WO2019092836A1 - 波形解析装置 - Google Patents

波形解析装置 Download PDF

Info

Publication number
WO2019092836A1
WO2019092836A1 PCT/JP2017/040486 JP2017040486W WO2019092836A1 WO 2019092836 A1 WO2019092836 A1 WO 2019092836A1 JP 2017040486 W JP2017040486 W JP 2017040486W WO 2019092836 A1 WO2019092836 A1 WO 2019092836A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
image
peak
signal
chromatogram
Prior art date
Application number
PCT/JP2017/040486
Other languages
English (en)
French (fr)
Inventor
健 小副川
祐輔 樋田
裕治 金澤
慎司 金澤
山田 洋平
弘之 安田
研大 國澤
英敏 寺田
Original Assignee
富士通株式会社
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 株式会社島津製作所 filed Critical 富士通株式会社
Priority to PCT/JP2017/040486 priority Critical patent/WO2019092836A1/ja
Priority to US16/760,118 priority patent/US11302039B2/en
Priority to CN201780096533.6A priority patent/CN111373256B/zh
Priority to JP2019551827A priority patent/JP6992817B2/ja
Publication of WO2019092836A1 publication Critical patent/WO2019092836A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Definitions

  • the present invention relates to a waveform analyzer that analyzes the waveform of a signal obtained by an analyzer.
  • the present invention relates to, for example, a chromatogram waveform acquired by a gas chromatograph (GC) apparatus or a liquid chromatograph (LC) apparatus, a mass spectrum waveform acquired by a mass spectrometer, an absorption spectrum waveform acquired by a spectrophotometer It is suitable for analysis of waveforms of signals obtained by various analyzers, such as X-ray spectrum waveforms acquired by an X-ray analyzer.
  • a sample containing various components is introduced into a column, the various components are separated in the time direction as the sample passes through the column, and detection is performed by a detector provided at the outlet of the column Do.
  • a detector provided at the outlet of the column Do.
  • the chromatogram created based on the detection signal obtained by the detector, a peak corresponding to the component in the sample appears. Since the time for which the peak is observed (retention time) corresponds to the type of component, the component can be identified from the retention time of this peak, that is, qualitative analysis can be performed. Further, since the height and area of the peak correspond to the concentration or content of the component, the concentration or content of the component can be determined from the height value or area value of the peak, that is, quantitative analysis can be performed. .
  • waveform processing such as noise removal such as smoothing, detection of peak position, baseline estimation, detection of peak start point and end point, separation of overlapping peaks, etc. for the actually measured chromatogram waveform
  • the peak height value and the area value are calculated.
  • baseline estimation or detection of peak start and end points may be performed prior to peak position detection, but in any case, conventional general peak detection algorithms use various parameters in advance.
  • An operator analyst person in charge sets, or the operator observes the chromatogram waveform on the display screen to specify the start point and end point of the peak, or what kind of baseline for separating overlapping peaks It is necessary for the operator to perform considerable work, such as the operator judging and selecting whether it is appropriate or not.
  • the present invention has been made to solve the above-mentioned problems, and its main object is to reduce troublesome operations and operations by the operator and to achieve high accuracy with respect to signal waveforms of various shapes.
  • An object of the present invention is to provide a waveform analysis apparatus capable of performing peak detection.
  • the present invention made in order to solve the above problems relates to a waveform analysis apparatus that analyzes a signal waveform based on a signal sequence obtained by performing predetermined analysis on a sample and detects a peak on the signal waveform.
  • a) converting the signal waveform or a secondary signal waveform obtained from the signal waveform into an image, and dividing the image by lines corresponding to the signal waveform in the image, in one of a plurality of regions formed
  • An image generation unit that generates an input image by filling in at least a predetermined range from the line along the line with one or more colors distinguishable from other areas;
  • a peak detection unit that detects at least one of the position of the start point or the position of the end point of one or more peaks appearing in the signal waveform in the input image with respect to the input image; It is characterized by
  • predetermined analysis is, for example, chromatographic analysis such as liquid chromatography or gas chromatography, mass spectrometry, ion mobility analysis, spectral analysis such as absorption spectral analysis or fluorescence spectral analysis, X-ray analysis or the like.
  • the signal waveform based on the signal sequence obtained by performing such analysis is a chromatogram waveform or spectrum waveform showing a change in signal intensity with time, mass-to-charge ratio, ion mobility, wavelength, energy, etc. as variables. Etc.
  • the image generation unit converts, for example, a chromatogram waveform itself or a secondary signal waveform obtained from the chromatogram waveform into an image.
  • the signal waveform is a line, such as a straight line, a curved line, or a broken line, but in one of two areas formed with the line as a boundary, one or at least a predetermined range from the line along the line. Fill in multiple colors.
  • the entire one of the two regions may be filled so that the minute regions in each region can be distinguished between the two regions bounded by the line corresponding to the signal waveform.
  • this fill may be in accordance with a gray scale or a color scale.
  • the peak detection unit estimates the start point and the end point of the peak using a method of detecting an object from an image by machine learning. That is, the peak detection unit has already learned in advance by machine learning using an input image generated based on a plurality of (usually a large number of) signal waveforms whose accurate start and end points of the peak are known. It has a model. Then, when the target input image generated by the image generation unit is given, it corresponds to the start point or end point of one or more peaks appearing in the signal waveform in the input image based on the learned model. The site is estimated and recognized as the start or end point of the peak.
  • the peak in the original signal waveform can be obtained by converting the position information of the pixel into parameter information such as time or wavelength
  • the start point and end point of can be determined.
  • the image generation unit generates one or more secondary signal waveforms from a single signal waveform obtained by analysis, and based on the plurality of signal waveforms.
  • An input image can be created by generating an input image or superimposing a plurality of images.
  • the image generation unit converts a signal waveform obtained by differentiating the signal waveform obtained by analysis into n-order (where n is a positive integer) into an image together with the original signal waveform.
  • n-order where n is a positive integer
  • the peak waveform is generated by superimposing an image based on a signal waveform obtained by subjecting the original signal waveform to primary differentiation and / or secondary differentiation with an image based on the original signal waveform to generate an input image. The estimation based on more information can be performed, and the accuracy of peak detection is improved.
  • the image generation unit superimposes a plurality of signal waveforms obtained by performing the same analysis on the same sample under different parameters, and corresponds to each signal waveform.
  • the input image may be generated by separately painting three or more areas formed by dividing the lines by different lines.
  • the analysis method is LC / MS analysis or GC / MS analysis
  • the plurality of signal waveforms can be obtained.
  • the parameter is the mass to charge ratio.
  • peaks appear at the same position in a plurality of such signal waveforms, but other elements such as a baseline and noise are less common. Therefore, generation of an input image in which a plurality of signal waveforms are superimposed and peak detection based on the input image facilitates identification of a peak from a baseline or noise. This improves the accuracy of peak detection.
  • the image generation unit generates an input image obtained by overlapping or combining a plurality of signal waveforms obtained by repeating analysis on a target sample a plurality of times. It may be configured to In this configuration as well, as in the above aspect, discrimination between the peak and the baseline or noise is facilitated, so that the accuracy of peak detection is improved.
  • the image generation unit superimposes the signal waveform obtained for the target sample and the signal waveform for a standard sample containing the target component in the target sample. It may be configured to generate an input image synthesized or synthesized. Also in this configuration, by adding information of the signal waveform to the standard sample containing the target component, the information such as the peak top position and peak width of the peak corresponding to the target component can be roughly known, so the accuracy of peak detection improves. .
  • various machine learning methods can be used to construct a trained model, but preferably, a trained model is constructed using a general object detection algorithm by machine learning. Good.
  • a large number of detection ranges can be provided in an image to be processed, and a range in which a peak exists can be learned for each detection range.
  • peaks of various sizes can be detected without omission, and peak detection can be performed with high accuracy.
  • the learned model is constructed using deep learning, which is a method of machine learning.
  • deep learning is a method of machine learning.
  • the learned model is constructed using a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the convolutional neural network referred to here is, for example, R-CNN (Regions with CNN features), SPP (Spatial Pyramid Pooling) net, Fast R-CNN, Faster R-CNN, YOLO (You Only Look Once), SSD (Single Shot multibox) Detector) is included in an algorithm called. According to this configuration, high-accuracy peak detection can be performed at high speed.
  • the waveform analysis apparatus of the present invention it is not necessary to perform the troublesome adjustment of detection parameters and the selection of an appropriate algorithm, which are required by various conventional peak detection algorithms. Also, there is no need for the operator to manually set the peak start point and end point while looking at the signal waveform, and the operator's habit or arbitrary operation does not enter, so high-accuracy peak detection with automatic belongings eliminated automatically. Can be In addition, since the signal waveform is captured as an image to estimate the peak, it is easy to obtain a result consistent with human recognition and judgment, and it is also easy to keep the result consistent with the conventional accurate manual peak detection. is there.
  • FIG. 1 is a schematic configuration diagram of a liquid chromatograph system using one embodiment of a waveform analysis device according to the present invention and a system for creating a learned model used in the system.
  • 5 is a flowchart showing a flow of processing when creating a learned model used in the waveform analysis device of the present embodiment.
  • 6 is a flowchart showing a flow of peak detection processing in the waveform analysis device of the present embodiment.
  • FIG. 7 is a view showing an example of imaging of a chromatogram waveform in the waveform analysis device of the present embodiment.
  • FIG. 7 is a schematic view for explaining the process when creating a learned model used in the waveform analysis device of the present embodiment.
  • FIG. 1 is a schematic configuration diagram of a liquid chromatograph (LC) system using an embodiment of a waveform analysis apparatus according to the present invention and a system for creating a learned model used in the system.
  • LC liquid chromatograph
  • the LC system 1 includes an LC measurement unit 10, a data analysis unit 11, an operation unit 12, and a display unit 13. Although the LC measurement unit 10 is not shown, it includes a liquid feed pump, an injector, a column, a column oven, a detector, etc., and performs LC analysis on a given sample to change temporally the signal intensity of the detector. Obtain the chromatogram data shown.
  • the data analysis unit 11 includes functional blocks such as a data collection unit 110, a peak detection processing unit 111, and a qualitative and quantitative analysis unit 116.
  • the peak detection processing unit 111 further includes an image generation unit 112, a peak position estimation unit 113, and learning. It includes functional blocks such as the stored model storage unit 114 and the peak determination unit 115.
  • the data collection unit 110 collects the chromatogram data obtained by the LC measurement unit 10 and stores it.
  • the peak detection processing unit 111 corresponding to the waveform analysis apparatus according to the present invention automatically detects a peak in the chromatogram waveform based on the collected chromatogram data, and the position (retention time) of the start point and the end point of the detected peak Output peak information including
  • the qualitative / quantitative analysis unit 116 identifies the component corresponding to each peak based on the peak information given from the peak detection processing unit 111, calculates the peak height value and the peak area value, and determines each component from the value Calculate the concentration or content of
  • a model creating unit 2 provided separately from the LC system 1 includes a learning data input unit 20, an image generating unit 21, a learning executing unit 22, and a model constructing unit 23 as functional blocks.
  • the learned model created in the model creating unit 2 is stored in the storage unit of the data analysis unit 11 of the LC system 1 and functions as a learned model storage unit 114.
  • the entity of the data analysis unit 11 is a computer system including a personal computer on which predetermined software is installed, a higher performance workstation, or a high performance computer connected to such computer via a communication line. It is. That is, the function of each block included in the data analysis unit 11 is stored in the computer or computer system implemented by executing software installed in a computer system including a single computer or a plurality of computers. It can be embodied by processing using various data.
  • the peak detection process performed by the peak detection processing unit 111 will be described in detail.
  • machine learning is performed to convert the chromatogram waveform (chromatogram curve) into a two-dimensional image and then detect the category and the position of the object present on the image.
  • the positions of the start point and the end point of the peak are detected by using a deep learning method which is one of the methods.
  • FIG. 2 is a flowchart showing a flow of processing at the time of learning model creation performed in the model creating unit 2.
  • the various chromatogram waveform data referred to here are various noise contamination, baseline fluctuation (drift), overlapping of multiple peaks that may appear in the chromatogram waveform when actually performing peak detection. Or, it is a chromatogram waveform including elements such as peak shape deformation.
  • the learning data input unit 20 reads a set of a large number of chromatogram waveform data and accurate peak information including peak start and end points as learning data (step S1).
  • the image generation unit 21 creates a chromatogram based on chromatogram waveform data, which is a time-series signal, and generates a chromatogram waveform (chromatogram curve) indicating a change in signal intensity over time as a two-dimensional image having a predetermined number of pixels. It converts into an image (step S2).
  • the number of pixels is 512 ⁇ 512.
  • this image conversion normalize the y-direction size of the waveform so that the peak top of the peak having the largest signal intensity among the peaks on the chromatogram waveform coincides with the upper side of the rectangular image. .
  • the entire measurement time range of the chromatogram waveform or a part of the measurement time range corresponds to the length in the x direction (horizontal direction) of the rectangular image.
  • the size in the x direction of the waveform is normalized (step S3).
  • step S4 When the chromatogram waveform is normalized as described above, a rectangular image is divided into two with a line corresponding to the waveform as a boundary. Therefore, one of the two areas formed by the image division is filled with a predetermined color different from the other (step S4). At this time, it is good to make the color density in multiple steps and determine the color density of each pixel according to the positional relationship between the boundary line and the pixel in the vicinity of the line corresponding to the waveform, that is, the boundary of the two areas. . Specifically, for example, when one area is filled with gray scale of 256 steps from 0 to 255, the part of one area away from the boundary is black, and the part of the other area is white However, the pixels near the boundary line have their intermediate colors.
  • FIG. 4 shows an example (a) of a chromatogram waveform and a two-dimensional image (b) obtained by performing imaging at steps S2 to S4 on this.
  • the colors of pixels near the boundary between the two regions are schematically shown.
  • the whole of one of the two areas is filled.
  • This makes it possible to identify different areas when comparing the micro areas (one pixel or a set of plural pixels) in each area.
  • This is convenient for increasing the accuracy of image recognition in a machine learning algorithm to be described later.
  • one color other than gray scale but black may be used, or filling with a plurality of colors according to the color scale may be performed. That is, it may be painted so as to be able to distinguish between the minute areas in the areas on both sides of the boundary.
  • step S1 all the chromatogram waveform data read in step S1 are converted into an image.
  • the intensity information and time information of the original chromatogram waveform are lost, and an image representing the waveform shape is generated. Note that instead of reading all data in step S1 and then executing the processing in steps S2 to S4, while performing data reading in step S1, the data that has already been read is imaged in steps S2 to S4. It is natural that you may.
  • the image generation unit 21 sets peak information, which is set with the chromatogram waveform data, on the image according to normalization in the x direction and y direction in the above-described imaging, that is, expansion and contraction of the chromatogram waveform.
  • the position information that is, information of pixel positions in the x direction and y direction is converted (step S5).
  • the learning execution unit 22 carries out machine learning using a large number of images generated from the chromatogram waveform which is learning data as described above, and the model construction unit 23 performs a chromatogram based on the learning result. Construct a learning model to estimate the start and end points of the peaks on the waveform.
  • various algorithms for machine learning but here, using deep learning which is one of general object detection algorithms in image recognition, use is made of the SSD method which is particularly excellent in image recognition (step S6) ).
  • the SSD method is one of the most widely used convolutional neural network (CNN) methods in deep learning, and is an algorithm that can realize the highest speed and high recognition accuracy at present.
  • the SSD method is proposed by Liu Wei et al. In Non-Patent Document 3, and the details of its algorithm are described in detail in Non-Patent Documents 3 and 4, etc. Only the feature points in
  • an image feature map extracted by CNN is used to infer a part where an object is present in a two-dimensional image, but the image feature map is gradually convoluted
  • the image feature map of various sizes is used by being embedded. This enables object region candidates of various sizes to be detected.
  • what is desired to be detected in this embodiment is the positions of the start and end points of the peak in the x direction. Therefore, the algorithm is changed to detect the start point and the end point of the peaks present in the sections of various sizes in the x direction.
  • FIG. 5 is a schematic view showing a learned model by the neural network used in the present embodiment.
  • FIG. 6 is a schematic diagram for explaining the process of creating a learned model. As shown in FIG. 6, in this case, a segment Sg1 having a window with a width of the entire length in the x direction of the image generated by the processing in steps S2 to S4 is set, and then the window of the segment Sg1 The segments Sg2 and Sg3 of which the window width obtained by dividing.
  • the pixel value of each pixel in the image of 512.times.512 pixels (here, the range of 0 to 255 of the gray scale) is provided for each of 262144 nodes provided in the input layer. Is input.
  • pxn indicates the n-th pixel in one image.
  • the image is a color or a plurality of colors, for example, the pixel values of the three primary colors are input for each pixel, so the number of nodes in the input layer is tripled, for example.
  • the learning execution unit 22 learns a layered network consisting of a large number of intermediate layers by deep learning against the above-mentioned input based on a large number of images, and from the 600 nodes provided in the final output layer, respectively. Numeric information is output.
  • Information output from the 600 nodes is calculated for each of the 120 segments Sg1 to Sg120, peak detection confidence (confidence) confn, offset in the x direction from the left edge of the window of that segment to the peak start point Amount xsn, offset ys in the y direction from the lower end of the input image to the peak start point, offset xen in the x direction from the right end of the window of the segment to the peak end point, offset in the y direction from the lower end of the input image to the peak end It is five-dimensional information called the amount yen. In FIG. 6, the above five-dimensional information for the first segment Sg1 is shown as ⁇ conf1, xs1, ys1, xe1, ye1 ⁇ .
  • the accuracy of peak detection is defined by the overlap length of the peak range and the window.
  • conf is a calculated value according to the overlap between the window width of Sg1 and the peak range A.
  • the model construction unit 23 temporarily stores the learning model obtained by performing deep learning using a large number of learning data (step S7).
  • the learned model storage unit 114 of the data analysis unit 11 in the LC system 1 the learning model created as described above in the model creation unit 2 is transmitted and stored, for example, via a communication line.
  • FIG. 3 is a flowchart showing a flow of peak detection processing performed by the peak detection processing unit 111.
  • the image generation unit 112 reads chromatogram waveform data to be processed from the data collection unit 110 (step S11). Then, by performing the processing of steps S12 to S14 similar to the imaging of the chromatogram waveform data in steps S2 to S4 executed by the image generation unit 21 of the model generation unit 2 on the read data, the chromatogram is obtained. An image of 512 ⁇ 512 pixels including a curve is generated.
  • the peak position estimation unit 113 applies the learned model stored in the learned model storage unit 114 to the pixel value of each pixel of the generated image to obtain the above five-dimensional information for every 120 segments. Do. That is, the information of the pixel position estimated to be the start point and the end point of the peak in the image is acquired together with the peak detection accuracy (step S15).
  • FIG. 7 is a view showing an example of the peak detection result.
  • ⁇ confn, xsn, ysn, xen, yen ⁇ (where n is 1 to 120) can be determined for each segment, so in many cases, the accuracy of peak detection is not 0 for multiple segments for one peak.
  • ⁇ Confn, xsn, ysn, xen, yen ⁇ are obtained.
  • those with low peak detection accuracy confn have poor reliability. Therefore, in this example, when the calculated confn is equal to or less than a predetermined value (0.5 in this case), the 5-dimensional peak information is regarded as not useful and is ⁇ 0, 0, 0, 0, 0 ⁇ . However, all results may be used without making such selection based on the certainty.
  • a plurality of start position and end position positions can be obtained for one peak.
  • the peak determination unit 115 compares the probabilities confn of the plurality of candidate peaks obtained for each peak, and determines that the candidate with the largest value is the pixel position of the start point and the end point of the peak in the image. Then, based on the information of expansion and contraction of the chromatogram waveform at the time of image generation and the information of the time range of the imaged chromatogram waveform, the pixel positions of the start point and the end point of the peak are converted into time and intensity information (step S16). The peak determination unit 115 outputs the thus obtained information as a peak detection result (step S17).
  • the qualitative / quantitative analysis unit 116 receives the peak detection result, calculates, for example, a peak area value or height value for each peak, and compares the value with the previously obtained calibration curve. Calculate the concentration and content of Alternatively, when the component is unknown, the component is identified based on its retention time for each peak.
  • the deep learning is performed by imaging the chromatogram waveform of the whole measurement time or a part of the measurement time, but various modes can be used to improve the accuracy of peak detection.
  • a first derivative chromatogram waveform whose value is larger as the change in signal intensity is larger can be obtained.
  • the original chromatogram waveform has the largest value in the time when the slope of the rising or falling slope is the largest, and a time range in which there is no inflection point such as peak top or the same value continues. The value becomes zero at.
  • a second differential chromatogram waveform is obtained whose value increases as the degree of change in signal intensity increases.
  • the original chromatogram waveform shows a large value at the top of the bulging peak due to the overlapping of other components on the monotonously increasing or decreasing slope at the rising or falling. . Therefore, in addition to the original chromatogram waveform, the first derivative chromatogram waveform and further the second derivative chromatogram waveform may be imaged, and their pixel values may be used as input data of the neural network.
  • another signal waveform derived from the original chromatogram waveform is determined, and information (pixel value of another image) obtained by imaging the signal waveform is added to the information of the image based on the original chromatogram waveform.
  • another signal waveform derived from the original chromatogram waveform may be superimposed on the original chromatogram waveform together in a time range to generate one image.
  • three or more areas divided by lines corresponding to a plurality of signal waveforms in the image may be separately painted in different colors.
  • the chromatogram waveform obtained by performing one measurement on one sample instead of the chromatogram waveform obtained by performing one measurement on one sample, a plurality of chromatogram waveforms obtained by performing multiple measurements on the same sample are imaged, You may learn and create a learning model.
  • the chromatogram waveform obtained by measuring the sample containing the target component and the chromatogram waveform (that is, the standard chromatogram waveform) for the standard sample containing the target component are respectively imaged or A superimposed image may be generated and learned to create a learning model.
  • LC-MS liquid chromatograph mass spectrometer
  • one image may be generated and the pixel values of the image may be used as input data of the neural network, or pixel values of a plurality of images generated from the plurality of chromatogram waveforms may be used as input data of the neural network. .
  • the above embodiment is an example in which the waveform analysis apparatus according to the present invention is applied to a chromatogram waveform obtained by a chromatograph apparatus which is LC or GC and peak detection is performed, but the present invention is not limited to the chromatograph apparatus. It can be used to process signal waveforms obtained by various analyzers. For example, a mass spectrum obtained by a mass spectrometer, an optical spectrum obtained by various spectrometers such as an absorption spectrophotometer or a fluorescence spectrophotometer, an ion mobility spectrum obtained by an ion mobility analyzer, an X-ray analyzer It is apparent that the present invention can be applied to the detection of peaks appearing in the X-ray spectrum etc. obtained in the above.
  • the SSD method in deep learning is used to create a learning model, but the algorithm that can be used in the present invention is not limited to this. Further, the algorithm is not limited to a known algorithm, and it may not be a currently known algorithm as long as it is a general object detection algorithm for detecting an object in an image. In addition, machine learning methods not included in deep learning may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Analysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

学習済みモデル記憶部(114)には、多数のクロマトグラムを画像化した画像と正確なピーク情報とを学習データとしてディープラーニングにより学習させることで構築したモデルを予め格納しておく。LC測定部(10)で得られた目的試料に対するクロマトグラムデータが入力されると、画像生成部(112)はそのクロマトグラムを画像化し、該画像中でクロマトグラムカーブを境界とした二つの領域の一方を塗りつぶした入力用画像を生成する。ピーク位置推定部(113)は学習済みのモデルによるニューラルネットワークに入力用画像の画素値を入力し、ピークの始点・終点の位置情報とピーク検出確度を出力として得る。ピーク決定部(115)はピーク検出確度に基づいて各ピークの始点・終点を決定する。これにより、パラメータ設定等のオペレータによる煩雑な操作や作業を軽減し、様々な形状のクロマトグラム波形に対して高い精度で以て自動的にピークを検出することができる。

Description

波形解析装置
 本発明は、分析装置で得られた信号の波形を解析する波形解析装置に関する。本発明は例えば、ガスクロマトグラフ(GC)装置や液体クロマトグラフ(LC)装置などで取得されるクロマトグラム波形、質量分析装置で取得されるマススペクトル波形、分光光度計などで取得される吸光スペクトル波形、X線分析装置で取得されるX線スペクトル波形など、各種の分析装置で得られる信号の波形の解析に好適である。
 ガスクロマトグラフ装置や液体クロマトグラフ装置では、各種成分が含まれる試料をカラムに導入し、該試料がカラムを通過する過程で各種成分を時間方向に分離し、カラムの出口に設けた検出器により検出する。検出器により得られた検出信号に基づいて作成されるクロマトグラムには、試料中の成分に対応するピークが現れる。そのピークが観測される時間(保持時間)は成分の種類に対応しているため、このピークの保持時間から成分を特定する、つまりは定性分析を行うことができる。また、ピークの高さや面積はその成分の濃度又は含有量に対応しているため、ピークの高さ値や面積値からその成分の濃度や含有量を求める、つまりは定量分析を行うことができる。
 定性分析や定量分析を行うには、クロマトグラム波形上でピークを的確に検出し、ピークの始点、終点の位置(時間)を確定する必要がある。実際のクロマトグラム波形では様々なノイズが重畳されていたり、ベースラインが変動していたり、或いは複数の成分由来のピークが重なっていたりする。そのため、クロマトグラム波形からピークを的確に検出するのは容易ではなく、従来、クロマトグラム波形に基づくピーク検出法として様々なアルゴリズムが提案され、実用に供されている(特許文献1、2など参照)。
 従来の一般的なピーク検出アルゴリズムでは、実測のクロマトグラム波形に対し、スムージング等のノイズ除去、ピーク位置の検出、ベースライン推定、ピーク始点及び終点の検出、重なっているピークの分離などの波形処理を経て、ピークの高さ値や面積値が算出される。アルゴリズムによっては、ピーク位置の検出に先だって、ベースライン推定やピーク始点及び終点の検出が実行される場合もあるが、いずれにしても、従来の一般的なピーク検出アルゴリズムでは、様々なパラメータを予めオペレータ(分析担当者)が設定したり、表示画面上でクロマトグラム波形をオペレータが観察してピークの始点・終点を指定したり、或いは、重なっているピークを分離するためにどのようなベースラインが適切であるのかをオペレータが判断して選択したりする等、オペレータによるかなりの作業が必要であった。また、そもそも、ベースラインやピークの形状が様々であるクロマトグラム波形に対し、一つの決まったピーク検出アルゴリズムを適用することは難しいため、予め用意された複数のピーク検出アルゴリズムの中から使用するアルゴリズムをオペレータが選択する作業も必要であった。
 こうした作業はオペレータに大きな負担であって解析作業の効率改善に大きな支障となる。また、解析作業には或る程度の熟練や経験が必要であるため、担当できる者が限られる。さらにまた、オペレータによって判断にばらつきが生じることは避けられないし、オペレータによる恣意的な操作が入り込む余地もある。そのため、解析結果の精度や再現性、或いは信頼性を確保するのが難しいという問題もある。
 オペレータによる作業の負担を軽減するために、ピークの始点・終点を自動で検出するアルゴリズムも開発されている(非特許文献1など参照)。しかしながら、こうしたアルゴリズムにおいても未だオペレータの操作に依存する要素は大きく、さらなる負担の軽減が要望されている。
特開2009-8582号公報 国際公開第2017/094170号パンフレット
「インテリジェントな波形処理アルゴリズムで解析業務を効率化」、[online]、[平成29年10月23日検索]、株式会社島津製作所、インターネット<URL:http://www.an.shimadzu.co.jp/hplc/support/faq/faq8/i-peakfinder_introduction.htm> 「ディープラーニング技術を活用したスモールスタートサービスで予測分析導入を支援」、Wave 2017.5 vol.21、[online]、[平成29年10月23日検索]、東芝情報システム株式会社、インターネット<URL: https://www.tjsys.co.jp/wave/files/Wave-21_06.pdf> ウェイ・リウ(Wei Liu)、ほか6名、「SSD:シングル・ショット・マルチボックス・デテクタ(SSD: Single Shot Multibox Detector)」、[online]、[平成29年10月23日検索]、arXiv.org、インターネット<URL: https://arxiv.org/pdf/1512.02325.pdf> 緒方 貴紀、「SSD: Single Shot MultiBox Detector (ECCV2016) 」、[online]、[平成29年10月24日検索]、slideshare、インターネット<URL: https://www.slideshare.net/takanoriogata1121/ssd-single-shot-multibox-detector-eccv2016>
 本発明は上記課題を解決するために成されたものであり、その主たる目的とするところは、オペレータによる煩雑な操作や作業を軽減し、様々な形状の信号波形に対して高い精度で以てピーク検出を行うことができる波形解析装置を提供することである。
 上記課題を解決するためになされた本発明は、試料に対して所定の分析を行うことで得られた信号列に基づく信号波形を解析し該信号波形上のピークを検出する波形解析装置において、
 a)前記信号波形又は該信号波形から求まる2次的な信号波形を画像に変換し、該画像内で信号波形に対応する線で分割されることで形成された複数の領域の一方の領域で該線に沿って該線から少なくとも所定の範囲内を他の範囲と識別可能な一又は複数の色で塗りつぶすことで入力用画像を生成する画像生成部と、
 b)ピークの始点及び終点が既知である複数の信号波形に基づいて生成された入力用画像を用いた機械学習によって予め構築された学習済みモデルを使用し、前記画像生成部により生成された目的の入力用画像に対して該画像中の信号波形に現れる一又は複数のピークの始点の位置又は終点の位置の少なくとも一方を検出するピーク検出部と、
 を備えることを特徴としている。
 本発明において、所定の分析とは例えば、液体クロマトグラフィやガスクロマトグラフィなどのクロマトグラフ分析、質量分析、イオン移動度分析、吸光分光分析や蛍光分光分析などの分光分析、X線分析などである。また、こうした分析を行うことで得られた信号列に基づく信号波形とは、時間、質量電荷比、イオン移動度、波長、エネルギーなどを変数とする信号強度の変化を示すクロマトグラム波形やスペクトル波形などである。
 本発明において、画像生成部は、例えばクロマトグラム波形そのもの又は該クロマトグラム波形から求まる2次的な信号波形を画像に変換する。該画像において信号波形は直線、曲線、折れ線などの線画になるが、その線を境界として形成された二つの領域の一方の領域において該線に沿って該線から少なくとも所定の範囲内を一又は複数の色で塗りつぶす。好ましくは、信号波形に対応する線を境界とする二つの領域の間で各領域内の微小領域同士の区別が可能であるように、二つの領域の一方の全体を塗りつぶすとよい。また、この塗りつぶしはグレイスケール又はカラースケールに従ったものとするとよい。それにより、信号波形に対応する線の近傍、つまり二つの領域の境界近傍では、その境界と画素との位置関係に応じて各画素に中間色を付与することができる。
 ピーク検出部は、機械学習により画像中から物体を検知する手法を利用してピークの始点及び終点を推定する。即ち、ピーク検出部は、ピークの正確な始点及び終点が既知である複数の(通常はかなり多数の)信号波形に基づいて生成された入力用画像を用いた機械学習によって予め構築された学習済みモデルを備える。そして、上記画像生成部により生成された目的の入力用画像が与えられると、その学習済みモデルに基づいて、入力用画像中で上記信号波形に現れる一又は複数のピークの始点又は終点に相当する部位を推定し、これをピークの始点又は終点として認識する。こうして画像中で検出されたピークの始点・終点の位置は画素の位置情報として得られるから、その画素の位置情報を時間や波長などのパラメータの情報に変換することで、元の信号波形におけるピークの始点・終点を求めることができる。
 本発明に係る波形解析装置の一態様として、前記画像生成部は、分析により得られた単一の信号波形から一以上の2次的な信号波形を生成し、その複数の信号波形に基づいてそれぞれ入力用画像を生成する、又はその複数の画像を重ね合わせることで入力用画像を作成する構成とすることができる。
 具体的には例えば、前記画像生成部は、分析により得られた信号波形をn次(ただしnは正の整数)微分することで得られた信号波形を、元の信号波形とともに画像に変換して入力用画像を生成する構成とすることができる。
 信号波形を1次微分すると、信号強度の変化の大きい部分、つまりはピークの立ち上がり(始点)及び立ち下がり(終点)が強調される。また、信号波形を2次微分すると、信号強度の変化の程度が大きい部分が強調されるから、例えば単調減少している中の膨出部のピークトップなどが抽出される。そこで例えば、元の信号波形を1次微分及び/又は2次微分して得られる信号波形に基づく画像を元の信号波形に基づく画像と重ね合わせて入力用画像を生成することで、ピーク波形に関するより多くの情報に基づく推定が行え、ピーク検出の精度が向上する。
 また本発明に係る波形解析装置の他の態様として、前記画像生成部は、同じ試料について同じ分析を異なるパラメータの下で行うことで得られた複数の信号波形を重ね合わせ、各信号波形に対応する線で分割されることで形成された三以上の領域をそれぞれ異なる色で塗り分けることで入力用画像を生成する構成としてもよい。
 例えば分析手法がLC/MS分析やGC/MS分析である場合、定量イオンにおけるマスクロマトグラム(抽出イオンクロマトグラム)波形と一又は複数の確認イオンにおけるマスクロマトグラム(抽出イオンクロマトグラム)波形とを上記複数の信号波形とすることができる。この場合、上記パラメータは質量電荷比である。
 一般に、こうした複数の信号波形では同じ位置にピークが現れるが、それ以外の要素、例えばベースラインやノイズの共通性は薄い。そのため、複数の信号波形を重ね合わせた入力用画像を生成し、該入力用画像に基づくピーク検出を行うことで、ピークとベースラインやノイズとの識別が容易になる。それによって、ピーク検出の精度が向上する。
 また本発明に係る波形解析装置のさらに他の態様として、前記画像生成部は、目的試料に対する分析を複数回繰り返すことで得られた複数の信号波形を重ね合わせた又は合成した入力用画像を生成する構成としてもよい。
 この構成でも上記態様と同様に、ピークとベースラインやノイズとの識別が容易になるため、ピーク検出の精度が向上する。
 また本発明に係る波形解析装置のさらに他の態様として、前記画像生成部は、目的試料に対して得られた信号波形と該目的試料中の目的成分を含む標準試料に対する信号波形とを重ね合わせた又は合成した入力用画像を生成する構成としてもよい。
 この構成においても、目的成分を含む標準試料に対する信号波形の情報が加わることで、目的成分に対応するピークのピークトップの位置やピーク幅等の情報が大凡分かるため、ピーク検出の精度が向上する。
 また本発明に係る波形解析装置では、学習済みモデルを構築するために様々な機械学習の手法を用いることができるが、好ましくは、機械学習による一般物体検知アルゴリズムを用いて学習済みモデルを構築するとよい。
 一般物体検知アルゴリズムでは、処理対象の画像中に多数の検出範囲を設けることができ、その検出範囲毎にピークが存在する範囲を学習することができる。その結果として、様々なサイズのピークを漏れなく検出することができ、高い精度で以てピーク検出が可能となる。
 また本発明において、前記学習済みモデルは機械学習の一手法であるディープラーニングを用いて構築されているものとするとよい。
 ディープラーニング(非特許文献2等参照)を用いた学習を行うことで、画像認識の精度が向上し、ピーク検出の正確性も向上させることができる。
 また、ディープラーニングには様々なアルゴリズムが提案されているが、本発明において好ましくは、前記学習済みモデルは畳み込みニューラルネットワーク(CNN)を用いて構築されているものとするとよい。
 ここでいう畳み込みニューラルネットワークは例えば、R-CNN(Regions with CNN features)、SPP(Spatial Pyramid Pooling)net、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)、SSD(Single Shot multibox Detector)などと呼ばれるアルゴリズムに含まれるものである。この構成によれば、高精度のピーク検出を高速に行うことができる。
 本発明に係る波形解析装置によれば、従来の様々なピーク検出アルゴリズムで必要とされる面倒な検出用のパラメータの調整や適切なアルゴリズムの選択といった作業が不要になる。また、オペレータが信号波形を見ながら手作業でピークの始点及び終点を設定する作業が必要なくなり、オペレータの癖や恣意的な操作が入り込まないため、属人性を排除した高精度なピーク検出が自動的に行える。また、信号波形を画像として捉えてピークを推定するので、人間の認識や判断と一致した結果が得られ易く、従来の人手に依る正確なピーク検出との結果の一貫性を保ち易いという効果もある。
本発明に係る波形解析装置の一実施例を用いた液体クロマトグラフシステム及び該システムに用いられる学習済みモデルを作成するシステムの概略構成図。 本実施例の波形解析装置において使用される学習済みモデルを作成する際の処理の流れを示すフローチャート。 本実施例の波形解析装置におけるピーク検出処理の流れを示すフローチャート。 本実施例の波形解析装置におけるクロマトグラム波形の画像化の一例を示す図。 本実施例の波形解析装置において用いられる、ニューラルネットワークによる学習済みモデルを示す模式図 本実施例の波形解析装置において用いられる学習済みモデルを作成する際の処理を説明するための模式図。 本実施例の波形解析装置において学習済みモデルを用いたピーク検出処理を説明するための模式図。
 以下、本発明に係る波形解析装置の一実施例について詳細に説明する。
 図1は本発明に係る波形解析装置の一実施例を用いた液体クロマトグラフ(LC)システム及び該システムに用いられる学習済みモデルを作成するシステムの概略構成図である。
 このLCシステム1は、LC測定部10、データ解析部11、操作部12、及び表示部13を備える。LC測定部10は図示しないが、送液ポンプ、インジェクタ、カラム、カラムオーブン、検出器などを含み、与えられた試料についてのLC分析を実行して、検出器による信号強度の時間的な変化を示すクロマトグラムデータを取得する。
 データ解析部11は、データ収集部110、ピーク検出処理部111、定性・定量解析部116などの機能ブロックを含み、ピーク検出処理部111はさらに、画像生成部112、ピーク位置推定部113、学習済みモデル記憶部114、ピーク決定部115などの機能ブロックを含む。
 データ解析部11において、データ収集部110はLC測定部10で得られたクロマトグラムデータを収集しこれを記憶する。本発明に係る波形解析装置に相当するピーク検出処理部111は、収集されたクロマトグラムデータに基づくクロマトグラム波形においてピークを自動的に検出し、検出したピークの始点及び終点の位置(保持時間)を含むピーク情報を出力する。定性・定量解析部116は、ピーク検出処理部111から与えられたピーク情報に基づいて各ピークに対応する成分を同定したり、ピーク高さ値やピーク面積値を計算し、その値から各成分の濃度又は含有量を算出したりする。
 図1において、LCシステム1とは別に設けられているモデル作成部2は、学習データ入力部20、画像生成部21、学習実行部22、及びモデル構築部23を機能ブロックとして含む。このモデル作成部2において作成される学習済みモデルが、LCシステム1のデータ解析部11における記憶部に格納されて学習済みモデル記憶部114として機能する。
 なお、通常、データ解析部11の実体は、所定のソフトウェアがインストールされたパーソナルコンピュータやより性能の高いワークステーション、或いは、そうしたコンピュータと通信回線を介して接続された高性能なコンピュータを含むコンピュータシステムである。即ち、データ解析部11に含まれる各ブロックの機能は、コンピュータ単体又は複数のコンピュータを含むコンピュータシステムに搭載されているソフトウェアを実行することで実施される、該コンピュータ又はコンピュータシステムに記憶されている各種データを用いた処理によって具現化されるものとすることができる。
 次に、ピーク検出処理部111において実施されるピーク検出処理について詳細に説明する。
 ごく概略的にいうと、このピーク検出処理部111では、クロマトグラム波形(クロマトグラムカーブ)を2次元画像に変換したうえで、その画像上に存在する物体のカテゴリーと位置とを検出する機械学習の一手法であるディープラーニング(Deep Learning)の手法を用いることによって、ピークの始点及び終点の位置を検出している。
 [学習済みモデルの作成]
 よく知られているように、機械学習法では、多数の学習データを用いて学習済みモデルを予め構築しておく必要がある。上述したように、この学習済みモデルの構築の作業は、LCシステム1の一部であるデータ解析部11において行われるのではなく、別のコンピュータシステムにより構成されるモデル作成部2で実施され、その結果が学習済みモデル記憶部114に格納される。それは、一般に学習済みモデルの構築作業は多量のデータを処理するために計算量が膨大であり、かなり高性能で且つ画像処理に対応したコンピュータが必要であるためである。図2は、モデル作成部2において行われる学習済みモデル作成時の処理の流れを示すフローチャートである。
 学習済みモデルを作成する際には、多数で多様なクロマトグラム波形データを用意すると共に、その各クロマトグラム波形に現れている一又は複数のピークの始点及び終点の保持時間を正確に求めておく。ここでいう多様なクロマトグラム波形データとは、実際にピーク検出を実施する際のクロマトグラム波形に現れる可能性がある、様々なノイズの混入、ベースラインの変動(ドリフト)、複数のピークの重なり、或いは、ピーク形状の変形、などの要素を含むクロマトグラム波形である。学習データ入力部20は、この多数のクロマトグラム波形データとピーク始点・終点を含む正確なピーク情報とのセットを学習データとして読み込む(ステップS1)。
 画像生成部21は、時系列信号であるクロマトグラム波形データに基づいてクロマトグラムを作成し、時間経過に伴う信号強度の変化を示すクロマトグラム波形(クロマトグラムカーブ)を所定の画素数の2次元画像に変換する(ステップS2)。ここでは一例として、画素数は512×512であるものとする。この画像変換の際に、クロマトグラム波形上のピークの中で信号強度が最大であるピークのピークトップが矩形状の画像の上辺に一致するように、その波形のy方向のサイズを規格化する。また、クロマトグラム波形の全測定時間範囲又は一部の測定時間範囲(例えばユーザにより指示された測定時間範囲)が矩形状の画像のx方向(横方向)の長さに一致するように、その波形のx方向のサイズを規格化する(ステップS3)。
 上記のようにクロマトグラム波形を規格化すると、この波形に対応する線を境界として矩形状の画像は二つに分割される。そこで、その画像分割により形成された二つの領域の一方を他方とは異なる所定の色で塗りつぶす(ステップS4)。このとき、色の濃さを多段階にし、波形に対応する線つまりは二つの領域の境界線の近傍で境界線と画素との位置関係に応じて各画素の色の濃さを決定するとよい。具体的には、例えば0~255の256段階のグレイスケールで一方の領域の塗りつぶしを行うと、一方の領域における境界線から離れた部分は黒色、他の領域における境界線から離れた部分は白色になるが、境界線付近の画素はその中間色となる。
 図4には、クロマトグラム波形の一例(a)と、これに対してステップS2~S4による画像化を実施して得られる2次元画像(b)を示している。図4(b)の下には、二つの領域の境界線付近の画素の色を模式的に示している。なお、ここでは、二つの領域の一方の全体を塗りつぶしている。これにより、各領域中の微小領域(1個の画素又は複数の画素の集合)同士を比較したときに、異なる領域であることの識別が可能となる。このことは、後述する機械学習のアルゴリズムにおいて画像認識の精度を上げるには都合がよい。ただし、使用する機械学習のアルゴリズムによっては、必ずしも二つの領域の一方の全体を塗りつぶさずとも、例えばその境界線全体に沿って該境界線から所定長さの範囲内のみ塗りつぶす画像を用いてもよい。また、当然のことながら、グレイスケールでなく黒以外の一色、又はカラースケールに従った複数色での塗りつぶしを行ってもよい。即ち、境界線を挟んだ両側の領域における微小領域の間での識別が可能であるように塗りつぶせばよい。
 ステップS1で読み込まれた全てのクロマトグラム波形データについて同様にして画像に変換する。クロマトグラム波形の規格化を伴う画像化の処理によって元のクロマトグラム波形の強度情報や時間情報は失われ、波形形状を表す画像が生成されることになる。なお、ステップS1において全てのデータを読み込んでからステップS2~S4の処理を実行するのではなく、ステップS1におけるデータの読み込みを行いながら、すでに読み込まれたデータについてステップS2~S4による画像化を行ってもよいことは当然である。
 また画像生成部21は、クロマトグラム波形データとセットになっているピーク情報を、上述した画像化に際してのx方向、y方向の規格化、つまりはクロマトグラム波形の伸縮に応じて、画像上の位置情報つまりはx方向及びy方向の画素位置の情報に変換する(ステップS5)。
 次に、学習実行部22は、上記のようにして学習データであるクロマトグラム波形から生成された多数の画像を用いた機械学習を実施し、モデル構築部23はその学習結果に基づき、クロマトグラム波形上のピークの始点及び終点を推定するための学習モデルを構築する。周知のように機械学習には様々なアルゴリズムがあるが、ここでは画像認識における一般物体検知アルゴリズムの一つであるディープラーニングを用い、その中でも特に画像認識に優れているSSD法を用いる(ステップS6)。
 SSD法は、ディープラーニングの中では最も広く利用されている畳み込みニューラルネットワーク(CNN)を用いた手法の一つであり、現時点では最も高速で且つ高い認識精度を実現可能なアルゴリズムである。SSD法は、リウ(Liu Wei)らにより非特許文献3で提案されたものであり、そのアルゴリズムの詳細については非特許文献3、4等に詳細に説明されているので、ここでは本実施例における特徴点についてのみ述べる。
 一般的なSSD法では、2次元的な画像内で物体が存在している部分を推測するためにCNNにより抽出した画像特徴マップ(feature map)を使用するが、その画像特徴マップを少しずつ畳み込んでいくことにより様々なサイズ(画素数)の画像特徴マップを利用している。これによって様々な大きさの物体領域候補を検出することができる。これに対し、本実施例において検出したいのはピークの始点及び終点のx方向の位置である。そこで、x方向の様々な大きさの区間内に存在するピークの始点及び終点を検出するようにアルゴリズムを変更している。
 図5は、本実施例で用いられるニューラルネットワークによる学習済みモデルを示す模式図である。また図6は学習済みモデルを作成する際の処理を説明するための模式図である。図6に示しているように、ここでは、上記ステップS2~S4の処理で生成された画像のx方向の長さ全体の幅のウインドウを持つセグメントSg1を設定し、次に、セグメントSg1のウインドウを半分に分割したウインドウ幅が1/2であるセグメントSg2、Sg3を設定する。同様にして、セグメントSg2、Sg3のウインドウをそれぞれ半分に分割したウインドウ幅が元の1/4である4個のセグメントSg4、Sg5、Sg6、Sg7を設定する、という操作を繰り返し、全部で120個のセグメントSg1~Sg120を定める。この各セグメントがCNNにより画像特徴マップを抽出する単位であり、学習データとしての画像に基づいてこの単位毎にピークの始点及び終点で決まるピーク範囲を学習する。
 この学習モデルにおけるニューラルネットワークでは図5に示すように、入力層に設けられた262144個のノードのそれぞれに512×512画素の画像における各画素の画素値(ここではグレイスケールの0~255の範囲)が入力される。図5においてpxnは1枚の画像におけるn番目の画素を示す。なお、画像がカラー又は複数色である場合には、画素毎に例えば三原色の各色の画素値が入力されるため、入力層のノード数は例えば3倍になる。
 学習実行部22では、多数の画像に基づく上記のような入力に対しディープラーニングによって多数の中間層から成る層構造のネットワークが学習され、最終的な出力層に設けられた600個のノードからそれぞれ数値情報が出力される。この600個のノードから出力される情報は、120個のセグメントSg1~Sg120のそれぞれについて算出される、ピーク検出の確度(confidence)confn、そのセグメントのウインドウの左端からピーク始点までのx方向のオフセット量xsn、入力画像の下端からピーク始点までのy方向のオフセット量ysn、そのセグメントのウインドウの右端からピーク終点までのx方向のオフセット量xen、入力画像の下端からピーク終点までのy方向のオフセット量yen、という5次元の情報である。図6中では1番目のセグメントSg1に対する上記5次元の情報を{conf1, xs1, ys1, xe1, ye1}として示している。ここでは、ピーク検出の確度はピーク範囲とウインドウとの重なりの長さで定義している。
 図6の例ではクロマトグラム波形に二つのピークが存在する。前半のピークの始点の画素位置は(xs_a, ys_a)、終点の画素位置は(xe_a, ye_a)であり、そのピーク範囲はAである。一方、後半のピークの始点の画素位置は(xs_b, ys_b)、終点の画素位置は(xe_b, ye_b)であり、ピーク範囲はBである。この場合、セグメントSg1におけるxs1、ys1、xe1、及びye1は図6中に示すようになる。また、confはSg1のウインドウの幅とピーク範囲Aとの重なりに応じた計算値である。上述したように学習データにおけるピークの始点・終点の画素位置やピーク範囲は既知であるから、多数の学習データについて正解にできるだけ一致するように学習を行って各中間層におけるネットワーク重みを算出しつつモデルを構築する。
 モデル構築部23はこうして多数の学習データを用いてディープラーニングを行うことで求めた学習モデルを一旦保存する(ステップS7)。LCシステム1においてデータ解析部11の学習済みモデル記憶部114には、モデル作成部2において上述したように作成された学習モデルが例えば通信回線を介して伝送され格納される。
 [目的試料に対するピーク検出処理]
 次に、LCシステム1のデータ解析部11で実行される、目的試料に対して得られたクロマトグラム波形上のピークの検出処理を説明する。図3はピーク検出処理部111において行われるピーク検出処理の流れを示すフローチャートである。
 まず、画像生成部112は処理対象であるクロマトグラム波形データをデータ収集部110から読み込む(ステップS11)。そして、読み込んだデータに対し、モデル作成部2の画像生成部21で実行されたステップS2~S4によるクロマトグラム波形データの画像化と同様のステップS12~S14の処理を実行することにより、クロマトグラムカーブを含む512×512画素の画像を生成する。
 ピーク位置推定部113は、生成された画像の各画素の画素値に、学習済みモデル記憶部114に格納されている学習済みモデルを適用して120個のセグメント毎の上記5次元の情報を取得する。即ち、画像内でピークの始点及び終点と推測される画素位置の情報をピーク検出確度と共に取得する(ステップS15)。
 図7はピーク検出結果の一例を示す図である。ここでは、セグメント毎に{confn, xsn, ysn, xen, yen}(ただしnは1~120)が求まるため、多くの場合、一つのピークに対し複数のセグメントで、ピーク検出の確度が0でない{confn, xsn, ysn, xen, yen}が得られる。なお、一般にピーク検出の確度confnが低いものは信頼性に乏しい。そこで、この例では算出されたconfnが所定値(ここでは0.5)以下である場合に、その5次元のピーク情報は有用でないとみなして{0, 0, 0, 0, 0}としているが、そうした確度による取捨選択を行わずに全ての結果を利用するようにしてもよい。
 上述したように一般的に、一つのピークに対し始点及び終点の位置の候補が複数得られる。ピーク決定部115はピーク毎に得られた複数の候補のピークの確度confnを比較し、その値が最も大きな候補が画像内におけるそのピークの始点及び終点の画素位置であると決定する。そして、画像生成時のクロマトグラム波形の伸縮の情報及び画像化したクロマトグラム波形の時間範囲の情報に基づいて、ピークの始点及び終点の画素位置を時間及び強度情報に変換する(ステップS16)。ピーク決定部115はこうして得られた情報をピーク検出結果として出力する(ステップS17)。
 データ解析部11において定性・定量解析部116はピーク検出結果を受けて、例えばピーク毎にピーク面積値又は高さ値を計算し、その値を予め取得しておいた検量線に照らして目的成分の濃度や含有量を算出する。或いは、成分が未知である場合には、ピーク毎にその保持時間に基づいて成分を同定する。
 [変形例]
 上記実施例では、測定時間全体又はその一部のクロマトグラム波形を画像化してディープラーニングを実施したが、ピーク検出の精度を向上させるために様々な態様とすることができる。
 例えばクロマトグラム波形を時間方向に1次微分すると、信号強度の変化が大きいほど値が大きくなる1次微分クロマトグラム波形が得られる。この1次微分クロマトグラム波形では、元のクロマトグラム波形で立ち上がりや立ち下がりのスロープの傾きが最も大きな時間で値が最大となり、ピークトップ等の変曲点や同じ値が続くピークがない時間範囲で値がゼロになる。また、クロマトグラム波形を時間方向に2次微分すると、信号強度の変化の程度が大きいほど値が大きくなる2次微分クロマトグラム波形が得られる。この2次微分クロマトグラム波形では、例えば元のクロマトグラム波形で立ち上がりや立ち下がりにおける単調増加又は単調減少しているスロープに他の成分が重なることで膨出しているピークのトップで大きな値を示す。そこで、元のクロマトグラム波形に加えて1次微分クロマトグラム波形、さらには2次微分クロマトグラム波形をそれぞれ画像化し、それらの画素値もニューラルネットワークの入力データとしてもよい。
 このように、元のクロマトグラム波形に由来する別の信号波形を求め、この信号波形を画像化した情報(別の画像の画素値)を、元のクロマトグラム波形に基づく画像の情報に加えてもよいが、元のクロマトグラム波形に由来する別の信号波形と元のクロマトグラム波形とを時間範囲を合わせて重ね合わせて1枚の画像を生成してもよい。この場合には、画像内の複数本の信号波形に対応する線で区切られる三以上の領域をそれぞれ異なる色で塗り分けるようにすればよい。
 また、一つの試料に対し1回の測定を行うことで得られたクロマトグラム波形ではなく、同じ試料に対し複数回の繰り返し測定を行うことで得られた複数のクロマトグラム波形を画像化し、これを学習して学習モデルを作成してもよい。また、目的成分を含む試料を実測することで得られたクロマトグラム波形と該目的成分を含む標準試料についてのクロマトグラム波形(つまりは標準的なクロマトグラム波形)とをそれぞれ画像化し、又はそれらを重ね合わせた画像を生成し、これを学習して学習モデルを作成してもよい。
 また、図1に示したLCシステム1においてLC測定部10の検出器が質量分析装置である場合、つまりLC測定部10が液体クロマトグラフ質量分析装置(LC-MS)である場合には、一つの試料に対して質量電荷比が相違する複数のクロマトグラムを取得することができる。一般に定量分析の場合には、目的成分を特徴付ける(通常は信号強度が最大になる)定量イオンの質量電荷比におけるクロマトグラムと、目的成分を特徴付ける、定量イオンとは異なる質量電荷比である一又は複数の確認イオンの質量電荷比におけるクロマトグラムとが取得される。これら複数のクロマトグラムにはいずれも一つの目的成分に対応するピークが現れるから、定量イオンのクロマトグラム波形と一又は複数の確認イオンのクロマトグラム波形のうちの二以上のクロマトグラム波形を重ね合わせて1枚の画像を生成して該画像の画素値をニューラルネットワークの入力データとしたり、それら複数のクロマトグラム波形から生成した複数の画像の画素値をニューラルネットワークの入力データとしたりしてもよい。
 また、上記実施例は本発明に係る波形解析装置をLCやGCであるクロマトグラフ装置により得られるクロマトグラム波形に適用してピーク検出を行う例であるが、本発明はクロマトグラフ装置以外の様々な分析装置で得られる信号波形の処理に利用することができる。例えば、質量分析装置で得られるマススペクトル、吸光分光光度計や蛍光分光光度計などの各種の分光分析装置で得られる光学スペクトル、イオン移動度分析装置で得られるイオン移動度スペクトル、X線分析装置で得られるX線スペクトルなどに現れるピークの検出にも本発明を適用できることは明らかである。
 また、上記実施例では、学習モデルを作成するためにディープラーニングの中のSSD法を用いていたが、本発明に利用可能なアルゴリズムはこれに限るものではない。また、既知のアルゴリズムに限るものでもなく、画像中の物体を検知する一般物体検知アルゴリズムであれば、現時点で既知のアルゴリズムでなくてもよい。また、ディープラーニングには包含されない機械学習の手法を利用しても構わない。
 さらにまた、上記記載以外の点について、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。
1…液体クロマトグラフ(LC)システム
10…LC測定部
11…データ解析部
110…データ収集部
111…ピーク検出処理部
112…画像生成部
113…ピーク位置推定部
114…学習済みモデル記憶部
115…ピーク決定部
116…定性・定量解析部
12…操作部
13…表示部
2…モデル作成部
20…学習データ入力部
21…画像生成部
22…学習実行部
23…モデル構築部

Claims (9)

  1.  試料に対して所定の分析を行うことで得られた信号列に基づく信号波形を解析し該信号波形上のピークを検出する波形解析装置において、
     a)前記信号波形又は該信号波形から求まる2次的な信号波形を画像に変換し、該画像内で信号波形に対応する線で分割されることで形成された複数の領域の一方の領域で該線に沿って該線から少なくとも所定の範囲内を他の範囲と識別可能な一又は複数の色で塗りつぶすことで入力用画像を生成する画像生成部と、
     b)ピークの始点及び終点が既知である複数の信号波形に基づいて生成された入力用画像を用いた機械学習によって予め構築された学習済みモデルを使用し、前記画像生成部により生成された目的の入力用画像に対して該画像中の信号波形に現れる一又は複数のピークの始点の位置又は終点の位置の少なくとも一方を検出するピーク検出部と、
     を備えることを特徴とする波形解析装置。
  2.  請求項1に記載の波形解析装置であって、
     前記画像生成部は、分析により得られた単一の信号波形から一以上の2次的な信号波形を生成し、その複数の信号波形に基づいてそれぞれ入力用画像を生成する、又はその複数の画像を重ね合わせることで入力用画像を作成することを特徴とする波形解析装置。
  3.  請求項2に記載の波形解析装置であって、
     前記画像生成部は、分析により得られた信号波形をn次(ただしnは正の整数)微分することで得られた信号波形を、元の信号波形とともに画像に変換して入力用画像を生成することを特徴とする波形解析装置。
  4.  請求項1に記載の波形解析装置であって、
     前記画像生成部は、同じ試料について同じ分析を異なるパラメータの下で行うことで得られた複数の信号波形を重ね合わせ、各信号波形に対応する線で分割されることで形成された三以上の領域をそれぞれ異なる色で塗り分けることで入力用画像を生成することを特徴とする波形解析装置。
  5.  請求項1に記載の波形解析装置であって、
     前記画像生成部は、目的試料に対する分析を複数回繰り返すことで得られた複数の信号波形を重ね合わせた又は合成した入力用画像を生成することを特徴とする波形解析装置。
  6.  請求項1に記載の波形解析装置であって、
     前記画像生成部は、目的試料に対して得られた信号波形と該目的試料中の目的成分を含む標準試料に対する信号波形とを重ね合わせた又は合成した入力用画像を生成することを特徴とする波形解析装置。
  7.  請求項1~6のいずれか1項に記載の波形解析装置であって、
     前記学習済みモデルは機械学習による一般物体検知アルゴリズムを用いて構築されていることを特徴とする波形解析装置。
  8.  請求項7に記載の波形解析装置であって、
     前記学習済みモデルはディープラーニングを用いて構築されていることを特徴とする波形解析装置。
  9.  請求項8に記載の波形解析装置であって、
     前記学習済みモデルは畳み込みニューラルネットワークを用いて構築されていることを特徴とする波形解析装置。
PCT/JP2017/040486 2017-11-09 2017-11-09 波形解析装置 WO2019092836A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/040486 WO2019092836A1 (ja) 2017-11-09 2017-11-09 波形解析装置
US16/760,118 US11302039B2 (en) 2017-11-09 2017-11-09 Waveform analyzer
CN201780096533.6A CN111373256B (zh) 2017-11-09 2017-11-09 波形分析装置
JP2019551827A JP6992817B2 (ja) 2017-11-09 2017-11-09 波形解析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040486 WO2019092836A1 (ja) 2017-11-09 2017-11-09 波形解析装置

Publications (1)

Publication Number Publication Date
WO2019092836A1 true WO2019092836A1 (ja) 2019-05-16

Family

ID=66438340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040486 WO2019092836A1 (ja) 2017-11-09 2017-11-09 波形解析装置

Country Status (4)

Country Link
US (1) US11302039B2 (ja)
JP (1) JP6992817B2 (ja)
CN (1) CN111373256B (ja)
WO (1) WO2019092836A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105566A1 (ja) * 2018-11-19 2020-05-28 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、プログラム、算出装置、及び算出方法
JPWO2021064924A1 (ja) * 2019-10-02 2021-04-08
WO2021191421A1 (en) 2020-03-27 2021-09-30 Ventana Medical Systems, Inc. Computer implemented method for identifying at least one peak in a mass spectrometry response curve
WO2022230162A1 (ja) * 2021-04-30 2022-11-03 株式会社島津製作所 分析装置及び分析装置用波形処理プログラム
WO2023095446A1 (ja) * 2021-11-25 2023-06-01 Cyberdyne株式会社 脳活動検出装置および脳活動検出方法
US11796495B2 (en) 2020-09-03 2023-10-24 Rigaku Corporation Total reflection X-ray fluorescence spectrometer and estimation method
EP4127662A4 (en) * 2020-04-03 2023-12-27 Decision Tree, LLC SYSTEMS AND METHODS FOR INTERPRETATION OF HIGH ENERGY INTERACTIONS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229898A1 (ja) * 2018-05-30 2019-12-05 株式会社島津製作所 イメージング質量分析データ処理装置
US11841373B2 (en) * 2019-06-28 2023-12-12 Canon Kabushiki Kaisha Information processing apparatus, method for controlling information processing apparatus, and program
US11410336B2 (en) * 2019-10-01 2022-08-09 The Boeing Company Visual signal processing of signals
JP7463944B2 (ja) * 2020-11-09 2024-04-09 株式会社島津製作所 波形処理支援装置および波形処理支援方法
CN112587152B (zh) * 2020-11-11 2022-08-16 上海数创医疗科技有限公司 一种融合U-net网络和滤波方法的12导联T波提取方法
JP7472775B2 (ja) * 2020-12-21 2024-04-23 株式会社島津製作所 波形処理支援装置および波形処理支援方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694696A (ja) * 1992-09-17 1994-04-08 Hitachi Ltd クロマトグラム解析方法及びクロマトグラフ装置
JPH0744708A (ja) * 1993-07-29 1995-02-14 Kao Corp 形状抽出システム
JPH0954071A (ja) * 1995-08-17 1997-02-25 Kao Corp ガスクロマトグラフ装置
JP2013502575A (ja) * 2009-08-20 2013-01-24 スペクトロセンス リミテッド ガスクロマトグラフ分析方法およびシステム
US20170287137A1 (en) * 2016-03-31 2017-10-05 Adobe Systems Incorporated Utilizing deep learning for boundary-aware image segmentation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920297A (en) * 1997-03-12 1999-07-06 Hewlett-Packard Company Front panel color annunciators for multi-channel instrument with color display
MX2009002237A (es) * 2006-09-01 2009-10-12 Landmark Graphics Corp Sistemas y metodos para representar volumenes de forma de onda.
JP2009008582A (ja) 2007-06-29 2009-01-15 Shimadzu Corp クロマトグラムデータ処理装置
US8421802B2 (en) * 2008-03-07 2013-04-16 Olympus Ndt Peak visualization enhancement display system for use with a compressed waveform display on a non-destructive inspection instrument
WO2013090613A1 (en) * 2011-12-13 2013-06-20 Rutgers, The State University Of New Jersey Compositions and methods for functional quality control for human blood-based gene expression products
JP5835135B2 (ja) * 2012-07-17 2015-12-24 株式会社島津製作所 分析データ表示処理装置
CN103439743B (zh) * 2013-08-30 2017-04-19 电子科技大学 一种地震数据剖面图形绘制方法
CN204515353U (zh) * 2015-03-31 2015-07-29 深圳市长桑技术有限公司 一种智能手表
WO2017046988A1 (en) * 2015-09-18 2017-03-23 Sony Corporation Information processing apparatus, information processing method, and information processing system
WO2017094170A1 (ja) 2015-12-03 2017-06-08 株式会社島津製作所 ピーク検出方法及びデータ処理装置
CN106599808B (zh) * 2016-12-01 2020-12-15 中国科学院光电研究院 一种基于全波形激光雷达数据的隐蔽目标提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694696A (ja) * 1992-09-17 1994-04-08 Hitachi Ltd クロマトグラム解析方法及びクロマトグラフ装置
JPH0744708A (ja) * 1993-07-29 1995-02-14 Kao Corp 形状抽出システム
JPH0954071A (ja) * 1995-08-17 1997-02-25 Kao Corp ガスクロマトグラフ装置
JP2013502575A (ja) * 2009-08-20 2013-01-24 スペクトロセンス リミテッド ガスクロマトグラフ分析方法およびシステム
US20170287137A1 (en) * 2016-03-31 2017-10-05 Adobe Systems Incorporated Utilizing deep learning for boundary-aware image segmentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAVE: "Supports introduction of forecast analysis with small start service utilizing deep learning technology (non official translation)", WAVE, vol. 21, May 2017 (2017-05-01), pages 6 - 7, XP055607265, Retrieved from the Internet <URL:https://www.tjsys.co.jp/wave/files/Wave-21_06.pdf> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105566A1 (ja) * 2018-11-19 2020-05-28 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、プログラム、算出装置、及び算出方法
JPWO2021064924A1 (ja) * 2019-10-02 2021-04-08
CN114391099A (zh) * 2019-10-02 2022-04-22 株式会社岛津制作所 波形解析方法和波形解析装置
JP7334788B2 (ja) 2019-10-02 2023-08-29 株式会社島津製作所 波形解析方法及び波形解析装置
WO2021191421A1 (en) 2020-03-27 2021-09-30 Ventana Medical Systems, Inc. Computer implemented method for identifying at least one peak in a mass spectrometry response curve
CN115280143A (zh) * 2020-03-27 2022-11-01 文塔纳医疗***公司 用于识别质谱响应曲线中的至少一个峰的计算机实现的方法
EP4127662A4 (en) * 2020-04-03 2023-12-27 Decision Tree, LLC SYSTEMS AND METHODS FOR INTERPRETATION OF HIGH ENERGY INTERACTIONS
US11796495B2 (en) 2020-09-03 2023-10-24 Rigaku Corporation Total reflection X-ray fluorescence spectrometer and estimation method
WO2022230162A1 (ja) * 2021-04-30 2022-11-03 株式会社島津製作所 分析装置及び分析装置用波形処理プログラム
WO2023095446A1 (ja) * 2021-11-25 2023-06-01 Cyberdyne株式会社 脳活動検出装置および脳活動検出方法

Also Published As

Publication number Publication date
JP6992817B2 (ja) 2022-01-13
US11302039B2 (en) 2022-04-12
US20200279408A1 (en) 2020-09-03
CN111373256B (zh) 2022-07-22
JPWO2019092836A1 (ja) 2020-12-03
CN111373256A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2019092836A1 (ja) 波形解析装置
WO2019092837A1 (ja) 波形解析装置
US20220059331A1 (en) Data processing device
CN108603867B (zh) 峰检测方法以及数据处理装置
EP2728350B1 (en) Method and system for processing analysis data
JP5348029B2 (ja) 質量分析データ処理方法及び装置
CN105891397A (zh) 一种全二维色谱分离的峰检测方法
JP2013068444A (ja) 包括的2次元クロマトグラフ質量分析用データ処理装置
JP7108136B2 (ja) 分析装置
CN101929989A (zh) 一种代谢谱峰位置分辨与对齐的方法
JP2014211393A (ja) ピーク検出装置
JP2023159214A (ja) 波形解析方法及び波形解析装置
CN106596814A (zh) 一种液‑质联用数据中复杂环境下的色谱峰定量分析新方法
JP6256162B2 (ja) 信号波形データ処理装置
JP7424595B2 (ja) 識別器の生成方法及び装置
WO2022230162A1 (ja) 分析装置及び分析装置用波形処理プログラム
JP6610782B2 (ja) ピーク検出方法及びデータ処理装置
US20230280316A1 (en) Learning data producing method, waveform analysis device, waveform analysis method, and recording medium
US20220198177A1 (en) Waveform processing assistance device and waveform processing assistance method
CN115398226B (zh) 波形信息估计方法及装置以及峰波形处理方法及装置
JP2023110159A (ja) 解析装置および解析方法
WO2020075850A1 (ja) 解析方法、解析装置、解析プログラム、及び標準シェイプの生成方法
JP2022551505A (ja) 流体サンプルの分類

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931381

Country of ref document: EP

Kind code of ref document: A1