WO2019091702A1 - Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe - Google Patents

Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe Download PDF

Info

Publication number
WO2019091702A1
WO2019091702A1 PCT/EP2018/077975 EP2018077975W WO2019091702A1 WO 2019091702 A1 WO2019091702 A1 WO 2019091702A1 EP 2018077975 W EP2018077975 W EP 2018077975W WO 2019091702 A1 WO2019091702 A1 WO 2019091702A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pressure pump
tank
pressure
fuel
Prior art date
Application number
PCT/EP2018/077975
Other languages
English (en)
French (fr)
Inventor
Frank Zehnder
Dirk SCHNITTGER
Andreas Beiter
Friedrich Howey
Markus Viereck
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019091702A1 publication Critical patent/WO2019091702A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • a fuel feed device for cumbersome fuels method for operating a fuel feed device for cumbersome fuels
  • the invention relates to a fuel delivery device for cryogenic fuels having the features of the preamble of claim 1. Furthermore, the invention relates to a method for operating a fuel delivery device for cryogenic fuels having the features of the preamble of claim 6.
  • the cryogenic fuel may in particular be natural gas (NG) stored on board a motor vehicle for operating a liquefied natural gas (LNG) in a specially designed tank.
  • NG natural gas
  • LNG liquefied natural gas
  • cryogenic tanks The storage of cryogenic fuels on board a motor vehicle is usually carried out in so-called cryogenic tanks. These are cryogenic reservoirs that are sufficiently isolated to store the cryogenic fuel in liquid form. For example, the ideal storage temperature for natural gas is -160 ° C. Hydrogen is stored at -253 ° C. A private cooling these tanks do not usually.
  • the removal of the cryogenic fuel from the tank is usually carried out by means of a fuel delivery device comprising at least one high-pressure pump for compressing the fuel.
  • the high-pressure pump can be partially arranged in the tank.
  • the pump head in the tank and the drive of the pump can be arranged outside the tank.
  • This arrangement has the advantage that the pump head is cooled, so that a separate cooling for the pump can be omitted.
  • Due to the partial arrangement of the high-pressure pump in the tank increases the design effort, since in the field of implementation, the isolation of the tank is interrupted. Therefore, fuel delivery systems for cryogenic fuels are also known from the state of the art, in which the high-pressure pump is arranged outside the tank and can be supplied with fuel by means of a prefeed pump arranged in the tank. For cooling the high pressure pump then a separate cooling can be provided.
  • a fuel system with a tank for storing liquefied petroleum gas and a pumping device for conveying the liquefied gas emerges by way of example, which moreover comprises a cooling device in order to reduce the temperature of the liquefied gas in a region of the fuel system which a suction side of the pumping means is fluidly coupled.
  • the present invention seeks to provide an alternative cooling a high-pressure pump, which is simple and inexpensive to implement.
  • the proposed fuel delivery device for cryogenic fuels comprises a prefeed pump and a high-pressure pump, the high-pressure pump having a pump head in which a compression space is formed, which is limited by a reciprocating piston.
  • a cold-start valve via which the compression space and / or a low-pressure space of the high-pressure pump can be connected to a tank for storing the cryogenic fuel, is integrated in the high-pressure pump, preferably in the pump head of the high-pressure pump.
  • About the cold-dump valve is thus the high-pressure pump cryogenic fuel from the tank, that is cryogenic fuel, fed, so that on this Way a cooling of the high-pressure pump is achieved.
  • the cooling flow can be guided past the compression space or the compression space, so that optimum cooling of the compression space is achieved.
  • the gas content in the compression chamber can be specifically reduced. This means that largely only liquid fuel is compressed, which requires less power of the high-pressure pump and thus reduces the energy requirement.
  • the cooling flow that can be generated for cooling the high-pressure pump by means of the cold-actuated valve can be supplied to the compression chamber directly or indirectly via a low-pressure chamber.
  • the direct feed allows a very direct and thus effective cooling of the compression space, while the indirect cooling includes other areas of the high pressure pump in the cooling.
  • the low-pressure space may be an inlet region of the high-pressure pump, which is thus likewise cooled. In this way it is ensured that the cryogenic fuel does not evaporate already on the way to the compression space.
  • the cold shut-off valve is arranged directly on the compression space.
  • the cooling flow can also be supplied only to the low-pressure space. This means that no cryogenic fuel enters the compression chamber during the cold run.
  • the compression chamber is therefore cooled exclusively indirectly.
  • the areas exposed to the cooling flow should be as close as possible to the compression space for effective indirect cooling.
  • the high-pressure pump is preferably arranged outside the tank. This means that the high-pressure pump does not experience any cooling through the tank.
  • the cooling is instead effected via the cooling flow, which is supplied during the cold run of the high-pressure pump via the open cold running valve.
  • the prefeed pump is preferably arranged in the tank, so that short line paths can be realized.
  • a supply line is provided, via which the low-pressure space of the high-pressure pump is connected to the tank and / or to the prefeed pump, which is preferably arranged in the tank.
  • the cooling flow is thus supplied via the inlet of the high-pressure pump. At the same time, the feed is cooled.
  • the cold-shut valve is connected via a return line to the tank.
  • the amount of fuel required for cooling can thus be fed back into the tank via the cold-shut valve and the return line. This means that a cooling circuit is created, which ensures that the amount of fuel required for cooling the system is not lost.
  • the return line preferably opens into a region of the tank in which the cryogenic fuel is present as a gas phase.
  • the amount of fuel used for cooling is therefore returned to a gas phase region of the tank. Since the cooling amount absorbs heat during cooling of the high-pressure pump and enters it into the tank, heating of the liquid phase can be counteracted by introducing the heated cooling quantity into the gas phase.
  • the low-pressure space of the high-pressure pump can be connected to the compression space via a suction valve.
  • the cooling flow can thus be performed with the suction valve open via the low pressure chamber in the compression chamber.
  • the cold-driving valve can be an electrically or electromagnetically operable valve which can be activated actively.
  • the cold travel valve may be a pressure-controlled valve, which is switchable by a change, preferably increase, the prefeed pressure.
  • An increase in the prefeed pressure can be achieved, for example, by a increase in the speed of the feed pump can be achieved.
  • the cryogenic fuel is supplied by means of a prefeed pump from a tank for storing the cryogenic fuel of a high-pressure pump.
  • the high-pressure pump is purged with cryogenic fuel from the tank before the start of delivery and at the same time cooled. This means that a cooling of the high-pressure pump can be achieved in a simple manner, which enables efficient cooling, in particular after a longer service life and heating of the high-pressure pump.
  • the cooling takes place before the high-pressure pump is put into operation, that is to say in a cold-running operation of the fuel delivery device, so that a filling of the high-pressure pump with liquid fuel is ensured by receiving the delivery operation of the high-pressure pump. Because of the cooling, any gas content is reduced to a minimum. As a result, an increase in the efficiency of the fuel delivery device can be achieved.
  • the high-pressure pump used in the method according to the invention can be arranged outside the tank for the storage of the cryogenic fuel due to the cooling caused by flushing with cryogenic fuel. In this way, the design effort for implementing the fuel delivery device can be reduced. Furthermore, a separate cooling device arranged on the high-pressure pump can be dispensed with.
  • a cold-running valve which is preferably integrated in the high-pressure pump and furthermore preferably in a pump head of the high-pressure pump, by means of which a connection of a compression space and / or a low-pressure der horrraums the high-pressure pump with the tank can be produced. Since a return line is usually already present, only a cold running valve is required as an additional component for cooling the high-pressure pump, so that the design effort for performing the method is low. If the cold running valve is integrated into the high pressure pump, the space requirement of the fuel delivery device remains unchanged.
  • the prefeed pump is put into operation, by means of which cryogenic fuel is sucked from the tank and fed via a supply line of the high-pressure pump.
  • the cold running operation of the fuel delivery device can therefore already be realized by commissioning the prefeed pump.
  • the cold shut-off valve is switched over the prefeed pressure of the pre-feed pump.
  • a simple pressure-controlled valve is used as a cold-shut-off valve, which is also easy to integrate into the pump head.
  • the prefeed pressure of the prefeed pump is preferably raised, for example to 10 bar.
  • the speed of the prefeed pump can be increased.
  • the cold-shut valve can also be actuated electrically or electromagnetically.
  • the cold shut-off valve can be actively activated.
  • FIG. 1 shows a schematic longitudinal section through a fuel delivery device according to the invention according to a first preferred embodiment
  • FIG. 1 is an enlarged detail of FIG. 1,
  • Fig. 3 is a schematic longitudinal section through a high-pressure pump of a fuel delivery device according to the invention according to a second preferred embodiment and 4 shows a schematic longitudinal section through a high-pressure pump of a fuel delivery device according to the invention in accordance with a third preferred embodiment.
  • the fuel delivery device according to the invention shown in FIG. 1 comprises a prefeed pump 1 and a high-pressure pump 2, wherein in the present case the prefeed pump 1 is arranged in the bottom region of a tank 8 for storing a cryogenic fuel. There is a liquid phase 13 of the fuel, which is covered by a gas phase 11 of the fuel.
  • the arrangement of the prefeed pump 1 in the tank 8 has the advantage that for connecting the prefeed pump 1 with the high-pressure pump 2, only one feed line 9 has to be led out of the tank 8.
  • the prefeed pump 1 can be designed in particular as a side channel or centrifugal pump.
  • the high pressure pump 2 of the fuel delivery device shown is designed as a stamped pump. It has a pump head 3, in which a compression space 4 is formed, which is bounded by a reciprocating piston 5.
  • the compression chamber 4 can be filled via a suction valve 12 with fuel from a low-pressure chamber 7, which is upstream of the compression chamber 4.
  • the low-pressure chamber 7 is supplied via the prefeed pump 1 with fuel from the tank 8.
  • the feed line 9 opens into the low-pressure space 7.
  • the fuel compressed in the compression space 4 is then fed via an outlet valve 15 to a high-pressure passage 14 (see FIG. 2).
  • a return line 10 is provided, via which the compression chamber 4 with the tank 8 is connectable.
  • the connection can be made via a cold-start valve 6, which is integrated in the pump head 3 of the high-pressure pump 2 and is arranged directly next to the compression space 4.
  • the high-pressure pump 2 can be flushed with cryogenic fuel. Rinsing takes place in a cold run By flushing with cryogenic or ancekaltem fuel cooling of the high-pressure pump 2 is reached, so that at the start of delivery, a filling of the compression chamber 4 is ensured with liquid fuel.
  • the fuel When purging, the fuel is circulated by means of the feed pump 1. About the prefeed pump 1, the fuel is sucked from the tank 8 and fed via the feed line 9 to the low-pressure chamber 7. About the open suction valve 12, the fuel enters the compression chamber 4 and from there via the open cold shuttle valve 6 and the return line 10 back into the tank 8. The return line 10 opens in the gas phase 11 in the tank 8 to the heating of the liquid phase fourteenth to be kept as low as possible.
  • FIG. 3 shows a modified high-pressure pump 2 for a fuel delivery device according to the invention.
  • the purge circuit for cooling the high-pressure pump 2 does not lead in this embodiment via the compression chamber 4, but via the low-pressure chamber 7.
  • the return line 10 also forms at least one loop 16, via which the cooling flow can be brought close to the compression chamber 4, so that this is cooled indirectly.
  • This embodiment has the advantage that the compression space 4 is not extended by an additional dead volume.
  • FIGS. 1 to 3 each show a cold-driving valve 6 which can be actuated electrically or electromagnetically.
  • the cold-driving valve 6 can also be a simple pressure-controlled valve. To open the valve, the prefeed pressure of the prefeed pump 1 is briefly raised. Since no electrical or electromagnetic components introduce heat into the pump head, the cooling of the pump head can be further optimized.
  • the embodiment shown in FIGS. 1 and 2 can likewise be realized with a pressure-controlled cold-running valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Die Erfindung betrifft eine Kraftstofffördereinrichtung für kryogene Kraftstoffe, umfassend eine Vorförderpumpe (1) und eine Hochdruckpumpe (2), wobei die Hochdruckpumpe (2) einen Pumpenkopf (3) aufweist, in dem ein Kompressionsraum (4) ausgebildet ist, der durch einen hin und her beweglichen Kolben (5) begrenzt wird. Erfindungsgemäß ist in die Hochdruckpumpe (2), vorzugsweise in den Pumpenkopf (3) der Hochdruckpumpe (2), ein Kaltfahrventil (6) integriert, über welches der Kompressionsraum (4) und/oder ein Niederdruckraum (7) der Hochdruckpumpe (2) mit einem Tank (8) zur Bevorratung des kryogenen Kraftstoffs verbindbar ist bzw. sind. Die Erfindung betrifft ferner ein Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe.

Description

Beschreibung
Titel:
Kraftstofffördereinrichtung für krvogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für krvogene Kraftstoffe
Die Erfindung betrifft eine Kraftstofffördereinrichtung für kryogene Kraftstoffe mit den Merkmalen des Oberbegriffs des Anspruchs 1. Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe mit den Merkmalen des Oberbegriffs des Anspruchs 6.
Bei dem kryogenen Kraftstoff kann es sich insbesondere um Erdgas („Natural Gas" = NG) handeln, das an Bord eines Kraftfahrzeugs zum Betreiben einer Brennkraftmaschine in flüssiger Form („Liquefied Natural Gas" = LNG) in einem speziell dafür ausgelegten Tank bevorratet wird.
Stand der Technik
Die Bevorratung kryogener Kraftstoffe an Bord eines Kraftfahrzeugs erfolgt in der Regel in sogenannten Kryotanks. Hierbei handelt es sich um tiefkalte Speicher, die aus- reichend isoliert sind, um den kryogenen Kraftstoff in flüssiger Form zu speichern. Die ideale Speichertemperatur von Erdgas beträgt beispielsweise -160°C. Wasserstoff wird bei -253°C gelagert. Eine eigene Kühlung besitzen diese Tanks in der Regel nicht.
Die Entnahme des kryogenen Kraftstoffs aus dem Tank erfolgt üblicherweise mittels einer Kraftstofffördereinrichtung, die zumindest eine Hochdruckpumpe zum Verdichten des Kraftstoffs umfasst. Die Hochdruckpumpe kann dabei teilweise im Tank angeordnet sein. Beispielsweise kann der Pumpenkopf im Tank und der Antrieb der Pumpe außerhalb des Tanks angeordnet sein. Diese Anordnung besitzt den Vorteil, dass der Pumpenkopf gekühlt ist, so dass eine separate Kühlung für die Pumpe entfallen kann. Durch die teilweise Anordnung der Hochdruckpumpe im Tank erhöht sich jedoch der konstruktive Aufwand, da im Bereich der Durchführung die Isolierung des Tanks unterbrochen wird. Aus dem Stand der Technik sind daher auch Kraftstofffördersysteme für kryogene Kraftstoffe bekannt, bei denen die Hochdruckpumpe außerhalb des Tanks angeordnet und mittels einer im Tank angeordneten Vorförderpumpe mit Kraftstoff versorgbar ist. Zur Kühlung der Hochdruckpumpe kann dann eine separate Kühlung vorgesehen werden.
Aus der DE 10 2016 014 928 AI geht beispielhaft ein Kraftstoffsystem mit einem Tank zum Speichern von Flüssiggas sowie eine Pumpeinrichtung zum Fördern des Flüssiggases hervor, das darüber hinaus eine Kühleinrichtung umfasst, um die Temperatur des Flüssiggases in einem Bereich des Kraftstoffsystems zu verringern, welcher mit einer Saugseite der Pumpeinrichtung fluidisch gekoppelt ist.
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine alternative Kühlung einer Hochdruckpumpe anzugeben, die einfach und kostengünstig umsetzbar ist.
Zur Lösung der Aufgabe werden die Kraftstofffördereinrichtung mit den Merkmalen des Anspruchs 1 sowie das Verfahren mit den Merkmalen des Anspruchs 6 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den jeweiligen Unteransprüchen zu entnehmen.
Offenbarung der Erfindung
Die vorgeschlagene Kraftstofffördereinrichtung für kryogene Kraftstoffe umfasst eine Vorförderpumpe und eine Hochdruckpumpe, wobei die Hochdruckpumpe einen Pumpenkopf aufweist, in dem ein Kompressionsraum ausgebildet ist, der durch einen hin und her beweglichen Kolben begrenzt wird. Erfindungsgemäß ist in die Hochdruckpumpe, vorzugsweise in den Pumpenkopf der Hochdruckpumpe, ein Kaltfahrventil integriert, über welches der Kompressionsraum und/oder ein Niederdruckraum der Hochdruckpumpe mit einem Tank zur Bevorratung des kryogenen Kraftstoffs verbindbar ist bzw. sind. Über das Kaltfahrventil ist somit der Hochdruckpumpe kryogener Kraftstoff aus dem Tank, das heißt tiefkalter Kraftstoff, zuführbar, so dass auf diese Weise eine Kühlung der Hochdruckpumpe erreicht wird. Das Kaltfahrventil wird hierzu während einer„Kaltfahrt", das heißt vor Förderbeginn der Hochdruckpumpe aktiviert. Dadurch ist sichergestellt, dass auch nach längerer Standzeit der Hochdruckpumpe diese vor einer erneuten Inbetriebnahme soweit herunterkühlbar ist, dass eine weitgehende Befüllung mit flüssigem Kraftstoff sichergestellt ist. Denn die Kühlung verhindert, dass der zugeführte flüssige Kraftstoff verdampft und zu einem den Wirkungsgrad der Pumpe verringernden Gasanteil führt.
Durch Integration des Kaltfahrventils in den Pumpenkopf der Hochdruckpumpe kann der Kühlstrom durch den Kompressionsraum oder am Kompressionsraum vorbei geführt werden, so dass eine optimale Kühlung des Kompressionsraums erreicht wird. Auf diese Weise kann gezielt der Gasanteil im Kompressionsraum verringert werden. Das heißt, dass weitgehend nur flüssiger Kraftstoff verdichtet wird, was weniger Leistung der Hochdruckpumpe erfordert und somit den Energiebedarf senkt. Durch Integration des Kaltfahrventils in die Hochdruckpumpe ist ferner sichergestellt, dass der Bauraumbedarf der Kraftstofffördereinrichtung nicht steigt.
Der zur Kühlung der Hochdruckpumpe mittels des Kaltfahrventils erzeugbare Kühlstrom kann dem Kompressionsraum unmittelbar oder mittelbar über einen Niederdruckraum zugeführt werden. Die unmittelbare Zuführung ermöglicht eine sehr direkte und damit effektive Kühlung des Kompressionsraums, während die mittelbare Kühlung weitere Bereiche der Hochdruckpumpe in die Kühlung miteinbezieht. Beispielsweise kann es sich bei dem Niederdruckraum um einen Zulaufbereich der Hochdruckpumpe handeln, der somit ebenfalls gekühlt wird. Auf diese Weise ist sichergestellt, dass der kry- ogene Kraftstoff nicht bereits auf dem Weg zum Kompressionsraum verdampft. Um das Totvolumen des Kompressionsraum gering zu halten wird vorgeschlagen, dass das Kaltfahrventil unmittelbar am Kompressionsraum angeordnet ist.
Darüber hinaus kann zur Vermeidung eines zusätzlichen Totvolumens im Kompressionsraum der Kühlstrom auch nur dem Niederdruckraum zugeführt werden. Das heißt, dass während der Kaltfahrt kein kryogener Kraftstoff in den Kompressionsraum gelangt. Der Kompressionsraum wird demnach ausschließlich indirekt gekühlt. Die mit dem Kühlstrom beaufschlagten Bereiche sollten jedoch möglichst nah am Kompressionsraum liegen, um eine effektive indirekte Kühlung zu erzielen. Bevorzugt ist die Hochdruckpumpe außerhalb des Tanks angeordnet. Das heißt, dass die Hochdruckpumpe keine Kühlung durch den Tank erfährt. Die Kühlung wird stattdessen über den Kühlstrom bewirkt, der während der Kaltfahrt der Hochdruckpumpe über das geöffnete Kaltfahrventil zugeführt wird. Die Vorförderpumpe ist demgegenüber bevorzugt im Tank angeordnet, so dass kurze Leitungswege realisierbar sind.
Vorzugsweise ist eine Zulaufleitung vorgesehen, über welche der Niederdruckraum der Hochdruckpumpe mit dem Tank und/oder mit der vorzugsweise im Tank angeordneten Vorförderpumpe verbunden ist. Der Kühlstrom wird somit über den Zulauf der Hochdruckpumpe zugeführt. Zugleich wird der Zulauf gekühlt.
Ferner wird vorgeschlagen, dass das Kaltfahrventil über eine Rücklaufleitung mit dem Tank verbunden ist. Die zum Kühlen benötigte Kraftstoffmenge kann somit über das Kaltfahrventil und die Rücklaufleitung zurück in den Tank geführt werden. Das heißt, dass ein Kühlkreis geschaffen wird, der sicherstellt, dass die zum Kühlen benötigte Kraftstoff menge dem System nicht verloren geht.
Die Rücklaufleitung mündet vorzugsweise in einen Bereich des Tanks, in dem der kry- ogene Kraftstoff als Gasphase vorliegt. Die zum Kühlen eingesetzte Kraftstoffmenge wird demnach in einen Gasphasenbereich des Tanks zurückgeführt. Da die Kühlmenge beim Kühlen der Hochdruckpumpe Wärme aufnimmt und diese in den Tank einträgt, kann durch Einleiten der erwärmten Kühlmenge in die Gasphase einer Erwärmung der Flüssigphase entgegengewirkt werden.
Des Weiteren wird vorgeschlagen, dass der Niederdruckraum der Hochdruckpumpe über ein Saugventil mit dem Kompressionsraum verbindbar ist. Der Kühlstrom kann somit bei geöffnetem Saugventil über den Niederdruckraum in den Kompressionsraum geführt werden.
Das Kaltfahrventil kann ein elektrisch oder elektromagnetisch betätigbares Ventil sein, das aktiv ansteuerbar ist. Darüber hinaus kann das Kaltfahrventil ein druckgesteuertes Ventil sein, das durch eine Änderung, vorzugsweise Anhebung, des Vorförderdrucks schaltbar ist. Eine Anhebung des Vorförderdrucks kann beispielsweise durch eine Er- höhung der Drehzahl der Vorförderpumpe erreicht werden. Durch Verwendung eines einfachen druckgesteuerten Ventils entfallen sämtliche elektrischen bzw. elektromagnetischen Komponenten, wie beispielsweise Spule, Anker und Magnetgehäuse. Ferner entfällt eine elektrische Schnittstelle im Pumpenkopf. Die Ausführung der Kraftstofffördereinrichtung kann demnach weiter vereinfacht werden. Zugleich verringert sich der Wärmeeintrag in den Pumpenkopf, da Wärmequellen, wie beispielsweise bestromte Spulen, fehlen.
Zur Lösung der eingangs genannten Aufgabe wird ferner ein Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe angegeben. Bei dem Verfahren wird der kryogene Kraftstoff mittels einer Vorförderpumpe aus einem Tank zur Bevorratung des kryogenen Kraftstoffs einer Hochdruckpumpe zugeführt. Erfindungsgemäß wird die Hochdruckpumpe vor Förderbeginn mit kryogenem Kraftstoff aus dem Tank gespült und dabei zugleich gekühlt. Das heißt, dass in einfacher Weise eine Kühlung der Hochdruckpumpe erzielbar ist, die insbesondere nach längerer Standzeit und Erwärmung der Hochdruckpumpe eine effiziente Kühlung ermöglicht. Die Kühlung erfolgt dabei vor Inbetriebnahme der Hochdruckpumpe, das heißt in einem Kaltfahrbetrieb der Kraftstofffördereinrichtung, so dass mit Aufnahme des Förderbetriebs der Hochdruckpumpe eine Befüllung der Hochdruckpumpe mit flüssigem Kraftstoff sichergestellt ist. Denn durch die Kühlung wird ein etwaiger Gasanteil auf ein Minimum reduziert. In der Folge kann eine Erhöhung des Wirkungsgrads der Kraftstofffördereinrichtung erzielt werden.
Die bei dem erfindungsgemäßen Verfahren zum Einsatz gelangende Hochdruckpumpe kann aufgrund der durch Spülen mit kryogenem Kraftstoff bewirkten Kühlung außerhalb des Tanks zur Bevorratung des kryogenen Kraftstoffs angeordnet werden. Auf diese Weise kann der konstruktive Aufwand zur Umsetzung der Kraftstofffördereinrichtung verringert werden. Ferner ist eine an der Hochdruckpumpe angeordnete separate Kühleinrichtung entbehrlich.
Ferner wird vorgeschlagen, dass zum Spülen und Kühlen der Hochdruckpumpe ein vorzugsweise in die Hochdruckpumpe, weiterhin vorzugsweise in einen Pumpenkopf der Hochdruckpumpe, integriertes Kaltfahrventil verwendet wird, mittels dessen über eine Rücklaufleitung eine Verbindung eines Kompressionsraums und/oder eines Nie- derdruckraums der Hochdruckpumpe mit dem Tank herstellbar ist. Da eine Rücklaufleitung in der Regel bereits vorhanden ist, wird zur Kühlung der Hochdruckpumpe lediglich ein Kaltfahrventil als zusätzliches Bauteil benötigt, so dass der konstruktive Aufwand zur Durchführung des Verfahrens gering ist. Wird das Kaltfahrventil in die Hochdruckpumpe integriert, bleibt der Bauraumbedarf der Kraftstofffördereinrichtung unverändert.
Bevorzugt wird zum Spülen und Kühlen der Hochdruckpumpe die Vorförderpumpe in Betrieb genommen, mittels welcher kryogener Kraftstoff aus dem Tank angesaugt und über eine Zulaufleitung der Hochdruckpumpe zugeführt wird. Der Kaltfahrbetrieb der Kraftstofffördereinrichtung kann demnach bereits durch Inbetriebnahme der Vorförderpumpe realisiert werden.
Des Weiteren wird vorgeschlagen, dass das Kaltfahrventil über den Vorförderdruck der Vorförderpumpe geschaltet wird. Das heißt, dass ein einfaches druckgesteuertes Ventil als Kaltfahrventil verwendet wird, das zudem einfach in den Pumpenkopf zu integrieren ist. Zum Schalten des Kaltfahrventils wird vorzugsweise der Vorförderdruck der Vorförderpumpe angehoben, beispielsweise auf 10 bar. Zum Anheben des Vorförderdrucks kann insbesondere die Drehzahl der Vorförderpumpe erhöht werden.
Alternativ kann das Kaltfahrventil auch elektrisch oder elektromagnetisch betätigt werden. In diesem Fall ist das Kaltfahrventil aktiv ansteuerbar.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:
Fig. 1 eine schematischen Längsschnitt durch eine erfindungsgemäße Kraftstofffördereinrichtung gemäß einer ersten bevorzugten Ausführungsform,
Fig. 2 einen vergrößerten Ausschnitt der Fig. 1,
Fig. 3 einen schematischen Längsschnitt durch eine Hochdruckpumpe einer erfindungsgemäßen Kraftstofffördereinrichtung gemäß einer zweiten bevorzugten Ausführungsform und Fig. 4 einen schematischen Längsschnitt durch eine Hochdruckpumpe einer erfindungsgemäßen Kraftstofffördereinrichtung gemäß einer dritten bevorzugten Ausführungsform.
Ausführliche Beschreibung der Zeichnungen
Die in der Fig. 1 dargestellte erfindungsgemäße Kraftstofffördereinrichtung umfasst eine Vorförderpumpe 1 und eine Hochdruckpumpe 2, wobei vorliegend die Vorförder- pumpe 1 im Bodenbereich eines Tanks 8 zur Bevorratung eines kryogenen Kraftstoffs angeordnet ist. Dort befindet sich eine Flüssigphase 13 des Kraftstoffs, die von einer Gasphase 11 des Kraftstoffs überdeckt wird. Die Anordnung der Vorförderpumpe 1 im Tank 8 besitzt den Vorteil, dass zur Verbindung der Vorförderpumpe 1 mit der Hochdruckpumpe 2 lediglich eine Zulaufleitung 9 aus dem Tank 8 herausgeführt werden muss. Die Vorförderpumpe 1 kann insbesondere als Seitenkanal- oder Kreiselpumpe ausgeführt sein.
Die Hochdruckpumpe 2 der dargestellten Kraftstofffördereinrichtung ist als Einstempelpumpe ausgeführt. Sie weist einen Pumpenkopf 3 auf, in dem ein Kompressionsraum 4 ausgebildet ist, der von einem hin und her beweglichen Kolben 5 begrenzt wird. Der Kompressionsraum 4 ist über ein Saugventil 12 mit Kraftstoff aus einem Niederdruckraum 7 befüllbar, der dem Kompressionsraum 4 vorgelagert ist. Der Niederdruckraum 7 wird über die Vorförderpumpe 1 mit Kraftstoff aus dem Tank 8 versorgt. Die Zulaufleitung 9 mündet hierzu in den Niederdruckraum 7. Der im Kompressionsraum 4 verdichtete Kraftstoff wird anschließend über ein Auslassventil 15 einem Hochdruckkanal 14 zugeführt (siehe Fig. 2).
Ferner ist eine Rücklaufleitung 10 vorgesehen, über welche der Kompressionsraum 4 mit dem Tank 8 verbindbar ist. Die Verbindung ist über ein Kaltfahrventil 6 herstellbar, das in den Pumpenkopf 3 der Hochdruckpumpe 2 integriert und unmittelbar neben dem Kompressionsraum 4 angeordnet ist. Dadurch wird kein zusätzliches Totvolumen geschaffen bzw. das Totvolumen klein gehalten. Ist eine Verbindung des Kompressionsraums 4 mit dem Tank 8 über das Kaltfahrventil 6 hergestellt, kann die Hochdruckpumpe 2 mit kryogenem Kraftstoff gespült werden. Das Spülen erfolgt in einem Kaltfahrbe- trieb, das heißt vor dem eigentlichen Förderbeginn der Hochdruckpumpe 2. Durch das Spülen mit kryogenem bzw. tiefkaltem Kraftstoff wird eine Kühlung der Hochdruckpumpe 2 erreicht, so dass bei Förderbeginn eine Befüllung des Kompressionsraums 4 mit flüssigem Kraftstoff sichergestellt ist. Beim Spülen wird der Kraftstoff mit Hilfe der Vor- förderpumpe 1 im Kreis bewegt. Über die Vorförderpumpe 1 wird der Kraftstoff aus dem Tank 8 angesaugt und über die Zulaufleitung 9 dem Niederdruckraum 7 zugeführt. Über das geöffnete Saugventil 12 gelangt der Kraftstoff in den Kompressionsraum 4 und von dort über das geöffnete Kaltfahrventil 6 und die Rücklaufleitung 10 zurück in den Tank 8. Die Rücklaufleitung 10 mündet im Bereich der Gasphase 11 in den Tank 8, um die Erwärmung der Flüssigphase 14 so gering wie möglich zu halten.
Der Fig. 3 ist eine modifizierte Hochdruckpumpe 2 für eine erfindungsgemäße Kraftstofffördereinrichtung zu entnehmen. Der Spülkreis zum Kühlen der Hochdruckpumpe 2 führt bei dieser Ausführungsform nicht über den Kompressionsraum 4, sondern über den Niederdruckraum 7. Die Rücklaufleitung 10 bildet zudem mindestens eine Schleife 16 aus, über welche der Kühlstrom nahe an den Kompressionsraum 4 herangeführt werden kann, so dass dieser indirekt gekühlt wird. Diese Ausführungsform besitzt den Vorteil, dass der Kompressionsraum 4 nicht durch ein zusätzliches Totvolumen erweitert wird.
Die in den Figuren 1 bis 3 dargestellten Ausführungen der Erfindung zeigen jeweils ein Kaltfahrventil 6, das elektrisch bzw. elektromagnetisch betätigbar ist. Wie beispielhaft in der Fig. 4 dargestellt, kann das Kaltfahrventil 6 aber auch ein einfaches druckgesteuertes Ventil sein. Zum Öffnen des Ventils wird der Vorförderdruck der Vorförderpumpe 1 kurzzeitig angehoben. Da keine elektrischen oder elektromagnetischen Komponenten Wärme in den Pumpenkopf eintragen, kann die Kühlung des Pumpenkopfes weiter optimiert werden. Die in den Figuren 1 und 2 dargestellte Ausführungsform ist ebenfalls mit einem druckgesteuerten Kaltfahrventil realisierbar.

Claims

Ansprüche
1. Kraftstofffördereinrichtung für kryogene Kraftstoffe, umfassend eine Vorförderpumpe (1) und eine Hochdruckpumpe (2), wobei die Hochdruckpumpe (2) einen Pumpenkopf (3) aufweist, in dem ein Kompressionsraum (4) ausgebildet ist, der durch einen hin und her beweglichen Kolben (5) begrenzt wird,
dadurch gekennzeichnet, dass in die Hochdruckpumpe (2), vorzugsweise in den Pumpenkopf (3) der Hochdruckpumpe (2), ein Kaltfahrventil (6) integriert ist, über welches der Kompressionsraum (4) und/oder ein Niederdruckraum (7) der Hochdruckpumpe (2) mit einem Tank (8) zur Bevorratung des kryogenen Kraftstoffs verbindbar ist bzw. sind.
2. Kraftstofffördereinrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass die Hochdruckpumpe (2) außerhalb des Tanks (8) angeordnet ist, während vorzugsweise die Vorförderpumpe (1) im Tank (8) angeordnet ist.
3. Kraftstofffördereinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Niederdruckraum (7) über eine Zulaufleitung (9) mit dem Tank (8) und/oder mit der vorzugsweise im Tank (8) angeordneten Vorförderpumpe (1) verbunden ist.
4. Kraftstofffördereinrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das Kaltfahrventil (6) über eine Rücklaufleitung (10) mit dem Tank (8) verbunden ist, wobei vorzugsweise die Rücklaufleitung (10) in einen Bereich des Tanks (8) mündet, in dem der kryogene Kraftstoff als Gasphase (11) vorliegt.
5. Kraftstofffördereinrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Niederdruckraum (7) über ein Saugventil (12) mit dem Kompressionsraum (4) verbindbar ist.
6. Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe, bei dem der kryogene Kraftstoff mittels einer Vorförderpumpe (1) aus einem
Tank (8) zur Bevorratung des kryogenen Kraftstoffs einer Hochdruckpumpe (2) zugeführt wird,
dadurch gekennzeichnet, dass die Hochdruckpumpe (2) vor Förderbeginn mit kryo- genem Kraftstoff aus dem Tank (8) gespült und dabei zugleich gekühlt wird.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass zum Spülen und Kühlen der Hochdruckpumpe (2) ein vorzugsweise in die Hochdruckpumpe (2), weiterhin vorzugsweise in einen Pumpenkopf (3) der Hochdruckpumpe (2), integriertes Kaltfahrventil (6) verwendet wird, mittels dessen über eine Rücklaufleitung (10) eine Verbindung eines Kompressionsraums (4) und/oder eines Niederdruckraums (7) der Hochdruckpumpe (2) mit dem Tank (8) herstellbar ist.
8. Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass zum Spülen und Kühlen der Hochdruckpumpe (2) die Vorförderpumpe (1) in Betrieb genommen wird, mittels welcher kryogener Kraftstoff aus dem Tank (8) angesaugt und über eine Zulaufleitung (9) der Hochdruckpumpe (2) zu- geführt wird.
9. Verfahren nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, dass das Kaltfahrventil (6) über den Vorförderdruck der Vorförderpumpe (1) geschaltet wird, wobei vorzugsweise der Vorförderdruck angeho- ben wird, beispielsweise auf 10 bar.
10. Verfahren nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, dass das Kaltfahrventil (6) elektrisch oder elektromagnetisch betätigt wird.
PCT/EP2018/077975 2017-11-07 2018-10-15 Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe WO2019091702A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219784.6 2017-11-07
DE102017219784.6A DE102017219784A1 (de) 2017-11-07 2017-11-07 Kraftstofffördereinrichtung für kryogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe

Publications (1)

Publication Number Publication Date
WO2019091702A1 true WO2019091702A1 (de) 2019-05-16

Family

ID=63896124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/077975 WO2019091702A1 (de) 2017-11-07 2018-10-15 Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe

Country Status (2)

Country Link
DE (1) DE102017219784A1 (de)
WO (1) WO2019091702A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874617A (zh) * 2019-05-26 2021-12-31 罗伯特·博世有限公司 用于运行燃料***的方法、预输送泵和燃料***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203697A1 (de) 2018-03-12 2019-09-12 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102018206334A1 (de) 2018-04-25 2019-10-31 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102018211924A1 (de) 2018-07-18 2020-01-23 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741145A1 (de) * 1987-12-04 1989-06-15 Deutsche Forsch Luft Raumfahrt Aufbereitungssystem fuer fluessigwasserstoff
US5127230A (en) * 1991-05-17 1992-07-07 Minnesota Valley Engineering, Inc. LNG delivery system for gas powered vehicles
EP2784295A1 (de) * 2013-03-28 2014-10-01 Hyundai Heavy Industries Co., Ltd. System zur Zufuhr von verflüssigtem Naturgaskraftstoff und Verfahren zum Betrieb davon
DE102014000170B3 (de) * 2014-01-02 2015-04-02 L'orange Gmbh Flüssiggas (LPG)-Kraftstoffsystem
US20160222961A1 (en) * 2015-01-30 2016-08-04 Caterpillar Inc. Barrel assembly for a pumping mechanism
DE102016014928A1 (de) 2016-12-15 2017-07-20 Daimler Ag Kraftstoffsystem mit einem Tank zum Speichern von Flüssiggas als Kraftstoff

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741145A1 (de) * 1987-12-04 1989-06-15 Deutsche Forsch Luft Raumfahrt Aufbereitungssystem fuer fluessigwasserstoff
US5127230A (en) * 1991-05-17 1992-07-07 Minnesota Valley Engineering, Inc. LNG delivery system for gas powered vehicles
EP2784295A1 (de) * 2013-03-28 2014-10-01 Hyundai Heavy Industries Co., Ltd. System zur Zufuhr von verflüssigtem Naturgaskraftstoff und Verfahren zum Betrieb davon
DE102014000170B3 (de) * 2014-01-02 2015-04-02 L'orange Gmbh Flüssiggas (LPG)-Kraftstoffsystem
US20160222961A1 (en) * 2015-01-30 2016-08-04 Caterpillar Inc. Barrel assembly for a pumping mechanism
DE102016014928A1 (de) 2016-12-15 2017-07-20 Daimler Ag Kraftstoffsystem mit einem Tank zum Speichern von Flüssiggas als Kraftstoff

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874617A (zh) * 2019-05-26 2021-12-31 罗伯特·博世有限公司 用于运行燃料***的方法、预输送泵和燃料***

Also Published As

Publication number Publication date
DE102017219784A1 (de) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2019091702A1 (de) Kraftstofffördereinrichtung für kryogene kraftstoffe, verfahren zum betreiben einer kraftstofffördereinrichtung für kryogene kraftstoffe
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
EP1144851B1 (de) Kraftstoffeinspritzsystem
DE102012214369A1 (de) Abgasnachbehandlungsanordnung sowie Verfahren zur Eindosierung eines Reduktionsmittels in den Abgasstrang einer Brennkraftmaschine
DE102010061183A1 (de) Mit flüssigem und/oder gasförmigem Kraftstoff zu betreibende Brennkraftmaschine
DE102009044866B4 (de) Kraftstoffversorgungssystem für eine Verbrennungskraftmaschine
DE4422552C1 (de) Verfahren zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine
DE102017200045A1 (de) Wassereinspritzvorrichtung
DE102011088795A1 (de) Kraftstoffsystem für eine Brennkraftmaschine, welche mit mindestens zwei Kraftstoffarten betrieben werden kann
JPWO2008146420A1 (ja) 内燃機関の液化ガス燃料供給装置及び液化ガス燃料の回収方法並びに内燃機関の強制停止方法
EP2476890B1 (de) Versorgungsvorrichtung mit einer Kraftstoffördereinrichtung und Verwendung einer dahingehenden Versorgungsvorrichtung
DE19747240A1 (de) Dieselmotor
DE102009028739A1 (de) Schnellstart eines Common Rail-Systems
DE102018221323A1 (de) Kraftstofffördereinrichtung für eine Brennkraftmaschine
DE102010039211A1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102013225418A1 (de) Verfahren zum Betreiben einer Kraftstoffhochdruckpumpe einer Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE10061873A1 (de) Kraftstoffspeicherrohr eines Kraftstoffeinspritzsystems für eine mehrzylindrige Brennkraftmaschine
EP3701138B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit erdgas, kraftstoffversorgungssystem für eine mit erdgas betreibbare brennkraftmaschine
DE10240310A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
WO2020239352A1 (de) Verfahren zum betreiben eines kraftstoffsystems, vorförderpumpe und kraftstoffsystem
DE102018219785A1 (de) Verfahren zum Betreiben eines Wassereinspritzsystems für einen Verbrennungsmotor, Wassereinspritzsystem für einen Verbrennungsmotor sowie Steuergerät
DE102018206331A1 (de) Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE4425339A1 (de) Einspritzsystem
DE102018200075A1 (de) Kraftstofffördereinrichtung für kryogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102017205910A1 (de) Kraftstofffördereinrichtung für eine Brennkraftmaschine, sowie ein Verfahren zur Förderung von Kraftstoff in einer Kraftstofffördereinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789053

Country of ref document: EP

Kind code of ref document: A1