WO2019095890A1 - 一种进行随机接入的方法及设备 - Google Patents

一种进行随机接入的方法及设备 Download PDF

Info

Publication number
WO2019095890A1
WO2019095890A1 PCT/CN2018/109644 CN2018109644W WO2019095890A1 WO 2019095890 A1 WO2019095890 A1 WO 2019095890A1 CN 2018109644 W CN2018109644 W CN 2018109644W WO 2019095890 A1 WO2019095890 A1 WO 2019095890A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
ofdm symbol
ofdm symbols
time slot
random access
Prior art date
Application number
PCT/CN2018/109644
Other languages
English (en)
French (fr)
Inventor
任斌
达人
赵铮
李铁
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP18879119.8A priority Critical patent/EP3713367B1/en
Priority to JP2020527798A priority patent/JP7332595B2/ja
Priority to KR1020207017324A priority patent/KR102324137B1/ko
Priority to KR1020217036008A priority patent/KR102351414B1/ko
Priority to EP22196346.5A priority patent/EP4132187A1/en
Priority to US16/765,154 priority patent/US11457478B2/en
Publication of WO2019095890A1 publication Critical patent/WO2019095890A1/zh
Priority to JP2022192883A priority patent/JP2023018142A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method and device for performing random access.
  • New Radio (NR) Rel-15 defines a Synchronization Signal Block (SS Block) that occupies four Orthogonal Frequency Division Multiplexing (OFDM) symbols, which are sequentially synchronized (Primary Synchronized).
  • Signal, PSS Physical Broadcast Channel (PBCH), Secondary Synchronization Signal (SSS), and PBCH support Subcarrier Spacing (SCS) of 15/30/120/240 KHz.
  • SCS Subcarrier Spacing
  • the configuration period is from 5ms to 160ms. It can be used for CONNECTED/IDLE and non-stand alone scenarios. .
  • For the default period and configuration period all SS Blocks of a SS Block burst set are completed within 5ms.
  • the SS Block contains both the candidate SS Block and the actual SS Block. Depending on the frequency band, the maximum number of candidate SS blocks of an SS Block burst set is different.
  • the base station selects the SS block that is actually sent from the candidate SS Block set according to the actual situation, that is, the actual number of SS blocks can be less than or equal to L.
  • the first part of the minimum system information required for the process of terminal residing, random access, etc. is transmitted by the PBCH, and the rest is transmitted by Remaining minimum system information (RMSI).
  • the RMSI is transmitted by using a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by a Physical Downlink Control Channel (PDCCH). To extend the coverage, a beam scanning method is also used.
  • the control resource set (CORESET, control resource set) corresponding to the time and frequency resource where the RMSI PDCCH is located is configured by the PBCH.
  • RMSI can use Frequency Domain Multiplexing (FDM) and Time Domain Multiplexing (TDM) with SS Block.
  • FDM Frequency Domain Multiplexing
  • TDM Time Domain Multiplexing
  • the terminal performs the random access process, and the terminal passes the physical random access channel (PRACH) time domain resource configured by the base station, and passes the PRACH time.
  • PRACH physical random access channel
  • the time slot in which the domain resource is located performs random access; however, the time slot used by the terminal for random access may include time domain resources occupied by the downlink channel transmitting SS Block and/or RMSI, and the terminal performs random access use.
  • the time domain resources and the time domain resources occupied by the downlink channel transmitting the SS Block and/or the RMSI may collide.
  • the embodiment of the present invention provides a method and a device for performing random access, which are used to solve the time domain resource used by the terminal for random access and the time domain resource for the downlink channel occupied by the SS block and/or the RMSI. A conflict has occurred.
  • the embodiment of the present application provides a method for performing random access, including:
  • the terminal When determining that the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, the terminal performs by using an OFDM symbol different from the first type of OFDM symbol in the at least one time slot. Random access.
  • the terminal performs random access according to any one of the following manners:
  • Manner 1 The terminal performs random access in a time slot that does not include the first type of OFDM symbol
  • Manner 2 The terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol in a slot including a first type of OFDM symbol.
  • the terminal determines, according to the following manner, a manner of performing random access:
  • the terminal receives the indication signaling sent by the base station by using the RMSI, and determines a manner of performing random access according to the indication signaling.
  • the terminal before the random access of the consecutive OFDM symbols except the first type of OFDM symbol, the terminal includes:
  • the terminal Determining, by the terminal, the time slot including the first type of OFDM symbol, except for the first type of OFDM symbol, the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than the OFDM symbol actually used by the random access. Number.
  • the terminal determines, according to the following manner, the number of remaining consecutive OFDM symbols that can be used for uplink transmission:
  • the terminal uses the product of the number of consecutive OFDM symbols in the slot including the first type of OFDM symbol and the ratio Ratio as the number of remaining consecutive OFDM symbols available for uplink transmission.
  • the terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol, including:
  • the terminal performs random access by using the selected OFDM symbol.
  • the embodiment of the present application further provides a method for performing random access, including:
  • the base station configures a PRACH time domain resource for the terminal, where the PRACH time domain resource includes at least one time slot;
  • the base station When determining that the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, the base station is on an OFDM symbol different from the first type of OFDM symbol in the at least one time slot. Perform PRACH reception detection.
  • the base station performs PRACH reception detection according to any one of the following manners:
  • Manner 1 The base station performs PRACH reception detection on a time slot that does not include the first type of OFDM symbol;
  • Manner 2 The base station performs PRACH reception detection on consecutive OFDM symbols except the first type of OFDM symbols in a slot including a first type of OFDM symbol.
  • the base station before the performing the PRACH reception detection on the OFDM symbol except the first type of OFDM symbol, the base station includes:
  • the base station Determining, by the base station, the time slot including the first type of OFDM symbol, except for the first type of OFDM symbol, the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than the OFDM symbol actually used by the random access. Number.
  • the base station determines, according to the following manner, the number of remaining consecutive OFDM symbols that are available for uplink transmission:
  • the base station uses the product of the number of consecutive OFDM symbols in the slot including the first type of OFDM symbol and the ratio Ratio as the number of remaining consecutive OFDM symbols available for uplink transmission.
  • the base station performs PRACH reception detection on the OFDM symbol except the first type of OFDM symbol in a time slot that includes the first type of OFDM symbol, including:
  • the base station selects at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle at the end of the time slot including the first type of OFDM symbol OFDM symbol;
  • the base station performs PRACH reception detection on the selected OFDM symbol.
  • an embodiment of the present application provides a terminal, including: a processor, a memory, and a transceiver;
  • the processor is configured to read a program in the memory and execute:
  • a PRACH time domain resource configured by the base station for the terminal; wherein the PRACH time domain resource includes at least one time slot; and determining, in determining the at least one time slot, a first type of OFDM used for transmitting SS Block and/or RMSI In the case of a symbol, random access is performed by an OFDM symbol different from the first type of OFDM symbol in the at least one time slot.
  • the processor is specifically configured to:
  • Manner 1 Perform random access in a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, consecutive OFDM symbols except the first type of OFDM symbols are randomly accessed.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • Selecting at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle OFDM symbol at the end of the time slot including the first type of OFDM symbol Random access is performed by the selected OFDM symbols.
  • an embodiment of the present application provides a base station, including: a processor, a memory, and a transceiver;
  • the processor is configured to read a program in the memory and execute:
  • the PRACH time domain resource includes at least one time slot; and when determining that the at least one time slot includes a first type of OFDM symbol used for transmitting the SS Block and/or the RMSI, PRACH reception detection is performed on OFDM symbols different from the first type of OFDM symbols in at least one time slot.
  • the processor is specifically configured to:
  • Manner 1 Perform PRACH reception detection on a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, PRACH reception detection is performed on consecutive OFDM symbols except the first type of OFDM symbol.
  • the processor is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the embodiment of the present application provides a device for performing random access, including:
  • a determining module configured to determine a PRACH time domain resource configured by the base station for the terminal, where the PRACH time domain resource includes at least one time slot;
  • a sending module configured to: when the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, by using an OFDM symbol different from the first type of OFDM symbol in the at least one time slot Perform random access.
  • the embodiment of the present application provides a device for performing random access, including:
  • a configuration module configured to configure a PRACH time domain resource for the terminal, where the PRACH time domain resource includes at least one time slot;
  • a receiving module configured to: when determining that the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, an OFDM different from the first type of OFDM symbol in the at least one time slot PRACH reception detection is performed on the symbol.
  • an embodiment of the present application provides a computer storable medium, where a computer program is stored, the program is executed by a processor to implement a step performed by a terminal, or a step performed by a base station.
  • the terminal obtains the PRACH time domain resource configured by the base station when the random access is performed. Because the time domain resource includes at least one time slot, the terminal determines at least the configuration of the base station before sending the random access preamble to the base station. Whether a slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, and if so, the terminal performs random access by using an OFDM symbol different from the first type of OFDM symbol in at least one slot, thereby preventing the terminal from performing The resources used by the random access conflict with the resources occupied by the downlink channel transmitting the SS Block and/or the RMSI, further improving the system performance.
  • FIG. 1 is a schematic structural diagram of a system for performing random access according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a first time slot according to an embodiment of the present application.
  • 3A is a schematic diagram of a second time slot according to an embodiment of the present application.
  • 3B is a schematic diagram of a third time slot according to an embodiment of the present application.
  • FIG. 4 is a flowchart of determining, by a terminal, a random access manner according to an embodiment of the present application
  • FIG. 5 is a flowchart of determining, by a first base station, a random access manner according to an embodiment of the present application
  • FIG. 6 is a flowchart of determining, by a second terminal, a random access manner according to an embodiment of the present application
  • FIG. 7 is a flowchart of determining, by a second base station, a random access manner according to an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device for performing random access according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device for performing random access according to a second embodiment of the present application.
  • FIG. 12 is a flowchart of a first method for performing random access according to an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for performing random access according to a second embodiment of the present application.
  • the system for random access in the embodiment of the present application includes: a terminal 10 and a base station 20.
  • the terminal 10 is configured to acquire a PRACH time domain resource configured by the base station for the terminal, where the PRACH time domain resource includes at least one time slot; and determining to use the transmission SS Block and/or RMSI in determining the at least one time slot When the first type of OFDM symbol is used, random access is performed by using an OFDM symbol different from the first type of OFDM symbol in the at least one time slot.
  • the base station 20 is configured to acquire a PRACH time domain resource configured for the terminal, where the PRACH time domain resource includes at least one time slot; and determining, in determining the at least one time slot, the first used to transmit the SS Block and/or the RMSI
  • PRACH reception detection is performed on an OFDM symbol different from the first type of OFDM symbol in the at least one time slot.
  • the terminal obtains the PRACH time domain resource configured by the base station when the random access is performed. Because the time domain resource includes at least one time slot, the terminal determines at least the configuration of the base station before sending the random access preamble to the base station. Whether a slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, and if so, the terminal performs random access by using an OFDM symbol different from the first type of OFDM symbol in at least one slot, thereby preventing the terminal from performing The resources used by the random access conflict with the resources occupied by the downlink channel transmitting the SS Block and/or the RMSI, further improving the system performance.
  • the dimensions of the PRACH resource in the embodiment of the present application include: a time domain, a frequency domain, and a code domain;
  • the definition of the PRACH time domain resource depends on the radio frame, subframe, slot and OFDM symbol corresponding to the PRACH format.
  • one radio frame includes 10 subframes (1 ms), one subframe includes one or more time slots, and when the SCS is 15 kHz, one time slot is included; when the SCS is 30/60/120 kHz, respectively, 2/4 is included. / 8 time slots.
  • the PRACH time domain resource configured by the base station is at least indicated to the time slot; specifically, the PRACH time domain resource includes at least one time slot.
  • the base station Before using the PRACH time domain resource configured by the base station to perform random access, determining whether the at least one time slot configured by the base station includes the first type of OFDM symbol used for transmitting the SS Block and/or the RMSI;
  • the terminal performs random access by using an OFDM symbol different from the first type of OFDM symbol in at least one time slot; if not, the terminal selects the configured PRACH format and the starting OFDM symbol position in the entire time slot configured by the base station.
  • the OFDM symbol to be used is combined with the frequency domain resources configured by the base station to perform random access.
  • the base station determines whether the at least one time slot configured by the terminal includes the first type of OFDM symbol used for transmitting the SS Block and/or the RMSI;
  • the base station performs PRACH reception detection on the OFDM symbol different from the first type of OFDM symbol in at least one time slot; if not, the base station configures the PRACH format and the initial OFDM symbol position in the entire time slot configured for the terminal The OFDM symbol to be detected is selected, and the PRACH reception detection is performed in combination with the frequency domain resources configured by the base station.
  • the terminal when determining, by the terminal, that the at least one time slot includes the first type of OFDM symbol used for transmitting the SS Block and/or the RMSI, performing random access according to any one of the following manners:
  • Manner 1 The terminal performs random access in a time slot that does not include the first type of OFDM symbol
  • the base station performs PRACH reception detection on a time slot that does not include the first type of OFDM symbol.
  • the terminal can only perform random access by using a time slot that does not include the first type of OFDM symbol; if the base station is a time slot of the PRACH time domain resource currently configured by the terminal, the time slot of the first type of OFDM symbol is not included. The terminal does not perform random access during the current PRACH transmission period and waits for the next PRACH transmission period.
  • the base station can only perform PRACH reception detection in a time slot that does not include the first type of OFDM symbol; if there is no time slot in the currently configured PRACH time domain resource that does not include the first type of OFDM symbol, the base station sends the time slot in the PRACH.
  • the PRACH reception detection is not performed in the period, and waits for the next PRACH transmission period.
  • Manner 2 The terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol in a slot including a first type of OFDM symbol;
  • the base station performs PRACH reception detection on consecutive OFDM symbols except the first type of OFDM symbol in a slot including the first type of OFDM symbol.
  • Case 1 The terminal performs random access in a time slot that does not include the first type of OFDM symbol
  • the base station performs random access in a time slot that does not include the first type of OFDM symbol.
  • the terminal can determine the method of random access in the following ways:
  • the method for performing random access may be the foregoing mode one or mode two.
  • the terminal determines, according to a pre-configured rule, a manner of performing random access
  • the base station determines the manner of performing PRACH reception detection according to a pre-configured rule.
  • pre-configured rules may be predefined for the protocol and are pre-configured to the terminal and the base station.
  • the terminal receives the indication signaling sent by the base station by using the RMSI, and determines, according to the indication signaling, a manner of performing random access;
  • the base station determines the manner in which the terminal performs random access according to the information such as the cell radius and the cell load, and notifies the terminal to the terminal by means of indicating signaling in a manner of random access; optionally, the indication signaling is Hosted in RMSI.
  • the PRACH time domain resource configured by the base station for the terminal includes a time slot:
  • the terminal determines whether there is a first type of OFDM symbol in the current time slot. If not, the terminal performs random access in the time slot. If yes, the terminal does not perform random access in the current PRACH transmission period, and waits for the next PRACH transmission. The cycle is judged again;
  • the base station determines whether there is a first type of OFDM symbol in the current time slot. If not, the base station performs PRACH reception detection in the time slot. If yes, the base station does not perform PRACH reception detection in the current PRACH transmission period, and waits for the next A PRACH transmission cycle is then determined.
  • the PRACH time domain resource configured by the base station for the terminal includes multiple time slots:
  • the terminal determines whether there is a first type of OFDM symbol in the current time slot. If not, the terminal performs random access in the time slot. If yes, the terminal determines whether the first class exists in the next time slot of the configured multiple time slots. OFDM symbol, until a slot that does not include the first type of OFDM symbol is determined, and random access is performed in a slot that does not include the first type of OFDM symbol, and if multiple time slots are configured to include the first type of OFDM symbol, The terminal does not perform random access during the PRACH transmission period, and waits for the next PRACH transmission period to perform the determination;
  • the base station determines whether there is a first type of OFDM symbol in the current time slot. If not, the base station performs PRACH reception detection in the time slot. If yes, it is determined whether the next time slot in the multiple time slots configured by the terminal is There is a first type of OFDM symbol, until a time slot that does not include the first type of OFDM symbol is determined, and a PRACH reception detection is performed in a time slot that does not include the first type of OFDM symbol, and if the configured multiple time slots include the first type In the OFDM symbol, the base station does not perform PRACH reception detection in the current PRACH transmission period, and waits for the next PRACH transmission period to perform the determination.
  • the method for performing random access may adopt a prior art method, and details are not described herein again.
  • the method for performing the PRACH reception detection may adopt the prior art method, and details are not described herein again.
  • Case 2 The terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol in a slot including the first type of OFDM symbol, or randomly in a slot that does not include the first type of OFDM symbol Access
  • the base station performs PRACH reception detection on consecutive OFDM symbols except the first type of OFDM symbol, or performs PRACH on a time slot not including the first type of OFDM symbol in a slot including the first type of OFDM symbol. Receive detection.
  • the terminal may perform random access in any manner; correspondingly, the base station may perform PRACH reception detection in any manner.
  • the terminal can determine the method of random access in the following ways:
  • the method for performing random access may be the foregoing mode one or mode two.
  • the terminal determines, according to a pre-configured rule, a manner of performing random access
  • the base station determines the manner of performing PRACH reception detection according to a pre-configured rule.
  • pre-configured rules may be predefined for the protocol and are pre-configured to the terminal and the base station.
  • the terminal receives the indication signaling sent by the base station by using the RMSI, and determines, according to the indication signaling, a manner of performing random access;
  • the base station determines the manner in which the terminal performs random access according to the information such as the cell radius and the cell load, and notifies the terminal to the terminal by means of indicating signaling in a manner of random access; optionally, the indication signaling is Hosted in RMSI.
  • the terminal Before the terminal passes the OFDM symbol including the first type of OFDM symbol, the terminal needs to determine whether the time slot including the first type of OFDM symbol satisfies the condition:
  • the terminal determines, in the time slot that includes the first type of OFDM symbol, that the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than that actually used by the random access, except for the first type of OFDM symbol.
  • the number of OFDM symbols is not less than that actually used by the random access, except for the first type of OFDM symbol. The number of OFDM symbols.
  • the number of OFDM symbols actually used by the random access is the number of OFDM symbols included in the PRACH format configured by the base station for the terminal.
  • the number of remaining consecutive OFDM symbols in one slot refers to the maximum number of consecutive OFDM symbols except the OFDM symbols occupied by the downlink channel and the signal; when calculating the number of remaining consecutive OFDM symbols, it is based on the downlink
  • the time length of the continuous OFDM symbol used for the uplink random access transmission calculated by the SCS of the signal and the signal is calculated according to the SCS of the uplink PRACH format; therefore, the calculation is actually applicable according to the ratio relationship between the uplink SCS and the downlink SCS.
  • the number of consecutive OFDM symbols for uplink random access is based on the downlink.
  • the terminal determines, according to the following manner, the number of remaining consecutive OFDM symbols that can be used for uplink transmission:
  • the terminal Determining, by the terminal, a ratio Ratio of a subcarrier spacing SCS of a PRACH configured by the base station to an SCS of the SS Block; the terminal is configured to compare the number of consecutive OFDM symbols in the slot including the first type of OFDM symbol The product of the ratio Ratio is used as the number of remaining consecutive OFDM symbols available for uplink transmission.
  • the base station needs to determine the time slot including the first type of OFDM symbol before performing the PRACH reception detection on the OFDM symbol except the first type of OFDM symbol in the time slot that includes the first type of OFDM symbol. Whether the conditions are met:
  • the base station determines that, in the time slot including the first type of OFDM symbol, the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than the number of OFDM symbols actually used by the random access except for the first type of OFDM symbols.
  • the number of OFDM symbols actually used by the random access is the number of OFDM symbols included in the PRACH format configured by the base station for the terminal.
  • the number of remaining consecutive OFDM symbols in one slot refers to the maximum number of consecutive OFDM symbols except the OFDM symbols occupied by the downlink channel and the signal; when calculating the number of remaining consecutive OFDM symbols, it is based on the downlink
  • the time length of the continuous OFDM symbol used for the uplink random access transmission calculated by the SCS of the signal and the signal is calculated according to the SCS of the uplink PRACH format; therefore, the calculation is actually applicable according to the ratio relationship between the uplink SCS and the downlink SCS.
  • the number of consecutive OFDM symbols for uplink random access is based on the downlink.
  • the base station determines the number of remaining consecutive OFDM symbols available for uplink transmission according to the following manner:
  • the method for determining the number of remaining consecutive OFDM symbols available for uplink transmission by the terminal and the base station is the same.
  • the method of determining the number of remaining consecutive OFDM symbols available for uplink transmission is described below with several specific examples, and is applicable to both the terminal and the base station.
  • the number of consecutive OFDM symbols remaining in one slot is defined as T1; wherein the number of remaining consecutive OFDM symbols is the maximum number of consecutive OFDM symbols in the slot except the OFDM symbols occupied by the downlink channel and the signal.
  • the number of remaining consecutive OFDM symbols that can be used for uplink transmission is defined as T2.
  • the downlink transmission SS block is taken as an example.
  • the SCS of the SS block may be 15 kHz, 30 kHz, 120 kHz, and 240.
  • the SCS of the uplink transmission PRACH may be 15 kHz, 30 kHz, 60 kHz, 120, and the SCS of the PRACH is defined relative to the SCS of the SS Block. Ratio Ratio;
  • Equation (1) gives the relationship between T2 and T1, Ratio:
  • the time length of one time slot is 1 ms, including 14 OFDM symbols, and the SCS of the downlink transmission SS block is 15 kHz; the symbols 2 to 5, and the symbols 8 to 11 are respectively transmitted.
  • the terminal may perform random access in the time slot; if the number of OFDM symbols included in the PRACH format configured by the base station is greater than 4, the terminal does not Random access can be performed at this time slot.
  • the terminal may use the following manner to include the first type of OFDM in the slot that includes the first type of OFDM symbol.
  • consecutive OFDM symbols other than the first type of OFDM symbols are randomly accessed:
  • the terminal performs random access by using the selected OFDM symbol.
  • the base station may include the first type of OFDM symbol in the following manner. In the time slot, consecutive OFDM symbols except the first type of OFDM symbols are subjected to PRACH reception detection:
  • the base station selects at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle at the end of the time slot including the first type of OFDM symbol OFDM symbol; the base station performs PRACH reception detection on the selected OFDM symbol.
  • a method for random access of consecutive OFDM symbols except the first type of OFDM symbols in a slot including the first type of OFDM symbols in the slot including the first type of OFDM symbols is described below with several specific examples.
  • the terminal calculates the number of remaining consecutive OFDM symbols available for uplink transmission, and compares the calculated number of remaining consecutive OFDM symbols available for uplink transmission with the number of OFDM symbols actually used by the random access.
  • the terminal can perform random access in the time slots as shown in FIG. 3A.
  • the SCS of the PRACH is 15 kHz
  • the PRACH format is A0 or C0
  • A0 is taken as an example in FIG. 3A.
  • the terminal reserves 2 consecutive OFDM symbols to transmit a random access preamble between two SS Blocks, or transmits a random access preamble at 2 OFDM symbols at the end of the slot, and the fixed transmission start position is the first OFDM.
  • the random access preamble cannot be transmitted in the time slot as shown in FIG. 3A.
  • the time length of one slot is 1 ms
  • the SCS of the downlink SS block is 15 kHz, which includes 14 OFDM symbols; symbol 2 to symbol 5, and symbol 8 to symbol 11 respectively transmit two.
  • the terminal calculates the number of remaining consecutive OFDM symbols available for uplink transmission, and compares the calculated number of remaining consecutive OFDM symbols available for uplink transmission with the number of OFDM symbols actually used by the random access.
  • the SCS of the PRACH format configured by the base station is 30 kHz
  • *Ratio 4.
  • the number of OFDM symbols included in the PRACH format is not greater than four, and the terminal can perform random connection in the time slot as shown in FIG. 3B.
  • the terminal adopts the mode shown in FIG. 3B when performing random access; and the remaining 4 consecutive OFDMs of the terminal that can be used for uplink transmission between the two SS Blocks.
  • the random access preamble cannot be transmitted on the OFDM symbols of the slot.
  • Mode 1 the terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol in a slot including the first type of OFDM symbol;
  • Mode 2 The terminal performs random access in a time slot that does not include the first type of OFDM symbol
  • any one of the foregoing methods 1 and 2 may be adopted.
  • the base station can also perform PRACH reception detection in the following two ways:
  • the base station performs PRACH reception detection on consecutive OFDM symbols except the first type of OFDM symbols in a slot including the first type of OFDM symbols, or performs PRACH reception detection on a slot that does not include the first type of OFDM symbols.
  • the terminal determines to perform the random access mode according to the following steps:
  • Step 401 The terminal determines whether there is a first type of OFDM symbol in the current time slot; if not, step 402 is performed, and if so, step 403 is performed;
  • Step 402 The terminal performs random access in the time slot.
  • Step 403 The terminal determines whether the number of remaining consecutive OFDM symbols that can be used for uplink transmission in the current time slot is smaller than the number of OFDM symbols actually used by the random access, and if not, performing steps 404, if yes, step 405;
  • Step 404 The terminal performs random access on the remaining consecutive OFDM symbols that can be used for uplink transmission in the current time slot.
  • Step 405 The terminal does not perform random access in the current PRACH transmission period, and waits for the next PRACH transmission period to perform the determination.
  • the base station determines to perform the PRACH reception detection mode according to the following steps:
  • Step 501 The base station determines whether there is a first type of OFDM symbol in the current time slot; if not, step 502 is performed, and if yes, step 503 is performed;
  • Step 502 The base station performs PRACH reception detection in the time slot.
  • Step 503 The base station determines whether the number of remaining consecutive OFDM symbols that can be used for uplink transmission is less than the number of OFDM symbols actually used by the random access in addition to the first type of OFDM symbols in the current time slot. 504, if yes, step 505;
  • Step 504 The base station performs PRACH reception detection on remaining OFDM symbols that are available for uplink transmission in the current time slot.
  • Step 505 The base station does not perform PRACH reception detection in the current PRACH transmission period, and waits for the next PRACH transmission period to perform the determination.
  • the terminal determines to perform the random access mode according to the following steps:
  • Step 601 The terminal determines whether there is a first type of OFDM symbol in the current time slot; if not, step 602 is performed, and if yes, step 603 is performed;
  • Step 602 The terminal performs random access in the time slot.
  • Step 603 The terminal determines whether the number of remaining consecutive OFDM symbols that can be used for uplink transmission is smaller than the number of OFDM symbols actually used by the random access in addition to the first type of OFDM symbols in the current time slot. 604, if yes, step 605;
  • Step 604 The terminal performs random access on the remaining consecutive OFDM symbols that can be used for uplink transmission in the current time slot.
  • Step 605 The terminal uses the next time slot of the plurality of time slots configured by the base station as the current time slot, and returns to step 601;
  • Step 606 If the time range that the base station configures for the terminal does not meet the condition, the terminal does not perform random access in the PRACH transmission period, and waits for the next PRACH transmission period to perform the determination.
  • the terminal may also determine the next time slot, in the next time slot.
  • the terminal may also determine the next time slot, in the next time slot.
  • the base station determines to perform the PRACH reception detection mode according to the following steps:
  • Step 701 The base station determines whether there is a first type of OFDM symbol in the current time slot; if not, step 702 is performed, and if yes, step 703 is performed;
  • Step 702 The base station performs PRACH reception detection in the time slot.
  • Step 703 The base station determines whether the number of remaining consecutive OFDM symbols that can be used for uplink transmission is less than the number of OFDM symbols actually used by the random access in addition to the first type of OFDM symbols in the current time slot. 704, if yes, step 705;
  • Step 704 The base station performs PRACH reception detection on remaining OFDM symbols that are available for uplink transmission in the current time slot.
  • Step 705 The base station will use the next time slot of the multiple timeslots configured for the terminal as the current time slot, and return to step 701;
  • Step 706 If the multiple time slots configured by the base station are not satisfied, the base station does not perform PRACH reception detection in the PRACH transmission period, and waits for the next PRACH transmission period to perform the determination.
  • the first terminal of the embodiment of the present application includes: a processor 800, a memory 801, a transceiver 802, and a bus interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 in performing operations.
  • the transceiver 802 is configured to receive and transmit data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 801.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 in performing operations.
  • the flow disclosed in the embodiment of the present application may be applied to the processor 800 or implemented by the processor 800.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 800 or an instruction in the form of software.
  • the processor 800 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, and can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 801, and the processor 800 reads the information in the memory 801 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 800 is configured to read a program in the memory 801 and execute:
  • a physical random access channel PRACH time domain resource configured by the base station for the terminal; wherein the PRACH time domain resource includes at least one time slot; and determining to use the transmission SS Block and/or RMSI in determining the at least one time slot
  • random access is performed by using an OFDM symbol different from the first type of OFDM symbol in the at least one time slot.
  • processor 800 is specifically configured to:
  • Manner 1 Perform random access in a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, consecutive OFDM symbols except the first type of OFDM symbols are randomly accessed.
  • processor 800 is specifically configured to:
  • processor 800 is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • processor 800 is specifically configured to:
  • processor 800 is specifically configured to:
  • Selecting at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle OFDM symbol at the end of the time slot including the first type of OFDM symbol Random access is performed by the selected OFDM symbols.
  • a base station includes a processor 900, a memory 901, a transceiver 902, and a bus interface.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 901 can store data used by the processor 900 when performing operations.
  • the transceiver 902 is configured to receive and transmit data under the control of the processor 900.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 900 and various circuits of memory represented by memory 901.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 901 can store data used by the processor 900 when performing operations.
  • the flow disclosed in the embodiment of the present application may be applied to the processor 900 or implemented by the processor 900.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 900 or an instruction in the form of software.
  • the processor 900 can be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 901, and the processor 900 reads the information in the memory 901 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 900 is configured to read a program in the memory 901 and execute:
  • the PRACH time domain resource includes at least one time slot; and when determining that the at least one time slot includes a first type of OFDM symbol used for transmitting the SS Block and/or the RMSI, PRACH reception detection is performed on OFDM symbols different from the first type of OFDM symbols in at least one time slot.
  • the processor 900 is specifically configured to:
  • Manner 1 Perform PRACH reception detection on a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, PRACH reception detection is performed on consecutive OFDM symbols except the first type of OFDM symbol.
  • processor 900 is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • the processor 900 is specifically configured to:
  • the processor 900 is specifically configured to:
  • the device for performing random access in the first embodiment of the present application includes:
  • a determining module 1001 configured to determine a PRACH time domain resource configured by the base station for the terminal, where the PRACH time domain resource includes at least one time slot;
  • the transmitting module 1002 is configured to determine, when the at least one time slot includes the first type of OFDM symbol used for transmitting the SS Block and/or the RMSI, by using the OFDM different from the first type of OFDM symbol in the at least one time slot. The symbol is randomly accessed.
  • the sending module 1002 is specifically configured to:
  • Manner 1 Perform random access in a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, consecutive OFDM symbols except the first type of OFDM symbols are randomly accessed.
  • the sending module 1002 is specifically configured to:
  • the sending module 1002 is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • the sending module 1002 is specifically configured to:
  • the sending module 1002 is specifically configured to:
  • Selecting at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle OFDM symbol at the end of the time slot including the first type of OFDM symbol Random access is performed by the selected OFDM symbols.
  • the second device for performing random access in the embodiment of the present application includes:
  • the configuration module 1101 is configured to configure a PRACH time domain resource for the terminal, where the PRACH time domain resource includes at least one time slot;
  • the receiving module 1102 is configured to, when determining that the at least one time slot includes a first type of OFDM symbol used for transmitting the SS Block and/or the RMSI, different from the first type of OFDM symbol in the at least one time slot.
  • PRACH reception detection is performed on the OFDM symbol.
  • the receiving module 1102 is specifically configured to:
  • Manner 1 Perform PRACH reception detection on a time slot that does not include the first type of OFDM symbol
  • Manner 2 In a time slot including a first type of OFDM symbol, PRACH reception detection is performed on consecutive OFDM symbols except the first type of OFDM symbol.
  • the receiving module 1102 is further configured to:
  • the number of remaining consecutive OFDM symbols available for uplink transmission is not less than the number of OFDM symbols actually used by random access.
  • the receiving module 1102 is specifically configured to:
  • the receiving module 1102 is specifically configured to:
  • a method for performing random access is also provided in the embodiment of the present application.
  • the device corresponding to the method is a terminal in the random access system in the embodiment of the present application, and the method solves the problem and
  • the device is similar, so the implementation of the method can be referred to the implementation of the device, and the repeated description will not be repeated.
  • the embodiment of the present application is a computer storable medium on which a computer program is stored, and when the program is executed by the processor, the steps performed by the terminal in the embodiment of the present application or the steps performed by the base station in the embodiment of the present application are implemented.
  • the first method for performing random access in the embodiment of the present application includes:
  • Step 1201 The terminal determines a PRACH time domain resource that the base station configures for the terminal, where the PRACH time domain resource includes at least one time slot.
  • Step 1202 When determining that the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, the terminal passes through the at least one time slot and is different from the first type of OFDM symbol.
  • the OFDM symbols are randomly accessed.
  • the terminal performs random access according to any one of the following manners:
  • Manner 1 The terminal performs random access in a time slot that does not include the first type of OFDM symbol
  • Manner 2 The terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol in a slot including a first type of OFDM symbol.
  • the terminal determines, according to the following manner, a manner of performing random access:
  • the terminal receives the indication signaling sent by the base station by using the RMSI, and determines a manner of performing random access according to the indication signaling.
  • the terminal before the random access of the consecutive OFDM symbols except the first type of OFDM symbol, the terminal includes:
  • the terminal Determining, by the terminal, the time slot including the first type of OFDM symbol, except for the first type of OFDM symbol, the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than the OFDM symbol actually used by the random access. Number.
  • the terminal determines, according to the following manner, the number of remaining consecutive OFDM symbols that can be used for uplink transmission:
  • the terminal uses the product of the number of consecutive OFDM symbols in the slot including the first type of OFDM symbol and the ratio Ratio as the number of remaining consecutive OFDM symbols available for uplink transmission.
  • the terminal performs random access on consecutive OFDM symbols except the first type of OFDM symbol, including:
  • the terminal performs random access by using the selected OFDM symbol.
  • a method for performing random access is also provided in the embodiment of the present application.
  • the device corresponding to the method is a base station in a random access system in the embodiment of the present application, and the method solves the problem and
  • the device is similar, so the implementation of the method can be referred to the implementation of the device, and the repeated description will not be repeated.
  • the second method for performing random access in the embodiment of the present application includes:
  • Step 1301 The base station configures a PRACH time domain resource for the terminal, where the PRACH time domain resource includes at least one time slot.
  • Step 1302 When determining that the at least one time slot includes a first type of OFDM symbol used for transmitting SS Block and/or RMSI, the base station is different from the first type of OFDM symbol in the at least one time slot. PRACH reception detection is performed on the OFDM symbol.
  • the base station performs PRACH reception detection according to any one of the following manners:
  • Manner 1 The base station performs PRACH reception detection on a time slot that does not include the first type of OFDM symbol;
  • Manner 2 The base station performs PRACH reception detection on consecutive OFDM symbols except the first type of OFDM symbols in a slot including a first type of OFDM symbol.
  • the base station before the performing the PRACH reception detection on the OFDM symbol except the first type of OFDM symbol, the base station includes:
  • the base station Determining, by the base station, the time slot including the first type of OFDM symbol, except for the first type of OFDM symbol, the number of remaining consecutive OFDM symbols that can be used for uplink transmission is not less than the OFDM symbol actually used by the random access. Number.
  • the base station determines, according to the following manner, the number of remaining consecutive OFDM symbols that are available for uplink transmission:
  • the base station uses the product of the number of consecutive OFDM symbols in the slot including the first type of OFDM symbol and the ratio Ratio as the number of remaining consecutive OFDM symbols available for uplink transmission.
  • the base station performs PRACH reception detection on the OFDM symbol except the first type of OFDM symbol in a time slot that includes the first type of OFDM symbol, including:
  • the base station selects at least one idle OFDM symbol between the first type of OFDM symbols from the time slot including the first type of OFDM symbols, or at least one idle at the end of the time slot including the first type of OFDM symbol OFDM symbol;
  • the base station performs PRACH reception detection on the selected OFDM symbol.
  • the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,特别涉及一种进行随机接入的方法及设备,用以解决现有技术中终端进行随机接入使用的时域资源和传输SS Block和/或RMSI占用的时域资源会发生冲突的问题。本申请实施例终端确定基站为终端配置的PRACH时域资源;在确定至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,终端通过至少一个时隙中与第一类OFDM符号不同的OFDM符号进行随机接入。本申请实施例终端通过时隙中与第一类OFDM符号不同的OFDM符号进行随机接入,避免进行随机接入使用的时域资源和传输SS Block和/或RMSI占用的时域资源发生冲突,进一步提高了***性能。

Description

一种进行随机接入的方法及设备
本申请要求在2017年11月16日提交中国专利局、申请号为201711140715.7、申请名称为“一种进行随机接入的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种进行随机接入的方法及设备。
背景技术
新空口(New Radio,NR)Rel-15定义一个同步块(Synchronization Signal Block,SS Block)占用4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,顺序依次为主同步(Primary Synchronized Signal,PSS)、物理广播信道(Physical Broadcast Channel,PBCH)、辅同步(Secondary Synchronization Signal,SSS)和PBCH,支持15/30/120/240KHz的子载波间隔(Subcarrier Spacing,SCS)。支持默认周期和配置周期,默认周期为20ms,用于初始小区搜索;配置周期从5ms到160ms,可用于连接态(CONNECTED)/空闲态(IDLE)和非独立组网(non-stand alone)场景。对于默认周期和配置周期,一个同步块突发集(SS Block burst set)的所有SS Block在5ms内传输完成。SS Block包含候选SS Block和实际SS Block两种。根据频段的不同,一个SS Block burst set的候选SS Block最大个数L不同,基站根据实际情况从候选SS Block集合中选择实际发送的SS Block,即实际的SS Block个数可以小于等于L。
针对终端驻留、随机接入等过程所需的最小***信息的第一部分由PBCH传输,其余部分采用剩余最小***信息(Remaining minimum system information,RMSI)进行传输。RMSI采用物理下行控制信道(Physical  Downlink Control Channel,PDCCH)调度的物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)进行传输,为了扩展覆盖,同样采用波束扫描方式。RMSI PDCCH所在的时间和频率资源对应的控制资源集合(CORESET,control resource set)由PBCH配置。RMSI可以与SS Block采用频分复用(Frequency Domain Multiplexing,FDM)和时分复用(Time Domain Multiplexing,TDM)方式。
目前,针对时分双工(Time division duplex,TDD)模式,终端在进行随机接入的过程中,终端根据基站配置的物理随机接入信道(Physical Random Access Channel,PRACH)时域资源,通过PRACH时域资源所在的时隙进行随机接入;但是,由于终端进行随机接入使用的时隙中可能会包含传输SS Block和/或RMSI的下行信道占用的时域资源,终端进行随机接入使用的时域资源和传输SS Block和/或RMSI的下行信道占用的时域资源会发生冲突。
发明内容
本申请实施例提供一种进行随机接入的方法及设备,用以解决现有技术中终端进行随机接入使用的时域资源和传输SS Block和/或RMSI的下行信道占用的时域资源会发生冲突的问题。
基于上述问题,第一方面,本申请实施例提供一种进行随机接入的方法,包括:
终端确定基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,所述终端通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
可选的,所述终端根据下列任一种方式进行随机接入:
方式一、所述终端在不包含第一类OFDM符号的时隙进行随机接入;
方式二、所述终端在包含第一类OFDM符号的时隙中,除所述第一类 OFDM符号之外的连续OFDM符号进行随机接入。
可选的,所述终端根据下列方式确定进行随机接入的方式:
所述终端根据预先配置的规则,确定进行随机接入的方式;或
所述终端接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
可选的,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,还包括:
所述终端确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述终端根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述终端确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;
所述终端将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入,包括:
所述终端从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
所述终端通过选取出的OFDM符号进行随机接入。
第二方面,本申请实施例还提供一种进行随机接入的方法,包括:
基站为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类 OFDM符号时,所述基站在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
可选的,所述基站根据下列任一种方式进行PRACH接收检测:
方式一、所述基站在不包含第一类OFDM符号的时隙进行PRACH接收检测;
方式二、所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
可选的,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,还包括:
所述基站确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述基站根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述基站确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;
所述基站将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测,包括:
所述基站从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
所述基站在选取出的OFDM符号上进行PRACH接收检测。
第三方面,本申请实施例提供一种终端,包括:处理器、存储器和收发机;
其中,处理器,用于读取存储器中的程序并执行:
确定基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
可选的,所述处理器,具体用于:
根据下列任一种方式进行随机接入:
方式一、在不包含第一类OFDM符号的时隙进行随机接入;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
可选的,所述处理器,具体用于:
根据下列方式确定进行随机接入的方式:
根据预先配置的规则,确定进行随机接入的方式;或
接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
可选的,所述处理器,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述处理器,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述处理器,具体用于:
从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;通过选取出的OFDM符号进行随机接入。
第四方面,本申请实施例提供一种基站,包括:处理器、存储器和收发机;
其中,处理器,用于读取存储器中的程序并执行:
为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
可选的,所述处理器,具体用于:
根据下列任一种方式进行PRACH接收检测:
方式一、在不包含第一类OFDM符号的时隙进行PRACH接收检测;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
可选的,所述处理器,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述处理器,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述处理器,具体用于:
从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;在选取出的OFDM符号上进行PRACH接收检测。
第五方面,本申请实施例提供一种进行随机接入的设备,包括:
确定模块,用于确定基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
发送模块,用于确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
第六方面,本申请实施例提供一种进行随机接入的设备,包括:
配置模块,用于为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
接收模块,用于在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
第七方面,本申请实施例提供一种计算机可存储介质,其上存储有计算机程序,该程序被处理器执行时实现终端执行的步骤,或基站执行的步骤。
本申请实施例终端在进行随机接入时,获取基站配置的PRACH时域资源,由于该时域资源包括至少一个时隙,终端在向基站发送随机接入前导码之前,先判断基站配置的至少一个时隙中是否包含传输SS Block和/或RMSI使用的第一类OFDM符号,若包含,终端通过至少一个时隙中与第一类OFDM符号不同的OFDM符号进行随机接入,从而终端避免进行随机接入使用的资源和传输SS Block和/或RMSI的下行信道占用的资源发生冲突,进一步提高了***性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部 分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例进行随机接入的***的结构示意图;
图2为本申请实施例第一种时隙的示意图;
图3A为本申请实施例第二种时隙的示意图;
图3B为本申请实施例第三种时隙的示意图;
图4为本申请实施例第一种终端确定进行随机接入方式的流程图;
图5为本申请实施例第一种基站确定进行随机接入方式的流程图;
图6为本申请实施例第二种终端确定进行随机接入方式的流程图;
图7为本申请实施例第二种基站确定进行随机接入方式的流程图;
图8为本申请实施例一种终端的结构示意图;
图9为本申请实施例一种基站的结构示意图;
图10为本申请实施例第一种进行随机接入的设备的结构示意图;
图11为本申请实施例第二种进行随机接入的设备的结构示意图;
图12为本申请实施例第一种进行随机接入的方法流程图;
图13为本申请实施例第二种进行随机接入的方法流程图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,本申请实施例随机接入的***包括:终端10和基站20。
终端10,用于获取基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
基站20,用于获取为终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
本申请实施例终端在进行随机接入时,获取基站配置的PRACH时域资源,由于该时域资源包括至少一个时隙,终端在向基站发送随机接入前导码之前,先判断基站配置的至少一个时隙中是否包含传输SS Block和/或RMSI使用的第一类OFDM符号,若包含,终端通过至少一个时隙中与第一类OFDM符号不同的OFDM符号进行随机接入,从而终端避免进行随机接入使用的资源和传输SS Block和/或RMSI的下行信道占用的资源发生冲突,进一步提高了***性能。
本申请实施例PRACH资源的维度包括:时域、频域和码域;
PRACH时域资源的定义取决于该PRACH format对应的无线帧、子帧、时隙和OFDM符号。其中,一个无线帧包含10个子帧(1ms),一个子帧包含一个或者多个时隙,当SCS为15KHz时,包含一个时隙;当SCS为30/60/120KHz时,分别包含2/4/8个时隙。
本申请实施例基站为终端配置的PRACH时域资源至少指示到时隙;具体 的,PRACH时域资源包含至少一个时隙。
终端在使用基站配置的PRACH时域资源进行随机接入之前,判断基站配置的至少一个时隙中是否包含传输SS Block和/或RMSI使用的第一类OFDM符号;
若是,终端通过至少一个时隙中与第一类OFDM符号不同的OFDM符号进行随机接入;若否,终端在基站配置的整个时隙内,按照配置的PRACH format和起始OFDM符号位置,选择需要使用的OFDM符号,并结合基站配置的频域资源,进行随机接入。
相应的,基站在进行PRACH接收检测之前,判断为终端配置的至少一个时隙中是否包含传输SS Block和/或RMSI使用的第一类OFDM符号;
若是,基站在至少一个时隙中与第一类OFDM符号不同的OFDM符号上进行PRACH接收检测;若否,基站在为终端配置的整个时隙内,按照配置的PRACH format和起始OFDM符号位置,选择需要检测的OFDM符号,并结合基站配置的频域资源,进行PRACH接收检测。
可选的,终端在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,根据下列任一种方式进行随机接入:
方式一、所述终端在不包含第一类OFDM符号的时隙进行随机接入;
相应的,所述基站在不包含第一类OFDM符号的时隙进行PRACH接收检测。
在使用该方式一时,终端只能通过不包含第一类OFDM符号的时隙进行随机接入;若基站为终端当前配置的PRACH时域资源中没有不包含第一类OFDM符号的时隙,则终端在本PRACH发送周期内不进行随机接入,并等待下一个PRACH发送周期。
相应的,基站也只能在不包含第一类OFDM符号的时隙进行PRACH接收检测;若当前配置的PRACH时域资源中没有不包含第一类OFDM符号的时隙,则基站在本PRACH发送周期内不进行PRACH接收检测,并等待下一个PRACH发送周期。
方式二、所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入;
相应的,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
下面针对这两种方式进行详细描述。
情形一、终端在不包含第一类OFDM符号的时隙进行随机接入;
相应的,基站在不包含第一类OFDM符号的时隙进行随机接入。
终端可以采用下列方式确定进行随机接入的方式:
其中,进行随机接入的方式可以为上述方式一或方式二。
(一)、所述终端根据预先配置的规则,确定进行随机接入的方式;
相应的,基站根据预先配置的规则,确定进行PRACH接收检测的方式。
需要说明的是,预先配置的规则可以为协议预先定义,是预先配置给终端和基站的。
(二)、终端接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式;
相应的,基站根据小区半径大小和小区负载等信息确定终端进行随机接入的方式,并将终端进行随机接入的方式通过指示信令的方式通知给终端;可选的,该指示信令在RMSI中承载。
下面详细说明情形一对应的随机接入方式:
1、基站为终端配置的PRACH时域资源中包括一个时隙:
终端判断当前时隙内是否存在第一类OFDM符号,若不存在,终端在该时隙进行随机接入,若存在,终端在本PRACH发送周期内不进行随机接入,并等待下一个PRACH发送周期再进行判断;
相应的,基站判断当前时隙内是否存在第一类OFDM符号,若不存在,基站在该时隙进行PRACH接收检测,若存在,基站在本PRACH发送周期内不进行PRACH接收检测,并等待下一个PRACH发送周期再进行判断。
2、基站为终端配置的PRACH时域资源中包括多个时隙:
终端判断当前时隙内是否存在第一类OFDM符号,若不存在,终端在该时隙进行随机接入,若存在,终端判断配置的多个时隙中下一个时隙内是否存在第一类OFDM符号,直到确定出不包含第一类OFDM符号的时隙,在不包含第一类OFDM符号的时隙进行随机接入,若配置的多个时隙中均包含第一类OFDM符号,则终端本PRACH发送周期内不进行随机接入,并等待下一个PRACH发送周期再进行判断;
相应的,基站判断当前时隙内是否存在第一类OFDM符号,若不存在,基站在该时隙进行PRACH接收检测,若存在,判断为终端配置的多个时隙中下一个时隙内是否存在第一类OFDM符号,直到确定出不包含第一类OFDM符号的时隙,在不包含第一类OFDM符号的时隙进行PRACH接收检测,若配置的多个时隙中均包含第一类OFDM符号,则基站在本PRACH发送周期内不进行PRACH接收检测,并等待下一个PRACH发送周期再进行判断。
需要说明的是,终端在不包含第一类OFDM符号的时隙进行随机接入时,具体进行随机接入的方法可以采用现有技术的方法,在此不再详细赘述;
同样,基站在不包含第一类OFDM符号的时隙进行PRACH接收检测时,具体进行PRACH接收检测的方法可以采用现有技术的方法,在此不再详细赘述。
情形二、终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行随机接入,或在不包含第一类OFDM符号的时隙进行随机接入;
相应的,基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测,或在不包含第一类OFDM符号的时隙进行PRACH接收检测。
需要说明的是,在该情形二中,终端可以采用任意一种方式进行随机接入;相应的,基站可以采用任意一种方式进行PRACH接收检测。
终端可以采用下列方式确定进行随机接入的方式:
其中,进行随机接入的方式可以为上述方式一或方式二。
(一)、所述终端根据预先配置的规则,确定进行随机接入的方式;
相应的,基站根据预先配置的规则,确定进行PRACH接收检测的方式。
需要说明的是,预先配置的规则可以为协议预先定义,是预先配置给终端和基站的。
(二)、终端接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式;
相应的,基站根据小区半径大小和小区负载等信息确定终端进行随机接入的方式,并将终端进行随机接入的方式通过指示信令的方式通知给终端;可选的,该指示信令在RMSI中承载。
在终端通过包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号进行随机接入之前,终端需要判断该包含第一类OFDM符号的时隙是否满足条件:
可选的,终端确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
其中,随机接入实际使用的OFDM符号个数为基站为终端配置的PRACH format包含的OFDM符号个数。
由于在一个时隙中,剩余的连续OFDM符号个数是指除下行信道和信号占用的OFDM符号之外的最大的连续OFDM符号个数;在计算剩余的连续OFDM符号个数时,是根据下行信号和信号的SCS计算的,用于上行随机接入传输使用的连续OFDM符号的时间长度是根据上行PRACH format的SCS计算的;因此,需要根据上行SCS和下行SCS的比值关系,计算实际可用于上行随机接入的连续OFDM符号个数。
可选的,所述终端根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述终端确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;所述终端将所述包含第一类OFDM符号的时隙中 剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
相应的,基站在通过包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号进行PRACH接收检测之前,基站也需要判断该包含第一类OFDM符号的时隙是否满足条件:
基站确定所述包含第一类OFDM符号的时隙中,除第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
其中,随机接入实际使用的OFDM符号个数为基站为终端配置的PRACH format包含的OFDM符号个数。
由于在一个时隙中,剩余的连续OFDM符号个数是指除下行信道和信号占用的OFDM符号之外的最大的连续OFDM符号个数;在计算剩余的连续OFDM符号个数时,是根据下行信号和信号的SCS计算的,用于上行随机接入传输使用的连续OFDM符号的时间长度是根据上行PRACH format的SCS计算的;因此,需要根据上行SCS和下行SCS的比值关系,计算实际可用于上行随机接入的连续OFDM符号个数。
可选的,基站根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述基站确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;所述基站将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
需要说明的是,终端和基站确定可用于上行传输的剩余的连续OFDM符号个数的方法相同。
下面以几个具体例子说明确定可用于上行传输的剩余的连续OFDM符号个数的方法,同时适用于终端和基站。
定义在一个时隙中剩余的连续OFDM符号个数为T1;其中,剩余的连续 OFDM符号个数为时隙中除下行信道和信号占用的OFDM符号之外的最大的连续OFDM符号个数。定义可用于上行传输的剩余的连续OFDM符号个数为T2。下行传输SS Block为例进行说明,其中SS Block的SCS可以为15KHz、30KHz、120KHz、240,上行传输PRACH的SCS可以为15KHz、30KHz、60KHz、120,定义PRACH的SCS相对于SS Block的SCS的比值Ratio;
下面公式(1)给出T2和T1、Ratio的关系:
T2=T1*Ratio       公式(1)
示例1:SCS(SS Block)=30KHz,SCS(SS Block)=60KHz,PRACH的SCS相对于SS Block的SCS的比值Ratio=2,则T2=T1*Ratio=T1*2。
示例2:SCS(SS Block)=30KHz,SCS(PRACH)=15KHz,PRACH相对于SS Block的SCS的比值Ratio=1/2,则T2=T1*Ratio=T1*1/2。
示例3:SCS(SS Block)=240KHz,SCS(PRACH)=120KHz,PRACH相对于SS Block的SCS的比值Ratio=1/2,则T2=T1*Ratio=T1*1/2。
示例4:SCS(SS Block)=15KHz,SCS(PRACH)=30KHz,PRACH相对于SS Block的SCS的比值Ratio=2,则T2=T1*Ratio=T1*2。
例如,如图2所示的时隙,一个时隙的时间长度为1ms,包含14个OFDM符号,下行传输的SS Block的SCS为15KHz;符号2到符号5,符号8到符号11分别传输了两个SS Block,两个SS Block中间预留了2个连续OFDM符号,在时隙的末尾也预留了2个连续OFDM符号。则当前时隙中剩余的连续OFDM符号个数T1=2。
假设基站配置的PRACH format的SCS为30KHz,则可用于上行传输的剩余的连续OFDM符号个数T2=T1*2=4;
若基站为终端配置的PRACH format包含的OFDM符号个数不大于4,则终端可以在该时隙进行随机接入;若基站为终端配置的PRACH format包含的OFDM符号个数大于4,则终端不可以在该时隙进行随机接入。
本申请实施例终端在确定可以通过包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号进行随机接入后,终端可以采用下 列方式在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入:
所述终端从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;所述终端通过选取出的OFDM符号进行随机接入。
相应的,基站在确定可以通过包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号进行PRACH接收检测后,基站可以采用下列方式在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行PRACH接收检测:
所述基站从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;所述基站在选取出的OFDM符号上进行PRACH接收检测。
下面以几个具体例子说明终端在包含第一类OFDM符号的时隙中,除第一类OFDM符号之外的连续OFDM符号进行随机接入的方法。
示例一:
如图3A所示的时隙,一个时隙的时间长度为1ms,包含14个OFDM符号,其中,符号2到符号5,符号8到符号11分别传输了两个SS Block,两个SS Block中间预留了2个连续OFDM符号,在时隙的末尾也预留了2个连续OFDM符号。则当前时隙中剩余的连续OFDM符号个数T1=2。
下面判断该时隙是否可用于随机接入:
终端计算可用于上行传输的剩余的连续OFDM符号个数,并将计算得到的可用于上行传输的剩余的连续OFDM符号个数与随机接入实际使用的OFDM符号个数进行比较。
假设SS Block的SCS和PRACH format的SCS都等于15KHz,则PRACH的SCS与SS Block的SCS的比值Ratio=1;则可用于上行传输的剩余的连续 OFDM符号个数T2=T1*Ratio=2。
如果基站配置的PRACH format的OFDM个数不大于2,则终端能够在如图3A所示的时隙中进行随机接入。例如:PRACH的SCS为15KHz,PRACH format为A0或者C0,图3A中以A0为例。终端在两个SS Block中间预留2个连续OFDM符号传输随机接入前导码,或者在该时隙末尾2个连续OFDM符号传输随机接入前导码,且固定传输起始位置为第一个OFDM符号的起始处或者固定偏移值offset处,其中,offset=0us,或者T_ofdm/2,T_ofdm表示OFDM符号长度。
如果基站配置的PRACH format的OFDM个数大于2,则不能在如图3A所示的时隙传输随机接入前导码。
示例二:
如图3B所示的时隙,一个时隙的时间长度为1ms,下行传输的SS Block的SCS为15KHz,共包含14个OFDM符号;符号2到符号5,符号8到符号11分别传输了两个SS Block,两个SS Block中间预留了2个连续OFDM符号,在时隙的末尾也预留了2个连续OFDM符号。则当前时隙中剩余的连续OFDM符号个数T1=2。
下面判断该时隙是否可用于随机接入:
终端计算可用于上行传输的剩余的连续OFDM符号个数,并将计算得到的可用于上行传输的剩余的连续OFDM符号个数与随机接入实际使用的OFDM符号个数进行比较。
如图3B所示,基站为终端配置的PRACH format的SCS为30KHz,则PRACH format的SCS与SS Block的SCS的比值Ratio=2;则可用于上行传输的剩余的连续OFDM符号个数T2=T1*Ratio=4。
在基站配置的PRACH format为A0、A1、A2、B1、B2、C0和C2时,PRACH format包含的OFDM符号个数不大于4,则终端能够在如图3B所示的时隙中进行随机接入。例如,以PRACH format为A0、A1、A2为例,则终端在进行随机接入时采用如图3B所示的方式;终端在两个SS Block中间 的4个可用于上行传输的剩余的连续OFDM符号传输随机接入前导码,或者在该时隙末尾4个可用于上行传输的剩余的连续OFDM符号传输随机接入前导码,且固定传输起始位置为第一个OFDM符号的起始处或者固定偏移值offset处,其中,offset=0us,或者T_ofdm/2,T_ofdm表示OFDM符号长度。
如果基站配置的PRACH format的OFDM个数大于4,则不能在该时隙的所述OFDM符号上传输随机接入前导码。
终端在采用情形二的方式进行随机接入时,可以采用下列两种方式:
方式1、终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行随机接入;
方式2、终端在不包含第一类OFDM符号的时隙进行随机接入;
终端在进行随机接入时,可以采用上述方式1和方式2的任一种方式。
相应的,基站也可以采用下列两种方式进行PRACH接收检测:
基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测,或在不包含第一类OFDM符号的时隙进行PRACH接收检测。
若基站为终端配置的PRACH时域资源中包括一个时隙时,如图4所示,终端根据下列步骤确定进行随机接入方式:
步骤401:终端判断当前时隙内是否存在第一类OFDM符号;若否,执行步骤402,若是,执行步骤403;
步骤402:终端在该时隙进行随机接入;
步骤403:终端判断当前时隙中除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数是否小于随机接入实际使用的OFDM符号个数,若否,执行步骤404,若是,执行步骤405;
步骤404:终端在当前时隙中可用于上行传输的剩余的连续OFDM符号上进行随机接入;
步骤405:终端在本PRACH发送周期内不进行随机接入,并等待下一个PRACH发送周期再进行判断。
相应的,如图5所示,基站根据下列步骤确定进行PRACH接收检测方式:
步骤501:基站判断当前时隙内是否存在第一类OFDM符号;若否,执行步骤502,若是,执行步骤503;
步骤502:基站在该时隙进行PRACH接收检测;
步骤503:基站判断当前时隙中除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数是否小于随机接入实际使用的OFDM符号个数,若否,执行步骤504,若是,执行步骤505;
步骤504:基站在当前时隙中可用于上行传输的剩余的连续OFDM符号上进行PRACH接收检测;
步骤505:基站在本PRACH发送周期内不进行PRACH接收检测,并等待下一个PRACH发送周期再进行判断。
若基站为终端配置的PRACH时域资源中包括多个时隙时,如图6所示,终端根据下列步骤确定进行随机接入方式:
步骤601:终端判断当前时隙内是否存在第一类OFDM符号;若否,执行步骤602,若是,执行步骤603;
步骤602:终端在该时隙进行随机接入;
步骤603:终端判断当前时隙中除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数是否小于随机接入实际使用的OFDM符号个数,若否,执行步骤604,若是,执行步骤605;
步骤604:终端在当前时隙中可用于上行传输的剩余的连续OFDM符号上进行随机接入;
步骤605:终端将基站配置的多个时隙中下一个时隙作为当前时隙,并返回步骤601;
步骤606:若基站为终端配置的多个时隙均不满足条件,则终端本PRACH发送周期内不进行随机接入,并等待下一个PRACH发送周期再进行判断。
需要说明的是,在基站为终端配置的PRACH时域资源中包括多个时隙时,若确定当前时隙不存在第一类OFDM符号,终端还可以判断下一个时隙, 在下一个时隙中包含第一类OFDM符号时,使用除第一类OFDM符号之外OFDM符号进行随机接入。
相应的,如图7所示,基站根据下列步骤确定进行PRACH接收检测方式:
步骤701:基站判断当前时隙内是否存在第一类OFDM符号;若否,执行步骤702,若是,执行步骤703;
步骤702:基站在该时隙进行PRACH接收检测;
步骤703:基站判断当前时隙中除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数是否小于随机接入实际使用的OFDM符号个数,若否,执行步骤704,若是,执行步骤705;
步骤704:基站在当前时隙中可用于上行传输的剩余的连续OFDM符号上进行PRACH接收检测;
步骤705:基站将为终端配置的多个时隙中下一个时隙作为当前时隙,并返回步骤701;
步骤706:若基站为终端配置的多个时隙均不满足条件,则基站本PRACH发送周期内不进行PRACH接收检测,并等待下一个PRACH发送周期再进行判断。
如图8所示,本申请实施例第一种终端,包括:处理器800、存储器801、收发机802以及总线接口。
处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。收发机802用于在处理器800的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器800中,或者由处理器800实现。在实现过程中,信号处理流程的各步骤可以通过处理器800中的硬件的集成逻辑电路或者软件形式的指令完成。处理器800可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器800读取存储器801中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器800,用于读取存储器801中的程序并执行:
确定基站为所述终端配置的物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
可选的,所述处理器800,具体用于:
根据下列任一种方式进行随机接入:
方式一、在不包含第一类OFDM符号的时隙进行随机接入;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
可选的,所述处理器800,具体用于:
根据下列方式确定进行随机接入的方式:
根据预先配置的规则,确定进行随机接入的方式;或
接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
可选的,所述处理器800,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述处理器800,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述处理器800,具体用于:
从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;通过选取出的OFDM符号进行随机接入。
如图9所示,本申请实施例一种基站,包括:处理器900、存储器901、收发机902以及总线接口。
处理器900负责管理总线架构和通常的处理,存储器901可以存储处理器900在执行操作时所使用的数据。收发机902用于在处理器900的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器901代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器900负责管理总线架构和通常的处理,存储器901可以存储处理器900在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器900中,或者由处理器900 实现。在实现过程中,信号处理流程的各步骤可以通过处理器900中的硬件的集成逻辑电路或者软件形式的指令完成。处理器900可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器900读取存储器901中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器900,用于读取存储器901中的程序并执行:
为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
可选的,所述处理器900,具体用于:
根据下列任一种方式进行PRACH接收检测:
方式一、在不包含第一类OFDM符号的时隙进行PRACH接收检测;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
可选的,所述处理器900,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述处理器900,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述处理器900,具体用于:
从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;在选取出的OFDM符号上进行PRACH接收检测。
如图10所示,本申请实施例第一种进行随机接入的设备,包括:
确定模块1001,用于确定基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
发送模块1002,用于确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
可选的,所述发送模块1002,具体用于:
根据下列任一种方式进行随机接入:
方式一、在不包含第一类OFDM符号的时隙进行随机接入;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
可选的,所述发送模块1002,具体用于:
根据下列方式确定进行随机接入的方式:
根据预先配置的规则,确定进行随机接入的方式;或
接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
可选的,所述发送模块1002,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连 续OFDM符号进行随机接入之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述发送模块1002,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述发送模块1002,具体用于:
从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;通过选取出的OFDM符号进行随机接入。
如图11所示,本申请实施例第二种进行随机接入的设备,包括:
配置模块1101,用于为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
接收模块1102,用于在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
可选的,所述接收模块1102,具体用于:
根据下列任一种方式进行PRACH接收检测:
方式一、在不包含第一类OFDM符号的时隙进行PRACH接收检测;
方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
可选的,所述接收模块1102,还用于:
在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,确定所述包含第一类OFDM符号 的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述接收模块1102,具体用于:
根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述接收模块1102,具体用于:
从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;在选取出的OFDM符号上进行PRACH接收检测。
基于同一发明构思,本申请实施例中还提供了一种进行随机接入的方法,由于该方法对应的设备是本申请实施例进行随机接入***中的终端,并且该方法解决问题的原理与该设备相似,因此该方法的实施可以参见设备的实施,重复之处不再赘述。
本申请实施例一种计算机可存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请实施例终端执行的步骤,或本申请实施例基站执行的步骤。
如图12所示,本申请实施例第一种进行随机接入的方法,包括:
步骤1201、终端确定基站为所述终端配置的PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
步骤1202、在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,所述终端通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
可选的,所述终端根据下列任一种方式进行随机接入:
方式一、所述终端在不包含第一类OFDM符号的时隙进行随机接入;
方式二、所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
可选的,所述终端根据下列方式确定进行随机接入的方式:
所述终端根据预先配置的规则,确定进行随机接入的方式;或
所述终端接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
可选的,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,还包括:
所述终端确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述终端根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述终端确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;
所述终端将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入,包括:
所述终端从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
所述终端通过选取出的OFDM符号进行随机接入。
基于同一发明构思,本申请实施例中还提供了一种进行随机接入的方法,由于该方法对应的设备是本申请实施例进行随机接入***中的基站,并且该方法解决问题的原理与该设备相似,因此该方法的实施可以参见设备的实施, 重复之处不再赘述。
如图13所示,本申请实施例第二种进行随机接入的方法,包括:
步骤1301、基站为终端配置PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
步骤1302、在确定所述至少一个时隙中包含传输SS Block和/或RMSI使用的第一类OFDM符号时,所述基站在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
可选的,所述基站根据下列任一种方式进行PRACH接收检测:
方式一、所述基站在不包含第一类OFDM符号的时隙进行PRACH接收检测;
方式二、所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
可选的,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,还包括:
所述基站确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
可选的,所述基站根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
所述基站确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;
所述基站将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
可选的,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测,包括:
所述基站从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM 符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
所述基站在选取出的OFDM符号上进行PRACH接收检测。
以上参照示出根据本申请实施例的方法、装置(***)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行***来使用或结合指令执行***而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行***、装置或设备使用,或结合指令执行***、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种进行随机接入的方法,其特征在于,该方法包括:
    终端确定基站为所述终端配置的物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
    在确定所述至少一个时隙中包含传输同步块SS Block和/或剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号时,所述终端通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
  2. 如权利要求1所述的方法,其特征在于,所述终端根据下列任一种方式进行随机接入:
    方式一、所述终端在不包含第一类OFDM符号的时隙进行随机接入;
    方式二、所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
  3. 如权利要求2所述的方法,其特征在于,所述终端根据下列方式确定进行随机接入的方式:
    所述终端根据预先配置的规则,确定进行随机接入的方式;或
    所述终端接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
  4. 如权利要求2所述的方法,其特征在于,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,还包括:
    所述终端确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
  5. 如权利要求4所述的方法,其特征在于,所述终端根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
    所述终端确定所述基站配置的PRACH的子载波间隔SCS与所述SS  Block的SCS的比值Ratio;
    所述终端将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
  6. 如权利要求2~5任一所述的方法,其特征在于,所述终端在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入,包括:
    所述终端从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
    所述终端通过选取出的OFDM符号进行随机接入。
  7. 一种进行随机接入的方法,其特征在于,该方法包括:
    基站为终端配置物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
    在确定所述至少一个时隙中包含传输同步块SS Block和/或剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号时,所述基站在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
  8. 如权利要求7所述的方法,其特征在于,所述基站根据下列任一种方式进行PRACH接收检测:
    方式一、所述基站在不包含第一类OFDM符号的时隙进行PRACH接收检测;
    方式二、所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
  9. 如权利要求8所述的方法,其特征在于,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,还包括:
    所述基站确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
  10. 如权利要求9所述的方法,其特征在于,所述基站根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
    所述基站确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;
    所述基站将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
  11. 如权利要求8~10所述的方法,其特征在于,所述基站在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测,包括:
    所述基站从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;
    所述基站在选取出的OFDM符号上进行PRACH接收检测。
  12. 一种终端,其特征在于,包括:处理器、存储器和收发机;
    其中,处理器,用于读取存储器中的程序并执行:
    确定基站为所述终端配置的物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输同步块SS Block和/或剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
  13. 如权利要求12所述的终端,其特征在于,所述处理器,具体用于:
    根据下列任一种方式进行随机接入:
    方式一、在不包含第一类OFDM符号的时隙进行随机接入;
    方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入。
  14. 如权利要求13所述的终端,其特征在于,所述处理器,具体用于:
    根据下列方式确定进行随机接入的方式:
    根据预先配置的规则,确定进行随机接入的方式;或
    接收基站通过所述RMSI发送的指示信令,根据所述指示信令确定进行随机接入的方式。
  15. 如权利要求13所述的终端,其特征在于,所述处理器,还用于:
    在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号进行随机接入之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
  16. 如权利要求15所述的终端,其特征在于,所述处理器,具体用于:
    根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
    确定所述基站配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
  17. 如权利要求15所述的终端,其特征在于,所述处理器,具体用于:
    从所述包含第一类OFDM符号的时隙中选取出所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;通过选取出的OFDM符号进行随机接入。
  18. 一种基站,其特征在于,包括:处理器、存储器和收发机;
    其中,处理器,用于读取存储器中的程序并执行:
    为终端配置物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;在确定所述至少一个时隙中包含传输同步块SS Block和/或剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号 时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
  19. 如权利要求18所述的基站,其特征在于,所述处理器,具体用于:
    根据下列任一种方式进行PRACH接收检测:
    方式一、在不包含第一类OFDM符号的时隙进行PRACH接收检测;
    方式二、在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的连续OFDM符号上进行PRACH接收检测。
  20. 如权利要求19所述的基站,其特征在于,所述处理器,还用于:
    在包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外的OFDM符号上进行PRACH接收检测之前,确定所述包含第一类OFDM符号的时隙中,除所述第一类OFDM符号之外,可用于上行传输的剩余的连续OFDM符号个数不小于随机接入实际使用的OFDM符号个数。
  21. 如权利要求20所述的基站,其特征在于,所述处理器,具体用于:
    根据下列方式确定可用于上行传输的剩余的连续OFDM符号个数:
    确定为所述终端配置的PRACH的子载波间隔SCS与所述SS Block的SCS的比值Ratio;将所述包含第一类OFDM符号的时隙中剩余的连续OFDM符号个数与所述比值Ratio的乘积,作为所述可用于上行传输的剩余的连续OFDM符号个数。
  22. 如权利要求19~21所述的基站,其特征在于,所述处理器,具体用于:
    从所述包含第一类OFDM符号的时隙中选取所述第一类OFDM符号之间的至少一个空闲OFDM符号,或所述包含第一类OFDM符号的时隙末尾的至少一个空闲OFDM符号;在选取出的OFDM符号上进行PRACH接收检测。
  23. 一种进行随机接入的设备,其特征在于,包括:
    确定模块,用于确定基站为所述终端配置的物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
    发送模块,用于确定所述至少一个时隙中包含传输同步块SS Block和/或 剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号时,通过所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号进行随机接入。
  24. 一种进行随机接入的设备,其特征在于,包括:
    配置模块,用于为终端配置物理随机接入信道PRACH时域资源;其中,所述PRACH时域资源包括至少一个时隙;
    接收模块,用于在确定所述至少一个时隙中包含传输同步块SS Block和/或剩余最小***信息RMSI使用的第一类正交频分复用OFDM符号时,在所述至少一个时隙中与所述第一类OFDM符号不同的OFDM符号上进行PRACH接收检测。
  25. 一种计算机可存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1~6任一所述方法的步骤,或7~11任一所述方法的步骤。
PCT/CN2018/109644 2017-11-16 2018-10-10 一种进行随机接入的方法及设备 WO2019095890A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18879119.8A EP3713367B1 (en) 2017-11-16 2018-10-10 Methods and devices for random access
JP2020527798A JP7332595B2 (ja) 2017-11-16 2018-10-10 ランダムアクセスための方法および装置
KR1020207017324A KR102324137B1 (ko) 2017-11-16 2018-10-10 랜덤 액세스를 위한 방법 및 장치
KR1020217036008A KR102351414B1 (ko) 2017-11-16 2018-10-10 랜덤 액세스를 위한 방법 및 장치
EP22196346.5A EP4132187A1 (en) 2017-11-16 2018-10-10 Method and device for random access
US16/765,154 US11457478B2 (en) 2017-11-16 2018-10-10 Method and device for random access
JP2022192883A JP2023018142A (ja) 2017-11-16 2022-12-01 ランダムアクセスための方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711140715.7A CN109803440B (zh) 2017-11-16 2017-11-16 一种进行随机接入的方法及设备
CN201711140715.7 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019095890A1 true WO2019095890A1 (zh) 2019-05-23

Family

ID=66538876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109644 WO2019095890A1 (zh) 2017-11-16 2018-10-10 一种进行随机接入的方法及设备

Country Status (6)

Country Link
US (1) US11457478B2 (zh)
EP (2) EP4132187A1 (zh)
JP (2) JP7332595B2 (zh)
KR (2) KR102351414B1 (zh)
CN (1) CN109803440B (zh)
WO (1) WO2019095890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528694B2 (en) * 2017-11-17 2022-12-13 Zte Corporation Information sending method and device and information receiving method and device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726877B (zh) * 2017-08-10 2022-10-18 华为技术有限公司 数据传输方法、终端和基站
CN111525995B (zh) * 2019-02-03 2022-03-29 华为技术有限公司 一种数据传输方法、网络设备和终端设备
US11265197B2 (en) * 2019-06-25 2022-03-01 Qualcomm Incorporated Synchronization signal block design
WO2021012255A1 (zh) * 2019-07-25 2021-01-28 北京小米移动软件有限公司 同步广播块的发送方法、接收方法、装置、设备及介质
WO2021098570A1 (en) * 2019-11-20 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining prach occasion and terminal device, network device
CN111010742B (zh) * 2019-12-09 2022-07-15 Oppo广东移动通信有限公司 用于确定随机接入资源的方法和终端设备
KR102620305B1 (ko) * 2020-08-06 2023-12-29 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426268A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 导频资源分配方法、***和设备
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端
WO2014110714A1 (zh) * 2013-01-15 2014-07-24 华为技术有限公司 无线通信方法、用户设备和网络侧设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237313B (zh) * 2008-02-29 2012-11-28 中兴通讯股份有限公司 Hfdd用户非对称类型收发模式的harq反馈方法
US10383151B2 (en) 2015-07-17 2019-08-13 Intel IP Corporation Narrowband-physical random access channel techniques
KR102026425B1 (ko) * 2015-08-21 2019-09-27 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 방법, 네트워크 기기, 사용자 장비 및 시스템
CN107343317B (zh) * 2016-04-29 2022-12-30 华为技术有限公司 一种子帧配置方法和装置
JP6677825B2 (ja) * 2016-05-13 2020-04-08 華為技術有限公司Huawei Technologies Co.,Ltd. 上りリンク参照信号送信方法、上りリンク参照信号受信方法および装置
EP3557799B1 (en) * 2017-01-06 2020-12-30 Huawei Technologies Co., Ltd. Uplink control channel transmission and reception methods and devices
EP3603300B1 (en) * 2017-03-24 2024-07-03 Motorola Mobility LLC Method and apparatus for random access on a wireless communication network
JP6921962B2 (ja) * 2017-05-03 2021-08-18 エルジー エレクトロニクス インコーポレイティド ランダムアクセスチャネルを送受信する方法及びそのための装置
CN113346987B (zh) * 2017-08-11 2023-04-28 华为技术有限公司 一种上行信号的传输方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426268A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 导频资源分配方法、***和设备
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端
WO2014110714A1 (zh) * 2013-01-15 2014-07-24 华为技术有限公司 无线通信方法、用户设备和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; NR; Physical Layer Procedures for Control (Release 15)", 3GPP TS 38.213 V1.0.0., 30 September 2017 (2017-09-30), pages 10 - 11, XP051336894 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528694B2 (en) * 2017-11-17 2022-12-13 Zte Corporation Information sending method and device and information receiving method and device
US11825296B2 (en) 2017-11-17 2023-11-21 Zte Corporation Information sending method and device and information receiving method and device

Also Published As

Publication number Publication date
KR20200083610A (ko) 2020-07-08
KR102324137B1 (ko) 2021-11-10
US20200344811A1 (en) 2020-10-29
EP3713367A1 (en) 2020-09-23
EP4132187A1 (en) 2023-02-08
EP3713367A4 (en) 2020-12-09
JP2021503849A (ja) 2021-02-12
CN109803440B (zh) 2021-04-06
CN109803440A (zh) 2019-05-24
JP2023018142A (ja) 2023-02-07
EP3713367B1 (en) 2022-12-28
KR102351414B1 (ko) 2022-01-13
JP7332595B2 (ja) 2023-08-23
US11457478B2 (en) 2022-09-27
KR20210134847A (ko) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2019095890A1 (zh) 一种进行随机接入的方法及设备
US10291457B2 (en) Information transmission method, a base station and a terminal
US10701651B2 (en) Information transmission method, base station and terminal
US10506593B2 (en) Data transmission method and device in unlicensed frequency band
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
US20180255534A1 (en) Physical downlink control channel transmission method and apparatus
WO2021031046A1 (zh) 一种随机接入方法、终端设备和网络设备
CN108513362B (zh) 一种信道检测方法、装置及基站
US20220132613A1 (en) Communication method and apparatus
CN107734666B (zh) 控制信道传输指示方法、检测方法、基站及用户设备
TW201826837A (zh) 用於傳輸信息的方法、終端設備和網絡設備
KR20210024657A (ko) 채널 액세스를 위한 시스템 및 방법
WO2020083388A1 (zh) 非授权频谱中无线链路检测的方法和通信装置
CN109937603B (zh) 基于竞争的传输方法和设备
CN113300802A (zh) 传输方法及设备
CN112584515A (zh) 确定随机接入资源的方法及装置
US20220386177A1 (en) Method of controlling service transmission, terminal and network device
JP6782811B2 (ja) 免許不要の周波数帯域を使用するセル内で基準信号を送信するための方法およびデバイス
CN109565768A (zh) 信号传输的方法、终端设备和网络设备
CN112584540A (zh) 随机接入信号发送方法、执行该方法的设备和计算机可读介质
CN112805937B (zh) 一种信息确定方法、装置、***、设备及存储介质
US12048015B2 (en) Method and apparatus for setting transmission time advance
US20220022257A1 (en) Method and apparatus for setting transmission time advance
WO2014110806A1 (en) Channel reservation and synchronous transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207017324

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879119

Country of ref document: EP

Effective date: 20200616