WO2019087956A1 - 電気化学セルおよび電気化学セルスタック - Google Patents

電気化学セルおよび電気化学セルスタック Download PDF

Info

Publication number
WO2019087956A1
WO2019087956A1 PCT/JP2018/039857 JP2018039857W WO2019087956A1 WO 2019087956 A1 WO2019087956 A1 WO 2019087956A1 JP 2018039857 W JP2018039857 W JP 2018039857W WO 2019087956 A1 WO2019087956 A1 WO 2019087956A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
positive electrode
negative electrode
electrode current
package
Prior art date
Application number
PCT/JP2018/039857
Other languages
English (en)
French (fr)
Inventor
保之 宇都
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201880068731.6A priority Critical patent/CN111263990A/zh
Priority to EP18874920.4A priority patent/EP3706195A4/en
Priority to JP2019550317A priority patent/JP7005649B2/ja
Priority to US16/760,017 priority patent/US20200350537A1/en
Publication of WO2019087956A1 publication Critical patent/WO2019087956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical cell and an electrochemical cell stack.
  • Patent Document 1 As an electrochemical cell using a semi-solid electrode, for example, an electrochemical cell described in US Patent Application Publication No. 2016/205663 (hereinafter referred to as Patent Document 1) has been proposed.
  • the electrochemical cell described in Patent Document 1 includes a power generation element including a positive electrode current collector, a positive electrode, a negative electrode current collector, a negative electrode, and a separator positioned between the positive electrode and the negative electrode, and a power generation element And an inner pouch.
  • the electrochemical cell of the present disclosure includes a semisolid positive electrode, a semisolid negative electrode, a separator positioned between the positive electrode and the negative electrode, a positive electrode current collector electrically connected to the positive electrode, and the negative electrode.
  • a power generation element comprising an electrically connected negative electrode current collector, and a package containing the power generation element, wherein the package has a hole opened to the inside and the outside. .
  • the electrochemical cell stack of the present disclosure has a plurality of electrochemical cells.
  • FIG. 1 shows a schematic view of the stacking of the components of an example of an electrochemical cell.
  • a cross-sectional view taken along the line III-III in FIG. The top view seen from the positive electrode side which abbreviate
  • the top view seen from the negative electrode side which omitted the terminal of the other example of an electrochemical cell is shown.
  • the top view which looked at the other example of the electrochemical cell from the positive electrode side The top view which looked at the other example of the electrochemical cell from the negative electrode side.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG.
  • the electrochemical cell X1 includes a positive electrode terminal 2, a negative electrode terminal 3, a positive electrode current collector 4, a semisolid positive electrode 5, a negative electrode current collector 6, and a semisolid negative electrode. 7 and a separator 8, and a package 1 containing the power generation element 100.
  • solid refers to a substance that is a mixture of a liquid phase and a solid phase, such as, for example, a particle suspension, a colloidal suspension, an emulsion, a gel, or a micelle.
  • the package 1 is a member that includes the positive electrode current collector 1 and the negative electrode current collector 6.
  • the package 1 includes a part of the positive electrode terminal 2 and the negative electrode terminal 3, the positive electrode current collector 4, the positive electrode 5, the negative electrode current collector 6, the negative electrode 7, and the separator 8. There is.
  • the package 1 has holes 10 that open to the inside and the outside of the package 1.
  • the package 1 has, for example, a three-layer structure.
  • the three-layer structure has, for example, an outer layer, an inner layer, and an intermediate layer sandwiched between the outer layer and the inner layer.
  • the inner layer is in contact with the positive electrode current collector 4 and the negative electrode current collector 6. Thereby, the package 1 can improve strength.
  • the outer layer of the package 1 may have, for example, an insulating material.
  • the outer layer of the package 1 is made of, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon, high purity polyethylene (HDPE), oriented polypropylene (o-PP), polyvinyl chloride (PVC), polyimide It may have a polymer film of (PI) or polysulfone (PSU).
  • the outer layer of the package 1 may have a combination of the above-mentioned materials, for example.
  • the outer layer of the package 1 may be coated with a combustion inhibitor such as flame retardant PET.
  • the intermediate layer of the package 1 may have, for example, a metal material.
  • the intermediate layer of the package 1 may have, for example, a metal layer (foil, substrate, film or the like) of aluminum (Al), copper (Cu) or stainless steel (SUS).
  • the intermediate layer of the package 1 may have a metal layer of an alloy of the above-mentioned metals or a combination of the above-mentioned metals.
  • the inner layer of the package 1 may have, for example, an insulating material.
  • the inner layer of the package 1 is, for example, cast polypropylene (c-PP), polyethylene (PE), ethylene vinyl acetate (EVA), PET, polyvinyl acetate (PVA), polyamide (PA), tacky acrylic, ultraviolet (UV) )
  • c-PP cast polypropylene
  • PE polyethylene
  • EVA ethylene vinyl acetate
  • PET PET
  • PVA polyvinyl acetate
  • PA polyamide
  • tacky acrylic ultraviolet (UV)
  • UV ultraviolet
  • a polymer film of a cured resin, an electron beam (EB) cured resin, or an infrared (IR) cured resin may be included.
  • the inner layer of the package 1 may have a combination of the above-mentioned polymer films.
  • the inner layer of the package 1 may, for example, comprise a flame retardant material.
  • the inner layer of the package 1 may, for example, comprise polyetheretherketone (PEEK), polyethylenenaphthalene (PEN), polyethersulfone (PES), PI, polyethylene sulfide (PPS) or polyethylene oxide (PPO). Good.
  • the inner layer of the package 1 may have a combination of the above flame retardant films.
  • the package 1 may have, for example, a two-layer structure.
  • the two-layer structure has, for example, an outer layer and an inner layer.
  • the outer layer may have, for example, a polymer film such as PET or PBT.
  • the inner layer may have, for example, a polymer film such as PP or PE.
  • the package 1 may have, for example, a single-layer structure.
  • the monolayer structure may, for example, comprise polypropylene or polyolefin.
  • the single layer structure of the package 1 may be composed of a burn inhibiting substance to reduce the risk of ignition.
  • the positive electrode current collector 4 exchanges electrons with the positive electrode 5.
  • the positive electrode current collector 4 has a first surface P1.
  • the first surface P1 of the positive electrode current collector 4 is electrically connected to the positive electrode 5.
  • the surface of the positive electrode current collector 4 opposite to the first surface P 1 is connected to the package 1.
  • the positive electrode current collector 4 may have, for example, a sheet or mesh shape.
  • the positive electrode current collector 4 includes, for example, a metal material.
  • the positive electrode current collector 4 may have, for example, stainless steel, nickel, nickel-chromium alloy, aluminum, titanium, copper, lead, lead alloy, heat resistant metal or noble metal.
  • the metal material of the positive electrode current collector 4 may be coated with a conductive material.
  • the conductive material for example, metal, metal oxide or carbon may be used.
  • the metal of the conductive material for example, Pt, Au or Ni may be used.
  • vanadium oxide or the like may be used as the metal oxide of the conductive material.
  • the thickness of the positive electrode current collector 4 may be, for example, 1 to 40 ⁇ m.
  • the negative electrode current collector 6 exchanges electrons with the negative electrode 7.
  • the negative electrode current collector 6 has a second surface P2.
  • the second surface P2 of the negative electrode current collector 6 is electrically connected to the negative electrode 7.
  • the surface of the negative electrode current collector 6 opposite to the second surface P 2 is connected to the package 1.
  • the negative electrode current collector 6 may have, for example, a sheet or mesh shape.
  • the negative electrode current collector 6 has, for example, a metal.
  • the negative electrode current collector 6 may have, for example, stainless steel, nickel, nickel-chromium alloy, titanium, lead oxide or a noble metal.
  • the thickness of the negative electrode current collector 6 may be, for example, 1 to 20 ⁇ m.
  • the semi-solid positive electrode 5 receives electrons from the positive electrode current collector 4 during discharge operation.
  • the positive electrode 5 emits electrons to the positive electrode current collector 4 during the charging operation.
  • the positive electrode 5 is electrically connected to the first surface P1 of the positive electrode current collector 4.
  • the semi-solid negative electrode 7 emits electrons to the negative electrode current collector 6 during the discharge operation.
  • the negative electrode 7 receives electrons from the negative electrode current collector 6 during the charging operation.
  • the negative electrode 7 is electrically connected to the second surface P2 of the negative electrode current collector 6.
  • the positive electrode 5 and the negative electrode 7 are electrochemically active semisolids.
  • the positive electrode 5 and the negative electrode 7 may have, for example, an active material and an electrolyte.
  • As the electrolyte for example, a solvent or a mixture of solvents and a salt may be used.
  • the positive electrode 5 and the negative electrode 7 may contain an additive.
  • US Patent Application No. 61/787, 382 entitled “Semi-Solid Electrodes Having High Rate Capability" and "Asymmetric Battery Having a Semi-Solid Cathode and High Energy Density Anode” The active substances, compositions and semi-solid suspensions described in US Provisional Patent Application No. 61 / 787,372, entitled
  • each of the positive electrode 5 and the negative electrode 7 may be, for example, 250 to 2000 ⁇ m.
  • the separator 8 is located between the positive electrode 5 and the negative electrode 7 and separates the power generation element 100 from the positive electrode 5 side and the negative electrode 7 side.
  • the separator 8 reduces the possibility of a short circuit in the power generation element 100.
  • the separator 8 has an insulator.
  • the separator 8 may have, for example, a polymer having ductility and elasticity.
  • the separator 8 may have, for example, polyolefin, polyvinyl chloride, nylon, fluorocarbon or polystyrene.
  • the holes 10 allow the gas generated by the charge / discharge side reaction to escape from the inside of the package 1 to the outside.
  • the hole 10 When viewed from the direction perpendicular to the first surface P1 of the positive electrode current collector 4, the hole 10 may be, for example, a rectangular shape having a long side and a short side. At this time, for example, the long side of the hole 10 may be along the end of the package 1.
  • the hole 10 may be provided by cutting out a part of the package 1.
  • the holes 10 may be provided by cutting a part of the package 1.
  • the dimensions of the holes 10 may be, for example, 0.1 to 10 mm in width and 10 to 30 mm in length.
  • the package 1 has a hole 10 that is open to the inside and the outside of the package 1.
  • the gas generated inside the package 1 can be discharged to the outside of the package 1.
  • the gas hardly remains between the positive electrode current collector 4 and the positive electrode 5, between the negative electrode current collector 6 and the negative electrode 7, between the positive electrode 5 and the separator 8 or between the negative electrode 7 and the separator 8. . Therefore, the efficiency of the main reaction of charge and discharge is less likely to decrease. As a result, the battery capacity can be hardly reduced.
  • the package 1 has a first packaging portion 11 covering the positive electrode current collector 4 and a second packaging portion 12 covering the negative electrode current collector 6, as shown in FIG.
  • the holes 10 may be located in each of the first wrapping portion 11 and the second wrapping portion 12 as shown in FIG.
  • Examples of the position of the hole 10 include the following. Specifically, when viewed in the direction perpendicular to the first surface P1 of the positive electrode current collector 4, for example, the long side of the hole 10 may be along one of the outer peripheries of the first packaging portion 11. When viewed in the direction perpendicular to the second surface P2 of the negative electrode current collector 6, for example, the long side of the hole 10 may be along one of the outer peripheries of the second packaging portion 12.
  • the positive electrode current collector 4 of the electrochemical cell X2 has a first surface P1 opposite to the positive electrode 5.
  • the package 1 has a first area E1 which does not overlap the positive electrode current collector 4 when viewed in the direction perpendicular to the first surface P1.
  • the positive electrode current collector 4 may be rectangular, and the package 1 may be a rectangular shape larger than the positive electrode current collector 4 .
  • the square shape may include one in which four corners are rounded.
  • the rectangular shape may include rounded corners.
  • the hole 110 is located in the first area E1. Thereby, the gas generated at the positive electrode 5 can be more easily released. Specifically, when the hole 110 is located in the area overlapping with the positive electrode 5, the gas generated at the positive electrode 5 first moves to the first area E1 and then overlaps from the first area E1 to the area again. It moves and is released from the hole 110 to the outside. On the other hand, when the hole 110 is located in the first region E1, the gas generated at the positive electrode 5 moves to the first region E1 and is discharged from the hole 110 to the outside as it is. That is, the gas generated at the positive electrode 5 can be smoothly released from the holes 110 by positioning the holes 110 in the first region E1.
  • the hole 110 may be, for example, on a bisector passing through the square positive electrode current collector 4.
  • a bisecting line passing through the positive electrode current collector 4 means a straight line passing through the middle point of a pair of opposite sides of the positive electrode current collector 4.
  • the negative electrode current collector 6 of the electrochemical cell X2 has a second surface P2 facing the negative electrode 7.
  • the package 1 has a second region E2 which does not overlap the negative electrode current collector 6.
  • the negative electrode current collector 6 may have a rectangular shape and the package 1 may have a rectangular shape larger than the negative electrode current collector 6 when viewed in a direction perpendicular to the second surface P2. .
  • the holes 110 are located in the second area E2. Thereby, the gas generated at the negative electrode 6 can be more easily released. Specifically, when the hole 110 is located in a region overlapping with the negative electrode 6, the gas generated at the negative electrode 6 first moves to the second region E 2, and from the second region E 2 to a region overlapping again with the negative electrode 6. It moves and is released from the hole 110 to the outside. On the other hand, when the hole 110 is located in the second region E2, the gas generated at the negative electrode 6 moves to the second region E2 and is discharged from the hole 110 to the outside as it is. That is, by positioning the hole 110 in the second region E2, the gas generated at the negative electrode 6 can be smoothly released from the hole 110.
  • the holes 110 may be, for example, on a bisector passing through the negative electrode current collector 6.
  • a bisecting line passing through the negative electrode current collector 6 means a straight line passing through the middle point of a pair of opposite sides of the negative electrode current collector 6.
  • the electrochemical cell X 3 further includes a positive electrode terminal 2 and a negative electrode terminal 3.
  • the positive electrode current collector 4 when viewed in the direction perpendicular to the first surface P1, may have, for example, a rectangular shape having the first side L1.
  • the package 1 may have a rectangular shape larger than the positive electrode current collector 4.
  • the positive electrode terminal 2 has one end and the other end. One end of the positive electrode terminal 2 is connected to the first side L1 of the positive electrode current collector 5 inside the package 1.
  • the positive electrode terminal 2 electrically connects the electrochemical cell X3 to an external device.
  • the positive electrode terminal 2 may be, for example, the same material as the positive electrode current collector 4.
  • the positive electrode terminal 2 may be made of, for example, a material different from that of the positive electrode current collector 4.
  • the positive electrode terminal 2 may have a metal material. As a metal material, copper, nickel, gold or the like can be used, for example.
  • the positive electrode current collector 4 and the positive electrode terminal 302 may be one member. In other words, the positive electrode current collector 4 and the positive electrode terminal 302 may be included in one member.
  • the negative electrode current collector 6 and the negative electrode terminal 303 may be one member. In other words, the negative electrode current collector 6 and the positive electrode terminal 303 may be included in one member.
  • the shape of the positive electrode terminal 2 may be, for example, a rectangle. At that time, one short side of the positive electrode terminal 2 may overlap with the first side L1 of the positive electrode current collector 4.
  • the negative electrode current collector 6 when viewed from the direction perpendicular to the second surface P2, the negative electrode current collector 6 may be, for example, a square shape having the second side L2.
  • the package 1 may have a rectangular shape larger than the negative electrode current collector 6.
  • the negative electrode terminal 3 has one end and the other end. One end of the negative electrode terminal 3 is connected to the second side L 2 of the negative electrode current collector 6 inside the package 1.
  • the negative electrode terminal 3 electrically connects the electrochemical cell X3 to an external device.
  • the negative electrode terminal 3 may be, for example, the same material as the negative electrode current collector 6.
  • the negative electrode terminal 3 may be made of, for example, a material different from that of the negative electrode current collector 6.
  • the negative electrode terminal 3 may have a metal material. As the metal material, for example, aluminum, nickel, gold or the like can be used.
  • the shape of the negative electrode terminal 3 may be, for example, a rectangle. At this time, one short side of the negative electrode terminal 3 may overlap the second side L2 of the negative electrode current collector 6.
  • the first area E1 of the electrochemical cell X3 has a third area E3 and a fourth area E4.
  • the third region E3 is a region in which the positive electrode terminal 2 is exposed among regions divided by a straight line extending the side facing the first side L1 of the positive electrode current collector 4.
  • the fourth area E4 is an area of the first area E1 other than the third area E3.
  • the holes 210 are located in the fourth area E4.
  • the holes 210 may be located, for example, at the corners of the fourth area E4 of the package 1.
  • located at the corner means that the corner is removed by the position of the hole 210.
  • excluded here is not limited to when the package 1 has a corner originally and this corner is removed, and the package 1 originally has a corner. It also includes the case of not having.
  • the distance between the hole 210 and the positive electrode terminal 2 can be increased. Therefore, the positive electrode terminal 2 can be made hard to short-circuit to the negative electrode 7 through the hole 210.
  • the second area E2 of the electrochemical cell X3 has a fifth area E5 and a sixth area E6.
  • the fifth region E5 is a region in which the negative electrode terminal 3 is exposed among regions divided by a straight line extending the side facing the second side L2 of the negative electrode current collector 6.
  • the sixth area E6 is an area other than the fifth area in the second area E2.
  • the holes 210 are located in the sixth area E6.
  • the holes 210 may be located, for example, at the corners of the sixth area E6 of the package 1.
  • “located at the corner” means that the corner is removed by the position of the hole 210.
  • excluded here” is not limited to when the package 1 has a corner originally and this corner is removed, and the package 1 originally has a corner. It also includes the case of not having. Thus, the distance between the hole 210 and the negative electrode terminal 3 can be increased. Therefore, the negative electrode terminal 3 can not easily short to the positive electrode 5 through the hole 210.
  • the positive electrode current collector 4 has a rectangular shape when viewed from the direction perpendicular to the first surface P1.
  • the positive electrode current collector 4 has a first angle S1 and a second angle S2 diagonally located with respect to the first angle S1.
  • the positive electrode terminal 302 is located near the first angle S1.
  • the other end of the positive electrode terminal 302 is exposed to the outside of the package 1.
  • the hole 310 is located near the second angle S2.
  • the package 1 is divided into four regions by an imaginary line passing through the midpoint of one side of the positive electrode current collector 4 and an imaginary line passing through the midpoint of the other side intersecting one side.
  • the above-mentioned “near the first angle S1” means being located in a region including the first angle S1.
  • “in the vicinity of the second angle S2” means being located in a region including the second angle S2.
  • the hole 310 and the positive electrode terminal 302 can be positioned on the diagonal of the square positive electrode current collector 4. Therefore, the distance between the hole 310 and the positive electrode terminal 302 can be increased. As a result, the positive electrode terminal 302 can hardly make a short circuit to the negative electrode 7 through the hole 310.
  • the negative electrode current collector 6 When viewed from the direction perpendicular to the second surface P2, the negative electrode current collector 6 has a rectangular shape.
  • the negative electrode current collector 6 has a fourth angle S4 diagonally located to the third angle S3 and the third angle S3.
  • the negative electrode terminal 303 is located in the vicinity of the third angle S3.
  • the other end of the negative electrode terminal 303 is exposed to the outside of the package 1.
  • the hole 310 is located near the fourth angle S4.
  • the package 1 is divided into four regions by an imaginary line passing through the midpoint of one side of the negative electrode current collector 6 and an imaginary line passing through the midpoint of the other side intersecting one side.
  • the above-mentioned “near the third angle S3” means being located in a region including the third angle S3.
  • “in the vicinity of the fourth angle S4" means being located in a region including the fourth angle S4.
  • the hole 310 and the negative electrode terminal 303 can be positioned on the diagonal of the square negative electrode current collector 6. Therefore, the distance between the hole 310 and the negative electrode terminal 303 can be increased. As a result, the negative electrode terminal 303 can not easily short circuit to the positive electrode 5 through the hole 310.
  • the electrochemical cell X5 has a rectangular positive electrode current collector 4 having a first side L1 when viewed from the direction perpendicular to the first surface P1.
  • One end of the positive electrode terminal 2 is connected to the first side L1 inside the package 1.
  • the other end of the positive electrode terminal 2 is exposed to the outside of the package 1.
  • the first area E1 of the package 1 is divided into a seventh area E7 where the positive electrode terminal 2 is exposed and an eighth area E8 other than the seventh area E7 by a straight line extending the first side L1. There is.
  • the hole 410 is located in the seventh area E7.
  • the holes 410 may be located, for example, at the corners of the seventh area E7 of the rectangular package 1. Thereby, the hole 410 can be provided in the vicinity of the positive electrode terminal 2 where gas is easily generated, and the gas can be more easily released to the outside. Therefore, the battery capacity can be more difficult to reduce. In the vicinity of the positive electrode terminal 2, for example, it may be considered that a region in which a current easily flows is a cause of gas being easily generated.
  • the electrochemical cell X5 has a rectangular negative electrode current collector 6 having the second side L2 when viewed in the direction perpendicular to the second surface P2.
  • One end of the negative electrode terminal 3 is connected to the second side L2 inside the package 1.
  • the other end of the negative electrode terminal 3 is exposed to the outside of the package 1.
  • the second area E2 of the package 1 is divided by a straight line extending the second side L2 into a ninth area E9 in which the negative electrode terminal 3 is exposed and a tenth area E10 other than the ninth area. .
  • the hole 410 is located in the ninth area E9.
  • the hole 410 may be located, for example, at a corner of the ninth area E9 of the rectangular package 1. Thereby, the hole 410 can be provided in the vicinity of the negative electrode terminal 3 where gas is easily generated, and the gas can be more easily released to the outside. Therefore, the battery capacity can be more difficult to reduce. In the vicinity of the negative electrode terminal 3, for example, it can be considered that a region in which a current easily flows is a cause of gas being easily generated.
  • the first surface P1 of the positive electrode current collector 4 and the second surface P2 of the negative electrode current collector 6 It has the 11th field E11 which has overlapped.
  • the package 1 has a twelfth area E12.
  • the twelfth region E12 is a region where the seventh region E7 overlaps the region where the eleventh region E11 extends in the direction in which the positive electrode terminal 2 is exposed.
  • the hole 510 is located in the twelfth area E12.
  • the negative electrode current collector 6 corresponds to the first surface P1 of the positive electrode current collector 4 and the negative electrode current collector. It has a thirteenth region E13 in which the second surface P2 of the body 6 is overlapped.
  • the package 1 has a fourteenth area E14.
  • the fourteenth region E14 is a region in which the ninth region E9 overlaps a region obtained by extending the thirteenth region E13 in the direction in which the negative electrode terminal 3 is connected.
  • the hole 510 is located in the fourteenth area E14.
  • the electrochemical cell stack Z1 will be described with reference to FIGS. 14 and 15. As shown in FIGS. 14 and 15, the electrochemical cell stack Z1 has a plurality of electrochemical cells X1 in the container 13.
  • the container 13 isolates the plurality of electrochemical cells X1 from the surrounding environment. Therefore, the substance which comprises the positive electrode 5 or the negative electrode 7 from the several electrochemical cell X1 can make it hard to leak to the surrounding environment. In addition, it is possible to make it difficult for water and oxygen to penetrate the plurality of electrochemical cells X1 from the surrounding environment.
  • the container 13 may have, for example, a rectangular parallelepiped shape.
  • the container 13 may be made of, for example, a metal material.
  • the metal material may be, for example, stainless steel, aluminum or copper.
  • the container 13 may comprise an alloy or combination of the above mentioned metals.
  • the dimensions of the container 13 are designed to be slightly larger than the electrochemical cell X1.
  • the extended positive electrode terminal 14 connected to the multiple positive electrode terminals 2 and the extended negative electrode terminal 15 connected to the multiple negative electrode terminals 3 Are electrically connected to the electrochemical cell X1.
  • the extension positive electrode terminal 14 and the extension negative electrode terminal 15 have one end and the other end.
  • One end of each of the extended positive electrode terminal 14 and the extended negative electrode terminal 15 is electrically connected to the plurality of positive electrode terminals 2 or the plurality of negative electrode terminals 3 inside the container 13. The other ends of the extension positive electrode terminal 14 and the extension negative electrode terminal 15 are exposed to the outside of the container 13.
  • Electrochemical cell Z1 Electrochemical cell stack 1 Package 2 Positive electrode terminal 3 Negative electrode terminal 4 Positive electrode current collector 5 Positive electrode 6 Negative electrode current collector 7 Negative electrode 8 Separator 10, 110, 210, 310, 410, 510 Hole 100 Power generation element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

電気化学セルX1は、半固体の正極5と、半固体の負極7と、正極5と負極7との間に位置しているセパレータ8と、正極5と電気的に接続される正極集電体4と、負極7と電気的に接続される負極集電体6と、を備える発電要素100と、発電要素100を内含する包装体1と、を備え、包装体1が、内側と外側とに開口する孔10を有している。

Description

電気化学セルおよび電気化学セルスタック
 本発明は、電気化学セルおよび電気化学セルスタックに関する。
 半固体の電極を使用する電気化学セルとして、例えば、米国特許出願公開第2016/205663号明細書(以下、特許文献1という)に記載の電気化学セルが提案されている。特許文献1に記載の電気化学セルは、正極集電体と、正極と、負極集電体と、負極と、正極と負極との間に位置するセパレータと、を備える発電要素と、発電要素を内部に含むパウチと、を備えている。
 本開示の電気化学セルは、半固体の正極と、半固体の負極と、正極と負極との間に位置しているセパレータと、正極と電気的に接続される正極集電体と、負極と電気的に接続される負極集電体と、を備える発電要素と、発電要素を内含する包装体と、を備え、包装体が、内側と外側とに開口する孔を有することを特徴としている。
 本開示の電気化学セルスタックは、電気化学セルを複数有する。
電気化学セルの一例を正極側から見た上面図を示す。 電気化学セルの一例の構成要素の積層状態の概略図を示す。 図1のIII-III線の断面図を示す 電気化学セルの他の例の端子を省略した正極側から見た上面図を示す。 電気化学セルの他の例の端子を省略した負極側から見た上面図を示す。 電気化学セルの他の例を正極側から見た上面図を示す。 電気化学セルの他の例を負極側から見た上面図を示す。 電気化学セルの他の例を正極側から見た上面図を示す。 電気化学セルの他の例を負極側から見た上面図を示す。 電気化学セルの他の例を正極側から見た上面図を示す。 電気化学セルの他の例を負極側から見た上面図を示す。 電気化学セル他の例を正極側から見た上面図を示す。 電気化学セル他の例を負極側から見た上面図を示す。 電気化学セルスタックの一例を正極側から見た上面図を示す。 図14のXV-XV線の断面図を示す。
 図1~3に示すように、電気化学セルX1は、正極端子2と、負極端子3と、正極集電体4と、半固体の正極5と、負極集電体6と、半固体の負極7と、セパレータ8と、を備える発電要素100と、発電要素100を内包する包装体1とを備えている。
 ここでいう「半固体」とは、例えば、粒子懸濁液、コロイド懸濁液、乳濁液、ゲル、又はミセルのような液相と固相との混合物である物質を指す。
 包装体1は、正極集電体1と負極集電体6とを内包する部材である。包装体1は、正極端子2と、負極端子3との一部と、正極集電体4と、正極5と、負極集電体6と、負極7と、セパレータ8と、を内含している。包装体1は、包装体1の内側と外側とに開口する孔10を有している。
 包装体1は、例えば、三層構造を有している。三層構造は、例えば、外部層と、内部層と、外部層と内部層とに挟まれた中間層と、を有している。内部層は、正極集電体4と負極集電体6とに接している。これにより、包装体1は、強度を向上させることができる。
 包装体1の外部層は、例えば、絶縁材料を有していてもよい。包装体1の外部層は、例えば、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、ナイロン、高純度ポリエチレン(HDPE)、オリエンテッドポリプロピレン(o‐PP)、塩化ポリビニル(PVC)、ポリイミド(PI)またはポリスルフォン(PSU)の重合体フィルムを有していてもよい。また、包装体1の外部層は、例えば、上記の材料の組み合わせを有していてもよい。また、包装体1の外部層は、難燃性PETなどの燃焼阻害剤がコーティングされていてもよい。
 また、包装体1の中間層は、例えば、金属材料を有していてもよい。包装体1の中間層は、例えば、アルミニウム(Al)、銅(Cu)またはステンレススチール(SUS)の金属層(箔、基板またはフィルム等)を有していてもよい。包装体1の中間層は、上記の金属の合金または上記の金属の組み合わせの金属層を有していてもよい。
 また、包装体1の内部層は、例えば、絶縁材料を有していてもよい。包装体1の内部層は、例えば、キャストポリプロピレン(c-PP)、ポリエチレン(PE)、エチレンビニルアセテート(EVA)、PET、ポリビニルアセテート(PVA)、ポリアミド(PA)、粘着性アクリル、紫外線(UV)硬化樹脂、電子線(EB)硬化樹脂または赤外線(IR)硬化樹脂の重合体フィルムを有していてもよい。包装体1の内部層は、上記の重合体フィルムの組み合わせを有していてもよい。
 さらに、上記に加えて、包装体1の内部層は、例えば、難燃性材料を有していてもよい。包装体1の内部層は、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエチレンナフタレン(PEN)、ポリエーテルスルフォン(PES)、PI、ポリエチレンスルフィド(PPS)またはポリエチレンオキシド(PPO)を有していてもよい。包装体1の内部層は、上記の難燃性フィルムの組み合わせを有していてもよい。
 包装体1は、例えば、二層構造を有していてもよい。二層構造は、例えば、外部層と内部層とを有している。外部層は、例えば、PETやPBT等の重合体フィルムを有していてもよい。また内部層は、例えば、PPやPE等の重合体フィルムを有していてもよい。
 包装体1は、例えば、単層構造を有していてもよい。単層構造は、例えば、ポリプロピレンもしくはポリオレフィンを有していてもよい。
 包装体1の単層構造は、発火する危険性を低減するために、燃焼阻害物質で構成されていてもよい。
 正極集電体4は、正極5との間で電子の受け渡しをする。正極集電体4は、第1面P1を有している。正極集電体4の第1面P1が正極5に電気的に接続されている。正極集電体4の第1面P1とは反対の面が、包装体1に接続されている。正極集電体4は、例えば、シートまたはメッシュ形状であってもよい。正極集電体4は、例えば、金属材料を有している。正極集電体4は、例えば、ステンレス鋼、ニッケル、ニッケル-クロム合金、アルミニウム、チタン、銅、鉛、鉛合金、耐熱金属または貴金属を有していてもよい。また、正極集電体4の金属材料は、導電性材料でコーティングされていてもよい。導電性材料導電性材料としては、例えば、金属、金属酸化物または炭素が用いられてもよい。導電性材料の金属は、例えば、Pt、AuまたはNiが用いられてもよい。導電性材料の金属酸化物は、例えば、酸化バナジウムなどが用いられてもよい。正極集電体4の厚みは、例えば、1~40μmであってもよい。
 負極集電体6は、負極7との間で電子の受け渡しをする。負極集電体6は、第2面P2を有している。負極集電体6の第2面P2が、負極7に電気的に接続されている。負極集電体6の第2面P2とは反対の面が、包装体1に接続されている。負極集電体6は、例えば、シートまたはメッシュ形状であってもよい。負極集電体6は、例えば、金属を有している。負極集電体6は、例えば、ステンレス鋼、ニッケル、ニッケル-クロム合金、チタン、酸化鉛または貴金属を有していてもよい。負極集電体6の厚みは、例えば、1~20μmであってもよい。
 半固体の正極5は、放電動作中において正極集電体4から電子を受け取る。正極5は、充電動作中において、正極集電体4へ電子を放出する。正極5は、正極集電体4の第1面P1に電気的に接続されている。
 半固体の負極7は、放電動作中において、負極集電体6へ電子を放出する。負極7は、充電動作中において、負極集電体6から電子を受け取る。負極7は、負極集電体6の第2面P2に電気的に接続されている。
 正極5と負極7とは、電気化学的に活性な半固体である。正極5と負極7とは、例えば、活性物質および電解物を有していてもよい。電解物としては、例えば、溶剤または溶剤混合液に塩を加えたものが用いられてもよい。正極5と負極7とは、添加剤を含んでいてもよい。正極5と負極7とは、例えば、「Semi-Solid Electrodes Having High Rate Capability」と題された米国仮特許出願第61/787,382及び「Asymmetric Battery Having a Semi-Solid Cathode and High Energy Density Anode」と題された米国仮特許出願第61/787,372において記載されている活性物質、組成物、および半固形懸濁液を含んでいてもよい。
 正極5と負極7とのそれぞれの厚さは、例えば、250~2000μmであってもよい。
 セパレータ8は、正極5と負極7との間に位置しており、発電要素100を正極5側と負極7側とを分離する。セパレータ8は、発電要素100内において短絡する可能性を低減している。セパレータ8は、絶縁体を有している。セパレータ8は、例えば、延性および弾性を有するポリマーを有していてもよい。セパレータ8は、例えば、ポリオレフィン、塩化ポリビニル、ナイロン、フルオロカーボンまたはポリスチレンを有していてもよい。
 孔10は、充放電の副反応により生じた気体を、包装体1の内側から外側に逃がす。正極集電体4の第1面P1に垂直な方向から見たときに、孔10は、例えば、長辺と短辺とを有する長方形状であってもよい。このとき、孔10は、例えば、長辺が包装体1の端部に沿っていてもよい。孔10は、包装体1の一部を切り欠くことで設けてもよい。孔10は、包装体1の一部に切り込みを入れることで設けてもよい。孔10の寸法は、例えば、横0.1~10mm、縦10~30mmであってもよい。
 図1~3に示すように、本開示の一例の電気化学セルX1は、包装体1が、包装体1の内側と外側とに開口する孔10を有している。
 そのため、包装体1の内側で発生した気体を包装体1の外側に出すことができる。その結果、正極集電体4と正極5との間、負極集電体6と負極7との間、正極5とセパレータ8との間または負極7とセパレータ8との間に気体が留まりにくくなる。そのため、充放電の主反応の効率が低下しにくくなる。その結果、電池容量を低下しにくくすることができる。
 また、図3に示すように、包装体1は、正極集電体4を覆う第1包装部11と、負極集電体6を覆う第2包装部12と、を有しており、図2に示すように、孔10が、第1包装部11および第2包装部12のそれぞれに位置していてもよい。これにより、包装体1の内側で発生した気体のうち、正極5において発生した気体および負極7において発生した気体の両方をそれぞれの孔10から逃がすことができる。その結果、正極集電体4と正極5との間、負極集電体6と負極7との間、正極5とセパレータ8との間または負極7とセパレータ8との間に気体が留まりにくくなる。そのため、充放電の主反応の効率が低下しにくくなる。その結果、電池容量を低下しにくくすることができる。
 孔10の位置としては、以下の例が挙げられる。具体的には、正極集電体4の第1面P1に垂直な方向から見て、例えば、第1包装部11の外周辺の1つに孔10の長辺が沿っていてもよい。負極集電体6の第2面P2に垂直な方向から見て、例えば、第2包装部12の外周辺の1つに孔10の長辺が沿っていてもよい。
 図4に示すように、電気化学セルX2の正極集電体4は、正極5と対向する第1面P1を有している。第1面P1に垂直な方向から見たときに、包装体1は、正極集電体4と重ならない第1領域E1を有している。具体的には、第1面P1に垂直な方向から見たときに、正極集電体4が四角形状であるとともに、包装体1が正極集電体4よりも大きな長方形状であってもよい。
 ここで四角形状とは、四つの角が丸みを帯びたものを含んでいてもよい。また、長方形状とは、四つの角が丸みを帯びたものを含んでいてもよい。
 孔110が、第1領域E1に位置している。これにより、正極5において発生した気体をより逃がしやすくできる。具体的には、孔110が正極5と重なる領域に位置している場合には、正極5において発生した気体はまず第1領域E1に移動し、第1領域E1から再び正極5に重なる領域に移動し孔110から外部に放出されることになる。これに対して、第1領域E1に孔110が位置している場合には、正極5において発生した気体は第1領域E1に移動しそのまま孔110から外部に放出されることになる。つまり、孔110を第1領域E1に位置させることによって、正極5において発生した気体をスムーズに孔110から逃がすことができる。
 孔110は、例えば、四角形状の正極集電体4を通る二等分線上にあってもよい。ここで「正極集電体4を通る二等分線」とは、正極集電体4の向かい合う1組の辺の中点を通る直線のことを意味する。
 図5に示すように、電気化学セルX2の負極集電体6は、負極7と対向する第2面P2を有している。第2面P2に垂直な方向から見たときに、包装体1は、負極集電体6と重ならない第2領域E2を有している。具体的には、第2面P2に垂直な方向から見たときに、負極集電体6が四角形状であるとともに、包装体1が負極集電体6よりも大きな長方形状であってもよい。
 孔110が、第2領域E2に位置している。これにより、負極6において発生した気体をより逃がしやすくできる。具体的には、孔110が負極6と重なる領域に位置している場合には、負極6において発生した気体はまず第2領域E2に移動し、第2領域E2から再び負極6に重なる領域に移動し孔110から外部に放出されることになる。これに対して、第2領域E2に孔110が位置している場合には、負極6において発生した気体は第2領域E2に移動しそのまま孔110から外部に放出されることになる。つまり、孔110を第2領域E2に位置させることによって、負極6において発生した気体をスムーズに孔110から逃がすことができる。
 孔110は、例えば、負極集電体6を通る二等分線上にあってもよい。ここで「負極集電体6を通る二等分線」とは、負極集電体6の向かい合う1組の辺の中点を通る直線のことを意味する。
 図6、7に示すように、電気化学セルX3は、正極端子2と、負極端子3と、をさらに有している。
 図6に示すように、第1面P1に垂直な方向から見たときに、正極集電体4は、例えば、第1辺L1を有する四角形状であってもよい。包装体1は、正極集電体4よりも大きな長方形状であってもよい。
 正極端子2は、一端と他端とを有している。正極端子2の一端は、包装体1の内側で正極集電体5の第1辺L1に接続されている。正極端子2は、電気化学セルX3と外部装置とを電気的に接続している。正極端子2は、例えば、正極集電体4と同様の材質であってもよい。また、正極端子2は、例えば、正極集電体4と異なる材質であってもよい。正極端子2が正極集電体4と異なる材質である場合には、正極端子2は、金属材料を有していてもよい。金属材料としては、例えば、銅、ニッケルまたは金等を用いることができる。
 また、図8に示すように、正極集電体4と正極端子302とが1つの部材であってもよい。言い換えると、1つの部材の中に正極集電体4と正極端子302とが含まれていてもよい。また、図9に示すように、負極集電体6と負極端子303とが1つの部材であってもよい。言い換えると、1つの部材の中に負極集電体6と正極端子303とが含まれていてもよい。正極端子2の形状は、例えば、長方形であってもよい。その際、正極端子2の1つの短辺が、正極集電体4の第1辺L1と重なっていてもよい。
 図7に示すように、第2面P2に垂直な方向から見たときに、負極集電体6は、例えば、第2辺L2を有する四角形状であってもよい。包装体1は、負極集電体6よりも大きな長方形状であってもよい。
 負極端子3は、一端と他端とを有している。負極端子3の一端は、包装体1の内側で負極集電体6の第2辺L2に接続されている。負極端子3は、電気化学セルX3と外部装置とを電気的に接続している。負極端子3は、例えば、負極集電体6と同様の材質であってもよい。また、負極端子3は、例えば、負極集電体6と異なる材質であってもよい。負極端子3が負極集電体6と異なる材質である場合には、負極端子3は、金属材料を有していてもよい。金属材料としては、例えば、アルミニウム、ニッケルまたは金等を用いることができる。負極端子3の形状は、例えば、長方形であってもよい。その際、負極端子3の1つの短辺が、負極集電体6の第2辺L2に重なっていてもよい。
 図6に示すように、電気化学セルX3の第1領域E1は、第3領域E3と、第4領域E4とを有している。第3領域E3は、正極集電体4の第1辺L1に対して向かい合う辺を延長した直線によって分けられた領域のうち、正極端子2が露出している領域である。第4領域E4は、第1領域E1のうち第3領域E3以外の領域である。
 孔210は、第4領域E4に位置している。孔210は、例えば、包装体1の第4領域E4の角部に位置していてもよい。ここでいう「角部に位置する」とは、孔210が位置することによって角部が除かれていることを意味している。なお、ここでいう「角部が除かれている」とは、包装体1が元々角部を有しているとともにこの角部が取り除かれた場合に限られず、包装体1が元々角部を有していない場合も含んでいる。これにより、孔210と正極端子2との間隔を広げることができる。そのため、正極端子2が穴210を通じて負極7に短絡しにくくすることができる。
 また、図7に示すように、電気化学セルX3の第2領域E2は、第5領域E5と第6領域E6とを有している。第5領域E5は、負極集電体6の第2辺L2に対して向かい合う辺を延長した直線によって分けられた領域のうち、負極端子3が露出している領域である。第6領域E6は、第2領域E2のうち第5領域以外の領域である。
 孔210は、第6領域E6に位置している。孔210は、例えば、包装体1の第6領域E6の角部に位置していてもよい。なお、ここでいう「角部に位置する」とは、孔210が位置することによって角部が除かれていることを意味している。なお、ここでいう「角部が除かれている」とは、包装体1が元々角部を有しているとともにこの角部が取り除かれた場合に限られず、包装体1が元々角部を有していない場合も含んでいる。これにより、孔210と負極端子3との間隔を広げることができる。そのため、負極端子3が孔210を通じて正極5に短絡しにくくすることができる。
 図8または図9に示すように、第1面P1に垂直な方向から見たときに、正極集電体4は、四角形状である。正極集電体4は、第1角S1および第1角S1に対して対角線上に位置する第2角S2を有している。正極端子302は、第1角S1の近傍に位置している。正極端子302は、他端が包装体1の外側に露出している。孔310が、第2角S2の近傍に位置している。
 ここで、図8に示すように、正極集電体4のある一辺の中点を通る仮想線と一辺と交わる他の辺の中点を通る仮想線とによって包装体1が4つの領域に分割して考えたときに、上記の「第1角S1の近傍」とは、第1角S1を含む領域に位置していることを意味している。また、「第2角S2の近傍」とは、第2角S2を含む領域に位置していることを意味している。
 これにより、孔310と正極端子302とを四角形状の正極集電体4の対角線上に位置させることができる。そのため、孔310と正極端子302との間隔を広げることができる。その結果、正極端子302が、孔310を通じて負極7に短絡しにくくすることができる。
 第2面P2に垂直な方向から見たときに、負極集電体6は、四角形状である。負極集電体6は、第3角S3および第3角S3に対して対角線上に位置する第4角S4を有している。負極端子303は、第3角S3の近傍に位置している。負極端子303は、他端が包装体1の外部に露出している。孔310が、第4角S4の近傍に位置している。
 ここで、図9に示すように、負極集電体6のある一辺の中点を通る仮想線と一辺と交わる他の辺の中点を通る仮想線とによって包装体1が4つの領域に分割して考えたときに、上記の「第3角S3の近傍」とは、第3角S3を含む領域に位置していることを意味している。また、「第4角S4の近傍」とは、第4角S4を含む領域に位置していることを意味している。
 これにより、孔310と負極端子303とを四角形状の負極集電体6の対角線上に位置させることができる。そのため、孔310と負極端子303との間隔を広げることができる。その結果、負極端子303が、孔310を通じて正極5に短絡しにくくすることができる。
 図10に示すように、電気化学セルX5は、第1面P1に垂直な方向から見たときに、第1辺L1を有する四角形状の正極集電体4を有している。正極端子2は、包装体1の内側で一端が第1辺L1に接続されている。正極端子2は、他端が包装体1の外側に露出している。包装体1の第1領域E1は、第1辺L1を延長した直線によって、正極端子2が露出している第7領域E7と、第7領域E7以外の第8領域E8と、に分けられている。
 孔410は、第7領域E7に位置している。孔410は、例えば、四角形状の包装体1の第7領域E7の角部に位置していてもよい。これにより、気体が発生しやすい正極端子2付近に孔410を設けることができ、気体をより外部に逃がしやすくすることができる。そのため、電池容量をより低下しにくくできる。正極端子2付近において、気体が発生しやすい原因としては、例えば、電流が流れやすい領域であることが考えられる。
 また、図11に示すように、電気化学セルX5は、第2面P2に垂直な方向から見たときに、第2辺L2を有する四角形状の負極集電体6を有している。負極端子3は、包装体1の内側で一端が第2辺L2に接続されている。負極端子3は、他端が包装体1の外側に露出している。包装体1の第2領域E2は、第2辺L2を延長した直線によって、負極端子3が露出している第9領域E9と、第9領域以外の第10領域E10と、に分けられている。
 孔410は、第9領域E9にが位置している。孔410は、例えば、四角形状の包装体1の第9領域E9の角部に位置していてもよい。これにより、気体が発生しやすい負極端子3付近に孔410を設けることができ、気体をより外部に逃がしやすくすることができる。そのため、電池容量をより低下しにくくすることができる。負極端子3付近において、気体が発生しやすい原因としては、例えば、電流が流れやすい領域であることが考えられる。
 図12に示すように、電池化学セルX6は、第1面P1に垂直な方向から見たときに、正極集電体4の第1面P1と負極集電体6の第2面P2とが重なっている第11領域E11を有している。包装体1は、第12領域E12を有している。第12領域E12は、第11領域E11を正極端子2が露出している方向に延長した領域と第7領域E7とが重なる領域である。孔510は、第12領域E12に位置している。
 また、図13に示すように、電気化学セルX6は、第2面P2に垂直な方向から見たときに、負極集電体6は、正極集電体4の第1面P1と負極集電体6の第2面P2とが重なっている第13領域E13を有している。包装体1は、第14領域E14を有している。第14領域E14は、第13領域E13を負極端子3が接続されている方向に延長した領域と、第9領域E9とが重なる領域である。孔510は、第14領域E14に位置している。
 これにより、気体の発生しやすい正極集電体4と負極集電体6とが重なっている領域付近の気体を逃がしやすくすることができる。そのため、電池の容量をより低下しにくくすることができる。
 また、図14および図15を用いて、電気化学セルスタックZ1について説明する。図14および図15に示すように、電気化学セルスタックZ1は、容器13内に複数の電気化学セルX1を有している。
 容器13は、複数の電気化学セルX1を周囲の環境から隔離している。そのため、複数の電気化学セルX1から正極5または負極7を構成する物質が周囲の環境に漏れ出しにくくすることができる。また、複数の電気化学セルX1に周囲の環境から水や酸素が浸透しにくくすることができる。容器13は、例えば、直方体形状であってもよい。また、容器13は、例えば、金属材料で構成されていてもよい。金属材料としては、例えば、ステンレススチール、アルミニウム、または銅であってもよい。容器13は、上記の金属の合金または組み合わせを有していてもよい。容器13の寸法は、電気化学セルX1よりわずかに大きく設計されている。
 また、図14および図15に示すように、複数の正極端子2に接続する延長正極端子14と、複数の負極端子3に接続する延長負極端子15とは、外部装置と容器13の内部の複数の電気化学セルX1とを電気的に接続している。また、延長正極端子14と延長負極端子15とは、一端と他端とを有している。延長正極端子14と延長負極端子15とは、一端が容器13の内側で複数の正極端子2または複数の負極端子3にそれぞれ電気的に接続されている。また、延長正極端子14と延長負極端子15とは、他端が容器13の外側に露出している。
 X1~X6 電気化学セル
 Z1 電気化学セルスタック
 1 包装体
 2 正極端子
 3 負極端子
 4 正極集電体
 5 正極
 6 負極集電体
 7 負極
 8 セパレータ
 10、110、210、310、410、510 孔
 100 発電要素

Claims (13)

  1.  半固体の正極と、
    半固体の負極と、
    前記正極と前記負極との間に位置しているセパレータと、
    前記正極に電気的に接続される正極集電体と、
    前記負極に電気的に接続される負極集電体と、を有する発電要素と、
    該発電要素を包む包装体と、を備え、
    前記包装体が、前記包装体の内側と前記包装体の外側とに開口する孔を有する電気化学セル。
  2.  前記包装体は、前記正極集電体を覆う第1包装部と、前記負極集電体を覆う第2包装部と、を有しており、
    前記包装体は、複数の前記孔を有しており、
    前記複数の孔のうち少なくとも1つが、前記第1包装部及び前記第2包装部にそれぞれ位置している請求項1に記載の電気化学セル。
  3.  前記正極集電体は、前記正極に対向する第1面を有し、
    前記包装体は、前記第1面に垂直な方向から見たときに、前記正極集電体に重ならない第1領域を有しており、
    前記孔が、前記第1領域に位置している請求項1または2に記載の電気化学セル。
  4.  前記負極集電体は、前記負極に対向する第2面を有し、
    前記包装体は、前記第2面に垂直な方向から見たときに、前記負極集電体に重ならない第2領域を有しており、
    前記孔が、前記第2領域に位置している請求項1から3のいずれか一項に記載の電気化学セル。
  5.  前記正極集電体に電気的に接続される正極端子をさらに備え、
    前記第1面に垂直な方向から見たときに、
    前記正極集電体は、第1辺を有する四角形状であり、
    前記正極端子は、一端と他端とを有しており、
    前記正極端子は、前記包装体の内側で前記一端が前記第1辺に接続され、前記他端が前記包装体の外側に露出しており、
    前記第1領域は、前記正極集電体のうち、前記第1辺に対して向かい合う辺を延長した直線によって、前記正極端子が露出している第3領域と、前記第3領域以外の第4領域と、に分けられており、
    前記孔が、前記第4領域に位置している請求項3に記載の電気化学セル。
  6.  前記負極集電体に電気的に接続される負極端子をさらに備え、
    前記第2面に垂直な方向から見たときに、
    前記負極集電体は、第2辺を有する四角形状であり、
    前記負極端子は、一端と他端とを有しており、
    前記負極端子は、前記包装体の内側で前記一端が前記第2辺に接続され、前記他端が前記包装体の外側に露出しており、
    前記第2領域は、前記負極集電体のうち、前記第2辺に対して向かい合う辺を延長した直線によって、前記負極端子が露出している第5領域と、前記第5領域以外の第6領域と、に分けられており、
    前記孔が、前記第6領域に位置している請求項4に記載の電気化学セル。
  7.  前記第1面に垂直な方向から見たときに、
    前記正極集電体に電気的に接続され、一端と他端とを有する正極端子をさらに備え、
    前記正極集電体は、第1角および前記第1角に対して対角線上に位置する第2角を有する四角形状であり、
    前記正極端子は、前記第1角の近傍において、前記包装体の内側で前記一端が前記正極集電体に接続され、前記他端が前記包装体の外側に露出しており、
    前記孔が、前記第2角の近傍に位置している請求項3に記載の電気化学セル。
  8.  前記第2面に垂直な方向から見たときに、
    前記負極集電体に電気的に接続され、一端と他端とを有する負極端子をさらに備え、
    前記負極集電体は、第3角および前記第3角に対して対角線上に位置する第4角を有する四角形状であり、
    前記負極端子は、前記第3角の近傍において、前記包装体の内側で前記一端が前記負極集電体に接続され、前記他端が前記包装体の外側に露出しており、
    前記孔が、前記第4角の近傍に位置している請求項4に記載の電気化学セル。
  9.  前記第1面に垂直な方向から見たときに、
    前記正極集電体に電気的に接続され、一端と他端とを有する正極端子をさらに備え、
    前記正極集電体が、第1辺を有する四角形状であり、
    前記正極端子は、前記包装体の内側で前記一端が前記第1辺に接続され、前記他端が前記包装体の外側に露出しており、
    前記第1領域は、前記第1辺を延長した直線によって、前記正極端子が露出している第7領域と、前記第7領域以外の第8領域と、に分けられており、
    前記孔が、前記第7領域に位置している請求項3に記載の電気化学セル。
  10.  前記第2面に垂直な方向から見たときに、
    前記負極集電体に電気的に接続され、一端と他端とを有する負極端子をさらに備え、
    前記負極集電体が、第2辺を有する四角形状であり、
    前記負極端子は、前記包装体の内側で前記一端が前記第2辺に接続され、前記他端が前記包装体の外側に露出しており、
    前記第2領域は、前記第2辺を延長した直線によって、前記負極端子が露出している第9領域と、前記第9領域以外の第10領域と、に分けられており、
    前記孔が、前記第9領域に位置している請求項4に記載の電気化学セル。
  11.  前記第1面に垂直な方向から見たときに、
    前記負極集電体が、第2面を有する四角形状であり、
    前記正極集電体が、前記第1面と前記第2面とが重なっている第11領域を有し、
    前記包装体が、前記第11領域を前記正極端子が露出している方向に延長した領域と前記第7領域とが重なる第12領域を有しており、
    前記孔が、前記第12領域に位置している請求項9に記載の電気化学セル。
  12.  前記第2面に垂直な方向から見たときに、
    前記正極集電体が、第1面を有する四角形状であり、
    前記負極集電体が、前記第1面と前記第2面とが重なっている第13領域を有し、
    前記包装体が、前記第13領域を前記負極端子が露出している方向に延長した領域と前記第9領域とが重なる第14領域を有しており、
    前記孔が、前記第14領域に位置している請求項10に記載の電気化学セル。
  13.  請求項1から12のいずれか一項に記載の電気化学セルを複数有する、電気化学セルスタック。
PCT/JP2018/039857 2017-10-30 2018-10-26 電気化学セルおよび電気化学セルスタック WO2019087956A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880068731.6A CN111263990A (zh) 2017-10-30 2018-10-26 电化学电池和电化学电池堆
EP18874920.4A EP3706195A4 (en) 2017-10-30 2018-10-26 BATTERY CELL AND BATTERY CELL STACK
JP2019550317A JP7005649B2 (ja) 2017-10-30 2018-10-26 電気化学セルおよび電気化学セルスタック
US16/760,017 US20200350537A1 (en) 2017-10-30 2018-10-26 Electrochemical cell and electrochemical cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-209197 2017-10-30
JP2017209197 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087956A1 true WO2019087956A1 (ja) 2019-05-09

Family

ID=66331770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039857 WO2019087956A1 (ja) 2017-10-30 2018-10-26 電気化学セルおよび電気化学セルスタック

Country Status (5)

Country Link
US (1) US20200350537A1 (ja)
EP (1) EP3706195A4 (ja)
JP (1) JP7005649B2 (ja)
CN (1) CN111263990A (ja)
WO (1) WO2019087956A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224386A1 (ja) 2021-04-21 2022-10-27 京セラ株式会社 電気化学セルの製造方法
WO2022224385A1 (ja) 2021-04-21 2022-10-27 京セラ株式会社 電気化学セルの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923511B2 (en) * 2019-07-12 2024-03-05 Electrochem Solutions, Inc. Lithium oxyhalide electrochemical cell design for high-rate discharge
DE102021213444B3 (de) * 2021-11-29 2023-04-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Gehäuse zur Aufbewahrung einer Aluminiumchlorid aufweisenden ionischen Flüssigkeit sowie Batteriezelle mit einem solchen Gehäuse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238860A (ja) * 2009-03-31 2010-10-21 Jm Energy Corp ラミネート外装蓄電デバイス
JP2010238861A (ja) * 2009-03-31 2010-10-21 Jm Energy Corp ラミネート外装蓄電デバイス
US20160133916A1 (en) * 2014-11-05 2016-05-12 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US20160205663A1 (en) 2015-01-08 2016-07-14 Qualcomm Incorporated Evolved Multimedia Broadcast Multicast Service (eMBMS) Streaming Loss Control In A Radio Sharing Concurrent Radio Access Technology (RAT) Capable Mobile Device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862211B2 (ja) * 2000-08-08 2012-01-25 株式会社Gsユアサ 密閉型二次電池
US6503658B1 (en) * 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
JP4860181B2 (ja) * 2005-05-20 2012-01-25 Necエナジーデバイス株式会社 フィルム外装型電池
JPWO2007043392A1 (ja) * 2005-10-03 2009-04-16 Tdkラムダ株式会社 電池パック
US8956743B2 (en) * 2006-08-28 2015-02-17 Lg Chem, Ltd. Secondary battery including one-way exhaust member
US20110123844A1 (en) * 2009-11-20 2011-05-26 Apple Inc. Pressure-relief mechanism to improve safety in lithium-polymer battery cells
JP2011198742A (ja) * 2010-02-26 2011-10-06 Hitachi Maxell Energy Ltd ラミネート形電池
US20120045672A1 (en) * 2010-08-23 2012-02-23 Delphi Technologies, Inc. Vented battery pack
KR20140013132A (ko) * 2012-07-09 2014-02-05 에스케이이노베이션 주식회사 이차전지
KR101547403B1 (ko) * 2013-01-11 2015-08-25 주식회사 엘지화학 일체형 양극 리드 및 음극 리드를 포함하는 이차전지 및 그 제조방법
KR101620666B1 (ko) * 2013-05-02 2016-05-12 주식회사 엘지화학 안전 벤트를 갖는 파우치형 이차전지
KR101676406B1 (ko) * 2013-10-31 2016-11-15 주식회사 엘지화학 스택-폴딩형 전극 조립체
WO2016004079A1 (en) * 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
KR101904587B1 (ko) * 2015-09-01 2018-10-04 주식회사 엘지화학 전지셀 및 그의 제조방법
WO2018144707A1 (en) * 2017-02-01 2018-08-09 24M Technologies, Inc. Systems and methods for improving safety features in electrochemical cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238860A (ja) * 2009-03-31 2010-10-21 Jm Energy Corp ラミネート外装蓄電デバイス
JP2010238861A (ja) * 2009-03-31 2010-10-21 Jm Energy Corp ラミネート外装蓄電デバイス
US20160133916A1 (en) * 2014-11-05 2016-05-12 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US20160205663A1 (en) 2015-01-08 2016-07-14 Qualcomm Incorporated Evolved Multimedia Broadcast Multicast Service (eMBMS) Streaming Loss Control In A Radio Sharing Concurrent Radio Access Technology (RAT) Capable Mobile Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706195A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224386A1 (ja) 2021-04-21 2022-10-27 京セラ株式会社 電気化学セルの製造方法
WO2022224385A1 (ja) 2021-04-21 2022-10-27 京セラ株式会社 電気化学セルの製造方法

Also Published As

Publication number Publication date
JPWO2019087956A1 (ja) 2020-11-19
EP3706195A1 (en) 2020-09-09
CN111263990A (zh) 2020-06-09
EP3706195A4 (en) 2021-08-11
JP7005649B2 (ja) 2022-01-21
US20200350537A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019087956A1 (ja) 電気化学セルおよび電気化学セルスタック
KR101387025B1 (ko) 접촉저항이 개선된 이차전지
KR101136205B1 (ko) 이차전지용 전극조립체 및 그 전극조립체를 구비하는 이차전지
JP6247766B2 (ja) パウチ型二次電池及びその製造方法
JP2006012808A (ja) 電極組立体及びこれを用いるリチウムイオン二次電池
KR20110053835A (ko) 리튬 폴리머 이차 전지
US20190221824A1 (en) Non-aqueous electrolyte secondary battery
KR20160111855A (ko) 축전 소자
US20130011721A1 (en) Pouch and pouch type secondary battery
KR101175057B1 (ko) 리튬 폴리머 이차 전지
JP2009093812A (ja) 積層型電池
KR20160134331A (ko) 파우치형 이차전지 및 그 제조방법
JP5533548B2 (ja) 積層型電池
CN107925121B (zh) 二次电池
KR101357931B1 (ko) 이차 전지
CN109216776B (zh) 电化学器件
KR101921730B1 (ko) 이차전지
KR101787636B1 (ko) 전지 셀 및 이를 포함하는 디바이스
JP2019096466A (ja) 蓄電素子
WO2022224385A1 (ja) 電気化学セルの製造方法
WO2022224386A1 (ja) 電気化学セルの製造方法
WO2022130763A1 (ja) 蓄電装置
JP7071706B2 (ja) 蓄電素子
JP2009188115A (ja) 電気二重層キャパシタ
JP7303994B2 (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874920

Country of ref document: EP

Effective date: 20200602