this configuration, the strength of the extension and contraction mechanism 10 can be increased, for example, as compared with the extension and contraction mechanism 10 illustrated in FIG. 1.
  • FIG. 11 is a view schematically showing a shape in which the connection member 120 is developed in a plane, in the expansion and contraction mechanism 10 according to the present modification.
  • the extension and contraction mechanism 10 according to the present variation includes six link structures 110 that extend and contract in parallel.
  • link members 111 located in the same layer included in each of the two link structures 110 are: It is arranged in such a positional relationship as to intersect in the predetermined expansion / contraction direction, and at least partially overlap in the radial direction from the center of the connection member 120 to which the link member 111 is connected.
  • one link structure 110 included in a pair of cross link structures and the other link structure 110 are of the connection member 120.
  • the distances from the center may be arranged differently.
  • the link structure 110-1 and the link structure 110-4 constitute a set of cross link structures, and the link structure 110-4 is closer to the center of the connection member 120 than the link structure 110-1. Be placed far away. According to such a configuration, it is possible to prevent adjacent link structures 110 (that is, two link structures 110 constituting a pair of cross link structures) from interfering with each other in the telescopic operation. Therefore, the movable range of each link structure 110 can be expanded.
  • FIG. 11 illustrates an example in which link members 111 located in the same layer, which are included in each of two link structures 110 that configure a pair of cross link structures, have rotation axes different from each other.
  • the present embodiment is not limited to such an example.
  • the link members 111 may share the same rotation axis.
  • the link structure 110 is configured of four link members 111 and four connection members 120 are provided, but the present embodiment is not limited to such an example.
  • the number of link members 111 constituting the link structure 110 and the number of connection members 120 determined accordingly may be arbitrarily set.
  • the length of the link member 111 may be set arbitrarily.
  • the expansion ratio and expansion length of the link structure 110 (that is, the expansion ratio and expansion length of the expansion and contraction mechanism 10) are determined by the number and length of the link members 111 constituting the link structure 110.
  • the number and length of the link members 111 constituting the and the number of connection members 120 can be appropriately set so as to realize desired expansion and contraction rates and expansion and contraction lengths according to the application of the expansion and contraction mechanism 10.
  • the expansion / contraction mechanism 10 can easily change the expansion / contraction rate and the expansion / contraction length by changing the number and length of the link members 111 constituting the link structure 110.
  • the number of the link members 111 which comprise the link structure 110 is two or less, the said link structure 110 can not substantially perform expansion-contraction operation
  • the link member 111 has a long flat plate shape, but the shape of the link member 111 is not limited to such an example.
  • the link member 111 may be an elongated member, and its shape may be arbitrary. However, from the viewpoint of reducing the manufacturing cost, it is preferable that the shape be a simple shape such as a flat plate shape illustrated.
  • the expansion and contraction mechanism 10 can be configured to be thinner, and further downsizing can be achieved.
  • the expansion and contraction length becomes relatively short. That is, in order to secure a predetermined expansion and contraction length while shortening the length of each link member 111, it is necessary to form the link structure 110 with a larger number of link members 111.
  • the length of the link member 111 has a large influence on the size and the extension performance (such as the extension ratio and the extension length) of the extension mechanism 10, and therefore, is preferably determined in consideration of these factors.
  • the plurality of link members 111 all have substantially the same shape, but the shape of the link member 111 is not limited to such an example. Some or all of the plurality of link members 111 may have different shapes from one another.
  • the link structure 110 may be configured such that the length of the link member 111 gradually decreases from one end to the other end by using a plurality of types of link members 111 having different lengths in stages. Good. According to this configuration, it is possible to configure the extension and contraction mechanism 10 having a shape that gradually narrows toward the other end. However, it is preferable that all of the plurality of link members 111 have substantially the same shape from the viewpoint of reduction of the manufacturing cost described above.
  • a cover (not shown) may be provided to cover the outer periphery of the expansion and contraction mechanism 10.
  • the cover may be, for example, a bellows-like cover. According to this configuration, for example, it is possible to avoid the risk of the user's finger, a cable, or the like being pinched between the link members 111 at the time of the expansion and contraction operation.
  • a shaft motor, a linear motor, an air cylinder, or a pneumatic artificial muscle may be used as part of the actuator 130.
  • the length of the lead of the ball screw 1302 can be set appropriately.
  • the length of the lead is set (designed) to be shorter, it is possible to suppress the change in the passive extension length due to the external force of the extension mechanism 10. Furthermore, in this case, even if the supply of power to the actuator 130 is suddenly stopped, it is possible to prevent the force from expanding and contracting. That is, the weight compensation of the extension mechanism 10 is possible.
  • the telescopic mechanism 10 according to the present embodiment has been described above.
  • the telescopic mechanism 10 according to the present embodiment can be used alone as a jack, for example.
  • the telescopic mechanism 10 may be disposed and utilized inside another machine (eg, a robot or the like).
  • a linear motion mechanism be used for the expansion and contraction motion of the leg portion of the robot than the rotation mechanism.
  • mobile robots are also required to be smaller and lighter. Since the telescopic mechanism 10 according to the present embodiment can realize a small size, a high modulus of elasticity, and high strength, the telescopic mechanism 10 is suitable for each portion such as a leg of a mobile robot, for example. Can be applied to
  • Application Example 1 of the present embodiment will be described with reference to FIGS. 12 to 15.
  • Application Example 1 is an example in which the extension mechanism 10 is applied to a humanoid robot 20.
  • the robot 20 includes, for example, a head 200, a neck 202, a body 204, a first upper arm 206a, a second upper arm 206b, a first forearm 208a, and a second forearm.
  • FIG. 12 shows an example in which the moving mechanism 212 includes two wheels, the present invention is not limited to this example.
  • the moving mechanism 212 may be configured to include two legs, or may be configured to include an endless track mechanism such as, for example, caterpillar (registered trademark).
  • the first upper arm 206a can be pivoted about the predetermined axis with respect to the body 204.
  • the first shoulder joint 220a may be coupled.
  • a second shoulder joint 220b is provided between the body 204 and the second upper arm 206b so that the second upper arm 206b can rotate about a predetermined axis with respect to the body 204. It can be linked.
  • the first forearm 208a and the first upper arm 208a can be rotated about a predetermined axis with respect to the first upper arm 206a.
  • a first elbow joint 222a may be connected between the arm and the arm 206a.
  • the second forearm portion 208b can rotate about a predetermined axis with respect to the second upper arm portion 206b.
  • Two elbow joints 222b may be connected.
  • the movement of each part in the robot 20 can be controlled by, for example, a control device described later, using an electrical and / or magnetic action.
  • the direction parallel to the direction of the spine of the robot 20 is also referred to as the z-axis direction.
  • the expansion and contraction mechanism 10 may be disposed inside the body portion 204 of the robot 20.
  • the telescopic mechanism 10 may be disposed (for example, as a spine) in the body portion 204 so that the telescopic mechanism 10 can expand and contract along the axial direction of the spine in the body portion 204.
  • the height of the robot 20 is increased by the expansion and contraction mechanism 10 extending along the predetermined expansion and contraction direction (z-axis direction) according to the drive of the actuator 130. Therefore, the robot 20 can work more stably in a scene where the robot 20 manipulates (eg, holds) an object present at a high place.
  • the expansion and contraction mechanism 10 is disposed inside the body 204 such that the connection member 120a on which the main body 1300 of the actuator 130 is installed is located on the lower body side of the robot 20. Is preferred. According to this configuration, the center of gravity associated with the actuator 130 is concentrated on the lower body side of the robot 20, so that the stability of the robot 20 can be further improved.
  • each of the plurality of connection members 120 when the shape of each of the plurality of connection members 120 as viewed from the upper surface side of the connection member 120 is substantially triangular, the extension mechanism 10 is inside the body portion 204 in the positional relationship as shown in FIG. 13B. It is preferred that the Specifically, one side on the back side of the robot 20 and one side (the same one of the three sides) of each connecting member 120 are substantially parallel, and each connecting member 120 is directed to the front of the robot 20.
  • the telescopic mechanism 10 is disposed inside the body portion 204 in such a positional relationship as to be convex.
  • the telescopic mechanism 10 is disposed inside the body portion 204 in such a positional relationship that each connecting member 120 is convex toward the front of the robot 20 when viewed from above the robot 20. preferable. Furthermore, as shown to FIG. 13B, it is more preferable that one shoulder joint 220 is arrange
  • the robot 20 often works in front of the body using two arms.
  • the double arms for example, the first upper arm 206a and the second upper arm 206b
  • the robot 20 can easily perform the two-arm work, and the work can be more stabilized.
  • the telescopic mechanism 10 may be disposed inside the neck portion 202 so that the telescopic mechanism 10 can expand and contract along the axial direction of the neck portion 202 of the robot 20.
  • the length of the neck portion 202 is increased by the extension mechanism 10 extending along the predetermined extension direction (z-axis direction) in response to the drive of the actuator 130.
  • the various sensors can sense a higher space.
  • the inside of the upper arms 206 is expanded or contracted so that the expansion and contraction mechanism 10 can expand and contract along the axial direction of each of the first upper arm 206a and the second upper arm 206b.
  • a mechanism 10 may be arranged.
  • the inside of the upper arm 206 is positioned such that the connection member 120a on which the main body 1300 of the actuator 130 is installed is on the shoulder joint 220 side (not on the end effector 210 side).
  • the telescopic mechanism 10 is disposed.
  • the center of gravity associated with the actuator 130 can be concentrated on the shoulder joint 220 side. Therefore, there is an advantage that the inertia when the robot 20 swings the first upper arm 206a and the second upper arm 206b is smaller.
  • the robot 20 when the extension mechanism 10 is arranged on each of the first upper arm 206a and the second upper arm 206b as described above, the robot 20 includes the first forearm 208a and the second forearm 208b. , And may not have two elbow joints 222. That is, the first upper arm portion 206a may be directly connected to the first end effector 210a, and the second upper arm portion 206b may be directly connected to the second end effector 210b.
  • the telescopic mechanism 10 can expand and contract along the axial direction of each of the two legs.
  • the extension mechanism 10 may be disposed inside the two legs.
  • the expansion and contraction mechanism 10 is disposed only inside one type of part of the robot 20 has been mainly described, the application example 1 is not limited to this example.
  • the telescopic mechanism 10 may be disposed inside any two or more of the body 204, the neck 202, the two upper arms 206, and the two legs.
  • each portion (such as the spine, neck, arms, and legs) of the humanoid robot 20 is lightweight and has high output and high expansion ratio. It can be configured as follows.
  • Application Example 2 is an example in which the expansion and contraction mechanism 10 according to the present embodiment is applied to a four-legged robot.
  • the expansion and contraction mechanisms 10 can be arranged such that the expansion and contraction mechanism 10 can expand and contract along the axial direction of the legs.
  • the shape of each of the plurality of connection members 120 included in the expansion and contraction mechanism 10 as viewed from the upper surface side of the connection member 120 is substantially a triangle.
  • one side of the front side of the front leg and one side (the same of the three sides) of each connecting member 120 are substantially parallel.
  • the telescopic mechanism 10 is disposed inside the front leg in such a positional relationship that each connecting member 120 is convex toward the rear of the four-legged robot. Furthermore, for each of the two rear legs of the four legs, one side on the rear side of the rear legs and one side (the same of the three sides) of each connecting member 120 are The telescopic mechanism 10 is preferably disposed inside the rear leg in such a positional relationship that the respective connection members 120 are substantially parallel and that the connection members 120 are convex toward the front of the four-legged robot.
  • the telescopic mechanism 10 may be disposed inside the torso portion of the four-legged robot.
  • the telescopic mechanism 10 may be disposed within the body (for example, as a spine) so that the telescopic mechanism 10 can expand and contract along the axial direction of the spine in the body.
  • the shape of each of the plurality of connection members 120 included in the expansion and contraction mechanism 10 as viewed from the upper surface side of the connection member 120 is substantially a triangle.
  • one side on the back side of the torso portion and one side (the same one of the three sides) of each connecting member 120 are substantially parallel, and each connecting member 120 is directed to the belly side of the torso portion.
  • the telescopic mechanism 10 may be disposed inside the body in such a positional relationship as to be convex toward the inside. According to this configuration, the area of the back of the four-footed robot is expanded by the extension mechanism 10 extending along the predetermined extension direction (that is, the direction of the spine) according to the drive of the actuator 130. Therefore, it becomes easier to put more load on the back of the four-legged robot and load more heavy load.
  • each connection member 120 is directed to the back side of the body portion.
  • the telescopic mechanism 10 may be disposed inside the body in such a positional relationship as to be convex. According to this configuration, when the four-legged robot is lowered to the ground, the posture of the four-legged robot can be more stabilized.
  • the telescopic mechanism 10 is, for example, a central processing unit (CPU) or a graphics processing unit (GPU). It may be configured to include a processor. In this case, driving of the actuator 130 can be appropriately controlled by the processor of the control device performing arithmetic processing in accordance with a predetermined program.
  • the specific device configuration of the control device is not limited.
  • the control device may be a control board on which the processor and a memory (for example, a random access memory (RAM) or a read only memory (ROM)) are mounted.
  • control device may be installed inside the extension mechanism 10, the robot 20 and / or the four-legged robot.
  • control device may be installed inside an information processing device which is installed outside these machines and which can communicate with these machines by wired communication or wireless communication.
  • the information processing apparatus may be, for example, a server, a general-purpose PC (Personal Computer), a mobile phone such as a smartphone, a tablet terminal, a wearable device (for example, an HMD (Head Mounted Display)), or another robot (for example, a human type). It may be a robot, a quadruped robot, or an autonomous vehicle.
  • the ends of a plurality of link members are configured to be sequentially connected so as to be able to pivot relative to one another, and at least three links that expand and contract in parallel by changing the angle formed by the link members connected to each other Structure,
  • a plurality of connecting members coupled to each of the at least three link structures; Equipped with The plurality of connection members include a first connection member on which a main body of the actuator is installed, and a second connection member connected to an output shaft of the actuator. The second connection member moves in a predetermined expansion / contraction direction parallel to a direction in which the at least three link structures expand / contract in response to the drive of the actuator.
  • each of the plurality of connection members is arranged hierarchically along the predetermined telescopic direction.
  • the angle formed by the mutually connected link members constituting each of the at least three link structures changes as the second connection member moves along the predetermined expansion / contraction direction.
  • the telescopic mechanism as described in 2).
  • Each of the plurality of link members is connected to an outer peripheral surface of one of the plurality of connection members corresponding to the link member,
  • the plurality of link members include a first link member coupled with an outer peripheral surface of the first connection member, and a second link member coupled with an outer peripheral surface of the second connection member,
  • the shapes of the first link members included in each of the at least three link structures are substantially the same.
  • the telescopic mechanism according to (3) wherein the shapes of the second link members included in each of the at least three link structures are substantially the same.
  • the first link members included in each of the at least three link structures are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the first connection member,
  • the expansion and contraction according to (4) wherein the second link members included in each of the at least three link structures are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the second connection member.
  • mechanism (6)
  • the outer peripheral surface of the first connection member is provided with at least three coupling portions to be coupled with the first link member included in each of the at least three link structures,
  • the at least three links include a first link and a second link, and
  • the distance between the first connecting portion and the center of the first connecting member and the distance between the second connecting portion and the center of the first connecting member are substantially the same. Stretching mechanism described.
  • the number of the at least three link structures is three,
  • the first connecting member has at least one hole penetrating in the axial direction of the first connecting member at a position separated from the installation area of the main body of the actuator.
  • each of the plurality of connection members is disposed to be orthogonal to the predetermined telescopic direction and to be parallel to each other.
  • the telescopic mechanism according to (12), wherein the predetermined telescopic direction is parallel to an axial direction of an output shaft of the actuator.
  • the telescopic mechanism according to (13), wherein the actuator is a linear actuator.
  • the body portion of the actuator includes a motor, The output shaft of the actuator is a ball screw having one end connected to the motor, The nut of the ball screw is connected to the second connection member, and moves along the axial direction of the ball screw according to the drive of the motor.
  • the plurality of connection members further include a third connection member disposed on the opposite side of the first connection member with respect to the second connection member,
  • the plurality of link members further include a third link member coupled to the third connection member,
  • the longitudinal length of the first link member is smaller than the longitudinal length of the second link member and the longitudinal length of the third link member (15).
  • the first link member is rod-shaped, The telescopic mechanism according to (16), wherein the third link member is bent at a connection portion connected to the third connection member.
  • the number of the at least three link structures is six, Link members located in the same layer included in each of the two link structures adjacent to each other in the two link structures are at least partially overlapped in the radial direction from the center of the first connection member
  • the telescopic mechanism according to any one of (4) to (17), which is arranged as follows. (19) For each of the two adjacent link structures, link members located in the same layer included in each of the two link structures are further arranged in a positional relationship such that they cross in the predetermined expansion and contraction direction. The telescopic mechanism as described in said (18).
  • a first elastic member configured to be elastically deformed along the predetermined expansion and contraction direction is disposed, or Between at least one of the at least three first link members and the first connection member, each is configured to be elastically deformed along the pivoting direction of the first link member.
  • the telescopic mechanism according to any one of (13) to (19), wherein the second elastic member is disposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

[Problem] To propose an extending and retracting mechanism with which it is possible to improve spatial efficiency when extending and retracting operations are performed. [Solution] This extending and retracting mechanism is provided with at least three link structures which are each configured by sequentially coupling ends of a plurality of link members to one another in such a way as to be capable of mutual rotation, and which extend and retract parallel to one another as a result of a change in an angle between the link members that are coupled to one another, and a plurality of connecting members which are coupled to each of the at least three link structures, wherein the plurality of connecting members include a first connecting member on which a main body portion of an actuator is installed, and a second connecting member coupled to an output shaft of the actuator, and wherein, in accordance with the driving of the actuator, the second connecting member moves in a prescribed extending and retracting direction which is parallel to a direction in which the at least three link structures extend and retract.

Description

伸縮機構Telescopic mechanism
 本開示は、伸縮機構に関する。 The present disclosure relates to a telescopic mechanism.
 従来、ロボットの腕部や脚部の伸縮動作を実現するために、回転機構や直動機構が用いられている。例えば、腕部や脚部をヒトを模した構造とする場合には、その関節部が回転機構によって構成される場合が多い。自然な見た目が得られ、また部品点数も少なくすることができるからである。 2. Description of the Related Art Conventionally, a rotation mechanism or a linear motion mechanism is used to realize extension and contraction operations of a robot arm and legs. For example, in the case where the arms and legs have a structure that imitates a human, the joint is often configured by a rotation mechanism. A natural appearance can be obtained, and the number of parts can be reduced.
 例えば、下記特許文献1には、複数のブロック体を直列に連結してアーム部を構成し、かつ、そのブロック体群を巻き取るようにして当該アーム部の伸縮動作を実現する直動機構が記載されている。 For example, in Patent Document 1 below, there is provided a linear motion mechanism which connects a plurality of block bodies in series to constitute an arm portion, and winds up the group of block bodies to realize the expansion and contraction operation of the arm portion. Have been described.
特許第5317362号公報Patent No. 5317362
 しかしながら、特許文献1に記載の直動機構では、巻き取ったブロック体を格納するためのスペースが必要となるため、空間効率が低い。 However, the linear movement mechanism described in Patent Document 1 requires a space for storing the wound block body, so the space efficiency is low.
 そこで、本開示では、伸縮動作が行われる際の空間効率を向上させることが可能な、新規かつ改良された伸縮機構を提案する。 Thus, the present disclosure proposes a new and improved extension mechanism that can improve the space efficiency when the extension operation is performed.
 本開示によれば、複数のリンク部材の端同士が互いに回動可能に順次連結されて構成され、かつ、互いに連結された前記リンク部材同士がなす角が変化することにより、それぞれが平行に伸縮する、少なくとも3つのリンク構造と、前記少なくとも3つのリンク構造の各々に連結する複数の接続部材と、を備え、前記複数の接続部材は、アクチュエータの本体部が設置されている第1の接続部材と、前記アクチュエータの出力軸に連結されている第2の接続部材とを含み、前記第2の接続部材は、前記アクチュエータの駆動に応じて、前記少なくとも3つのリンク構造が伸縮する方向と平行である所定の伸縮方向に沿って移動する、伸縮機構が提供される。 According to the present disclosure, the ends of the plurality of link members are configured to be sequentially and rotatably connected to each other, and when the angles formed by the link members connected to each other change, the respective extend and contract in parallel. And at least three link structures, and a plurality of connection members coupled to each of the at least three link structures, the plurality of connection members being a first connection member on which a body portion of the actuator is installed. And a second connection member connected to the output shaft of the actuator, wherein the second connection member is parallel to the direction in which the at least three link structures expand and contract in response to the drive of the actuator. A telescopic mechanism is provided that moves along a predetermined telescopic direction.
 以上説明したように本開示によれば、伸縮動作が行われる際の空間効率を向上させることが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、又は上記の効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, it is possible to improve the space efficiency when the expansion and contraction operation is performed. Note that the above-mentioned effects are not necessarily limited, and, along with or instead of the above-mentioned effects, any of the effects shown in the present specification or other effects that can be grasped from the present specification May be played.
本実施形態に係る伸縮機構10の外観構成の例を示した図である。It is the figure which showed the example of the external appearance structure of the expansion-contraction mechanism 10 which concerns on this embodiment. 伸縮機構10の伸縮動作を説明するための図である。FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10. 伸縮機構10の伸縮動作を説明するための図である。FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10. 伸縮機構10の伸縮動作を説明するための図である。FIG. 6 is a diagram for explaining the expansion and contraction operation of the expansion and contraction mechanism 10. 本実施形態に係る伸縮機構10に関して、接続部材120を平面に展開した形状を概略的に示した図である。It is the figure which showed roughly the shape which developed the connection member 120 on the plane regarding the expansion-contraction mechanism 10 which concerns on this embodiment. 接続部材120aの上面側から見た接続部材120aの形状の一例を示した図である。It is the figure which showed an example of the shape of the connection member 120a seen from the upper surface side of the connection member 120a. 接続部材120aの上面側から見た接続部材120aの形状の一例を示した図である。It is the figure which showed an example of the shape of the connection member 120a seen from the upper surface side of the connection member 120a. 本実施形態に係るボールねじ1302の長さと、伸縮機構10の長さとの関係を示した図である。It is the figure which showed the relationship between the length of the ball screw 1302 and the length of the expansion-contraction mechanism 10 which concern on this embodiment. 本実施形態の変形例1に係る各リンク構造110を構成する各リンク部材111の長さの例を示した図である。It is the figure which showed the example of the length of each link member 111 which comprises each link structure 110 which concerns on the modification 1 of this embodiment. 本実施形態の変形例1に係る各リンク構造110を構成する各リンク部材111の長さの例を示した図である。It is the figure which showed the example of the length of each link member 111 which comprises each link structure 110 which concerns on the modification 1 of this embodiment. 本実施形態の変形例2に係る、伸縮機構10の内部において圧縮ばね140aおよびねじりばね140bが配置される例を示した図である。It is the figure which showed the example by which the compression spring 140a and the torsion spring 140b are arrange | positioned inside the expansion-contraction mechanism 10 based on the modification 2 of this embodiment. 本実施形態の変形例3に係る、屈曲した形状のリンク部材を含むリンク構造110の例を示した図である。It is a figure showing an example of link structure 110 containing a link member of bent shape concerning modification 3 of this embodiment. 本実施形態の変形例5に係る、複数のリンク構造110として平行リンクの構造が用いられる例を示した図である。It is the figure which showed the example as which the structure of a parallel link is used as the some link structure 110 based on the modification 5 of this embodiment. 同変形例5に係る、複数のリンク構造110として平行リンクの構造が用いられる例を示した図である。It is the figure which showed the example as which the structure of a parallel link is used as the several link structure 110 based on the modification 5. FIG. 本実施形態の変形例5に係る、リンク構造110ごとのリンク部材の数が同一ではないように構成された伸縮機構10の例を示した図である。It is the figure which showed the example of the expansion-contraction mechanism 10 comprised so that the number of link members for every link structure 110 may not be the same which concerns on the modification 5 of this embodiment. 本実施形態の変形例6に係る、隣接する2つのリンク構造110ごとに、当該2つのリンク構造110が交差する構造により構成された伸縮機構10の例を示した図である。It is the figure which showed the example of the expansion-contraction mechanism 10 comprised by the structure which the said two link structures 110 cross every two adjacent link structures 110 based on the modification 6 of this embodiment. 本実施形態の適用例1に係るロボット20の外観構成を概略的に示した図である。It is the figure which showed roughly the external appearance structure of the robot 20 which concerns on the example of application of this embodiment. 同適用例1に係るロボット20の胴体部204の内部に伸縮機構10が配置される例を示した図である。FIG. 18 is a view showing an example in which the extension and contraction mechanism 10 is disposed inside the body portion 204 of the robot 20 according to the first application example. ロボット20の前方へ向けて凸になるように、胴体部204の内部に伸縮機構10が配置される例を示した図である。FIG. 7 is a view showing an example in which the expansion and contraction mechanism 10 is disposed inside the body portion 204 so as to be convex toward the front of the robot 20. 同適用例1に係るロボット20の首部202の内部に伸縮機構10が配置される例を示した図である。FIG. 7 is a view showing an example in which an expansion and contraction mechanism 10 is disposed inside a neck portion 202 of a robot 20 according to the first application example. 同適用例1に係るロボット20の2本の上腕部206の内部に伸縮機構10が配置される例を示した図である。FIG. 18 is a view showing an example in which the extension and contraction mechanism 10 is disposed inside the two upper arm portions 206 of the robot 20 according to the first application example.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成要素を、必要に応じて接続部材120aおよび接続部材120bのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、接続部材120aおよび接続部材120bを特に区別する必要が無い場合には、単に接続部材120と称する。 Further, in the present specification and the drawings, a plurality of components having substantially the same functional configuration may be distinguished by attaching different alphabets to the same reference numerals. For example, a plurality of components having substantially the same functional configuration are distinguished as the connection member 120 a and the connection member 120 b as necessary. However, when it is not necessary to distinguish each of a plurality of components having substantially the same functional configuration, only the same reference numerals will be given. For example, the connection member 120a and the connection member 120b are simply referred to as the connection member 120 when it is not necessary to distinguish them.
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
 1.背景
 2.実施形態の詳細な説明
 3.変形例
 4.適用例
 5.むすび
In addition, the “mode for carrying out the invention” will be described in the order of items shown below.
1. Background Detailed Description of Embodiments 3. Modifications 4. Application example 5. The end
<<1.背景>>
 まず、本開示の特徴を明確に示すために、本開示の実施形態に係る伸縮機構10を創作するに至った背景について説明する。
<< 1. Background >>
First, in order to clearly show the features of the present disclosure, the background on which the telescopic mechanism 10 according to the embodiment of the present disclosure has been created will be described.
 従来、ロボットの腕部や脚部の伸縮動作を実現するために、回転機構や直動機構が用いられている。例えば、腕部や脚部をヒトを模した構造とする場合には、その関節部が回転機構によって構成される場合が多い。しかしながら、かかる構成では、手先や足先の目標動作を実現する上では、関節部が周囲に干渉してしまい、円滑な動作が阻害されることが懸念される。例えば、脚部の関節部が回転機構によって構成されたヒト型ロボットが階段や梯子を昇降する場合を想定すると、その膝関節に当たる部位は屈曲動作することとなり、屈曲された当該部位が前に突き出される形になり、階段や梯子と干渉し得る。 2. Description of the Related Art Conventionally, a rotation mechanism or a linear motion mechanism is used to realize extension and contraction operations of a robot arm and legs. For example, in the case where the arms and legs have a structure that imitates a human, the joint is often configured by a rotation mechanism. However, in such a configuration, in order to achieve the target motion of the hand or foot, the joint portion interferes with the surroundings, and there is a concern that the smooth motion may be inhibited. For example, assuming that a humanoid robot whose leg joints are configured by a rotation mechanism moves up and down stairs and ladders, the part corresponding to the knee joint will be bent and the bent part protrudes forward. And can interfere with stairs and ladders.
 かかる懸念に対しては、腕部や脚部を直動機構によって構成し、当該直動機構によって腕部や脚部を伸縮動作させる方法も考えられる。直動機構としては、例えばスライダ構造やパンタグラフ構造を利用したものが知られている。または、複数のブロック体を直列に連結してアーム部を構成し、そのブロック体群を巻き取るようにして当該アーム部の伸縮動作を実現する直動機構が提案されている。 To address this concern, a method is also conceivable in which the arms and legs are constituted by a linear movement mechanism, and the arms and legs are extended and contracted by the linear movement mechanism. As a linear motion mechanism, for example, one using a slider structure or a pantograph structure is known. Alternatively, a linear motion mechanism has been proposed in which a plurality of block bodies are connected in series to constitute an arm portion, and the block body group is wound to realize the expansion and contraction operation of the arm portion.
 しかしながら、既存のスライダ構造では、高い伸縮率を得ることは難しく、またその重量も比較的大きなものとなる傾向がある。また、既存のパンタグラフ構造では、高い伸縮率を得ることができるものの、高い強度を得ることが困難である。更には、既存の直動機構では、巻き取ったブロック体を格納するためのスペースが必要となるため、空間効率が悪く、例えば移動ロボットに適用することが困難である等、その用途が限定的だった。 However, in the existing slider structure, it is difficult to obtain a high expansion ratio, and the weight tends to be relatively large. Moreover, in the existing pantograph structure, although a high expansion ratio can be obtained, it is difficult to obtain high strength. Furthermore, the existing linear motion mechanism requires a space for storing the wound block body, so space efficiency is poor, and its application is limited, for example, it is difficult to apply to a mobile robot. was.
 そこで、上記事情を一着眼点にして、本実施形態に係る伸縮機構10を創作するに至った。伸縮機構10は、複数のリンク部材111の端同士が互いに回動可能に順次連結されて構成され、かつ、互いに連結されたリンク部材111同士がなす角が変化することにより、それぞれが平行に伸縮する、少なくとも3つのリンク構造110と、少なくとも3つのリンク構造110の各々に連結する複数の接続部材120と、を備える。当該複数の接続部材120は、アクチュエータ130の本体部が設置されている第1の接続部材120aと、アクチュエータ130の出力軸に連結されている第2の接続部材120bとを含む。そして、第2の接続部材120は、アクチュエータ130の駆動に応じて、少なくとも3つのリンク構造110が伸縮する方向と平行である所定の伸縮方向に沿って移動する。かかる構成によれば、より簡易な構成で、より高い強度及びより高い伸縮率を実現することができる。以下、このような本実施形態の内容について順次詳細に説明する。 Therefore, the telescopic mechanism 10 according to the present embodiment has been created in consideration of the above circumstances. In the expansion and contraction mechanism 10, ends of the plurality of link members 111 are sequentially and rotatably connected to one another, and the angles formed by the link members 111 connected to one another are changed to extend and contract in parallel. And at least three link structures 110, and a plurality of connection members 120 connected to each of the at least three link structures 110. The plurality of connection members 120 include a first connection member 120 a on which the main body of the actuator 130 is installed, and a second connection member 120 b connected to the output shaft of the actuator 130. Then, in response to the drive of the actuator 130, the second connection member 120 moves along a predetermined expansion and contraction direction parallel to the expansion and contraction direction of the at least three link structures 110. According to this configuration, higher strength and higher expansion and contraction rate can be realized with a simpler configuration. Hereinafter, the contents of the present embodiment will be sequentially described in detail.
<<2.実施形態の詳細な説明>>
 <2-1.構成>
 まず、図1~図3等を参照して、本実施形態に係る伸縮機構10の構成、および、伸縮機構10の伸縮動作について説明する。図1は、伸縮機構10の外観構成の例を示した図である。図2A~図2Cは、伸縮機構10が伸縮する様子(伸縮動作)を示した図である。図3は、伸縮機構10に関して、後述する接続部材120を平面に展開した形状を概略的に示した図である。
<< 2. Detailed Description of Embodiments >>
<2-1. Configuration>
First, the configuration of the extension mechanism 10 according to the present embodiment and the extension operation of the extension mechanism 10 will be described with reference to FIGS. 1 to 3 and the like. FIG. 1 is a view showing an example of the appearance configuration of the extension mechanism 10. As shown in FIG. 2A to 2C are diagrams showing how the expansion and contraction mechanism 10 is expanded and contracted (expansion and contraction operation). FIG. 3 is a view schematically showing a shape in which a connection member 120 described later is developed in a plane with respect to the expansion and contraction mechanism 10.
 図1~図2Cに示すように、伸縮機構10は、一の方向に対して伸縮可能な1自由度の伸縮機構(すなわち、直動伸縮機構)である。伸縮機構10は、いわゆるマジックハンド・パンタグラフを改良した機構に位置付けられ得る。以下では、伸縮機構10の伸縮方向をz軸方向とも呼称する。また、z軸方向と垂直な平面内における互いに直交する2方向をそれぞれ、x軸方向及びy軸方向とも呼称する。 As shown in FIGS. 1 to 2C, the expansion and contraction mechanism 10 is an expansion and contraction mechanism with one degree of freedom (that is, a linear motion expansion and contraction mechanism) that can expand and contract in one direction. The telescopic mechanism 10 can be positioned as an improved mechanism of a so-called magic hand pantograph. Hereinafter, the expansion and contraction direction of the expansion and contraction mechanism 10 is also referred to as a z-axis direction. Further, two directions orthogonal to each other in a plane perpendicular to the z-axis direction are also referred to as an x-axis direction and a y-axis direction, respectively.
 図1に示したように、伸縮機構10は、z軸方向に伸縮可能な3つのリンク構造110(すなわち、リンク構造110‐1、リンク構造110‐2、および、リンク構造110‐3)、複数の接続部材120、および、アクチュエータ130を有する。後述するように、複数の接続部材120によって当該3つのリンク構造110が互いに接続されることにより、伸縮機構10が構成される。 As shown in FIG. 1, the telescopic mechanism 10 includes three link structures 110 (i.e., a link structure 110-1, a link structure 110-2, and a link structure 110-3) that can extend and contract in the z-axis direction , And an actuator 130. As described later, the three link structures 110 are connected to each other by the plurality of connection members 120, whereby the expansion and contraction mechanism 10 is configured.
 なお、本明細書及び図面において、個々のリンク構造110を区別する場合には、例えば、リンク構造110‐1、リンク構造110‐2、および、リンク構造110‐3などのように、それぞれに異なる符号を付して記載する。また、個々のリンク構造110を特に区別する必要がない場合には、単にリンク構造110と記載する。 In the present specification and the drawings, when the individual link structures 110 are distinguished, they differ from one another such as, for example, the link structure 110-1, the link structure 110-2, and the link structure 110-3. Write the code. Also, when it is not necessary to distinguish the individual link structures 110, the link structures 110 are simply described.
 {2-1-1.リンク構造110}
 図1に示したように、3つのリンク構造110の構成は、それぞれ略同一であり得る。各リンク構造110は、複数のリンク部材111の端同士がピン112によって回動可能に順次連結されて構成される。
{2-1-1. Link structure 110}
As shown in FIG. 1, the configurations of the three link structures 110 may be substantially identical to one another. The respective link structures 110 are configured such that the ends of the plurality of link members 111 are sequentially connected rotatably by pins 112.
 図1および図3に示した例では、リンク構造110は、4つのリンク部材111から構成されている。図1および図3に示したように、各リンク構造110を構成する複数のリンク部材111のうち、同じ階層に位置するリンク部材111の形状は、それぞれ略同一であり得る。例えば、リンク構造110‐1に含まれるリンク部材111‐1aの形状、リンク構造110‐2に含まれるリンク部材111‐2aの形状、および、リンク構造110‐3に含まれるリンク部材111‐3aの形状は、略同一である。一例として、各リンク構造110を構成する全てのリンク部材111の各々の形状は、全て略同一であってもよい。また、図1および図3等に示したように、複数のリンク部材111の各々の形状は、それぞれ、略同一の長尺な板状(または棒状)であり得る。 In the example shown in FIGS. 1 and 3, the link structure 110 is composed of four link members 111. As shown in FIG. 1 and FIG. 3, among the plurality of link members 111 constituting each link structure 110, the shapes of the link members 111 located in the same layer may be substantially the same. For example, the shape of the link member 111-1a included in the link structure 110-1, the shape of the link member 111-2a included in the link structure 110-2, and the shape of the link member 111-3a included in the link structure 110-3. The shapes are substantially identical. As an example, the shapes of each of all the link members 111 constituting each link structure 110 may be substantially the same. Moreover, as shown in FIG. 1 and FIG. 3 etc., the shape of each of the plurality of link members 111 may be substantially the same long plate shape (or rod shape).
 なお、図1に示した例では、z軸方向に関してより後端側(つまり、図1の上側)に位置するリンク部材111ほど、より小さい番号の階層に位置し得る。例えば、リンク部材111‐1aは、1番目の階層に位置し、リンク部材111‐1bは、2番目の階層に位置し、かつ、リンク部材111‐1cは、3番目の階層に位置する。ここで、リンク部材111‐1aは、本開示に係る第1のリンク部材の一例である。また、リンク部材111‐1bは、本開示に係る第2のリンク部材の一例である。 In the example illustrated in FIG. 1, the link member 111 located closer to the rear end side (that is, the upper side in FIG. 1) in the z-axis direction may be located in a hierarchy of smaller numbers. For example, the link member 111-1a is located in the first hierarchy, the link member 111-1b is located in the second hierarchy, and the link member 111-1c is located in the third hierarchy. Here, the link member 111-1a is an example of a first link member according to the present disclosure. The link member 111-1b is an example of a second link member according to the present disclosure.
 以下、リンク構造110の構成についてさらに詳細に説明する。例えば、隣り合う2つのリンク部材111の板面の端同士が重ね合わされ、かつ、その重ね合わされた部位がピン112で留められることにより、当該2つのリンク部材111が互いに回動可能に連結される。以下では、説明の便宜のため、隣り合う2つのリンク部材111の各々を、「第1のリンク部材111」および「第2のリンク部材111」とも称する。 Hereinafter, the configuration of the link structure 110 will be described in more detail. For example, the two link members 111 are pivotally connected to each other by overlapping the ends of the plate surfaces of two adjacent link members 111 and fastening the overlapped portions with a pin 112. . Hereinafter, for convenience of description, each of the two adjacent link members 111 is also referred to as “first link member 111” and “second link member 111”.
 より具体的には、隣り合う2つのリンク部材111のうちの一方(例えば、第2のリンク部材111)の板面の両端のうちの、当該2つのリンク部材111のうちの他方(例えば、第1のリンク部材111)が連結している側とは反対側の端において、さらに別のリンク部材111(以下では、説明の便宜のため、第3のリンク部材111とも称する)の板面の一端が重ね合わされ、かつ、その重ね合わされた部位がピン112で留められ得る。このように、各リンク部材111の端同士が順次連結されることにより、リンク構造110が構成される。 More specifically, the other of the two link members 111 among the two ends of the plate surface of one of the two adjacent link members 111 (for example, the second link member 111) (for example, the second link member 111) One end of the plate surface of another link member 111 (hereinafter also referred to as a third link member 111 for convenience of explanation) at the end opposite to the side where the first link member 111 is connected Can be superimposed and the superimposed portion can be fastened with a pin 112. Thus, the link structure 110 is configured by sequentially connecting the ends of the link members 111.
 例えば、第3のリンク部材111が第2のリンク部材111に対して重ね合わされる面は、第1のリンク部材111が第2のリンク部材111に対して重ね合わされる面と同じ面になるように、これらのリンク部材111は連結される。つまり、第2のリンク部材111に含まれる同一の板面に対して、第1のリンク部材111及び第3のリンク部材111がそれぞれ重ね合わされて、連結される。このような連結方法が用いられることにより、リンク構造110における、リンク部材111同士が重ね合わされる方向の厚みは、リンク部材111が2つだけ重なり合った分の厚みと同じになるので、リンク構造110を薄く形成することができる。さらに、伸縮機構10は、これらのリンク構造110が組み合わされて構成されるので、伸縮機構10自体も小型化することができる。但し、本実施形態はかかる例に限定されず、第2のリンク部材111に対して第1のリンク部材111及び第3のリンク部材111が重ね合わされる板面は互いに異なっていてもよい。 For example, the surface on which the third link member 111 is superimposed on the second link member 111 is the same surface as the surface on which the first link member 111 is superimposed on the second link member 111 These link members 111 are connected to each other. That is, the first link member 111 and the third link member 111 are respectively superimposed and connected to the same plate surface included in the second link member 111. By using such a connection method, the thickness of the link structure 110 in the direction in which the link members 111 overlap with each other is equal to the thickness of the two overlapping link members 111. Can be formed thin. Furthermore, since the telescopic mechanism 10 is configured by combining these link structures 110, the telescopic mechanism 10 itself can be miniaturized. However, the present embodiment is not limited to this example, and the plate surfaces on which the first link member 111 and the third link member 111 are superimposed on the second link member 111 may be different from each other.
 さらに、互いに連結されたリンク部材111同士がなす角が変化することにより、例えば図2A~図2Cに示したように、各リンク構造110は、あたかもパンタグラフ構造(マジックハンド構造とも呼ばれる)のように、それぞれ平行に伸縮する。例えば、図2Aに示したように、複数のリンク部材111の延伸方向がz軸方向と略垂直な方向に近付くように(すなわち、互いに連結されたリンク部材111同士がなす角θ(以下、リンク部材連結角θともいう)が0度に近付くように)、リンク構造110を動作させることにより、当該リンク構造110は、z軸方向に関して収縮し得る。一方、図2Cに示したように、複数のリンク部材111の延伸方向がz軸方向と略平行な方向に近付くように(すなわち、リンク部材連結角θが180度に近付くように)、リンク構造110を動作させることにより、当該リンク構造110は、z軸方向に関して伸展し得る。 Furthermore, as shown in FIGS. 2A to 2C, for example, as shown in FIGS. 2A to 2C, each link structure 110 has a pantograph structure (also referred to as a magic hand structure) by changing the angle formed by the link members 111 connected to each other. , Each stretches in parallel. For example, as shown in FIG. 2A, the extending directions of the plurality of link members 111 approach a direction substantially perpendicular to the z-axis direction (that is, an angle .theta. The link structure 110 can be contracted in the z-axis direction by operating the link structure 110 such that the member connection angle θ approaches 0 °). On the other hand, as shown in FIG. 2C, the link structure is made such that the extending directions of the plurality of link members 111 approach a direction substantially parallel to the z-axis direction (that is, the link member connection angle θ approaches 180 degrees). By operating 110, the link structure 110 can extend in the z-axis direction.
 ここで、上記の伸縮動作では、リンク構造110を構成する複数のリンク部材111は、略1つの平面(以下では、説明の便宜のため、伸縮動作平面とも呼称する)上で動作し得る。伸縮動作平面は、リンク構造110において、一のリンク部材111に対して他のリンク部材111をピン112を介して回動させる際の回転軸方向(すなわち、ピン112の挿通方向)と直交する平面に対応し得る。また、伸縮動作平面は、リンク部材111の延伸方向及びリンク構造110の伸縮方向(つまりz軸方向)の両方に平行な平面であり得る。 Here, in the expansion and contraction operation described above, the plurality of link members 111 constituting the link structure 110 can operate on substantially one plane (hereinafter, also referred to as an expansion and contraction operation plane for the convenience of description). The expansion and contraction operation plane is a plane orthogonal to the rotation axis direction (that is, the insertion direction of the pin 112) in rotating the other link member 111 with respect to one link member 111 via the pin 112 in the link structure 110. It can correspond to Also, the telescopic operation plane may be a plane parallel to both the extension direction of the link member 111 and the extension direction of the link structure 110 (that is, the z-axis direction).
 換言すれば、3つのリンク構造110は、z軸方向において略同一の位置に、その伸縮方向がいずれもz軸方向を向いた状態で、互いに接しないように、かつ、z軸方向に延伸する所定の空間を取り囲むように、複数の接続部材120の各々と連結され得る。例えば、当該3つのリンク構造110の各々に対応する伸縮動作平面がx-y平面内において略正三角形を構成するように、3つのリンク構造110は配置される。 In other words, the three link structures 110 extend in the z-axis direction so that they do not touch each other at substantially the same position in the z-axis direction with all of the expansion and contraction directions facing the z-axis direction. A plurality of connecting members 120 may be connected to surround a predetermined space. For example, the three link structures 110 are arranged such that the telescopic operation plane corresponding to each of the three link structures 110 constitutes a substantially equilateral triangle in the xy plane.
 なお、3つのリンク構造110のz軸方向における位置が互いにずれていると、伸縮機構10の端部においていずれかのリンク構造110が突出したような形状となる。そこで、伸縮機構10の小型化の観点からは、これら3つのリンク構造110は、そのz軸方向における位置が略同一になるように配置されることが好ましい。 When the positions of the three link structures 110 in the z-axis direction are shifted from each other, one of the link structures 110 is projected at the end of the extension mechanism 10. Therefore, from the viewpoint of reducing the size of the expansion and contraction mechanism 10, it is preferable that the three link structures 110 be arranged such that the positions in the z-axis direction are substantially the same.
 また、あるリンク構造110aを構成する少なくとも一つのリンク部材111の延伸方向と、別のリンク構造110bを構成する、当該少なくとも一つのリンク部材111に対応する各リンク部材111の延伸方向とが大きく異なる場合、3つのリンク構造が伸縮動作を行う際に、これらのリンク部材111同士が干渉する恐れがある。そこで、例えば図1に示したように、各リンク構造110を構成する各リンク部材111の延伸方向が、これら3つのリンク構造110間においてそれぞれ同じ方向となるように、3つのリンク構造110が配置されることが好ましい。例えば、3つの伸縮動作平面がx-y平面内において略正三角形を構成するように配置される場合、3つのリンク構造110は、z軸を中心として回転対称となるように配置されることが好ましい。このように配置されることにより、隣り合うリンク構造110間でのリンク部材111同士の干渉を避けやすくなる。従って、伸縮機構10のさらなる小型化が図れる。 Further, the extending direction of at least one link member 111 constituting a certain link structure 110a and the extending direction of each link member 111 corresponding to the at least one link member 111 constituting another link structure 110b are largely different. In this case, when the three link structures perform the expansion and contraction operation, there is a possibility that the link members 111 interfere with each other. Therefore, for example, as shown in FIG. 1, the three link structures 110 are arranged such that the extension direction of each link member 111 constituting each link structure 110 is the same direction among these three link structures 110. Preferably. For example, in the case where three expansion / contraction planes are arranged to form a substantially equilateral triangle in the xy plane, the three link structures 110 may be arranged to be rotationally symmetric about the z axis. preferable. By arranging in this manner, interference between the link members 111 between the adjacent link structures 110 can be easily avoided. Therefore, the miniaturization of the expansion and contraction mechanism 10 can be achieved.
 {2-1-2.接続部材120}
 図1に示したように、複数の接続部材120の各々は、その外周面において、これら3つのリンク構造110の各々に連結し得る。換言すれば、複数の接続部材120の各々は、これら3つのリンク構造110の間に介設され、かつ、これら3つのリンク構造110を互いに接続し得る。例えば、3つのリンク構造110の各々を構成する複数のリンク部材111の各々は、複数の接続部材120のうち、当該リンク部材111と一意に対応する一つの接続部材120の外周面に連結する。
{2-1-2. Connection member 120}
As shown in FIG. 1, each of the plurality of connection members 120 may be coupled to each of the three link structures 110 at its outer circumferential surface. In other words, each of the plurality of connection members 120 may be interposed between the three link structures 110 and may connect the three link structures 110 to each other. For example, each of the plurality of link members 111 constituting each of the three link structures 110 is connected to the outer peripheral surface of one of the plurality of connection members 120 that uniquely corresponds to the link member 111.
 図1に示したように、複数の接続部材120の各々は、3つのリンク構造110が伸縮する方向と平行である所定の伸縮方向に沿って階層的に配置され得る。例えば、複数の接続部材120の各々は、当該所定の伸縮方向と直交し、かつ、互いに平行になるようにそれぞれ配置される。ここで、当該所定の伸縮方向は、z軸方向と平行であり得る。また、後述するように、当該複数の接続部材120は、アクチュエータ130の駆動に応じて当該所定の伸縮方向に沿って移動し得る。 As shown in FIG. 1, each of the plurality of connection members 120 may be hierarchically arranged along a predetermined expansion / contraction direction parallel to the expansion / contraction direction of the three link structures 110. For example, each of the plurality of connection members 120 is arranged to be orthogonal to the predetermined expansion / contraction direction and to be parallel to each other. Here, the predetermined expansion and contraction direction may be parallel to the z-axis direction. Further, as described later, the plurality of connection members 120 can move along the predetermined expansion and contraction direction in response to the drive of the actuator 130.
 より具体的には、接続部材120は、1つのリンク構造110を構成するリンク部材111の数(図1に示した例では4つ)だけ設けられ得る。そして、当該複数の接続部材120が、z軸方向に沿って略等間隔で並べられ、かつ、各リンク部材111に対応する位置にそれぞれ配置される。 More specifically, the connection members 120 may be provided by the number (four in the example shown in FIG. 1) of the link members 111 constituting one link structure 110. Then, the plurality of connection members 120 are arranged at substantially equal intervals along the z-axis direction, and arranged at positions corresponding to the respective link members 111.
 図1に示したように、複数の接続部材120は、アクチュエータ130の本体部1300が設置されている第1の接続部材120と、アクチュエータ130の出力軸1302に連結されている第2の接続部材120とを含む。図1に示した例では、第1の接続部材120は、当該複数の接続部材120のうちの、一つの端に位置する接続部材120aである。但し、かかる例に限定されず、第1の接続部材120は、当該複数の接続部材120のうちの、両端に位置する接続部材120aおよび接続部材120dのいずれとも異なる接続部材120であってもよい。 As shown in FIG. 1, the plurality of connection members 120 are a first connection member 120 on which the main body 1300 of the actuator 130 is installed, and a second connection member connected to the output shaft 1302 of the actuator 130. And 120. In the example shown in FIG. 1, the first connection member 120 is a connection member 120 a located at one end of the plurality of connection members 120. However, the present invention is not limited to such an example, and the first connection member 120 may be a connection member 120 different from any of the connection members 120 a and the connection members 120 d located at both ends of the plurality of connection members 120. .
 以下では、第1の接続部材120が接続部材120aであり、かつ、第2の接続部材120は、接続部材120aと隣り合う接続部材120bである例を主として説明する。 Hereinafter, an example in which the first connection member 120 is the connection member 120a and the second connection member 120 is the connection member 120b adjacent to the connection member 120a will be mainly described.
 さらに、接続部材120ごとに、3つのリンク構造110の各々を構成する複数のリンク部材111のうち、当該接続部材120に連結する各リンク部材111は、当該接続部材120の外周面の周方向において互いに略等間隔に連結され得る。例えば、図1および図4A等に示したように、3つのリンク構造110の各々を構成する複数のリンク部材111のうちのリンク部材111a(より詳細には、リンク部材111‐1a、リンク部材111‐2a、および、リンク部材111‐3a)は、接続部材120aの外周面の周方向において互いに略等間隔に連結される。同様に、3つのリンク構造110の各々を構成する複数のリンク部材111のうちのリンク部材111b(より詳細には、リンク部材111‐1b、リンク部材111‐2b、および、リンク部材111‐2c)は、接続部材120aの外周面の周方向において互いに略等間隔に連結される。但し、本実施形態は、かかる例に限定されず、各リンク部材111は、当該接続部材120の外周面の周方向において互いに異なる間隔で連結されてもよい。 Furthermore, in each of the connection members 120, among the plurality of link members 111 constituting each of the three link structures 110, each link member 111 connected to the connection member 120 is in the circumferential direction of the outer peripheral surface of the connection member 120. They may be connected to each other at substantially equal intervals. For example, as shown in FIG. 1 and FIG. 4A etc., the link member 111a (more specifically, the link member 111-1a, the link member 111) among the plurality of link members 111 that configure each of the three link structures 110. The link 2a and the link member 111-3a are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the connection member 120a. Similarly, the link member 111b (more specifically, the link member 111-1b, the link member 111-2b, and the link member 111-2c) of the plurality of link members 111 constituting each of the three link structures 110. Are mutually connected at substantially equal intervals in the circumferential direction of the outer peripheral surface of the connection member 120a. However, the present embodiment is not limited to this example, and the link members 111 may be connected at mutually different intervals in the circumferential direction of the outer peripheral surface of the connection member 120.
 当該所定の伸縮方向から見た接続部材120の形状は、略三角形または略角丸三角形であり得る。図4Aおよび図4Bは、接続部材120aの上面側から見た(つまり、当該所定の伸縮方向から見た)接続部材120aの形状の一例をそれぞれ示した図である。例えば、図4Aに示したように、接続部材120の形状は、略正三角形であってもよい。または、図4Bに示したように、略二等辺三角形であってもよく、この場合、接続部材120aをより薄く形成することが可能になり得る。但し、これらの例に限定されず、接続部材120の形状は、例えば5角形や6角形など、他の多角形であってもよい。 The shape of the connection member 120 viewed from the predetermined expansion and contraction direction may be substantially triangular or substantially rounded triangle. FIGS. 4A and 4B are views respectively showing an example of the shape of the connection member 120a as viewed from the upper surface side of the connection member 120a (that is, viewed from the predetermined expansion and contraction direction). For example, as shown in FIG. 4A, the shape of the connection member 120 may be a substantially equilateral triangle. Alternatively, as shown in FIG. 4B, it may be a substantially isosceles triangle, and in this case, it may be possible to form the connecting member 120a thinner. However, the present invention is not limited to these examples, and the shape of the connection member 120 may be another polygon such as pentagon or hexagon.
 図4Aおよび図4Bに示したように、接続部材120aの略中心には、アクチュエータ130の設置領域(例えば、アクチュエータ130の設置用の孔など)が設けられており、かつ、当該設置領域にアクチュエータ130が設置(固定)される。かかる構成によれば、力のバランスを実現しやすくなる。 As shown in FIGS. 4A and 4B, an installation area of the actuator 130 (eg, a hole for installing the actuator 130, etc.) is provided substantially at the center of the connection member 120a, and the actuator in the installation area is provided. 130 is installed (fixed). According to this configuration, it is easy to realize balance of force.
 また、図4Aおよび図4Bに示したように、複数の接続部材120の各々では、設置領域1200から離隔した位置において、当該接続部材120の軸方向に貫通する少なくとも一つの孔1200が設けられ得る。 Also, as shown in FIGS. 4A and 4B, each of the plurality of connection members 120 may be provided with at least one hole 1200 penetrating in the axial direction of the connection member 120 at a position separated from the installation area 1200. .
 かかる構成によれば、例えば信号ケーブルや電源ケーブルなどの一以上のケーブル(カールケーブルなど)を少なくとも一つの孔1200に貫通させることができるので、当該ケーブルを、複数の接続部材120aの内部の空間内に延設することが可能となる。これにより、伸縮機構10が伸縮する際に、当該ケーブルがリンク部材111間に挟まれる事態を回避することができ、その伸縮動作を円滑に行うことが可能になる。通常、伸縮機構10は、複数回伸縮し得るので、このように配線することにより、耐久性を向上させることもできる。さらに、このように少なくとも一つの孔1200が設けられていることにより、伸縮機構10よりも先端に一以上のケーブルを配線可能になるので、例えば、あるロボット内の一以上の部位に伸縮機構10が搭載される場面などにおいて有用である。 According to such a configuration, for example, one or more cables (curled cable etc.) such as a signal cable and a power cable can be penetrated through the at least one hole 1200, so the cables can be used as a space inside the plurality of connection members 120a It is possible to extend inside. Thereby, when the expansion-contraction mechanism 10 expands-contracts, the situation where the said cable is pinched | interposed between link members 111 can be avoided, and it becomes possible to perform the expansion-contraction operation smoothly. Usually, since the expansion-contraction mechanism 10 can expand-contract several times, durability can also be improved by wiring in this way. Furthermore, by providing at least one hole 1200 as described above, one or more cables can be routed at the tip of the telescopic mechanism 10, so that, for example, the telescopic mechanism 10 can be provided at one or more sites in a certain robot. It is useful in the scene etc. where is mounted.
 例えば、図4Aに示したように、当該少なくとも一つの孔1200の数は3つであり、かつ、各接続部材120には、当該3つの孔1200が当該接続部材120の中心に対して略点対称に設けられ得る。かかる構成によれば、さらに、ケーブルによる外乱を分散させることが可能になる。 For example, as shown in FIG. 4A, the number of the at least one holes 1200 is three, and in each connection member 120, the three holes 1200 are substantially points with respect to the center of the connection member 120. It can be provided symmetrically. According to this configuration, it is possible to further disperse the cable disturbance.
 但し、本実施形態は、かかる例に限定されず、接続部材120aには孔1200が全く設けられなくてもよい。この場合、少なくとも一つのリンク構造110を構成する少なくとも一つのリンク部材111(例えばリンク部材111の板面など)に当該一以上のケーブルが固定されることにより配線が行われてもよい。 However, the present embodiment is not limited to this example, and the connecting member 120a may not have the hole 1200 at all. In this case, the wiring may be performed by fixing the one or more cables to at least one link member 111 (for example, a plate surface of the link member 111) constituting the at least one link structure 110.
 図4Aおよび図4Bに示したように、複数の接続部材120の各々の外周面には、3つの連結部1210が設けられ得る。そして、当該3つの連結部1210の各々は、当該3つのリンク構造110の各々に含まれる複数のリンク部材111のうち、当該接続部材120に対応する一つのリンク部材111と例えばピン113によって連結され得る。より具体的には、当該3つの連結部1210の各々には、当該接続部材120の略中心と当該連結部1210とをつなぐ回転軸が設けられている。そして、当該連結部1210に連結するリンク部材111は、当該回転軸回りに回転可能なように例えばピン113によって当該連結部1210と連結されている。ここで、各接続部材120において当該3つの回転軸が全て同一平面上に位置するように、当該3つの回転軸は設けられ得る。但し、かかる例に限定されず、各接続部材120において、当該3つの回転軸のうちの少なくとも2つは、平行に配置された互いに異なる平面上にそれぞれ位置するように設けられてもよい。 As shown in FIGS. 4A and 4B, three connection parts 1210 may be provided on the outer peripheral surface of each of the plurality of connection members 120. Then, each of the three connection portions 1210 is connected to one of the plurality of link members 111 included in each of the three link structures 110 and corresponding to the connection member 120 by, for example, the pin 113. obtain. More specifically, each of the three connection portions 1210 is provided with a rotation shaft connecting the approximate center of the connection member 120 and the connection portion 1210. And the link member 111 connected to the said connection part 1210 is connected with the said connection part 1210 by the pin 113, for example so that it can rotate around the said rotating shaft. Here, the three rotation axes may be provided such that the three rotation axes are all located on the same plane in each connection member 120. However, the present invention is not limited to this example, and in each connecting member 120, at least two of the three rotation axes may be provided so as to be located on mutually different planes arranged in parallel.
 ここで、3つの連結部1210は、第1の連結部1210aと第2の連結部1210bとを含み、かつ、第1の連結部1210aと接続部材120aの中心との距離と、第2の連結部1210bと接続部材120aの中心との距離とは略同一であり得る。一例として、図4Aに示したように、3つの連結部1210の各々と接続部材120aの中心との距離は、それぞれ略同一であってもよい。換言すれば、3つの連結部1210の各々は、接続部材120aの中心に対して略点対称であり得る。 Here, the three connection parts 1210 include a first connection part 1210a and a second connection part 1210b, and a distance between the first connection part 1210a and the center of the connection member 120a and a second connection. The distance between the portion 1210 b and the center of the connection member 120 a may be substantially the same. As an example, as shown in FIG. 4A, the distances between each of the three connection portions 1210 and the center of the connection member 120a may be substantially the same. In other words, each of the three coupling portions 1210 may be substantially point symmetric with respect to the center of the connection member 120a.
 さらに、図1に示したように、複数の接続部材120のうちの少なくとも2つの形状は略同一であり得る。図1に示したように、例えば、奇数番目の階層に位置する各接続部材120(図1に示した例では、接続部材120aおよび接続部材120c)の形状は、それぞれ略同一であってもよい。同様に、偶数番目の階層に位置する各接続部材120(図1に示した例では、接続部材120aおよび接続部材120c)の形状は、それぞれ略同一であってもよい。なお、図1では、奇数番目の階層に位置する各接続部材120の形状と、偶数番目の階層に位置する各接続部材120の形状とが異なる例を示している。但し、かかる例に限定されず、全ての接続部材120の形状が略同一であってもよい。 Furthermore, as shown in FIG. 1, at least two of the plurality of connecting members 120 may have substantially the same shape. As shown in FIG. 1, for example, the shapes of the connection members 120 (the connection member 120a and the connection member 120c in the example shown in FIG. 1) located in the odd-numbered hierarchy may be substantially the same. . Similarly, the shapes of the connection members 120 (the connection member 120a and the connection member 120c in the example shown in FIG. 1) located in the even-numbered layers may be substantially the same. Note that FIG. 1 illustrates an example in which the shape of each connecting member 120 located in the odd-numbered level is different from the shape of each connecting member 120 located in the even-numbered level. However, the present invention is not limited to this example, and the shapes of all the connection members 120 may be substantially the same.
 {2-1-3.アクチュエータ130}
 アクチュエータ130は、例えば伸縮機構10の外部の電源(図示省略)から供給される電力を用いて、伸縮動作を実現するための動力を発生させる。アクチュエータ130は、直動式アクチュエータであり得る。また、アクチュエータ130の出力軸の軸方向は、当該所定の伸縮方向と平行であり得る。例えば、アクチュエータ130の出力軸の軸方向は、当該所定の伸縮方向と同一である。
{2-1-3. Actuator 130}
The actuator 130 uses, for example, power supplied from a power supply (not shown) external to the expansion and contraction mechanism 10 to generate power for realizing the expansion and contraction operation. The actuator 130 may be a direct acting actuator. Further, the axial direction of the output shaft of the actuator 130 may be parallel to the predetermined expansion and contraction direction. For example, the axial direction of the output shaft of the actuator 130 is the same as the predetermined expansion and contraction direction.
 例えば、図1に示したように、アクチュエータ130は、モータを内蔵した本体部1300と、ボールねじ1302とを含んで構成される。あるいは、アクチュエータ130は、リニアアクチュエータであってもよい。伸縮機構10は、一方向にのみ動作する構造であるので、アクチュエータ130として、ボールねじ1302やリニアアクチュエータが用いられることが好ましい。また、当該モータとしては、SEA(Series Elastic Actuator)が用いられてもよい。これにより、衝撃をより緩和可能になったり、または、蓄積したエネルギーを用いて伸展などに利用することができる。以下では、図1に示したように、アクチュエータ130が、本体部1300とボールねじ1302とを含む例を主として説明する。 For example, as shown in FIG. 1, the actuator 130 is configured to include a main body 1300 containing a motor and a ball screw 1302. Alternatively, the actuator 130 may be a linear actuator. Since the extension mechanism 10 operates in only one direction, it is preferable that a ball screw 1302 or a linear actuator be used as the actuator 130. In addition, as the motor, a SEA (Series Elastic Actuator) may be used. This makes it possible to further reduce the impact, or to use the stored energy for extension and the like. Hereinafter, as shown in FIG. 1, an example in which the actuator 130 includes the main body 1300 and the ball screw 1302 will be mainly described.
 ボールねじ1302は、アクチュエータ130の出力軸であり得る。図1に示したように、ボールねじ1302は、ねじ軸1310およびナット1312から構成される。例えば、図1に示したように、ボールねじ1302の一つの端部は、本体部1300と連結されている。さらに、ナット1312は、(接続部材120aに隣接する)接続部材120bに固定されている。また、図1に示した例では、ねじ軸1310の軸方向は、z軸方向と平行である。 The ball screw 1302 may be an output shaft of the actuator 130. As shown in FIG. 1, the ball screw 1302 comprises a screw shaft 1310 and a nut 1312. For example, as shown in FIG. 1, one end of the ball screw 1302 is connected to the main body 1300. Further, the nut 1312 is fixed to the connecting member 120b (adjacent to the connecting member 120a). Further, in the example shown in FIG. 1, the axial direction of the screw shaft 1310 is parallel to the z-axis direction.
 上記の構成によれば、当該モータが駆動すると、当該モータの駆動力がナット1312に伝達されることにより、ナット1312は、ねじ軸1310の軸方向に沿って移動する。そして、ナット1312が移動することにより、ナット1312に固定されている接続部材120bは、ねじ軸1310の軸方向(つまり、所定の伸縮方向)に沿って同時に移動する。さらに、接続部材120bが移動することにより、3つのリンク構造110の各々を構成する、互いに連結された各リンク部材111同士がなす角が、それぞれ略同一に変化し得る。より具体的には、接続部材120aと接続部材120bとの間の距離が変化することにより、3つのリンク構造110の各々に含まれるリンク部材111aとリンク部材111bとがなす角が、当該距離の変化に対応する角度差だけ、それぞれ略同一に変化する。その結果、各リンク部材111bの位置がそれぞれ略同一に変化し、そして、各リンク部材111bと連結している別のリンク部材111cの位置および接続部材120cの位置が変化する。このように、各リンク部材111および各接続部材120の位置が順次変化することにより、例えば図2A~図2Cに示したように、3つのリンク構造110は、それぞれ平行に伸縮する。つまり、伸縮機構10の伸縮動作が行われる。 According to the above configuration, when the motor is driven, the driving force of the motor is transmitted to the nut 1312, whereby the nut 1312 moves along the axial direction of the screw shaft 1310. Then, as the nut 1312 moves, the connection member 120 b fixed to the nut 1312 simultaneously moves along the axial direction of the screw shaft 1310 (that is, the predetermined expansion and contraction direction). Furthermore, movement of the connection member 120b may change the angles formed by the mutually connected link members 111 that configure each of the three link structures 110 to be substantially the same. More specifically, when the distance between the connection member 120a and the connection member 120b changes, the angle formed by the link member 111a and the link member 111b included in each of the three link structures 110 is the distance The angle differences corresponding to the changes change substantially in the same manner. As a result, the position of each link member 111b changes substantially in the same manner, and the position of another link member 111c connected to each link member 111b and the position of the connecting member 120c change. Thus, as the positions of the link members 111 and the connection members 120 sequentially change, for example, as shown in FIGS. 2A to 2C, the three link structures 110 expand and contract in parallel, respectively. That is, the expansion and contraction operation of the expansion and contraction mechanism 10 is performed.
 また、前述したように、アクチュエータ130としてボールねじ1302が用いられることにより、本体部1300とナット1312との距離が変化しても、伸縮機構10の先端における推力と、アクチュエータ130の推力との関係を常に一定に保つことができる。より具体的に説明すると、本体部1300とナット1312との距離が変化しても、通常、ナット1312が支持する重さは変化しない。従って、アクチュエータ130の推力が一定になるように制御されれば、本体部1300とナット1312との距離が変化しても、伸縮機構10として出力可能な推力は一定になり得る。この際、伸縮機構10の推力とアクチュエータ130の推力との関係は、てこの原理により決定され得る。なお、このような関係が成立することは、後述するように、ロボット内の一以上の部位(例えば背骨や脚など)に伸縮機構10が適用される場面において、略同一の力を継続的に出力することが可能となるので、大変有利である。 Further, as described above, by using the ball screw 1302 as the actuator 130, even if the distance between the main body 1300 and the nut 1312 changes, the relationship between the thrust at the tip of the expansion and contraction mechanism 10 and the thrust of the actuator 130 Can always be kept constant. More specifically, even if the distance between the main body portion 1300 and the nut 1312 changes, the weight supported by the nut 1312 usually does not change. Therefore, if the thrust of the actuator 130 is controlled to be constant, the thrust that can be output as the expansion and contraction mechanism 10 can be constant even if the distance between the main body 1300 and the nut 1312 changes. At this time, the relationship between the thrust of the extension mechanism 10 and the thrust of the actuator 130 can be determined by the principle of leverage. It should be noted that the establishment of such a relationship means that, as will be described later, in a scene where the expansion and contraction mechanism 10 is applied to one or more parts in the robot (for example, a spine, legs, etc.) Since it becomes possible to output, it is very advantageous.
 例えば、図5に示したように、ボールねじ1302の現在位置までの長さ(より詳細には、本体部1300とナット1312との現在の距離)をLb、伸縮機構10の(現在の)長さをLf、ボールねじ1302の(現在の)推力をFbとすると、伸縮機構10の(現在の)推力Ffは、以下の数式(1)のように算出され得る。 For example, as shown in FIG. 5, the length of the ball screw 1302 to the current position (more specifically, the current distance between the main body 1300 and the nut 1312) is Lb, and the (current) length of the extension mechanism 10 Assuming that the length Lf and the (current) thrust of the ball screw 1302 are Fb, the (current) thrust Ff of the expansion and contraction mechanism 10 can be calculated as the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、図5に示したように、Lfは、以下の数式(2)のように算出され得る。なお、θは、前述したリンク部材連結角である。 Here, as shown in FIG. 5, Lf can be calculated as in the following equation (2). Here, θ is the link member connection angle described above.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(1)に示したように、伸縮機構10の推力Ffは、アクチュエータ130の推力Fbよりも小さくなり得る。このため、例えばフラットモータやDD(Direct Drive)モータなどの、扁平で、かつ、高トルクを出力可能なアクチュエータがアクチュエータ130として用いられることがさらに好ましい。これにより、伸縮機構10をより小型化しつつ、より高出力を実現することができる。または、ボールねじ1302のリードの長さが調整されることにより、伸縮機構10の推力を調整することも可能である。 As shown in Formula (1), the thrust Ff of the expansion and contraction mechanism 10 can be smaller than the thrust Fb of the actuator 130. For this reason, it is more preferable that an actuator that is flat and capable of outputting high torque, such as a flat motor or a DD (Direct Drive) motor, is used as the actuator 130, for example. Thereby, a higher output can be realized while downsizing the extension mechanism 10 further. Alternatively, it is also possible to adjust the thrust of the expansion and contraction mechanism 10 by adjusting the length of the lead of the ball screw 1302.
 なお、アクチュエータ130の駆動を制御する制御装置(図示省略)が、伸縮機構10の外部または内部に別途設けられ得る。この場合、アクチュエータ130の制御量は、当該制御装置によって所定のプログラムに従って自動的に設定されてもよいし、または、操作者が外部から与えた指令に従って所望の動作を実現し得るように当該制御装置によって適宜演算されてもよい。 A control device (not shown) that controls the drive of the actuator 130 may be separately provided outside or inside the extension mechanism 10. In this case, the control amount of the actuator 130 may be automatically set by the control device according to a predetermined program, or the control may be performed such that a desired operation can be realized according to an instruction externally given by the operator. It may be calculated appropriately by the device.
 <2-2.効果>
 {2-2-1.効果1}
 以上説明したように、本実施形態に係る伸縮機構10は、複数のリンク部材111の端同士が互いに回動可能に順次連結されて構成された、少なくとも3つのリンク構造110と、当該少なくとも3つのリンク構造110の各々に連結する複数の接続部材120と、を備える。当該複数の接続部材120は、アクチュエータ130の本体部が設置されている接続部材120aと、アクチュエータ130の出力軸に連結されている接続部材120bとを含み、そして、接続部材120bは、アクチュエータ130の駆動に応じて所定の伸縮方向に沿って移動する。このため、高強度な一自由度の伸縮機構を実現することができる。
<2-2. Effect>
{2-2-1. Effect 1}
As described above, the extension mechanism 10 according to the present embodiment includes at least three link structures 110 in which the ends of the plurality of link members 111 are sequentially connected so as to be rotatable relative to each other, and the at least three link structures 110. And a plurality of connecting members 120 coupled to each of the link structures 110. The plurality of connection members 120 include a connection member 120 a on which the main body of the actuator 130 is installed, and a connection member 120 b connected to the output shaft of the actuator 130, and the connection member 120 b is a part of the actuator 130. It moves along a predetermined expansion and contraction direction according to the drive. Therefore, it is possible to realize a high-strength stretch mechanism with one degree of freedom.
 例えば、伸縮機構10は、ピン112やピン113等の部材を除けば、主にリンク構造110、接続部材120、及び、アクチュエータ130のみから構成される。このように、伸縮機構10は、簡易に構成可能であり、かつ、より高い強度及びより高い伸縮率を実現することができる。例えば、伸縮機構10は、既存のスライダ構造と比較して、より軽量に構成され、かつ、より高い伸縮率を実現することができる。また、伸縮機構10は、既存のパンタグラフ構造と比較して、より高い強度を実現することができる。さらに、同様の理由により、伸縮機構10は、安価なコストで製造可能になり得る。 For example, the telescopic mechanism 10 mainly includes only the link structure 110, the connection member 120, and the actuator 130 except for the members such as the pin 112 and the pin 113. Thus, the expansion and contraction mechanism 10 can be easily configured, and can achieve higher strength and higher expansion ratio. For example, the expansion and contraction mechanism 10 can be configured to be lighter in weight and achieve a higher expansion and contraction ratio as compared with the existing slider structure. In addition, the telescopic mechanism 10 can achieve higher strength as compared to the existing pantograph structure. Furthermore, for the same reason, the expansion and contraction mechanism 10 may be manufacturable at low cost.
 {2-2-2.効果2}
 さらに、本実施形態によれば、伸縮機構10を小型の構造として実現することができる。例えば、伸縮機構10では、収縮時の寸法がコンパクトになり得る。
{2-2-2. Effect 2}
Furthermore, according to the present embodiment, the expansion and contraction mechanism 10 can be realized as a compact structure. For example, in the telescopic mechanism 10, the dimensions at the time of contraction can be compact.
 {2-2-3.効果3}
 さらに、伸縮機構10では、外部から力が与えられた場合であっても、伸縮量がほとんど変化しない。さらに、アクチュエータ130として例えばボールねじなどの直動アクチュエータが用いられることにより、伸縮機構10は、アクチュエータ130の長さによらずに、常に一定の推力および速度を実現することができる。
{2-2-3. Effect 3}
Furthermore, in the extension mechanism 10, the amount of extension hardly changes even when a force is applied from the outside. Furthermore, by using a linear actuator such as a ball screw, for example, as the actuator 130, the expansion and contraction mechanism 10 can always realize constant thrust and speed regardless of the length of the actuator 130.
<<3.変形例>>
 本実施形態に係る伸縮機構10の構成は、前述した例に限定されない。以下では、伸縮機構10の構成の変形例について説明する。
<< 3. Modified example >>
The configuration of the expansion and contraction mechanism 10 according to the present embodiment is not limited to the example described above. Below, the modification of the structure of the expansion-contraction mechanism 10 is demonstrated.
 <3-1.変形例1>
 例えば、図1~図2Cに示した例では、伸縮機構10の各部の伸縮比率が同一である例について説明した。ところで、各部の伸縮比率が同一であると、図2Aに示したように、ボールねじ1302のねじ軸1310の飛び出し量が大きくなり得る。一方で、例えば、人型ロボットなどのロボットに伸縮機構10が搭載される場面では、当該ロボットの部位(例えば頭部や腕部など)ごとにアクチュエータ130等が配置されることが、ロボットの設計、メンテナンス、または、製造の観点上好ましい。つまり、伸縮機構10が搭載されている部位以外の部位に、伸縮機構10の一部が飛び出すことは好ましくない。例えば、伸縮機構10がロボットの胴体部に搭載される場合、伸縮機構10の一部が当該ロボットの首部に飛び出すことは好ましくない。
<3-1. Modification 1>
For example, in the example shown in FIGS. 1 to 2C, the example in which the expansion and contraction ratio of each part of the expansion and contraction mechanism 10 is the same has been described. By the way, if the expansion ratio of each part is the same, as shown to FIG. 2A, the protrusion amount of the screw shaft 1310 of the ball screw 1302 may become large. On the other hand, for example, in a scene where the expansion mechanism 10 is mounted on a robot such as a humanoid robot, the design of the robot is that the actuator 130 or the like is disposed for each part (for example, the head or arm) of the robot. It is preferable from the viewpoint of maintenance, or production. That is, it is not preferable that a part of the extension and contraction mechanism 10 jumps out to a part other than the part where the extension and contraction mechanism 10 is mounted. For example, when the expansion and contraction mechanism 10 is mounted on the body of a robot, it is not preferable that a part of the expansion and contraction mechanism 10 jumps out to the neck of the robot.
 そこで、変形例として、図6Aおよび図6Bに示したように、各リンク構造110を構成する複数のリンク部材111のうち、アクチュエータ130の本体部1300が設置されている接続部材120aに連結する各リンク部材111aの長手方向の長さが、当該複数のリンク部材111のうちの他のリンク部材111(例えばリンク部材111bなど)の長手方向の長さよりも小さくなるように、各リンク部材111の長さが定められることが好ましい。かかる構成によれば、例えば図6Bに示したように、伸縮機構10の収縮時であっても、ねじ軸1310の先端が、各リンク構造110の先端から飛び出ることを防止することができる。 Therefore, as a modification, as shown in FIGS. 6A and 6B, each of the plurality of link members 111 constituting each link structure 110 is connected to the connection member 120a on which the main body 1300 of the actuator 130 is installed. The length of each link member 111 is set such that the length in the longitudinal direction of the link member 111a is smaller than the length in the longitudinal direction of the other link members 111 (for example, the link member 111b etc.) of the plurality of link members 111. Preferably, the According to this configuration, for example, as shown in FIG. 6B, it is possible to prevent the tip of the screw shaft 1310 from jumping out from the tip of each link structure 110 even when the extension mechanism 10 is contracted.
 例えば、伸縮機構10が、あるロボットに搭載される場面では、当該ロボットにおいてボールねじ1302が搭載される部位のリンク部材111の長手方向の長さのみが、他のリンク部材111の長手方向の長さよりも小さくなるように、各リンク部材111の長さが定められることが好ましい。これにより、伸縮機構10の収縮時であっても、当該ロボットにおいて伸縮機構10が搭載されている部位以外の部位に、ねじ軸1310が飛び出すことを防止することができる。 For example, when the extension mechanism 10 is mounted on a certain robot, only the length in the longitudinal direction of the link member 111 at the portion where the ball screw 1302 is mounted in the robot is the length in the longitudinal direction of the other link member 111 Preferably, the length of each link member 111 is determined so as to be smaller than the length. Thereby, even when the expansion and contraction mechanism 10 is contracted, it is possible to prevent the screw shaft 1310 from jumping out to a portion other than the portion where the expansion and contraction mechanism 10 is mounted in the robot.
 <3-2.変形例2>
 別の変形例として、隣接する接続部材120間には、上記の所定の伸縮方向に沿って弾性変形するように構成された第1の弾性部材140aが配置されてもよい。追加的に、または、代替的に、ある接続部材120と当該接続部材120に連結する少なくとも一つのリンク部材111との間には、当該少なくとも一つのリンク部材111の各々の回動方向に沿って弾性変形するように構成された第2の弾性部材140bがそれぞれ配置されていてもよい。例えば、図7に示したように、当該所定の伸縮方向に沿って弾性変形するように構成された、圧縮ばね、または、引っ張りばねが(第1の弾性部材140aとして)、接続部材120aと接続部材120bとの間に配置されてもよい。また、接続部材120aに連結するいずれかのリンク部材111と接続部材120aとの間には、当該リンク部材111の回動方向に沿って弾性変形するように構成されたねじりばねが(第2の弾性部材140bとして)、接続部材120aと当該リンク部材111との間に配置されてもよい。
<3-2. Modification 2>
As another modification, a first elastic member 140 a configured to be elastically deformed along the above-described predetermined expansion and contraction direction may be disposed between the adjacent connection members 120. Additionally or alternatively, between a connection member 120 and at least one link member 111 connected to the connection member 120, along a pivoting direction of each of the at least one link member 111. The second elastic members 140 b configured to be elastically deformed may be respectively disposed. For example, as shown in FIG. 7, a compression spring or a tension spring (as the first elastic member 140a) configured to be elastically deformed along the predetermined expansion / contraction direction is connected to the connection member 120a. It may be disposed between the member 120b. In addition, between any link member 111 connected to the connection member 120 a and the connection member 120 a, a torsion spring configured to be elastically deformed along the pivoting direction of the link member 111 (second The elastic member 140 b may be disposed between the connection member 120 a and the link member 111.
 かかる構成によれば、例えば伸縮機構10の伸展方向や収縮方向に予圧をかけることができるので、伸縮機構10の自重を補償することができる。その結果、伸縮機構10の消費電力を削減することができる。さらに、アクチュエータ130に対する電力の供給が突然停止した場合であっても、当該停止前の伸縮機構10の姿勢が一定時間維持され得る。 According to this configuration, for example, since a preload can be applied in the extension direction and the contraction direction of the extension and contraction mechanism 10, the weight of the extension and contraction mechanism 10 can be compensated. As a result, the power consumption of the expansion and contraction mechanism 10 can be reduced. Furthermore, even if the supply of power to the actuator 130 suddenly stops, the posture of the extension mechanism 10 before the stop can be maintained for a certain period of time.
 <3-3.変形例3>
 上記の説明では、各リンク部材111が棒状である例について説明したが、本実施形態は、かかる例に限定されない。別の変形例として、各リンク構造110に含まれる少なくとも一つの階層に位置する各リンク部材111の形状は、一部が屈曲した形状であってもよい。
<3-3. Modification 3>
In the above description, an example in which each link member 111 is in a rod shape has been described, but the present embodiment is not limited to such an example. As another modification, the shape of each link member 111 located in at least one hierarchy included in each link structure 110 may be a partially bent shape.
 図8は、本変形例に係る伸縮機構10に関して、接続部材120を平面に展開した形状を概略的に示した図である。図8に示したように、3つのリンク構造110の各々に含まれるリンク部材111cとして、リンク部材111cが連結する接続部材120cの外周面上の連結部1210において屈曲している形状のリンク部材がそれぞれ用いられてもよい。さらに、3つのリンク構造110の各々に含まれる他のリンク部材111(つまり、リンク部材111c以外のリンク部材111)は全て、棒状であってもよい。 FIG. 8 is a view schematically showing a shape in which the connection member 120 is developed in a plane, in the expansion and contraction mechanism 10 according to the present modification. As shown in FIG. 8, as the link member 111c included in each of the three link structures 110, the link member having a shape bent at the connecting portion 1210 on the outer peripheral surface of the connecting member 120c to which the link member 111c is connected Each may be used. Furthermore, all the other link members 111 included in each of the three link structures 110 (that is, the link members 111 other than the link member 111c) may be rod-shaped.
 かかる構成によれば、図8に示したように、接続部材120cと接続部材120dとの間隔を、他の、隣接する接続部材120間の間隔よりも大きくすることができる。これにより、伸縮機構10の収縮時であっても、接続部材120cと接続部材120dとの間で、例えばユーザの指が挟まれることなどを防止することができる。別の利点として、この場合、各リンク構造110に含まれる先端のリンク部材111(図8に示した例では、リンク部材111d)に関しては、他のリンク部材111よりも細いリンク部材を用いることができる。すなわち、各リンク構造110の先端部分だけが他の部分よりも細くなるように、各リンク構造110を構成することができる。 According to this configuration, as shown in FIG. 8, the distance between the connection member 120 c and the connection member 120 d can be made larger than the distance between the other adjacent connection members 120. Thereby, even when the expansion and contraction mechanism 10 is contracted, for example, the user's finger can be prevented from being pinched between the connection member 120c and the connection member 120d. As another advantage, in this case, with respect to the tip link member 111 included in each link structure 110 (the link member 111 d in the example shown in FIG. 8), a link member thinner than the other link members 111 is used. it can. That is, each link structure 110 can be configured such that only the tip portion of each link structure 110 is thinner than the other portions.
 <3-4.変形例4>
 図1~図2Cに示した例では、伸縮機構10が有するリンク構造110の数が3つである例について説明したが、本実施形態はかかる例に限定されない。強度の観点から、伸縮機構10は、少なくとも3つのリンク構造110から構成されることが好ましいが、その数は限定されない。例えば、伸縮機構10が有するリンク構造110の数は、例えば4つや5つ等、3つよりも多くてもよい。
<3-4. Modification 4>
Although the example illustrated in FIGS. 1 to 2C illustrates an example in which the number of the link structures 110 included in the extension and contraction mechanism 10 is three, the present embodiment is not limited to such an example. From the viewpoint of strength, the extension mechanism 10 is preferably configured of at least three link structures 110, but the number is not limited. For example, the number of link structures 110 included in the telescopic mechanism 10 may be more than three, such as four or five.
 <3-5.変形例5>
 別の変形例として、伸縮機構10を構成する複数のリンク構造110として、平行リンクの構造が用いられてもよい。かかる構成によれば、例えば図1に示した伸縮機構10と比較して、伸縮機構10の強度(例えば、先端部までの強度)を高めることができる。
<3-5. Modification 5>
As another modified example, a parallel link structure may be used as the plurality of link structures 110 that constitute the extension and contraction mechanism 10. According to this configuration, it is possible to increase the strength (for example, the strength to the tip end) of the expansion and contraction mechanism 10 as compared with, for example, the expansion and contraction mechanism 10 illustrated in FIG. 1.
 図9Aおよび図9Bは、本変形例に係る伸縮機構10に関して、接続部材120を平面に展開した形状を概略的に示した図である。図9Aおよび図9Bに示したように、本変形例に係る伸縮機構10は、それぞれが平行に伸縮する、6つのリンク構造110を備える。さらに、隣接する2つのリンク構造110(ここでは、「一組の平行リンク構造」とも称する)ごとに、当該2つのリンク構造110の各々に含まれる、同じ階層に位置するリンク部材111同士は、当該リンク部材111が連結する接続部材120の中心からの放射方向に関して少なくとも一部が重なるように配置されている。 FIG. 9A and FIG. 9B are diagrams schematically showing the shape of the connecting member 120 expanded in a plane with respect to the expansion and contraction mechanism 10 according to the present modification. As shown to FIG. 9A and FIG. 9B, the expansion-contraction mechanism 10 which concerns on this modification is provided with six link structure 110 which each expand-contracts in parallel. Furthermore, for each two adjacent link structures 110 (herein also referred to as “one set of parallel link structures”), the link members 111 located in the same layer included in each of the two link structures 110 are: It arrange | positions so that at least one part may overlap regarding the radial direction from the center of the connection member 120 which the said link member 111 connects.
 より詳細には、図9Aおよび図9Bに示したように、接続部材120の中心からの放射方向に関して、一組の平行リンク構造に含まれる一方のリンク構造110と、もう一方のリンク構造110とは、接続部材120の中心からの距離が異なるように配置され得る。例えば、リンク構造110‐1とリンク構造110‐4とが一組の平行リンク構造を構成しており、かつ、リンク構造110‐4の方がリンク構造110‐1よりも接続部材120の中心から遠くに配置される。かかる構成によれば、隣接するリンク構造110(すなわち、一組の平行リンク構造に含まれる2つのリンク構造110)同士が、伸縮動作時に干渉することを回避することができる。従って、各リンク構造110の可動域を拡大することができる。 More specifically, as shown in FIGS. 9A and 9B, one link structure 110 and another link structure 110 included in a pair of parallel link structures with respect to the radial direction from the center of the connection member 120. May be arranged such that the distances from the center of the connection member 120 are different. For example, the link structure 110-1 and the link structure 110-4 constitute a set of parallel link structures, and the link structure 110-4 is closer to the center of the connection member 120 than the link structure 110-1. Be placed far away. According to this configuration, it is possible to prevent adjacent link structures 110 (that is, two link structures 110 included in one set of parallel link structures) from interfering with each other at the time of telescopic operation. Therefore, the movable range of each link structure 110 can be expanded.
 なお、本変形例のように、リンク構造110の変形例として平行リンクの構造が用いられる場合、関節軸を配置する観点から、各接続部材120の形状は、略三角形または略角丸三角形であることが好ましい。 When a parallel link structure is used as a modification of the link structure 110 as in the present modification, the shape of each connecting member 120 is substantially triangular or substantially rounded triangle from the viewpoint of arranging a joint axis. Is preferred.
 図9Aおよび図9Bでは、伸縮機構10が、三組の平行リンク構造(つまり、6つのリンク構造110)を備える例を示したが、かかる例に限定されない。伸縮機構10は、四組以上の平行リンク構造を備えてもよい。この場合、さらに、同一の接続部材120に連結されている2組ずつの平行リンク構造は、略同一の形状を有してもよい。 Although the expansion-contraction mechanism 10 showed the example provided with 3 sets of parallel link structures (namely, six link structures 110) in FIG. 9A and 9B, it is not limited to this example. The extension mechanism 10 may have four or more sets of parallel link structures. In this case, two sets of parallel link structures connected to the same connection member 120 may have substantially the same shape.
 <3-6.変形例6>
 別の変形例として、図10に示したように、各リンク構造110を構成するリンク部材111の数は、例えば必要な剛性の方向等に応じて、部分的に減らされてもよいし、増やされてもよい。図10に示した例では、リンク構造110‐1を構成するリンク部材111の数は、5つである。一方、リンク構造110‐6を構成するリンク部材111の数は、4つであり、かつ、リンク構造110‐6は接続部材120eと連結していないように構成されている。つまり、例えば図9Aに示した例とは異なり、リンク構造110‐6は、リンク部材111‐6eを有しない。
<3-6. Modification 6>
As another modification, as shown in FIG. 10, the number of link members 111 constituting each link structure 110 may be partially reduced or increased according to, for example, the direction of required rigidity. It may be In the example shown in FIG. 10, the number of link members 111 constituting the link structure 110-1 is five. On the other hand, the number of link members 111 constituting the link structure 110-6 is four, and the link structure 110-6 is configured not to be connected to the connection member 120e. That is, unlike the example shown in FIG. 9A, for example, the link structure 110-6 does not have the link member 111-6e.
 さらに、図10に示したように、一組の平行リンク構造に含まれる2つのリンク構造110間に、補助リンク部材150が設けられてもよい。かかる構成によれば、当該2つのリンク構造110間の剛性を向上させることができる。 Furthermore, as shown in FIG. 10, an auxiliary link member 150 may be provided between two link structures 110 included in a pair of parallel link structures. According to this configuration, the rigidity between the two link structures 110 can be improved.
 <3-7.変形例7>
 別の変形例として、伸縮機構10を構成する少なくとも3つのリンク構造110として、隣接する2つのリンク構造110が交差する構造が用いられてもよい。かかる構成によれば、例えば図1に示した伸縮機構10と比較して、伸縮機構10の強度を高めることができる。
<3-7. Modification 7>
As another modification, a structure in which two adjacent link structures 110 cross each other may be used as the at least three link structures 110 that constitute the extension and contraction mechanism 10. According to this configuration, the strength of the extension and contraction mechanism 10 can be increased, for example, as compared with the extension and contraction mechanism 10 illustrated in FIG. 1.
 図11は、本変形例に係る伸縮機構10に関して、接続部材120を平面に展開した形状を概略的に示した図である。図11に示したように、本変形例に係る伸縮機構10は、それぞれが平行に伸縮する、6つのリンク構造110を備える。さらに、隣接する2つのリンク構造110(ここでは、「一組の交差リンク構造」とも称する)ごとに、当該2つのリンク構造110の各々に含まれる、同じ階層に位置するリンク部材111同士は、当該所定の伸縮方向に関して交差するような位置関係で、かつ、当該リンク部材111が連結する接続部材120の中心からの放射方向に関して少なくとも一部が重なるように配置されている。 FIG. 11 is a view schematically showing a shape in which the connection member 120 is developed in a plane, in the expansion and contraction mechanism 10 according to the present modification. As shown in FIG. 11, the extension and contraction mechanism 10 according to the present variation includes six link structures 110 that extend and contract in parallel. Furthermore, for each two adjacent link structures 110 (herein also referred to as “a set of cross link structures”), link members 111 located in the same layer included in each of the two link structures 110 are: It is arranged in such a positional relationship as to intersect in the predetermined expansion / contraction direction, and at least partially overlap in the radial direction from the center of the connection member 120 to which the link member 111 is connected.
 さらに、図11に示したように、接続部材120の中心からの放射方向に関して、一組の交差リンク構造に含まれる一方のリンク構造110と、もう一方のリンク構造110とは、接続部材120の中心からの距離が異なるように配置され得る。例えば、リンク構造110‐1とリンク構造110‐4とが一組の交差リンク構造を構成しており、かつ、リンク構造110‐4の方がリンク構造110‐1よりも接続部材120の中心から遠くに配置される。かかる構成によれば、隣接するリンク構造110(すなわち、一組の交差リンク構造を構成する2つのリンク構造110)同士が、伸縮動作時に干渉することを回避することができる。従って、各リンク構造110の可動域を拡大することができる。 Furthermore, as shown in FIG. 11, with respect to the radial direction from the center of the connection member 120, one link structure 110 included in a pair of cross link structures and the other link structure 110 are of the connection member 120. The distances from the center may be arranged differently. For example, the link structure 110-1 and the link structure 110-4 constitute a set of cross link structures, and the link structure 110-4 is closer to the center of the connection member 120 than the link structure 110-1. Be placed far away. According to such a configuration, it is possible to prevent adjacent link structures 110 (that is, two link structures 110 constituting a pair of cross link structures) from interfering with each other in the telescopic operation. Therefore, the movable range of each link structure 110 can be expanded.
 なお、図11では、一組の交差リンク構造を構成する2つのリンク構造110の各々に含まれる、同じ階層に位置するリンク部材111同士が、互いに異なる回転軸を有する例を示しているが、本実施形態はかかる例に限定されない。当該リンク部材111同士は、同一の回転軸を共有してもよい。 Although FIG. 11 illustrates an example in which link members 111 located in the same layer, which are included in each of two link structures 110 that configure a pair of cross link structures, have rotation axes different from each other. The present embodiment is not limited to such an example. The link members 111 may share the same rotation axis.
 <3-8.変形例8>
 図1~図2Cに示した伸縮機構10では、リンク構造110が4つのリンク部材111から構成され、かつ、接続部材120も4つ設けられていたが、本実施形態はかかる例に限定されない。別の変形例として、伸縮機構10において、リンク構造110を構成するリンク部材111の数、及び、それに伴い決定される接続部材120の数は、任意に設定されてよい。また、リンク部材111の長さも、任意に設定されてよい。リンク構造110を構成するリンク部材111の数や長さによって、リンク構造110の伸縮率や伸縮長さ(すなわち、伸縮機構10の伸縮率や伸縮長さ)が決定されるので、このリンク構造110を構成するリンク部材111の数及び長さ、並びに接続部材120の数は、伸縮機構10の用途に応じて、所望の伸縮率及び伸縮長さを実現し得るように、適宜設定され得る。換言すれば、伸縮機構10は、リンク構造110を構成するリンク部材111の数及び長さを変更することにより、伸縮率及び伸縮長さを容易に変更可能である。なお、リンク構造110を構成するリンク部材111の数が2つ以下の場合には、当該リンク構造110は伸縮動作をほぼ行い得ない。このため、リンク構造110を構成するリンク部材111の数は、少なくとも3つ以上であることが好ましい。
<3-8. Modification 8>
In the extension mechanism 10 shown in FIGS. 1 to 2C, the link structure 110 is configured of four link members 111 and four connection members 120 are provided, but the present embodiment is not limited to such an example. As another modification, in the extension and contraction mechanism 10, the number of link members 111 constituting the link structure 110 and the number of connection members 120 determined accordingly may be arbitrarily set. Also, the length of the link member 111 may be set arbitrarily. The expansion ratio and expansion length of the link structure 110 (that is, the expansion ratio and expansion length of the expansion and contraction mechanism 10) are determined by the number and length of the link members 111 constituting the link structure 110. The number and length of the link members 111 constituting the and the number of connection members 120 can be appropriately set so as to realize desired expansion and contraction rates and expansion and contraction lengths according to the application of the expansion and contraction mechanism 10. In other words, the expansion / contraction mechanism 10 can easily change the expansion / contraction rate and the expansion / contraction length by changing the number and length of the link members 111 constituting the link structure 110. In addition, when the number of the link members 111 which comprise the link structure 110 is two or less, the said link structure 110 can not substantially perform expansion-contraction operation | movement. Therefore, it is preferable that the number of link members 111 constituting the link structure 110 be at least three or more.
 <3-9.変形例9>
 また、図1~図2Cに示した伸縮機構10では、リンク部材111が長尺な平板形状を有していたが、リンク部材111の形状はかかる例に限定されない。リンク部材111は長尺な部材であればよく、その形状は任意であってよい。ただし、製造コストの低減の観点からは、その形状は、図示する平板形状のような、単純な形状であるほうが好ましい。
<3-9. Modification 9>
Further, in the extension mechanism 10 shown in FIGS. 1 to 2C, the link member 111 has a long flat plate shape, but the shape of the link member 111 is not limited to such an example. The link member 111 may be an elongated member, and its shape may be arbitrary. However, from the viewpoint of reducing the manufacturing cost, it is preferable that the shape be a simple shape such as a flat plate shape illustrated.
 なお、各リンク部材111の長さを短くすれば、伸縮機構10をより細く構成することができ、より一層の小型化が可能になる。一方で、この場合、伸縮長さは相対的に短くなってしまう。つまり、各リンク部材111の長さを短くしつつ所定の伸縮長さを確保しようとすると、より多くの数のリンク部材111によってリンク構造110を構成する必要が生じる。このように、リンク部材111の長さは、伸縮機構10のサイズ及び伸縮性能(伸縮率及び伸縮長さ等)に大きな影響を及ぼすため、これらの要素を勘案して決定されることが好ましい。 In addition, if the length of each link member 111 is shortened, the expansion and contraction mechanism 10 can be configured to be thinner, and further downsizing can be achieved. On the other hand, in this case, the expansion and contraction length becomes relatively short. That is, in order to secure a predetermined expansion and contraction length while shortening the length of each link member 111, it is necessary to form the link structure 110 with a larger number of link members 111. As described above, the length of the link member 111 has a large influence on the size and the extension performance (such as the extension ratio and the extension length) of the extension mechanism 10, and therefore, is preferably determined in consideration of these factors.
 <3-10.変形例10>
 また、図1~図2Cに示した構成例では、複数のリンク部材111は全て略同一の形状を有していたが、リンク部材111の形状はかかる例に限定されない。複数のリンク部材111はその一部又は全てが互いに異なる形状を有していてもよい。例えば、段階的に長さの異なる複数の種類のリンク部材111を用いて、一端から他端に向かうにつれてこのリンク部材111の長さが徐々に短くなるように、リンク構造110を構成してもよい。かかる構成によれば、当該他端に向かうにつれて徐々に細くなるような形状を有する伸縮機構10を構成することができる。しかしながら、上述した製造コストの低減の観点からは、複数のリンク部材111は全て略同一の形状であることが好ましい。
<3-10. Modification 10>
Further, in the configuration example shown in FIGS. 1 to 2C, the plurality of link members 111 all have substantially the same shape, but the shape of the link member 111 is not limited to such an example. Some or all of the plurality of link members 111 may have different shapes from one another. For example, the link structure 110 may be configured such that the length of the link member 111 gradually decreases from one end to the other end by using a plurality of types of link members 111 having different lengths in stages. Good. According to this configuration, it is possible to configure the extension and contraction mechanism 10 having a shape that gradually narrows toward the other end. However, it is preferable that all of the plurality of link members 111 have substantially the same shape from the viewpoint of reduction of the manufacturing cost described above.
 <3-11.変形例11>
 別の変形例として、伸縮機構10の外周を覆うようにカバー(図示省略)が設けられてもよい。当該カバーは、例えば蛇腹状のカバーであり得る。かかる構成によれば、例えば、伸縮動作時に、リンク部材111間にユーザの指やケーブル等が挟まれてしまう危険性を避けることが可能になる。
<3-11. Modification 11>
As another modification, a cover (not shown) may be provided to cover the outer periphery of the expansion and contraction mechanism 10. The cover may be, for example, a bellows-like cover. According to this configuration, for example, it is possible to avoid the risk of the user's finger, a cable, or the like being pinched between the link members 111 at the time of the expansion and contraction operation.
 <3-12.変形例12>
 また、図1~図2Cに示した構成例では、アクチュエータ130が、モータ1300とボールねじ1302とから構成される例について説明したが、本実施形態はかかる例に限定されない。例えば、ボールねじ1302が利用される場合、フラットモータ、DDモータ、超音波モータ、または、静電モータ等がモータ1300として用いられてもよい。
<3-12. Modification 12>
Further, in the configuration example shown in FIGS. 1 to 2C, the example in which the actuator 130 is configured by the motor 1300 and the ball screw 1302 has been described, but the present embodiment is not limited to such an example. For example, when the ball screw 1302 is used, a flat motor, a DD motor, an ultrasonic motor, an electrostatic motor or the like may be used as the motor 1300.
 または、ボールねじ1302の代わりに、例えば、シャフトモータ、リニアモータ、エアシリンダ、または、空気圧人工筋がアクチュエータ130の一部として用いられてもよい。 Alternatively, instead of the ball screw 1302, for example, a shaft motor, a linear motor, an air cylinder, or a pneumatic artificial muscle may be used as part of the actuator 130.
 <3-13.変形例13>
 別の変形例として、ボールねじ1302のリードの長さは適宜設定可能である。例えば、当該リードの長さがより短く設定(設計)された場合、伸縮機構10の外部からの力による受動伸縮長の変化を抑えることができる。さらに、この場合、アクチュエータ130に対する電力の供給が突然停止した場合であっても、脱力して伸縮してしまうことを防止することができる。すなわち、伸縮機構10の自重補償が可能になる。
<3-13. Modification 13>
As another modification, the length of the lead of the ball screw 1302 can be set appropriately. For example, when the length of the lead is set (designed) to be shorter, it is possible to suppress the change in the passive extension length due to the external force of the extension mechanism 10. Furthermore, in this case, even if the supply of power to the actuator 130 is suddenly stopped, it is possible to prevent the force from expanding and contracting. That is, the weight compensation of the extension mechanism 10 is possible.
<<4.適用例>>
 以上、本実施形態に係る伸縮機構10について説明した。本実施形態に係る伸縮機構10は、例えばジャッキなどとして単体で利用することも可能である。または、以下で述べる適用例のように、伸縮機構10は、他の機械(例えばロボットなど)の内部に配置されて利用されることも可能である。
<< 4. Application example >>
The telescopic mechanism 10 according to the present embodiment has been described above. The telescopic mechanism 10 according to the present embodiment can be used alone as a jack, for example. Alternatively, as in the application described below, the telescopic mechanism 10 may be disposed and utilized inside another machine (eg, a robot or the like).
 前述したように、階段や段差の昇降等の動作を考えると、ロボットの脚部の伸縮動作には、回転機構よりも直動機構が用いられることが好ましい。そして、移動型のロボットには、より小型で、軽量であることも求められる。本実施形態に係る伸縮機構10は、小型で、高い伸縮率、かつ高強度を実現し得るものであるから、伸縮機構10は、移動型のロボットの例えば脚部などの各部位に対して好適に適用され得る。 As described above, in consideration of operations such as raising and lowering stairs and steps, it is preferable that a linear motion mechanism be used for the expansion and contraction motion of the leg portion of the robot than the rotation mechanism. And, mobile robots are also required to be smaller and lighter. Since the telescopic mechanism 10 according to the present embodiment can realize a small size, a high modulus of elasticity, and high strength, the telescopic mechanism 10 is suitable for each portion such as a leg of a mobile robot, for example. Can be applied to
 次に、本実施形態の適用例について「4-1.人型ロボット」および「4-2.4足ロボット」において説明する。 Next, application examples of the present embodiment will be described in "4-1. Humanoid Robot" and "4-2.4 Robot".
 <4-1.人型ロボット>
 まず、本実施形態の適用例1について、図12~図15を参照して説明する。適用例1は、伸縮機構10が、人型のロボット20に適用される例である。
<4-1. Humanoid robot>
First, Application Example 1 of the present embodiment will be described with reference to FIGS. 12 to 15. Application Example 1 is an example in which the extension mechanism 10 is applied to a humanoid robot 20.
 まず、ロボット20の構成例について図12を参照して説明する。図12に示したように、ロボット20は、例えば、頭部200、首部202、胴体部204、第1の上腕部206a、第2の上腕部206b、第1の前腕部208a、第2の前腕部208b、第1のエンドエフェクタ210a、第2のエンドエフェクタ210b、および、移動機構212を備える。なお、図12では、移動機構212が二つの車輪を含んで構成される例を示しているが、かかる例に限定されない。例えば、移動機構212は、2本の脚部を含んで構成されてもよいし、または、例えばキャタピラ(登録商標)などの無限軌道の機構を含んで構成されてもよい。 First, a configuration example of the robot 20 will be described with reference to FIG. As shown in FIG. 12, the robot 20 includes, for example, a head 200, a neck 202, a body 204, a first upper arm 206a, a second upper arm 206b, a first forearm 208a, and a second forearm. A portion 208 b, a first end effector 210 a, a second end effector 210 b, and a movement mechanism 212. Although FIG. 12 shows an example in which the moving mechanism 212 includes two wheels, the present invention is not limited to this example. For example, the moving mechanism 212 may be configured to include two legs, or may be configured to include an endless track mechanism such as, for example, caterpillar (registered trademark).
 また、図12に示したように、第1の上腕部206aが胴体部204に対して所定の軸回りに回動可能なように、胴体部204と第1の上腕部206aとの間には第1の肩関節220aが連結され得る。同様に、第2の上腕部206bが胴体部204に対して所定の軸回りに回動可能なように、胴体部204と第2の上腕部206bとの間には第2の肩関節220bが連結され得る。さらに、図12に示したように、第1の前腕部208aが第1の上腕部206aに対して所定の軸回りに回動可能なように、第1の前腕部208aと第1の上腕部206aとの間には第1の肘関節222aが連結され得る。同様に、第2の前腕部208bが第2の上腕部206bに対して所定の軸回りに回動可能なように、第2の前腕部208bと第2の上腕部206bとの間には第2の肘関節222bが連結され得る。なお、ロボット20内の各部位の動きは、電気的および/または磁気的な作用を用いて、例えば、後述する制御装置により制御され得る。また、以下では、ロボット20の背骨の方向と平行な方向をz軸方向とも呼称する。 Further, as shown in FIG. 12, between the body 204 and the first upper arm 206a, the first upper arm 206a can be pivoted about the predetermined axis with respect to the body 204. The first shoulder joint 220a may be coupled. Similarly, a second shoulder joint 220b is provided between the body 204 and the second upper arm 206b so that the second upper arm 206b can rotate about a predetermined axis with respect to the body 204. It can be linked. Furthermore, as shown in FIG. 12, the first forearm 208a and the first upper arm 208a can be rotated about a predetermined axis with respect to the first upper arm 206a. A first elbow joint 222a may be connected between the arm and the arm 206a. Similarly, between the second forearm portion 208b and the second upper arm portion 206b, the second forearm portion 208b can rotate about a predetermined axis with respect to the second upper arm portion 206b. Two elbow joints 222b may be connected. The movement of each part in the robot 20 can be controlled by, for example, a control device described later, using an electrical and / or magnetic action. Moreover, below, the direction parallel to the direction of the spine of the robot 20 is also referred to as the z-axis direction.
 {4-1-1.配置例1}
 以下では、本適用例に係るロボット20に対する伸縮機構10の具体的な配置例について説明する。例えば、図13Aに示したように、ロボット20の胴体部204の内部に伸縮機構10が配置されてもよい。具体的には、胴体部204内の背骨の軸方向に沿って伸縮機構10が伸縮可能なように、伸縮機構10が胴体部204内に(例えば背骨として)配置されてもよい。かかる構成によれば、アクチュエータ130の駆動に応じて、伸縮機構10が所定の伸縮方向(z軸方向)に沿って伸展することにより、ロボット20の身長が高くなる。従って、高い場所に存在する物体をロボット20が操作(把持など)する場面において、ロボット20はより安定的に作業を行うことができる。
{4-1-1. Arrangement example 1}
Below, the specific example of arrangement | positioning of the expansion-contraction mechanism 10 with respect to the robot 20 which concerns on this application example is demonstrated. For example, as shown in FIG. 13A, the expansion and contraction mechanism 10 may be disposed inside the body portion 204 of the robot 20. Specifically, the telescopic mechanism 10 may be disposed (for example, as a spine) in the body portion 204 so that the telescopic mechanism 10 can expand and contract along the axial direction of the spine in the body portion 204. According to this configuration, the height of the robot 20 is increased by the expansion and contraction mechanism 10 extending along the predetermined expansion and contraction direction (z-axis direction) according to the drive of the actuator 130. Therefore, the robot 20 can work more stably in a scene where the robot 20 manipulates (eg, holds) an object present at a high place.
 この場合、図13Aに示したように、アクチュエータ130の本体部1300が設置されている接続部材120aがロボット20の下半身側に位置するように、胴体部204の内部に伸縮機構10が配置されることが好ましい。かかる構成によれば、アクチュエータ130関連の重心がロボット20の下半身側に集中するので、ロボット20の安定性がより向上し得る。 In this case, as shown in FIG. 13A, the expansion and contraction mechanism 10 is disposed inside the body 204 such that the connection member 120a on which the main body 1300 of the actuator 130 is installed is located on the lower body side of the robot 20. Is preferred. According to this configuration, the center of gravity associated with the actuator 130 is concentrated on the lower body side of the robot 20, so that the stability of the robot 20 can be further improved.
 さらに、複数の接続部材120の各々の、当該接続部材120の上面側から見た形状がそれぞれ略三角形である場合、図13Bに示したような位置関係で、伸縮機構10が胴体部204の内部に配置されることが好ましい。具体的には、ロボット20の背中側の一辺と、各接続部材120の(3辺のうちの同一の)一辺とがそれぞれ略平行になり、かつ、各接続部材120がロボット20の前方に向けて凸になるような位置関係で、伸縮機構10が胴体部204の内部に配置されることが好ましい。換言すれば、ロボット20の上から見た際に、ロボット20の正面に向けて各接続部材120が凸になるような位置関係で、伸縮機構10が胴体部204の内部に配置されることが好ましい。さらに、図13Bに示したように、胴体部204における、各接続部材120のうちの残りの2辺の各々に対応する位置に肩関節220が一つずつ配置されることがより好ましい。 Furthermore, when the shape of each of the plurality of connection members 120 as viewed from the upper surface side of the connection member 120 is substantially triangular, the extension mechanism 10 is inside the body portion 204 in the positional relationship as shown in FIG. 13B. It is preferred that the Specifically, one side on the back side of the robot 20 and one side (the same one of the three sides) of each connecting member 120 are substantially parallel, and each connecting member 120 is directed to the front of the robot 20. Preferably, the telescopic mechanism 10 is disposed inside the body portion 204 in such a positional relationship as to be convex. In other words, the telescopic mechanism 10 is disposed inside the body portion 204 in such a positional relationship that each connecting member 120 is convex toward the front of the robot 20 when viewed from above the robot 20. preferable. Furthermore, as shown to FIG. 13B, it is more preferable that one shoulder joint 220 is arrange | positioned by the position corresponding to each of two remaining sides of each connection member 120 in the trunk | drum 204. As shown in FIG.
 通常、ロボット20は、双腕を用いて体の前方で作業を行うことが多いことが想定される。上記の構成によれば、双腕(例えば、第1の上腕部206aおよび第2の上腕部206bなど)がロボット20の前方において胴体部204と干渉し難くなる。従って、双腕の可動域がそれぞれ拡大するので、ロボット20は、双腕作業を容易に行うことができたり、また、作業がより安定化し得る。 Usually, it is assumed that the robot 20 often works in front of the body using two arms. According to the above configuration, the double arms (for example, the first upper arm 206a and the second upper arm 206b) do not easily interfere with the body 204 in front of the robot 20. Therefore, since the moving areas of the two arms are respectively expanded, the robot 20 can easily perform the two-arm work, and the work can be more stabilized.
 {4-1-2.配置例2}
 または、図14に示したように、ロボット20の首部202の軸方向に沿って伸縮機構10が伸縮可能なように、首部202の内部において伸縮機構10が配置されてもよい。かかる構成によれば、アクチュエータ130の駆動に応じて、伸縮機構10が所定の伸縮方向(z軸方向)に沿って伸展することにより、首部202の長さが長くなる。これにより、例えば頭部200にカメラや距離センサなどの各種のセンサが配置されている場合には、当該各種のセンサは、より高い空間をセンシング可能になる。
{4-1-2. Arrangement example 2}
Alternatively, as shown in FIG. 14, the telescopic mechanism 10 may be disposed inside the neck portion 202 so that the telescopic mechanism 10 can expand and contract along the axial direction of the neck portion 202 of the robot 20. According to this configuration, the length of the neck portion 202 is increased by the extension mechanism 10 extending along the predetermined extension direction (z-axis direction) in response to the drive of the actuator 130. Thus, for example, when various sensors such as a camera and a distance sensor are disposed on the head 200, the various sensors can sense a higher space.
 {4-1-3.配置例3}
 または、図15に示したように、第1の上腕部206aおよび第2の上腕部206bの各々の軸方向に沿って伸縮機構10が伸縮可能なように、これらの上腕部206の内部に伸縮機構10が配置されてもよい。例えば、図15に示したように、アクチュエータ130の本体部1300が設置されている接続部材120aが(エンドエフェクタ210側ではなく)肩関節220側に位置するように、これらの上腕部206の内部において伸縮機構10が配置されることが好ましい。このように配置されることにより、アクチュエータ130関連の重心が肩関節220側に集中し得る。従って、ロボット20が第1の上腕部206aや第2の上腕部206bを振り回す際のイナーシャがより小さくなるという利点がある。
{4-1-3. Arrangement example 3}
Alternatively, as shown in FIG. 15, the inside of the upper arms 206 is expanded or contracted so that the expansion and contraction mechanism 10 can expand and contract along the axial direction of each of the first upper arm 206a and the second upper arm 206b. A mechanism 10 may be arranged. For example, as shown in FIG. 15, the inside of the upper arm 206 is positioned such that the connection member 120a on which the main body 1300 of the actuator 130 is installed is on the shoulder joint 220 side (not on the end effector 210 side). Preferably, the telescopic mechanism 10 is disposed. By this arrangement, the center of gravity associated with the actuator 130 can be concentrated on the shoulder joint 220 side. Therefore, there is an advantage that the inertia when the robot 20 swings the first upper arm 206a and the second upper arm 206b is smaller.
 変形例として、このように、第1の上腕部206aおよび第2の上腕部206bの各々に伸縮機構10が配置される場合、ロボット20は、第1の前腕部208a、第2の前腕部208b、および、2つの肘関節222を有しなくてもよい。すなわち、第1の上腕部206aが第1のエンドエフェクタ210aと直接連結しており、かつ、第2の上腕部206bが第2のエンドエフェクタ210bと直接連結していてもよい。 As a modification, when the extension mechanism 10 is arranged on each of the first upper arm 206a and the second upper arm 206b as described above, the robot 20 includes the first forearm 208a and the second forearm 208b. , And may not have two elbow joints 222. That is, the first upper arm portion 206a may be directly connected to the first end effector 210a, and the second upper arm portion 206b may be directly connected to the second end effector 210b.
 {4-1-4.配置例4}
 別の変形例として、移動機構212が(車輪の代わりに)2本の脚部を有する場合、当該2本の脚部の各々の軸方向に沿って伸縮機構10が伸縮可能なように、当該2本の脚部の内部に伸縮機構10が配置されてもよい。
{4-1-4. Arrangement example 4}
As another modification, when the moving mechanism 212 has two legs (in place of the wheel), the telescopic mechanism 10 can expand and contract along the axial direction of each of the two legs. The extension mechanism 10 may be disposed inside the two legs.
 {4-1-5.配置例5}
 上記の説明では、ロボット20の一種類の部位の内部だけに伸縮機構10が配置される例を主として説明したが、適用例1はかかる例に限定されない。例えば、胴体部204、首部202、2本の上腕部206、および、2本の脚部のうちのいずれか2以上の内部に、伸縮機構10がそれぞれ配置されてもよい。
{4-1-5. Arrangement example 5}
In the above description, although the example in which the expansion and contraction mechanism 10 is disposed only inside one type of part of the robot 20 has been mainly described, the application example 1 is not limited to this example. For example, the telescopic mechanism 10 may be disposed inside any two or more of the body 204, the neck 202, the two upper arms 206, and the two legs.
 以上説明したように、適用例1によれば、例えば人型のロボット20の各部位(背骨、首、腕、および、脚など)を、軽量であり、かつ、高い出力及び高い伸縮率を有するように構成することができる。 As described above, according to Application Example 1, for example, each portion (such as the spine, neck, arms, and legs) of the humanoid robot 20 is lightweight and has high output and high expansion ratio. It can be configured as follows.
 <4-2.4足ロボット>
 次に、本実施形態の適用例2について説明する。適用例2は、本実施形態に係る伸縮機構10が、4足ロボットに適用される例である。
<4-2.4 foot robot>
Next, application example 2 of the present embodiment will be described. Application Example 2 is an example in which the expansion and contraction mechanism 10 according to the present embodiment is applied to a four-legged robot.
 {4-2-1.配置例1}
 例えば、4足ロボットが有する4本の脚部の各々の内部において、当該脚部の軸方向に沿って伸縮機構10が伸縮可能なように、伸縮機構10がそれぞれ配置され得る。例えば、伸縮機構10が有する複数の接続部材120の各々の、当該接続部材120の上面側から見た形状がそれぞれ略三角形であるとする。この場合、4本の脚部のうちの2本の前脚部の各々に関しては、当該前脚部の前側の一辺と、各接続部材120の(3辺のうちの同一の)一辺とがそれぞれ略平行になり、かつ、各接続部材120が4足ロボットの後方へ向けて凸になるような位置関係で、伸縮機構10が当該前脚部の内部に配置されることが好ましい。さらに、当該4本の脚部のうちの2本の後脚部の各々に関しては、当該後脚部の後ろ側の一辺と、各接続部材120の(3辺のうちの同一の)一辺とがそれぞれ略平行になり、かつ、各接続部材120が4足ロボットの前方へ向けて凸になるような位置関係で、伸縮機構10が当該後脚部の内部に配置されることが好ましい。
{4-2-1. Arrangement example 1}
For example, in each of the four legs of the four-legged robot, the expansion and contraction mechanisms 10 can be arranged such that the expansion and contraction mechanism 10 can expand and contract along the axial direction of the legs. For example, it is assumed that the shape of each of the plurality of connection members 120 included in the expansion and contraction mechanism 10 as viewed from the upper surface side of the connection member 120 is substantially a triangle. In this case, for each of the two front legs of the four legs, one side of the front side of the front leg and one side (the same of the three sides) of each connecting member 120 are substantially parallel. Preferably, the telescopic mechanism 10 is disposed inside the front leg in such a positional relationship that each connecting member 120 is convex toward the rear of the four-legged robot. Furthermore, for each of the two rear legs of the four legs, one side on the rear side of the rear legs and one side (the same of the three sides) of each connecting member 120 are The telescopic mechanism 10 is preferably disposed inside the rear leg in such a positional relationship that the respective connection members 120 are substantially parallel and that the connection members 120 are convex toward the front of the four-legged robot.
 上記のように配置されることにより、4足ロボットが歩行を行う際に、各脚部のうちの、外界の物体と接触し得る部分の形状が略平面になるので、歩行時の安全性を向上させることができる。 By arranging as described above, when the four-legged robot walks, the shape of the portion of each leg that can come in contact with the external object becomes substantially flat, so safety during walking can be reduced. It can be improved.
 {4-2-2.配置例2}
 または、4足ロボットが有する胴体部の内部に伸縮機構10が配置されてもよい。具体的には、当該胴体部内の背骨の軸方向に沿って伸縮機構10が伸縮可能なように、伸縮機構10が当該胴体部内に(例えば背骨として)配置されてもよい。例えば、伸縮機構10が有する複数の接続部材120の各々の、当該接続部材120の上面側から見た形状がそれぞれ略三角形であるとする。この場合、当該胴体部の背中側の一辺と、各接続部材120の(3辺のうちの同一の)一辺とがそれぞれ略平行になり、かつ、各接続部材120が当該胴体部の腹側へ向けて凸になるような位置関係で、伸縮機構10が当該胴体部の内部に配置されてもよい。かかる構成によれば、アクチュエータ130の駆動に応じて、伸縮機構10が所定の伸縮方向(つまり、背骨の方向)に沿って伸展することにより、4足ロボットの背中の面積が拡大する。従って、4足ロボットの背中に、より多くの荷物を載せやすくなったり、より重量の大きい荷物を載せやすくなる。
{4-2-2. Arrangement example 2}
Alternatively, the telescopic mechanism 10 may be disposed inside the torso portion of the four-legged robot. Specifically, the telescopic mechanism 10 may be disposed within the body (for example, as a spine) so that the telescopic mechanism 10 can expand and contract along the axial direction of the spine in the body. For example, it is assumed that the shape of each of the plurality of connection members 120 included in the expansion and contraction mechanism 10 as viewed from the upper surface side of the connection member 120 is substantially a triangle. In this case, one side on the back side of the torso portion and one side (the same one of the three sides) of each connecting member 120 are substantially parallel, and each connecting member 120 is directed to the belly side of the torso portion. The telescopic mechanism 10 may be disposed inside the body in such a positional relationship as to be convex toward the inside. According to this configuration, the area of the back of the four-footed robot is expanded by the extension mechanism 10 extending along the predetermined extension direction (that is, the direction of the spine) according to the drive of the actuator 130. Therefore, it becomes easier to put more load on the back of the four-legged robot and load more heavy load.
 あるいは、当該胴体部の腹側の一辺と、各接続部材120の(3辺のうちの同一の)一辺とがそれぞれ略平行になり、かつ、各接続部材120が当該胴体部の背中側へ向けて凸になるような位置関係で、伸縮機構10が当該胴体部の内部に配置されてもよい。かかる構成によれば、4足ロボットが地面に伏せた際に、当該4足ロボットの姿勢がより安定化し得る。 Alternatively, one side of the belly side of the body portion and one side (the same one of the three sides) of each connection member 120 are substantially parallel, and each connection member 120 is directed to the back side of the body portion. The telescopic mechanism 10 may be disposed inside the body in such a positional relationship as to be convex. According to this configuration, when the four-legged robot is lowered to the ground, the posture of the four-legged robot can be more stabilized.
<<5.むすび>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<< 5. End >>
The preferred embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It will be apparent to those skilled in the art of the present disclosure that various modifications and alterations can be conceived within the scope of the technical idea described in the claims. It is naturally understood that the technical scope of the present disclosure is also included.
 前述した実施形態に係る伸縮機構10、および/または、各適用例に係るロボット20や4足ロボットを動作させるための制御装置は、例えばCPU(Central Procecessing Unit)やGPU(Graphics Processing Unit)等のプロセッサを含んで構成され得る。この場合、当該制御装置のプロセッサが所定のプログラムに従って演算処理を行うことにより、アクチュエータ130の駆動が適宜制御され得る。なお、当該制御装置の具体的な装置構成は限定されない。例えば、当該制御装置は、当該プロセッサ、および、メモリ(例えばRAM(Random Access Memory)やROM(Read Only Memory)など)などが搭載された制御基板であってよい。 The telescopic mechanism 10 according to the above-described embodiment and / or the control device for operating the robot 20 or the four-footed robot according to each application example is, for example, a central processing unit (CPU) or a graphics processing unit (GPU). It may be configured to include a processor. In this case, driving of the actuator 130 can be appropriately controlled by the processor of the control device performing arithmetic processing in accordance with a predetermined program. The specific device configuration of the control device is not limited. For example, the control device may be a control board on which the processor and a memory (for example, a random access memory (RAM) or a read only memory (ROM)) are mounted.
 この場合、伸縮機構10、ロボット20および/または4足ロボットの内部に当該制御装置が設置されてもよい。または、これらの機械の外部に設置されており、かつ、これらの機械と有線通信または無線通信により通信可能な情報処理装置の内部に当該制御装置が設置されてもよい。当該情報処理装置は、例えば、サーバ、汎用PC(Personal Computer)、スマートフォンなどの携帯電話、タブレット型端末、ウェアラブルデバイス(例えばHMD(Head Mounted Display)など)、または、他のロボット(例えば、人型ロボット、4足ロボット、または、自動運転車など)であってもよい。 In this case, the control device may be installed inside the extension mechanism 10, the robot 20 and / or the four-legged robot. Alternatively, the control device may be installed inside an information processing device which is installed outside these machines and which can communicate with these machines by wired communication or wireless communication. The information processing apparatus may be, for example, a server, a general-purpose PC (Personal Computer), a mobile phone such as a smartphone, a tablet terminal, a wearable device (for example, an HMD (Head Mounted Display)), or another robot (for example, a human type). It may be a robot, a quadruped robot, or an autonomous vehicle.
 なお、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的なものではない。つまり、本開示に係る技術は、上記の効果とともに、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。 The effects described in the present specification are merely illustrative or exemplary, and not limiting. That is, the technology according to the present disclosure may exhibit other effects apparent to those skilled in the art from the description of the present specification, in addition to or instead of the effects described above.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 複数のリンク部材の端同士が互いに回動可能に順次連結されて構成され、かつ、互いに連結された前記リンク部材同士がなす角が変化することにより、それぞれが平行に伸縮する、少なくとも3つのリンク構造と、
 前記少なくとも3つのリンク構造の各々に連結する複数の接続部材と、
を備え、
 前記複数の接続部材は、アクチュエータの本体部が設置されている第1の接続部材と、前記アクチュエータの出力軸に連結されている第2の接続部材とを含み、
 前記第2の接続部材は、前記アクチュエータの駆動に応じて、前記少なくとも3つのリンク構造が伸縮する方向と平行である所定の伸縮方向に沿って移動する、伸縮機構。
(2)
 前記複数の接続部材の各々は、前記所定の伸縮方向に沿って階層的に配置されている、前記(1)に記載の伸縮機構。
(3)
 前記少なくとも3つのリンク構造の各々を構成する前記互いに連結された前記リンク部材同士がなす角は、前記第2の接続部材が前記所定の伸縮方向に沿って移動することによりに変化する、前記(2)に記載の伸縮機構。
(4)
 前記複数のリンク部材の各々は、前記複数の接続部材のうちの当該リンク部材に対応する一つの接続部材の外周面に連結し、
 前記複数のリンク部材は、前記第1の接続部材の外周面と連結する第1のリンク部材と、前記第2の接続部材の外周面と連結する第2のリンク部材とを含み、
 前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材の形状は、それぞれ略同一であり、
 前記少なくとも3つのリンク構造の各々に含まれる前記第2のリンク部材の形状は、それぞれ略同一である、前記(3)に記載の伸縮機構。
(5)
 前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材は、前記第1の接続部材の外周面の周方向において互いに略等間隔に連結されており、
 前記少なくとも3つのリンク構造の各々に含まれる前記第2のリンク部材は、前記第2の接続部材の外周面の周方向において互いに略等間隔に連結されている、前記(4)に記載の伸縮機構。
(6)
 前記アクチュエータの本体部は、前記第1の接続部材の略中心に設置されている、前記(5)に記載の伸縮機構。
(7)
 前記第1の接続部材の外周面には、前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材と連結する、少なくとも3つの連結部が設けられており、
 前記少なくとも3つの連結部は、第1の連結部と第2の連結部とを含み、
 前記第1の連結部と前記第1の接続部材の中心との距離と、前記第2の連結部と前記第1の接続部材の中心との距離とは略同一である、前記(6)に記載の伸縮機構。
(8)
 前記少なくとも3つの連結部の各々と前記第1の接続部材の中心との距離とは、それぞれ略同一である、前記(7)に記載の伸縮機構。
(9)
 前記少なくとも3つのリンク構造の数は3つであり、
 前記所定の伸縮方向から見た前記接続部材の形状は、略三角形または略角丸三角形である、前記(7)または(8)に記載の伸縮機構。
(10)
 前記第1の接続部材は、前記アクチュエータの本体部の設置領域から離隔した位置において、前記第1の接続部材の軸方向に貫通する少なくとも一つの孔を有する、前記(6)~(9)のいずれか一項に記載の伸縮機構。
(11)
 前記複数の接続部材のうちの少なくとも2つの形状は、略同一である、前記(6)~(10)のいずれか一項に記載の伸縮機構。
(12)
 前記複数の接続部材の各々は、前記所定の伸縮方向と直交し、かつ、互いに平行になるように配置されている、前記(6)~(11)のいずれか一項に記載の伸縮機構。
(13)
 前記所定の伸縮方向は、前記アクチュエータの出力軸の軸方向と平行である、前記(12)に記載の伸縮機構。
(14)
 前記アクチュエータは、リニアアクチュエータである、前記(13)に記載の伸縮機構。
(15)
 前記アクチュエータの本体部は、モータを含み、
 前記アクチュエータの出力軸は、一つの端部が前記モータに連結されているボールねじであり、
 前記ボールねじのナットは、前記第2の接続部材に連結しており、かつ、前記モータの駆動に応じて前記ボールねじの軸方向に沿って移動し、
 前記所定の伸縮方向と前記ボールねじの軸方向とは同一である、前記(13)または(14)に記載の伸縮機構。
(16)
 前記複数の接続部材は、前記第2の接続部材に対して前記第1の接続部材の反対側に配置された第3の接続部材をさらに含み、
 前記複数のリンク部材は、前記第3の接続部材に連結する第3のリンク部材をさらに含み、
 前記第1のリンク部材の長手方向の長さは、前記第2のリンク部材の長手方向の長さ、および、前記第3のリンク部材の長手方向の長さのいずれよりも小さい、前記(15)に記載の伸縮機構。
(17)
 前記第1のリンク部材は、棒状であり、
 前記第3のリンク部材は、前記第3の接続部材に連結する連結部において屈曲している、前記(16)に記載の伸縮機構。
(18)
 前記少なくとも3つのリンク構造の数は6つであり、
 隣接する2つの前記リンク構造ごとに、当該2つの前記リンク構造の各々に含まれる、同じ階層に位置するリンク部材同士は、前記第1の接続部材の中心からの放射方向に関して少なくとも一部が重なるように配置されている、前記(4)~(17)のいずれか一項に記載の伸縮機構。
(19)
 前記隣接する2つの前記リンク構造ごとに、当該2つの前記リンク構造の各々に含まれる、同じ階層に位置するリンク部材同士は、さらに、前記所定の伸縮方向に関して交差するような位置関係で配置されている、前記(18)に記載の伸縮機構。
(20)
 前記第1の接続部材と前記第2の接続部材との間には、前記所定の伸縮方向に沿って弾性変形するように構成された第1の弾性部材が配置されている、または、
 前記少なくとも3つの前記第1のリンク部材のうちの少なくとも一つと前記第1の接続部材との間にはそれぞれ、当該第1のリンク部材の回動方向に沿って弾性変形するように構成された第2の弾性部材が配置されている、前記(13)~(19)のいずれか一項に記載の伸縮機構。
The following configurations are also within the technical scope of the present disclosure.
(1)
The ends of a plurality of link members are configured to be sequentially connected so as to be able to pivot relative to one another, and at least three links that expand and contract in parallel by changing the angle formed by the link members connected to each other Structure,
A plurality of connecting members coupled to each of the at least three link structures;
Equipped with
The plurality of connection members include a first connection member on which a main body of the actuator is installed, and a second connection member connected to an output shaft of the actuator.
The second connection member moves in a predetermined expansion / contraction direction parallel to a direction in which the at least three link structures expand / contract in response to the drive of the actuator.
(2)
The telescopic mechanism according to (1), wherein each of the plurality of connection members is arranged hierarchically along the predetermined telescopic direction.
(3)
The angle formed by the mutually connected link members constituting each of the at least three link structures changes as the second connection member moves along the predetermined expansion / contraction direction. The telescopic mechanism as described in 2).
(4)
Each of the plurality of link members is connected to an outer peripheral surface of one of the plurality of connection members corresponding to the link member,
The plurality of link members include a first link member coupled with an outer peripheral surface of the first connection member, and a second link member coupled with an outer peripheral surface of the second connection member,
The shapes of the first link members included in each of the at least three link structures are substantially the same.
The telescopic mechanism according to (3), wherein the shapes of the second link members included in each of the at least three link structures are substantially the same.
(5)
The first link members included in each of the at least three link structures are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the first connection member,
The expansion and contraction according to (4), wherein the second link members included in each of the at least three link structures are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the second connection member. mechanism.
(6)
The telescopic mechanism according to (5), wherein the main body of the actuator is disposed substantially at the center of the first connection member.
(7)
The outer peripheral surface of the first connection member is provided with at least three coupling portions to be coupled with the first link member included in each of the at least three link structures,
The at least three links include a first link and a second link, and
In the above (6), the distance between the first connecting portion and the center of the first connecting member and the distance between the second connecting portion and the center of the first connecting member are substantially the same. Stretching mechanism described.
(8)
The telescopic mechanism according to (7), wherein the distance between each of the at least three coupling portions and the center of the first connection member is substantially the same.
(9)
The number of the at least three link structures is three,
The telescopic mechanism according to (7) or (8), wherein the shape of the connection member when viewed from the predetermined telescopic direction is a substantially triangular shape or a substantially rounded triangular shape.
(10)
The first connecting member has at least one hole penetrating in the axial direction of the first connecting member at a position separated from the installation area of the main body of the actuator. A telescopic mechanism according to any one of the preceding claims.
(11)
The telescopic mechanism according to any one of (6) to (10), wherein at least two of the plurality of connection members have substantially the same shape.
(12)
The telescopic mechanism according to any one of (6) to (11), wherein each of the plurality of connection members is disposed to be orthogonal to the predetermined telescopic direction and to be parallel to each other.
(13)
The telescopic mechanism according to (12), wherein the predetermined telescopic direction is parallel to an axial direction of an output shaft of the actuator.
(14)
The telescopic mechanism according to (13), wherein the actuator is a linear actuator.
(15)
The body portion of the actuator includes a motor,
The output shaft of the actuator is a ball screw having one end connected to the motor,
The nut of the ball screw is connected to the second connection member, and moves along the axial direction of the ball screw according to the drive of the motor.
The telescopic mechanism according to (13) or (14), wherein the predetermined telescopic direction and the axial direction of the ball screw are the same.
(16)
The plurality of connection members further include a third connection member disposed on the opposite side of the first connection member with respect to the second connection member,
The plurality of link members further include a third link member coupled to the third connection member,
The longitudinal length of the first link member is smaller than the longitudinal length of the second link member and the longitudinal length of the third link member (15). Stretching mechanism described in).
(17)
The first link member is rod-shaped,
The telescopic mechanism according to (16), wherein the third link member is bent at a connection portion connected to the third connection member.
(18)
The number of the at least three link structures is six,
Link members located in the same layer included in each of the two link structures adjacent to each other in the two link structures are at least partially overlapped in the radial direction from the center of the first connection member The telescopic mechanism according to any one of (4) to (17), which is arranged as follows.
(19)
For each of the two adjacent link structures, link members located in the same layer included in each of the two link structures are further arranged in a positional relationship such that they cross in the predetermined expansion and contraction direction. The telescopic mechanism as described in said (18).
(20)
Between the first connection member and the second connection member, a first elastic member configured to be elastically deformed along the predetermined expansion and contraction direction is disposed, or
Between at least one of the at least three first link members and the first connection member, each is configured to be elastically deformed along the pivoting direction of the first link member. The telescopic mechanism according to any one of (13) to (19), wherein the second elastic member is disposed.
10 伸縮機構
20 ロボット
110 リンク構造
111 リンク部材
112、113 ピン
120 接続部材
130 アクチュエータ
150 補助リンク部材
200 頭部
202 首部
204 胴体部
206a 第1の上腕部
206b 第2の上腕部
208a 第1の前腕部
208b 第2の前腕部
210a 第1のエンドエフェクタ
210b 第2のエンドエフェクタ
212 移動機構
220 肩関節
222a 第1の肘関節
222b 第2の肘関節
1200 孔
1210 連結部
1300 本体部
1302 出力軸
1302 ボールねじ
1310 ねじ軸
1312 ナット
DESCRIPTION OF SYMBOLS 10 Telescopic mechanism 20 Robot 110 Link structure 111 Link member 112, 113 Pin 120 Connection member 130 Actuator 150 Auxiliary link member 200 Head 202 Neck part 204 Body part 206a 1st upper arm part 206b 2nd upper arm part 208a 1st forearm part 208b second forearm unit 210a first end effector 210b second end effector 212 moving mechanism 220 shoulder joint 222a first elbow joint 222b second elbow joint 1200 hole 1210 connecting portion 1300 main portion 1302 output shaft 1302 ball screw 1310 screw shaft 1312 nut

Claims (20)

  1.  複数のリンク部材の端同士が互いに回動可能に順次連結されて構成され、かつ、互いに連結された前記リンク部材同士がなす角が変化することにより、それぞれが平行に伸縮する、少なくとも3つのリンク構造と、
     前記少なくとも3つのリンク構造の各々に連結する複数の接続部材と、
    を備え、
     前記複数の接続部材は、アクチュエータの本体部が設置されている第1の接続部材と、前記アクチュエータの出力軸に連結されている第2の接続部材とを含み、
     前記第2の接続部材は、前記アクチュエータの駆動に応じて、前記少なくとも3つのリンク構造が伸縮する方向と平行である所定の伸縮方向に沿って移動する、伸縮機構。
    The ends of a plurality of link members are configured to be sequentially connected so as to be able to pivot relative to one another, and at least three links that expand and contract in parallel by changing the angle formed by the link members connected to each other Structure,
    A plurality of connecting members coupled to each of the at least three link structures;
    Equipped with
    The plurality of connection members include a first connection member on which a main body of the actuator is installed, and a second connection member connected to an output shaft of the actuator.
    The second connection member moves in a predetermined expansion / contraction direction parallel to a direction in which the at least three link structures expand / contract in response to the drive of the actuator.
  2.  前記複数の接続部材の各々は、前記所定の伸縮方向に沿って階層的に配置されている、請求項1に記載の伸縮機構。 The telescopic mechanism according to claim 1, wherein each of the plurality of connection members is arranged hierarchically along the predetermined telescopic direction.
  3.  前記少なくとも3つのリンク構造の各々を構成する前記互いに連結された前記リンク部材同士がなす角は、前記第2の接続部材が前記所定の伸縮方向に沿って移動することによりに変化する、請求項2に記載の伸縮機構。 The angle formed by the mutually connected link members constituting each of the at least three link structures is changed by movement of the second connection member along the predetermined expansion and contraction direction. The telescopic mechanism as described in 2.
  4.  前記複数のリンク部材の各々は、前記複数の接続部材のうちの当該リンク部材に対応する一つの接続部材の外周面に連結し、
     前記複数のリンク部材は、前記第1の接続部材の外周面と連結する第1のリンク部材と、前記第2の接続部材の外周面と連結する第2のリンク部材とを含み、
     前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材の形状は、それぞれ略同一であり、
     前記少なくとも3つのリンク構造の各々に含まれる前記第2のリンク部材の形状は、それぞれ略同一である、請求項3に記載の伸縮機構。
    Each of the plurality of link members is connected to an outer peripheral surface of one of the plurality of connection members corresponding to the link member,
    The plurality of link members include a first link member coupled with an outer peripheral surface of the first connection member, and a second link member coupled with an outer peripheral surface of the second connection member,
    The shapes of the first link members included in each of the at least three link structures are substantially the same.
    The telescopic mechanism according to claim 3, wherein the shapes of the second link members included in each of the at least three link structures are substantially the same.
  5.  前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材は、前記第1の接続部材の外周面の周方向において互いに略等間隔に連結されており、
     前記少なくとも3つのリンク構造の各々に含まれる前記第2のリンク部材は、前記第2の接続部材の外周面の周方向において互いに略等間隔に連結されている、請求項4に記載の伸縮機構。
    The first link members included in each of the at least three link structures are connected to each other at substantially equal intervals in the circumferential direction of the outer peripheral surface of the first connection member,
    The telescopic mechanism according to claim 4, wherein the second link members included in each of the at least three link structures are connected to each other at substantially equal intervals in a circumferential direction of an outer peripheral surface of the second connection member. .
  6.  前記アクチュエータの本体部は、前記第1の接続部材の略中心に設置されている、請求項5に記載の伸縮機構。 The telescopic mechanism according to claim 5, wherein the main body portion of the actuator is disposed substantially at the center of the first connection member.
  7.  前記第1の接続部材の外周面には、前記少なくとも3つのリンク構造の各々に含まれる前記第1のリンク部材と連結する、少なくとも3つの連結部が設けられており、
     前記少なくとも3つの連結部は、第1の連結部と第2の連結部とを含み、
     前記第1の連結部と前記第1の接続部材の中心との距離と、前記第2の連結部と前記第1の接続部材の中心との距離とは略同一である、請求項6に記載の伸縮機構。
    The outer peripheral surface of the first connection member is provided with at least three coupling portions to be coupled with the first link member included in each of the at least three link structures,
    The at least three links include a first link and a second link, and
    The distance between the first connecting portion and the center of the first connecting member and the distance between the second connecting portion and the center of the first connecting member are substantially the same. Telescopic mechanism.
  8.  前記少なくとも3つの連結部の各々と前記第1の接続部材の中心との距離とは、それぞれ略同一である、請求項7に記載の伸縮機構。 The telescopic mechanism according to claim 7, wherein the distance between each of the at least three coupling portions and the center of the first connection member is substantially the same.
  9.  前記少なくとも3つのリンク構造の数は3つであり、
     前記所定の伸縮方向から見た前記接続部材の形状は、略三角形または略角丸三角形である、請求項7に記載の伸縮機構。
    The number of the at least three link structures is three,
    The telescopic mechanism according to claim 7, wherein the shape of the connection member as viewed from the predetermined telescopic direction is a substantially triangular shape or a substantially rounded triangular shape.
  10.  前記第1の接続部材は、前記アクチュエータの本体部の設置領域から離隔した位置において、前記第1の接続部材の軸方向に貫通する少なくとも一つの孔を有する、請求項6に記載の伸縮機構。 The extension mechanism according to claim 6, wherein the first connection member has at least one hole penetrating in the axial direction of the first connection member at a position separated from the installation area of the main body of the actuator.
  11.  前記複数の接続部材のうちの少なくとも2つの形状は、略同一である、請求項6に記載の伸縮機構。 The extension mechanism according to claim 6, wherein at least two shapes of the plurality of connection members are substantially identical.
  12.  前記複数の接続部材の各々は、前記所定の伸縮方向と直交し、かつ、互いに平行になるように配置されている、請求項6に記載の伸縮機構。 The telescopic mechanism according to claim 6, wherein each of the plurality of connection members is arranged to be orthogonal to the predetermined telescopic direction and to be parallel to each other.
  13.  前記所定の伸縮方向は、前記アクチュエータの出力軸の軸方向と平行である、請求項12に記載の伸縮機構。 The telescopic mechanism according to claim 12, wherein the predetermined telescopic direction is parallel to an axial direction of an output shaft of the actuator.
  14.  前記アクチュエータは、リニアアクチュエータである、請求項13に記載の伸縮機構。 The telescopic mechanism according to claim 13, wherein the actuator is a linear actuator.
  15.  前記アクチュエータの本体部は、モータを含み、
     前記アクチュエータの出力軸は、一つの端部が前記モータに連結されているボールねじであり、
     前記ボールねじのナットは、前記第2の接続部材に連結しており、かつ、前記モータの駆動に応じて前記ボールねじの軸方向に沿って移動し、
     前記所定の伸縮方向と前記ボールねじの軸方向とは同一である、請求項13に記載の伸縮機構。
    The body portion of the actuator includes a motor,
    The output shaft of the actuator is a ball screw having one end connected to the motor,
    The nut of the ball screw is connected to the second connection member, and moves along the axial direction of the ball screw according to the drive of the motor.
    The telescopic mechanism according to claim 13, wherein the predetermined telescopic direction and the axial direction of the ball screw are the same.
  16.  前記複数の接続部材は、前記第2の接続部材に対して前記第1の接続部材の反対側に配置された第3の接続部材をさらに含み、
     前記複数のリンク部材は、前記第3の接続部材に連結する第3のリンク部材をさらに含み、
     前記第1のリンク部材の長手方向の長さは、前記第2のリンク部材の長手方向の長さ、および、前記第3のリンク部材の長手方向の長さのいずれよりも小さい、請求項15に記載の伸縮機構。
    The plurality of connection members further include a third connection member disposed on the opposite side of the first connection member with respect to the second connection member,
    The plurality of link members further include a third link member coupled to the third connection member,
    The longitudinal length of the first link member is smaller than any of the longitudinal length of the second link member and the longitudinal length of the third link member. Telescopic mechanism as described in.
  17.  前記第1のリンク部材は、棒状であり、
     前記第3のリンク部材は、前記第3の接続部材に連結する連結部において屈曲している、請求項16に記載の伸縮機構。
    The first link member is rod-shaped,
    The telescopic mechanism according to claim 16, wherein the third link member is bent at a connecting portion connected to the third connecting member.
  18.  前記少なくとも3つのリンク構造の数は6つであり、
     隣接する2つの前記リンク構造ごとに、当該2つの前記リンク構造の各々に含まれる、同じ階層に位置するリンク部材同士は、前記第1の接続部材の中心からの放射方向に関して少なくとも一部が重なるように配置されている、請求項4に記載の伸縮機構。
    The number of the at least three link structures is six,
    Link members located in the same layer included in each of the two link structures adjacent to each other in the two link structures are at least partially overlapped in the radial direction from the center of the first connection member The telescoping mechanism according to claim 4, wherein the telescopic mechanism is arranged as follows.
  19.  前記隣接する2つの前記リンク構造ごとに、当該2つの前記リンク構造の各々に含まれる、同じ階層に位置するリンク部材同士は、さらに、前記所定の伸縮方向に関して交差するような位置関係で配置されている、請求項18に記載の伸縮機構。 For each of the two adjacent link structures, link members located in the same layer included in each of the two link structures are further arranged in a positional relationship such that they cross in the predetermined expansion and contraction direction. The telescopic mechanism according to claim 18, wherein
  20.  前記第1の接続部材と前記第2の接続部材との間には、前記所定の伸縮方向に沿って弾性変形するように構成された第1の弾性部材が配置されている、または、
     前記少なくとも3つの前記第1のリンク部材のうちの少なくとも一つと前記第1の接続部材との間にはそれぞれ、当該第1のリンク部材の回動方向に沿って弾性変形するように構成された第2の弾性部材が配置されている、請求項13に記載の伸縮機構。
    Between the first connection member and the second connection member, a first elastic member configured to be elastically deformed along the predetermined expansion and contraction direction is disposed, or
    Between at least one of the at least three first link members and the first connection member, each is configured to be elastically deformed along the pivoting direction of the first link member. The telescopic mechanism according to claim 13, wherein a second elastic member is disposed.
PCT/JP2018/032419 2017-11-20 2018-08-31 Extending and retracting mechanism WO2019097814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222392 2017-11-20
JP2017222392 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019097814A1 true WO2019097814A1 (en) 2019-05-23

Family

ID=66539634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032419 WO2019097814A1 (en) 2017-11-20 2018-08-31 Extending and retracting mechanism

Country Status (1)

Country Link
WO (1) WO2019097814A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211488A (en) * 2020-02-04 2021-08-06 广东博智林机器人有限公司 Gripping device
CN117481816A (en) * 2023-11-01 2024-02-02 北京跃维医疗科技有限公司 Telescoping device and surgical robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55177546U (en) * 1979-06-07 1980-12-19
JPH0322887U (en) * 1989-07-10 1991-03-11
JPH0430552A (en) * 1990-05-28 1992-02-03 Tokyo Electron Sagami Ltd Plate-shaped article conveyance device
JPH0615990U (en) * 1992-08-04 1994-03-01 新明和工業株式会社 Telescopic device
JPH07298928A (en) * 1994-05-09 1995-11-14 Yoshizawa:Kk Supporting table for heavy cargo of variable height
JP2010247238A (en) * 2009-04-10 2010-11-04 Olympus Corp Parallel link stage and optical element measuring instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55177546U (en) * 1979-06-07 1980-12-19
JPH0322887U (en) * 1989-07-10 1991-03-11
JPH0430552A (en) * 1990-05-28 1992-02-03 Tokyo Electron Sagami Ltd Plate-shaped article conveyance device
JPH0615990U (en) * 1992-08-04 1994-03-01 新明和工業株式会社 Telescopic device
JPH07298928A (en) * 1994-05-09 1995-11-14 Yoshizawa:Kk Supporting table for heavy cargo of variable height
JP2010247238A (en) * 2009-04-10 2010-11-04 Olympus Corp Parallel link stage and optical element measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211488A (en) * 2020-02-04 2021-08-06 广东博智林机器人有限公司 Gripping device
CN113211488B (en) * 2020-02-04 2022-07-29 广东博智林机器人有限公司 Gripping device
CN117481816A (en) * 2023-11-01 2024-02-02 北京跃维医疗科技有限公司 Telescoping device and surgical robot

Similar Documents

Publication Publication Date Title
JP5976401B2 (en) Lower leg structure of legged robot and legged robot
KR100687461B1 (en) Robot And Knuckle Apparatus For Robot
US11312436B2 (en) Obstacle crossing robot
JP5397856B2 (en) 6 DOF parallel mechanism
JP3555107B2 (en) Legged mobile robot and operation control method for legged mobile robot
JP5722747B2 (en) Robot joint structure and robot incorporating this joint structure
KR102246778B1 (en) Finger apparatus and robot hand having the finger apparatus
CN104940004A (en) Joint assembly and walking assistance robot
WO2005025814A1 (en) Lower body module for two-legged walking robot
CZ304673B6 (en) A method and a device for change of rigidity of a serial or parallel basic movable mechanism, especially of industrial robots and machine tools
KR20110080922A (en) Robot hand and robot having the same
KR20110133417A (en) Legged mobile robot
JP5373880B2 (en) Legged robot
KR20110139839A (en) Small jumping robot actuated by shape memory alloy
WO2019097814A1 (en) Extending and retracting mechanism
KR101887539B1 (en) Power transmission apparatus having two belts
JP2013091145A (en) Articular structure of robot and humanoid robot with the incorporated articular structure
US10399238B2 (en) Robot having a base body, a shoulder joint mechanism assembly, and a movable link coupled to the base body through the shoulder joint mechanism assembly
US20200009746A1 (en) Robotic forearms
US20200298425A1 (en) Morphable inertial appemdage, systems and associated methods
JPH0811080A (en) Drive device having 3 degrees of freedom in space
WO2018008254A1 (en) Extension/retraction mechanism and four-legged robot
CN103407506A (en) Foldable polyhedral rolling mechanism
JP4289446B2 (en) Legged mobile robot
JP4333625B2 (en) Robot arm and humanoid robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879972

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18879972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP