WO2019095526A1 - 一种基于径向驱动力的旋转导向装置 - Google Patents

一种基于径向驱动力的旋转导向装置 Download PDF

Info

Publication number
WO2019095526A1
WO2019095526A1 PCT/CN2018/000085 CN2018000085W WO2019095526A1 WO 2019095526 A1 WO2019095526 A1 WO 2019095526A1 CN 2018000085 W CN2018000085 W CN 2018000085W WO 2019095526 A1 WO2019095526 A1 WO 2019095526A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft portion
rotating
rotating body
hydraulic drive
disposed
Prior art date
Application number
PCT/CN2018/000085
Other languages
English (en)
French (fr)
Inventor
刘庆波
底青云
王自力
陈文轩
杜建生
杨永友
何新振
刘洋
洪林峰
谢棋军
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US16/466,238 priority Critical patent/US11021911B2/en
Priority to EP18877600.9A priority patent/EP3611331B1/en
Priority to JP2019521696A priority patent/JP6855572B2/ja
Publication of WO2019095526A1 publication Critical patent/WO2019095526A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft

Definitions

  • the present application relates to the field of drilling, and in particular to a rotary guiding device based on a radial driving force.
  • drilling exploration is required.
  • the wellbore and the derrick are not aligned, but need to form a certain offset or bend. This formation is horizontal or vertical offset or other type.
  • the process of complex wells is called directional drilling.
  • the process of directional control of the bit direction during directional drilling is called guiding.
  • Modern directional drilling has two types: sliding guide and rotary guide. When sliding and guiding drilling, the drill string does not rotate; the bottom hole power drill (turbine drill, screw drilling tool) drives the drill bit to rotate.
  • the screw drilling tool and part of the drill string and the centralizer can only slide up and down the well wall against the well wall.
  • the rotary steerable drilling system is a rotary drive to drive the drill string, the drill string and the rotary guide tool are rolled on the well wall, and the rolling friction resistance is small.
  • the rotary steerable drilling system can control and adjust the slanting and orienting function during the drilling, and can be drilled while drilling.
  • the real-time completion of the slanting, slanting, stabilizing, and sloping, and the friction is small, the torque is small, the drilling speed is high, the drill bit is large, the aging is high, the cost is low, and the well shaft is easy to control.
  • US20140209389A1 discloses a rotary guiding tool comprising a non-rotating body, a rotating shaft comprising a deflectable unit, the deflecting unit being deflected by controlling the circumferential position of the eccentric bushing, thereby adjusting the bit Drilling direction.
  • a rotary guiding tool comprising a non-rotating body, a rotating shaft comprising a deflectable unit, the deflecting unit being deflected by controlling the circumferential position of the eccentric bushing, thereby adjusting the bit Drilling direction.
  • 6,170,107, 762 A1 which is a push-on rotary guiding technique comprising a pusher disposed around a drill rod and a hydraulic drive system for driving the pusher, hydraulically driven
  • the system selectively drives the pusher member to move between a push-on position and a non-push-over position, and the push-up member can be pushed against the well wall in a slap-off manner to generate a guiding force and change the direction of the drill hole.
  • Point-oriented and push-by-guide have their own characteristics.
  • the slope of the directional guide is relatively stable, which is less affected by the drilling pressure and formation conditions, but the slope of the slope is lower and needs to be higher. In the case of the slope, it is difficult to meet the requirements.
  • the slope of the push-by-guide is not stable, and it is greatly affected by the drilling pressure and formation conditions. When the drilling pressure is low and the hardness of the formation is appropriate, the slope is larger. The wellbore trajectory can be quickly adjusted, but the guiding ability is significantly reduced when the soft formation is encountered.
  • Hybrid steering tools have recently been proposed, but the driving methods for providing driving force have not been well implemented.
  • the difficulty of measurement and control and the energy consumption problem in the underground are also very important.
  • underground energy is mainly from mud power generation.
  • the prior art requires a high-slope-while-drilling rotary guided drive technology that is compact in structure and can reduce control difficulty.
  • a rotary driving device based on a radial driving force including:
  • a rotating shaft that rotationally drives the tool head, the rotating shaft including an upper shaft portion, a lower shaft portion, and a steerable portion, the upper shaft portion and the lower shaft portion being steerably connected by the steerable portion ;
  • non-rotating body attached to the upper shaft portion, the non-rotating body being substantially non-rotating with respect to the rotating shaft in a circumferential direction when the rotating shaft rotationally drives the tool head, the lower shaft portion a rib including at least partially axially coincident with the non-rotating body, the non-rotating body including at least three hydraulic drive mechanisms uniformly distributed in a circumferential direction, the at least three hydraulic drive mechanisms being adapted to be controllably respectively A radial driving force is generated that acts on the non-rotating rib to cause the lower shaft portion to deflect relative to the steerable portion.
  • the steerable portion comprises a cardan shaft or a flexible shaft.
  • the lower shaft portion is provided with a centralizer, and the centralizer is arranged such that when the hydraulic drive mechanism drives the rib to deflect, the centralizer is adapted to push against the well wall to make the The lower shaft portion is deflected relative to the steerable portion.
  • the hydraulic drive mechanism and the centralizer are respectively disposed on two sides of the steerable portion.
  • the method further includes a universal bearing disposed between the non-rotating body and the upper shaft portion, the universal bearing being disposed at a position substantially coincident with the hydraulic drive mechanism in the axial direction, wherein The steering portion is disposed on a side of the hydraulic drive mechanism and the centralizer away from the tool head.
  • the centralizer is detachably coupled to the lower shaft portion.
  • a universal bearing disposed between the non-rotating body and the upper shaft portion is further included.
  • the hydraulic drive mechanism includes a hydraulic cylinder arranged in a radial direction and a piston disposed in the hydraulic cylinder, and a push ball is disposed between the piston and the rib, and the piston passes the push Push the ball against the rib.
  • the non-rotating body comprises a circuit compartment, the circuit compartment being connected to the hydraulic drive mechanism.
  • the rib plate is pushed by a hydraulic drive mechanism capable of providing a radial drive force, and a guide force is generated by the lever bar principle.
  • the guiding device of the present application can provide a larger range of optional slopes to meet different formation requirements, and at the same time, for the pushing portion in the hybrid guiding, it is no longer driven by the entire drilling assembly, but only needs to be driven.
  • the lower shaft portion is rotationally guided around the rotatable portion, which greatly saves the energy consumption for guiding under the well.
  • Figure 1 is a rotary guide device according to a first embodiment of the present application
  • FIG. 2 is a rotary guiding device according to a second embodiment of the present application.
  • FIG. 3 is a rotation guide device according to a third embodiment of the present application.
  • the rotary guide disclosed herein relates to the application of oil field drilling or other exploration drilling.
  • Other system components associated with the rotary guide such as the derrick system, the power system, and the signal system, are not described extensively as common knowledge.
  • the embodiment proposes a rotary guiding device based on a radial driving force.
  • the rotating guiding device belongs to a hybrid rotating guide.
  • the mixing guiding device includes: rotating The shaft includes an upper shaft portion 1, a lower shaft portion 6, and a steerable portion 8, and a rotating shaft that rotationally drives the tool head B.
  • the upper shaft portion 1 and the lower shaft portion 2 are axially spaced apart, and the separation distance can provide a space for the rotation of the lower shaft portion 6 relative to the upper shaft portion 1.
  • the upper shaft portion 1 and the lower shaft portion 6 are steerably connected by the steerable portion 8.
  • the lower shaft portion 2 of the connecting tool head B can provide guidance in a partially movable manner without the need to drive the entire drill assembly.
  • the rotation guide includes a non-rotating body 2 mounted to the upper shaft portion 1, the non-rotating body 2 being substantially non-rotating in a circumferential direction with respect to the rotation shaft when the rotation shaft rotationally drives the tool head State, in the actual working environment, the non-rotating body 2 will rotate at a lower speed due to friction and inertia.
  • the lower shaft portion 6 includes a rib 61 that at least partially axially coincides with the non-rotating body 2.
  • the non-rotating body 2 includes at least three hydraulic drive mechanisms 5 uniformly distributed in the circumferential direction. In general, the hydraulic drive mechanism may be three or four.
  • the at least three hydraulic drive mechanisms 5 are adapted to controllably generate a radial drive force respectively acting on the non-rotating weighted rib such that the lower shaft portion is opposite to the The steerable portion produces a deflection.
  • the hydraulic driving mechanism 5 is used to actively apply a driving force to the ribs to generate a controllable bar force, and there is no redundancy between the driving process active member and the passive component.
  • the hydraulic drive mechanism includes a hydraulic cylinder arranged in a radial direction and a piston disposed in the hydraulic cylinder.
  • the steerable portion is a universal joint mechanism 8, and it will be understood by those skilled in the art that similar structures capable of providing a guiding function can be substituted for the above-described universal joint transmission structure, such as flexibility. axis.
  • the lower shaft portion 6 is provided with a lower centralizer 7 which is arranged such that when the hydraulic drive mechanism drives the rib to deflect, the lower centralizer 7 is adapted to be pushed Residing the well wall to cause deflection of the lower shaft portion relative to the steerable portion.
  • the outer surface of the lower centralizer 7 is coated with a wear-resistant material, such as a cemented carbide material or a poly-diamond composite material.
  • the lower centralizer 7 can protect other parts of the drill during the drilling process. It is not in contact with the well wall to avoid wear.
  • the lower shaft portion 6 firstly functions as a universal joint member.
  • the center of the 8 is rotated as a fulcrum.
  • the lower centralizer 7 on the outward deflection side is pushed against the well wall, and the fulcrum becomes the contact point between the lower centralizer 7 and the well wall, as shown in FIG.
  • the hydraulic drive mechanism 5 and the lower centralizer 7 are respectively disposed on both sides of the universal transmission member 8, so that the radial driving force acts on the torque generated by the lower shaft portion 6 and the lower centralizer 7 acts on the well wall
  • the resulting torque directions are consistent. That is to say, the lower centralizer 7 acts as a limit structure for the directional guiding action, and at the same time improves the stress state of the universal transmission member and increases its service life.
  • the lower centralizer 7 is detachably mounted on the lower shaft portion 6, and the lower centralizer 7 is mounted on the lower shaft portion 6
  • the diameter is optional.
  • the outer diameter of the lower centralizer 7 largely determines the angle of the rotation guide (ie, the angle at which the tool head and the upper shaft are deflected).
  • the rotary guide device in this embodiment is generally similar to the guide device in the first embodiment, and the main difference is that it further includes a universal bearing 11 disposed between the non-rotating body and the upper shaft portion, the Providing the bearing 11 at a position substantially coincident with the hydraulic drive mechanism in the axial direction, the steerable portion 8 being disposed on a side of the hydraulic drive mechanism and the centralizer away from the tool head.
  • the position of the steering portion 8 is disposed on the left side of the hydraulic drive mechanism 5 and the lower centralizer 7, and at the same time, the support structure of the non-rotating body 2 is provided with a universal bearing 11 on the side close to the hydraulic drive mechanism 5, the universal joint
  • the bearing 11 is capable of withstanding and transmitting radial and axial forces.
  • a directing and pushing action can be produced on the lower shaft portion 6, respectively.
  • the hydraulic drive mechanism 5 When the hydraulic drive mechanism 5 generates a radial force, a directing and pushing action can be produced on the lower shaft portion 6, respectively.
  • the hydraulic pressure is applied.
  • the hydraulic drive mechanism 5 can transmit a downward downward force to the core of the lower shaft portion 6 via the non-rotating body 2 and the universal bearing 11, and the acting force acts on the lower shaft portion 6
  • the core portion is generated such that the lower shaft portion 6 is deflected downward about the universal transmission member 8 to form a directional guide.
  • the upper lower centralizer 7 gradually contacts and pushes against the well wall, resulting in downward
  • the reaction force further generates a torque that causes the lower shaft portion 6 to deflect downward about the universal transmission member 8, forming a push-type guide.
  • the rotary guide device in this embodiment is generally similar to the guide device in the first embodiment, the main difference being that the universal joint member 8 as the steerable portion is a separate member, the universal joint member 8 and the upper shaft portion 1 and the lower portion
  • the shaft portion 6 is axially connectable, for example, by means of a keyed connection, while the lower shaft portion 6 is deflectable relative to the universal transmission member 8, the universal transmission member 8
  • a seal 11 is provided between the shaft portions 6 as described above.
  • a circuit compartment 12 that is, a primary circuit compartment is disposed at a position of the upper shaft portion 1 close to the non-rotating body 2, and a circuit compartment 3 (ie, a secondary circuit compartment) disposed on the non-rotating body 2 is disposed at Near the end of the upper shaft portion, power transmission and data communication can be realized between the primary circuit compartment 12 and the secondary circuit compartment 3, and during operation, there is relative motion between the non-rotating body 2 and the upper shaft portion 1.
  • the electric power in the primary circuit compartment 12 cannot be directly supplied to the secondary circuit compartment 3 in the non-rotating body 2.
  • a transmission device (not shown) is installed between the upper shaft portion 1 and the non-rotating body 2,
  • the transmission device may be a contact type multi-core to point slip ring, or may be a non-contact type of primary and secondary sides of electrical energy and signal transmission, and realize the relationship between the primary circuit compartment 12 and the secondary circuit compartment 3 by using electromagnetic induction principle. Power and data communications.
  • the hydraulic drive mechanism includes a hydraulic cylinder arranged in a radial direction and a piston disposed in the hydraulic cylinder, and a push ball 51 is disposed between the piston and the rib, and the piston passes through the The push ball 51 pushes against the rib 61.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

一种基于径向驱动力的旋转导向装置,包括:旋转轴,所述旋转轴旋转驱动工具头,所述旋转轴包括上轴部(1)、下轴部(6)和可转向部(8),所述上轴部(1)和所述下轴部(6)通过所述可转向部(8)可转向地连接;安装于所述上轴部(1)的非旋转体(2),所述非旋转体(2)在所述旋转轴旋转驱动所述工具头时在周向上相对于所述旋转轴大体上呈非旋转状态,所述下轴部(6)包括与所述非旋转体至少部分地轴向重合的肋部(61),所述非旋转体(2)包括在周向上均匀分布的至少三个液压驱动机构(5),所述至少三个液压驱动机构(5)适于分别可控地产生径向驱动力,所述径向驱动力作用于与所述非旋转体(2)重合的肋部(61)以使得所述下轴部(6)相对于所述可转向部(8)产生偏转。

Description

一种基于径向驱动力的旋转导向装置 技术领域
本申请涉及钻探领域,尤其涉及一种基于径向驱动力的旋转导向装置。
背景技术
为了获取地下贮藏的自然资源需要进行钻井勘探,在很多情况下,井孔与井架都不是对齐的,而是需要形成一定的偏移或者弯曲,这种形成水平或者竖直偏移或者其他类型的复杂井孔的过程叫做定向钻井。而在定向钻井过程中对钻头方向进行方向控制的过程叫做导向。现代导向钻井有滑动导向与旋转导向两种类型。滑动导向钻井时,钻柱不旋转;用井底动力钻具(涡轮钻具、螺杆钻具)带动钻头旋转。螺杆钻具及部分钻柱与扶正器贴靠井壁只能在井壁上下滑动。它的缺点是摩阻大、有效钻压、扭矩与功率小,钻速低、井眼呈螺旋状不光滑不干净、井身质量差、易事故,往往被迫启动钻盘采用“复合钻进”,而“复合钻进”往往只能有限使用。滑动导向的极限井深小于4000m左右。要较大改变井斜方位时,需起钻改变钻柱结构。旋转导向钻井***是转盘驱动钻柱旋转,钻柱及旋转导向工具等在井壁上滚动,滚动摩擦阻力小,旋转导向钻井***能在钻进中控制调整其造斜与定向功能,能随钻实时完成造斜、增斜、稳斜、降斜,且摩阻小、扭矩小、钻速高、钻头进尺多、时效高、成本低、井身平滑井轨易控。极限井身可达15km,是钻复杂结构井和海油陆系及超大位移井(10km)的新式武器。
常用的旋转导向技术也有两种,一种是指向式导向,一种是推靠式导向。美国公司哈里伯顿获得的中国授权专利CN104619944B公开了一种指向式导向工具,其提供了模块化的致动器、导向工具和旋转式导向钻井***,模块化致动器包括筒部,构造为耦接到外壳的外周。蓄液器容置在筒部中,液压致动的 致动器滑动地设置在筒部内,在激活位置和未激活位置之间移动,使得致动器活塞选择性地挤压驱动轴的斜坡面从而改变钻柱的方向。美国专利申请文件US20140209389A1公开了一种旋转导向工具,其包括一个非旋转体,一个包括可偏转单元的旋转轴,通过控制偏芯轴套的周向位置使得可偏转单元进行偏转,进而调整钻头的钻孔方向。美国专利申请文件US20170107762A1公开了另一种类型的旋转导向技术,即推靠式旋转导向技术,其包括设置在钻杆四周的推靠件和用于驱动这些推靠件的液压驱动***,液压驱动***可选择地驱动推靠件在推靠位置和非推靠位置之间移动,在推靠位置时推靠件能够以拍打的方式推靠井壁从而产生导向力并改变钻孔的方向。
指向式导向和推靠式导向具有各自的特点,一般而言,指向式导向的造斜率是比较稳定的,受钻压和地层条件影响较小,但是其造斜率极值较低,在需要高造斜率的情况下难以满足要求,相对而言,推靠式导向的造斜率却不太稳定,受到钻压和地层条件影响较大,当钻压较低并且地层硬度合适时,造斜率较大,可以快速调整井眼轨迹,但是遇到过软地层时导向能力降低明显。
近期也有人提出混合式导向工具,但是对于提供驱动力的驱动方式一直没有得到很好的实现方式。除此以外,在井下的测控难度和能耗问题同样是非常重要的,一方面,当井下部件随着钻杆转动时造成相应部件的测量困难也是不能忽视的问题,如何使得数据测量变得简单是一项重要课题;另一方面,井下的能源主要来自于泥浆发电,除了保证井下的电子元件的工作外,还需要提供导向驱动装置所需要的能量,如何尽可能地以较低的功耗提供导向驱动同样十分重要。
因此,现有技术需要一种结构紧凑、可降低控制难度的、高造斜率的随钻旋转导向驱动技术。
发明内容
为了解决上述问题,本申请提出了一种基于径向驱动力的旋转导向装置, 包括:
旋转轴,所述旋转轴旋转驱动工具头,所述旋转轴包括上轴部、下轴部和可转向部,所述上轴部和所述下轴部通过所述可转向部可转向地连接;
安装于所述上轴部的非旋转体,所述非旋转体在所述旋转轴旋转驱动所述工具头时在周向上相对于所述旋转轴大体上呈非旋转状态,所述下轴部包括与所述非旋转体至少部分地轴向重合的肋部,所述非旋转体包括在周向上均匀分布的至少三个液压驱动机构,所述至少三个液压驱动机构适于分别可控地产生径向驱动力,所述径向驱动力作用于与所述非旋转体重合的肋部以使得所述下轴部相对于所述可转向部产生偏转。
优选地,所述可转向部包括万向轴或者柔性轴。
优选地,所述下轴部上设置有扶正器,所述扶正器如此地设置以使得所述液压驱动机构驱动所述肋部偏转时,所述扶正器适于推靠井壁以使得所述下轴部相对于所述可转向部产生偏转。
优选地,所述液压驱动机构和所述扶正器分别设置于所述可转向部两侧。
优选地,还包括设置于所述非旋转体和所述上轴部之间的万向轴承,所述万向轴承设置于轴向上大体与所述液压驱动机构重合的位置处,所述可转向部设置于所述液压驱动机构和所述扶正器远离所述工具头一侧。
优选地,所述扶正器与所述下轴部可拆卸地连接。
优选地,还包括设置于所述非旋转体和所述上轴部之间的万向轴承。
优选地,所述液压驱动机构包括沿径向布置的液压缸以及设置于所述液压缸内的活塞,所述活塞与所述肋部之间设置有推靠球,所述活塞通过所述推靠球推靠所述肋部。
优选地,所述非旋转体内包括电路仓,所述电路仓与所述液压驱动机构连接。
通过本申请提出的旋转导向装置,通过能够提供径向驱动力的液压驱动机构来推靠肋板,利用杆杠原理对工具头产生导向力。同时本申请的导向装置能 够提供更大的可选造斜率范围,满足不同地层要求,同时对于混合式导向中的推靠部分而言,其带动的不再是整个钻具组件,而只需要带动下轴部绕可旋转部进行转动导向,极大的节省了井下用于导向的能耗。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请第一实施例涉及的旋转导向装置;
图2为本申请第二实施例涉及的旋转导向装置;
图3为本申请第三实施例涉及的旋转导向装置。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例的方式进行详细说明。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其他任何类似的描述意在涵盖非排他行的包含,从而使得包括一系列的过程、方法、物品或者设备不仅仅包括这些要素,而且包括没有明确列出的其他要素,或者还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”等限定的要素,并不排除在包括所述要素外,还包括另外的相同要素。
本申请公开的旋转导向装置涉及到油田钻井或者其他勘探钻井的应用场景,与旋转导向装置相关的其它***部件,例如井架***,动力***以及信号***作为公知常识在此不做过多描述。
实施例1
如图1所示,本实施例提出了一种基于径向驱动力的旋转导向装置,在该实施例中,旋转导向装置属于混合式的旋转导向,具体来说,该混合导向装置包括:旋转轴,所述旋转轴包括上轴部1、下轴部6和可转向部8,旋转轴,所述旋转轴旋转驱动工具头B。如图1所示,所述上轴部1和所述下轴部2在轴向上间隔开,该间隔距离能够为所述下轴部6相对于所述上轴部1的转动提供空间,所述上轴部1和所述下轴部6通过所述可转向部8可转向地连接。从而在驱动力作用下,连接工具头B的下轴部2能够以局部活动的方式提供导向,而不再需要对整个钻具组件进行驱动。
旋转导向装置包括安装于所述上轴部1的非旋转体2,所述非旋转体2在所述旋转轴旋转驱动所述工具头时在周向上相对于所述旋转轴大体上呈非旋转状态,在实际工作环境中,所述的非旋转体2会由于摩擦力和惯性作用下以较低的速度转动。所述下轴部6包括与所述非旋转体2至少部分地轴向重合的肋部61。如图1所示,所述非旋转体2包括在周向上均匀分布的至少三个液压驱动机构5,在一般情况下,所述的液压驱动机构可以是3个或者4个。所述至少三个液压驱动机构5适于分别可控地产生径向驱动力,所述径向驱动力作用于与所述非旋转体重合的肋部以使得所述下轴部相对于所述可转向部产生偏转。不同于现有技术的是,本实施例中利用液压驱动机构5主动地向所述肋部施加驱动力,以产生可控制的杆杠作用力,驱动过程主动件与被动件之间没有冗余自由度,同时以径向布置的液压缸配合轴向重叠的方式形成的杆杠驱动在钻具组件内形成紧凑的驱动结构。所述液压驱动机构包括沿径向布置的液压缸以及设置于所述液压缸内的活塞。
在图1中展示的实施方式中,所述可转向部为万向传动机构8,本领域技术人员可以理解的是,类似的能够提供导向功能的结构均可以代替上述万向传动结构,例如柔性轴。
优选地,所述下轴部6上设置有下扶正器7,所述下扶正器7如此地设置以使得所述液压驱动机构驱动所述肋部偏转时,所述下扶正器7适于推靠井壁 以使得所述下轴部相对于所述可转向部产生偏转。所述下扶正器7外表面涂覆有耐磨材料,例如硬质合金材料或者聚金刚石复合材料,一方面,在本实施例中,下扶正器7能够保护钻具其他部分在钻进过程中不与井壁接触从而避免磨损,在另一方面,对于本实施例旋转导向非常重要的是,在液压驱动机构向肋板61施加径向作用力时,首先下轴部6以万向传动件8中心作为支点进行旋转,运动到一定程度后,向外偏转一侧的下扶正器7与井壁发生推靠,支点变为了下扶正器7与井壁的接触点,如图1中所示,液压驱动机构5和所述下扶正器7分别设置在万向传动件8的两侧,从而有径向驱动力作用于下轴部6所产生的转矩和下扶正器7作用于井壁所产生的转矩方向是一致的。也就是说,下扶正器7作为指向式导向作用的限位结构产生作用,同时又改善了万向传动件的受力状况,增加了其使用寿命。
在图中没有详细展示的实施方式中,所述下扶正器7是可拆卸地安装在所述下轴部6上的,并且所述的下轴部6上所安装的下扶正器7的外径是可选的,在旋转导向时,所述的下扶正器7的外径在很大程度上决定了旋转导向的指向角(即工具头与上轴部发生偏转的角度)的大小,下扶正器7的直径越大,所能产生的指向角越大,下扶正器7的直径越小,所能产生的指向角也就越小,从而可以根据不同的造斜率需要,选择不同直径的下扶正器7。
实施例2
本实施例中的旋转导向装置总体上与实施例1中的导向装置类似,主要的不同在于还包括设置于所述非旋转体和所述上轴部之间的万向轴承11,所述万向轴承11设置于轴向上大体与所述液压驱动机构重合的位置处,所述可转向部8设置于所述液压驱动机构和所述扶正器远离所述工具头一侧.具体地,可转向部8的位置设置在液压驱动机构5和下扶正器7左侧,与此同时,非旋转体2的支撑结构在靠近液压驱动机构5一侧设置有万向轴承11,所述的万向轴承11能够承受和传递径向力和轴向力。当液压驱动机构5产生径向作用力时,能够分别在下轴部6上产生指向式和推靠式的作用,举例来说,当图2中上方的 液压驱动机构5向外驱动时,在液压缸逐渐往外伸出的过程中,首先液压驱动机构5能够经由非旋转体2和万向轴承11向下轴部6的芯部传递方向向下的作用力,该作用力作用于下轴部6的芯部会产生使得下轴部6绕万向传动件8向下偏转,形成指向式导向,随着下轴部6的偏转,上方的下扶正器7逐渐接触并推靠井壁,产生向下反作用力,从而进一步产生使得下轴部6绕万向传动件8向下偏转的转矩,形成推靠式导向。
实施例3
本实施例中的旋转导向装置总体上与实施例1中的导向装置类似,主要的不同在于作为可转向部的万向传动件8是独立构件,万向传动件8与上轴部1和下轴部6可轴向传动地连接,例如通过键连接的方式实现旋转传动,同时,所述下轴部6可相对于所述万向传动件8发生偏转,所述万向传动件8与所述下轴部6之间设置有密封件11。
在所述上轴部1靠近所述非旋转体2的位置处设置有电路仓12,即初级电路仓,设置在所述非旋转体2上的电路仓3(即次级电路仓)设置在靠近所述上轴部的端部处,初级电路仓12和次级电路仓3之间能够实现电力传输和数据通信,工作过程中,由于非旋转体2与上轴部1之间存在相对运动,初级电路仓12内的电力不能直接供给到非旋转体2内的次级电路仓3,本申请在上轴部1与非旋转体2之间安装有传输装置(图中未示出),该传输装置可以是接触式的多芯到点滑环,也可以是非接触式的电能及信号传输的原边和副边,利用电磁感应原理实现初级电路仓12和次级电路仓3之间的电力和数据通信。
另外一方面,所述液压驱动机构包括沿径向布置的液压缸以及设置于所述液压缸内的活塞,所述活塞与所述肋部之间设置有推靠球51,所述活塞通过所述推靠球51推靠所述肋部61。
说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较 简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (8)

  1. 一种基于径向驱动力的旋转导向装置,其特征在于,包括:
    旋转轴,所述旋转轴旋转驱动工具头,所述旋转轴包括上轴部、下轴部和可转向部,所述上轴部和所述下轴部通过所述可转向部可转向地连接;
    安装于所述上轴部的非旋转体,所述非旋转体在所述旋转轴旋转驱动所述工具头时在周向上相对于所述旋转轴大体上呈非旋转状态,所述下轴部包括与所述非旋转体至少部分地轴向重合的肋部,所述非旋转体包括在周向上均匀分布的至少三个液压驱动机构,所述至少三个液压驱动机构适于分别可控地产生径向驱动力,所述径向驱动力作用于与所述非旋转体重合的肋部以使得所述下轴部相对于所述可转向部产生偏转。
  2. 根据权利要求1所述的旋转导向装置,其特征在于,
    所述可转向部包括万向轴或者柔性轴。
  3. 根据权利要求1所述的旋转导向装置,其特征在于,
    所述下轴部上设置有扶正器,所述扶正器如此地设置以使得所述液压驱动机构驱动所述肋部偏转时,所述扶正器适于推靠井壁以使得所述下轴部相对于所述可转向部产生偏转。
  4. 根据权利要求3所述的旋转导向装置,其特征在于,
    所述液压驱动机构和所述扶正器分别设置于所述可转向部两侧。
  5. 根据权利要求3所述的旋转导向装置,其特征在于,
    还包括设置于所述非旋转体和所述上轴部之间的万向轴承,所述万向轴承设置于轴向上大体与所述液压驱动机构重合的位置处,所述可转向部设置于所述液压驱动机构和所述扶正器远离所述工具头一侧。
  6. 根据权利要求3-5中任意一项所述的旋转导向装置,其特征在于,
    所述扶正器与所述下轴部可拆卸地连接。
  7. 根据权利要求1所述的旋转导向装置,其特征在于,
    所述液压驱动机构包括沿径向布置的液压缸以及设置于所述液压缸内的 活塞,所述活塞与所述肋部之间设置有推靠球,所述活塞通过所述推靠球推靠所述肋部。
  8. 根据权利要求1所述的旋转导向装置,其特征在于,
    所述非旋转体内包括电路仓,所述电路仓与所述液压驱动机构连接。
PCT/CN2018/000085 2017-11-14 2018-03-02 一种基于径向驱动力的旋转导向装置 WO2019095526A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/466,238 US11021911B2 (en) 2017-11-14 2018-03-02 Rotary guiding device based on radial driving force
EP18877600.9A EP3611331B1 (en) 2017-11-14 2018-03-02 Rotary steering device based on radial driving force
JP2019521696A JP6855572B2 (ja) 2017-11-14 2018-03-02 径方向の駆動力に基づく回転誘導装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711119970.3A CN108005579B (zh) 2017-11-14 2017-11-14 一种基于径向驱动力的旋转导向装置
CN201711119970.3 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019095526A1 true WO2019095526A1 (zh) 2019-05-23

Family

ID=62052362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000085 WO2019095526A1 (zh) 2017-11-14 2018-03-02 一种基于径向驱动力的旋转导向装置

Country Status (5)

Country Link
US (1) US11021911B2 (zh)
EP (1) EP3611331B1 (zh)
JP (1) JP6855572B2 (zh)
CN (1) CN108005579B (zh)
WO (1) WO2019095526A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127809A (zh) * 2019-06-06 2020-12-25 万晓跃 旋转导向装置
CN110617011A (zh) * 2019-06-06 2019-12-27 万晓跃 一种基于钻压转向传递结构的旋转导向钻井工具
CN111677445B (zh) * 2020-06-17 2020-12-29 中国科学院地质与地球物理研究所 一种推靠式旋转导向钻井***
WO2022026559A1 (en) * 2020-07-31 2022-02-03 Baker Hughes, A Ge Company, Llc A rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
CN112211557B (zh) * 2020-10-20 2023-04-25 长江大学 一种双偏心环驱动的推靠式旋转导向工具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266940A (zh) * 1999-03-15 2000-09-20 施卢默格控股有限公司 使用液压伺服环路的旋转式可转向钻井***
US20090166089A1 (en) * 2006-03-27 2009-07-02 Francois Millet Drilling Tool Steering Device
CN101772614A (zh) * 2007-06-26 2010-07-07 普拉德研究及开发股份有限公司 旋转导向钻井***
CN203383731U (zh) * 2013-08-02 2014-01-08 中国石油化工集团公司 推靠指向式旋转导向钻井装置
US20140209389A1 (en) 2013-01-29 2014-07-31 Schlumberger Technology Corporation High Dogleg Steerable Tool
CN104619944A (zh) 2012-06-12 2015-05-13 哈利伯顿能源服务公司 模块化旋转式可导向致动器、导向工具、及具有模块化致动器的旋转式可导向钻井***
US20170107762A1 (en) 2015-10-20 2017-04-20 Weatherford Technology Holdings, Llc Pulsating Rotary Steerable System
CN107060643A (zh) * 2016-12-16 2017-08-18 中国科学院地质与地球物理研究所 一种高造斜率混合式旋转导向***及其控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343272Y2 (zh) * 1984-09-14 1988-11-11
US6533040B2 (en) * 1999-12-03 2003-03-18 Michael Gondouin Multi-function apparatus for adding a branch well sealed liner and connector to an existing cased well at low cost
US9145736B2 (en) * 2010-07-21 2015-09-29 Baker Hughes Incorporated Tilted bit rotary steerable drilling system
US8333254B2 (en) * 2010-10-01 2012-12-18 Hall David R Steering mechanism with a ring disposed about an outer diameter of a drill bit and method for drilling
CN102606073A (zh) * 2012-04-06 2012-07-25 西安石油大学 一种指向式旋转导向钻井工具的导向机构
JP5879191B2 (ja) * 2012-04-27 2016-03-08 東亜建設工業株式会社 削孔位置計測用プローブ
WO2014098842A1 (en) * 2012-12-19 2014-06-26 Halliburton Energy Services, Inc. Directional drilling using a rotating housing and a selectively offsetable drive shaft
EP2920399B1 (en) * 2012-12-21 2018-11-21 Halliburton Energy Services, Inc. Directional control of a rotary steerable drilling assembly using a variable flow fluid pathway
US9828804B2 (en) * 2013-10-25 2017-11-28 Schlumberger Technology Corporation Multi-angle rotary steerable drilling
CA2955742C (en) * 2014-09-16 2018-05-15 Halliburton Energy Services, Inc. Hybrid downhole motor with adjustable bend angle
WO2016060683A1 (en) * 2014-10-17 2016-04-21 Halliburton Energy Services, Inc. Rotary steerable system
US10378283B2 (en) * 2016-07-14 2019-08-13 Baker Hughes, A Ge Company, Llc Rotary steerable system with a steering device around a drive coupled to a disintegrating device for forming deviated wellbores

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266940A (zh) * 1999-03-15 2000-09-20 施卢默格控股有限公司 使用液压伺服环路的旋转式可转向钻井***
US20090166089A1 (en) * 2006-03-27 2009-07-02 Francois Millet Drilling Tool Steering Device
CN101772614A (zh) * 2007-06-26 2010-07-07 普拉德研究及开发股份有限公司 旋转导向钻井***
CN104619944A (zh) 2012-06-12 2015-05-13 哈利伯顿能源服务公司 模块化旋转式可导向致动器、导向工具、及具有模块化致动器的旋转式可导向钻井***
US20140209389A1 (en) 2013-01-29 2014-07-31 Schlumberger Technology Corporation High Dogleg Steerable Tool
CN105051316A (zh) * 2013-01-29 2015-11-11 普拉德研究及开发股份有限公司 高狗腿导向工具
CN203383731U (zh) * 2013-08-02 2014-01-08 中国石油化工集团公司 推靠指向式旋转导向钻井装置
US20170107762A1 (en) 2015-10-20 2017-04-20 Weatherford Technology Holdings, Llc Pulsating Rotary Steerable System
CN107060643A (zh) * 2016-12-16 2017-08-18 中国科学院地质与地球物理研究所 一种高造斜率混合式旋转导向***及其控制方法

Also Published As

Publication number Publication date
EP3611331B1 (en) 2021-02-17
EP3611331A4 (en) 2020-05-06
EP3611331A1 (en) 2020-02-19
CN108005579A (zh) 2018-05-08
CN108005579B (zh) 2019-08-16
JP6855572B2 (ja) 2021-04-07
US11021911B2 (en) 2021-06-01
JP2020502394A (ja) 2020-01-23
US20200087986A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2019095526A1 (zh) 一种基于径向驱动力的旋转导向装置
WO2019095527A1 (zh) 一种旋转导向装置
WO2019095525A1 (zh) 一种混合式旋转导向装置
WO2022033609A2 (zh) 短半径钻井工具
US10233694B2 (en) Dynamic inwardly eccentrically-placed directional drill bit type rotation guidance apparatus
US6659201B2 (en) Method and apparatus for directional actuation
JP6676218B2 (ja) 非回転スリーブの回転防止装置及び回転誘導装置
EP2242893B1 (en) Steerable system
EP1857631A1 (en) Directional control drilling system
US20220049553A1 (en) Rotary guiding tool and transmission device
US20120037428A1 (en) System and method for drilling a deviated wellbore
CN111173452B (zh) 一种夹心筒结构的静态偏置旋转导向钻井工具
US6763900B2 (en) Directional well drilling
CN108661558B (zh) 动态可偏旋转导向工具
CN112855024A (zh) 旋转导向钻井工具
GB2373272A (en) A variable orientation downhole tool
CN214303693U (zh) 一种液控式导向钻井装置
CN115874929B (zh) 复杂难钻地层双推联控旋转导向钻井***及钻井方法
CN114658361A (zh) 钻头控向装置及定向取芯钻具
CN117432333A (zh) 一种超短半径定向钻井工具及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018877600

Country of ref document: EP

Effective date: 20191111

NENP Non-entry into the national phase

Ref country code: DE