WO2019095636A1 - 苯磺酸酯衍生物的合成方法 - Google Patents

苯磺酸酯衍生物的合成方法 Download PDF

Info

Publication number
WO2019095636A1
WO2019095636A1 PCT/CN2018/084559 CN2018084559W WO2019095636A1 WO 2019095636 A1 WO2019095636 A1 WO 2019095636A1 CN 2018084559 W CN2018084559 W CN 2018084559W WO 2019095636 A1 WO2019095636 A1 WO 2019095636A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzenesulfonate
ethylene glycol
reaction
derivative
synthesizing
Prior art date
Application number
PCT/CN2018/084559
Other languages
English (en)
French (fr)
Inventor
闫彩桥
刘鹏
侯荣雪
Original Assignee
石家庄圣泰化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄圣泰化工有限公司 filed Critical 石家庄圣泰化工有限公司
Priority to JP2018543310A priority Critical patent/JP2021502950A/ja
Priority to KR1020187023257A priority patent/KR102144626B1/ko
Publication of WO2019095636A1 publication Critical patent/WO2019095636A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of compound synthesis, and particularly relates to a method for synthesizing a benzenesulfonate derivative.
  • the synthesis method of the invention is simple, the reaction process is mild, stable, and the yield is high, and the obtained product has high purity.
  • lithium-ion batteries have the advantages of small size, good safety performance, light weight, high specific energy, high voltage, long life, no pollution and other chemical power sources, it has become a mobile phone, handheld computer, notebook computer, and miniature.
  • the main power source for portable electronic devices such as camera digital cameras.
  • basic research and application development of lithium-ion batteries have become one of the hot spots.
  • the lithium battery includes a positive electrode, a negative electrode, an electrolyte, and a separator. However, during charging and discharging, the battery releases heat, resulting in a decrease in battery performance.
  • the besylate derivative is an important organic synthesis intermediate and has a wide range of applications. We have found that it can be applied to battery electrolytes, but its synthesis method is complicated. At present, there is no way to prepare it to meet the battery electrolyte. Claim.
  • An object of the present invention is to provide a synthesis method which can be prepared to conform to a benzene sulfonate derivative for battery electrolyte requirements.
  • the technical solution adopted by the present invention for achieving the purpose is:
  • R 1 is selected from alkyl, H or F
  • R 2 is selected from allyl, propargyl or benzene
  • the amount of the organic base added is 1-5% of the mass of the raw material, and then the temperature is lowered to below 15 ° C, and the dropping is started.
  • the mixture is stirred at room temperature for 0.5-1 h, then the temperature is raised and refluxed for 1-2 h.
  • the mixture is ice-dissolved, ice-dissolved with 5-10 times of ice water, layered, and dried to give benzenesulfonic acid. Ester derivative products.
  • the organic base is triethylamine or pyridine.
  • the obtained benzenesulfonate derivative is subjected to recrystallization (for example, DMC) to obtain a pure benzenesulfonate derivative.
  • the synthesis method of the invention is simple and efficient, and is suitable for industrial large-scale production, the yield is up to 90% or more, and the purity is up to 99.9% or more, and the process parameter control, the process matching, the three-stage temperature control method and the material selection are made.
  • the prepared benzenesulfonic acid derivative has a water content of less than ⁇ 50 ppm and a low acid value of ⁇ 50 ppm, which lays a foundation for enhancing the high and low temperature stability of the battery after application.
  • Figure 1 is a 1H NMR spectrum of 1-phenylbenzenesulfonate.
  • Figure 2 is a 13C NMR spectrum of 1-phenylbenzenesulfonate.
  • Figure 3 is a 1H NMR spectrum of allyl benzenesulfonate.
  • Figure 4 is a 13C NMR spectrum of allyl benzenesulfonate.
  • Figure 5 is a 1H NMR spectrum of ethylene glycol dibenzenesulfonate.
  • Figure 6 is a 13C NMR spectrum of ethylene glycol dibenzenesulfonate.
  • the purity of the test was 99.93%, the moisture content was 30 ppm, the acid value was 34 ppm, the measured density was 1.277 g/cm 3 , the boiling point was 375.4 ° C 760 mmHg, the 1H NMR spectrum thereof is shown in Fig. 1, and the 13C NMR spectrum is shown in Fig. 2.
  • the synthetic route is:
  • the synthetic route is:
  • the synthetic route is:
  • the purity was 99.91%, the moisture content was 26 ppm, the acid value was 35 ppm, the density was 1.387 g/cm 3 , the boiling point was 516.1 ° C, and 760 mmHg.
  • the 1H NMR spectrum is shown in Fig. 5, and the 13C spectrum is shown in Fig. 6.
  • the synthetic route is:
  • the synthetic route is:
  • the synthetic route is:
  • a lithium battery to which a 1% by weight of an electrolyte solution is added, a lithium battery without a lithium battery, and a lithium battery to which a conventional benzenesulfonate derivative is added are respectively circulated at 65 ° C.
  • the product obtained in Example 1 is taken as an example, wherein the purity of the besylate derivative of the present invention is 99.93%, the moisture content is 30 ppm, and the acid value is 34 ppm; the purity of the existing benzenesulfonic acid derivative Control 1 is 99.93%.
  • the acid value is 150 ppm and the moisture content is 138 ppm; the purity of the existing benzenesulfonic acid derivative control 2 is 95%, the acid value is 150 ppm, and the moisture content is 138 ppm.
  • Table 1 The results are shown in Table 1:
  • the benzenesulfonate derivative of the present invention can improve the high temperature cycle performance of the battery.
  • battery high-temperature storage performance evaluation 60 ° C / 30D and 85 ° C / 7D storage performance test, the following list 2 is the battery after the standard charge and discharge, then stored at 60 ° C for 30 days and 85 ° C for 7 days, then measure the battery capacity retention Rate and capacity recovery rate.
  • the benzenesulfonate derivative of the present invention can improve the high-temperature storage performance of the battery.
  • Table 3 battery low-temperature storage performance evaluation; Table 3 is to leave the battery in the low-temperature box, respectively control the temperature of -30 ° C or -40 ° C, hold time 240 min, then measure the capacity retention rate of the battery.
  • the benzenesulfonate derivative of the present invention can improve the low-temperature storage performance of the battery.
  • the above performance tests are all taken as an example.
  • the performance of other benzenesulfonate derivatives is basically the same as the above properties, and the difference in properties fluctuates between 2-4%, indicating the purity, acid value and the benzenesulfonate derivative.
  • the moisture content has a critical influence on the battery performance after application to the battery, and Tables 2 and 3 indirectly prove that the besylate derivative of the present invention can improve the stability of the battery and improve the service life of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

苯磺酸酯衍生物的合成方法,属于化合物合成的技术领域,以式(I)为原料,与乙二醇或R2-OH反应生成式(II)或式(III),其中R1选自烷基、H或F,R2选自烯丙基、炔丙基或苯,具体操作为,将乙二醇或R2-OH与二氯甲烷加入反应器中,搅拌下加入有机碱,然后降温到15℃以下,开始滴加式(I),滴毕,回到室温继续搅拌0.5-1h,然后升温、回流反应1-2h,反应完全后,冰解处理,分层,干燥浓缩,得到苯磺酸酯衍生物产品。本发明合成方法简单,反应过程温和、稳定,收率高,制得的产品纯度高。

Description

苯磺酸酯衍生物的合成方法 技术领域
本发明属于化合物合成的技术领域,具体涉及苯磺酸酯衍生物的合成方法,本发明合成方法简单,反应过程温和、稳定,收率高,制得的产品纯度高。
背景技术
随着我国的电子信息产业的发展,对于化学电源的需求量越来越大,对其性能要求越来越高。由于锂离子电池具有体积小、安全性能好、重量轻、比能量高、电压高、寿命长、无污染等其它化学电源所无法比拟的优点,目前它已经成为手机、掌上电脑、笔记本电脑、***机数码照相机等便携式电子设备的主要电源。近年来,锂离子电池的基础研究和应用开发成为热点之一。锂电池中包括正极、负极、电解液和隔膜,但是,电池在充放电过程中,会释放热量,造成电池性能降低。而电池在充放电过程中,会释放热量,造成电池性能降低,现有的电解液添加剂在使用中遇到高温情况时电池的性能差,受损严重,未添加添加剂的电池高温循环50周后,会产生严重的容量降低,为了克服以上缺点,我们致力于研究一种电解液添加剂,能有效的提高高温情况下电池的性能。
苯磺酸酯衍生物是重要的有机合成中间体,应用广泛,我们经研究发现其可应用于电池电解液,但是其合成方法复杂,目前尚无一种方法将其制备成符合电池电解液的要求。
发明内容
本发明的目的是提供一种能够制备成符合用于电池电解液要求的苯磺 酸酯衍生物的合成方法。本发明为实现其目的采用的技术方案是:
苯磺酸酯衍生物的合成方法,
Figure PCTCN2018084559-appb-000001
为原料,与乙二醇或R 2-OH反应生成
Figure PCTCN2018084559-appb-000002
其中R 1选自烷基、H或F,R 2选自烯丙基、炔丙基或苯,具体操作为,将乙二醇或R 2-OH与二氯甲烷加入反应器中,搅拌下加入有机碱,有机碱的加入量为原料质量的1-5%,然后降温到15℃以下,开始滴加
Figure PCTCN2018084559-appb-000003
滴毕,回到室温继续搅拌0.5-1h,然后升温、回流反应1-2h,反应完全后,冰解处理,用5-10倍冰水进行冰解,分层,干燥浓缩,得到苯磺酸酯衍生物产品。
所述的有机碱为三乙胺或吡啶。
采用乙二醇时,控制
Figure PCTCN2018084559-appb-000004
与乙二醇的摩尔比为(2-2.3):1;采用R 2-OH时,控制
Figure PCTCN2018084559-appb-000005
与R 2-OH的摩尔比为(1-1.3):1。
将得到的苯磺酸酯衍生物进行重结晶(例如DMC),得到苯磺酸酯衍生物纯品。
本发明的有益效果是:
本发明合成方法简单、高效,适合工业化大生产,收率高达90%以上,纯度高达99.9%以上,通过工艺参数的控制、工序的搭配、三段式控温方式的处理和物料的选择,使制备的苯磺酸衍生物的水分含量少≤50ppm,酸值低≤50ppm,奠定了其应用后增强电池高低温稳定性的基础。
附图说明
图1是1-苯基苯磺酸酯的1H NMR图谱。
图2是1-苯基苯磺酸酯的13C NMR图谱。
图3是苯磺酸烯丙酯的1H NMR图谱。
图4是苯磺酸烯丙酯的13C NMR图谱。
图5是乙二醇二苯磺酸酯的1H NMR图谱。
图6是乙二醇二苯磺酸酯的13C NMR图谱。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
一、具体实施例
实施例1
分别将1.0mol苯酚和500ml二氯甲烷加入反应瓶中,搅拌下加入三乙胺,然后降温到15℃以下,开始滴加苯磺酰氯1.1mol,滴毕,回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品222.3g,计算产品的收率为95%。检测纯度为99.93%,水分含量为30ppm,酸值34ppm,测定密度为1.277g/cm 3,沸点为375.4℃760mmHg,其1H NMR图谱如图1所示,13C NMR图谱如图2所示。
合成路线为:
Figure PCTCN2018084559-appb-000006
实施例2
分别将1.0mol烯丙醇和500ml二氯甲烷加入反应瓶中,搅拌下加入吡啶,然后降温到15℃以下,开始滴加苯磺酰氯2.1mol,滴毕,回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品189.3g,计算产品的收率为95.5%。检测纯度为99.95%,水分含量为30ppm,酸值40ppm,其1H NMR图谱如图3所示,13C NMR图谱如图4所示。
合成路线为:
Figure PCTCN2018084559-appb-000007
实施例3
分别将1.0mol炔丙醇和500ml二氯甲烷加入反应瓶中,搅拌下加入三乙胺,然后降温到15℃以下,开始滴加苯磺酰氯2.1mol,滴毕,回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品187.77g,计算收率为95.8%。检测纯度为99.93%,水分含量为28ppm,酸值为36ppm,密度为1.244g/mL。
合成路线为:
Figure PCTCN2018084559-appb-000008
实施例4
分别将1.0mol乙二醇和500ml二氯甲烷加入反应瓶中,搅拌下加入吡啶,然后降温到15℃以下,开始滴加苯磺酰氯2.1mol,滴毕,回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品,计算产品的收率为94.3%。检测纯度为99.91%,水分含量为26ppm,酸值35ppm,密度为1.387g/cm 3,沸点为516.1℃、760mmHg,其1H NMR图谱如图5所示,13C图谱如图6所示。
合成路线为:
Figure PCTCN2018084559-appb-000009
实施例5
分别将1.0mol乙二醇和500ml二氯甲烷加入反应瓶中,搅拌下加入三乙胺,然后降温到15℃以下,开始滴加2,4,6-三甲基苯磺酰氯2.1mol,滴毕,回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品(CAS号128584-68-9),计算收率为94.6%。检测纯度为99.9%,水分含量38ppm,酸值45ppm,密度为1.239g/cm 3,沸点为588.8℃、760mmHg。
合成路线为:
Figure PCTCN2018084559-appb-000010
实施例6
分别将1.0mol乙二醇和500ml二氯甲烷加入反应瓶中,搅拌下加入吡啶,然后降温到15℃以下,开始滴加2,4,6-三氟苯磺酰氯2.1mol,滴毕, 回到室温继续搅拌1h,然后升温到回流继续反应2h,气相检测反应完全后,冰解处理,分层,干燥浓缩,得到粗品然后重结晶得到纯品,计算产品的收率为93.8%。检测其纯度为99.94%,水分含量为35ppm,酸值42ppm。
合成路线为:
Figure PCTCN2018084559-appb-000011
二、应用试验
1、将添加有电解液重量1%本发明苯磺酸酯衍生物的锂电池、不添加的锂电池空白对照、添加现有苯磺酸酯衍生物的锂电池分别于65℃循环后,进行对比,以实施例1所得产物为例,其中本发明苯磺酸酯衍生物的纯度为99.93%、水分含量为30ppm,酸值34ppm;现有苯磺酸衍生物对照1的纯度为99.93%,酸值150ppm、水分含量138ppm;现有苯磺酸衍生物对照2的纯度为95%,酸值150ppm、水分含量138ppm结果如下表1:
表1
Figure PCTCN2018084559-appb-000012
由表1可知,本发明苯磺酸酯衍生物可以提高电池的高温循环性能。
2、电池高温储存性能评价:60℃/30D和85℃/7D存储性能测试,下列表2是电池经手标准充放电后再60℃存放30天和85℃存放7天,随后测量电池的容量保持率和容量恢复率。
表2
Figure PCTCN2018084559-appb-000013
由表2可知,本发明苯磺酸酯衍生物可以提高电池的高温储存性能。
3、电池低温储存性能评价;下表3是将电池搁置在低温箱中,分别控制温度为-30℃或-40℃,搁置时间240min,随后测量电池的容量保持率。
表3
Figure PCTCN2018084559-appb-000014
由表3可知,本发明苯磺酸酯衍生物可以提高电池的低温储存性能。上述性能检测均以实施例1为例,其他苯磺酸酯衍生物的性能与上述性能基本一致,性能差值在2-4%上下浮动,说明苯磺酸酯衍生物的纯度、酸值和水分含量对其应用于电池后的电池性能存在了关键性的影响,同时表2和表3间接证明了本发明苯磺酸酯衍生物可以提高电池的放置稳定性,提高电池的使用寿命。

Claims (4)

  1. 苯磺酸酯衍生物的合成方法,其特征在于,
    Figure PCTCN2018084559-appb-100001
    为原料,与乙二醇或R 2-OH反应生成
    Figure PCTCN2018084559-appb-100002
    其中R 1选自烷基、H或F,R 2选自烯丙基、炔丙基或苯,具体操作为,将乙二醇或R 2-OH与二氯甲烷加入反应器中,搅拌下加入有机碱,然后降温到15℃以下,开始滴加
    Figure PCTCN2018084559-appb-100003
    滴毕,回到室温继续搅拌0.5-1h,然后升温、回流反应1-2h,反应完全后,冰解处理,分层,干燥浓缩,得到苯磺酸酯衍生物产品。
  2. 根据权利要求1所述的苯磺酸酯衍生物的合成方法,其特征在于,所述的有机碱为三乙胺或吡啶。
  3. 根据权利要求1所述的苯磺酸酯衍生物的合成方法,其特征在于,采用乙二醇时,控制
    Figure PCTCN2018084559-appb-100004
    与乙二醇的摩尔比为(2-2.3):1;采用R 2-OH时,控制
    Figure PCTCN2018084559-appb-100005
    与R 2-OH的摩尔比为(1-1.3):1。
  4. 根据权利要求1所述的苯磺酸酯衍生物的合成方法,其特征在于,将得到的苯磺酸酯衍生物进行重结晶,得到苯磺酸酯衍生物纯品。
PCT/CN2018/084559 2017-11-14 2018-04-26 苯磺酸酯衍生物的合成方法 WO2019095636A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018543310A JP2021502950A (ja) 2017-11-14 2018-04-26 ベンゼンスルホン酸エステル誘導体の合成方法
KR1020187023257A KR102144626B1 (ko) 2017-11-14 2018-04-26 벤젠설폰산염 유도체의 합성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711123956.0A CN107840812A (zh) 2017-11-14 2017-11-14 苯磺酸酯衍生物的合成方法
CN201711123956.0 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019095636A1 true WO2019095636A1 (zh) 2019-05-23

Family

ID=61678903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084559 WO2019095636A1 (zh) 2017-11-14 2018-04-26 苯磺酸酯衍生物的合成方法

Country Status (4)

Country Link
JP (1) JP2021502950A (zh)
KR (1) KR102144626B1 (zh)
CN (1) CN107840812A (zh)
WO (1) WO2019095636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851711A (zh) * 2020-06-28 2021-12-28 深圳市研一新材料有限责任公司 电池电解液及其中苯磺酸酯化合物的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840812A (zh) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 苯磺酸酯衍生物的合成方法
CN109004279A (zh) * 2018-07-18 2018-12-14 石家庄圣泰化工有限公司 环状硅酸酯化合物于电池电解液中的应用
CN109456235A (zh) * 2018-12-17 2019-03-12 苏州华道生物药业股份有限公司 一种苯磺酸炔丙酯的绿色合成方法
CN112939820A (zh) * 2021-02-26 2021-06-11 石家庄圣泰化工有限公司 一种苯磺酸酯衍生物的合成方法
CN114409574A (zh) * 2021-12-14 2022-04-29 寿光诺盟化工有限公司 一种苯磺酸烯丙酯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106588705A (zh) * 2016-12-11 2017-04-26 新沂市中诺新材料科技有限公司 一种通过纳米固体碱催化剂合成乙二醇二苯磺酸酯的工艺
CN106631911A (zh) * 2016-12-25 2017-05-10 西北大学 一种对甲苯磺酸酯的合成方法
CN107840812A (zh) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 苯磺酸酯衍生物的合成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122455A (ja) * 1982-12-29 1984-07-14 Nippon Synthetic Chem Ind Co Ltd:The P−トルエンスルホン酸(メタ)アリルエステルの製造法
JPH0336086A (ja) * 1989-07-04 1991-02-15 Nippon Kayaku Co Ltd 感熱記録材料
US5340489A (en) * 1992-06-05 1994-08-23 The Dow Chemical Company Aryl arenesulfonates and a method of lubrication using the aryl arenesulfonates
US5284944A (en) * 1992-06-30 1994-02-08 Lever Brothers Company, Division Of Conopco, Inc. Improved synthesis of 1,4,7-triazacyclononane
KR20010087388A (ko) 1998-11-13 2001-09-15 나까니시 히로유끼 벤젠설폰산 유도체 화합물, 그 제조 방법 및 그 용도
JP3445515B2 (ja) * 1999-01-29 2003-09-08 陽 田辺 アルコールのスルホニル化方法
JP5125379B2 (ja) * 2007-10-04 2013-01-23 宇部興産株式会社 ベンゼンスルホン酸エステルを含むリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
JP2011238373A (ja) * 2010-05-06 2011-11-24 Sony Corp 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
CN102226281B (zh) * 2011-06-14 2013-04-24 北京科技大学 一种无醛酸化缓蚀剂及制备方法
CN103936789B (zh) * 2014-04-25 2017-01-04 上海交通大学 季鏻磺酸盐类阻燃剂及其合成方法与用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106588705A (zh) * 2016-12-11 2017-04-26 新沂市中诺新材料科技有限公司 一种通过纳米固体碱催化剂合成乙二醇二苯磺酸酯的工艺
CN106631911A (zh) * 2016-12-25 2017-05-10 西北大学 一种对甲苯磺酸酯的合成方法
CN107840812A (zh) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 苯磺酸酯衍生物的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, QINGXIANG ET AL.: "Synthesis and Characterization of 1,2-bis (p-tolylsulfonato) ethane", JOURNAL OF WUHAN INSTITUTE OF TECHNOLOGY, vol. 29, no. 4, 15 July 2007 (2007-07-15), pages 8 - 10 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851711A (zh) * 2020-06-28 2021-12-28 深圳市研一新材料有限责任公司 电池电解液及其中苯磺酸酯化合物的制备方法

Also Published As

Publication number Publication date
JP2021502950A (ja) 2021-02-04
KR20190105493A (ko) 2019-09-17
KR102144626B1 (ko) 2020-08-28
CN107840812A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2019095636A1 (zh) 苯磺酸酯衍生物的合成方法
CN106025356B (zh) 一种电解液以及含有该电解液的锂离子电池
WO2018227689A1 (zh) 一种电解液及电池
TW200952236A (en) Redox shuttles for high voltage cathodes
CN106602141B (zh) 一种电解液及二次电池
WO2018099091A1 (zh) 一种电解液及二次电池
CN112271330B (zh) 电解液添加剂、电解液及储能装置
WO2020119807A1 (zh) 锂离子电池及装置
WO2020119798A1 (zh) 锂离子电池及装置
CN107973773A (zh) 全氟取代二磺酸酐的制备方法
WO2018086378A1 (zh) 电解液及二次电池
CN108987804A (zh) 含硅氧烷基的腈类化合物于电池电解液中的应用
JP4945784B2 (ja) インドロカルバゾール誘導体を含有する電極活物質
CN113754611A (zh) 一种1,3,2,4-二氧杂噻唑-2,2-二氧化物类化合物的合成方法
WO2024109206A1 (zh) 非水电解液及二次电池
CN108336408A (zh) 一种锂离子电池用非水电解液
CN108987825A (zh) 一种耐低温铅蓄电池的制作工艺
PL217139B1 (pl) Boranowe sole litu, sposób otrzymywania boranowych soli litu oraz elektrolit polimerowy z boranowymi solami litu
WO2020119799A1 (zh) 锂离子电池及装置
WO2020119809A1 (zh) 电解液、电池及装置
CN110098401B (zh) 钛酸锂/聚-3,4-乙烯二氧噻吩的制备方法及产品和应用
CN107722048A (zh) 环状磺酸硅基内酯及其制备方法
CN111349058A (zh) 1,4-双(甲基磺酰基)哌嗪的合成方法
WO2019095245A1 (zh) 一种二磺酸亚甲酯化合物的合成方法
US20240213538A1 (en) Non-aqueous electrolyte and lithium-ion battery comprising non-aqueous electrolyte

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187023257

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2018543310

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879418

Country of ref document: EP

Kind code of ref document: A1