WO2019088399A1 - 순환증기 재가열 슬러지 건조시스템 - Google Patents

순환증기 재가열 슬러지 건조시스템 Download PDF

Info

Publication number
WO2019088399A1
WO2019088399A1 PCT/KR2018/007682 KR2018007682W WO2019088399A1 WO 2019088399 A1 WO2019088399 A1 WO 2019088399A1 KR 2018007682 W KR2018007682 W KR 2018007682W WO 2019088399 A1 WO2019088399 A1 WO 2019088399A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
gas
centrifugal force
dust
dryer
Prior art date
Application number
PCT/KR2018/007682
Other languages
English (en)
French (fr)
Inventor
정흥구
엄명종
박진수
Original Assignee
도요엔지니어링코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요엔지니어링코리아 주식회사 filed Critical 도요엔지니어링코리아 주식회사
Publication of WO2019088399A1 publication Critical patent/WO2019088399A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention relates to a circulating steam reheating sludge drying system, and more particularly, to a circulating steam reheating sludge drying system for efficiently treating sewage sludge or organic waste with a minimum energy.
  • the sewage sludge is generated in the form of a liquid containing 95 to 98% of water, it is difficult to handle the sludge.
  • the sludge is treated with sand filtration, filter press, centrifugal dehydrator, Most of them are processed by various methods such as landfill, fuel conversion, solidification, incineration, and pyrolysis.
  • steam is generated using a boiler to indirectly heat the sludge with high-temperature steam to reduce moisture in the sludge.
  • the high-temperature air having increased humidity is cooled to be condensed And discharging it to the outside has been used.
  • the present invention minimizes air pollutants by eliminating dust and odors generated during the treatment and treatment of sludge generated from sewage or organic wastes with minimum energy and preserves the environment around the sludge treatment facility, And to prevent the occurrence of such a phenomenon.
  • a sludge drying apparatus including a dryer for drying sludge moisture by a heat source supplied with sludge and a sludge dryer, A deodorizing furnace for removing water and odor components contained in the dry gas, and a deodorizing gas discharged from the deodorizing furnace.
  • the steam is supplied to the dryer through the heat exchanger to heat the dry gas supplied through the circulation line branched from the transfer line.
  • centrifugal dust collector installed in the transfer line for collecting the dust contained in the dry gas and discharging the dust to the lower part, and supplying the odor component to the deodorizing furnace.
  • the centrifugal force dust collector includes a first centrifugal force collector for separating dust in the drawn-in gas by centrifugal force, a first centrifugal force collector for separating dust in the drawn-in gas from the centrifugal force, wherein the first centrifugal force collector, the first centrifugal force collector, and the second centrifugal force collector have a first concentration and a second concentration, respectively, of the first centrifugal force collector and the second centrifugal force collector after passing through the first centrifugal force collector, Accordingly, the electric dust collecting electrode needs to be cleaned, so that the electric dust collecting electrode can be selectively connected.
  • first and second electrostatic centrifugal force collectors each have a dust concentration sensing unit for measuring the concentration of dust contained in the carbon dioxide gas passing through the centrifugal force collector at the upper outlet portion, Whether or not the first electrostatic centrifugal force collector and the second electrostatic centrifugal force collector are allowed to pass the carbon monoxide gas can be controlled.
  • the dust concentration sensing unit may be a laser sensor for sensing a dust pressure by irradiating a laser beam to an upper outlet portion of a centrifugal force dust collector through which a dry gas is discharged.
  • first and second electrostatic centrifugal force collectors comprise: a cyclone for separating the dust in the carbon monoxide gas sucked by centrifugal force into lower parts; an electric dust collecting pole for attaching the fine particles inside the cyclone using a high voltage; And a water spray nozzle for spraying water to clean fine dust adhered to the pole.
  • the electric dust collecting pole may have a plurality of protrusions formed along an outer surface thereof.
  • a filter and a dust collector for removing ultrafine dusts of the deodorized gas discharged from the steam heater by a filter and a chimney for discharging the exhaust gas passed through the filter and dust collector to the outside.
  • the chimney has a double tube shape which surrounds the outer circumferential surface of the chimney.
  • the chimney transfers the collected odor gas from the sludge storage tank, the sludge tank, the drier, the input facility, and the like, while transferring the odor gas to the heat of the exhaust gas passing through the chimney.
  • a preheater for supplying the deodorizing furnace to the deodorizing furnace by secondly heating the odor gas heated while passing through the transfer pipe through heat exchange with the deodorizing gas discharged from the steam oven.
  • the inside of the conveyance pipe may have a spiral shape so that the odor gas is circulated and circulated from the upper part of the chimney to the lower part thereof so as to be heated.
  • the dryer includes an inner space capable of receiving the sludge, a plurality of partition walls partitioning the inner space into a continuous drying chamber, a paddle type conveying conveyor installed in the drying chamber for conveying the sludge, A sludge inlet connected to a drying chamber located at the uppermost stage of the drying chamber; a drying agent discharge port located at the lower end of the plurality of drying chambers for discharging the dried sludge; a heat source inlet for drying the sludge; And a carbon dioxide gas outlet for discharging the carbon dioxide gas.
  • the dryer includes an oxygen concentration sensor installed in the dryer to detect an oxygen concentration and a nitrogen concentration sensor for purifying nitrogen gas by purging the inside of the dryer when the oxygen concentration detected by the oxygen concentration sensor is higher than a set concentration, And a gas purge portion.
  • a rotary valve installed at the dry material discharge port to discharge oxygen while shutting off oxygen when the dried sludge is discharged, and a discharge conveyor that can receive and discharge the dried sludge discharged from the rotary valve.
  • a heat dissipating and recovering unit for recovering the heat radiated through the heat dissipating plate to preheat the sludge before the sludge is supplied to the dryer.
  • the heat dissipating and collecting means includes a circulation duct formed in the heat dissipation plate and a double pipe which surrounds the outer circumferential surface of the supply pipe for feeding the sludge to the dryer.
  • One side of the circulation duct is connected to the inlet of the circulation duct,
  • a circulation pipe connected to an outlet of the circulation duct for circulating heat radiated through the radiating plate, and a heat-radiating circulation blower for securing circulation power of the heat.
  • FIG. 1 is a view showing a circulating steam reheating sludge drying system according to an embodiment of the present invention.
  • FIG. 2 is a view showing the inside of a dryer according to an embodiment of the present invention.
  • FIG. 3 is a view showing the inside of a first centrifugal force dust collector among centrifugal force dust collectors and centrifugal force dust collectors according to an embodiment of the present invention
  • FIG. 4 is a view showing the inside of the first centrifugal force dust collector of the centrifugal force dust collector and the centrifugal force dust collector according to the embodiment of the present invention.
  • FIG. 5 is a view showing a steam heating part according to an embodiment of the present invention.
  • FIG. 6 is a view showing a chimney portion according to an embodiment of the present invention.
  • the circulating steam reheating sludge drying system of the present invention performs sludge drying and discharges the dry gas generated during sludge drying by exhausting dust and odors to the exhaust gas. Exchanges heat with the deodorizing gas to be discharged and is supplied as a heat source for drying the sludge.
  • the odor is collected and supplied to the combustion air of the deodorization furnace by the first and second heat exchange with the exhaust gas. The heat generated during the drying of the sludge is recovered, .
  • the circulating steam reheating sludge drying system includes a dryer 100, a deodorization furnace 400, a steam heater 500, an exhaust blower 220, and a circulating blower 240. As shown in FIG.
  • the circulating steam reheating drying system further includes a centrifugal force dust collector 300, a preheater 600, a filter 700, an artificial blower 720, and a chimney 800.
  • the dryer 100 receives the sludge and dries moisture of the sludge as a heat source to form a sludge dried material.
  • Sludge is explained using sewage sludge as an example.
  • the sludge supplied to the dryer 100 has a moisture content of about 80%, and the dried sludge dried by the dryer 100 has a moisture content of 10% or less.
  • the dryer 100 supplies the superheated steam of about 400 ° C as a heat source to dry the sludge and remove the moisture of the sludge dried with a high thermal efficiency.
  • the malodor contained in the sludge is discharged and included in the dry gas, and is removed while passing through the centrifugal force dust collector 300 and the deodorization furnace 400 to be described later.
  • the sludge is introduced into the sludge semi-entrant 10 and then stored in the sludge storage tank 20 and supplied to the dryer 100 through the supply pipe 30.
  • the sludge can be continuously and constantly supplied into the dryer 100 through the feed conveyors 40 and 50 provided between the supply pipe 30 and the dryer 100.
  • the dryer (100) has a multi-stage double paddle type drying structure and dries the sludge by a direct steam drying method.
  • the dryer 100 has an internal space 111 capable of receiving sludge.
  • the inner space 111 is divided into a plurality of drying chambers continuous by a plurality of partition walls 113.
  • a plurality of drying chambers are provided with a paddle type conveying conveyor 115 for conveying and drying the sludge.
  • the paddle-type conveying conveyor 115 is shaped like a paddle screw, and the sludge is stirred and transferred while the paddle screw is rotated in the process of conveying the sludge from one side to the other side, so that drying is continuously performed and efficient drying is performed.
  • the dryer 100 of FIG. 2 has seven stages of drying chambers from the bottom to the top, in order to dry the sludge containing about 80% of moisture with the sludge containing about 10% of water, It may be efficient to provide a stage drying chamber.
  • the 9th stage drying room has 1 stage from the bottom, 2 stage ... 8th, and 9th, and the uppermost stage becomes the 9th stage and the lowermost stage becomes the 1st stage.
  • the sludge when the sludge is dried and the water content is about 55% ⁇ 45%, the sludge clumps together to cause gluing, so that the gluing phenomenon can be solved Remove the sludge quickly.
  • VVVF variable speed driver
  • the paddle type conveying conveyor 115 provided in the drying chambers in the lower first and second stages among the plurality of drying chambers minimizes the generation of dust by allowing the paddle screw to rotate at a low speed while conveying the sludge.
  • the dryer (100) has a sludge inlet (117) and a drying outlet (119).
  • the sludge inlet 117 is connected to the drying chamber located at the uppermost one of the plurality of drying chambers for sludge introduction.
  • the dry matter outlet 119 is located at the lowermost one of the plurality of drying chambers for discharging the dried sludge.
  • the dryer 100 includes a heat source inlet 121 for drying the sludge and a dry gas outlet 123 for discharging the dry gas generated while drying the sludge.
  • the heat source inlet 121 is formed to be connected to the drying chamber directly below the uppermost drying chamber among the plurality of drying chambers.
  • the drying chamber is dried by evaporation of moisture at each stage and maintained at 450 ° C to 120 ° C.
  • the lowermost drying chamber discharges sludge dry matter at a moisture content of 10% or less.
  • the dryer 100 includes an oxygen concentration sensor 131 and a nitrogen gas purge unit 133.
  • the oxygen concentration sensor 131 is installed inside the dryer 100 to detect the oxygen concentration.
  • the nitrogen gas purge unit 133 purges the nitrogen gas into the drier 100 to suppress the fire.
  • the oxygen concentration sensor 131 is installed in the lowermost drying chamber to detect the oxygen concentration of the discharged superheated steam.
  • the nitrogen gas purge section 133 may be installed in the drying chamber of each stage or may be installed to purge the nitrogen gas in the direction of the dry gas discharge port 123 at a position opposite to the dry gas discharge port 123 in consideration of the transport direction of the sludge .
  • the oxygen concentration of the superheated steam detected by the oxygen concentration sensor 131 is equal to or higher than the preset concentration, it is determined that a fire has occurred.
  • nitrogen gas When nitrogen gas is poured into the dryer 100 when a fire occurs, the internal space 111 is filled with nitrogen gas, which is an inert gas, and oxygen is pushed to the dry gas outlet 123 or the like, so that the fire can be suppressed.
  • nitrogen gas which is an inert gas
  • a rotary valve 125 is installed in the dry matter discharge port 119.
  • the rotary valve 125 is designed to discharge oxygen while shutting off the sludge dried matter.
  • a discharge conveyor 127 is connected to the rotary valve 125.
  • the discharge conveyor 127 receives the dried sludge discharged from the rotary valve 125, and discharges the sludge.
  • a heat sink (140) is provided on the upper part of the dryer (100).
  • the upper surface of the dryer 100 may be formed of a heat sink 140, heat recovered through the heat sink 140 may be recovered and the sludge may be supplied to the dryer 100 It can be used for preheating.
  • a heat radiation recovery means 150 for recovering the heat of the heat radiation plate 140 to preheat the sludge.
  • the heat dissipating and collecting means 150 includes a circulation duct 151 formed in the heat dissipating plate 140 and a circulation duct 151 formed in a double pipe shape surrounding the outer circumferential surface of the supply pipe 30 for conveying the sludge to the dryer 100. [ And a pipe (153).
  • the circulation pipe 153 is connected to the inlet of the circulation duct 151 and the other side of the circulation pipe 153 is connected to the outlet of the circulation duct 151. Heat radiated through the heat sink 140 circulates through the circulation pipe 153 .
  • the circulation pipe 153 may have a spiral shape so that heat can circulate on the outer circumferential surface of the supply pipe in a spiral form.
  • the heat radiation recovery means 150 further includes a heat radiation circulation blower 155 for securing a circulation force for circulating the heat of the heat radiation plate 140 through the circulation pipe 153.
  • it includes a transfer line 210 for transferring the dry-gas to the deodorization furnace 400.
  • a centrifugal force dust collector 300 is installed in the transfer line 210.
  • the centrifugal force dust collector 300 is for collecting the dust contained in the dry gas and discharging it to the lower part.
  • a plurality of centrifugal force dust collectors 300 may be installed on the transfer line 210.
  • the centrifugal force dust collector 300 includes a first centrifugal force dust collector 310 for separating dust in the gasses being sucked by centrifugal force, and an electric dust collection device 300 for applying a high voltage while separating dust in the gasses being sucked by centrifugal force, And may include first and second electrical centrifugal force dust collectors 320 and 330.
  • the first centrifugal force dust collector 310 and the first and second electrical centrifugal force dust collectors 320 and 330 are connected to the first centrifugal force dust collector 320 and the second electric centrifugal force collector 330 ), Or to selectively pass either of them depending on the dust concentration.
  • the first and second electrical centrifugal force dust collectors 320 and 330 are respectively provided with dust concentration sensing units 311 and 321 for measuring the dust concentrations included in the carbon dioxide gas flowing through the centrifugal dust collector, .
  • the carbon dioxide gas passing through the first centrifugal force dust collector 310 is sequentially passed through the first and second centrifugal force dust collectors 320 and 330 do.
  • the carbonized gas passing through the first electrostatic centrifugal force collector 320 if the dust concentration contained in the carbonized gas passing through the first electrostatic centrifugal force collector 320 is equal to or higher than the set value, the carbonized gas does not pass through the first electrostatic centrifugal force dust collector 320 and passes through the second electrostatic centrifugal force dust collector 330 And water is sprayed to the electric dust collecting pole 325 of the first electrostatic centrifugal force collector 320 to clean and wait for the collected dust.
  • the dust concentration detecting units 311 and 321 may be laser detectors for detecting the dust pressure by irradiating a laser beam L to an upper outlet portion of the centrifugal force dust collector through which the dry gas is discharged.
  • the first centrifugal force dust collector 310 includes a cyclone that separates the dust in the carbon monoxide gas sucked by centrifugal force downward.
  • the first and second electrostatic centrifugal force collectors 320 and 330 include a first centrifugal force collector using a cyclone and an electrostatic centrifugal force collector for filtering fine particles.
  • the first and second electrostatic centrifugal force collectors 320 and 330 include a cyclone 323 for separating the dust in the carbon monoxide gas sucked in by the centrifugal force into a lower part and an electric motor 323 for attaching fine particles in the cyclone 323 using a high voltage, A dust collecting electrode 325 and a water spraying nozzle 327 for spraying water for cleaning the electric dust collecting electrode 325.
  • the first and second electric centrifugal force dust collectors 320 and 330 When a discharge electrode (not shown) is disposed on both sides of the electric dust collecting electrode and the direct current voltage is applied to the discharge electrode, the first and second electric centrifugal force dust collectors 320 and 330 generate an unequal electric field between the electric dust collecting electrode and the electric dust collecting electrode, The molecules move to the positive electrode 325 and the dust is attached to the electrode 325.
  • the electric dust collecting electrode 325 has a plurality of protrusions 326 formed along the outer surface thereof.
  • the protrusions 326 are formed to have a sharp point toward the tip to facilitate attachment of the fine particles.
  • the protrusion 326 widens the surface area of the electrostatic dust collecting electrode 325 to facilitate attachment of fine particles.
  • the water spray nozzle 327 may be installed directly on the upper end of the dust collecting electrode 325 through an insulating material or on the upper wall of the first electrostatic centrifugal force collector 310.
  • One or two water spray nozzles 327 are provided for each of the electric dust collecting poles 325 so that water can be uniformly sprayed to the entire electrostatic dust collecting poles 325.
  • And is connected to a water supply device provided outside the dust collector 300.
  • the first centrifugal force dust collector 310 is capable of collecting and removing only 30 ⁇ m or more, and it is difficult to collect fine particles of less than 30 ⁇ m. And further includes first and second electrical centrifugal force precipitators 320 and 330 for removing fine particles of less than 30 mu m contained in the dry gas.
  • the apparatus further includes a circulation line 230 branched from a conveyance line 210 through which the carbon dioxide gas passed through the centrifugal force dust collector 300 is conveyed.
  • the circulation line 230 is intended to circulate only the dry evaporated moisture of the dry gas without condensate generation in the deodorization furnace and circulate the remaining dry gas for energy recovery.
  • An exhaust blower 220 is installed in the transfer line 210.
  • the exhaust blower 220 is controlled by the automatic damper 221 according to the pressure of the downstream of the dryer 100 to supply the deodorization furnace 400 with the carbon monoxide gas that has passed through the centrifugal force dust collector 300.
  • a circulating blower 240 is installed in the circulation line 230.
  • the circulating blower 240 supplies the dry gas of the remaining transfer line 210 except for the dry gas discharged from the automatic damper 221 associated with the exhaust blower 220 to the steam heater 500 for heat exchange.
  • the dry gas passing through the centrifugal force dust collector 300 is supplied to the deodorization furnace through the air flow adjustment of the exhaust blower and the circulating blower, and the remaining 83.3% (or about 82%)
  • the steam can be supplied to the heat through the circulation line.
  • the exhaust blower air volume can be controlled to 5 m3 / min and the circulating blower air volume can be controlled to 25.7 m3 / min.
  • the exhaust blower 220 efficiently supplies the carbon monoxide gas to the deodorization furnace 400 only when moisture is evaporated. This causes a part of the dry gas containing moisture from which the fine particles (particulate matter) is removed to be burned in the deodorization furnace 400 with the combustion air so as to be oxidized at high temperature to be deodorized without generating condensed water.
  • the induction blower 720 receives a pressure signal from the deodorization furnace 400 and performs constant and energy efficient exhaust with the automatic damper 730, thereby maintaining the pressure in the deodorization furnace 400 constant to maximize the deodorizing effect.
  • the deodorization furnace 400 supplies the dry gas generated in the dryer 100 through the transfer line 210 and burns it to remove moisture and odor components contained in the dry gas.
  • the dry gas is subjected to a high-temperature oxidation treatment at about 800 to 850 ° C in the deodorization furnace (400) to remove all moisture and odor components contained in the dry gas. Therefore, the deodorizing gas discharged from the deodorization furnace 400 does not contain moisture and odor components.
  • the steam heater 500 performs heat exchange with the deodorizing gas at a high temperature and the low-temperature dry gas supplied through the circulation line 230.
  • the steam heater 500 is connected to a low-temperature dry gas (about 120 DEG C) supplied through the circulation line 230 to a high-temperature deodorizing gas (about 850 DEG C) discharged from the deodorization furnace 400, ) Is heated to approximately 400 ⁇ through heat exchange.
  • the dry gas that has been heat-exchanged in the steam heater 500 is supplied to the dryer 100 as a heat source.
  • the use of energy for drying the sludge is minimized by heat-exchanging the dry-gas (circulating steam) discharged from the dryer 100 with the deodorizing gas discharged from the deodorization furnace 400 and supplying it as a heat source to the dryer 100.
  • the deodorizing gas is a gas from which dust and odors are removed, clogging of the heat exchange pipe in the steam heater 500 is prevented, thereby extending the life of the steam heater and increasing the heat exchange efficiency.
  • the apparatus further includes a filter 700 for removing ultrafine dusts of deodorized gas discharged from the steam heater 500 with a filter.
  • the filter and dust collector 700 removes ultrafine dust from the deodorizing gas discharged from the steam heater 500 and discharges the deodorized gas.
  • the filter may be a filter medium or a filter cloth, and ultrafine dust contained in the deodorizing gas is filtered while the deodorizing gas passes through the filter medium or the filter cloth.
  • the exhaust gas discharged from the filter dust collector 700 is discharged to the outside through the chimney 800.
  • the filter and dust collector 700 is connected to the chimney 800 and the discharge line 710 and the discharge line 710 is provided with a blower 720 for smoothly discharging the exhaust gas.
  • a double pipe is installed inside the chimney heat insulating material when the exhaust gas discharged from the filter dust collector 700 passes through the chimney 800 and the odor gas collected in the sludge returning area 10, the sludge storage tank 20, the drier 100, Circulates from the top of the chimney 800 to the bottom, thereby heating the odor gas, and supplying the heated odor gas to the deodorization furnace 400 as combustion air.
  • the double pipe provided in the chimney 800 is a transfer pipe 810.
  • the transfer pipe 810 has a double pipe shape surrounding the outer circumferential surface of the chimney and transfers the odor gas collected at the sludge returning area 10, the sludge storage tank 20, the drier 100 and the like to the lower part of the chimney, ) Of the exhaust gas.
  • the transfer pipe 810 has a spiral shape so that odorous gas is circulated and circulated from the top of the chimney 800 to the bottom.
  • the transfer pipe 810 is connected to the exhaust pipe 810 through which the odor gas inlet 811 is located on the upper side of the chimney and the outlet 813 of the odor gas is located on the lower side of the chimney 800, To be more efficiently heated by heat.
  • a preheater (600) is further installed between the steam heater (500) and the filter (700).
  • the preheater 600 is connected to the transfer pipe 810 through the odor gas transfer line 820.
  • the preheater 600 heats the odor gas heated first while passing through the transfer pipe 810 through the heat exchange with the deodorizing gas discharged from the steam heater 500, Gas to the combustion air.
  • the combustion energy can be saved to the maximum by deodorization.
  • the circulating steam reheating sludge drying system of the present invention performs sludge drying and discharges the dry gas generated during sludge drying by discharging dust and odors by exhaust gas.
  • the sludge drying is performed by a heat source (heated steam of about 400 ° C. reheat the circulating steam) in a process of transferring the sludge supplied in a predetermined amount to the dryer 100 from the uppermost drying chamber to the lowermost drying chamber in the multi-
  • a heat source heat of about 400 ° C. reheat the circulating steam
  • the paddle-type conveying conveyor 115 for conveying and drying the sludge conveys the sludge while stirring, thereby performing the continuous drying, and the residence time of the sludge in the dryer 100 is increased, so that the drying of the sludge can be performed more efficiently have.
  • the sludge supplied to the dryer 100 has a moisture content of about 80%, and the dried sludge dried and dried in the dryer 100 has a moisture content of about 10% or less. Moisture control of the sludge dried from the dryer 100 is possible.
  • the dryer (100) has a closed structure to prevent the spread of odors and to collect dust easily.
  • the dried sludge is discharged to the discharge conveyor 127 through the rotary valve 125 and discharged while being cooled at the discharge conveyor 127.
  • the dried sludge dried material is in a state in which water is removed, so that it is easy to carry and odor is not generated.
  • the dryer 100 purges the inside of the dryer 100 with nitrogen gas to fill the inside space 111 with nitrogen gas as an inert gas and oxygen is pushed to the dry gas outlet 123 or the like so that fire is prevented .
  • the dry gas generated in the drying process of the sludge in the dryer 100 is discharged through the dry gas discharge port 123 and then discharged through the transfer line 210 connected to the dry gas discharge port 123 into the first centrifugal force collector 310, and the dust contained in the dry gas is removed while passing through the first and second electrostatic centrifugal force collectors 320, 330.
  • the dry gas passes through the first centrifugal force dust collector 310, dust of 30 ⁇ m or more is removed, and fine particles of less than 30 ⁇ m can be removed while passing through the first and second centrifugal force dust collectors 320 and 330.
  • the dust concentration contained in the carbonized gas passing through the first electrostatic centrifugal force collector 320 is equal to or greater than the set value, the carbon dioxide gas does not pass through the first electrostatic centrifuge 331, And water is sprayed to the electric dust collecting pole 325 of the first electrostatic centrifugal force dust collector 320 to clean and wait for the collected dust.
  • a portion of the dry gas having passed through the centrifugal force dust collector 300 and from which dust and fine particles have been removed is supplied to the deodorization furnace 400 without the condensate (generation of waste water), and the remainder is supplied to the steam heater 500 .
  • the ratio of the carbon monoxide gas supplied to the deodorization furnace 400 to the carbon monoxide gas supplied to the steam heater 500 is determined by the ratio between the exhaust gas blower 220 installed in the transfer line 210 connected to the deodorization furnace 400,
  • the circulation line 230 is connected to the circulation line 240 and the circulation line 240 is connected to the circulation line 230.
  • the dry gas supplied to the deodorization furnace 400 is combusted with combustion air to remove odors and moisture.
  • the temperature of the deodorization furnace 400 is maintained at 800 to 850 ° C to facilitate removal of odor and moisture.
  • the carbon monoxide gas i.e., deodorized gas from which odor and moisture have been removed from the deodorization furnace 400 is sequentially passed through the steam heater 500 and the preheater 600 for heat recovery, And the ultra-fine tenant is removed while passing through the filter dust collector.
  • the deodorized gas from which the super fine tenant is removed is discharged to the outside through the blower 720 and the chimney 800 by the exhaust gas.
  • the exhaust gas finally discharged through the chimney 800 passes through the centrifugal force dust collector 300 and dust and fine particles are removed and the water and the odor are removed while passing through the deodorization furnace 400 and passed through the filter 700 While minimizing air pollution since the micro-tenant has been removed.
  • the deodorized gas discharged from the deodorization furnace 400 is heated to about 850 ° C. and is used for reheating the carbon monoxide gas supplied to the steam heater 500 through the circulation line 230.
  • the high temperature deodorizing gas at about 850 DEG C is heat-exchanged with the low temperature carbonized gas of about 120 DEG C while passing through the steam heater 500, thereby heating the carbonized gas to about 400 DEG C.
  • the dry gas, which has been reheated to about 400 ° C. while passing through the steam heater 500, is supplied to the dryer 100 as a heat source for drying the sludge, thereby enabling energy to be efficiently treated.
  • the malodor gas generated in the sludge semi-admission unit 10, the sludge storage tank 20, the dryer 100 and the like is collected and supplied to the combustion air of the deodorization furnace 400 by the first-order heat exchange with the deodorizing gas and the exhaust gas.
  • the deodorizing gas that has passed through the steam heater 500 has a high temperature of about 250 ° C, and thus is used for reheating the combustion air supplied to the deodorization furnace 400.
  • the combustion air supplied to the deodorization furnace 400 uses the odor gas collected in the sludge returning area 10, the sludge storage tank 20, and the drier 100 by using a duct or the like.
  • the odor gas collected in the sludge semi-admission chamber 10, the sludge storage tank 20 and the dryer 100 passes through the transfer pipe 810 formed in the chimney 800 from the upper part to the lower part, And is secondarily heated by heat exchange with deodorizing gas at about 250 DEG C while passing through the preheater 600 and then supplied to the deodorization furnace 400 as combustion air.
  • the odor gas supplied to the deodorization furnace 400 is supplied after being heated to a high temperature of about 400 DEG C by the exhaust gas and the deodorizing gas, the amount of the fuel (for example, LNG gas) And the energy efficiency can be increased.
  • Heat generated during sludge drying is recovered and used as sludge preheating means.
  • the circulation pipe 153 is formed so as to surround the outer circumferential surface of the supply pipe 30 for transferring the sludge to the dryer 100 and the heat dissipated through the heat dissipation plate 140 is circulated through the circulation pipe 153 do. Accordingly, the preheated sludge is supplied into the dryer 100 in the process of being transported through the supply pipe 30, so that the energy efficiency of the dryer can be increased.
  • Table 1 shows the test results of the calorific value and the components of the dried sludge by supplying sludge to the dryer according to the embodiment of the present invention.
  • the sludge dried material has a high calorific value of 3570 kcal and a low water content of 6.44 wt%, which can be used as a fuel.
  • the amount of chlorine, sulfur, mercury, cadmium, lead and arsenic is small or not detected. It can be minimized.
  • the sludge is efficiently dried using a multi-stage dryer and an oxygen concentration sensor is installed in the dryer to automatically purge nitrogen gas when a fire hazard is detected, thereby preventing a fire.
  • the circulating duct is formed in the heat radiating plate at the upper part of the dryer, the temperature of the sludge supplied to the dryer is increased by circulating air to be radiated, so that the energy efficiency can be increased.
  • the dried sludge dried in the dryer can be cooled and discharged safely from the risk of fire because the oxygen is blocked by the rotary valve and is cooled during discharge through the discharge conveyor.
  • the dry gas discharged from the dryer passes through the first centrifugal force collector, the first and second electric centrifugal force collectors, the major dust and the fine particle dust are removed, and the steam passes through the heat exchanger.
  • the heat exchange efficiency of the steam heat can be increased.
  • dust concentration sensing units may be provided at the outlet of the first centrifugal force collector and the first and second centrifugal force precipitators to detect the particle concentration and particle size separation, performance confirmation, and clogging of the first centrifugal force collector, And the centrifugal force dust collector can be efficiently used.
  • the dry gas generated from the dryer is controlled by the automatic dampers in response to the downstream pressure of the dryer, the dry gas is efficiently transferred to the deodorization furnace only when the moisture is evaporated.
  • the odor and moisture contained in the dry gas are all removed from the deodorization furnace, and the ultrafine dust is removed after passing through the filter and dust collector, and then discharged as exhaust gas, so that odor does not occur and does not cause environmental pollution.
  • the deodorizing gas discharged from the deodorization furnace circulates the surplus dry gas through the heat exchange in the steam heat exchanger and circulates it to the dryer heat source, thereby optimizing the dryer energy efficiency.
  • the energy efficiency of the deodorization furnace can be optimized by supplying the combustion air to the deodorization furnace after the first and second heat exchanges the odor gas with the deodorization gas passing through the steam heater and the exhaust gas passing through the chimney .
  • the circulating steam reheating sludge drying system described above is a closed circulating system, it can maintain high thermal efficiency, does not generate odor, is easy to operate, and has a low maintenance cost.
  • the above-mentioned circulating steam reheating sludge drying system is capable of drying sludge of more than 4.16 ton / hr (100 ton / day).
  • the sludge Since the sludge is dried in the sealed multi-stage dryer and the dry gas, the heat source, and the odor gas are closed circulated, the sludge can be efficiently dried, the sludge can be dried efficiently, And maintenance cost is low.
  • the present invention is capable of preserving the environment around the sludge treatment facility and preventing the occurrence of complaints because there is no odor generated due to the high-temperature oxidation treatment of the odor, sludge return odor, and sludge storage odor generated in the sludge drying process There is an effect that can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Sludge (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

본 발명의 순환증기 재가열 슬러지 건조시스템은, 슬러지를 공급받아 슬러지의 수분을 열원으로 건조시켜 슬러지 건조물을 형성하는 건조기와, 건조기 내에서 발생된 건류가스를 이송라인을 통해 공급받고 연소시켜 건류가스에 포함된 수분 및 악취 성분을 제거하는 탈취로와, 탈취로에서 배출되는 탈취가스로 이송라인에서 분기한 순환라인을 통해 공급받은 건류가스를 열교환을 통해 가열하여 건조기에 열원으로 공급하는 증기가열기와, 이송라인에 설치되고 건조기 후단 압력에 따라 자동댐퍼로 제어되어 건류가스를 탈취로에 공급하는 배기송풍기와, 순환라인에 설치되고 배기송풍기에서 수분증발량만큼의 건류가스가 제거된 이송라인의 나머지 건류가스를 증기가열기로 공급하는 순환송풍기로 이루어진다.

Description

순환증기 재가열 슬러지 건조시스템
본 발명은 순환증기 재가열 슬러지 건조시스템에 관한 것으로, 더욱 상세하게는 하수 슬러지 또는 유기성 폐기물 등을 최소한의 에너지로 효율적으로 처리하기 위한 순환증기 재가열 슬러지 건조시스템에 관한 것이다.
상수, 공업용수, 산업용 폐수, 하수 및 분뇨의 수처리 과정에서 발생하는 슬러지의 양이 늘어남에 따라 이를 처리하기 위한 처리장의 규모와 수가 증가하고 있으며, 이들 처리장에서 발생하는 슬러지의 양 또한 함께 증가하고 있다.
특히 정부가 그동안 하수처리장의 신설, 증설, 하수관거 정비, 총인처리시설 설치 등을 꾸준히 추진하여 하수 슬러지의 발생량이 꾸준히 증가하였으며, 또한 하수도 보급률 증가계획에 따라 앞으로도 하수 슬러지는 계속해서 증가할 것으로 예상된다.
그런데 하수 슬러지는 95~98%의 수분이 함유된 액상의 형태로 발생되기 때문에 취급이 곤란하여, 통상 슬러지를 모래여과, 필터프레스, 원심탈수기 등으로 처리하여 비교적 수분이 적은 케이크 상으로 만든 후, 대부분 매립하거나, 연료화, 고화, 소각, 열분해 등과 같은 다양한 방법으로 처리하고 있다.
하지만, 슬러지 내에 존재하는 다량의 수분은 매립시 중량 및 부피의 증가에 따른 매립비용 증가와 심각한 환경오염을 초래하고, 점차적으로 환경규제법 강화와 환경 의식강화 등의 사회적인 분위기로 해양투기 및 단순매립이 어려워짐에 따라 슬러지의 감량화 처리가 필요한 실정이다.
슬러지의 감량화 처리를 위한 방법으로, 종래에는 보일러를 이용하여 스팀을 발생시켜 고온의 스팀으로 슬러지를 간접 가열하여 슬러지 내의 수분을 줄이며, 슬러지의 수분을 줄여서 습도가 증가된 고온의 공기를 냉각하여 응축하고 외부로 배출하는 것을 반복하는 슬러지 건조장치가 사용되어 왔다.
하지만, 이러한 구조의 보일러를 이용한 간접식 슬러지 건조장치는 습도를 줄이기 위하여 탈취가 되지 않은 고온의 공기를 외부로 배출하기 때문에 건조장치 주위 환경이 불량하게 되며, 외부로 배출되는 공기의 열량으로 인하여 보일러에 투입되는 연료량의 증가를 유발시켜 에너지를 효율적으로 사용하지 못하는 문제점이 있었다.
본 발명은 하수 또는 유기성 폐기물 등에서 발생하는 슬러지를 최소한의 에너지로 효율적으로 처리하고, 처리하는 과정에서 발생하는 분진 및 악취를 제거함으로써 대기오염물질을 최소화하여 슬러지 처리 시설 주변 지역의 환경을 보존하고 민원발생도 예방하도록 한 순환증기 재가열 슬러지 건조시스템을 제공하는 것을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명에 따르면, 본 발명은 슬러지를 공급받아 슬러지의 수분을 열원으로 건조시켜 슬러지 건조물을 형성하는 건조기와 건조기 내에서 발생된 건류가스를 이송라인을 통해 공급받고 연소시켜 건류가스에 포함된 수분 및 악취 성분을 제거하는 탈취로와 탈취로에서 배출되는 탈취가스로 이송라인에서 분기한 순환라인을 통해 공급받은 건류가스를 열교환을 통해 가열하여 건조기에 열원으로 공급하는 증기가열기와 이송라인에 설치되고 건조기 후단 압력에 따라 자동댐퍼로 제어되어 건류가스를 탈취로에 공급하는 배기송풍기와 순환라인에 설치되고 배기송풍기에서 수분증발량 만큼의 건류가스가 제거된 나머지 건류가스를 증기가열기로 공급하는 순환송풍기를 포함한다.
상기 이송라인에 설치되며 상기 건류가스에 포함되는 분진을 포집하여 하부로 배출하고 악취 성분은 상기 탈취로로 공급되게 하는 원심력 집진기를 포함한다.
원심력 집진기는 원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하는 제1 원심력 집진기와, 원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하면서 고전압을 인가하여 전기 집진을 수행하는 제1 및 제2 전기 원심력 집진기를 포함하고, 상기 제1 원심력 집진기, 상기 제1 및 제2 전기 원심력 집진기는 상기 건류가스가 상기 제1 원심력 집진기를 통과한 후 제1 전기 원심력 집진기와 제2 전기 원심력 집진기를 분진 농도에 따라 전기 집진극을 세정을 해야 하므로 선택적으로 통과할 수 있도록 연결될 수 있다.
상기 제1 및 제2 전기 원심력 집진기는 각각 상부 출구 부분에 원심력 집진기를 통과하는 건류가스에 포함된 분진 농도를 측정하기 위한 분진농도 감지부가 구비되고, 상기 분진농도 감지부에서 측정된 분진 농도에 따라 상기 제1 전기 원심력 집진기와 상기 제2 전기 원심력 집진기의 건류가스 통과 여부가 제어될 수 있다.
상기 분진농도 감지부는 건류가스가 배출되는 원심력 집진기의 상부 출구 부분에 레이저빔을 조사하여 분진 압력을 감지하는 레이저 감지기일 수 있다.
상기 제1 및 제2 전기 원심력 집진기는 원심력을 이용하여 흡입된 건류가스 중의 분진을 하부로 분리하는 사이클론과, 고전압을 이용하여 상기 사이클론 내부에서 미세입자를 부착하기 위한 전기 집진극과, 상기 전기 집진극에 부착된 미세먼지를 세정하기 위해 물을 분사하는 물 분사노즐을 포함할 수 있다.
상기 전기 집진극는 외면을 따라 복수 개의 돌기가 형성될 수 있다.
상기 증기가열기에서 배출되는 탈취가스의 초미세먼지를 필터로 제거하는 여과 집진기와, 상기 여과 집진기를 통과한 배기가스를 외부로 배출하기 위한 굴뚝을 포함할 수 있다.
상기 굴뚝은 외주면을 감싸는 이중관 형상으로 되어 슬러지 저장조, 슬러지 반입장, 건조기, 투입설비 등에서 포집된 악취가스를 이송시키면서 상기 굴뚝을 통과하는 배기가스의 열로 상기 악취가스를 1차 가열하는 이송관과, 상기 이송관을 통과하면서 1차 가열된 악취가스를 상기 증기가열기에서 배출되는 탈취가스와 열교환을 통해 2차 가열하여 상기 탈취로에 연소공기로 공급하는 예열기를 포함할 수 있다.
상기 악취가스가 상기 굴뚝의 상부에서 하부로 회전 순환하여 가열되도록 상기 이송관은 내부가 나선 형상으로 될 수 있다.
건조기는 슬러지를 수용할 수 있는 내부공간과, 상기 내부공간을 연속된 건조실로 구획하는 복수의 구획벽과, 상기 슬러지의 이송을 위해 상기 건조실에 설치되는 패들식 이송 컨베이어와, 상기 슬러지 투입을 위해 건조실 중 최상단에 위치하는 건조실과 연결되는 슬러지 투입구와, 상기 슬러지 건조물의 배출을 위해 복수의 건조실 중 최하단에 위치하는 건조물 배출구와, 상기 슬러지를 건조시키기 위한 열원 유입구와, 상기 슬러지를 건조시키면서 발생되는 건류가스를 배출하기 위한 건류가스 배출구를 포함할 수 있다.
상기 건조기는 상기 건조기 내부에 설치되어 산소 농도를 감지하는 산소농도 감지기와, 상기 산소농도 감지기가 감지한 산소 농도가 설정 농도 이상이면 상기 건조기 내부에 질소가스를 퍼지하여 화재를 진압할 수 있도록 한 질소가스 퍼지부를 구비할 수 있다.
상기 슬러지 건조물 배출시 산소를 차단하면서 배출시키기 위해 상기 건조물 배출구에 설치되는 로타리 밸브와, 상기 로타리 밸브에서 배출되는 상기 슬러지 건조물을 받아 냉각시키면서 배출시킬 수 있도록 된 배출 컨베이어를 더 포함할 수 있다.
상기 건조기의 상부에 방열판이 구비되며, 상기 방열판을 통해 방열되는 열을 회수하여 상기 슬러지가 상기 건조기에 공급되기 전 예열하는 용도로 활용하는 방열회수수단을 포함할 수 있다.
상기 방열회수수단은 상기 방열판에 형성한 유로 형상의 순환덕트와, 상기 슬러지를 상기 건조기로 공급하기 위해 이송하는 공급관의 외주면을 감싸는 이중관 형상이며, 일측은 상기 순환덕트의 입구와 연결되고 반대되는 타측은 상기 순환덕트의 출구와 연결되어 상기 방열판을 통해 방열되는 열이 순환되게 한 순환관과, 상기 열의 순환력을 확보하기 위한 방열순환송풍기를 포함할 수 있다.
도 1은 본 발명의 실시예에 의한 순환증기 재가열 슬러지 건조시스템을 보인 구성도.
도 2는 본 발명의 실시예에 의한 건조기 내부를 보인 도면.
도 3은 본 발명의 실시예에 의한 원심력 집진기 및 원심력 집진기 중 제1 원심력 집진기의 내부를 보인 도면
도 4는 본 발명의 실시예에 의한 원심력 집진기 및 원심력 집진기 중 전기 제1 원심력 집진기의 내부를 보인 도면 도면.
도 5는 본 발명의 실시예에 의한 증기가열기 부분을 보인 도면.
도 6은 본 발명의 실시예에 의한 굴뚝 부분을 보인 도면.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명의 순환증기 재가열 슬러지 건조시스템은, 슬러지 건조를 수행하고, 슬러지 건조시 발생하는 건류가스는 분진 및 악취 제거를 수행하여 배기가스로 배출하며, 건류가스 중 일부는 악취 제거를 위해 탈취로에서 배출되는 탈취가스와 열교환하여 슬러지 건조를 위한 열원으로 공급하며, 악취는 포집하여 배기가스와 1,2차 열교환하여 탈취로의 연소공기로 공급하며, 슬러지 건조시 발생하는 열은 회수하여 슬러지 예열수단으로 사용할 수 있도록 한다.
도 1에 도시된 바와 같이, 순환증기 재가열 슬러지 건조시스템은 건조기(100), 탈취로(400), 증기가열기(500), 배기송풍기(220), 순환송풍기(240)를 포함한다.
순환증기 재가열 건조시스템은 원심력 집진기(300), 예열기(600), 여과 집진기(700), 유인송풍기(720), 굴뚝(800)을 더 포함한다.
건조기(100)는 슬러지를 공급받아 슬러지의 수분을 열원으로 건조시켜 슬러지 건조물을 형성한다.
슬러지는 하수 슬러지를 예로 들어 설명한다.
건조기(100)로 공급되는 슬러지는 수분이 약 80%이며, 건조기(100)에서 건조되어 배출되는 슬러지 건조물은 수분이 10% 이하이다. 건조기(100)는 약 400℃의 과열증기를 열원으로 공급받아 슬러지를 건조하며 높은 열효율로 슬러지 건조물의 수분을 제거한다.
슬러지에 포함되는 악취는 건류가스에 포함되어 배출되고 후술할 원심력 집진기(300), 탈취로(400)를 통과하면서 제거된다.
슬러지는 슬러지 반입장(10)으로 유입된 후 슬러지 저장조(20)에 저장되고 공급관(30)을 통해 건조기(100)로 공급된다. 슬러지는 공급관(30)과 건조기(100) 사이에 설치되는 투입 컨베이어(40,50)를 통해 건조기(100) 내에 연속적으로 정량 공급될 수 있다.
건조기(100)는 다단 복열 패들식 건조 구조로 되며 직접 증기건조방식으로 슬러지를 건조한다.
도 2에 도시된 바와 같이, 건조기(100)는 슬러지를 수용할 수 있는 내부공간(111)을 구비한다. 내부공간(111)은 복수의 구획벽(113)에 의해 연속된 복수의 건조실로 구획된다. 복수의 건조실에 슬러지의 이송과 건조를 위한 패들식 이송 컨베이어(115)가 설치된다.
패들식 이송 컨베이어(115)는 패들 스크류 형상으로 되어 슬러지를 일측에서 반대편 타측으로 이송하는 과정에서 패들 스크류가 회전하면서 슬러지를 교반 이송하므로 연속으로 건조가 진행되어 효율적인 건조가 수행된다.
예를 들어, 도 2의 건조기(100)는 하부에서 상부로 7단의 건조실이 도시되어 있지만 약 80%의 수분을 포함한 슬러지를 약 10%의 수분을 포함하는 슬러지로 건조하려면 하부에서 상부로 9단의 건조실이 구비되는 것이 효율적일 수 있다.
9단 건조실은 하부에서부터 1단, 2단…8단, 9단으로 명명하며, 최상부 단이 9단이 되고, 최하부 단이 1단이 된다.
이 경우, 복수의 건조실 중 9~4단의 건조실에 구비되는 패들식 이송 컨베이어(115)의 패들 각도를 슬러지의 전진 방향으로 작게 두어(약 10o) 많은 양의 슬러지를 퍼올려 열풍과의 접촉시간 및 면적을 늘려 건조가 빠르게 진행할 수 있도록 할 수 있다.
또한, 복수의 건조실 중 5단, 6단은 슬러지가 건조되어 수분이 약 55%~45%가 되면 슬러지끼리 뭉쳐 글루존 현상이 발생하므로 다른 단보다 회전수를 빠르게 하여 글루존 현상이 해소될 수 있도록 빠르게 슬러지를 분리한다.
따라서, 9단 건조실을 갖는 건조기를 적용하는 경우, 5단, 6단에만 가변속 구동기(VVVF)를 설치할 수 있다.
복수의 건조실 중 하부 1, 2단의 건조실에 구비되는 패들식 이송 컨베이어(115)는 패들 스크류가 저속회전하면서 슬러지를 이송하도록 하여 분진 발생을 최소화한다.
건조기(100)는 슬러지 투입구(117)와 건조물 배출구(119)를 구비한다. 슬러지 투입구(117)는 슬러지 투입을 위해 복수의 건조실 중 최상단에 위치하는 건조실과 연결되게 형성된다. 건조물 배출구(119)는 슬러지 건조물의 배출을 위해 복수의 건조실 중 최하단에 위치한다.
건조기(100)는 슬러지를 건조시키기 위한 열원 유입구(121)와, 슬러지를 건조시키면서 발생되는 건류가스를 배출하기 위한 건류가스 배출구(123)를 구비한다.
열원 유입구(121)는 복수의 건조실 중 최상단 건조실 바로 아래의 건조실과 연결되게 형성된다.
건조실은 각단별 수분증발로 건조를 진행하며 450℃에서 120℃로 유지한다. 최하단 건조실은 함수율 10% 이하 슬러지 건조물을 배출한다.
건조기(100)는 산소농도 감지기(131)와 질소가스 퍼지부(133)를 구비한다. 산소농도 감지기(131)는 건조기(100) 내부에 설치되어 산소 농도를 감지한다. 질소가스 퍼지부(133)는 산소농도 감지기(131)가 감지한 산소 농도가 설정 농도 이상이면 건조기(100) 내부에 질소가스를 퍼지하여 화재를 진압할 수 있도록 한다.
산소농도 감지기(131)는 최하단 건조실에 구비되어 배출되는 과열증기의 산소 농도를 감지할 수 있도록 한다. 질소가스 퍼지부(133)는 각단별 건조실에 설치될 수도 있고 슬러지의 이송방향을 고려하여 건류가스 배출구(123)와 반대편 위치에서 건류가스 배출구(123) 방향으로 질소가스를 퍼지할 수 있도록 설치될 수 있다.
산소농도 감지기(131)가 감지한 과열증기의 산소 농도가 설정 농도 이상이면 화재 발생으로 판단한다.
화재 발생시 건조기(100) 내부에 질소가스를 퍼지하면 내부공간(111)이 불활성 가스인 질소가스로 채워지고 산소가 건류가스 배출구(123) 등으로 밀려나면서 화재가 진압될 수 있다.
건조물 배출구(119)에 로타리 밸브(125)가 설치된다. 로타리 밸브(125)는 슬러지 건조물 배출시 산소를 차단하면서 배출시키기 위한 것이다.
로타리 밸브(125)에 배출 컨베이어(127)가 연결된다. 배출 컨베이어(127)는 로타리 밸브(125)에서 배출되는 슬러지 건조물을 받아 냉각시키면서 배출시킬 수 있도록 된다.
건조기(100)의 상부에 방열판(140)이 구비된다.
도 1에 도시된 바와 같이, 건조기(100)의 상부면을 방열판(140)으로 구성할 수 있으며, 방열판(140)을 통해 방열되는 열을 회수하여 슬러지가 건조기(100)에 공급되기 전 슬러지를 예열하는 용도로 활용할 수 있다.
방열판(140)의 열을 회수하여 슬러지를 예열하기 위한 방열회수수단(150)을 포함한다.
방열회수수단(150)은 방열판(140)에 형성한 유로 형상의 순환덕트(151)와, 슬러지를 건조기(100)로 공급하기 위해 이송하는 공급관(30)의 외주면을 감싸는 이중관 형상으로 형성되는 순환관(153)을 포함한다.
순환관(153)은 일측이 순환덕트(151)의 입구와 연결되고 반대되는 타측이 순환덕트(151)의 출구와 연결되어 방열판(140)을 통해 방열되는 열이 순환관(153)을 순환할 수 있도록 된다. 순환관(153)은 열이 공급관의 외주면을 나선 형태로 순환할 수 있도록 내부가 나선 형상으로 될 수 있다.
방열회수수단(150)은 방열판(140)의 열이 순환관(153)을 순환하는 순환력을 확보하기 위한 방열순환송풍기(155)를 더 포함한다.
한편, 건류가스를 탈취로(400)로 이송하기 위한 이송라인(210)을 포함한다.
이송라인(210)에 원심력 집진기(300)가 설치된다. 원심력 집진기(300)는 건류가스에 포함되는 분진을 포집하여 하부로 배출하기 위한 것이다.
원심력 집진기(300)는 이송라인(210)에 복수 개가 설치될 수 있다.
원심력 집진기(300)는 원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하는 제1 원심력 집진기(310)와, 원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하면서 고전압을 인가하여 전기 집진을 수행하는 제1 및 제2 전기 원심력 집진기(320,330)를 포함할 수 있다.
제1 원심력 집진기(310), 제1 및 제2 전기 원심력 집진기(320,330)는 건류가스가 제1 원심력 집진기(310)를 통과한 후 제1 전기 원심력 집진기(320)와 제2 전기 원심력 집진기(330)를 순차적으로 통과하거나, 분진 농도에 따라 둘 중 하나를 선택적으로 통과할 수 있도록 연결된다.
도 3 및 도 4에 도시된 바와 같이, 제1 및 제2 전기 원심력 집진기(320,330)는 각각 상부 출구 부분에 원심력 집진기를 통과하는 건류가스에 포함된 분진 농도를 측정하기 위한 분진농도 감지부(311,321)가 구비된다.
분진농도 감지부(311,321)에서 측정된 분진 농도에 따라 제1 전기 원심력 집진기(320)와 제2 전기 원심력 집진기(330)의 건류가스 통과 여부가 제어될 수 있다.
제1 원심력 집진기(310)를 통과하는 건류가스에 포함된 분진 농도가 설정치 이상이면 제1 원심력 집진기(310)를 통과한 건류가스가 제1 및 제2 전기 원심력 집진기(320,330)를 순차적으로 통과하도록 한다.
또는, 제1 전기 원심력 집진기(320)를 통과한 건류가스에 포함된 분진 농도가 설정치 이상이면, 건류가스가 제1 전기 원심력 집진기(320)를 통과하지 않고 제2 전기 원심력 집진기(330)를 통과하도록 하고 제1 전기 원심력 집진기(320)의 전기 집진극(325)에 물을 분사하여 포집된 분진을 세정하고 대기하도록 한다.
분진농도 감지부(311,321)는 건류가스가 배출되는 원심력 집진기의 상부 출구 부분에 레이저빔(L)을 조사하여 분진 압력을 감지하는 레이저 감지기일 수 있다.
도 4에 도시된 바와 같이, 제1 원심력 집진기(310)는 원심력을 이용하여 흡입된 건류가스 중의 분진을 하부로 분리하는 사이클론을 포함한다.
도 5에 도시된 바와 같이, 제1 및 제2 전기 원심력 집진기(320,330)는 사이클론을 이용한 제1 원심력 집진기와 미세입자를 걸러내는 전기 원심력 집진기를 하나로 제작한 것이다.
제1 및 제2 전기 원심력 집진기(320,330)는 원심력을 이용하여 흡입된 건류가스 중의 분진을 하부로 분리하는 사이클론(323)과, 고전압을 이용하여 사이클론(323) 내부에서 미세입자를 부착하기 위한 전기 집진극(325)과, 전기 집진극(325)의 세정을 위해 물을 분사하는 물 분사노즐(327)을 포함한다.
제1 및 제2 전기 원심력 집진기(320,330)는 전기 집진극의 양측으로 방전극(미도시)을 배치하고 방전극에 직류전압을 가하면, 전기 집진극과의 사이에 불평등 전계가 형성되어 음이온 전하를 띤 가스 분자가 +극의 전기 집진극(325)으로 이동하여 분진이 전기 집진극(325)에 부착된다.
전기 집진극(325)은 외면을 따라 복수 개의 돌기(326)가 형성된다. 돌기(326)는 끝단으로 갈수록 뾰족하게 형성되어 미세입자 부착을 용이하게 한다. 돌기(326)는 전기 집진극(325)의 표면적을 넓혀 미세입자 부착을 용이하게 한다.
전기 집진극(325)에 물을 분사해줌으로써 전기 집진극(325) 및 돌기(326)에 부착된 분진을 세정하여 포집 효율을 높이며 재비산을 방지할 수 있다. 물 분사에 의해 발생된 오수는 경사지게 설치된 하부 배출구로 모이고 원활하게 배출될 수 있다.
물 분사노즐(327)은 전기 집진극(325)의 상단에 절연재를 매개로 하여 직접 설치될 수도 있고 제1 전기 원심력 집진기(310)의 상부벽에 설치될 수도 있다.
물 분사노즐(327)은 각 전기 집진극(325) 마다 1개 또는 2개가 구비되어 전기 집진극(325)의 전체에 골고루 물을 분사할 수 있도록 되며, 지속적으로 물을 공급받을 수 있도록 전기 원심력 집진기(300) 외부에 구비된 물 공급장치에 연결된다.
제1 원심력 집진기(310)는 30㎛ 이상만 포집하여 제거 가능하고 30㎛ 미만의 미세입자 포집은 어렵다. 따라서 건류가스에 포함된 30㎛ 미만의 미세입자 제거를 위해 제1 및 제2 전기 원심력 집진기(320,330)를 더 포함한다.
도 1에 도시된 바와 같이, 원심력 집진기(300)를 통과한 건류가스가 이송되는 이송라인(210)에서 분기되는 순환라인(230)을 더 포함한다. 순환라인(230)은 탈취로에서 응축수 발생없이 건조된 수분증발량의 건류가스만 연소시킬 수 있도록 하고 나머지 건류가스는 에너지 회수를 위해 순환시키기 위한 것이다.
이송라인(210)에 배기송풍기(220)가 설치된다. 배기송풍기(220)는 건조기(100) 후단 압력에 따라 자동댐퍼(221)로 제어되어 원심력 집진기(300)를 통과한 건류가스를 탈취로(400)에 공급한다.
순환라인(230)에 순환송풍기(240)가 설치된다. 순환송풍기(240)는 배기송풍기(220)와 연계된 자동댐퍼(221)에서 배출된 건류가스를 제외한 나머지 이송라인(210)의 건류가스를 열교환을 위해 증기가열기(500)로 공급한다.
예를 들어, 배기송풍기와 순환송풍기의 풍량 조정을 통해 원심력 집진기(300)를 통과한 건류가스의 16.7%(또는 약 18%)가 탈취로로 공급되고, 나머지 83.3%(또는 약 82%)가 순환라인을 통해 증기가열기로 공급될 수 있다. 이 경우, 배기송풍기 풍량 5㎥/min, 순환송풍기 풍량 25.7㎥/min으로 제어될 수 있다.
배기송풍기(220)는 수분이 증발된 만큼만 건류가스를 효율적으로 탈취로(400)로 공급한다. 이는 미세입자(미립자 이물질)가 제거된 수분이 포함된 건류가스의 일부를 탈취로(400)에서 연소공기로 연소시켜 고온 산화하여 응축수 발생 없이 탈취되도록 한다.
유인송풍기(720)는 탈취로(400) 내의 압력신호를 받아 자동댐퍼(730)로 일정하고 에너지 효율적인 배기를 수행함으로써, 탈취로(400) 내의 압력을 일정하게 유지하여 탈취 효과를 최대화한다.
탈취로(400)는 건조기(100) 내에서 발생된 건류가스를 이송라인(210)을 통해 공급받고 연소시켜 건류가스에 포함된 수분 및 악취 성분을 제거한다. 건류가스는 탈취로(400)에서 약 800~850℃로 고온 산화 처리되어 건류가스에 포함된 수분 및 악취 성분이 모두 제거된다. 따라서 탈취로(400)에서 배출되는 탈취가스는 수분 및 악취 성분을 포함하지 않는다.
탈취로(400)에서 배출되는 탈취가스는 증기가열기(500)로 유입된다. 증기가열기(500)는 고온의 탈취가스와 순환라인(230)을 통해 공급받은 저온의 건류가스와 열교환한다.
도 5에 도시된 바와 같이, 증기가열기(500)는 탈취로(400)에서 배출되는 고온의 탈취가스(약 850℃)로 순환라인(230)을 통해 공급받은 저온의 건류가스(약 120℃)를 열교환을 통해 건류가스를 약 400℃로 가열한다. 증기가열기(500)에서 열교환된 건류가스는 건조기(100)에 열원으로 공급된다.
건조기(100)에서 배출되는 건류가스(순환증기)를 탈취로(400)에서 배출되는 탈취가스로 열교환하여 건조기(100)에 열원으로 공급하는 것에 의해 슬러지 건조를 위한 에너지 사용이 최소화된다.
또한, 탈취가스는 분진 및 악취가 제거된 가스이므로 증기가열기(500) 내의 열교환 파이프 막힘이 방지되어 증기가열기의 수명을 연장시키고 열교환 효율을 높인다.
도 1에 도시된 바와 같이, 증기가열기(500)에서 배출되는 탈취가스의 초미세먼지를 필터로 제거하는 여과 집진기(700)를 더 포함한다. 여과 집진기(700)는 증기가열기(500)에서 배출되는 탈취가스로부터 초미세먼지를 제거하여 배출하기 위한 것이다. 필터는 여과재나 여과포가 해당할 수 있으며, 탈취가스가 여과재나 여과포를 통과하면서 탈취가스에 포함된 초미세먼지가 여과된다.
여과 집진기(700)에서 배출되는 배기가스는 굴뚝(800)을 통해 외부로 배출된다. 여과 집진기(700)는 굴뚝(800)과 배출라인(710)으로 연결되며, 배출라인(710)에는 배기가스를 원활하게 배출하기 위한 유인송풍기(720)가 구비된다.
여과 집진기(700)에서 배출되는 배기가스가 굴뚝(800)을 통과할 때 굴뚝 보온재 내부에 이중관을 설치하여, 슬러지 반입장(10), 슬러지 저장조(20), 건조기(100) 등에서 포집된 악취가스가 굴뚝(800) 상부에서 하부로 회전 순환하면서 통과되게 하여 악취가스를 가열하고, 가열된 악취가스를 탈취로(400)에 연소공기로 공급한다.
도 6에 도시된 바와 같이, 굴뚝(800)에 설치한 이중관은 이송관(810)이다. 이송관(810)은 굴뚝의 외주면을 감싸는 이중관 형상으로 되어 슬러지 반입장(10), 슬러지 저장조(20), 건조기(100) 주변 등에서 포집된 악취가스를 굴뚝의 상부에서 하부로 이송시키면서 굴뚝(800)을 통과하는 배기가스의 열로 1차 가열한다.
이송관(810)은 악취가스가 굴뚝(800)의 상부에서 하부로 회전 순환하여 가열되도록 내부가 나선 형상으로 된다. 이송관(810)은 악취가스 입구(811)가 굴뚝의 상부 측에 위치하고 악취가스의 출구(813)가 굴뚝(800)의 하부 측에 위치하여 악취가스가 굴뚝(800)을 통과하는 배기가스의 열에 의해 보다 효율적으로 가열되게 한다.
증기가열기(500)와 여과 집진기(700) 사이에 예열기(600)가 더 설치된다. 예열기(600)는 악취가스 이송라인(820)을 통해 이송관(810)과 연결된다.
예열기(600)는 이송관(810)을 통과하면서 1차 가열된 악취가스를 증기가열기(500)에서 배출되는 탈취가스와 열교환을 통해 2차 가열하여 탈취로(400)에 2차 가열된 악취가스를 연소공기로 공급한다.
포집한 악취가스는 배기가스와 1,2차 열교환한 후 탈취로(400)의 연소공기로 공급되므로 탈취로 연소 에너지를 최대로 절약할 수 있다.
이하 본 발명의 작용을 설명하기로 한다.
본 발명의 순환증기 재가열 슬러지 건조시스템은 슬러지 건조를 수행하고, 슬러지 건조시 발생하는 건류가스는 분진 및 악취 제거를 수행하여 배기가스로 배출한다.
슬러지 건조는 건조기(100)에 정량 공급되는 슬러지가 다단식 건조기(100) 내의 최상단 건조실에서 최하단 건조실로 이송되는 과정에서 열원(순환증기를 재가열한 약 400℃의 가열증기)에 의해 건조된다. 이 과정에서 슬러지의 이송과 건조를 위한 패들식 이송 컨베이어(115)가 슬러지를 교반하면서 이송하여 연속 건조를 수행하고 건조기(100) 내에 슬러지의 체류시간이 증대되므로 슬러지의 건조가 보다 효율적으로 이루어질 수 있다.
건조기(100)로 공급되는 슬러지는 수분이 약 80%이며, 건조기(100)에서 건조되어 배출되는 슬러지 건조물은 수분이 약 10% 이하이다. 건조기(100)에서 배출되는 슬러지 건조물의 수분 조절은 가능하다.
건조기(100)는 밀폐구조로 되어 악취 확산이 방지되고 분진 포집이 용이하다. 슬러지 건조물은 로타리 밸브(125)를 통해 배출 컨베이어(127)로 배출되며 배출 컨베이어(127)에서 냉각되면서 배출된다. 배출된 슬러지 건조물은 수분이 제거된 상태이므로 운반이 용이하고 악취가 발생하지 않는다.
건조기(100)는 화재 발생시 건조기(100) 내부에 질소가스를 퍼지하여 내부공간(111)이 불활성 가스인 질소가스로 채워지고 산소가 건류가스 배출구(123) 등으로 밀려나도록 되므로 화재 발생이 방지된다.
한편, 건조기(100)에서 슬러지를 건조하는 과정에서 발생하는 건류가스는 건류가스 배출구(123)를 통해 배출된 후, 건류가스 배출구(123)와 연결된 이송라인(210)을 통해 제1 원심력 집진기(310), 제1 및 제2 전기 원심력 집진기(320,330)를 통과하면서 건류가스에 포함되는 분진이 제거된다.
건류가스는 제1 원심력 집진기(310)를 통과하면서 30㎛ 이상의 분진이 제거되고 제1 및 제2 전기 원심력 집진기(320,330)를 통과하면서 30㎛ 미만의 미세입자가 제거될 수 있다.
이 과정에서 제1 전기 원심력 집진기(320)의 분진농도 감지부(311,321)에서 측정된 분진 농도에 따라 제1 전기 원심력 집진기(320)와 제2 전기 원심력 집진기(330)의 건류가스 통과 여부가 제어될 수 있다.
예를 들어, 제1 전기 원심력 집진기(320)를 통과한 건류가스에 포함된 분진 농도가 설정치 이상이면, 건류가스가 제1 전기 원심력 집진기(320)를 통과하지 않고 제2 전기 원심력 집진기(330)를 통과하도록 하고 제1 전기 원심력 집진기(320)의 전기 집진극(325)에 물을 분사하여 포집된 분진을 세정하고 대기하도록 한다.
원심력 집진기(300)를 통과하면서 분진 및 미세입자가 제거된 건류가스는 응축수(폐수 발생)없이 탈취할 수 있는 일부만 탈취로(400)로 공급되고, 나머지는 재가열을 위해 증기가열기(500)로 공급된다.
탈취로(400)로 공급되는 건류가스와 증기가열기(500)로 공급되는 건류가스의 비율은 탈취로(400)와 연결된 이송라인(210)에 설치되는 배기송풍기(220)와 증기가열기(500)와 연결된 순환라인(230)에 설치되는 순환송풍기(240)의 풍량 조절로 수행된다.
배기송풍기의 풍량이 5㎥/min, 순환송풍기의 풍량이 25.7㎥/min으로 제어되어, 원심력 집진기(300)를 통과한 건류가스의 16.7%(또는 약 18%)가 탈취로(400)로 공급되고, 나머지 83.3%(또는 약 82%)가 순환라인(230)을 통해 증기가열기(500)로 공급될 수 있다.
탈취로(400)에 공급된 건류가스는 연소공기로 연소시켜 악취 및 수분을 제거한다. 탈취로(400)의 온도는 800~850℃로 유지하여 악취 및 수분 제거가 용이하도록 한다.
탈취로(400)에서 악취 및 수분이 제거된 건류가스, 즉 탈취가스는 탈취로(400)에서 배출된 후, 열회수를 위한 증기가열기(500), 예열기(600)를 순차적으로 통과하며, 다음으로 여과 집진기를 통과하면서 초미세입자가 제거된다. 초미세입자가 제거된 탈취가스는 배기가스로 유인송풍기(720) 및 굴뚝(800)을 통해 외부로 배출된다.
굴뚝(800)을 통해 최종 배출되는 배기가스는 원심력 집진기(300)를 통과하면서 분진 및 미세입자가 제거되고, 탈취로(400)를 통과하면서 수분과 악취가 제거되고, 여과 집진기(700)를 통과하면서 초미세입자가 제거된 상태이므로 대기오염을 최소화한다.
탈취로(400)에서 배출되는 탈취가스(기체)는 약 850℃로 고온이므로 순환라인(230)을 통해 증기가열기(500)로 공급된 건류가스(증기)의 재가열에 이용한다.
도 5에 도시된 바와 같이, 약 850℃의 고온 탈취가스가 증기가열기(500)를 통과하면서 약 120℃인 저온 건류가스와 열교환되어 건류가스를 약 400℃로 가열되게 한다. 증기가열기(500)를 통과하면서 약 400℃로 재가열된 건류가스는 건조기(100)에 슬러지 건조를 위한 열원으로 공급되므로 에너지를 효율적으로 처리할 수 있게 한다.
슬러지 반입장(10), 슬러지 저장조(20), 건조기(100) 등에서 발생하는 악취가스는 포집하고 탈취가스 및 배기가스와 1,2차 열교환하여 탈취로(400)의 연소공기로 공급한다.
증기가열기(500)를 통과한 탈취가스는 약 250℃로 고온이므로 탈취로(400)에 공급되는 연소공기의 재가열에 이용한다. 탈취로(400)에 공급되는 연소공기는 슬러지 반입장(10), 슬러지 저장조(20), 건조기(100)에서 덕트 등을 이용하여 포집한 악취가스를 이용한다.
슬러지 반입장(10), 슬러지 저장조(20), 건조기(100)에서 포집한 악취가스는 굴뚝(800)에 형성한 이송관(810)을 상부에서 하부로 통과하면서 약 150℃인 배기가스와 열교환에 의해 1차 가열되고, 예열기(600)를 통과하면서 약 250℃인 탈취가스와 열교환에 의해 2차 가열된 후 탈취로(400)에 연소공기로 공급된다.
탈취로(400)에 공급되는 악취가스가 배기가스, 탈취가스에 의해 약 400℃의 고온으로 가열된 후 공급되므로 탈취로(400)에 연소를 위해 사용되는 연료(예: LNG 가스)의 사용량을 줄일 수 있어 에너지 효율을 증대시킬 수 있다.
슬러지 건조시 발생하는 열은 회수하여 슬러지 예열수단으로 사용한다.
슬러지를 건조기(100)로 공급하기 위해 이송하는 공급관(30)의 외주면을 감싸도록 순환관(153)을 형성하고, 방열판(140)을 통해 방열되는 열이 순환관(153)을 순환할 수 있도록 된다. 그에 따라 슬러지가 공급관(30)을 통해 이송되는 과정에서 예열되고, 예열된 슬러지가 건조기(100) 내로 공급되므로 건조기의 에너지 효율이 증대될 수 있다.
아래 표 1은 본 발명의 실시예에 의한 건조기에 슬러지를 공급하여 건조시킨 슬러지 건조물의 발열량 및 성분을 시험 평가한 것이다.
시료명: 하수 슬러지 건조물+MDF분쇄물혼합성형물
시험항목 단위 결과 분석방법
모양 및 크기 % 100 고형연료시험기준
저위발열량 kcal/kg 3570 고형연료시험기준
수분 wt% 6.44 고형연료시험기준
회분 wt% 27.89 고형연료시험기준
염소 wt% 0.247 고형연료시험기준
황분 wt% 2.351 고형연료시험기준
수은 mg/kg 0.3212 고형연료시험기준
카드뮴 mg/kg 불검출 고형연료시험기준
mg/kg 52.778 고형연료시험기준
비소 mg/kg 불검출 고형연료시험기준
[시험 기관: (주)원일화학엔환경]
표 1에 의하면, 슬러지 건조물은 발열량이 3570kcal로 높고 수분이 6.44wt%로 낮아 연료로 사용 가능하며, 염소, 황분, 수은, 카드뮴, 납, 비소 등 함량이 미량이거나 불검출되어 연료로 사용시 환경오염을 최소화할 수 있음을 알 수 있다.
전술한 본 발명은 다단 건조기를 이용하여 슬러지를 효율적으로 건조하며, 건조기에 산소농도 감지기가 설치되어 화재위험이 감지되면 자동적으로 질소가스를 퍼지하여 화재를 방지할 수 있다.
또한, 건조기 상부의 방열판에 순환덕트를 형성하여 방열되는 순환공기로 건조기에 공급되는 슬러지의 온도를 올려주므로 에너지 효율을 높일 수 있다.
또한, 건조기에서 건조된 슬러지 건조물은 로터리 밸브에 의해 산소가 차단되고 배출 컨베이어를 통해 배출되는 과정에서 냉각되므로 화재위험에서 안전하게 냉각 배출할 수 있다.
또한, 건조기에서 배출되는 건류가스는 제1 원심력 집진기, 제1 및 제2 전기 원심력 집진기를 통과하여 대립자 분진 및 미세입자 분진이 제거된 후 증기가열기를 통과하므로, 증기가열기 내부의 오염도를 낮추어 증기가열기의 열교환 효율을 높일 수 있다.
또한, 제1 원심력 집진기, 제1 및 제2 전기 원심력 집진기 출구에 분진농도 감지부를 설치하여 분진 농도 및 제1 원심력 집진기의 입도 분리, 성능확인, 막힘 등을 감지할 수 있어 원심력 집진기의 막힘을 미연에 방지할 수 있고, 원심력 집진기를 효율적으로 이용할 수 있다.
또한, 건조기에서 발생된 저온의 건류가스를 건조기 후단 압력을 지시받아 자동댐퍼로 배기송풍기를 제어하여 수분이 증발된 만큼만 건류가스를 효율적으로 탈취로로 이동하므로 탈취로에서 응축수가 발생하지 않는다.
또한, 건류가스에 포함된 악취 및 수분은 탈취로에서 모두 제거되고 여과 집진기를 통과하면서 초미세먼지가 제거된 후 배기가스로 배출되므로 악취가 발생하지 않고 환경오염을 유발하지 않는다.
또한, 탈취로에서 배출되는 탈취가스로 잉여 건류가스를 증기가열기에서 열교환하여 건조기 열원으로 순환 공급하므로 건조기 에너지 효율을 최적화할 수 있다.
또한, 증기가열기를 통과한 탈취가스, 굴뚝을 통과하는 배기가스로 악취가스를 1차, 2차 열교환하여 가열한 다음, 탈취로에 연소공기로 공급하므로 탈취로의 에너지 효율도 최적화할 수 있다.
상술한 순환증기 재가열 슬러지 건조시스템은 폐쇄 순환되는 시스템이므로 높은 열효율을 유지할 수 있고 악취 발생이 없으며, 운전이 용이하고 유지관리비가 저렴한 이점이 있다.
상술한 순환증기 재가열 슬러지 건조시스템은 4.16ton/hr(100ton/day) 이상의 슬러지 건조가 가능하다.
본 발명은 밀폐된 다단 건조기에서 슬러지의 건조가 이루어지고 건류가스, 열원, 악취가스 등이 폐쇄 순환되는 시스템이므로 높은 열효율을 유지할 수 있어 슬러지 건조가 효율적으로 이루어지고, 에너지 절약이 가능하고 운전이 용이하며 유지관리비가 저렴한 효과가 있다.
또한, 본 발명은 슬러지 건조시 발생하는 악취, 슬러지 반입장 악취, 슬러지 저장조 악취 등을 탈취로에서 고온산화 처리하여 대기방출하므로 악취 발생이 없어 슬러지 처리 시설 주변 지역의 환경을 보존하고 민원발생을 예방할 수 있는 효과가 있다.

Claims (6)

  1. 슬러지를 공급받아 상기 슬러지의 수분을 열원으로 건조시켜 슬러지 건조물을 형성하는 건조기;
    상기 건조기 내에서 발생된 건류가스를 이송라인을 통해 공급받고 연소시켜 상기 건류가스에 포함된 수분 및 악취 성분을 제거하는 탈취로;
    상기 탈취로에서 배출되는 탈취가스로 상기 이송라인에서 분기한 순환라인을 통해 공급받은 건류가스를 열교환을 통해 가열하여 상기 건조기에 열원으로 공급하는 증기가열기;
    상기 이송라인에 설치되고 상기 건조기 후단 압력에 따라 자동댐퍼로 제어되어 상기 건류가스를 상기 탈취로에 공급하는 배기송풍기; 및
    상기 순환라인에 설치되고 상기 배기송풍기에서 수분증발량만큼의 건류가스가 제거된 나머지 건류가스를 상기 증기가열기로 공급하는 순환송풍기;
    를 포함하고,
    상기 이송라인에 설치되며 상기 건류가스에 포함되는 분진을 포집하여 하부로 배출하고 악취 성분은 상기 탈취로로 공급되게 하는 원심력 집진기를 포함하며,
    상기 원심력 집진기는
    원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하는 제1 원심력 집진기와,
    원심력을 이용하여 흡입된 건류가스 중의 분진을 분리하면서 고전압을 인가하여 전기 집진을 수행하는 제1 및 제2 전기 원심력 집진기를 포함하고,
    상기 제1 원심력 집진기, 상기 제1 및 제2 전기 원심력 집진기는 상기 건류가스가 상기 제1 원심력 집진기를 통과한 후 제1 전기 원심력 집진기와 제2 전기 원심력 집진기를 순차적으로 통과하거나, 둘 중 하나를 선택적으로 통과할 수 있도록 연결된 것을 특징으로 하는 순환증기 재가열 슬러지 건조시스템.
  2. 제1항에 있어서,
    상기 제1 원심력 집진기, 상기 제1 및 제2 전기 원심력 집진기는
    각각 상부 출구 부분에 원심력 집진기를 통과하는 건류가스에 포함된 분진 농도를 측정하기 위한 분진농도 감지부가 구비되고,
    상기 분진농도 감지부에서 측정된 분진 농도에 따라 상기 제1 전기 원심력 집진기와 상기 제2 전기 원심력 집진기의 건류가스 통과 여부가 제어되는 것을 특징으로 하는 순환증기 재가열 슬러지 건조시스템.
  3. 제1항에 있어서,
    상기 제1 및 제2 전기 원심력 집진기는
    원심력을 이용하여 흡입된 건류가스 중의 분진을 하부로 분리하는 사이클론과,
    고전압을 이용하여 상기 사이클론 내부에서 미세입자를 부착하기 위한 전기 집진극과,
    상기 전기 집진극에 물을 분사하는 물 분사노즐을 포함하는 것을 특징으로 하는 순환증기 재가열 슬러지 건조시스템.
  4. 슬러지를 공급받아 상기 슬러지의 수분을 열원으로 건조시켜 슬러지 건조물을 형성하는 건조기;
    상기 건조기 내에서 발생된 건류가스를 이송라인을 통해 공급받고 연소시켜 상기 건류가스에 포함된 수분 및 악취 성분을 제거하는 탈취로;
    상기 탈취로에서 배출되는 탈취가스로 상기 이송라인에서 분기한 순환라인을 통해 공급받은 건류가스를 열교환을 통해 가열하여 상기 건조기에 열원으로 공급하는 증기가열기;
    상기 이송라인에 설치되고 상기 건조기 후단 압력에 따라 자동댐퍼로 제어되어 상기 건류가스를 상기 탈취로에 공급하는 배기송풍기; 및
    상기 순환라인에 설치되고 상기 배기송풍기에서 수분증발량만큼의 건류가스가 제거된 나머지 건류가스를 상기 증기가열기로 공급하는 순환송풍기;
    를 포함하고,
    상기 증기가열기에서 배출되는 탈취가스의 초미세먼지를 필터로 제거하는 여과 집진기와,
    상기 여과 집진기를 통과한 배기가스를 외부로 배출하기 위한 굴뚝과,
    상기 굴뚝의 외주면을 감싸는 이중관 형상으로 되어 슬러지 저장조, 슬러지 반입장, 건조기 중 한 곳 이상에서 포집된 악취가스를 이송시키면서 상기 굴뚝을 통과하는 배기가스의 열로 상기 악취가스를 1차 가열하는 이송관과,
    상기 이송관을 통과하면서 1차 가열된 악취가스를 상기 증기가열기에서 배출되는 탈취가스와 열교환을 통해 2차 가열하여 상기 탈취로에 연소공기로 공급하는 예열기를 포함하는 것을 특징으로 하는 순환증기 재가열 슬러지 건조 시스템.
  5. 제4항에 있어서,
    상기 악취가스가 상기 굴뚝의 상부에서 하부로 회전 순환하여 가열되도록 상기 이송관은 내부가 나선 형상으로 된 것을 특징으로 하는 순환증기 재가열 슬러지 건조 시스템.
  6. 제4항에 있어서,
    상기 건조기는
    슬러지를 수용할 수 있는 내부공간과,
    상기 내부공간을 연속된 복수의 건조실로 구획하는 복수의 구획벽과,
    상기 슬러지의 이송을 위해 상기 복수의 건조실에 설치되는 패들식 이송 컨베이어와,
    상기 슬러지 투입을 위해 복수의 건조실 중 최상단에 위치하는 건조실과 연결되는 슬러지 투입구와,
    상기 슬러지 건조물의 배출을 위해 복수의 건조실 중 최하단에 위치하는 건조물 배출구와,
    상기 슬러지를 건조시키기 위한 열원 유입구와,
    상기 슬러지를 건조시키면서 발생되는 건류가스를 배출하기 위한 건류가스 배출구를 포함하는 것을 특징으로 하는 순환증기 재가열 슬러지 건조 시스템.
PCT/KR2018/007682 2017-11-02 2018-07-06 순환증기 재가열 슬러지 건조시스템 WO2019088399A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170145343A KR101823961B1 (ko) 2017-11-02 2017-11-02 순환증기 재가열 슬러지 건조시스템
KR10-2017-0145343 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088399A1 true WO2019088399A1 (ko) 2019-05-09

Family

ID=61660082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007682 WO2019088399A1 (ko) 2017-11-02 2018-07-06 순환증기 재가열 슬러지 건조시스템

Country Status (3)

Country Link
KR (1) KR101823961B1 (ko)
CN (2) CN111153582A (ko)
WO (1) WO2019088399A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692371B (zh) * 2019-09-06 2020-05-01 台灣卜力斯股份有限公司 利用熱泵與蒸汽壓縮機功能之壓濾乾燥設備
CN113354245A (zh) * 2021-04-24 2021-09-07 杭州国泰环保科技股份有限公司 一种半干污泥脱水处理装置
CN115560562A (zh) * 2022-09-23 2023-01-03 北京金雕建材检测有限公司 一种电热鼓风干燥箱

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823961B1 (ko) * 2017-11-02 2018-03-14 도요엔지니어링코리아 주식회사 순환증기 재가열 슬러지 건조시스템
CN110240380A (zh) * 2019-07-16 2019-09-17 科盛环保科技股份有限公司 一种石油化工污泥处理***
KR102090752B1 (ko) * 2019-12-20 2020-03-18 서영철 가축 분뇨 건조장치
KR102407731B1 (ko) * 2020-04-21 2022-06-15 강수호 슬러지 건조 배가스 처리 시스템
KR102355850B1 (ko) * 2021-03-12 2022-02-08 홍상호 직접가열 방식의 슬러지 건조 시스템
KR102424676B1 (ko) * 2021-06-01 2022-07-22 나민수 탈취 연소로 제어 시스템
CN113440966B (zh) * 2021-07-26 2022-05-27 广东吉康环境***科技有限公司 一种污泥低温干化设备底部自动除尘***及方法
KR102347105B1 (ko) * 2021-08-11 2022-01-05 주식회사 진에너텍 배출장치가 적용된 하이브리드 습식 전기 집진장치
KR102347101B1 (ko) * 2021-08-11 2022-01-06 주식회사 진에너텍 하이브리드 습식 전기 집진장치 및 그가 적용된 슬러지 연료화 시스템
KR102390268B1 (ko) 2021-10-25 2022-04-25 도요엔지니어링코리아 주식회사 순환증기 재가열 슬러지 건조시스템
KR20230106970A (ko) * 2022-01-07 2023-07-14 김태근 미스트 클라우드를 활용한 멀티 사이클론 방식의 먼지 및 악취 제거 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182975A (ja) * 1997-09-01 1999-03-26 Okawara Mfg Co Ltd し尿汚泥の処理システム
KR20000050782A (ko) * 1999-01-14 2000-08-05 여광웅 고속 건조장치
KR100965932B1 (ko) * 2010-04-27 2010-06-24 오난희 유기성 폐기물의 효율적 건조 및 악취 제어시스템
KR101005850B1 (ko) * 2008-10-09 2011-01-05 (주) 기홍 가연성 또는 유기성 폐기물의 건조 및 탄화 장치
KR101387011B1 (ko) * 2013-08-29 2014-04-21 롯데건설 주식회사 회전식 다단 폐기물 건조장치
KR101387010B1 (ko) * 2013-05-30 2014-04-24 롯데건설 주식회사 다단 폐기물 건조장치
KR101695977B1 (ko) * 2016-04-11 2017-01-17 동원중공업 주식회사 하수 슬러지 자원화용 마이크로파 적용 패들 건조기
KR101823961B1 (ko) * 2017-11-02 2018-03-14 도요엔지니어링코리아 주식회사 순환증기 재가열 슬러지 건조시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863738A (zh) * 2003-10-06 2006-11-15 株式会社荏原制作所 处理有机物的方法和装置
US7416668B1 (en) * 2007-03-27 2008-08-26 Earth Renaissance Technologies, Llc Wastewater chemical/biological treatment plant recovery apparatus and method
KR100966104B1 (ko) * 2008-05-09 2010-06-28 이성민 마이크로웨이브와 방열판을 이용한 스크류식 연속 건조장치
JP5135369B2 (ja) * 2010-03-15 2013-02-06 株式会社東芝 汚泥乾燥方法
CN102068870A (zh) * 2010-12-02 2011-05-25 北京机电院高技术股份有限公司 一种污泥桨叶式干化的载气成套处理装置及方法
CN202107604U (zh) * 2011-05-31 2012-01-11 陈海渊 一种污泥资源化处理装置
CN203124392U (zh) * 2012-11-23 2013-08-14 华南再生资源(中山)有限公司 餐厨垃圾全方位处理的集成化装备
CN105910119A (zh) * 2016-06-21 2016-08-31 普利资环境科技(苏州)有限公司 一种污泥干化***的臭气处理装置
CN106215625A (zh) * 2016-08-04 2016-12-14 江苏菲力环保工程有限公司 一种恶臭气体控制处理***
CN106336096A (zh) * 2016-08-31 2017-01-18 泰州明锋资源再生科技有限公司 污泥处理装置及处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182975A (ja) * 1997-09-01 1999-03-26 Okawara Mfg Co Ltd し尿汚泥の処理システム
KR20000050782A (ko) * 1999-01-14 2000-08-05 여광웅 고속 건조장치
KR101005850B1 (ko) * 2008-10-09 2011-01-05 (주) 기홍 가연성 또는 유기성 폐기물의 건조 및 탄화 장치
KR100965932B1 (ko) * 2010-04-27 2010-06-24 오난희 유기성 폐기물의 효율적 건조 및 악취 제어시스템
KR101387010B1 (ko) * 2013-05-30 2014-04-24 롯데건설 주식회사 다단 폐기물 건조장치
KR101387011B1 (ko) * 2013-08-29 2014-04-21 롯데건설 주식회사 회전식 다단 폐기물 건조장치
KR101695977B1 (ko) * 2016-04-11 2017-01-17 동원중공업 주식회사 하수 슬러지 자원화용 마이크로파 적용 패들 건조기
KR101823961B1 (ko) * 2017-11-02 2018-03-14 도요엔지니어링코리아 주식회사 순환증기 재가열 슬러지 건조시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692371B (zh) * 2019-09-06 2020-05-01 台灣卜力斯股份有限公司 利用熱泵與蒸汽壓縮機功能之壓濾乾燥設備
CN113354245A (zh) * 2021-04-24 2021-09-07 杭州国泰环保科技股份有限公司 一种半干污泥脱水处理装置
CN115560562A (zh) * 2022-09-23 2023-01-03 北京金雕建材检测有限公司 一种电热鼓风干燥箱
CN115560562B (zh) * 2022-09-23 2024-03-12 北京金雕建材检测有限公司 一种电热鼓风干燥箱

Also Published As

Publication number Publication date
CN108947181A (zh) 2018-12-07
KR101823961B1 (ko) 2018-03-14
CN111153582A (zh) 2020-05-15
CN108947181B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2019088399A1 (ko) 순환증기 재가열 슬러지 건조시스템
KR100847058B1 (ko) 오염토양 정화시스템
JP5048573B2 (ja) 汚泥の処理方法及び処理システム
WO2022004976A1 (ko) 프리쿨러를 구비한 배기가스의 폐열 회수 및 백연 저감 장치
KR102390268B1 (ko) 순환증기 재가열 슬러지 건조시스템
JPS6231272B2 (ko)
CA1292391C (en) Deodorization and cleaning of medium temperature wet off-gases derived from burning of wet waste sludge
CN109290352B (zh) 一种POPs污染土壤的热脱附修复处理装置及方法
JP4155365B2 (ja) 廃棄物熱分解ガス化溶融装置
WO2010002119A2 (ko) 음식물 쓰레기 응축 건조 장치
JP2011068824A (ja) 有機性含水廃棄物の炭化設備
WO2020054885A1 (ko) 유기성 폐기물 건조장치의 응축가스 정제탑
JP3958187B2 (ja) 廃棄物処理システム
WO2022004977A1 (ko) 후단 히터를 구비한 배기가스의 폐열 회수 및 백연 저감 장치
WO2018097404A1 (ko) 실내농축연소기
JPS6157964B2 (ko)
CN210305033U (zh) 一种土壤热解吸净化***
WO2024014630A1 (ko) 자갈 순환식 건식 전기 집진장치
CN220111929U (zh) 连续复合式热解吸设备
WO2022080573A1 (ko) 패키지형 대기오염정화 시스템
WO2020218672A1 (ko) 유기성 잔재 폐자원의 혼합 연소 처리장치
KR100545660B1 (ko) 감염성 폐기물의 열분해 처리장치
EP0256138A1 (en) System for scrubbing gas used for preheating of scrap for steelmaking
JP2012157860A (ja) 汚泥の処理方法及び処理システム
WO2020197143A1 (ko) 탈취장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873360

Country of ref document: EP

Kind code of ref document: A1