WO2019096281A1 - 一种通信方法,通信设备及其通信*** - Google Patents

一种通信方法,通信设备及其通信*** Download PDF

Info

Publication number
WO2019096281A1
WO2019096281A1 PCT/CN2018/116059 CN2018116059W WO2019096281A1 WO 2019096281 A1 WO2019096281 A1 WO 2019096281A1 CN 2018116059 W CN2018116059 W CN 2018116059W WO 2019096281 A1 WO2019096281 A1 WO 2019096281A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
processing function
communication
radio
information
Prior art date
Application number
PCT/CN2018/116059
Other languages
English (en)
French (fr)
Inventor
罗海燕
王燕
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18879698.1A priority Critical patent/EP3611995B1/en
Publication of WO2019096281A1 publication Critical patent/WO2019096281A1/zh
Priority to US16/708,595 priority patent/US11071158B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present application relates to the field of communications, and more particularly to a communication method, a communication device, a communication system thereof and the like.
  • next-generation mobile communication system such as the 5th generation mobile communication technology (5G) system
  • the base station is called a gNB or an ng-eNB
  • the ng-eNB is derived from long term evolution (long term) Evolution, LTE)
  • LTE long term evolution
  • Subsequent evolved base station of the system base station (LTE eNB) is a schematic block diagram of a 5G system in which an ng-eNB and an ng-eNB are between a gNB and a gNB in a next generation radio access network (NG-RAN). Between, and between the gNB and the ng-eNB are interconnected through the Xn interface.
  • NG-RAN next generation radio access network
  • the gNB and the 5G core network (5G core, 5GC) devices are interconnected through the NG interface, and the ng-eNB and the 5GC device are interconnected through the NG interface.
  • the 5GC device may be an access and mobility management function (AMF) or a user plane function (UPF).
  • the AMF is mainly responsible for access management functions, and the UPF is mainly responsible for the session ( Session) management aspects.
  • a traditional base station generally includes a radio resource control (RRC) layer, a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, and a radio link control.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • 2 is a schematic block diagram of a 5G system including a 5GC and an NG-RAN.
  • the base station gNB can be a centralized unit (CU) and a distributed unit (DU).
  • the CU and DU architecture can be understood as splitting the functions of the base stations in the traditional access network. Some functions of the traditional base station are deployed in the CU, and other functions are deployed in the DU. Multiple DUs can share one CU to save costs. It is easy to expand the network, and the information exchange between the CU and the DU through the F1 interface.
  • the terminal device has a communication connection with a plurality of DUs, and the terminal device and one of the DUs may have a transmission interruption.
  • the present application provides a communication method, a communication device, a communication system thereof, and the like, to solve the problem, in the background, when a wireless link interruption occurs between a terminal device and a DU, how to effectively interrupt or interrupt the terminal between the DU and the CU Restored information to improve system reliability.
  • an embodiment of the present application provides a communication method, where the communication method runs in a communication system, where the communication system includes a first network node and a second network node, where the first network node is in operation Transmitting, in each of the at least one user plane tunnel, a message for feeding back a downlink transmission status to the second network node, each of the at least one of the messages including an indication for direct or indirect Information indicating a radio link interruption between the first network node and the terminal device or information of radio link recovery, the at least one user plane tunnel being established between the first network node and the second network node And associated with the terminal device, the first of the at least one of the messages includes information of a lost data packet, and the second of the at least one of the messages does not include the lost data Information of the package; or, each of the at least one of the messages includes information of the lost data packet; or, the at least one Each message contains information not lost packets.
  • a plurality of data radio bearers are often used between the terminal device and the DU for uplink and downlink data transmission.
  • the CU and the CU are On the communication interface between the DUs (such as the F1 interface), multiple user plane data transmission tunnels are established corresponding to the multiple DRBs of the terminal device, and the DRB and the user plane tunnel may have a one-to-one correspondence.
  • the DU may send, by using multiple user plane tunnels, messages for feeding back downlink transmission status, each of the messages including information indicating a radio link interruption between the DU and the terminal device.
  • the message may also partially or completely carry the information of the data packet lost during the downlink transmission process, and these messages may not include the information of the data packet lost during the downlink transmission.
  • a design is provided for the at least one user plane tunnel to be a user plane tunnel established on a communication interface between the first network node and the second network node and associated with the terminal device.
  • the information of the feedback wireless link interruption or the wireless information may be further enhanced by transmitting information indicating the wireless link interruption between the wireless access device and the terminal device or the wireless link recovery information on all user plane tunnels established for the terminal device. The robustness of the process of link recovery information, thereby enhancing the reliability of the system.
  • the first network node can carry the indication information in the message for feeding back the downlink transmission status in each of the user plane tunnels established for the terminal device.
  • the indication information directly or indirectly indicates that the information about the interruption of the radio link between the first network node and the terminal device or the information of the radio link recovery may not be considered whether the downlink transmission is carried in the message that feeds back the downlink transmission status.
  • the information of the lost data packet in the process may not consider whether there is a lost data packet during the downlink transmission process between the second network node and the first network node, or may not consider the second network. Whether there is downlink data transmission between the node and the first network node.
  • the information for feeding back the downlink state when used to feed back the information of the wireless link interruption or recovery, whether the information of the lost data packet is carried in the message for feeding back the downlink state may be determined based on actual conditions. That is, if there is a packet loss situation in the data radio bearer corresponding to the user plane tunnel, the message for feeding back the downlink state may carry the information of the radio link interruption, and carry the information of the lost data packet. If the data radio bearer corresponding to the user plane tunnel does not have a packet loss situation, the message for feeding back the downlink state carries the information of the radio link interruption, but does not carry the information of the lost data packet.
  • the information indicating the radio link interruption between the radio access device and the terminal device or the information of the radio link recovery is transmitted through all the user plane tunnels established for the terminal device, regardless of the first network node and the first
  • the downlink data transmission between the two network nodes enhances the robustness of the process of feeding back the information of the wireless link interruption or the information recovered by the wireless link, thereby enhancing the reliability of the system and simplifying the system design.
  • the design can be further combined with at least one of the first aspect of the present application and its design to meet specific scenarios and to address the need for objective technical issues.
  • a first network node is designed to have at least one of the following processing functions: all or part of a radio resource control processing function, all or part of a service data adaptation protocol processing function, all or part of a packet data convergence Protocol processing function, all or part of the radio link control processing function, all or part of the medium access control processing function, and all or part of the physical layer processing function; the second network node has at least one of the following processing functions: all or part Radio resource control processing function, all or part of service data adaptation protocol processing function, all or part of packet data convergence protocol processing function, all or part of radio link control processing functions, all or part of media access control processing functions, and all or part of physics Layer processing function.
  • the first aspect and its various designs can be applied to the evolved and changed network architecture, so that in the system with different logical functional architectures, the information of the feedback wireless link interruption or the information of the wireless link recovery can be enhanced.
  • the robustness of the process thereby enhancing the reliability of the system.
  • a first network node is configured to: a radio link control processing function, a medium access control processing function, and a physical layer processing function; the second network node has: a radio resource control processing function, a service Data adapts to protocol processing functions, as well as packet data aggregation protocol processing functions.
  • the first network node may be a DU
  • the second network node may be a CU.
  • the information of the feedback wireless link interruption or the information of the wireless link recovery is enhanced. The robustness of the process.
  • a first network node is configured to include: a first radio access network node and a second radio access network node, between the first radio access network node and the second radio access network node Having a communication interface, wherein the first radio access network node has: a radio resource control processing function, a service data adaptation protocol processing function, and a packet data convergence protocol processing function; the second radio access network node has: a radio link a control processing function, a medium access control processing function, and a physical layer processing function; the first radio access network node and the second radio access network node perform information interaction through a communication interface between the two; the first network node And a communication interface between the second network node is a communication interface between the second network node of the first radio access network node; the second radio access network node is configured to indicate the first network node and the terminal The indication of a radio link interruption or radio link recovery between devices is sent to the first radio access network node; the first radio access network node Direction is given to the second network node
  • the design is applicable to a scenario where the UE and the eNB/ng-eNB/gNB and the eNB/ng-eNB/gNB have dual connectivity, where the eNB/ng-eNB/gNB acts as the secondary base station, and the eNB/ng- The eNB/gNB has a CU and a DU architecture, where the first network node may be an eNB/ng-eNB/gNB, the first radio access network node may be a CU, and the second radio access network node may be a DU, a second The network node may be an eNB/ng-eNB/gNB.
  • the eNB/ng-eNB/gNB with CU and DU architecture can be enhanced to the eNB/ng-eNB as the primary base station in the dual connectivity scenario.
  • /gNB The robustness of the process of feeding back the information of the radio link interruption or the information recovered by the radio link.
  • a second network node includes: a first device and a second device, wherein the first device and the second device perform information interaction through a communication interface between the two, wherein the first device A device has a user plane function and a service data adaptation protocol processing function processed by a packet data convergence protocol, the second device has a radio resource control processing function and a control plane function processed by a packet data convergence protocol; or the first device has packet data a user plane function handled by the convergence protocol, a control plane function processed by the packet data convergence protocol, and a service data adaptation protocol processing function, the second device having a radio resource control processing function; between the second network node and the first network node
  • the communication interface is an interface between the first device and the first network node; the first device receives a wireless chain from the first network node for indicating the first network node and the terminal device The indication that the road is interrupted or the wireless link is restored, the first device may also receive the first network that it receives The information of the radio link interruption or the indication of the radio link recovery between
  • the second network node is a CU
  • the first device is an UP in the CU
  • the second device is a CP in the CU.
  • An example architecture is that the CP is deployed: RRC and group data convergence protocol processing.
  • the control plane function (PDCP-C), in which PDCP-C is mainly responsible for the encryption and decryption of control plane data, integrity protection, data transmission, etc.; deployed in UP: user plane function handled by SDAP and packet data convergence protocol (PDCP) -U), UP is mainly responsible for user plane functions.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • the PDCP-U is mainly responsible for encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • Another example architecture is that RRC is deployed on the CP and PDCP-U and PDCP-C are deployed on the UP.
  • the present application provides a communication device, including: at least one processor and a communication interface, the communication interface is used for information interaction between the communication device and other communication devices, when the program instruction is in the at least one process
  • the communication device is caused to implement the functions of the first aspect and any of the designs described in any one of the following: a first network node, a second network node, a first radio access network node, Two radio access network nodes, a first device, and a second device.
  • the present application provides a computer program product having program instructions, when the program instructions are directly or indirectly executed, such that the design of the first aspect and any of the A function on a device is implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device.
  • the present application provides a computer program storage medium having program instructions, when the program instructions are directly or indirectly executed, such that the first aspect and any of the designs described therein are as follows
  • the functions on any of the devices are implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device.
  • the present application provides a chip system including at least one processor, when program instructions are executed in the at least one processor, such that the design of the first aspect and any of the The functions on any of the following devices are implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device.
  • the present application provides a communication system comprising the communication device of the second aspect.
  • FIG. 1 is a schematic block diagram of a 5G system provided by an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a 5G system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a system architecture according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • first”, “second” and the like in the present application are only intended to distinguish different objects, and “first” and “second” do not limit the actual order or function of the objects to which they are modified.
  • first and “second” in “first network node” and “second network node” are only used to distinguish that the two are different network nodes, and do not limit their actual sequence or function.
  • the expressions "exemplary”, “example”, “such as”, “optional design” or “a design” appearing in the present application are merely used to denote examples, illustrations or illustrations. Any embodiment or design described in the application as “exemplary”, “example”, “such as”, “optional design” or “a design” should not be construed as The design is more preferred or more advantageous.
  • upstream and downstream appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • uplink direction generally refers to the direction in which data/information is transmitted from the terminal device to the base station
  • downstream Direction generally refers to the direction in which data/information is transmitted from the base station to the terminal device. It can be understood that “upstream” and “downlink” are only used to describe the transmission direction of data/information, and the specific starting and ending devices of the data/information transmission are not made. limited.
  • the terminal device may include the following forms: user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , a wireless communication device, a user agent, or a user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, a terminal device in a 5G network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device can also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • the terminal device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect items to the network through communication technology, thereby realizing mutual interaction. Even, the intelligent network of physical interconnection.
  • the terminal device and the two or more wireless access devices have a communication connection, and the terminal device is a UE, and the wireless access device is a DU, for example, when the UE is connected to the UE. If the radio link between one of the plurality of DUs is outaged, the PDCP PDUs that have not been successfully transmitted may continue to be transmitted through other DUs.
  • FIG. 3 is a schematic diagram of a communication method provided by the present application. As shown in FIG.
  • a UE connects a CU in a gNB through a DU1 in a gNB and a DU2 in a gNB, where the CU has RRC, SDAP, PDCP-C, and PDCP-U processing function, DU has RLC, MAC and PHY processing functions.
  • the CU transmits the data packet 1 to the UE through the DU2, and the CU transmits the data packet 7 to the UE through the DU1, the data packets 2 and 5 are transmitted to the UE in the DU1, and the data packet 3-6 is also transmitted on the F1 interface between the CU and the DU.
  • the radio interference is large or the channel enters deep fading, etc.
  • a transmission interruption occurs between the DU1 and the UE (temporary or for a period of time)
  • the data packet 2-6 that is not transmitted to the UE may continue to the UE through the DU2. Transfer.
  • the DU may send a transmission failure or a radio link outage indication to the CU through the F1-U interface between the CU and the CU, and the CU receives the transmission failure or the wireless chain.
  • the DU with the link failure may be deleted, and/or the CU may select another DU that has the connection status with the UE to continue the data transmission.
  • the DU may send an indication of transmission failure recovery or radio link resume to the CU through the F1-U interface, and the CU receives the transmission failure recovery or After the indication of the radio link recovery, it can be decided whether to continue the data transmission on the DU.
  • the F1-U interface between the CU and the DU may establish a corresponding user plane tunnel for each data radio bearer DRB of the UE, and the F1-U tunnel of the DRB level may be used for transmitting user data and downlink transmission status (downlink data) Delivery status, DDDS) report, it can be understood that the DDDS is also of the DRB level, that is, each DRB corresponding to the UE has a corresponding DDDS report.
  • Table 1 an example of a DDDS report is shown in Table 1:
  • the content mainly includes information about the sent status of the data packet, the packet loss situation of the data packet, and the data cache condition.
  • the value of the Cause Report is 0, indicating that the DDDS does not carry a Cause Value.
  • the cause value is reported as 1
  • the DDDS carries the cause value.
  • the value of the Lost Packet Report is 0, it indicates that the DDDS does not carry the lost data packet. That is, the DDDS does not carry the following specific information: the number of reported F1-U sequence numbers, and the missing F1-U sequence number. The start position of the interval and the end position of the missing F1-U sequence number.
  • the Lost Packet Report value of the packet loss report is 1, it indicates that the DDDS carries the lost data packet, that is, the DDDS carries the following specific information: the number of reported F1-U sequence numbers, and the loss of the F1-U sequence number interval. Position and loss of the F1-U sequence number end position.
  • the DU can indicate the radio link outage and the radio link resume through the cause value in the DDDS report. For example, when the cause value is 1, it indicates that the radio link is interrupted. When the cause value is 2, it indicates that radio link recovery occurs. It can be understood that the cause value may also take other values to indicate radio link interruption or radio link recovery.
  • the V1 interface user plane tunnel between the LTE CU and the LTE DU is also of the DRB level.
  • the LTE DU needs to send an indication of the radio link interruption, and/or the radio link recovery indication information is sent to the LTE CU, and also needs to be considered. The above question.
  • the NR gNB and the LTE eNB/ the new radio (NR) gNB have a dual connectivity communication scenario (EN-DC)
  • EN-DC dual connectivity communication scenario
  • the NR gNB and the LTE eNB/ A dual connection between ng-eNBs and a dual connectivity scenario between LTE eNB and LTE eNB also have similar problems. That is, on the X2-U interface, the Xn-U interface needs to be solved. For example, when the link between the secondary base station and the UE fails, an indication of how to transmit the wireless link interruption occurs, and/or a wireless link occurs. The problem of the restored indication information to the primary base station.
  • the embodiment of the present application proposes a communication method 400 to provide a mechanism for causing wireless link interruption information, and/or wireless.
  • Link recovery information can be reliably and efficiently delivered to the control node to enhance system reliability.
  • the method 400 operates in a corresponding communication system 400, as shown in FIG. 4, the communication system 400 includes a first network node and a second network node, the first network node being in at least one user plane tunnel while the communication system is operating A message for feeding back the downlink transmission status is sent to the second network node in each of the user plane tunnels.
  • the number of user plane tunnels may depend on the number of DRBs established for the terminal device between the first network node and the second network node.
  • the communication system 400 shows that there may be N user plane tunnels, and the value range of N may be positive. Integer, the specific value is not limited here.
  • Each of the at least one of the messages includes information for directly or indirectly indicating a radio link interruption between the first network node and the terminal device or wireless link recovery, the at least one user plane tunnel Established on a communication interface between the first network node and the second network node and associated with the terminal device, wherein at least one of the messages may have a message containing information of the lost data packet, and may also have a The message does not contain information of the lost data packet; or, each of the at least one of the messages contains information of the lost data packet; or each of the at least one of the messages does not include the lost data packet Information.
  • the DU may send, by using multiple user plane tunnels, messages for feeding back downlink transmission status, each of the messages including information indicating a radio link interruption between the DU and the terminal device.
  • the message may also partially or completely carry the information of the data packet lost during the downlink transmission process, and these messages may not include the information of the data packet lost during the downlink transmission. Whether to carry the information of the lost data packet can be determined according to the actual situation. Through this scheme, the robustness of the process of feeding back the information of the wireless link interruption or the information of the wireless link recovery can be enhanced, thereby enhancing the reliability of the system.
  • An optional design includes a user plane tunnel for transmitting information of a radio link interruption or information for radio link recovery, which may be part of all user plane tunnels established for the terminal device, or may be All user plane tunnels established by the terminal device. For example, any one of the user plane tunnels of the UE established between the first network node and the second network node, for example, selecting the corresponding DRB ID is the largest, the DRB ID is the smallest, or the DRB list is sorted first or the last DRB is sorted. The corresponding user plane tunnel.
  • the at least one user plane tunnel is a user plane tunnel established on the communication interface between the first network node and the second network node and associated with the terminal device, the feedback wireless link interruption may be further enhanced.
  • the N user plane tunnels shown in FIG. 4 may be part of all user plane tunnels established for the terminal device, or may be all user plane tunnels established for the terminal device.
  • An optional design includes a user plane tunnel for transmitting radio link interruption information or radio link recovery information, which may be all user plane tunnels in which the corresponding data radio bearers have packet loss conditions. That is, when the user plane tunnel transmits the information of the radio link interruption, the lost data packet is carried at the same time. In this design, if there is no packet loss situation in the corresponding data radio bearer, the user plane tunnel does not need to send information of the radio link interruption.
  • the first network node transmits the information of the wireless link recovery in each of the user plane tunnels that previously sent the wireless link interruption, and may also select one of all the user plane tunnels that previously sent the wireless link interruption. The user plane tunnel sends information about the radio link recovery.
  • the first network node can carry the indication information in the message for feeding back the downlink transmission status in each of the user plane tunnels established for the terminal device, to directly or indirectly indicate the first Information about the radio link interruption between the network node and the terminal device or the information of the radio link recovery, and may not consider whether the message of the downlink transmission state needs to carry the information of the data packet lost during the downlink transmission process, or It can be said that whether there is a lost data packet in the downlink transmission process between the second network node and the first network node may be disregarded, or whether downlink data is present between the second network node and the first network node may be ignored. The case of transmission.
  • the information for feeding back the downlink state when used to feed back the information of the wireless link interruption or recovery, whether the information of the lost data packet is carried in the message for feeding back the downlink state may be determined based on actual conditions. That is, if there is a packet loss situation in the data radio bearer corresponding to the user plane tunnel, the message for feeding back the downlink state may carry the information of the radio link interruption, and carry the information of the lost data packet. If the data radio bearer corresponding to the user plane tunnel does not have a packet loss situation, the message for feeding back the downlink state carries the information of the radio link interruption, but does not carry the information of the lost data packet.
  • the message for feeding back the downlink transmission status in each user plane tunnel in all user plane tunnels established for the terminal device carrying a message indicating that the radio link between the first network node and the terminal device is interrupted Information or wireless link recovery information, and further design which of the messages used to feed back the downlink transmission state need to carry information of the lost data packets in the downlink transmission, or these messages do not need to carry the data lost in the downlink transmission.
  • the information of the packet, or these messages need to carry information about the lost packets in the downlink transmission.
  • An optional design includes the first network node having at least one of the following processing functions: all or part of a radio resource control processing function, all or part of a service data adaptation protocol processing function, all or part of a packet data convergence protocol Processing function, all or part of the radio link control processing function, all or part of the medium access control processing function, and all or part of the physical layer processing function; the second network node has at least one of the following processing functions: all or part of the wireless Resource control processing function, all or part of service data adaptation protocol processing function, all or part of packet data convergence protocol processing function, all or part of radio link control processing function, all or part of media access control processing function, and all or part of physical layer Processing function.
  • the method 400 can be applied to various evolved and changed network architectures, so that in a system with different logical functional architectures, the process of enabling and enhancing feedback of wireless link interruption information or wireless link recovery information can be implemented and enhanced. Robustness, thereby enhancing system reliability.
  • an optional design includes: the first network node has: a radio link control processing function, a medium access control processing function, and a physical layer processing function; the second network node has: radio resource control processing Functions, service data adaptation protocol processing functions, and packet data aggregation protocol processing functions.
  • the first network node may be a DU
  • the second network node may be a CU.
  • the information of the feedback wireless link interruption or the information of the wireless link recovery is enhanced. The robustness of the process.
  • An optional design includes: the second network node includes: a first device and a second device, where the first device and the second device exchange information through a communication interface between the two, at this time, the first A communication interface between a network node and the second network node is an interface between the first network node and the first device.
  • the first device receives an indication from the first network node indicating a radio link interruption or radio link recovery between the first network node and the terminal device, and the first device may also receive the received Information indicating that the wireless link between the first network node and the terminal device is interrupted or the indication of the wireless link is restored is forwarded to the second device.
  • the second network node may be a CU
  • the first device may be a user plane part of the CU ( UP) entity
  • the second device may be a control plane part (CP) entity of the CU
  • the communication interface between the UP and the CP may be an E1 interface.
  • the first device has a User Plane (PDCP-U) function and a Service Data Adaptation Protocol (SDAP) processing function processed by a packet data convergence protocol
  • the second device has Radio Resource Control (RRC).
  • PDCP-U User Plane
  • SDAP Service Data Adaptation Protocol
  • RRC Radio Resource Control
  • the first device has a packet data convergence protocol processing user a face-to-face (PDCP-U) function, a control plane (PDCP-C) function handled by a packet data convergence protocol, and a service data adaptation protocol (SDAP) processing function, the second device having a radio resource control (RRC) processing function;
  • PDCP-U packet data convergence protocol processing user
  • PDCP-C control plane
  • SDAP service data adaptation protocol
  • RRC radio resource control
  • the first network node is a DU
  • the first device is a user plane part entity (CU-UP) of the CU
  • the second device is a control plane part entity (CU-CP) of the CU
  • the implementation is performed.
  • the networking architecture of the example process reference may be made to a system architecture provided by this embodiment as shown in FIG. 6, and (a)-(e) of FIG. 6 respectively show different networking architectures.
  • the common control part of the networking architecture is that the central control node CU is composed of a CU-CP and a CU-UP, and the CU-CP and the CU-UP are connected through an E1 interface, and the CU and the multiple DUs are dual-connected or multi-connected.
  • the logical interface between the CU and the DU is called F1, and the DU and CU-CP are connected through the F1 interface control plane (F1-C).
  • the DU and CU-UP are connected through the F1 interface user plane (F1-U).
  • CU-CP and CU-UP can be deployed separately (as shown in (a)-(e)), CU-CP and CU-UP can also be deployed together, or DU and CU-CP can be deployed together. Deployment (as shown in Figure (b)), or DU and CU-UP deployed together.
  • one DU Under the management of the CU-CP, one DU can be connected to multiple UPs, and one CU-UP can also be connected to multiple DUs (as shown in (d)). Therefore, in the case of dual connectivity or multiple connections, different DUs may be connected to different CU-UPs (as shown in (e)), for example, the UE is connected to DU1 and DU2 at the same time, and DU1 and DU2 may be connected to the same CU- UP (as shown in Figure (d)) may also be connected to a different CU-UP (as shown in Figure (e)).
  • the units illustrated as separate components in the figure may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to On multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • an exemplary design proposed by the CP-UP separation architecture according to the embodiment of the present application includes:
  • Step 1 When DU1 finds that the connected UE has a temporary transmission interruption, DU1 can notify CU-UP in the following four ways:
  • a DDDS PDU containing a radio link interruption indication is transmitted on all F1-U tunnels of the UE established between the CU-UP and the DU.
  • the packet loss here, including the packet loss of the air interface, that is, the packet loss between the DU and the UE and the packet loss on the F1 interface
  • the DDDS PDU can also carry packet loss information. That is, there may be some FDDS sent by the F1-U tunnel that only contains the outage indication, but the DDDS sent by other F1-U tunnels includes both the outage indication and the packet loss information.
  • Manner 2 A DDDS PDU including an outage indication is sent on an F1-U tunnel in which all corresponding DRBs of the UE have a packet loss condition established between the CU-UP and the DU. At this time, all DDDS PDUs that send outage indications contain packet loss information.
  • the UE established between the CU-UP and the DU has any one of the F1-U tunnels with the packet loss situation, for example, the DRB ID is selected to be the largest, the DRB ID is the smallest, or the first or the last is sorted in the DRB list.
  • the DRB corresponds to the F1-U tunnel.
  • An interrupt indication is included in the DDDS PDU transmitted by the selected F1-U tunnel.
  • there is a DDDS PDU transmitted on the F1-U with a packet loss situation which includes both an interrupt indication and packet loss information.
  • the DDDS PDU transmitted on other F1-Us with packet loss can contain only packet loss information.
  • Manner 4 Select one of all F1-U tunnels of the UE established between the CU-UP and the DU, for example, select the DRB ID is the largest, the DRB ID is the smallest, or the F1 corresponding to the first or the last DRB is sorted in the DRB list. -U tunnel.
  • An interrupt indication is included in the DDDS PDU transmitted by the selected F1-U tunnel.
  • the DDDS PDU that contains the interrupt indication may carry packet loss information or may not carry it. It is also possible that other DDDS PDUs transmitted on the F1-U with packet loss contain only packet loss information.
  • Step 2 After receiving the interrupt indication, the CU-UP stops data transmission between the DU1 and the DU1. The data packet on the DU1 that has not been successfully transmitted continues to be transmitted through the other connected DU. The CU-UP notifies the CU-CP through the E1 port, and the air interface transmission between the DU1 and the UE is interrupted. After receiving the CU-CP, it stops sending RRC messages to the UE through the DU1. In particular, the CU-CP can inform the CU-UP of which DUs that have not successfully transmitted on DU1 pass through which DU to continue transmission.
  • Step 3 When DU1 finds that the transmission is restored, the CU-UP is notified by the DDDS including a resume indication. According to the four methods selected previously, the DDDS PDU containing the resume indication is sent in the F1-U tunnel including the outage indication. Similarly, when the CU-UP receives the resume indication, the CU-CP is notified through the E1 interface, and the air interface between the DU1 and the UE is restored. Then, the subsequent CU-CP may send an RRC message to the DU through the DU1.
  • the information about the feedback wireless link interruption information or the wireless link recovery information in the foregoing CP-UP separation architecture can be applied to the scenario where the LTE system is separated by CP-UP, and can also be applied to the 5G NR CP- UP separated scenes.
  • the robustness of the process of the DU feeding back the information of the wireless link interruption or the information of the wireless link recovery to the CU with the CP and the UP architecture is enhanced, which is beneficial to improving the reliability of the system.
  • An optional design includes: the first network node includes: a first radio access network node and a second radio access network node, and the first radio access network node and the second radio access network node have a communication interface
  • the first radio access network node has: a radio resource control processing function, a service data adaptation protocol processing function, and a packet data convergence protocol processing function
  • the second radio access network node has: a radio link control processing function a medium access control processing function and a physical layer processing function
  • the first radio access network node and the second radio access network node exchange information through a communication interface between the two;
  • the first network node and the first a communication interface between the two network nodes is a communication interface between the second network node of the first radio access network node;
  • the second radio access network node is used to indicate between the first network node and the terminal device
  • the indication of the radio link interruption or radio link recovery is sent to the first radio access network node; the first radio access network node sends the indication Give the second network node.
  • the design is applicable to a scenario where the UE and the eNB/ng-eNB/gNB and the eNB/ng-eNB/gNB have dual connectivity, where the eNB/ng-eNB/gNB acts as the secondary base station, and the eNB/ng- The eNB/gNB has a CU and a DU architecture, where the first network node may be an eNB/ng-eNB/gNB, the first radio access network node may be a CU, and the second radio access network node may be a DU, a second The network node may be an eNB/ng-eNB/gNB.
  • the eNB/ng-eNB/gNB with CU and DU architecture can be enhanced to the eNB/ng-eNB as the primary base station in the dual connectivity scenario.
  • /gNB The robustness of the process of feeding back the information of the radio link interruption or the information recovered by the radio link.
  • An optional design includes the second radio access network node DU transmitting the indication of the radio link interruption or the radio link recovery to the first radio connection by using various feasible designs provided by the embodiments of the present application.
  • the ingress node CU, the first radio access network node CU sends an indication of the radio link interruption or radio link recovery to the second network node.
  • the indication of the radio link interruption or radio link recovery may be transmitted through a logical interface user plane between the first radio access network node and the second network node.
  • the user plane tunnel established by the first radio access network node and the second radio access network node for the UE and the user plane tunnel established by the first radio access network node and the second network node for the UE, There is a one-to-one relationship. It is assumed that the user plane tunnel established between the foregoing nodes includes the user plane tunnel corresponding to the DRB1, DRB2, and DRB3 of the UE.
  • the first radio access network node receives the indication of the radio link failure or radio link recovery from the user plane tunnel corresponding to the specific DRB at the second radio access network node,
  • the indication of the radio link failure or the radio link recovery is sent to the second network node by using a user plane tunnel between the first radio access network node and the second network node corresponding to the DRB.
  • the second radio access network sends a message to the first radio access network node for feeding back the downlink transmission status, which may carry the lost data packet.
  • the message sent by the first radio access network node to the second network node for feeding back the downlink transmission status may also carry the lost data packet.
  • the first radio access network node sends an indication of radio link failure or radio link recovery by using a logical interface control plane of the second network node, when transmitting radio link failure information or recovering information
  • the user tunnel identifier and the corresponding packet loss information may also be carried at the same time or separately.
  • the user tunnel identifier may be a DRB identifier or a corresponding relationship with the DRB identifier.
  • An optional design includes: the second network node includes: a first device and a second device, where the first device and the second device perform information interaction by using a communication interface between the two devices, where the first device has The user plane function and the service data processed by the packet data convergence protocol are adapted to the protocol processing function, and the second device has a radio resource control processing function and a control plane function processed by the packet data convergence protocol; or the first device has a packet data convergence protocol processing User plane function, control plane function processed by the packet data convergence protocol, and service data adaptation protocol processing function, the second device has a radio resource control processing function; a communication interface between the second network node and the first network node An interface between the first device and the first network node; the first device receiving, from the first network node, indicating that the wireless link between the first network node and the terminal device is interrupted or An indication of radio link recovery, the first device may also receive the first network node and the end that it receives Wireless link between the device interrupt, or a radio link restore indication message is forwarded to the second device.
  • the second network node is a CU
  • the first device is an UP in the CU
  • the second device is a CP in the CU.
  • An example architecture is that the CP is deployed: RRC and group data convergence protocol processing.
  • the control plane function (PDCP-C), in which PDCP-C is mainly responsible for the encryption and decryption of control plane data, integrity protection, data transmission, etc.; deployed in UP: user plane function handled by SDAP and packet data convergence protocol (PDCP) -U), UP is mainly responsible for user plane functions.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • the PDCP-U is mainly responsible for encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • Another example architecture is that RRC is deployed on the CP and PDCP-U and PDCP-C are deployed on the UP.
  • any of the designs shown above may be understood as a technical solution designed for a specific scenario or a specific technical problem, but it is not necessary to implement the technical content described in the present application, and any one of the designs may be required according to needs. Implemented in conjunction with other designs to more specifically address specific objective technical issues.
  • the hardware platform having the processor and the communication interface executes program instructions to implement the functions involved in any of the foregoing embodiments of the present application.
  • the embodiment of the present application provides a A schematic block diagram of a communication device 700, the communication device 700 comprising:
  • At least one processor 701, and a communication interface 702 for supporting communication interaction between the communication device 700 and other devices; when the program instructions are executed in the at least one processor 701, any of the foregoing embodiments of the present application
  • the functionality of the design to operate on any of the following devices is implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device.
  • the communication device 700 may further include a memory 703 to store program instructions necessary for implementing the above device functions or process data generated during program execution.
  • the communication device 700 may further include internal interconnection lines to implement communication interaction between the at least one processor 701, the communication interface, and the memory.
  • the at least one processor 701 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip. For example, for all or part of the processing of the PHY function in the DU involved in the embodiment, or all or part of the protocol communication function on the F1 port or the E1 port, it may be considered to set a dedicated circuit/chip in the at least one processor.
  • the implementation may be performed by using a general-purpose processor provided in the at least one processor 701 to execute a program instruction related to a PHY function, an F1 port or an E1 port communication function; for example, in the device related to the application,
  • the MAC layer, the RLC layer, the PDCP layer, the SDAP layer, and all or part of the related functions of the RRC layer are processed.
  • the at least one processor 701 may include a communication processing chip by calling a MAC layer, an RLC layer, a PDCP layer, a SDAP layer, and an RRC.
  • Program instructions for the relevant functions of the layer are implemented. It will be appreciated that the methods and flow steps of the various designs described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are executed in hardware or software depends on the specific application and design constraints of the technical solution. For example, considering the generality, low cost, low hardware and software decoupling, etc., it can be implemented by means of executing program instructions, for example. Considering system performance and reliability, it can be implemented using dedicated circuits. A person skilled in the art can use different methods for implementing the described functions for each specific application, which is not limited herein.
  • the communication interface 702 generally has a function of performing information interaction between two communication peers.
  • the communication interface may be designed as an interface circuit or include the same.
  • the hardware module of the interface circuit supports the wired form communication interaction between the communication peers.
  • the F1 port between the DU and the CU involved in the present application and the communication function of the E1 port between the CP and the UP can be adopted.
  • This type of interface design for the case where the wireless communication information interaction is performed between the communication peers, the communication interface may be an interface circuit having a radio frequency transceiving function, or a hardware system including the interface circuit having the radio frequency transceiving function.
  • the communication interface of the DU and the UE can adopt this design.
  • the CU, the CP, or the UP may be completed by directly or indirectly executing the implementation program instructions of the embodiment related design by using a general hardware platform (having processing resources and storage resources). Apply the functions in each design of the embodiment.
  • An actual deployment method may be that the CU, the CP, or the UP may be close to the core network device, or may be deployed cooperatively, and may be physically separated or combined; the functions of the CU, CP, or UP may also be used as part of the core network device.
  • the embodiment of the present application further provides a computer program product having program instructions, when the program instructions are directly or indirectly executed, for example, when executed in the communication device 700 in the foregoing embodiment,
  • the function of any of the following devices in any one of the application embodiments is implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device .
  • program instructions may be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the program instructions may be from a website site, a computer
  • the server or data center is transported to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • a program instruction When a program instruction is executed, considering that a specific network device generally includes a hardware layer, an operating system layer running on the hardware layer, or an intermediate layer, when the program instructions related to the embodiment of the present application are executed, the multi-layer is often The invocation and execution of software, so the program instructions can be an indirect execution process in a hardware device (general purpose processing circuit or dedicated processing circuit).
  • the embodiment of the present application further provides a computer program storage medium, where the computer program storage medium stores program instructions, when the program instructions are directly or indirectly executed, for example, in the communication device 700 in the foregoing embodiment.
  • the functions of any of the following devices in the design of the first aspect and any of the following are implemented: a first network node, a second network node, a first radio access network node, and a second radio access Network node, first device and second device.
  • the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computing device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the storage medium can be any available media that can be accessed by the computing device or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium, or a semiconductor medium such as a Solid State Disk (SSD).
  • SSD Solid State Disk
  • the embodiment of the present application further provides a chip system, the chip system including at least one processor, when program instructions are executed in the at least one processor, such that the design is as described in the first aspect and any of the The functions on any of the following devices are implemented: a first network node, a second network node, a first radio access network node, a second radio access network node, a first device, and a second device.
  • the embodiment of the present application further provides the communication method of the second aspect, which can be applied to a scenario related to a mechanism in which a feedback radio link fails (such as an interruption) or a radio link recovery.
  • Example method 1 The terminal device discovers that the radio link is faulty, and reports the link fault information to the network side device.
  • the terminal device takes the UE as an example, and the wireless link failure takes the outage as an example.
  • the network side takes the scenario of the CU and the DU architecture as an example.
  • the UE has a communication connection with two or more DUs, which are respectively DU1, DU2, ..., DUn, where n is a positive integer greater than or equal to 2, and the UE connects to the CU through the two or more DUs, where the two There is no primary or secondary between the multiple or multiple DUs. For example, there is no primary or secondary DU or a primary cell and a secondary cell. It can be understood that multiple DUs that have communication connection with the UE are A channel for communication transmission between the UE and the CU is provided.
  • the UE may first access through the cell 1 of the DU1, and establish an RRC connection with the CU.
  • the CU sends a measurement configuration to the UE through the cell 1 of the DU1, and the UE reports the measurement result.
  • the CU decides to add the cell 2 of the DU2 to the UE based on the measurement result reported by the UE.
  • the CU sends a message for the UE context setup request (such as the UE context setup request) to the DU2, where the message includes the signaling radio bearer SRB, the data radio bearer DRB list, the UE air interface capability, and the cell 2 that are expected to be established for the UE.
  • the DRB list includes at least one of a DRB ID, a correspondence between the DRB and the flow (for example, including a QoS flow ID), QoS information of a DRB granularity, and QoS information of a QoS flow granularity.
  • the DU2 sends a message for the UE context setup (such as the UE context setup response) to the CU, where the message may include the RLC layer configured by the DU2 for the SRB and the DRB of the UE, and the configuration of at least one of the MAC layer and the PHY layer.
  • the UE identifier such as a C-RNTI, random access related information, such as a dedicated preamble, a random access resource, and the like, allocated to the UE may also be included.
  • the CU informs the UE to increase the cell 2 in the DU2 as the serving cell by using the RRC message, and includes the UE identifier, the random access related information, and the cell identifier of the cell 2 in the RRC notification message.
  • the CU After the UE successfully accesses the cell 2 of the DU2, the CU assembles the RLC layer, the configuration of at least one of the MAC layer and the PHY layer fed back by the DU2, and the SDAP and/or PDCP layer configuration generated by the CU into an RRC reconfiguration message.
  • the information of the cell 2 including the DU2 may optionally include the configuration of the corresponding SRB and or the DRB in at least one of the RLC layer, the MAC layer and the PHY layer.
  • the cell 1 of the DU1 and the cell 2 of the DU2 are in an equal position, that is, there is no difference between the PCell, the SCell or the PSCell, and the SCell in the RRC message.
  • the example method includes:
  • Step 1 The UE finds an outage
  • the UE finds that the downlink reference signal strength of a certain DU is lower than a certain threshold and exceeds a certain time, for example, the UE detects the CRS/CSI-RS/DMRS/PTRS/TRS or the corresponding RSRP of the serving cell under the connected DU1. /RSRQ ⁇ threshold T1, and or, duration>threshold T2, the UE and the radio link of the DU1 are considered to be interrupted.
  • the UE sends the outage indication to the CU by using the uplink of the other available DUs.
  • the one or more DUs may be selected from the other available DUs to send the uplink RRC message to notify the CU.
  • the specific notification method may be at least one of the following:
  • the uplink RRC message includes information of a cell identifier and an outage indication.
  • the information of the cell identifier may be a physical cell identifier (PCI), an E-UTRAN Cell Global Identify (ECGI), and a new radio cell global identifier (NR).
  • PCI physical cell identifier
  • ECGI E-UTRAN Cell Global Identify
  • NR new radio cell global identifier
  • CGI CGI
  • the CU and DU can find a matching PCI/ECGI/NR CGI, etc. according to the agreed cell identity.
  • the foregoing RRC message may further include a cell identifier, a measurement report, a measurement identifier, etc., and may also include a cell identifier, a measurement report, a measurement identifier, and the like through another uplink message.
  • a wireless link break can be defined as a measurement X event.
  • the measurement event and the measurement identifier have a corresponding relationship, and the measurement configuration sent by the CU to the UE may include a correspondence between the measurement event and the measurement identifier.
  • One method is to include the cell identification information and the measurement result in the measurement report, and the measurement result may include the measurement result of the serving cell of the DU1, and may also include the measurement result of the other cell.
  • the CU receives the measurement report and determines whether the specific measurement event is met by the measurement result. For example, the CU can learn that the radio link of the serving cell of the UE and the DU1 is interrupted by the measurement report. Another way is to include, for example, a cell identity and or a measurement event in the measurement report. Upon receiving the measurement report, the CU can directly learn that the radio link of the serving cell of the UE and the DU1 is interrupted. For another example, one way is to include at least one of a cell identifier, a measurement result, and a measurement identifier in the measurement report.
  • the CU Upon receiving the measurement report, the CU can directly learn that the radio link of the serving cell of the UE and the DU1 is interrupted, and can also know the radio link status of the UE and other cells. Therefore, it can be determined by which cell to transmit data that is not transmitted or received successfully in the serving cell of the DU1.
  • the PDCP status report may be sent by the UE or sent by the CU after receiving the outage indication by the CU.
  • the UE may stop data transmission with the DU1 in the case of reporting the related state, and optionally, retain the configuration of at least one of the RLC, the MAC, and the PHY related to the DU1.
  • the UE may delete intermediate variables that are transmitted by the DU1, such as sequence information of the data unit that has not received the feedback information, the data transmission timer, the time information of the hybrid automatic repeat request HARQ process, and the HARQ process. At least one of the data unit transmission confirmation information, the data unit confirmation information, the maximum transmission state variable, the maximum reception state variable, the transmission state variable, the reception state variable, and the transmission window.
  • the intermediate variable of the reservation and the DU1 transmission may also be selected: the sequence information of the transmitted data unit that has not received the feedback information, the data transmission timer, the time information of the hybrid automatic repeat request HARQ process, and the HARQ process. At least one of the data unit transmission confirmation information, the data unit confirmation information, the maximum transmission state variable, the maximum reception state variable, the transmission state variable, the reception state variable, and the transmission window.
  • the RRC re-establishment procedure is initiated.
  • Example method 2 The UE finds and reports resume
  • the UE detects a downlink reference signal of the serving cell in the DU1.
  • the reference signal may be at least one of the following: a common reference signal (CRS), and a channel state information-reference signal (channel state information-reference signal, CSI-RS), a demodulation reference signal (DMRS), a phase tracking reference signal (PTRS), and a tracking reference signal (TRS), when the signal strength corresponding to the signal is found to be greater than If the threshold is exceeded or exceeds a certain time, the radio link of the UE and the DU1 is considered to have been restored.
  • CRS common reference signal
  • CSI-RS channel state information-reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • TRS tracking reference signal
  • the UE sends a resume indication to the CU through the uplink of the other available DUs.
  • one or more DUs may be selected from other available DUs to send an uplink RRC message, where the uplink RRC message includes a cell identifier and a resume indication.
  • the uplink RRC message includes a cell identifier and a resume indication.
  • the UE may also send the uplink RRC message indication resume through the DU1 recovered by the radio link.
  • the RRC message reported by the UE may include at least one of a cell identifier, a measurement report, and a measurement identifier.
  • the CU determines whether the radio link of the DU1 is restored, and determines whether to continue to use the DU1 to serve the UE.
  • Example method 3 DU discovers and reports resume (applicable to DU or UE finds outage)
  • the UE may stop data transmission between the UE and the DU1, but may continue to send at least one of an uplink reference signal, such as an SRS, a DMRS, and a PTRS.
  • the DU1 and the UE's radio link are considered to be recovered when the UE detects that the uplink signal of the UE is above a certain threshold and exceeds a certain time.
  • DU1 informs the CU about the radio link recovery of the DU1 and the UE through the interface (F1 or V1) between the CU-DUs. Taking the F1 interface as an example, a case is notified by the F1 control plane message, which may include a UE identifier and a resume indication.
  • the UE identifier includes at least one of the following: an air interface identifier C-RNTI, an F1 interface identifier gNB-CU UE F1AP ID, and a gNB-DU UE F1AP ID.
  • the message may also include a cell identity when the UE air interface identifier is included.
  • the cell identifier may be at least one of PCI, ECGI, NR CGI, and a cell identifier agreed by the CU and the DU.
  • the F1 user plane message is notified, for example, the DDDS through the F1-U user plane tunnel includes a resume indication (for example, through all F1-U tunnels, selecting an F1-U tunnel or selecting multiple F1-U tunnels) ).
  • the CU may continue to select the DU1 to send data to the UE.
  • the CU may inform the DU to continue the transmission and may also indicate the starting F1-U sequence number.
  • the indication can be implemented by the F1 control plane or the user plane.
  • the specific DU is also reported by the UE to the radio link failure and the radio link recovery, which may be a pre-agreed or a network indication. For example, if the CU instructs the DU to report the failure or the recovery of the radio link, the DU does not add the UE reporting indication to the broadcast message, and the UE reporting indication is used to notify the UE that the radio link needs to be reported to be failed or restored.
  • the CU does not instruct the DU to report the failure or recovery of the radio link (which may be a display notification or an implicit notification), and the DU adds a UE reporting indication to the broadcast message.
  • the CU adds a UE reporting indication, a DU, in the broadcast message.
  • the DU may report that the radio link fails, the UE reports the radio link recovery, or the UE reports the radio link failure, and the DU reports the radio link recovery. How the specific reporting manners are combined may also be notified to the DU and the UE by the CU through display or implicit methods.
  • any terminal device such as a UE
  • the function of any CU or any DU may be through a hardware platform having a processor and a communication interface.
  • the program instructions are separately implemented.
  • the embodiment of the present application provides a communication device, where the communication device includes: at least one processor, and a communication interface, where the communication interface is used to support communication interaction between the communication device and other devices.
  • any one of the communication methods of the foregoing second aspect of the present application is implemented in the terminal device, the CU or the DU, which is involved: optionally, the communication device A memory may also be included to store program instructions necessary for implementing the functions of the above-described devices or process data generated during program execution.
  • the communication device may further include an internal interconnection line to implement communication interaction between the at least one processor, the communication interface, and the memory.
  • the at least one processor may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the communication interface generally has a function of performing information interaction between two communication peers.
  • the communication interface may be designed as an interface circuit or include the interface.
  • the hardware module of the circuit supports the wired form communication interaction between the communication peers.
  • the F1 port between the DU and the CU involved in the present application can adopt this form of interface design;
  • the communication interface may be an interface circuit having a radio frequency transceiving function, or a hardware system including the interface circuit having a radio frequency transceiving function, such as when wireless communication is performed between the DU and the UE, then The communication interface between the DU and the UE can adopt this design.
  • the communication device can be a terminal device or a system chip used in the terminal device.
  • the embodiment of the present application further provides a computer program product, the computer program product having a program instruction, when the program instruction is directly or indirectly executed, for example, when being executed in the foregoing communication device, the foregoing second aspect communication method is Executed.
  • the program instructions may be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the program instructions may be from a website site, a computer
  • the server or data center is transported to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • a program instruction When a program instruction is executed, considering that a specific network device generally includes a hardware layer, an operating system layer running on the hardware layer, or an intermediate layer, when the program instructions related to the embodiment of the present application are executed, the multi-layer is often The invocation and execution of software, so the program instructions can be an indirect execution process in a hardware device (general purpose processing circuit or dedicated processing circuit).
  • the embodiment of the present application further provides a computer program storage medium, where the computer program storage medium stores program instructions, when the program instructions are directly or indirectly executed, for example, when being executed in the foregoing communication device, the foregoing Two aspects of the communication method are implemented.
  • the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computing device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the storage medium can be any available media that can be accessed by the computing device or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium, or a semiconductor medium such as a Solid State Disk (SSD).
  • SSD Solid State Disk
  • the embodiment of the present application further provides a chip system, where the chip system includes at least one processor, when program instructions are executed in the at least one processor, performing the terminal device in the communication method as in the foregoing second aspect. Any operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法,该方法中,第一网络节点在多个用户面隧道中的每一个用户面隧道中向第二网络节点发送用于反馈下行传输状态的消息,每一个所述消息中都包含用于表明所述第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示,该多个用户面隧道可以是该第一网络节点和该第二网络节点之间的通信接口上为该终端设备建立的全部用户面隧道,通过该方法能够加强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。

Description

一种通信方法,通信设备及其通信***
本申请要求于2017年11月17日提交中国国家知识产权局、申请号为201711148247.8、申请名称为“一种通信方法,通信设备及其通信***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体的,涉及一种通信方法,通信设备及其通信***等。
背景技术
在下一代移动通信***中,比如第五代移动通信(the 5th generation mobile communication technology,5G)***中,基站被称为gNB或ng-eNB,其中,ng-eNB是源于长期演进(long term evolution,LTE)***基站(LTE eNB)的后续演进基站。图1为一种5G***的示意性框图,在该***100中,下一代无线接入网(next generation radio access network,NG-RAN)中的gNB和gNB之间,ng-eNB和ng-eNB之间,以及gNB和ng-eNB之间通过Xn接口互连。gNB和5G核心网(5G core,5GC)设备之间通过NG接口互连,ng-eNB和5GC设备之间通过NG接口互连。其中,5GC设备可以是接入和移动性管理功能实体(access and mobility management function,AMF)或用户面功能实体(user plane function,UPF),AMF主要负责接入管理方面功能,UPF主要负责会话(session)管理方面功能。传统基站一般包括无线资源控制(radio resource control,RRC)层,业务数据适配协议(service data adaptation protocol,SDAP)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层,无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层,以及物理层(physical layer,PHY)等逻辑功能协议层,下一代基站的架构对此进行了演进。图2为一种5G***的示意性框图,该***200包括5GC和NG-RAN,在NG-RAN中,基站gNB可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成,CU和DU架构可以理解为是对传统接入网中的基站的功能进行拆分,传统基站的一部分功能部署在CU,其余功能部署在DU,多个DU可共用一个CU以节省成本并易于网络扩容,CU和DU之间通过F1接口进行信息交互。
对于双连接或者多连接场景,即,终端设备与多个DU存在通信连接,该终端设备与其中一个DU可能发生传输中断。
发明内容
本申请提供一种通信方法,通信设备及其通信***等,以解决背景技术中,当发生终端设备和一个DU之间出现无线链路中断时,如何在DU和CU之间有效交互中断或者终端恢复的信息,以提升***可靠性。
第一方面,本申请实施例提供了一种通信方法,该通信方法运行在通信***中,该通信***包括第一网络节点和第二网络节点,在该通信***运行时,第一网络节点在至少一个用户面隧道中的每一个用户面隧道中向第二网络节点发送用于反馈下行传输状态的消息,所述至少一个所述消息中的每一个均包含指示,该指示用于直接或者间接的表明该第一网络节点和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,所述至少一个用户面隧道建立在该第一网络节点和该第二网络节点之间的通信接口上并与该终端设备相关联,该至少一个所述消息中的第一所述消息包含丢失的数据包的信息,该至少一个所述消息中的第二所述消息不包含丢失的数据包的信息;或者,该至少一个所述消息中的每一个均包含丢失的数据包的信息;或者,该至少一个所述消息中的每一个均不包含丢失的数据包的信息。仅为便于理解:终端设备和DU之间往往使用多个数据无线承载(data radio bearer,DRB)进行上下行数据传输,当第一网络节点为DU,第二网络节点为CU时,在CU和DU之间的通信接口(比如F1接口)上,对应于该终端设备的多个DRB,分别建立了多个用户面数据传输隧道,DRB和用户面隧道之间可以具有一一对应的关系。示例性的,通过本方案,DU可以通过多个用户面隧道分别均发送用于反馈下行传输状态的消息,这些消息中的每一个均包含表明DU和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,这些消息中还可部分或者全部携带下行传输过程中丢失的数据包的信息,这些消息也可以均不包含下行传输过程中丢失的数据包的信息。通过本方案,可以增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。
根据第一方面,一种设计为,该至少一个用户面隧道为建立在该第一网络节点和该第二网络节点之间的通信接口上并与该终端设备相关联的全部用户面隧道。通过在为该终端设备建立的全部用户面隧道发送表明无线接入设备和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,可进一步增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。
可以理解的是,一种可行的设计为,第一网络节点可以在为终端设备建立的所有用户面隧道中的每一个用户面隧道中的用于反馈下行传输状态的消息中均携带指示信息,该指示信息直接或者间接的表明该第一网络节点和终端设备之间的无线链路出现中断的信息或者无线链路恢复的信息,可以不考虑该反馈下行传输状态的消息中是否需要携带下行传输过程中丢失的数据包的信息,或者说,采用这种方案可以不考虑第二网络节点和第一网络节点之间下行传输过程中是否存在丢失数据包的情况,或者可以不要考虑在第二网络节点和第一网络节点之间是否有下行数据在传输的情况。可以理解的是,当通过用于反馈下行状态的消息进行反馈无线链路中断或者恢复的信息时,可以基于实际情况决定是否在该用于反馈下行状态的消息中携带丢失的数据包的信息,即如果所述用户面隧道对应的数据无线承载存在丢包情况,则所述用于反馈下行状态的消息中可以携带无线链路中断的信息,同时携带丢失的数据包的信息。如果所述用户面隧道对应的数据无线承载不存在丢包情况,则所述用于反馈下行状态的消息中携带无线链路中断的信息,但不携带丢失的数据包的信息。通过该设计,通过在为该终端设备建立的全部用户面隧道发送表明无线接入设备和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,不考虑第一网络节点和第二网络节点之间的下行数据传输,增强了反馈无线链路中断的信息或者无线链路恢复 的信息的过程的鲁棒性,从而增强***的可靠性,也简化了***设计。该设计可进一步和本申请中第一方面及其设计中的至少一种相结合,以满足特定场景和解决客观技术问题的需要。
根据第一方面,一种设计为,该第一网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能;该第二网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能。通过本设计,使得第一方面及其各种设计能够适用演进和变化的网络架构,使得在具有不同逻辑功能架构的***中,能够增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。
根据第一方面,一种设计为,该第一网络节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能;该第二网络节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能。此处第一网络节点可以是DU,第二网络节点可以是CU,针对本设计中涉及的功能架构划分的DU和CU之间,加强了反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性。
根据第一方面,一种设计为,该第一网络节点包括:第一无线接入网节点和第二无线接入网节点,第一无线接入网节点和第二无线接入网节点之间具有通信接口,其中,该第一无线接入网节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能;该第二无线接入网节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能;该第一无线接入网节点和该第二无线接入网节点通过两者之间的通信接口进行信息交互;该第一网络节点和该第二网络节点之间的通信接口为该第一无线接入网节点该第二网络节点之间的通信接口;该第二无线接入网节点将用于表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的所述指示发送给该第一无线接入网节点;该第一无线接入网节点将所述指示发给该第二网络节点。示例性的,该设计可应用于UE和eNB/ng-eNB/gNB以及eNB/ng-eNB/gNB具有双连接的场景,其中,eNB/ng-eNB/gNB作为辅基站,且eNB/ng-eNB/gNB具有CU和DU的架构,此处第一网络节点可以是eNB/ng-eNB/gNB,第一无线接入网节点可以是CU,第二无线接入网节点可以是DU,第二网络节点可以是eNB/ng-eNB/gNB,通过该设计,可使得在该双连接场景中,增强了具有CU和DU架构的eNB/ng-eNB/gNB向作为主基站的eNB/ng-eNB/gNB反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性。
根据第一方面,一种设计为,该第二网络节点包括:第一设备和第二设备,该第一设备和该第二设备通过两者之间的通信接口进行信息交互,其中,该第一设备具有分组数据汇聚协议处理的用户面功能和服务数据适应协议处理功能,该第二设备具有无线资源控制处理功能和分组数据汇聚协议处理的控制面功能;或者,该第一设备具有分组数据汇聚协议处理的用户面功能,分组数据汇聚协议处理的控制面功能,以及服务数据适应协议处理功能,该第二设备具有无线资源控制处理功能;该第二网络节点和该第一网络节点之间的 通信接口为该第一设备和该第一网络节点两者之间的接口;该第一设备接收来自于该第一网络节点的用于表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示,该第一设备还可以将其收到的表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示的信息,转发给第二设备。示例性的,以该第二网络节点为CU,第一设备为CU中的UP,第二设备为CU中的CP为例,一种示例架构为,CP部署了:RRC和组数据汇聚协议处理的控制面功能(PDCP-C),其中,PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等;在UP部署了:SDAP和分组数据汇聚协议处理的用户面功能(PDCP-U),UP主要负责用户面功能。其中,SDAP主要负责将核心网的数据进行处理并将flow映射到承载,PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。另一种示例架构为,在CP部署了RRC,在UP部署了PDCP-U和PDCP-C。通过本设计,增强了向具有CP和UP架构的CU反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,有利于提升***的可靠性。
以上根据第一方面所列举的任一种设计,可以理解为针对特定场景或者特定技术问题而设计的技术方案,但并不能理解为实施本申请所记载技术内容所必须,其中的任一种设计可根据需要和其他设计相结合实施,以更有针对性的解决特定的客观技术问题。
第二方面,本申请提供了一种通信设备,该通信设备包括:至少一个处理器和通信接口,该通信接口用于该通信设备与其他通信设备进行信息交互,当程序指令在该至少一个处理器中执行时,使得通信设备实现第一方面及其任一所述的设计中在如下任一种设备上的功能:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
第三方面,本申请提供了一种计算机程序产品,该计算机程序产品具有程序指令,当该程序指令被直接或者间接执行时,使得如第一方面及其任一所述的设计中在如下任一种设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
第四方面,本申请提供了一种计算机程序存储介质,该计算机程序存储介质具有程序指令,当该程序指令被直接或者间接执行时,使得第一方面及其任一所述的设计中在如下任一种设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
第五方面,本申请提供了一种芯片***,该芯片***包括至少一个处理器,当程序指令在该至少一个处理器中执行时,使得如第一方面及其任一所述的设计中在如下任一种设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
第六方面,本申请提供了一种通信***,该通信***包括如第二方面所述的通信设备。
附图说明
图1是本申请实施例提供的一种5G***的示意性框图;
图2是本申请实施例提供的一种5G***的示意性框图;
图3为本申请实施例提供的一种通信方法的示意图;
图4为本申请实施例提供的一种通信方法的示意图;
图5为本申请实施例提供的一种***架构的示意图;
图6为本申请实施例提供的一种***架构的示意图;
图7为本申请实施例提供的一种通信设备的示意性框图。
具体实施方式
首先对本申请各实施例出现的术语进行具有共性部分技术含义的描述。
本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”并不对其修饰的对象的实际顺序或功能进行限定。例如,“第一网络节点”和“第二网络节点”中的“第一”、“第二”,仅仅是为了区分这两者是不同的网络节点,并不对其实际先后顺序或者功能进行限定。本申请中出现的“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端设备向基站传输的方向,“下行”方向一般是指数据/信息从基站向终端设备传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
本申请中出现的术语“和/或”,仅仅是一种描述对象之间的关联关系,表示对象间可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,如无特别说明,则一般表示前后对象之间是一种“或”的关系。本申请中出现的字符“-”,一般用来表示该字符前后的对象两者之间具有对应/关联/映射/协作关系。例如,对于表述“分组数据汇聚协议处理的用户面功能(PDCP-U)”中“-”,可理解为表示PDCP功能中对应的用户面部分功能。
本申请中出现的类似于“项目包括如下中至少一种:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当该表达为“项目包括如下中至少一种:A,B,……,以及X”时,即该表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
在本申请中可能出现的对各种消息/信息/设备/网元/***/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请中,终端设备可以包含如下形式:用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION, ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。终端设备还可以是物联网(internet of things,IoT)***中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例描述的网络架构以及业务场景是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下结合附图,对本申请中的技术方案进行描述。
在双连接或多连接场景下,终端设备和两个及以上的无线接入设备具有通信连接,以终端设备是UE为例,无线接入设备是DU为例,当UE和该UE所连接的多个DU中的一个DU之间的无线链路发生中断(outage),则未传输成功的PDCP PDUs可以通过其他DU继续传输。图3为本申请提供的一种通信方法的示意图,如图3所示,UE通过gNB中的DU1和gNB中的DU2连接gNB中的CU,其中,CU具有RRC,SDAP,PDCP-C,以及PDCP-U处理功能,DU具有RLC,MAC以及PHY处理功能。CU将数据包1通过DU2传输给UE,CU将数据包7通过DU1传输给UE,数据包2和5在DU1待传输给UE,数据包3-6还在CU和DU之间的F1接口传输。在无线干扰较大或信道进入深衰落等情况下,DU1和UE之间发生传输中断(临时或者持续一段时间),那么,对于未传输给UE的数据包2-6可以通过DU2进行继续向UE进行传输。
当DU和UE之间出现传输中断时,DU可以通过和CU之间的F1-U接口发送传输故障或者无线链路中断(radio link outage)的指示给CU,CU收到该传输故障或者无线链路中断的指示后,可以删除该出现链路故障的DU,和/或,CU可以选择一个其他的和UE具有连接状态的DU继续执行数据传输。在CU未删除该DU的情况下,后续DU传输恢复时,DU可以通过F1-U接口发送传输故障恢复或者无线链路恢复(radio link resume)的指示给CU,CU收到该传输故障恢复或者无线链路恢复的指示后,可以决定是否在该DU上继续执行数据传输。
在CU和DU之间的F1-U接口可以为UE的每个数据无线承载DRB都建立一个对应的用户面隧道,该DRB级别的F1-U隧道可用于传输用户数据以及下行传输状态(downlink data delivery status,DDDS)报告,可以理解的是,DDDS也是DRB级别的,即对应于该UE的每一个DRB都有对应的DDDS报告。当前,DDDS报告的一个示例如下表一:
表一:
Figure PCTCN2018116059-appb-000001
该DDDS的示例中,其内容主要包含数据包的已发送情况,数据包的丢包情况以及数据的缓存情况等信息。其中,当原因值上报(Cause Report)取值为0,则表示DDDS不携带原因值(Cause Value)。当原因值上报取值为1时,则表示DDDS携带原因值。当丢包报告(Lost Packet Report)值为0时,则表示DDDS不携带丢失的数据包的情况,即不在DDDS中携带如下具体信息:报告的丢失F1-U序号区间数目,丢失F1-U序号区间起始位置和丢失F1-U序号区间结束位置。当丢包报告Lost Packet Report值为1时,则表示DDDS携带丢失的数据包的情况,即在DDDS中携带如下具体信息:报告的丢失F1-U序号区间数目,丢失F1-U序号区间起始位置和丢失F1-U序号区间结束位置。DU可以通过DDDS报告中的原因值来指示无线链路中断(radio link outage)和无线链路恢复(radio link resume),比如当原因值取值为1的时候,指示出现无线链路中断,当原因值取值为2的时候,指示出现无线链路恢复,可以理解的是,原因值也可以取其他值来表示无线链路中断或者无线链路恢复。
目前尚无机制来解决如何在每个DRB对应的DDDS上传输前述的传输故障或者无线链路中断的指示信息,和/或,传输恢复或者无线链路恢复的指示信息的问题。且,如果DU1发生中断期间,可能出现属于该UE的某一个DRB并没有数据交互,那么与该DRB对应的F1-U隧道此时并不需要传输DDDS。又例如,属于该UE的某一个DRB并没有丢包情况,那么与该DRB对应的F1-U隧道中发送的DDDS也不需要包含丢失的数据包的情况。
扩展到LTE***的CU-DU架构,在UE和LTE DU存在双连接或多连接通信场景中,也会存在类似的问题。即LTE CU和LTE DU之间的V1接口用户面隧道也是DRB级别的,如LTE DU需要发送无线链路中断的指示信息,和/或,无线链路恢复的指示信息给LTE CU,也需要考虑上述问题。
此外,当UE和LTE eNB和新空口(new radio,NR)gNB存在双连接通信场景(EN-DC)时,以及NR gNB和NR gNB之间的双连接NR-DC,NR gNB和LTE eNB/ng-eNB之间的双连接,LTE eNB和LTE eNB双连接场景,也都存在类似问题。即在X2-U接口,Xn-U接口都需要解决,比如,当辅基站和UE之间的链路出现故障时,会出现如何传输无线链路中断的指示信息,和/或,无线链路恢复的指示信息给主基站的问题。
通过上述多个具体场景的分析,有鉴于此,如图4所示,本申请实施例提出了一种通信方法400,以提供一种机制,使得无线链路中断的信息,和/或,无线链路恢复的信息能够可靠有效的传递到控制节点,以增强***的可靠性。
该方法400运行在对应的通信***400中,如图4所示,该通信***400包括第一网络节点和第二网络节点,在该通信***运行时,第一网络节点在至少一个用户面隧道中的每一个用户面隧道中向第二网络节点发送用于反馈下行传输状态的消息。用户面隧道的数量可以取决于第一网络节点和第二网络节点之间为终端设备所建立的DRB数量,通信***400中示出了用户面隧道可以有N个,N的取值范围可以是正整数,具体取值此处不做限定。该至少一个所述消息中的每一个均包含用于直接或者间接的表明该第一网络节点和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,该至少一个用户面隧道建立在该第一网络节点和该第二网络节点之间的通信接口上并与该终端设备相关联,该至少一个所述消息中可以有一个消息包含丢失的数据包的信息,还可以有一个消息不包含丢失的数据包的信息;或者,该至少一个所述消息中的每一个均包含丢失的数据包的信息;或者,该至少一个所述消息中的每一个均不包含丢失的数据包的信息。示例性的,通过本方案,DU可以通过多个用户面隧道分别均发送用于反馈下行传输状态的消息,这些消息中的每一个均包含表明DU和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,这些消息中还可部分或者全部携带下行传输过程中丢失的数据包的信息,这些消息也可以均不包含下行传输过程中丢失的数据包的信息。具体是否携带丢失的数据包的信息,可以根据实际情况确定。通过本方案,可以增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。
一种可选的设计中包括,用于发送无线链路中断的信息或者无线链路恢复的信息的用户面隧道,可以是为该终端设备建立的所有用户面隧道的一部分,也可以是为该终端设备建立的所有用户面隧道。比如在第一网络节点和第二网络节点之间建立的该UE所有用户面隧道中任选一个,例如选择对应的DRB ID最大,DRB ID最小,或在DRB列表排序第 一或排序最后的DRB对应的用户面隧道。当该至少一个用户面隧道为建立在该第一网络节点和该第二网络节点之间的通信接口上并与该终端设备相关联的全部用户面隧道时,可进一步增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。需要说明的是,图4中示出的N个用户面隧道,可以是为该终端设备建立的所有用户面隧道的一部分,也可以是为该终端设备建立的所有用户面隧道。
一种可选的设计中包括,用于发送无线链路中断的信息或者无线链路恢复的信息的用户面隧道,可以是对应的数据无线承载存在丢包情况的所有用户面隧道。即在所述用户面隧道发送无线链路中断的信息时,同时携带丢失的数据包的情况。在本设计中,如果对应的数据无线承载不存在丢包情况,则所述用户面隧道不需要发送无线链路中断的信息。当无线链路恢复时,第一网络节点在之前发送无线链路中断的每一个用户面隧道,发送无线链路恢复的信息,也可以在之前发送无线链路中断的所有用户面隧道中选择一个用户面隧道发送无线链路恢复的信息。
可以理解的是,第一网络节点可以在为终端设备建立的所有用户面隧道中的每一个用户面隧道中的用于反馈下行传输状态的消息中携带指示信息,以直接或者间接的表明该第一网络节点和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,而可以不考虑该反馈下行传输状态的消息中是否需要携带下行传输过程中丢失的数据包的信息,或者说,可以不考虑第二网络节点和第一网络节点之间下行传输过程中是否存在丢失数据包的情况,或者,可以不考虑在第二网络节点和第一网络节点之间是否有下行数据在传输的情况。可以理解的是,当通过用于反馈下行状态的消息进行反馈无线链路中断或者恢复的信息时,可以基于实际情况决定是否在该用于反馈下行状态的消息中携带丢失的数据包的信息,即如果所述用户面隧道对应的数据无线承载存在丢包情况,则所述用于反馈下行状态的消息中可以携带无线链路中断的信息,同时携带丢失的数据包的信息。如果所述用户面隧道对应的数据无线承载不存在丢包情况,则所述用于反馈下行状态的消息中携带无线链路中断的信息,但不携带丢失的数据包的信息。通过在为该终端设备建立的全部用户面隧道发送表明无线接入设备和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,且不考虑第一网络节点和第二网络节点之间的下行数据传输,可以加强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性,也简化了***设计。该设计可进一步和其他设计相结合使用,以满足特定场景和解决客观技术问题的需要。比如,首先设计在为终端设备建立的所有用户面隧道中的每一个用户面隧道中的用于反馈下行传输状态的消息中携带表明该第一网络节点和终端设备之间的无线链路中断的信息或者无线链路恢复的信息,再进一步设计这些用于反馈下行传输状态的消息中的哪些消息需要携带下行传输中丢失的数据包的信息,或者这些消息都不需要携带下行传输中丢失的数据包的信息,或者这些消息都需要携带下行传输中丢失的数据包的信息。
一种可选的设计中包括,该第一网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能;该第二网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能, 全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能。通过本设计,使得方法400能够适用于各种演进和变化的网络架构,使得在具有不同逻辑功能架构的***中,能够实现并增强反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,从而增强***的可靠性。
参考前述设计,一种可选的设计中包括,该第一网络节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能;该第二网络节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能。此处第一网络节点可以是DU,第二网络节点可以是CU,针对本设计中涉及的功能架构划分的DU和CU之间,加强了反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性。
一种可选的设计中包括,该第二网络节点包括:第一设备和第二设备,该第一设备和该第二设备通过两者之间的通信接口进行信息交互,此时,该第一网络节点和该第二网络节点之间的通信接口为该第一网络节点和该第一设备之间的接口。该第一设备接收来自于该第一网络节点的用于表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示,该第一设备还可以将其收到的表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示的信息,转发给第二设备。该第二网络节点的具体实现架构,可参考图5所示的本申请实施例提供的一种***架构500,其中,第二网络节点可以是CU,第一设备可以是CU的用户面部分(UP)实体,第二设备可以是CU的控制面部分(CP)实体,UP和CP之间的通信接口可以是E1接口。参考图5(a)所示,该第一设备具有分组数据汇聚协议处理的用户面(PDCP-U)功能和服务数据适应协议(SDAP)处理功能,该第二设备具有无线资源控制(RRC)处理功能和分组数据汇聚协议处理的控制面(PDCP-C)功能;可选的,另一种实现架构为,参考图5(b)所示,该第一设备具有分组数据汇聚协议处理的用户面(PDCP-U)功能,分组数据汇聚协议处理的控制面(PDCP-C)功能,以及服务数据适应协议(SDAP)处理功能,该第二设备具有无线资源控制(RRC)处理功能;
具体的,当该第一网络节点为DU,该第一设备为CU的用户面部分实体(CU-UP),该第二设备为CU的控制面部分实体(CU-CP)时,执行本实施例流程的组网架构可参考如图6所示的本实施例提供的一种***架构,图6中(a)-(e)分别示出了不同的组网架构。其中,这些组网架构具有共性的部分为,集中控制节点CU由CU-CP和CU-UP组成,CU-CP和CU-UP通过E1接口连接,CU和多个DU进行双连接或多连接,CU和DU之间的逻辑接口被称为F1,DU和CU-CP之间通过F1接口控制面(F1-C)连接,DU和CU-UP之间通过F1接口用户面(F1-U)连接。在实际部署的时候,CU-CP和CU-UP可以分离部署(如图(a)-(e)所示),CU-CP和CU-UP也可以部署在一起,或者DU和CU-CP一起部署(如图(b)所示),或者DU和CU-UP一起部署。在CU-CP的管理下一个DU可以连接到多个UP,一个CU-UP也可以连接到多个DU(如图(d)所示)。所以在双连接或多连接的情况下,不同DU可能连接到不同CU-UP(如图(e)所示),例如UE同时连接了DU1和DU2,而DU1和DU2可能连接到相同的CU-UP(如图(d)所示),也可能连接到不同的CU-UP(如图(e)所示)。可以理解的是,图中作为分离部件进行说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际 的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
基于上述组网架构,本申请实施例基于CP-UP分离架构提出的示例性设计包括:
步骤1:当DU1发现所连接的UE发生临时的传输中断时,DU1可以采用以下四种方式通知CU-UP:
方式1:在CU-UP和DU之间建立的该UE的所有F1-U隧道上发送包含无线链路中断指示的DDDS PDU。当该F1-U隧道对应的DRB在DU1上的传输存在丢包情况时(此处的丢包,包括空口丢包即DU和UE之间的丢包以及F1接口丢包两种情况),所述DDDS PDU还可以携带丢包信息。即可能存在有些F1-U隧道发送的DDDS里面仅包含outage指示,但是其他F1-U隧道发送的DDDS既包含outage指示,还包含丢包信息。
方式2:在CU-UP和DU之间建立的该UE的所有对应DRB有丢包情况的F1-U隧道上发送包含outage指示的DDDS PDU。此时,所有发送outage指示的DDDS PDU都包含丢包信息。
方式3:在CU-UP和DU之间建立的该UE有丢包情况的F1-U隧道中任选一个,例如选择DRB ID最大,DRB ID最小,或在DRB列表中排序第一或排序最后的DRB对应的F1-U隧道。在选择的F1-U隧道传输的DDDS PDU中包含中断指示。在本方案下,存在一个有丢包情况的F1-U上传输的DDDS PDU中同时包含中断指示和丢包信息。在其他有丢包情况的F1-U上传输的DDDS PDU中可以只包含丢包信息。
方式4:在CU-UP和DU之间建立的该UE所有F1-U隧道中任选一个,例如选择DRB ID最大,DRB ID最小,或在DRB列表排序第一或排序最后的DRB对应的F1-U隧道。在选择的F1-U隧道传输的DDDS PDU中包含中断指示。在本方案下,包含中断指示的DDDS PDU中可能携带丢包信息也可能不携带。还可能存在其他有丢包情况的F1-U上传输的DDDS PDU中只包含丢包信息。
步骤2:CU-UP收到所述中断指示后,停止和DU1之间的数据传输。将DU1上未传输成功的数据包通过其他连接的DU继续传输。CU-UP通过E1口通知CU-CP,DU1和UE之间的空口传输发生中断。CU-CP收到后,停止通过DU1发送RRC消息给UE。特别地,CU-CP可以通知CU-UP在DU1上未传输成功的包通过哪个DU继续传输。
步骤3:当DU1发现传输恢复时,通过DDDS包含恢复(resume)指示通知CU-UP。根据之前选择的四种方法,在包含outage指示的F1-U隧道中发送包含resume指示的DDDS PDU。同样地,当CU-UP收到所述resume指示后,通过E1口通知CU-CP,DU1和UE之间的空口恢复。则后续CU-CP可能通过DU1发送RRC消息给DU。
可以理解的是,前述CP-UP分离架构下的反馈无线链路中断的信息或者无线链路恢复的信息的机制,可适用于LTE***CP-UP分离的场景,也可以适用于5G NR CP-UP分离的场景。
通过本设计,增强了DU向具有CP和UP架构的CU反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,有利于提升***的可靠性。
一种可选设计包括,该第一网络节点包括:第一无线接入网节点和第二无线接入网节点,第一无线接入网节点和第二无线接入网节点之间具有通信接口,其中,该第一无线接入网节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能;该第二无线接入网节点具有:无线链路控制处理功能,介质访问控制处 理功能,以及物理层处理功能;该第一无线接入网节点和该第二无线接入网节点通过两者之间的通信接口进行信息交互;该第一网络节点和该第二网络节点之间的通信接口为该第一无线接入网节点该第二网络节点之间的通信接口;该第二无线接入网节点将用于表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的所述指示发送给该第一无线接入网节点;该第一无线接入网节点将所述指示发给该第二网络节点。示例性的,该设计可应用于UE和eNB/ng-eNB/gNB以及eNB/ng-eNB/gNB具有双连接的场景,其中,eNB/ng-eNB/gNB作为辅基站,且eNB/ng-eNB/gNB具有CU和DU的架构,此处第一网络节点可以是eNB/ng-eNB/gNB,第一无线接入网节点可以是CU,第二无线接入网节点可以是DU,第二网络节点可以是eNB/ng-eNB/gNB,通过该设计,可使得在该双连接场景中,增强了具有CU和DU架构的eNB/ng-eNB/gNB向作为主基站的eNB/ng-eNB/gNB反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性。一种可选设计包括,第二无线接入网节点DU通过本申请实施例提供的各种可行的设计,将无线链路中断或无线链路恢复的所述指示发送给所述第一无线接入网节点CU,第一无线接入网节点CU将所述无线链路中断或无线链路恢复的指示发送给第二网络节点。示例性的,可以通过第一无线接入网络节点和第二网络节点之间的逻辑接口用户面传输所述无线链路中断或无线链路恢复的指示。考虑到第一无线接入网节点和第二无线接入网节点为所述UE建立的用户面隧道,与第一无线接入网节点和第二网络节点为所述UE建立的用户面隧道,有一一对应的关系。假设上述节点间建立的用户面隧道包含该UE的DRB1,DRB2,DRB3所对应的用户面隧道。一种可能的方式为,第一无线接入网络节点从第二无线接入网络节点处特定DRB对应的用户面隧道接收到所述无线链路失败或无线链路恢复的指示,则将所述无线链路失败或无线链路恢复的指示,通过该DRB对应的第一无线接入网络节点和第二网络节点之间的用户面隧道,发送给所述第二网络节点。在反馈无线链路失败时,第二无线接入网络发送给第一无线接入网络节点用于反馈下行传输状态的消息可以携带丢失的数据包的情况。对应的,第一无线接入网络节点发送给第二网络节点的用于反馈下行传输状态的消息也可以携带丢失的数据包的情况。另一种可能的情况是,第一无线接入网络节点通过和第二网络节点的逻辑接口控制面发送无线链路失败或无线链路恢复的指示,在发送无线链路失败信息或者恢复信息时,还可以同时携带或者另外单独发送用户隧道标识和或对应的丢包信息。其中,用户隧道标识可以是DRB标识,或者与DRB标识具有对应关系。
一种可选设计包括,该第二网络节点包括:第一设备和第二设备,该第一设备和该第二设备通过两者之间的通信接口进行信息交互,其中,该第一设备具有分组数据汇聚协议处理的用户面功能和服务数据适应协议处理功能,该第二设备具有无线资源控制处理功能和分组数据汇聚协议处理的控制面功能;或者,该第一设备具有分组数据汇聚协议处理的用户面功能,分组数据汇聚协议处理的控制面功能,以及服务数据适应协议处理功能,该第二设备具有无线资源控制处理功能;该第二网络节点和该第一网络节点之间的通信接口为该第一设备和该第一网络节点两者之间的接口;该第一设备接收来自于该第一网络节点的用于表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示,该第一设备还可以将其收到的表明该第一网络节点和终端设备之间的无线链路中断或者无线链路恢复的指示的信息,转发给第二设备。示例性的,以该第二网络节点为CU,第一 设备为CU中的UP,第二设备为CU中的CP为例,一种示例架构为,CP部署了:RRC和组数据汇聚协议处理的控制面功能(PDCP-C),其中,PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等;在UP部署了:SDAP和分组数据汇聚协议处理的用户面功能(PDCP-U),UP主要负责用户面功能。其中,SDAP主要负责将核心网的数据进行处理并将flow映射到承载,PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。另一种示例架构为,在CP部署了RRC,在UP部署了PDCP-U和PDCP-C。通过本设计,增强了向具有CP和UP架构的CU反馈无线链路中断的信息或者无线链路恢复的信息的过程的鲁棒性,有利于提升***的可靠性。
以上所示出的任一种设计,可以理解为针对特定场景或者特定技术问题而设计的技术方案,但并不能理解为实施本申请所记载技术内容所必须,其中的任一种设计可根据需要和其他设计相结合实施,以更有针对性的解决特定的客观技术问题。
可以理解的是,对于前述实施例所涉及的第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及,第二设备,可通过具有处理器和通信接口的硬件平台执行程序指令来分别实现其在本申请前述实施例中任一设计中涉及的功能,基于此,如图7所示出的,本申请实施例提供了一种通信设备700的示意性框图,所述通信设备700包括:
至少一个处理器701,以及通信接口702,该通信接口用于支持该通信设备700和其他设备进行通信交互;当程序指令在所述至少一个处理器701中执行时,本申请前述实施例任一设计中在如下任一设备上操作的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及,第二设备。可选的,该通信设备700还可以包含存储器703,以存储实现上述设备功能所必须的程序指令或者程序执行过程中所产生的过程数据。可选的,该通信设备700还可以包含内部的互联线路,以实现该至少一个处理器701,通信接口以及存储器之间的通信交互。该至少一个处理器701可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。例如,对于实施例中涉及的DU中PHY功能的全部或者部分的处理,或者涉及的F1口或者E1口上的全部或者部分的协议通信功能,可以考虑在该至少一个处理器中设置专用电路/芯片来实现,当然也可以通过该至少一个处理器701中设置的通用处理器执行具有PHY功能,F1口或者E1口通信功能相关的程序指令来实现;又例如,对于本申请实施例涉及设备中的MAC层,RLC层,PDCP层,SDAP层以及RRC层的相关功能的全部或者部分处理,该至少一个处理器701可以包含通信处理芯片,通过调用MAC层,RLC层,PDCP层,SDAP层以及RRC层的相关功能的程序指令来实现。可以理解的是,结合本文中所公开的实施例描述的各设计的方法及流程步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件,比如,考虑通用性好成本低软硬件解耦等方面,可以采纳执行程序指令的方式来实现,又比如,考虑***性能和可靠性等方面,可以采纳使用专用电路来实现。普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,此处不做限定。
该通信接口702,通常具有为两个通信对端之间执行进行信息交互的功能,对于通信对端之间执行的是有线形式的信息交互的情况,通信接口可以设计成接口电路,或者包含该接口电路的硬件模块,以支持通信对端之间进行的有线形式的通信交互,比如本申请中 涉及的DU和CU之间的F1口,CP和UP之间的E1口的通信功能,可以采纳这种形式的接口设计;对于通信对端之间执行的是无线形式的信息交互的情况,通信接口可以是具有射频收发功能的接口电路,或者是包含该具有射频收发功能的接口电路的硬件***,比如在DU和UE之间进行无线通信时,那么DU和UE的通信接口可以采纳这种设计。
可选的,对于CU,CP或者UP的实现,也可以通过采用通用硬件平台(具有处理资源,存储资源)直接或者间接执行实施例相关设计的实现性程序指令来完成CU,CP或者UP在本申请实施例各设计中的功能。一种实际部署方式可以是,CU,CP或者UP可以和核心网设备就近,或者协同部署,物理上可以分开也可以合一;CU,CP或者UP的功能也可以作为核心网设备的一部分。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品具有程序指令,当该程序指令被直接或者间接执行时,比如,在前述实施例中的通信设备700中被执行时,使得本申请实施例任一设计中在如下任一设备的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备以及第二设备。可以理解的是,所述程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。程序指令被执行时,考虑到具体的网络设备中一般包括硬件层、运行在硬件层之上的操作***层和或中间层,与本申请实施例相关的程序指令被执行时,往往经过多层软件的调用和执行,因此该程序指令在硬件设备(通用处理电路或者专用处理电路)可以是一种间接的执行过程。
本申请实施例还提供了一种计算机程序存储介质,该计算机程序存储介质中存储有程序指令,当所述程序指令被直接或者间接执行时,比如,在前述实施例中的通信设备700中被执行时,如第一方面及其任一所述的设计中在如下任一设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备以及第二设备。可以理解的是,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。所述存储介质可以是计算设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(例如固态硬盘Solid State Disk,SSD)等。
本申请实施例还提供了一种芯片***,所述芯片***包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如第一方面及其任一所述的设计中在如下任一设备上的功能得到实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备以及第二设备。
本申请实施例还提供了第二方面的通信方法,可应用于反馈无线链路发生故障(比如中断)或者无线链路恢复的机制相关的场景中。
示例方法1:终端设备发现无线链路故障,向网络侧设备上报链路故障的信息。
该示例中,终端设备以UE为例,无线链路故障以中断(outage)为例,网络侧以CU 和DU架构组网的场景为例。
UE与两个或者多个DU存在通信连接,分别为DU1,DU2,……DUn,其中,n为大于等于2的正整数,UE通过这两个或多个DU连接到CU,此处这两个或多个DU之间没有主、辅之分,比如,没有主DU和辅DU之分或者主小区和辅小区之分,可以理解为,此处与UE存在通信连接的多个DU为该UE和该CU之间提供通信传输的通道。
对于本示例,大体而言,包括:UE可以先通过DU1的小区1接入,和CU建立RRC连接。CU通过DU1的小区1发送测量配置给该UE,该UE上报测量结果。CU基于UE上报的测量结果,决定为UE增加DU2的小区2。CU给DU2发送用于UE上下文建立请求的消息(比如UE context setup request),在该消息中包含期望为该UE建立的信令无线承载SRB,数据无线承载DRB列表,UE空口能力,以及小区2的标识信息中至少一种,其中,该DRB列表中包含DRB ID,DRB和flow的对应关系(例如包含QoS flow ID),DRB粒度的QoS信息,以及QoS flow粒度的QoS信息中的至少一种。DU2发送用于反馈UE上下文建立的消息(比如UE context setup response)给CU,在该消息中可以包含DU2为该UE的SRB和DRB分别配置的RLC层,MAC层和PHY层中至少一个的配置,可选的,还可以包含为该UE分配的UE标识例如C-RNTI,随机接入相关信息例如专用preamble,随机接入资源等。CU通过RRC消息通知UE增加DU2下的小区2作为服务小区,在所述RRC通知消息中包含DU反馈的UE标识,随机接入相关信息,小区2的小区标识中至少一个信息。当UE根据成功接入DU2的小区2后,CU将DU2反馈的RLC层,MAC层和PHY层中至少一个的配置,以及该CU生成的SDAP和/或PDCP层配置,组装成RRC重配置消息发送给UE。在该RRC重配置消息中,包含DU2的小区2的信息,可选的,还可以包含相应的SRB和或DRB在RLC层,MAC层和PHY层中至少一个层的配置。可选的,在所述RRC重配置消息中,DU1的小区1和DU2的小区2处于平等地位,即在RRC消息中没有PCell,SCell或PSCell,SCell的区别。具体的,本示例方法包括:
步骤1:UE发现中断(outage)
当UE发现某个DU的下行参考信号强度低于一定门限和或超过一定时间,例如,UE检测到其连接的DU1下的服务小区的CRS/CSI-RS/DMRS/PTRS/TRS或对应的RSRP/RSRQ<门限T1,和或,持续时间>门限T2,则认为UE和该DU1的无线链路发生中断。
可选的,UE通过其他可用DU的上行链路发送outage指示给CU,例如可以从其他可用的DU中选择一个或多个DU发送上行RRC消息通知CU,具体通知方法可采用如下至少一种:
A.所述上行RRC消息中包含小区标识的信息和或outage指示。其中小区标识的信息可以是物理小区标识(Physical Cell ID,PCI),E-UTRAN小区全球标识(E-UTRAN Cell Global Identify,ECGI),一级新无线小区全球标识(New Radio Cell Global Identify,NR CGI)中的至少一个,或者是CU和DU约定好的小区标识等。CU和DU根据约定好的小区标识能找到匹配的PCI/ECGI/NR CGI等。
B.上述RRC消息还可以包含小区标识,测量报告,测量标识等,也可以通过另一条上行消息包含小区标识,测量报告,测量标识等。可以将无线链路中断定义为测量X事件。 测量事件和测量标识有对应关系,在CU给UE发送的测量配置中可以包含测量事件和测量标识的对应关系。其中,一种方式是在测量报告中包含小区标识信息和或测量结果,该测量结果可以包括对DU1的服务小区的测量结果,还可以包含其他小区的测量结果。CU收到所述测量报告通过测量结果自行判断是否满足特定的测量事件,例如CU可以通过测量报告获知UE和DU1的服务小区的无线链路发生中断。另一种方式是在测量报告中包含比如小区标识和或测量事件。CU收到所述测量报告可以直接获知UE和DU1的服务小区的无线链路发生中断。再比如,一种方式是在测量报告中包含小区标识,测量结果,测量标识中的至少一个。CU收到所述测量报告可以直接获知UE和DU1的服务小区的无线链路发生中断,还可以知道UE和其他小区的无线链路情况。从而可以判断后续通过哪个小区传输在DU1的服务小区未发送或接收成功的数据。
可选的,除了outage指示外,UE可以还上报PDCP状态报告,该报告中可以包含第一个丢失的PDCP序列号FMS(first missing SN),以及丢包情况的位图(bitmap)等,比如,从第一个丢包开始到最后一个收到的包为止,所有中间的数据包是否存在的bitmap。例如在PDCP SN=100之前的PDCP PDU全部接收成功,同时还收到了102,105。那么FMS=101,bitmap可以为1001。Bitmap的第一位可用于代表FMS后的第一位,即102号,1表示成功接收。后面103和104是0则表示未接收成功,最后一个105成功接收。所述PDCP状态报告可以是UE主动发送,或者是CU收到outage指示后请求UE发送的。
可选的,UE可以在上报上述相关状态的情况下,停止和DU1的数据传输,可选的,保留该DU1相关的RLC,MAC以及PHY中的至少一个的配置。可选的,UE可以删除和DU1传输的中间变量,比如已发送的未收到反馈信息的数据单元的序列信息、数据传输定时器、混合自动重传请求HARQ进程的时间信息、所述HARQ进程的数据单元传输确认信息、数据单元的确认信息、最大发送状态变量、最大接收状态变量、发送状态变量、接收状态变量和传输窗口中的至少一个。可选的,也可以选择保留和DU1传输的中间变量:已发送的未收到反馈信息的数据单元的序列信息、数据传输定时器、混合自动重传请求HARQ进程的时间信息、所述HARQ进程的数据单元传输确认信息、数据单元的确认信息、最大发送状态变量、最大接收状态变量、发送状态变量、接收状态变量和传输窗口中的至少一个。
当UE发现自己和所有DU的无线链路都发生中断,则启动RRC重建立流程。
示例方法2:UE发现并上报resume
UE检测DU1下的服务小区的下行参考信号,比如,该参考信号可以是如下中的至少一种:公共参考信号(common reference signal,CRS),信道状态信息参考信号(channel state information-reference signal,CSI-RS),解调参考信号(demodulation reference signal,DMRS),相位追踪参考信号(phase tracking reference signal,PTRS)以及追踪参考信号(tracking reference signal,TRS),当发现上述信号对应的信号强度大于一定门限和或超过一定时间,则认为UE和该DU1的无线链路已经恢复。
UE通过其他可用的DU的上行链路发送resume指示给CU,例如可以从其他可用的DU中选择一个或多个DU发送上行RRC消息,所述上行RRC消息中包含小区标识以及resume指示。具体的通知方法可以参考前述示例方法1。UE还可以通过无线链路恢复的DU1发送所述上行RRC消息指示resume。
还有一种可选方法是,将上述无线链路恢复定义为测量Y事件。具体UE上报测量报告的方法,可以参考示例方法1,比如,UE上报的RRC消息中可以包含小区标识,测量报告,测量标识中的至少一个。由CU收到所述测量报告后,判断DU1的无线链路是否恢复,并决定是否继续用DU1为该UE服务。
示例方法3:DU发现并上报resume(可适用于DU或UE发现outage两种情况)
UE在发现和DU1的无线连接失败后,可以停止该UE和DU1之间的数据传输,但可以继续发送上行参考信号,例如SRS,DMRS,以及PTRS中的至少一种。DU1通过检测发现UE的上行信号高于一定门限和或超过一定时间,则认为DU1和UE的无线链路恢复。DU1通过CU-DU之间的接口(F1或V1)通知CU关于DU1和UE的无线链路恢复的信息。以F1接口为例,一种情况是通过F1控制面消息通知,其中可以包含UE标识和或resume指示。其中UE标识至少包括如下中的一种:空口标识C-RNTI,F1接口标识gNB-CU UE F1AP ID,以及gNB-DU UE F1AP ID。当包含UE空口标识时,该消息还可以包含小区标识。其中小区标识可以是PCI,ECGI,NR CGI,以及CU和DU约定好的小区标识中的至少一种。另一种情况是通过F1用户面消息通知,比如通过F1-U用户面隧道的DDDS包含resume指示(比如,通过所有F1-U隧道,选则一个F1-U隧道或选择多个F1-U隧道)。
可选的,CU收到所述resume指示后,可以继续选择DU1给UE发送数据。CU可以通知DU继续传输,还可以指示起始F1-U序列号。所述指示可以通过F1控制面或用户面实现。具体DU还是UE上报无线链路失败和无线链路恢复,可以是预先约定,也可以是网络指示。例如CU指示DU上报所述无线链路失败或恢复的情况,则DU不在广播消息中增加UE上报指示,所示UE上报指示用于告知UE需要上报无线链路失败或恢复。例如CU不指示DU上报无线链路失败或恢复的情况(可以是显示通知,也可以是隐式不通知),则DU在广播消息中增加UE上报指示。或者CU在广播消息中增加UE上报指示,DU。需要说明的是,也可以DU上报无线链路失败,UE上报无线链路恢复,或者UE上报无线链路失败,DU上报无线链路恢复。具体上报方式如何组合,也可以由CU通过显示或隐式的方法告知DU和UE。
可以理解的是,对于本申请实施例中前述第二方面的通信方法涉及的任一终端设备(比如UE),任一CU或者任一DU的功能,可通过具有处理器和通信接口的硬件平台执行程序指令来分别实现,基于此,本申请实施例提供了一种通信装置,该通信装置包括:至少一个处理器,以及通信接口,该通信接口用于支持该通信装置和其他设备进行通信交互;当程序指令在所述至少一个处理器中执行时,本申请前述第二方面通信方法中的任一设计在涉及的终端设备,CU或者DU进行的操作得以实现:可选的,该通信装置还可以包含存储器,以存储实现上述设备功能所必须的程序指令或者程序执行过程中所产生的过程数据。可选的,该通信装置还可以包含内部的互联线路,以实现该至少一个处理器,通信接口以及存储器之间的通信交互。该至少一个处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。该通信接口,通常具有为两个通信对端之间执行进行信息交互的功能,对于通信对端之间执行的是有线形式的信息交互的情况,通信接口可以设计成接口电路,或者包含该接口电路的硬件模块,以支持通信对端之间进行的有线形式的通信交互,比如本申请中涉及的DU和CU之间的F1口可以采纳这种形式的接口设计; 对于通信对端之间执行的是无线形式的信息交互的情况,通信接口可以是具有射频收发功能的接口电路,或者是包含该具有射频收发功能的接口电路的硬件***,比如在DU和UE之间进行无线通信时,那么DU和UE的通信接口可以采纳这种设计。
可以理解,该通信装置可以是终端设备,也可以是用于终端设备中的***芯片。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品具有程序指令,当该程序指令被直接或者间接执行时,比如,在前述通信装置中被执行时,前述第二方面通信方法得以被执行。可以理解的是,所述程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。程序指令被执行时,考虑到具体的网络设备中一般包括硬件层、运行在硬件层之上的操作***层和或中间层,与本申请实施例相关的程序指令被执行时,往往经过多层软件的调用和执行,因此该程序指令在硬件设备(通用处理电路或者专用处理电路)可以是一种间接的执行过程。
本申请实施例还提供了一种计算机程序存储介质,该计算机程序存储介质中存储有程序指令,当所述程序指令被直接或者间接执行时,比如,在前述通信装置中被执行时,前述第二方面通信方法得以被执行。可以理解的是,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。所述存储介质可以是计算设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(例如固态硬盘Solid State Disk,SSD)等。
本申请实施例还提供了一种芯片***,所述芯片***包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,可执行如前述第二方面通信方法中在终端设备的任一操作。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种通信方法,其特征在于,包括:
    第一网络节点在至少一个用户面隧道中的每一个用户面隧道中向第二网络节点发送用于反馈下行传输状态的消息,所述至少一个所述消息中的每一个均包含指示,所述指示用于表明所述第一网络节点和终端设备之间的无线链路中断或者无线链路恢复,所述至少一个用户面隧道被建立在所述第一网络节点和所述第二网络节点之间的通信接口上并与所述终端设备相关联;
    所述至少一个所述消息中的第一所述消息包含丢失的数据包的信息,所述至少一个所述消息中的第二所述消息不包含丢失的数据包的信息;或者,
    所述至少一个所述消息中的每一个均包含丢失的数据包的信息;或者,
    所述至少一个所述消息中的每一个均不包含丢失的数据包的信息。
  2. 如权利要求1所述的通信方法,其特征在于,
    所述至少一个用户面隧道为建立在所述第一网络节点和所述第二网络节点之间的通信接口上并与所述终端设备相关联的全部用户面隧道。
  3. 如权利要求1或2所述的通信方法,其特征在于,
    所述第一网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能;
    所述第二网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能。
  4. 如权利要求1-3中任一所述的通信方法,其特征在于,
    所述第一网络节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能;
    所述第二网络节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能。
  5. 如权利要求1-4中任一所述的通信方法,其特征在于,所述第二网络节点包括:第一设备和第二设备,所述第一设备和所述第二设备通过两者之间的通信接口进行信息交互,其中,
    所述第一设备具有分组数据汇聚协议处理的用户面功能和服务数据适应协议处理功能,所述第二设备具有无线资源控制处理功能和分组数据汇聚协议处理的控制面功能;或者,
    所述第一设备具有分组数据汇聚协议处理的用户面功能,分组数据汇聚协议处理的控制面功能,以及服务数据适应协议处理功能,所述第二设备具有无线资源控制处理功能;
    所述第一网络节点和所述第二网络节点之间的通信接口为所述第一网络节点和所述 第一设备之间的接口。
  6. 如权利要求1-5中任一所述的通信方法,其特征在于,所述第一网络节点包括:第一无线接入网节点和第二无线接入网节点,第一无线接入网节点和第二无线接入网节点之间具有通信接口,其中,
    所述第一无线接入网节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及分组数据汇聚协议处理功能;
    所述第二无线接入网节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能;
    所述第一无线接入网节点和所述第二无线接入网节点通过两者之间的通信接口进行信息交互;
    所述第一网络节点和所述第二网络节点之间的通信接口为所述第一无线接入网节点所述第二网络节点之间的通信接口;
    所述第二无线接入网节点将用于表明所述第一网络节点和所述终端设备之间的无线链路中断或者无线链路恢复的所述指示发送给所述第一无线接入网节点;所述第一无线接入网节点将所述指示发给所述第二网络节点。
  7. 一种通信方法,其特征在于,包括:
    第二网络节点在至少一个用户面隧道中的每一个用户面隧道中接收来自于第一网络节点发送的用于反馈下行传输状态的消息,所述至少一个所述消息中的每一个均包含指示,所述指示用于表明所述第一网络节点和终端设备之间的无线链路中断或者无线链路恢复,所述至少一个用户面隧道被建立在所述第二网络节点和所述第一网络节点之间的通信接口上并与所述终端设备相关联;
    所述至少一个所述消息中的第一所述消息包含丢失的数据包的信息,所述至少一个所述消息中的第二所述消息不包含丢失的数据包的信息;或者,
    所述至少一个所述消息中的每一个均包含丢失的数据包的信息;或者,
    所述至少一个所述消息中的每一个均不包含丢失的数据包的信息。
  8. 如权利要求7所述的通信方法,其特征在于,
    所述至少一个用户面隧道为建立在所述第二网络节点和所述第一网络节点之间的通信接口上并与所述终端设备相关联的全部用户面隧道。
  9. 如权利要求7或8所述的通信方法,其特征在于,
    所述第二网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能;
    所述第一网络节点具有如下处理功能中的至少一种:全部或者部分无线资源控制处理功能,全部或者部分服务数据适应协议处理功能,全部或者部分分组数据汇聚协议处理功能,全部或者部分无线链路控制处理功能,全部或者部分介质访问控制处理功能,以及全部或者部分物理层处理功能。
  10. 如权利要求7-9中任一所述的通信方法,其特征在于,
    所述第二网络节点具有:无线资源控制处理功能,服务数据适应协议处理功能,以及 分组数据汇聚协议处理功能;
    所述第一网络节点具有:无线链路控制处理功能,介质访问控制处理功能,以及物理层处理功能。
  11. 如权利要求7-10中任一所述的通信方法,其特征在于,所述第二网络节点包括:第一设备和第二设备,所述第一设备和所述第二设备通过两者之间的通信接口进行信息交互,其中,
    所述第一设备具有分组数据汇聚协议处理的用户面功能和服务数据适应协议处理功能,所述第二设备具有无线资源控制处理功能和分组数据汇聚协议处理的控制面功能;或者,
    所述第一设备具有分组数据汇聚协议处理的用户面功能,分组数据汇聚协议处理的控制面功能,以及服务数据适应协议处理功能,所述第二设备具有无线资源控制处理功能;
    所述第二网络节点和所述第一网络节点之间的通信接口为所述第一设备和所述第一网络节点两者之间的接口;
    所述第一设备接收来自于所述第一网络节点的用于表明所述第一网络节点和所述终端设备之间的无线链路中断或者无线链路恢复的所述指示。
  12. 一种通信设备,其特征在于,所述通信设备包括:至少一个处理器和通信接口,所述通信接口用于所述通信设备与其他通信设备进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信设备实现如权利要求1-11中任一所述的方法中在如下任一设备上的功能:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
  13. 一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被直接或者间接执行时,使得如权利要求1-11中任一所述的方法中在如下任一设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
  14. 一种芯片***,其特征在于,所述芯片***包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求1-11中任一所述的方法中在如下任一设备上的功能得以实现:第一网络节点,第二网络节点,第一无线接入网节点,第二无线接入网节点,第一设备,以及第二设备。
  15. 一种通信***,其特征在于,所述通信***包括:如权利要求12所述的通信设备。
PCT/CN2018/116059 2017-11-17 2018-11-17 一种通信方法,通信设备及其通信*** WO2019096281A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879698.1A EP3611995B1 (en) 2017-11-17 2018-11-17 Communication method, communication device and communication system therefor
US16/708,595 US11071158B2 (en) 2017-11-17 2019-12-10 Communication method, communications device, and communications system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148247.8 2017-11-17
CN201711148247.8A CN109803453B (zh) 2017-11-17 2017-11-17 一种通信方法,通信设备及其通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/708,595 Continuation US11071158B2 (en) 2017-11-17 2019-12-10 Communication method, communications device, and communications system thereof

Publications (1)

Publication Number Publication Date
WO2019096281A1 true WO2019096281A1 (zh) 2019-05-23

Family

ID=66538928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116059 WO2019096281A1 (zh) 2017-11-17 2018-11-17 一种通信方法,通信设备及其通信***

Country Status (4)

Country Link
US (1) US11071158B2 (zh)
EP (1) EP3611995B1 (zh)
CN (1) CN109803453B (zh)
WO (1) WO2019096281A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475386A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 一种rrc连接重建的承载配置方法、终端及网络设备
CN110650502B (zh) * 2018-06-26 2021-04-09 电信科学技术研究院有限公司 一种切换方法及装置
US11582638B2 (en) 2019-01-03 2023-02-14 Qualcomm Incorporated Selective relay of data packets
US12016059B2 (en) * 2019-02-12 2024-06-18 Lg Electronics Inc. Early data transmission in CU-DU split
FI128634B (en) * 2019-06-07 2020-09-15 Nokia Solutions & Networks Oy Obtaining information
CN112187414B (zh) * 2019-07-04 2022-05-24 华为技术有限公司 指示数据传输情况的方法和装置
US11108672B2 (en) * 2019-07-15 2021-08-31 Qualcomm Incorporated Measuring and verifying layer 2 sustained downlink maximum data rate decoding performance
US11240696B2 (en) 2019-07-15 2022-02-01 Qualcomm Incorporated Measuring and verifying layer 2 sustained downlink maximum data rate decoding performance
EP4007346A4 (en) * 2019-07-29 2023-01-11 NEC Corporation MASTER NODE, SECONDARY NODE AND METHOD THEREOF
WO2021026706A1 (zh) * 2019-08-09 2021-02-18 华为技术有限公司 一种f1接口管理方法及装置
US11856619B2 (en) 2019-08-15 2023-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Mapping between ingress and egress backhaul RLC channels in integrated access backhaul (IAB) networks
US11632704B2 (en) * 2019-09-25 2023-04-18 Qualcomm Incorporated Techniques for integrated access and backhaul topology discovery
CN112911641A (zh) * 2019-12-03 2021-06-04 华为技术有限公司 通信处理方法和通信处理装置
WO2021181910A1 (ja) 2020-03-11 2021-09-16 日本電気株式会社 通信装置、データ記録方法、及び非一時的なコンピュータ可読媒体
WO2021217424A1 (en) * 2020-04-28 2021-11-04 Nokia Shanghai Bell Co., Ltd. Backup traffic handling
CN113747515B (zh) * 2020-05-27 2023-03-21 华为技术有限公司 一种通信方法及装置
US20230379793A1 (en) * 2020-11-11 2023-11-23 Nokia Solutions And Networks Oy Methods, apparatuses, and computer readable media for controlling downlink transmissions in integrated access and backhaul network
CN114599053B (zh) * 2020-12-07 2024-04-09 ***通信集团山西有限公司 组网和组网保护方法
US20230198869A1 (en) * 2021-12-22 2023-06-22 T-Mobile Innovations Llc Customer problem reporting
WO2023133679A1 (en) * 2022-01-11 2023-07-20 Zte Corporation Systems and methods for mobile node inter-cu migration
WO2023138984A1 (en) * 2022-01-20 2023-07-27 Nokia Technologies Oy Inter-du multi-trp operation
WO2024031403A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101285A (zh) * 2015-05-26 2015-11-25 北京邮电大学 数据传输方法、宏站及微站
CN105338572A (zh) * 2014-06-23 2016-02-17 北京三星通信技术研究有限公司 一种双连接中分割承载的数据分配方法和装置
WO2016071076A1 (en) * 2014-11-07 2016-05-12 Nokia Solutions And Networks Oy Data forwarding support in dual connectivity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090358B (zh) * 2006-06-15 2011-02-02 华为技术有限公司 一种恢复用户面数传的方法
DE102007022704B4 (de) * 2007-05-15 2010-12-09 Siemens Ag Verfahren zum Einrichten eines logischen Verbindungspfads in einem verbindungsorientierten paketvermittelten Kommunikationsnetzwerk
EP2536184A4 (en) * 2010-03-10 2013-02-27 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR NOTIFICATION OF INFORMATION ON WIRELESS ACCESS NETWORKS
US9980303B2 (en) * 2015-12-18 2018-05-22 Cisco Technology, Inc. Establishing a private network using multi-uplink capable network devices
US11444850B2 (en) * 2016-05-02 2022-09-13 Huawei Technologies Co., Ltd. Method and apparatus for communication network quality of service capability exposure
US10499398B2 (en) * 2017-09-29 2019-12-03 At&T Intellectual Property I, L.P. Facilitating mobile device-assisted mobility enhancement to improve user plane interruption time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338572A (zh) * 2014-06-23 2016-02-17 北京三星通信技术研究有限公司 一种双连接中分割承载的数据分配方法和装置
WO2016071076A1 (en) * 2014-11-07 2016-05-12 Nokia Solutions And Networks Oy Data forwarding support in dual connectivity
CN105101285A (zh) * 2015-05-26 2015-11-25 北京邮电大学 数据传输方法、宏站及微站

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP; TSGRAN; NG-RAN; F1 interface user plane protocol (Release 15", 3GPP TS 38.475 V0. 3. 0, vol. 20171110, XP051391683 *
ERICSSON: "Details on fast retransmission of lost PDUs", 3GPP TSG-RAN WG3 MEETING #97BIS R3-174217, XP051356892 *
HUAWEI: "Further discussions on radio link outage indication", 3GPP TSG-RAN3 MEETING # 98 R3-174482, XP051373378 *
See also references of EP3611995A4

Also Published As

Publication number Publication date
EP3611995A4 (en) 2020-06-10
US20200113008A1 (en) 2020-04-09
US11071158B2 (en) 2021-07-20
CN109803453B (zh) 2023-07-07
CN109803453A (zh) 2019-05-24
EP3611995B1 (en) 2023-06-21
EP3611995A1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2019096281A1 (zh) 一种通信方法,通信设备及其通信***
CN110622538B (zh) 新无线电接入技术中的重复和rlc操作
US11240699B2 (en) Insufficient resources in the UE during PDU session establishment procedure
CN108306708B (zh) 一种数据包处理方法及装置
WO2019129197A1 (zh) 一种通信方法,设备及其***
WO2019137434A1 (zh) 一种通信方法,设备及其***
US20240129181A1 (en) Apparatus and method for performing dual connectivity in wireless communication system
CN110622548A (zh) 在双连接网络中报告从节点故障的方法和***
JP2017526302A (ja) 無線ネットワーク内の多重接続性
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
CN109151940A (zh) 一种基于dc的切换方法及设备
WO2019153517A1 (zh) 无线链路失败处理方法及相关产品
JP2020511842A (ja) ネットワーク接続の復旧方法、装置及び通信システム
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
US11558925B2 (en) Notification method and device for execution of PDCP data recovery
US20220159776A1 (en) Communication Method, SLRB Establishment Method, and Communications Apparatus
WO2020199992A1 (zh) 一种通信方法及装置
WO2018014154A1 (zh) 一种rrc连接重建方法和装置
WO2018006871A1 (zh) 一种进行数据重传的方法和设备
US20210400503A1 (en) Pdcp duplication function determination and indication methods and devices, base station, and terminal
CN112789892B (zh) 无线通信方法、装置及***
WO2019137405A1 (zh) 一种信息传输方法、装置以及计算机可读存储介质
WO2022151086A1 (zh) 集成的接入和回传的通信方法以及装置
WO2021056521A1 (zh) 链路状态的处理方法和装置
WO2009059531A1 (fr) Procédé, système et dispositif pour réduire les abandons d&#39;appels de l&#39;utilisateur lors de la dérive statique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018879698

Country of ref document: EP

Effective date: 20191105

NENP Non-entry into the national phase

Ref country code: DE