WO2019093592A1 - 형상적응형 전기접착 그리퍼 - Google Patents

형상적응형 전기접착 그리퍼 Download PDF

Info

Publication number
WO2019093592A1
WO2019093592A1 PCT/KR2018/002271 KR2018002271W WO2019093592A1 WO 2019093592 A1 WO2019093592 A1 WO 2019093592A1 KR 2018002271 W KR2018002271 W KR 2018002271W WO 2019093592 A1 WO2019093592 A1 WO 2019093592A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
conductor
gripper
module
adaptation module
Prior art date
Application number
PCT/KR2018/002271
Other languages
English (en)
French (fr)
Inventor
황혜숙
윤동원
김형철
김상연
진경복
Original Assignee
주식회사 다우에프에이
재단법인대구경북과학기술원
한국기술교육대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180021117A external-priority patent/KR102017984B1/ko
Application filed by 주식회사 다우에프에이, 재단법인대구경북과학기술원, 한국기술교육대학교 산학협력단 filed Critical 주식회사 다우에프에이
Priority to CN201880000922.9A priority Critical patent/CN110023045A/zh
Priority to US16/023,019 priority patent/US10875191B2/en
Publication of WO2019093592A1 publication Critical patent/WO2019093592A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors

Definitions

  • the present invention relates to a shape-adaptive electric bonding gripper, and more particularly, to a shape-adaptive electric bonding gripper for picking up an irregular object having various shapes, sizes, and materials.
  • Robots are widely used to perform various tasks such as welding, assembling, and painting in industrial manufacturing sites.
  • the robot has been widely used in all industries and service fields including personal service areas providing services in the vicinity of human life, and professional service areas providing specialized services such as medical care.
  • a gripper is required to pick up an irregular object, that is, an object having various shapes, sizes, and materials, in order to realize automation of logistics in the picking robot.
  • the gripper includes a mechanical gripper that can mechanically hold an object by having a plurality of fingers driven by hydraulic pressure or pneumatic pressure, and a vacuum gripper capable of holding an object by generating a vacuum on a joint surface between the gripper and the object. Also known is an electric bonding gripper in which an object is bonded using an electrostatic force generated when a current flows through the conductor.
  • the mechanical grippers and the vacuum grippers have limitations in attracting objects of various sizes and shapes without damaging them with proper pressure, which is inefficient for use in picking of irregular objects.
  • the conventional electric gripper grippers It is required to have a large contact area and a large voltage to be applied to the picking of an irregular object.
  • a shape-adaptive electro-adhesion gripper includes a body, a shape adaptation module disposed on the body, the rigidity of which can be variably controlled, and an electro-adhesive module disposed on the shape adaptation module.
  • the shape-adaptation module includes a magnetorheological elastomer, and the shape changes according to the shape of an external object to be contacted when the magnetic field is not applied.
  • the shape adaptation module includes an electrically elastomeric elastomer, and the shape changes in accordance with the shape of the external object to be contacted when the electric field is not applied. When the electric field is applied, the rigidity of the elastomer elastomer increases, .
  • the electrical bonding module includes an insulator and a conductor disposed on the insulator, and can be bonded to an external object by an electrostatic force generated when a voltage is applied to the conductor.
  • the conductor may include a first conductor and a second conductor, and the first conductor and the second conductor may be disposed apart from each other on the insulator, and the first conductor and the second conductor And can be bonded to an external object by an electrostatic force generated when different first voltages and second voltages are applied.
  • the body may be connected to the gripper driving unit so as to be rotatable in two directions.
  • a shape-adaptive electro-adhesive gripper includes a plurality of fingers, a shape adaptation module disposed on each of a plurality of fingers and capable of being variably controlled in rigidity, and an electric motor Adhesive module.
  • the plurality of fingers may each include a joint adapted to bend in a direction in which the shape adapting module and the electro-adhesive module are disposed.
  • the plurality of fingers may be connected to a common axis, and the plurality of fingers may be respectively connected to the finger drive unit so as to be rotatable about the axis.
  • an irregular shaped object can be picked up by a simple structure including a shape adaptation module and an electric bonding module.
  • FIG. 1 is a view of a robot having a shape adaptive electrical adhesion gripper according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a shape adaptive electrical bond gripper according to an embodiment of the present invention.
  • Figure 3 is a schematic representation of the body of a shape adaptive electrical bond gripper according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an electrical bonding module of a form adaptive electrical bonding gripper in accordance with an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the placement of various conductors in an electrical bonding module of a shape adaptive electrical bonding gripper according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state where an object is picked up using a shape adaptive electric bonding gripper according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a shape adaptive electrical bond gripper according to another embodiment of the present invention.
  • FIGS 8A to 8C are views showing the operation of the shape adaptive electro-adhesion gripper according to another embodiment of the present invention.
  • FIGS. 9A to 9C are views showing an object picking up various shapes using a shape adaptive electric bonding gripper according to another embodiment of the present invention.
  • FIG. 9A is a view showing an object picking up various shapes using a shape adaptive electric bonding gripper according to another embodiment of the present invention.
  • FIG. 1 is a view of a robot having a shape adaptive electrical adhesion gripper according to an embodiment of the present invention
  • FIG. 2 is a sectional view of a shape adaptive electrical adhesion gripper according to an embodiment of the present invention.
  • a shape adaptive electric bonding gripper 100 is an end effector of a robot 10 and includes a body 110, a shape adaptation module 120, Module 130 as shown in FIG.
  • the body 110 of the gripper 100 is connected to the arm of the robot 10 so that the gripper 100 can translationally and rotationally move to a position for holding an object have.
  • FIG. 3 is a schematic view of a body of a shape-adaptive electric bonding gripper according to an embodiment of the present invention.
  • the body 110 includes two connection portions, that is, a first connection portion 111 and a second connection portion 113 to the arm of the robot 10. 3, the first connection part 111 is connected to the second connection part 113 and the second connection part 113 is rotated forward and backward with reference to FIG. 3, And the second connection part 113 can be fixedly connected to the arm of the robot 10.
  • the rotation may be based on an axis connecting the body 110 and the first connection part 111, the first connection part 111 and the second connection part 113. This may be accomplished by driving a motor (not shown) .
  • the body 110 according to the present embodiment can be connected to the arm of the robot 10 so as to be rotatable in two directions.
  • the body is rotatable in two directions using two connecting portions and two motors.
  • the present invention is not limited to this, and other known forms, It is possible to take a form in which the body can be rotationally moved in two directions.
  • a shape adaptation module 120 capable of varying rigidity on a body 110 is disposed.
  • the shape adaptation module 120 includes an elastic body having variable stiffness and a control unit for controlling the rigidity of the elastic body.
  • the rigidity of the shape adaptation module 120 is lowered, And after being deformed in accordance with the shape of the object, it is possible to control the shape by maintaining the deformed shape by increasing the rigidity.
  • the shape adaptation module 120 may include a magnetorheological elastomer and a magnetic field controller.
  • the properties of the magnetorheological elastomer including the magnetic particles in the polymer and increasing the rigidity of the magnetic particles when the magnetic field is applied can be utilized.
  • a magnetic field is not applied, it is brought into contact with an object and deformed according to the shape of the object.
  • a magnetic field is applied through the magnetic field control unit to increase rigidity, have.
  • the shape adaptation module 120 may include an electroluminescent elastomer and an electric field controller.
  • the property of the electroluminescent elastomer including polarization particles in a polymer material such as natural rubber and silicone it is possible to use the property of the electroluminescent elastomer including polarization particles in a polymer material such as natural rubber and silicone, and the rigidity of the polarizing particles is increased while the electric field is applied when the electric field is applied. That is, when the electric field is deformed in accordance with the shape of the object in contact with the object in the state where the electric field is not applied, the deformed shape can be maintained by applying the electric field through the electric field control unit to increase the rigidity. .
  • the shape adaptation module 120 can contact an object having various sizes and shapes, and can be deformed according to the shape of the object, thereby securing a wide contact area with the object, But also can wrap around the object when gripping and moving the object.
  • the electric bonding module 130 is disposed on the shape adaptation module 120.
  • the electric bonding module 130 includes an insulator and a conductor provided on the insulator so as to adhere the object to the gripper 100 using an electrostatic force generated by inducing an opposite polarity to an external object when a voltage is applied to the conductor .
  • FIG. 4 is a cross-sectional view of an electrical bonding module of a form adaptive electrical bonding gripper according to an embodiment of the present invention
  • FIG. 5 is a cross- Indicates the arrangement of the sieve.
  • the electrical bonding module 130 includes a first conductor 133a, a second conductor 133b, and an insulator 131 for electrically isolating the first conductor 133a and the second conductor 133b from each other. ).
  • the first conductor 133a and the second conductor 133b may be connected to the first electrode 135a and the second electrode 135b, respectively.
  • the insulator 131 of the electrical bonding module 130 may be made of a flexible and deformable material such as silicone rubber, polyurethane, PDMS, polyimide, etc.
  • the conductor 133 may be made of a metal, carbon, ≪ / RTI > Accordingly, when the electric bonding module 130 contacts the external object to pick up an external object with the gripper 100, the surface of the insulator 131 is brought into close contact with the surface of the external object to widen the contact area, thereby maximizing the adhesive force .
  • the conductor 133 is disposed on the dielectric 131 to expose the surface of the conductor 133.
  • the present invention is not limited thereto, and the conductor 133 may be formed on the insulator 131, As shown in Fig. Further, the materials of the conductor and the insulator are not limited to those described above, and other known materials may be used.
  • the conductors may be arranged in various forms.
  • the first conductor 133a and the second conductor 133b are arranged so as to be spaced apart from each other and interlocked with each other.
  • Each of the first conductor 135a and the second conductor 133b, Lt; RTI ID 0.0 > 135b. ≪ / RTI >
  • the first conductor 133a 'and the second conductor 133b' are arranged so as to be spaced apart from each other in a spirally staggered manner, and the first electrode 135a ' And may be connected to the second electrode 135b '.
  • the first conductor and the second conductor may be spaced apart from each other in various forms.
  • the first conductor and the second conductor are disposed apart from each other on the insulator.
  • the insulator may be disposed on the first conductor, 2 conductors may be disposed.
  • the electric bonding modules include two conductors spaced apart from each other by an insulator and capable of applying different voltages. Alternatively, only one conductor is disposed on the insulator As shown in FIG.
  • the gripper 100 includes the shape adaptation module 120 and the electric bonding module 130 to pick up objects of various sizes, shapes, and materials.
  • FIG. 6 is a view showing a state where an object is picked up using a shape adaptive electric bonding gripper according to an embodiment of the present invention.
  • the operation of the gripper according to the present embodiment will be described with reference to FIG.
  • the gripper 100 is moved to the vicinity of a target object (see Fig. 6 (a)).
  • the movement of the gripper 100 can be controlled by controlling the robot arm connected to the gripper 100 and the two connecting portions.
  • the gripper 100 is moved toward and away from the object through the translational movement of the robot arm and the rotational movement of the connecting portion according to the position of the object. .
  • the gripper 100 is brought into contact with the surface of the object (see Fig. 6 (b)).
  • the shape adaptation module of the gripper 100 has a low rigidity and is deformable.
  • the shape adaptation module is deformed in accordance with the surface shape of the object.
  • the electric bonding module of the gripper 100 is made of a deformable and flexible material, and the shape of the electric bonding module also changes according to the surface shape of the object.
  • the stiffness of the shape adaptation module of the gripper 100 is increased after the gripper 100 and the surface of the object are brought into contact with each other and a voltage is applied to the electrical adhesion module of the gripper 100 to bond the object to the electrical adhesion module (c)).
  • a voltage is applied to the electrical adhesion module of the gripper 100 to bond the object to the electrical adhesion module (c)).
  • the shape adaptation module includes a magnetorheological elastomer, a magnetic field is applied, and when the elastomer includes an electroluminescent elastomer, an electric field is applied. Accordingly, when the gripper 100 and the object are bonded, the robot arm and the connection portion can be driven to transport the object to a desired position.
  • the voltage applied to the electric bonding module of the gripper 100 may be released to remove the adhesive force (see FIG. 6 (d)).
  • the electrical adhesion force is removed while maintaining the stiffness of the shape adaptation module.
  • the gripper 100 includes a shape adaptation module and an electric adhesion module, and controls the rigidity of the shape adaptation module and controls the application of voltage to the electric adhesion module, Can be picked up.
  • the shape adaptation module which can control the stiffness variably can enlarge the contact area when the gripper 100 is in contact with the object, thereby increasing the electric adherence force.
  • the shape adaptation module maintains the deformed shape, So that the shape of the object is not deformed by gravity or an external force, and the object can be firmly wrapped and supported. That is, according to an embodiment of the present invention, an object can be effectively picked up by the gripping force by the shape adaptation module in addition to the electric adhesion force by the electric bonding module. Further, when the bonded object is detached, the desorption speed can be increased by the restoring force of the shape adaptation module.
  • the shape adaptive electrical adhesion gripper is made of a plate gripper.
  • the shape adaptive electrical adhesion gripper may be composed of a polygonal gripper having a plurality of fingers.
  • FIG. 7 is a perspective view of a shape adaptive electrical adhesion gripper according to another embodiment of the present invention.
  • the shape adaptive electrical adhesion gripper 200 according to another embodiment of the present invention includes a plurality of fingers 210, A shape adaptation module 220 disposed on the plurality of fingers 210 of the shape adaptation module 220 and an electrical adhesion module 230 disposed on each shape adaptation module 220.
  • the plurality of fingers 210 of the gripper 200 may be connected to a shaft connected to the robot arm so that the motion thereof can be controlled.
  • a finger drive (not shown) may be additionally provided to rotate the plurality of fingers 210 about the common axis as described below.
  • the shape adaptation module 220 disposed on the plurality of fingers 210 is configured such that the rigidity can be variably controlled as in the previous embodiment.
  • the shape adaptation module 220 may include a magnetorheological elastomer and a magnetic field controller, or may include an electric rheomer elastomer and an electric field controller.
  • An electrical bonding module 230 is disposed on each shape adaptation module 220.
  • the electrical bonding module 230 includes a conductor provided on an insulator and an insulator so that an object can be bonded to the gripper 200 by using an electrostatic force generated when a voltage is applied to the conductor have.
  • a plurality of fingers 210 are driven according to the shape and size of the object,
  • the shape adaptation module 220 is deformed according to the surface of the object through the rigidity control and is held and the object is bonded to the gripper 200 by an electric bonding method by driving the electric bonding module 230.
  • FIGS. 8A to 8C are views showing the operation of the shape adaptive electro-adhesion gripper according to another embodiment of the present invention
  • Figs. 9A to 9C illustrate operations of the shape adaptive electro-adhesion gripper according to another embodiment of the present invention
  • Fig. 5 is a view showing a state of picking up objects of various shapes.
  • the operation of the shape adapting module 220 and the electric bonding module 230 according to the present embodiment is the same as that described in the previous embodiment, and a description thereof will be omitted.
  • the grip adapters 200 according to the present embodiment The driving of the finger 210 will be described.
  • the four fingers of the gripper 200 may be arranged in pairs, with two joints facing each other in a state in which the joints are unfolded.
  • the gripper 200 includes four fingers 210 in this embodiment, the number of the fingers can be variously modified.
  • the plurality of fingers can be rotationally driven on the basis of an axis connected to the robot arm (refer to FIG. 8B), and the joints, (See Fig. 8C).
  • an object having various shapes and sizes such as a rectangular parallelepiped object (see FIG. 9A), a cylindrical object (see FIG. 9B), and a plate shaped object .
  • the shape of the finger can be modified to correspond to an object having various shapes and sizes.
  • the gripper 200 according to the present embodiment can effectively collect an object through the gripping force by the finger in addition to the adhesive force by the electric bonding module and the gripping force by the shape adaptation module.
  • the drive of each finger is individually controlled, but it is preferable that the shape adaptation module and the electric bonding module disposed in each finger are collectively controlled. That is, the rigidity of the shape adaptive module disposed on each finger is adjusted in accordance with the surface shape of the object, and the rigidity of the shape adaptive module is controlled so that the voltage It is preferable to collectively control the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 다양한 형상, 크기, 재질을 갖는 비정형 물체를 피킹하기 위한 형상적응형 전기접착 그리퍼에 관한 것으로서, 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼는 몸체, 몸체 상에 배치되고 강성이 가변적으로 제어될 수 있는 형상적응 모듈 및 형상적응 모듈 상에 배치되는 전기접착 모듈을 포함한다.

Description

형상적응형 전기접착 그리퍼
본 발명은 형상적응형 전기접착 그리퍼에 관한 것으로서, 보다 상세하게는 다양한 형상, 크기, 재질을 갖는 비정형 물체를 피킹하기 위한 형상적응형 전기접착 그리퍼에 관한 것이다.
로봇은 산업의 제조 현장에서 용접, 조립, 도장 등의 다양한 작업을 수행하기 위하여 널리 이용된다. 또한, 로봇은 인간의 생활 주변에서 제반 서비스를 제공하는 개인 서비스 영역, 의료 등 전문화된 서비스를 제공하기 위한 전문 서비스 영역을 포함한 전 산업 및 서비스 분야에 걸쳐 그 활용 영역을 점차 넓혀가고 있다.
특히, 최근에는 물류 시장의 급격한 성장에 따라 물류 자동화를 통해 처리 속도를 높이는 것이 매우 중요하게 되었으며, 이러한 요구에 의해 화물을 집기 위한 피킹 로봇, 화물을 이송하기 위한 이송 로봇 등의 개발이 활발히 진행되고 있다.
이 중 피킹 로봇에서는 물류 자동화를 실현하기 위하여 비정형 물체, 즉 다양한 형상, 크기, 재질을 갖는 물체를 피킹할 수 있는 그리퍼가 필수적이다.
그리퍼에는 유압 내지 공압으로 구동하는 복수의 핑거를 구비하여 기계적으로 물체를 집을 수 있는 기계식 그리퍼와 물체와의 접합면에 진공을 발생시켜 물체를 집을 수 있는 진공 그리퍼가 있다. 또한, 도전체에 전류가 흐를 때 발생하는 정전기력을 이용하여 물체를 접착하는 방식의 전기접착 그리퍼도 알려져 있다.
하지만, 기계식 그리퍼와 진공 그리퍼는 다양한 크기와 형상의 물체를 적정한 압력으로 손상없이 집는 데에 한계가 있어 비정형 물체의 피킹에 사용하는데 효율적이지 못한 면이 있으며, 기존의 전기접착 그리퍼는 무거운 물체를 집기 위하여 넓은 접촉 면적을 갖도록 하고 큰 전압을 인가해야 하여 비정형 물체의 피킹에 적용하는데 한계가 있다.
이처럼, 여전히 비정형 물체를 피킹할 수 있는 그리퍼의 개발이 요구되고 있는 실정이다.
본 발명은 상술한 종래기술의 문제를 해결하기 위한 것으로서, 기존 그리퍼의 한계를 극복하면서도 간단한 구조와 쉬운 메커니즘으로 비정형 형상의 물체를 집을 수 있는 형상적응형 전기접착 그리퍼를 제공하는 것에 그 목적이 있다.
또한, 본 발명은 전기접착력과 기계적 파지력의 조합을 통해 다양한 비정형 물체를 효율적으로 집을 수 있는 형상적응형 전기접착 그리퍼를 제공하는 것에 그 목적이 있다.
본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼는 몸체, 몸체 상에 배치되고 강성이 가변적으로 제어될 수 있는 형상적응 모듈 및 형상적응 모듈 상에 배치되는 전기접착 모듈을 포함한다.
본 발명의 일 실시예에 따르면, 형상적응 모듈은 자기유변 탄성체를 포함하여, 자기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 자기장이 인가된 상태에서는 자기유변 탄성체의 강성이 증가하여 형상이 유지될 수 있다. 또는, 형상적응 모듈은 전기유변 탄성체를 포함하여, 전기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 전기장이 인가된 상태에서는 전기유변 탄성체의 강성이 증가하여 형상이 유지될 수 있다.
본 발명의 일 실시예에 따르면, 전기접착 모듈은 절연체와 절연체 상에 배치되는 도전체를 포함하고, 도전체에 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있다. 여기에서, 도전체는 제1 도전체 및 제2 도전체를 포함할 수 있고, 제1 도전체 및 제2 도전체는 절연체 상에서 이격되어 배치될 수 있으며, 제1 도전체 및 제2 도전체에 각각 서로 다른 제1 전압 및 제2 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있다.
본 발명의 일 실시예에 따르면, 몸체는 그리퍼 구동부와 연결되어 2 방향의 회전 구동이 가능할 수 있다.
본 발명의 다른 실시예에 따른 형상적응형 전기접착식 그리퍼는 복수의 핑거, 각각의 복수의 핑거 상에 배치되고 강성이 가변적으로 제어될 수 있는 형상적응 모듈 및 각각의 형상적응 모듈 상에 배치되는 전기접착 모듈을 포함한다.
본 발명의 다른 실시예에 따르면, 복수의 핑거는 각각 형상적응 모듈 및 전기접착 모듈이 배치된 방향으로 구부릴 수 있는 관절부를 포함할 수 있다. 또한, 복수의 핑거는 공통의 축에 연결되어 설치될 수 있고, 복수의 핑거는 각각 핑거 구동부에 연결되어 축 주위로의 회전 구동이 가능할 수 있다.
본 발명의 일 실시예에 따르면, 형상적응 모듈과 전기접착 모듈을 포함하는 간단한 구조로 비정형 형상의 물체를 집을 수 있다.
또한, 전기접착 모듈을 통한 전기접착력과 형상적응 모듈 및 핑거를 통한 기계적 파지력의 조합을 통해 다양한 형상, 크기, 재질의 물체를 효과적으로 대응할 수 있다.
도 1은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼를 구비하는 로봇을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 몸체를 개략적으로 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 형성적응형 전기접착 그리퍼의 전기접착 모듈의 단면도이다.
도 5는 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 전기접착 모듈에서의 다양한 도전체의 배치를 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼를 이용하여 물체를 집는 모습을 나타내는 도면이다.
도 7은 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼의 사시도이다.
도 8a 내지 도 8c는 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼의 동작을 나타내는 도면이다.
도 9a 내지 도 9c는 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼를 이용하여 다양한 형상의 물체를 집는 모습을 나타내는 도면이다.
<부호의 설명>
100, 200: 형상적응형 전기접착 그리퍼
110, 210: 몸체
111: 제1 암
113: 제2 암
120, 220: 형상적응 모듈
130, 230: 전기접착 모듈
131: 절연체
133, 133': 도전체
135, 135': 전극
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 상세하게 설명한다.
본 발명을 명확하게 설명하기 위하여 본 발명과 관계없는 부분의 설명은 생략하였으며, 명세서 전체를 통하여 동일한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
본 명세서에서 하나의 구성요소가 다른 구성요소의 "위"에 있다 라고 기재된 경우, 이는 다른 구성요소 "바로 위"에 위치하는 경우 뿐만 아니라 이들 사이에 또 다른 구성요소가 존재하는 경우도 포함하며, 두 개의 구성요소가 연결된다는 것은 이들이 직접 맞닿아 이어지는 것뿐만 아니라 다른 구성요소를 통하여 서로 이어지는 것도 포함하는 의미로 사용된다.
또한, 도면에서 나타난 각 구성요소의 크기, 두께, 위치 등은 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 즉, 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 사상 및 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있으며, 개별 구성요소의 위치 또는 배치도 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있는 것으로 이해되어야 한다.
따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다.
도 1은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼를 구비하는 로봇을 나타내는 도면이고, 도 2는 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼(100)는 로봇(10)의 엔드 이펙터로서, 몸체(110), 형상적응 모듈(120) 및 전기접착 모듈(130)을 포함한다.
우선, 본 발명의 일 실시예에 따른 그리퍼(100)의 몸체(110)는 로봇(10)의 암과 연결되어 그리퍼(100)가 물체를 집기 위한 위치로 자리하도록 병진 이동 및 회전 이동을 할 수 있다.
도 3은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 몸체를 개략적으로 나타내는 도면으로, 이를 참조하면 몸체(110)는 2개의 연결부, 즉 제1 연결부(111)와 제2 연결부(113)를 통해 로봇(10)의 암과 연결될 수 있다. 구체적으로, 몸체(110)는 제1 연결부(111)와 도 3을 기준으로 좌우로 회전 가능하게 연결될 수 있고, 제1 연결부(111)는 제2 연결부(113)와 도 3을 기준으로 앞뒤로 회전 가능하게 연결될 수 있으며, 제2 연결부(113)는 로봇(10)의 암에 고정적으로 연결될 수 있다. 이러한 회전은 각각 몸체(110)와 제1 연결부(111), 제1 연결부(111)와 제2 연결부(113)를 연결하는 축을 기준으로 이루어질 수 있으며, 이는 모터(미도시)의 구동에 의해 이루어질 수 있다.
이처럼, 본 실시예에 따른 몸체(110)는 2 방향으로 회전 이동할 수 있도록 로봇(10)의 암에 연결될 수 있다. 본 실시예에서는 2개의 연결부와 2개의 모터를 이용하여 몸체가 2 방향으로 회전 이동할 수 있는 구성을 설명하였으나, 본 발명이 이에 한정되는 것은 아니며, 다른 공지의 형태, 예를 들어 차동 기어를 이용하여 몸체가 2 방향으로 회전 이동할 수 있는 형태를 취하는 것도 가능하다.
다시 도 2를 참조하면, 본 발명의 일 실시예에 따른 그리퍼(100)에서는 몸체(110) 상에 강성을 가변적으로 제어할 수 있는 형상적응 모듈(120)이 배치된다. 본 실시예에서는 형상적응 모듈(120)이 가변 강성을 갖는 탄성체와 이의 강성을 제어할 수 있는 제어부를 포함하여, 그리퍼(100)가 물체와 접촉할 때에는 형상적응 모듈(120)의 강성을 낮추어 물체의 형상에 따라 변형되고, 물체의 형상에 순응하여 변형된 이후에는 강성을 높여 변형된 형상을 유지하는 방식으로 제어할 수 있다.
일례로, 형상적응 모듈(120)은 자기유변 탄성체 및 자기장 제어부를 포함할 수 있다. 이 경우, 폴리머 내에 자성 입자를 포함하여 자기장이 인가될 때 자성 입자가 방향성을 가지면서 강성이 증가하는 자기유변 탄성체의 성질을 이용할 수 있다. 구체적으로, 자기장이 인가되지 않은 상태에서 대상 물체에 접촉시켜 그 물체의 형상에 맞추어 변형시키고, 물체의 형상에 순응하여 변형되면 자기장 제어부를 통해 자기장을 인가하여 강성을 증가시킴으로써 변형된 형상을 유지할 수 있다.
이와 유사하게 형상적응 모듈(120)은 전기유변 탄성체 및 전기장 제어부를 포함할 수 있다. 이 경우에는, 천연고무, 실리콘 등의 폴리머 재료 내에 분극 입자를 포함하여 전기장이 인가될 때 분극 입자가 방향성을 가지면서 강성이 증가하는 전기유변 탄성체의 성질을 이용할 수 있다. 즉, 전기장이 인가되지 않은 상태에서 대상 물체에 접촉시켜 그 물체의 형상에 맞추어 변형시키고, 물체의 형상에 순응하여 변형되면 전기장 제어부를 통해 전기장을 인가하여 강성을 증가시킴으로써 변형된 형상을 유지할 수 있다.
이처럼, 형상적응 모듈(120)은 다양한 크기 및 형상의 물체에 접촉하여 그 물체의 형상에 순응하여 변형이 가능하여, 물체와의 사이에 넓은 접촉 면적을 확보하여 후술하는 전기접착 모듈의 전기접착력을 증가시킬 뿐만 아니라 물체를 집고 이동시킬 때 물체의 주위를 감싸 파지하는 역할을 할 수 있다.
본 발명의 일 실시예에 따른 그리퍼(100)에서는 형상적응 모듈(120) 상에 전기접착 모듈(130)이 배치된다. 전기접착 모듈(130)은 절연체 및 절연체 상에 설치되는 도전체를 포함하여, 도전체에 전압이 인가될 때 외부 물체에 반대 극성이 유도되어 발생하는 정전기력을 이용하여 물체를 그리퍼(100)에 접착시킬 수 있다.
도 4는 본 발명의 일 실시예에 따른 형성적응형 전기접착 그리퍼의 전기접착 모듈의 단면도이고, 도 5는 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼의 전기접착 모듈에서의 다양한 도전체의 배치를 나타낸다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 전기접착 모듈(130)은 제1 도전체(133a), 제2 도전체(133b) 및 이들을 이격시키고 전기적으로 절연시키는 절연체(131)를 포함할 수 있다. 그리고 제1 도전체(133a) 및 제2 도전체(133b)는 각각 제1 전극(135a) 및 제2 전극(135b)에 연결될 수 있다. 이러한 구성의 전기접착 모듈(130)에서 제1 도전체(133a) 및 제2 도전체(133b)에 서로 다른 전압이 인가되면, 이들 전압 차이에 의해 전기접착 모듈(130)과 인접한 외부 물체 사이에 정전기력이 발생하여 접착이 이루어질 수 있다.
전기접착 모듈(130)의 절연체(131)는 실리콘 고무, 폴리우레탄, PDMS, 폴리이미드 등의 유연하고 변형이 가능한 소재로 이루어질 수 있으며, 도전체(133)는 금속, 카본, 도전성 폴리머 등의 도전성 물질로 이루어질 수 있다. 이에 따라, 그리퍼(100)로 외부 물체를 집기 위해 전기접착 모듈(130)이 외부 물체에 접촉시킬 때 절연체(131)의 표면이 외부 물체 표면과 밀착하여 접촉 면적을 넓힘으로써 접착력을 극대화할 수 있다.
한편, 도 4에서는 도전체(133)가 유전체(131) 상에 배치되어 도전체(133) 표면이 노출되는 것을 예시하였으나, 본 발명이 이에 한정되는 것은 아니며 도전체(133)가 절연체(131) 내에 매설되는 것도 가능하다. 또한, 도전체 및 절연체의 소재는 상술한 바에 한정되지 않으며, 공지의 다른 소재를 사용하는 것도 가능하다.
본 발명의 일 실시예에 따르면 도전체는 다양한 형태로 배치될 수 있다. 도 5의 (a)를 참조하면, 제1 도전체(133a) 및 제2 도전체(133b)는 서로 이격된 채 교대로 맞물리는 형태로 배치되고, 각기 제1 전극(135a) 및 제2 전극(135b)에 연결될 수 있다. 또는, 도 5의 (b)에서와 같이, 제1 도전체(133a') 및 제2 도전체(133b')가 서로 이격된 채 나선형으로 엇갈리도록 배치되고, 각기 제1 전극(135a') 및 제2 전극(135b')에 연결될 수도 있다. 이밖에도 제1 도전체 및 제2 도전체는 다양한 형태로 서로 이격되어 배치될 수 있다.
한편, 본 발명의 일 실시예에서는 제1 도전체 및 제2 도전체가 절연체 상에서 서로 이격되어 배치되는 것을 예시하고 있으나, 이와 다른 방식, 예를 들어 제1 도전체 상에 절연체가 배치되고 그 위에 제2 도전체가 배치되는 방식으로 이격되어 배치되는 것도 가능하다. 또한, 본 발명의 일 실시예에서는 전기접착 모듈이 절연체에 의해 서로 이격되고 서로 다른 전압이 인가될 수 있는 2개의 도전체를 구비하는 것을 예시하고 있으나, 이와 달리 절연체 상에 하나의 도전체만을 배치하도록 구성하는 것도 가능하다.
이상 설명한 바와 같이, 본 발명의 일 실시예에 따른 그리퍼(100)는 형상적응 모듈(120) 및 전기접착 모듈(130)을 포함하여 다양한 크기, 형상, 재질의 물체를 집을 수 있다.
도 6은 본 발명의 일 실시예에 따른 형상적응형 전기접착 그리퍼를 이용하여 물체를 집는 모습을 나타내는 도면으로, 이하에서는 이를 참조하여 본 실시예에 따른 그리퍼의 동작을 설명한다.
우선, 그리퍼(100)를 대상 물체(object) 근처로 이동시킨다(도 6의 (a) 참조). 그리퍼(100)의 이동은 그리퍼(100)가 연결된 로봇 암과 2개의 연결부를 제어하여 이루어질 수 있으며, 물체의 위치에 따라 로봇 암의 병진 이동과 연결부의 회전 이동을 통해 대상 물체에 그리퍼를 접근시킬 수 있다.
다음으로 그리퍼(100)를 물체의 표면에 접촉시킨다(도 6의 (b) 참조). 이때, 그리퍼(100)의 형상적응 모듈은 강성이 낮아 변형이 가능한 상태로서, 그리퍼(100)가 물체와 접촉함에 따라 형상적응 모듈이 물체의 표면 형상에 순응하여 변형된다. 상술한 바와 같이, 그리퍼(100)의 전기접착 모듈은 변형 가능하고 유연한 재질로 이루어지는바, 전기접착 모듈 역시 물체의 표면 형상에 따라 그 형상이 변화하게 된다.
그리퍼(100)와 물체 표면이 접촉한 후에 그리퍼(100)의 형상적응 모듈의 강성을 증가시키고, 그리퍼(100)의 전기접착 모듈에 전압을 인가하여 전기접착 모듈에 물체를 접착시킨다(도 6의 (c) 참조). 형상적응 모듈의 강성을 증가시키기 위하여, 예를 들어 형상적응 모듈이 자기유변 탄성체를 포함하는 경우에는 자기장을 인가하고, 전기유변 탄성체를 포함하는 경우에는 전기장을 인가한다. 이에 따라, 그리퍼(100)와 물체의 접착이 이루어지면 로봇 암과 연결부의 구동을 통해 물체를 원하는 위치로 이송시킬 수 있게 된다.
물체를 원하는 위치에 이송시킨 후에는 그리퍼(100)의 전기접착 모듈에 인가된 전압을 해제하여 접착력을 제거할 수 있다(도 6의 (d) 참조). 도면에서는 형상적응 모듈의 강성을 그대로 유지한 채 전기접착력을 제거하는 것을 예시하고 있으나, 이와 반대로 형상적응 모듈의 강성을 원래대로 복귀시킨 후(즉, 강성을 감소시킨 후) 전기접착력을 제거하는 것도 가능하며, 이를 동시에 수행하는 것도 가능하다. 전기접착 모듈에 인가된 전압을 해제하더라도 전기접착력이 완전히 제거되기까지 소정의 시간이 소요될 수 있는데, 형상적응 모듈의 강성을 원래대로 복원시킴에 따라 형상적응 모듈의 복원력이 발생하여 물체의 탈착 속도를 증가시킬 수 있다.
이처럼, 본 발명의 일 실시예에 따른 그리퍼(100)는 형상적응 모듈과 전기접착 모듈을 포함하고, 형상적응 모듈의 강성을 제어하고 전기접착 모듈로의 전압 인가를 제어함으로써 다양한 크기와 형상의 물체를 집을 수 있다. 특히, 강성을 가변적으로 제어할 수 있는 형상적응 모듈에 의해 그리퍼(100)와 물체의 접촉 시 접촉 면적을 넓혀 전기접착력을 증대시킬 수 있을 뿐만 아니라 형상적응 모듈이 변형된 형상을 유지하여 전기접착 모듈의 형상이 중력이나 외력에 의해 변형되지 않도록 유지시켜 주며 물체를 견고하게 감싸고 지지할 수 있다. 즉, 본 발명의 일 실시예에 따르면 전기접착 모듈에 의한 전기접착력에 더하여 형상적응 모듈에 의한 파지력을 통해 물체를 효과적으로 집을 수 있게 된다. 또한, 접착된 물체를 탈착할 때 형상적응 모듈의 복원력에 의해 탈착 속도를 증가시킬 수 있게 된다.
이상 설명한 실시예에서는 형상적응형 전기접착 그리퍼가 판형 그리퍼로 이루어졌으나, 형상적응형 전기접착 그리퍼가 복수의 핑거를 구비하는 다지형 그리퍼로 구성될 수도 있다.
도 7은 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼의 사시도로서, 이를 참조하면 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼(200)는 복수의 핑거(210), 각각의 복수의 핑거(210) 상에 배치되는 형상적응 모듈(220) 및 각각의 형상적응 모듈(220) 상에 배치되는 전기접착 모듈(230)을 포함한다.
본 실시예에 따른 그리퍼(200)의 복수의 핑거(210)는 로봇 암에 연결되는 축에 연결되어 그 운동이 제어될 수 있다. 복수의 핑거(210)가 후술하는 바와 같이 공통의 축을 기준으로 회전 구동하기 위하여 핑거 구동부(미도시)가 추가로 설치될 수 있다.
복수의 핑거(210) 상에 각각 배치되는 형상적응 모듈(220)은 앞선 실시예에서와 같이 강성이 가변적으로 제어될 수 있도록 구성된다. 예를 들어, 형상적응 모듈(220)은 자기유변 탄성체와 자기장 제어부를 포함하거나, 또는 전기유변 탄성체와 전기장 제어부를 포함할 수 있다.
각각의 형상적응 모듈(220) 상에는 전기접착 모듈(230)이 배치된다. 전기접착 모듈(230)은 앞선 실시예에서와 마찬가지로 절연체 및 절연체 상에 설치되는 도전체를 포함함으로써, 도전체에 전압이 인가될 때 발생하는 정전기력을 이용하여 물체를 그리퍼(200)에 접착시킬 수 있다.
즉, 본 실시예에 따른 그리퍼(200)를 이용하여 물체를 집기 위하여는 대상 물체의 형상, 크기에 따라 복수의 핑거(210)를 구동시켜 적절한 위치에 배치한 후, 형상적응 모듈(220)의 강성 제어를 통해 물체의 표면에 맞추어 형상적응 모듈(220)을 변형시켜 이를 유지하고 전기접착 모듈(230)을 구동하여 전기접착 방식으로 그리퍼(200)에 물체를 접착시킨다.
도 8a 내지 도 8c는 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼의 동작을 나타내는 도면이고, 도 9a 내지 도 9c는 본 발명의 다른 실시예에 따른 형상적응형 전기접착 그리퍼를 이용하여 다양한 형상의 물체를 집는 모습을 나타내는 도면이다. 본 실시예에 따른 형상적응 모듈(220)과 전기접착 모듈(230)은 그 작동 방식이 앞선 실시예에서 설명한 바와 동일하므로 이에 대한 설명은 생략하고, 이하에서는 본 실시예에 따른 그리퍼(200)의 핑거(210)의 구동에 대하여 설명한다.
도 8a를 참조하면, 그리퍼(200)의 4개의 핑거는 관절부가 펼쳐진 상태에서 2개씩 짝을 이루어 서로 마주보는 형태로 배치될 수 있다. 본 실시예에서는 그리퍼(200)가 4개의 핑거(210)를 구비하는 것을 예시하고 있으나, 핑거의 개수는 다양하게 변형될 수 있다.
도 8b 및 도 8c를 참조하면, 복수의 핑거는 각각 로봇 암과 연결되는 축을 기준으로 회전 구동할 수 있으며(도 8b 참조), 또한 각기 구비되는 관절부가 형상적응 모듈 및 전기접착 모듈이 배치된 방향으로 접히는 방식으로 구동할 수 있다(도 8c 참조).
본 실시예에서는 이러한 핑거의 회전 및 굽힘 구동을 제어함으로써 직육면체 형상의 물체(도 9a 참조), 원통 형상의 물체(도 9b 참조), 판 형상의 물체(도 9c 참조) 등 다양한 형상과 크기의 물체를 집을 수 있게 된다. 다시 말하면, 본 실시예에 따르면 그리퍼(200)의 핑거가 회전 및 굽힘의 2 자유도 구동이 가능함에 따라 다양한 형상과 크기의 물체에 맞추어 그 형상을 변형하여 대응할 수 있게 된다.
이처럼, 본 실시예에 따른 그리퍼(200)는 전기접착 모듈에 의한 전기접착력, 형상적응 모듈에 의한 파지력에 더하여 핑거에 의한 파지력을 통해 물체를 효과적으로 집을 수 있게 된다.
한편, 본 실시예에서는 각각의 핑거의 구동은 개별적으로 제어하지만, 각각의 핑거에 배치되는 형상적응 모듈과 전기접착 모듈은 일괄적으로 제어하는 것이 바람직하다. 즉, 각각의 핑거 상에 배치되는 형상적응 모듈을 물체의 표면 형상에 맞추어 변형시키기 위해 그 강성을 일괄적으로 제어하고, 전기접착 모듈과 물체 사이에 전기접착력을 발생시키기 위해 전기접착 모듈로의 전압 인가를 일괄적으로 제어하는 것이 바람직하다.
이상 본 발명을 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예들에 의해 설명하였으나, 이들 실시예들은 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다. 따라서, 본 발명의 사상은 앞서 설명된 실시예들에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (13)

  1. 비정형 물체를 피킹하기 위한 형상적응형 전기접착 그리퍼로서,
    몸체,
    상기 몸체 상에 배치되고, 강성이 가변적으로 제어될 수 있는 형상적응 모듈 및
    상기 형상적응 모듈 상에 배치되는 전기접착 모듈
    을 포함하는
    그리퍼.
  2. 제1항에 있어서,
    상기 형상적응 모듈은 자기유변 탄성체를 포함하여,
    자기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 자기장이 인가된 상태에서는 상기 자기유변 탄성체의 강성이 증가하여 형상이 유지되는, 그리퍼.
  3. 제1항에 있어서,
    상기 형상적응 모듈은 전기유변 탄성체를 포함하여,
    전기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 전기장이 인가된 상태에서는 상기 전기유변 탄성체의 강성이 증가하여 형상이 유지되는, 그리퍼.
  4. 제1항에 있어서,
    상기 전기접착 모듈은 절연체와 상기 절연체 상에 배치되는 도전체를 포함하고,
    상기 도전체에 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있는, 그리퍼.
  5. 제4항에 있어서,
    상기 도전체는 제1 도전체 및 제2 도전체를 포함하고, 상기 제1 도전체 및 상기 제2 도전체는 상기 절연체 상에서 이격되어 배치되며,
    상기 제1 도전체 및 상기 제2 도전체에 각각 서로 다른 제1 전압 및 제2 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있는, 그리퍼.
  6. 제1항에 있어서,
    상기 몸체는 그리퍼 구동부와 연결되어 2 방향의 회전 구동이 가능한, 그리퍼.
  7. 비정형 물체를 피킹하기 위한 형상적응형 전기접착식 그리퍼로서,
    복수의 핑거,
    각각의 상기 복수의 핑거 상에 배치되고, 강성이 가변적으로 제어될 수 있는 형상적응 모듈 및
    각각의 상기 형상적응 모듈 상에 배치되는 전기접착 모듈
    을 포함하는
    그리퍼.
  8. 제7항에 있어서,
    상기 형상적응 모듈은 자기유변 탄성체를 포함하여,
    자기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 자기장이 인가된 상태에서는 상기 자기유변 탄성체의 강성이 증가하여 형상이 유지되는, 그리퍼.
  9. 제7항에 있어서,
    상기 형상적응 모듈은 전기유변 탄성체를 포함하여,
    전기장이 인가되지 않은 상태에서는 접촉하는 외부 물체의 형상에 맞추어 형상이 변화하고, 전기장이 인가된 상태에서는 상기 전기유변 탄성체의 강성이 증가하여 형상이 유지되는, 그리퍼.
  10. 제7항에 있어서,
    상기 전기접착 모듈은 절연체와 상기 절연체 상에 배치되는 도전체를 포함하고,
    상기 도전체에 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있는, 그리퍼.
  11. 제10항에 있어서,
    상기 도전체는 제1 도전체 및 제2 도전체를 포함하고, 상기 제1 도전체 및 상기 제2 도전체는 상기 절연체 상에서 이격되어 배치되며,
    상기 제1 도전체 및 상기 제2 도전체에 각각 서로 다른 제1 전압 및 제2 전압이 인가될 때 발생하는 정전기력에 의해 외부 물체와 접착할 수 있는, 그리퍼.
  12. 제7항에 있어서,
    상기 복수의 핑거는 각각 상기 형상적응 모듈 및 상기 전기접착 모듈이 배치된 방향으로 구부릴 수 있는 관절부를 포함하는, 그리퍼.
  13. 제7항에 있어서,
    상기 복수의 핑거는 공통의 축에 연결되어 설치되고,
    상기 복수의 핑거는 각각 핑거 구동부에 연결되어, 상기 축 주위로의 회전 구동이 가능한, 그리퍼.
PCT/KR2018/002271 2017-11-08 2018-02-23 형상적응형 전기접착 그리퍼 WO2019093592A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000922.9A CN110023045A (zh) 2017-11-08 2018-02-23 形状自适应电接合夹具
US16/023,019 US10875191B2 (en) 2017-11-08 2018-06-29 Shape compliant electroadhesive gripper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170148280 2017-11-08
KR10-2017-0148280 2017-11-08
KR10-2018-0021117 2018-02-22
KR1020180021117A KR102017984B1 (ko) 2017-11-08 2018-02-22 형상적응형 전기접착 그리퍼

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/023,019 Continuation US10875191B2 (en) 2017-11-08 2018-06-29 Shape compliant electroadhesive gripper

Publications (1)

Publication Number Publication Date
WO2019093592A1 true WO2019093592A1 (ko) 2019-05-16

Family

ID=66437958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002271 WO2019093592A1 (ko) 2017-11-08 2018-02-23 형상적응형 전기접착 그리퍼

Country Status (1)

Country Link
WO (1) WO2019093592A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214489A (ja) * 1994-01-27 1995-08-15 Kyoto Seisakusho:Kk 吸着パッド
JP2003203964A (ja) * 2001-12-21 2003-07-18 Esec Trading Sa 半導体チップを実装するためのピックアップツール
JP2014237219A (ja) * 2010-02-10 2014-12-18 エスアールアイ インターナショナルSRI International 静電付着把持
KR101479232B1 (ko) * 2008-05-13 2015-01-06 삼성전자 주식회사 로봇과 로봇 핸드, 로봇 핸드의 제어 방법
KR20150029898A (ko) * 2013-09-11 2015-03-19 국방과학연구소 자기유변유체가 함침된 폴리우레탄/아라미드 복합재료 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214489A (ja) * 1994-01-27 1995-08-15 Kyoto Seisakusho:Kk 吸着パッド
JP2003203964A (ja) * 2001-12-21 2003-07-18 Esec Trading Sa 半導体チップを実装するためのピックアップツール
KR101479232B1 (ko) * 2008-05-13 2015-01-06 삼성전자 주식회사 로봇과 로봇 핸드, 로봇 핸드의 제어 방법
JP2014237219A (ja) * 2010-02-10 2014-12-18 エスアールアイ インターナショナルSRI International 静電付着把持
KR20150029898A (ko) * 2013-09-11 2015-03-19 국방과학연구소 자기유변유체가 함침된 폴리우레탄/아라미드 복합재료 및 그 제조방법

Similar Documents

Publication Publication Date Title
KR102017984B1 (ko) 형상적응형 전기접착 그리퍼
US10286560B1 (en) Shape compliant gripper
US10537998B2 (en) Robot gripper
US4610475A (en) Piezoelectric polymer micromanipulator
JP2012514544A5 (ko)
US10875191B2 (en) Shape compliant electroadhesive gripper
US10780589B2 (en) Shape compliant electroadhesive gripper
CN110730707B (zh) 具有合成纤维胶的机器人和抓取器
WO2019093592A1 (ko) 형상적응형 전기접착 그리퍼
KR102410081B1 (ko) 로봇 그리퍼
JP2011067932A (ja) 外付け式人間型手のためのアクチュエータおよび電子機器のパッケージング
CN213765888U (zh) 机器人及其夹爪装置
KR20210102623A (ko) 정전기적 부착력을 이용한 그리퍼, 이를 이용한 비정형 물체 피킹 방법
CN109129533B (zh) 一种面向在轨捕获的自适应静电吸附式末端执行器
JP2024517499A (ja) ユニバーサル負荷方向伝達用静電吸着クラッチ
KR102044390B1 (ko) 그리퍼용 전기접착 필름
KR102151653B1 (ko) 유압 그리퍼 및 유압 그리퍼 시스템
KR20210101450A (ko) 자기유변 탄성체, 전자석 및 스프링이 적용된 가변강성 그리퍼, 이를 이용한 비정형 물체 피킹 방법
WO2021044079A1 (en) Adaptive gripper finger, gripper device and method of using adaptive gripper device
KR102180092B1 (ko) 패턴화된 형상적응 모듈 및 이를 포함하는 그리퍼
US20070034957A1 (en) Electrostatic foot for non-permanent attachment
KR102497668B1 (ko) 정전식 그리퍼
WO2024084535A1 (ja) グリッパー
KR20230157709A (ko) 소프트 로봇 핸드
CN118181308A (zh) 机械手、电子设备组装方法及投影型显示装置组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875406

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18875406

Country of ref document: EP

Kind code of ref document: A1