WO2019097605A1 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
WO2019097605A1
WO2019097605A1 PCT/JP2017/041104 JP2017041104W WO2019097605A1 WO 2019097605 A1 WO2019097605 A1 WO 2019097605A1 JP 2017041104 W JP2017041104 W JP 2017041104W WO 2019097605 A1 WO2019097605 A1 WO 2019097605A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
current
control unit
voltage
inverter
Prior art date
Application number
PCT/JP2017/041104
Other languages
English (en)
French (fr)
Inventor
俊介 戸林
鈴木 寛充
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2019554093A priority Critical patent/JP6864116B2/ja
Priority to EP17931919.9A priority patent/EP3713075B1/en
Priority to PCT/JP2017/041104 priority patent/WO2019097605A1/ja
Priority to CN201780096883.2A priority patent/CN111357186B/zh
Publication of WO2019097605A1 publication Critical patent/WO2019097605A1/ja
Priority to US15/930,801 priority patent/US10951125B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Definitions

  • the present invention relates to a power conversion system comprising at least two power conversion devices whose outputs are connected in parallel.
  • a method in which the outputs of a plurality of power conversion devices are connected in parallel.
  • the AC outputs of the two power conversion devices are connected via a coupling reactor.
  • the output current of each device is unbalanced due to the difference between the output voltages of the two power conversion devices and the difference between the impedances of the coupling reactor and the wiring cable.
  • a circulating current called cross current is generated.
  • the cross current between the two PWM inverters of the power conversion device is detected, and a cross current compensation value in the same unit as the common voltage command value of each PWM inverter is determined. It is known to provide a cross current control unit that adds to the voltage command value of one PWM inverter according to the value and subtracts it from the voltage command value of the other PWM inverter (see, for example, Patent Document 1).
  • the cross current control unit disclosed in Patent Document 1 basically controls the output voltage of a PWM inverter, which controls the output of the power conversion device, as an operation amount.
  • the cross current to be controlled is large to a certain extent, the output waveforms of the two inverters become different, and an unexpected harmonic current may flow to the coupling reactor. Therefore, it was necessary to determine the specifications of the coupling reactor in consideration of such an event.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a power conversion system in which unexpected harmonic current is not flowed in cross current control of two power conversion devices operated in parallel. I assume.
  • a power conversion system comprises: a first power conversion device configured of a first converter capable of controlling a DC voltage and a first inverter; An AC motor having a second power conversion device configured by two converters and a second inverter, and connecting the output of the first inverter and the output of the second inverter in parallel via a coupling reactor Power conversion system for driving the first inverter, wherein the first detection current detected by the first current detector for detecting the output current of the first inverter, and the second detection current for detecting the output current of the second inverter And controlling the DC output voltage of either one of the first converter and the second converter according to the difference between the first detected current and the second detected current detected by the 2 It is characterized in that so as to suppress the cross current flowing between the converter.
  • FIG. 1 is a circuit diagram of a power conversion system according to a first embodiment of the present invention.
  • Commercial three-phase AC power supply 1 is connected to converters 21A and 21B of power converters 2A and 2B via current detectors 5A and 5B, respectively.
  • Power converters 2A and 2B are respectively constituted by converters 21A and 21B, DC capacitors 23A and 23B, and inverters 22A and 22B.
  • the DC outputs of converters 21A and 21B are smoothed by DC capacitors 23A and 23B, respectively, and input to inverters 22A and 22B.
  • the alternating current outputs of the inverters 22A and 22B are connected to one and the other terminals of the coupling reactor 3 provided between the phases via current detectors 6A and 6B, respectively.
  • the three-phase output at the midpoint of coupling reactor 3 is connected to AC motor 4.
  • power converters 2A and 2B drive AC motor 4 in parallel.
  • the inverter 22A and the inverter 22B are synchronously controlled, and their fundamental wave outputs are in phase.
  • the converters 21A and 21B and the inverters 22A and 22B are voltage type PWM converters.
  • the power devices constituting the converters 21A and 21B are on / off controlled by gate signals supplied from the control units 8A and 8B, respectively.
  • the control units 8A and 8B also receive the outputs of the voltage detectors 24A and 24B for detecting the DC voltage applied to the DC capacitors 23A and 23B.
  • the output currents detected by the current detectors 6A and 6B are respectively applied to the addition input and the subtraction input of the subtractor 71 of the difference current control unit 7. Then, the output of the subtractor 71, that is, the difference between the output currents of the inverter 22A and the inverter 22B is given to a difference current controller 72 which is, for example, a PI controller.
  • the difference current controller 72 controls such that the difference is minimized and supplies the output as a DC voltage reference correction amount to the subtraction input of the subtractor 73.
  • the addition input of the subtracter 73 is provided with a preset DC voltage reference. Then, the output of the subtractor 73 is given to the control unit 8A as a corrected DC voltage reference.
  • control unit 8B is provided with a DC voltage reference itself.
  • the output of difference current controller 72 is negative, and thus the corrected DC voltage reference which is the output of subtractor 73 is set.
  • the value is larger than the DC voltage reference. This operation increases the output voltage and output current of the inverter 22A, and as a result, the difference approaches zero.
  • the internal configuration of the control unit 8A will be described below.
  • the DC voltage of the power converter 2A detected by the voltage detector 24A is compared with the corrected DC voltage reference given from the subtractor 73 of the difference current control unit 7 by the subtractor 81A as a DC voltage feedback, and the difference Is provided to a voltage controller 82A, which is, for example, a PI controller.
  • the voltage controller 82A controls such that the difference is minimized, and outputs an input current reference.
  • This input current reference is compared with the input current detected by the current detector 5A in the subtractor 83A, and the difference is given to the current controller 84A which is, for example, a PI controller.
  • the current controller 84A operates as a minor loop controller, performs control to minimize this difference, and outputs a three-phase voltage command.
  • the three-phase voltage command is applied to PWM controller 85A.
  • the PWM controller 85A supplies a pulse width modulated gate signal to each power device of the converter 21A so that the input voltage of each phase of the converter 21A becomes a voltage command of these three phases.
  • control unit 8B Regard the internal configuration of the control unit 8B, except that the signal applied to the addition input of the subtractor 81B is not the corrected DC voltage reference but the set DC voltage reference itself, the control unit 8A The description is omitted because it is the same as the internal configuration of.
  • FIG. 2A shows an output voltage waveform of the inverter 22A before and after the cross current suppression control by the difference current control unit 7 in the first embodiment.
  • This control is an example of control when the output current of the inverter 22A is small.
  • the pulse width of the PWM-modulated output voltage waveform is the same before and after control, and therefore its harmonic components also differ only in peak value. .
  • the fundamental wave voltage has a peak value increased after control as compared to before control, but unexpected harmonic components are not included.
  • FIG. 2B shows the transition of the output voltage waveform of the inverter 22A when the same cross current control is performed by modulating the PWM pulse of the inverter 22A.
  • the peak value of the output voltage waveform modulated by cross current suppression control does not change, but the pulse width of the output voltage waveform changes significantly, and the frequency components of the harmonics are also large before and after control It is different. Therefore, in this case, unexpected harmonic current may flow in the coupling reactor 3.
  • the power converter 2A is an example of the “first power converter”, and the power converter 2B is an example of the “second power converter”.
  • the converter 21A is an example of the “first converter”, and the converter 21B is an example of the “second converter”.
  • the inverter 22A is an example of the “first inverter”, and the converter 22B is an example of the “second inverter”.
  • the current detector 6A is an example of the “first current detector”, and the current converter 6B is an example of the “second current detector”.
  • the control unit 8A is an example of the “first control unit”, and the control unit 8B is an example of the “second control unit”.
  • FIG. 3 is a circuit diagram of a power conversion system according to a second embodiment of the present invention. About each part of this Example 2, the same part as each part of the power conversion system based on Example 1 of this invention of FIG. 1 is shown with the same code
  • the difference of the second embodiment from the first embodiment is that in the difference current control unit 7A, the DC voltage feedback correction amount which is the output of the difference current controller 72 and the DC voltage detected by the voltage detector 24A in the subtracter 74 The difference between the two is calculated and the output thereof is given to the subtraction input of the subtractor 86 of the control section 8C as the corrected DC voltage feedback, and the addition input of the subtractor 86 is given a DC voltage reference
  • the difference between the voltage reference and the output of the subtracter 74 is the point of providing the voltage controller 82A.
  • the DC voltage reference is corrected by the subtractor 73, and the corrected DC voltage reference is given to the subtractor 81A.
  • the DC voltage feedback is corrected by the subtractor 74 without changing the DC voltage reference, and the corrected DC voltage feedback is provided to the subtractor 86. That is, in the first embodiment and the second embodiment, there is only difference in correcting the DC voltage reference or the DC voltage feedback for the cross current suppression control, and the basic effect is the same.
  • FIG. 4 is a block diagram of a power conversion system according to a third embodiment of the present invention.
  • AC power supply 1 applies an AC voltage to the primary winding of input transformer 1A.
  • the input transformer 1A is a secondary multi-winding transformer, and in this embodiment, has six secondary windings. Three-phase or single-phase secondary voltage is supplied to each converter of power conversion devices 2C, 2D, 2E, 2F, 2G and 2H from each of these secondary windings.
  • Each inverter of power conversion devices 2C, 2D, 2E, 2F, 2G and 2H is an inverter with a single-phase output
  • power conversion devices 2C and 2D, 2E and 2F, 2G and 2H are respectively a set of the output of the inverter Are connected in parallel via coupling reactors 3A, 3B and 3C, respectively.
  • the middle point of each of coupling reactors 3A, 3B and 3C is connected to the input terminal of the U phase, V phase and W phase of motor 4, respectively.
  • the cross current suppression control described in the first embodiment or the second embodiment can be applied. That is, if the DC voltage reference or DC voltage feedback of one power converter is corrected according to the difference between the output currents of the pair of inverters, and the converter of one power converter is controlled so as to minimize this difference. good.
  • FIG. 5 is a circuit diagram of a power conversion system according to a fourth embodiment of the present invention.
  • the fourth embodiment differs from the first embodiment in that reactive power control is performed by a control unit 8C that controls the converter 21A.
  • a voltage detector 9A for detecting the input voltage of the converter 21A is provided, and the output thereof is given to the phase synchronization circuit 86A in the control unit 8C.
  • the internal configuration of the control unit 8C will be described below.
  • the three-phase current detected by the current detector 5A is input to the three-phase to two-phase converter 87A.
  • the three-phase to two-phase converter 87A converts this three-phase current into a q-axis current and a d-axis current orthogonal thereto based on the reference phase ⁇ output from the phase synchronization circuit 86A.
  • the q-axis current can be an effective current flowing into the converter 21A
  • the d-axis current can be a reactive current.
  • the subtractor 83C calculates the difference between the active current reference output from the voltage controller 82A and the q-axis current and supplies the difference to the q-axis current controller 84C.
  • the q-axis current controller 84C operates as a minor loop controller, performs control to minimize the input difference, and outputs a q-axis voltage command, which is applied to the 2-phase to 3-phase converter 88A.
  • the d-axis current is applied to a subtractor 83D, the difference between the externally applied reactive current reference and the subtractor 83D is calculated, and the difference is applied to a d-axis current controller 84D.
  • the d-axis current controller 84D outputs a d-axis voltage command by controlling so as to minimize the input difference, and supplies the d-axis voltage command to the 2-phase to 3-phase converter 88A.
  • the two-phase to three-phase converter 88A converts the q-axis voltage command and the d-axis voltage command into three-phase voltage commands based on the reference phase ⁇ , and supplies the voltage commands to the PWM controller 85A.
  • control unit 8D for controlling the converter 21B also performs reactive power control, and accordingly, the signal of the voltage detector 9B is given to the control unit 8D.
  • the internal configuration of the control unit 8B is the same as the internal configuration of the control unit 8C except that the DC voltage reference is not the corrected DC voltage reference but the set DC voltage reference itself. The explanation is omitted.
  • the converter 21 is a self-excitation converter using a so-called self-arc-extinguishing element, but in the case of a converter which does not control reactive power, a separately excited converter can be used if it can variably control DC output. And so on.
  • the converters of the two power electronics devices are described as performing reactive power control, either one of them may be configured to perform reactive power control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

直流電圧を制御可能なコンバータ21とインバータ22で構成される電力変換装置2を2台有し、前記2台のインバータ22A、22Bの出力を並列接続して交流電動機4を駆動する電力変換システムであって、 前記2台のインバータ22A、22Bの各々の出力電流を検出する2台の電流検出器6A、6Bで検出された検出電流の差分に応じて、何れか一方のコンバータの出力電圧を制御して前記2台のインバータ22A、22Bに流れる横流を抑制する。

Description

電力変換システム
 この発明は、出力が並列接続された少なくとも2台の電力変換装置から成る電力変換システムに関する。
 電力変換装置の容量を増大させる手段として、複数台の電力変換装置の出力を並列接続する方法が知られている。例えば、交流電動機を2台の電力変換装置で駆動する電力変換システムにおいて、結合リアクトルを介して2台の電力変換装置の交流出力を接続する。このような並列多重の電力変換システムにおいては、2台の電力変換装置の出力電圧などの差や、結合リアクトルや配線ケーブルのインピーダンスの差によって各装置の出力電流に不平衡が生じ、装置間に横流と呼ばれる循環電流が発生する。この横流を抑制する方法として、電力変換装置の2台のPWMインバータ間の横流を検出し、各PWMインバータの共通の電圧指令値と同じ単位の横流補償値として求め、この横流補償値を横流の値に応じて一方のPWMインバータの電圧指令値に加算し、他方のPWMインバータの電圧指令値から減算する横流制御部を設ける対策が知られている(例えば特許文献1参照。)。
特開2012-244674号公報(第9頁、図1及び図3)
 特許文献1に示されている横流制御部は、基本的には電力変換装置の出力を掌るPWMインバータの出力電圧を操作量として制御する。このような制御において、制御すべき横流がある程度大きい場合には、2台のインバータの出力波形が異なる状態となり、予期しない高調波電流が結合リアクトルに流れてしまう場合があった。このため、このような事象を考慮して結合リアクトルの仕様を決める必要があった。
 本発明は上記問題点に鑑みて為されたもので、並列運転される2台の電力変換装置の横流制御において、予期しない高調波電流を流さないようにした電力変換システムを提供することを目的とする。
 上記目的を達成するために、本発明の電力変換システムは、直流電圧を制御可能な第1のコンバータと第1のインバータで構成される第1の電力変換装置と、直流電圧を制御可能な第2のコンバータと第2のインバータで構成される第2の電力変換装置を有し、前記第1のインバータの出力と前記第2のインバータの出力を、結合リアクトルを介して並列接続して交流電動機を駆動する電力変換システムであって、前記第1のインバータの出力電流を検出する第1の電流検出器で検出された第1検出電流と、前記第2のインバータの出力電流を検出する第2の電流検出器で検出された第2検出電流との差分に応じて、前記第1のコンバータと前記第2のコンバータの何れか一方の直流出力電圧を制御して前記第1のインバータと前記第2のインバータ間に流れる横流を抑制するようにしたことを特徴としている。
 この発明によれば、並列運転される2台の電力変換装置の横流制御において、予期しない高調波電流を流さないようにした電力変換システムを提供することができる。
本発明の実施例1に係る電力変換システムの回路構成図。 本発明の実施例1による横流制御の説明図。 本発明の実施例2に係る電力変換システムの回路構成図。 本発明の実施例3に係る電力変換システムのブロック構成図。 本発明の実施例4に係る電力変換システムの回路構成図。
 以下、図面を参照して本発明の実施例を説明する。
 図1は本発明の実施例1に係る電力変換システムの回路構成図である。商用の3相の交流電源1が、夫々電流検出器5A、5Bを介して電力変換器2A、2Bのコンバータ21A、21Bに接続される。電力変換器2A、2Bは、夫々コンバータ21A、21B、直流コンデンサ23A、23B及びインバータ22A、22Bより構成される。コンバータ21A、21Bの直流出力は夫々直流コンデンサ23A、23Bで平滑化されインバータ22A、22Bに入力される。インバータ22A、22Bの交流出力は夫々電流検出器6A、6Bを介して相間に設けられた結合リアクトル3の一方及び他方の端子に接続される。結合リアクトル3の中点の3相出力は交流電動機4に接続される。以上の構成によって、電力変換器2A、2Bは交流電動機4を並列駆動する。ここで、インバータ22Aとインバータ22Bは同期制御されており、その基本波出力は同相とする。
 本実施例においては、コンバータ21A、21B及びインバータ22A、22Bは電圧型のPWM変換器である。コンバータ21A、21Bを構成するパワーデバイスは、夫々制御部8A、8Bから与えられるゲート信号によりオンオフ制御されている。制御部8A、8Bには、電流検出器5A、5Bによる入力電流信号のほか、直流コンデンサ23A、23Bに印加される直流電圧を検出する電圧検出器24A、24Bの出力も夫々与えられている。
 電流検出器6A、6Bで検出された出力電流は、夫々差電流制御部7の減算器71の加算入力及び減算入力に与えられる。そして、減算器71の出力、すなわち、インバータ22Aとインバータ22Bの出力電流の差分は、例えばPI制御器である差電流制御器72に与えられる。差電流制御器72は、この差分が最小となるように制御してその出力を直流電圧基準補正量として減算器73の減算入力に与える。減算器73の加算入力には予め設定された直流電圧基準が与えられる。そして、減算器73の出力は補正された直流電圧基準として制御部8Aに与えられる。また、制御部8Bには直流電圧基準そのものが与えられる。ここで、例えばインバータ22Aの出力電流がインバータ22Bのそれより小さい場合を考えると、差電流制御器72の出力はマイナスとなり、従って減算器73の出力である補正された直流電圧基準は設定された直流電圧基準より大きい値となる。この動作によってインバータ22Aの出力電圧及び出力電流は増加し、結果として上記差分はゼロに近づくことになる。
 制御部8Aの内部構成について以下説明する。電圧検出器24Aで検出された電力変換器2Aの直流電圧は、差電流制御部7の減算器73から与えられる補正された直流電圧基準と、直流電圧帰還として減算器81Aで比較され、その差分は、例えばPI制御器である電圧制御器82Aに与えられる。電圧制御器82Aは、この差分が最小となるように制御し、入力電流基準を出力する。この入力電流基準は、減算器83Aにおいて電流検出器5Aで検出された入力電流と比較され、その差分は、例えばPI制御器である電流制御器84Aに与えられる。電流制御器84Aは、マイナーループ制御器として動作し、この差分が最小となるように制御し、3相の電圧指令を出力する。この3相の電圧指令はPWM制御器85Aに与えられる。PWM制御器85Aはコンバータ21Aの各相の入力電圧がこの3相の電圧指令となるようにコンバータ21Aの各パワーデバイスに対して、パルス幅変調されたゲート信号を供給する。
 次に制御部8Bの内部構成であるが、減算器81Bの加算入力に与えられる信号が、補正された直流電圧基準ではなく、設定された直流電圧基準そのものである点を除けば、制御部8Aの内部構成と同一であるので、その説明は省略する。
 以上の構成により、差電流制御部7及び制御部8Aの動作によってインバータ22Aの出力電圧波形がどのように変化するのかについて図2を参照して説明する。図2(a)は実施例1において、差電流制御部7による横流抑制制御を行う前と行った後のインバータ22Aの出力電圧波形を示したものである。この制御はインバータ22Aの出力電流が小さかった場合の制御例である。図示したように直流電圧を増加させる制御を行っているので、PWM変調された出力電圧波形のパルス幅は制御前と制御後では同じであり、従ってその高調波成分も波高値が異なるだけとなる。基本波電圧は制御前にくらべ制御後は波高値が増加しているが、予期しない高調波成分は含まれない。
 図2(b)に同じ横流制御をインバータ22AのPWMパルスの変調で行った場合のインバータ22Aの出力電圧波形の推移を示す。図示したようにこの場合は横流抑制制御によってPWM変調された出力電圧波形の波高値は変わらないが出力電圧波形のパルス幅は大幅に変化し、高調波の周波数成分も制御前と制御後で大きく異なる。従ってこの場合は結合リアクトル3に予期しない高調波電流が流れる可能性がある。
 電力変換器2Aは「第1の電力変換装置」の一例であり、電力変換器2Bは「第2の電力変換装置」の一例である。また、コンバータ21Aは「第1のコンバータ」の1例であり、コンバータ21Bは「第2のコンバータ」の一例である。また、インバータ22Aは「第1のインバータ」の一例であり、コンバータ22Bは「第2のインバータ」の一例である。また、電流検出器6Aは「第1の電流検出器」の一例であり、電流変換器6Bは「第2の電流検出器」の一例である。また、制御部8Aは「第1の制御部」の一例であり、制御部8Bは「第2の制御部」の一例である。
 図3は本発明の実施例2に係る電力変換システムの回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る電力変換システムの各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、差電流制御部7Aにおいて、減算器74が差電流制御器72の出力である直流電圧帰還補正量と電圧検出器24Aで検出された直流電圧との差分を演算してその出力を補正された直流電圧帰還として制御部8Cの減算器86の減算入力に与える構成とした点、また減算器86の加算入力には直流電圧基準を与え、この直流電圧基準と減算器74の出力の差分を電圧制御器82Aに与える構成とした点である。
 実施例1においては、減算器73によって直流電圧基準を補正し、補正された直流電圧基準を減算器81Aに与えた。これに対しこの実施例2においては、上述の通り、直流電圧基準は変えないで、直流電圧帰還を減算器74で補正し、補正された直流電圧帰還を減算器86に与えている。すなわち、実施例1と実施例2とでは、横流抑制制御のために直流電圧基準を補正するか直流電圧帰還を補正するかの違いしかなく、基本的な作用効果は同一である。
 図4は本発明の実施例3に係る電力変換システムのブロック構成図である。交流電源1は入力トランス1Aの1次巻線に交流電圧を与える。入力トランス1Aは2次多巻線トランスであり、この実施例では6個の2次巻線を有している。これらの2次巻線の各々から電力変換装置2C、2D、2E、2F、2G及び2Hの各コンバータに3相または単相の2次電圧が給電される。電力変換装置2C、2D、2E、2F、2G及び2Hの各インバータは出力が単相のインバータであり、電力変換装置2Cと2D、2Eと2F、2Gと2Hは夫々組となってインバータの出力が夫々結合リアクトル3A、3B、3Cを介して並列に接続されている。そして、結合リアクトル3A、3B、3Cの各々の中点は夫々電動機4のU相、V相及びW相の入力端子に接続されている。
 この図4に示す構成の電力変換システムであっても、実施例1あるいは実施例2で説明した横流抑制制御を適用することが可能である。すなわち、組となるインバータの出力電流の差分に応じて一方の電力変換装置の直流電圧基準または直流電圧帰還を補正し、この差分が最小となるように一方の電力変換装置のコンバータを制御すれば良い。
 図5は本発明の実施例4に係る電力変換システムの回路構成図である。この実施例4の各部について、図1の本発明の実施例1に係る電力変換システムの各部と同一部分は同一符号で示し、その説明は省略する。この実施例4が実施例1と異なる点は、コンバータ21Aを制御する制御部8Cで無効電力制御を行うようにした点である。このためにコンバータ21Aの入力電圧を検出する電圧検出器9Aを設け、制御部8C内の位相同期回路86Aにその出力を与えている。
 以下、制御部8Cの内部構成を説明する。電流検出器5Aで検出された3相の電流は3相―2相変換器87Aに入力される。3相―2相変換器87Aは、位相同期回路86Aが出力する基準位相φに基づいてこの3相電流をq軸電流とこれと直交するd軸電流に変換する。基準位相φを適切に選べば、q軸電流はコンバータ21Aに流入する有効電流、d軸電流は無効電流とすることができる。減算器83Cは電圧制御器82Aの出力である有効電流基準と上記q軸電流との差分を演算し、q軸電流制御器84Cに与える。q軸電流制御器84Cはマイナーループ制御器として動作し、入力された差分が最小となるように制御してq軸電圧指令を出力し、これを2相―3相変換器88Aに与える。一方d軸電流は減算器83Dに与えられ、外部から与えられる無効電流基準と減算器83Dでその差分が演算され、これがd軸電流制御器84Dに与えられる。d軸電流制御器84Dは入力された差分が最小となるように制御してd軸電圧指令を出力し、これを2相―3相変換器88Aに与える。2相―3相変換器88Aは基準位相φに基づいて上記q軸電圧指令とd軸電圧指令を3相の電圧指令に変換してPWM制御器85Aに与える。
 また、図5においては、コンバータ21Bを制御する制御部8Dも無効電力制御を行うものとし、従って電圧検出器9Bの信号を制御部8Dに与えている。制御部8Bの内部構成であるが、直流電圧基準が、補正された直流電圧基準ではなく、設定された直流電圧基準そのものである点を除けば、制御部8Cの内部構成と同一であるので、その説明は省略する。
 以上の構成によれば、コンバータ21Aに無効電力制御を適用することによって、有効電流制御で直流電圧一定制御及びインバータ側の横流抑制制御を行い、無効電流制御によって例えば電力系統への無効電力を所望の値に制御することが可能となる。
 以上本発明の実施例を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば各実施例において、コンバータ21は所謂自己消弧形素子を用いた自励のコンバータとしたが、無効電力を制御しないコンバータの場合は、直流出力を可変制御できるものであれば、他励コンバータなどであっても良い。
 また、実施例3においては、2台の単相出力の電力変換装置複数組で構成される電力変換システムの例を記載したが、通常の3相出力の電力変換装置を用いたものであっても本願が適用されることは明らかである。例えば、図1に示す2台の電力変換装置を2組用い、各組の出力同士を、結合リアクトルを介して交流電動機を駆動するものであっても良い。
 また、実施例4において、2台の電力変換装置のコンバータは何れも無効電力制御するものと記載したが、何れか一方のみ無効電力制御を行うように構成しても良い。
1 交流電源
1A 入力変圧器
2A、2B、2C、2D、2E、2F、2G、2H 電力変換器
21A、21B コンバータ
22A、22B インバータ
23A、23B 直流コンデンサ
24A、24B 電圧検出器
3、3A、3B、3C 結合リアクトル
5A、5B 電流検出器
6A、6B 電流検出器
7、7A 差電流制御部
71 減算器
72 差電流制御器
73、74 減算器
8A、8B、8C、8D 制御部
81A、81B 減算器
82A、82B 電圧制御器
83A、83B、83C、83D 減算器
84A、84B、84C、84D 電流制御器
85A、85B PWM制御器
86A 位相同期回路
87A 3相―2相変換器
88A 2相―3相変換器
9A、9B 電圧検出器

Claims (5)

  1.  直流電圧を制御可能な第1のコンバータと第1のインバータで構成される第1の電力変換装置と、
    直流電圧を制御可能な第2のコンバータと第2のインバータで構成される第2の電力変換装置を有し、
    前記第1のインバータの出力と前記第2のインバータの出力を、結合リアクトルを介して並列接続して交流電動機を駆動する電力変換システムであって、
    前記第1のインバータの出力電流を検出する第1の電流検出器で検出された第1検出電流と、前記第2のインバータの出力電流を検出する第2の電流検出器で検出された第2検出電流との差分に応じて、前記第1のコンバータと前記第2のコンバータの何れか一方の直流出力電圧を制御して前記第1のインバータと前記第2のインバータ間に流れる横流を抑制するようにしたことを特徴とする電力変換システム。
  2.  前記第1のコンバータを制御する第1の制御部と、前記第2のコンバータを制御する第2の制御部と、前記第1検出電流と前記第2検出電流との差分から前記第1の制御部に前記差分が最小となるような補正信号を出力する差電流制御部を備え、
    前記第2の制御部は、前記第2のコンバータの直流出力電圧が所定の直流電圧基準となるように制御し、
    前記第1の制御部は、前記第1のコンバータの直流出力電圧が、前記所定の直流電圧基準を前記補正信号で補正した値となるように制御するようにしたことを特徴とする請求項1に記載の電力変換システム。
  3.  前記第1のコンバータを制御する第1の制御部と、前記第2のコンバータを制御する第2の制御部と、前記第1検出電流と前記第2検出電流との差分から前記第1の制御部に前記差分が最小となるような補正信号を出力する差電流制御部を備え、
    前記第2の制御部は、前記第2のコンバータの直流出力電圧が所定の直流電圧基準となるように制御し、
    前記第1の制御部は、前記第1のコンバータの直流出力電圧の帰還を前記補正信号で補正した値が、前記所定の直流電圧基準となるように制御するようにしたことを特徴とする請求項1に記載の電力変換システム。
  4.  前記第1の制御部と前記第2の制御部のうち少なくとも1つは無効電流制御を行うものとし、
    前記第1のコンバータまたは前記第2のコンバータに流れる無効電流制御をマイナーループとして前記第1のコンバータまたは前記第2のコンバータの交流出力電圧制御を行うようにしたことを特徴とする請求項1乃至請求項3の何れか1項に記載の電力変換システム。
  5.  前記2台の電力変換器を複数組備え、複数組の前記インバータの出力を合成して前記交流電動機を駆動するようにしたことを特徴とする請求項1乃至請求項4の何れか1項に記載の電力変換システム。
PCT/JP2017/041104 2017-11-15 2017-11-15 電力変換システム WO2019097605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019554093A JP6864116B2 (ja) 2017-11-15 2017-11-15 電力変換システム
EP17931919.9A EP3713075B1 (en) 2017-11-15 2017-11-15 Power conversion system
PCT/JP2017/041104 WO2019097605A1 (ja) 2017-11-15 2017-11-15 電力変換システム
CN201780096883.2A CN111357186B (zh) 2017-11-15 2017-11-15 电力变换***
US15/930,801 US10951125B2 (en) 2017-11-15 2020-05-13 Supression of cross current in a plural converter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041104 WO2019097605A1 (ja) 2017-11-15 2017-11-15 電力変換システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/930,801 Continuation US10951125B2 (en) 2017-11-15 2020-05-13 Supression of cross current in a plural converter system

Publications (1)

Publication Number Publication Date
WO2019097605A1 true WO2019097605A1 (ja) 2019-05-23

Family

ID=66537775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041104 WO2019097605A1 (ja) 2017-11-15 2017-11-15 電力変換システム

Country Status (5)

Country Link
US (1) US10951125B2 (ja)
EP (1) EP3713075B1 (ja)
JP (1) JP6864116B2 (ja)
CN (1) CN111357186B (ja)
WO (1) WO2019097605A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800774A1 (en) * 2019-10-01 2021-04-07 Kabushiki Kaisha Toshiba Electric power conversion apparatus and method for controlling electric power conversion apparatus
EP3916990A1 (en) * 2020-05-28 2021-12-01 Goodrich Control Systems Distributed control architecture for motor drives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101312A1 (de) * 2018-01-22 2019-07-25 Eaton Intelligent Power Limited Elektrische Schutzschaltungsanordnung
DE102018101311A1 (de) * 2018-01-22 2019-07-25 Eaton Intelligent Power Limited Elektrische Schutzschaltanordnung
CN112997395B (zh) * 2018-11-14 2024-01-02 东芝三菱电机产业***株式会社 电力转换装置
CN112366970B (zh) * 2021-01-14 2021-04-02 深圳市正浩创新科技有限公司 逆变***、逆变***控制方法和并联逆变***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291255A (ja) * 2001-03-27 2002-10-04 Sawafuji Electric Co Ltd インバータ・システム
JP2012244674A (ja) 2011-05-17 2012-12-10 Meidensha Corp Pwm電力変換器の並列運転装置および並列運転方法
JP2017022815A (ja) * 2015-07-08 2017-01-26 東芝三菱電機産業システム株式会社 電力変換システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2066490C (en) * 1991-04-22 1997-10-14 Nobuo Sashida Parallel operation system of ac output inverters
GB2264403B (en) * 1992-02-18 1996-09-04 Hitachi Ltd An apparatus for controlling parallel running of inverters
JP2791273B2 (ja) * 1993-09-07 1998-08-27 株式会社東芝 電力変換装置
JP3496369B2 (ja) * 1995-11-06 2004-02-09 三菱電機株式会社 レーザ用電源装置
JP4448855B2 (ja) * 2006-05-23 2010-04-14 三菱電機株式会社 電力変換装置
JP4748052B2 (ja) * 2006-12-22 2011-08-17 東芝三菱電機産業システム株式会社 交流出力変換器の並列運転制御装置
US7852643B2 (en) * 2007-06-27 2010-12-14 General Electric Company Cross current control for power converter system
CN101826804B (zh) * 2010-05-21 2012-06-20 哈尔滨工业大学 风力发电***中的并联型永磁直驱风电变流器的控制方法
CN102231608B (zh) * 2011-07-04 2013-08-07 浙江大学 一种抑制逆变器并联***直流环流的装置
JP5822732B2 (ja) * 2012-01-11 2015-11-24 東芝三菱電機産業システム株式会社 3レベル電力変換装置
CN103312187B (zh) * 2012-03-09 2016-02-03 台达电子工业股份有限公司 一种变流器***
KR101828225B1 (ko) * 2012-07-25 2018-02-09 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 시스템
CN103684021B (zh) * 2012-09-17 2016-05-04 中国北车股份有限公司 逆变器并联控制***
CN102890208A (zh) * 2012-09-21 2013-01-23 上海交通大学 大功率电力电子变换器的并联对推测试方法及主回路
CN103888007B (zh) * 2014-03-17 2016-03-23 电子科技大学 基于pr控制和双载波调制的逆变器并联环流抑制***
CN104184353A (zh) * 2014-08-12 2014-12-03 天津瑞能电气有限公司 一种基于逆变器并联环流的抑制方法
JP6520336B2 (ja) * 2015-04-15 2019-05-29 富士電機株式会社 電力変換装置の制御装置
CN106374830B (zh) * 2016-09-13 2018-09-21 合肥工业大学 大功率高升压比光伏直流变流器装置及控制方法
CN106533221B (zh) * 2016-12-08 2019-01-29 株洲中车时代电气股份有限公司 一种大功率通用型pwm整流器及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291255A (ja) * 2001-03-27 2002-10-04 Sawafuji Electric Co Ltd インバータ・システム
JP2012244674A (ja) 2011-05-17 2012-12-10 Meidensha Corp Pwm電力変換器の並列運転装置および並列運転方法
JP2017022815A (ja) * 2015-07-08 2017-01-26 東芝三菱電機産業システム株式会社 電力変換システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3713075A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800774A1 (en) * 2019-10-01 2021-04-07 Kabushiki Kaisha Toshiba Electric power conversion apparatus and method for controlling electric power conversion apparatus
JP2021058045A (ja) * 2019-10-01 2021-04-08 株式会社東芝 電力変換装置および電力変換装置の制御方法
JP7271386B2 (ja) 2019-10-01 2023-05-11 株式会社東芝 電力変換装置および電力変換装置の制御方法
EP3916990A1 (en) * 2020-05-28 2021-12-01 Goodrich Control Systems Distributed control architecture for motor drives
US11632069B2 (en) 2020-05-28 2023-04-18 Hamilton Sundstrand Corporation Distributed control architecture for motor drives

Also Published As

Publication number Publication date
US20200321888A1 (en) 2020-10-08
CN111357186A (zh) 2020-06-30
EP3713075B1 (en) 2022-10-19
JPWO2019097605A1 (ja) 2020-10-22
US10951125B2 (en) 2021-03-16
CN111357186B (zh) 2023-08-01
EP3713075A1 (en) 2020-09-23
EP3713075A4 (en) 2021-06-23
JP6864116B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019097605A1 (ja) 電力変換システム
JP5822732B2 (ja) 3レベル電力変換装置
US9780692B2 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
EP2043241A2 (en) Motor Drive Using Flux Adjustment to Control Power Factor
KR100355736B1 (ko) 분압 변압기와 다중화된 전압 변환 시스템, 전압 변압기 및 그 시스템을 제어하는 컨트롤러
KR100491437B1 (ko) 다중권선전동기의 제어장치
EP2858233A2 (en) High dynamic control apparatus for current source converter background
AU2017336112B2 (en) Control device for power converter
WO2017119214A1 (ja) 電力変換装置
JP5147624B2 (ja) インバータ装置
EP3021479B1 (en) Apparatus for controlling inverter
JP5888074B2 (ja) 電力変換装置
JP5351390B2 (ja) 電力変換装置
JP7329735B2 (ja) モータ制御装置
JP5115730B2 (ja) Pwmコンバータ装置
JP2010220332A (ja) 電力変換装置
JP4842179B2 (ja) 電力変換装置及びその制御方法
JP7226219B2 (ja) 絶縁型dc/dc変換器
JP5399955B2 (ja) 電力変換装置および電力変換装置の制御方法
WO2019087238A1 (ja) 電力変換システム
JP2022014554A (ja) 電力変換装置
JPH0731156A (ja) 3相インバータの制御装置
JP2005348551A (ja) 誘導電動機の速度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931919

Country of ref document: EP

Effective date: 20200615