WO2019085056A1 - 一种柔性光伏组件制造方法 - Google Patents

一种柔性光伏组件制造方法 Download PDF

Info

Publication number
WO2019085056A1
WO2019085056A1 PCT/CN2017/112163 CN2017112163W WO2019085056A1 WO 2019085056 A1 WO2019085056 A1 WO 2019085056A1 CN 2017112163 W CN2017112163 W CN 2017112163W WO 2019085056 A1 WO2019085056 A1 WO 2019085056A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
photovoltaic module
cell
battery
flexible photovoltaic
Prior art date
Application number
PCT/CN2017/112163
Other languages
English (en)
French (fr)
Inventor
张雨军
陶爱兵
唐洪
张欢欢
沈佳
Original Assignee
苏州携创新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州携创新能源科技有限公司 filed Critical 苏州携创新能源科技有限公司
Publication of WO2019085056A1 publication Critical patent/WO2019085056A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of photovoltaic technology, and in particular, to a method for manufacturing a flexible photovoltaic module.
  • the purpose of embodiments of the present application is to provide a flexible photovoltaic module manufacturing method for realizing large-scale automated production of high-efficiency flexible photovoltaic modules, saving a large amount of labor costs, improving the efficiency of photovoltaic module manufacturing, and improving the longitudinal and lateral directions of photovoltaic modules by design.
  • the deformation ability improves the anti-cracking ability of the battery sheet and improves the reliability of the flexible photovoltaic module.
  • a method of manufacturing a flexible photovoltaic module comprising:
  • the plurality of main gate cell lobes are obtained into a predetermined aliquot of the divided cell sheets;
  • the split battery strings are unified and split to obtain a flexible battery string unit
  • the flexible battery string unit is used as a base unit of an ordered circuit loop that constitutes a flexible photovoltaic module.
  • a method of manufacturing a flexible photovoltaic module comprising:
  • the multi-main gate cell is diced, and is drawn on the multi-main cell, a vertical scratch for the lobes perpendicular to the main gate line, and a lobes parallel to the main gate line Parallel scratches, the vertical scratches dividing the multi-main gate cell into a predetermined aliquot, the parallel scratch dividing the multi-main cell cell into a predetermined aliquot;
  • the plurality of main gate cell lobes are obtained into a predetermined aliquot of the divided cell sheets;
  • the split cell strings are unified and split to obtain a preset flexible battery string unit
  • the flexible battery string unit is used as a base unit of an ordered circuit constituting a flexible photovoltaic module.
  • composition of the flexible photovoltaic module includes:
  • the excess bus bar in the plate is cut off, so that the battery strings in the plate form an ordered circuit, and N flexible photovoltaic modules with positive and negative electrodes having a preset pattern are obtained. , N ⁇ 1.
  • the manner of cutting includes at least: stamping, laser cutting.
  • the number of main gates of the multi-main gate cell is greater than or equal to 10.
  • the cross-welded solder ribbon has a rectangular cross section, and the soldering surface of the solder ribbon covers the main grid of the split cell.
  • the method of string welding includes: performing string welding using a stringer.
  • composition of the flexible photovoltaic module further includes:
  • the flexible photovoltaic component is packaged with a non-glass or glass encapsulating material.
  • the manner of the insulation protection process includes:
  • An insulating material is disposed on each of the edges of the battery sheets.
  • the manner of placing a preset number of flexible battery string units corresponding to the preset version in a row comprises:
  • the length direction of the flexible battery string unit is arranged in a row along the width direction of the flexible photovoltaic module in the longitudinal direction of the flexible photovoltaic module.
  • a cell sheet is first divided into a piece of a battery piece in a direction of a main grid line, and a piece of the cell piece is serially welded to obtain a piece of the divided cell piece, and then the piece of the cell is divided.
  • the string is subjected to uniform splitting to obtain a flexible battery string unit. Since a multi-main gate cell is selected, and a strip having a rectangular cross section is used in the string welding, the strip is covered on the main grid line, which can effectively avoid parallel to the main when the split cell chip is split. The crack or crack in the direction of the grid line can effectively ensure the reliability of the battery.
  • each step and the whole process in the method described in the present application can be implemented automatically and in a large scale without manual intervention, which can effectively save labor costs, improve the efficiency of manufacturing flexible photovoltaic modules, and can also improve the longitudinal and lateral directions of photovoltaic modules.
  • the flexible battery string unit can be flexibly combined to obtain a flexible photovoltaic module conforming to various preset patterns, which can effectively improve the manufacturing efficiency of the flexible photovoltaic module.
  • the reliability of the flexible photovoltaic module can be effectively improved by using a solder strip having a rectangular cross section and performing edge insulation protection treatment at the edge of each cell.
  • FIG. 1 is a schematic flow chart of a method for manufacturing a flexible photovoltaic module according to an embodiment of the present application
  • Figure 3 (a) is a front view of a multi-main gate cell selected in an embodiment of the present application.
  • Figure 3 (b) is the back side of the multi-main gate cell sheet shown in Figure 3 (a);
  • FIG. 4 is a schematic view showing the position of the vertical scratch on the multi-main gate cell sheet obtained in one embodiment of the present application;
  • FIG. 5 is a schematic view showing the position of the vertical scratch on the multi-main gate cell obtained in another embodiment of the present application.
  • FIG. 6 is a schematic view of the segmented battery sheet obtained in one embodiment of the present application.
  • FIG. 7 is a schematic view showing a welded structure of the segmented battery chip string provided by an embodiment of the present application.
  • FIG. 8 is a schematic view showing the welding structure of the solder ribbon and the segmented battery sheet in one embodiment of the present application.
  • Figure 9 is a flexible cell string unit obtained by splitting in an embodiment of the present application.
  • Figure 10 is a flexible cell string unit obtained by splitting another embodiment of the present application.
  • FIG. 11 is a schematic flow chart of a method for fabricating a flexible photovoltaic module according to an embodiment of the present application
  • FIG. 12 is a layout diagram of a flexible battery string unit obtained in an embodiment of the present application.
  • FIG. 13 is a layout diagram of a flexible battery string unit obtained in another embodiment of the present application.
  • FIG. 14 is a layout diagram of a flexible battery string unit obtained in still another embodiment of the present application.
  • 16 is a schematic view showing the arrangement direction of the flexible battery string unit provided in an embodiment of the present application.
  • 17 is a schematic diagram showing a connection structure of the section obtained by connecting a typed battery chip string by using a bus bar in one embodiment of the present application;
  • FIG. 18 is a schematic diagram showing a connection structure of the section obtained by connecting a typeset battery string by using a bus bar in another embodiment of the present application.
  • FIG. 19 is a schematic structural view of a flexible photovoltaic module obtained by cutting the bus bar according to a preset pattern according to the corresponding pattern of FIG. 17;
  • FIG. 20 is a schematic structural view of a flexible photovoltaic module obtained by cutting the bus bar according to a preset pattern according to the panel of FIG. 18;
  • 21 is a schematic structural view of six flexible photovoltaic modules obtained by cutting the bus bar according to the preset layout according to the corresponding layout of FIG. 17;
  • Embodiments of the present application provide a method of manufacturing a flexible photovoltaic module.
  • FIG. 1 is a schematic flow chart of a method for manufacturing a flexible photovoltaic module according to an embodiment of the present application.
  • the present application provides method operational steps as illustrated in the following embodiments or figures, more or fewer operational steps may be included in the method or apparatus based on routine or no inventive effort.
  • the order of execution of these steps is not limited to the order of execution shown in the embodiment of the present application or the drawings.
  • the method When the method is applied in practice, it may be performed sequentially or in parallel according to the method shown in the embodiment or the drawings.
  • an embodiment of a method for manufacturing a flexible photovoltaic module provided by the present application may include:
  • S1 Select a multi-main gate cell with a preset number of main gate lines.
  • Figure 3 (a) is a front side of a multi-main gate cell selected in one embodiment of the present application, and Figure 3 (b) is a back side of the multi-main cell cell shown in Figure 3 (a).
  • the multi-main gate cell selected in this example has 12 main gates 1.
  • the vertical scratch may also divide the multi-main grid cell into non-equal.
  • FIG. 4 is a schematic view showing the position of the vertical scratch on the multi-main grid cell obtained in one embodiment of the present application, and the broken line in FIG. 4 indicates the position of the vertical scratch 2, in this example, the vertical scratch 2
  • the multi-main grid cell is divided into two equal parts.
  • 5 is a schematic view showing the position of the vertical scratch on the multi-main gate cell obtained in another embodiment of the present application, and the broken line in FIG. 5 indicates the position of the vertical scratch 2, in this example, the cell is disposed on the cell.
  • the vertical scratch may divide the multi-main gate cell into 4 equal parts, 5 equal parts, 6 equal parts, and the like according to actual application conditions.
  • FIG. 6 is a schematic diagram of the segmented cell sheet obtained in an embodiment of the present application. As shown in FIG. 6, the segmented cell sheet 3 is obtained by dividing the multi-main cell cell sheet into three equal parts.
  • FIG. 7 is a schematic view showing the welding structure of the segmented battery chip string provided by an embodiment of the present application. As shown in FIG. 7, the front surface of the divided battery sheet 3 is welded with a front surface solder ribbon 41, and the back surface of the divided battery sheet 3 is soldered to the back surface solder ribbon 42.
  • Figure 8 is a schematic view showing the welding structure of the solder ribbon 41/42 and the segmented battery sheet 3 in this embodiment.
  • the cross-section of the soldered strip 41/42 is In a rectangular shape, the soldering surface of the solder ribbon 41/42 covers the main gate line of the split cell sheet.
  • the strip with a rectangular cross section is welded to the main grid by means of surface soldering. Compared with the existing strip with a circular cross section and the existing spot welding process, it can be welded more firmly and can be further prevented. Subsequent processes cause cracks or cracks in the cell.
  • the dotted line corresponds to the parallel scratches 5.
  • the distance between each of the parallel scratches 5 and its adjacent main gate lines is equal, and the parallel scratches 5 are The distance between the main grid lines on both sides is equal.
  • the parallel scratches 5 divide the battery chip string having 12 main gates into six equal parts.
  • the flexible battery string unit includes two divided battery sheets 3, and the front side soldering strip 41 of the divided battery sheets 3 is welded.
  • the back side solder ribbon 42 is soldered on the back side.
  • the flexible battery string unit has a positive electrode + and a negative electrode - and can be used to form a flexible photovoltaic module.
  • the string unit 10 is a flexible cell string unit obtained by splitting a slit of another embodiment of the present application, the flexible cell string unit having only one main gate line, and the main grid line is soldered with a solder strip 41/42, the battery sheet
  • the string unit has positive and negative electrodes and can be used to form a flexible photovoltaic module.
  • the flexible cell string unit is used as a basic unit of an ordered circuit loop constituting the flexible photovoltaic module.
  • the composition of the flexible photovoltaic module may include:
  • S701 According to a preset layout, a preset number of flexible battery string units corresponding to the preset patterns are arranged in a row.
  • the manner in which the preset number of flexible battery string units corresponding to the preset pattern are arranged in a row may include: using the length direction of the flexible battery string unit as the flexible The width direction of the photovoltaic modules is arranged in rows in the length direction of the flexible photovoltaic module.
  • 16 is a schematic view showing the arrangement direction of the flexible battery string unit provided in this example. As shown in FIG. 16, the length direction of the flexible battery string unit is taken as the width direction of the application-type flexible photovoltaic module.
  • the manner in which the bus bar is cut may include at least: stamping and laser cutting.
  • composition of the flexible photovoltaic module may further include:
  • the flexible photovoltaic component is packaged with a non-glass or glass encapsulating material.
  • the manner of the insulation protection process may include: providing an insulating material at an edge of each of the battery sheets.
  • the use of the insulating material prevents short circuits, thereby reducing the spacing between the cells as much as possible, and improving the efficiency of the photovoltaic module as much as possible.
  • the insulating material may be an insulating material such as an insulating varnish or an insulating tape.
  • FIG. 12 is a layout diagram of a flexible battery string unit obtained in an embodiment of the present application. As shown in FIG. 12, in this example, a battery array unit having two battery sheets is arranged in a single row. typesetting.
  • FIG. 13 is a layout diagram of a flexible battery string unit obtained in another embodiment of the present application, as shown in FIG. 13, in this example, a single row arrangement of battery string units having one battery sheet is arranged. Typography.
  • FIG. 14 is a layout diagram of a flexible battery string unit obtained in still another embodiment of the present application. As shown in FIG. 14, in this example, a battery string unit 2 having two battery sheets is arranged. Typography.
  • FIG. 15 is a layout diagram of a flexible battery string unit obtained in still another embodiment of the present application. As shown in FIG. 15, in this example, a battery string unit 2 having one battery sheet is arranged. Typography.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种柔性光伏组件的制造方法,包括:将电池片在主栅(1)方向上分成分片电池片(3),将分片电池片串焊得到分片电池片串,再将分片电池片串进行统一裂片,得到柔性电池片串单元。串焊时,焊带覆盖在主栅线上,可以有效避免裂片时产生裂纹或隐裂,有效保证电池片的可靠性。

Description

一种柔性光伏组件制造方法
技术领域
本申请涉及光伏技术领域,特别涉及一种柔性光伏组件制造方法。
背景技术
随着能源价格的上涨,开发利用新能源成为当今能源领域研究的主要课题。由于太阳能具有无污染、无地域性限制、取之不竭等优点,太阳能的利用成为当今开发利用新能源的主要方向。而光伏发电技术是利用太阳能的一种有效方式,光伏发电技术不仅可以通过并网为配单网供电,还可以应用于民用生活品、军用品等领域的电气、电子产品中,将光伏组件作为电气电子产品的供电单元,或者将光伏组件设置在背包上、衣服上、汽车上、遮阳棚上等作为便携式光伏发电***。
光伏组件主要由光伏电池片组成,而现有的光伏电池片都是具有标准尺寸的标准电池片。对于电气、电子产品、便携式光伏发电***等,往往需要根据产品的特点选用非标准尺寸的电池片组成光伏组件作为它们的供电单元,同时还需要电池片能够满足柔性需求,薄膜电池片虽然能够满足柔性需求,但是其效率较低。因此,要将电池片用于电气、电子产品、便携式光伏发电***中,就需要将晶体硅电池片切片、焊接,进而制造出适用的柔性光伏组件。
但是,现有的柔性光伏组件制造技术中,通常需要切割电池片,并人工将切割后的电池片串焊。由于晶体硅电池片较薄较脆,在应用过程中受到物理的压力形变时很容易出现裂纹或隐裂,这样就会导致裂纹或隐裂远离主栅线一侧的电池片失效,影响电池片的可靠性。另外,由于切割后的电池片尺寸不是标准尺寸,无法进行自动焊接,也就无法实现制造的自动化和规模化,只能采用人工焊接,造成较大的人工成本,降低了光伏组件制造的效率。
现有技术中至少存在如下问题:电池片应用过程中受到物理的压力形变时容易出现裂纹或隐裂,这样就会导致裂纹或隐裂远离主栅线一侧的电池片失效,影响电池片的可靠性。另外,由于切割后的电池片尺寸不是标准尺寸,无法进行自动焊接,也就无法实现制造的自动化和规模化,只能采用人工焊接,造成较大的人工成本,降低了光伏组件制造的效率。
发明内容
本申请实施例的目的是提供一种柔性光伏组件制造方法,以实现高效率柔性光伏组件的大规模自动化生产,节省大量人工成本,提高光伏组件制造的效率,通过设计提高光伏组件纵向和横向的形变能力,提高电池片的抗隐裂能力,提高柔性光伏组件的可靠性。
本申请实施例提供一种柔性光伏组件制造方法是这样实现的:
一种柔性光伏组件制造方法,所述方法包括:
选用具有预设主栅线数的多主栅电池片;
对所述多主栅电池片进行划片,在所述多主栅电池片上划出垂直于所述主栅线的用于裂片的垂直划痕,所述垂直划痕将所述多主栅电池片划分成预设等分;
利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片;
将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上;
对所述分片电池片串进行统一划片,在所述分片电池片串上划出平行于所述主栅线的用于裂片的平行划痕,所述平行划痕将所述分片电池片串划分成预设等分;
利用所述平行划痕,将所述分片电池片串统一裂片得到柔性电池片串单元;
将所述柔性电池片串单元作为组成柔性光伏组件的有序电路回路的基础单元。
一种柔性光伏组件制造方法,所述方法包括:
选用具有预设主栅线数的多主栅电池片;
对所述多主栅电池片进行划片,在所述多主栅电池片上划出,垂直于所述主栅线的用于裂片的垂直划痕、平行于所述主栅线的用于裂片的平行划痕,所述垂直划痕将所述多主栅电池片划分成预设等分,所述平行划痕将所述多主栅电池片划分成预设等分;
利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片;
将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上;
利用所述平行划痕,将所述分片电池片串统一裂片得到预设柔性电池片串单元;
将所述柔性电池片串单元作为组成柔性光伏组件的有序电路的基础单元。
优选实施例中,每条所述平行划痕与其相邻的主栅线之间的距离均相等。
优选实施例中,所述柔性光伏组件的组成方式包括:
按照预设版型,将与所述预设版型对应的预设数量的柔性电池片串单元成排排布;
利用汇流条将成排排布的所述柔性电池片串单元并联,形成版块;
按照预设版型,将所述版块中多余的汇流条切除,使所述版块中的电池片串形成有序的电路,得到N个具有符合预设版型的具有正负极的柔性光伏组件,N≥1。
优选实施例中,所述切除的方式至少包括:冲压、激光切割。
优选实施例中,所述多主栅电池片的主栅数大于等于10。
优选实施例中,所述串焊的焊带的横截面为长方形,所述焊带的焊接面覆盖在所述分片电池片的主栅线上。
优选实施例中,所述串焊的方式包括:采用串焊机进行串焊。
优选实施例中,所述柔性光伏组件的组成方式还包括:
对所述柔性光伏组件中的每个电池片边缘进行边缘绝缘保护处理;
利用非玻璃或玻璃封装材料将所述柔性光伏组件封装。
优选实施例中,所述绝缘保护处理的方式包括:
在所述每个电池片边缘设置绝缘材料。
优选实施例中,所述将与所述预设版型对应的预设数量的柔性电池片串单元成排排布的方式,包括:
将所述柔性电池片串单元的长度方向作为所述柔性光伏组件的宽度方向,成排排布在所述柔性光伏组件的长度方向上。
利用本申请实施例提供的一种柔性光伏组件制造方法,先将电池片在主栅线方向上分成分片电池片,将分片电池片串焊得到分片电池片串,再将分片电池片串进行统一裂片,得到柔性电池片串单元。由于选用了多主栅电池片,而且在串焊时采用了截面为长方形的焊带,焊带覆盖在主栅线上,可以有效避免在对分片电池片串裂片时产生平行于所述主栅线方向的裂纹或隐裂,可以有效保证电池片的可靠性。另外,本申请所述方法中的各个步骤以及整个工艺都可以自动化和规模化实施,不需要人工参与,可以有效节省人工成本,提高柔性光伏组件制造的效率,还可以提高光伏组件纵向和横向的形变能力,提高电池片的抗隐裂能力。所述柔性电池片串单元可以灵活组合,从而得到符合各种预设版型的柔性光伏组件,可以有效提高柔性光伏组件的制造效率。通过采用截面为长方形的焊带、在每个电池片边缘进行边缘绝缘保护处理等,可以有效提高柔性光伏组件的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的一种柔性光伏组件制造方法的方法流程示意图;
图2是本申请另一个实施例提供的一种柔性光伏组件制造方法的方法流程示意图;
图3(a)是本申请一个实施例中选用的多主栅电池片的正面;
图3(b)是图3(a)所示的多主栅电池片的背面;
图4是本申请一个实施例中得到的多主栅电池片上所述垂直划痕的位置示意图;
图5是本申请另一个实施例中得到的多主栅电池片上所述垂直划痕的位置示意图;
图6是本申请一个实施例中得到的所述分片电池片的示意图;
图7是本申请一个实施例提供的所述分片电池片串的焊接结构示意图;
图8是本申请一个实施例中所述焊带与所述分片电池片的焊接结构示意图;
图9是本申请一个实施例中裂片得到的柔性电池片串单元;
图10是本申请另一个实施例裂片得到的柔性电池片串单元;
图11是本申请一个实施例中所述柔性光伏组件组成方式的方法流程示意图;
图12是本申请一个实施例中得到的柔性电池片串单元的排版示意图;
图13是本申请另一个实施例中得到的柔性电池片串单元的排版示意图;
图14是本申请又一个实施例中得到的柔性电池片串单元的排版示意图;
图15是本申请再一个实施例中得到的柔性电池片串单元的排版示意图;
图16是本申请一个实施例例中提供的所述柔性电池片串单元的排布方向示意图;
图17是本申请一个实施例中利用汇流条将排版好的电池片串连接后得到的所述版块的连接结构示意图;
图18是本申请另一个实施例中利用汇流条将排版好的电池片串连接后得到的所述版块的连接结构示意图;
图19是将图17对应的所述版块按照预设版型切除汇流条后得到的柔性光伏组件的结构示意图;
图20是将图18应的所述版块按照预设版型切除汇流条后得到的柔性光伏组件的结构示意图;
图21是将图17对应的所述版块按照预设版型切除汇流条后得到的6个柔性光伏组件的结构示意图;
图22是本申请一个实施例中所述垂直划痕和所述平行划痕的位置关系示意图。
上述附图中的附图标记:1、主栅;2、垂直划痕;3、分片电池片;41、正面焊带;42、背面焊带;5、平行划痕;6、汇流条;7、隔断;+、正极;-、负极。
具体实施方式
本申请实施例提供一种柔性光伏组件制造方法。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
图1是本申请所述一种柔性光伏组件制造方法一种实施例的方法流程示意图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法或装置中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例或附图所示的执行顺序。所述的方法在实际中的应用时,可以按照实施例或者附图所示的方法进行顺序执行或者并行执行。
具体的,如图1所述,本申请提供的一种柔性光伏组件制造方法的一种实施例可以包括:
S1:选用具有预设主栅线数的多主栅电池片。
其中,所述多主栅电池片的主栅数大于等于10。图3(a)是本申请一个实施例中选用的多主栅电池片的正面,图3(b)是图3(a)所示的多主栅电池片的背面。如图3(a)和图3(a)所示,本例中选用的多主栅电池片有12条主栅1。
S2:对所述多主栅电池片进行划片,在所述多主栅电池片上划出垂直于所述主栅线的用于裂片的垂直划痕,所述垂直划痕将所述多主栅电池片划分成预设等分。
当然,在本申请其他实施例中,所述垂直划痕也可以将所述多主栅电池片划分成非等分。
图4是本申请一个实施例中得到的多主栅电池片上所述垂直划痕的位置示意图,图4中的虚线表示所述垂直划痕2的位置,本例中,所述垂直划痕2将多主栅电池片分成2等分。图5是本申请另一个实施例中得到的多主栅电池片上所述垂直划痕的位置示意图,图5中的虚线表示所述垂直划痕2的位置,本例中,所述电池片上设置有2条垂直划痕2,所述垂直划痕2将多主栅电池片分成3等分。当然,本申请其他实施例中,可以根据实际应用情况,使所述垂直划痕将多主栅电池片划分成4等分、5等分、6等分等。
S3:利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片。
在所述垂直划痕处进行裂片,就可以得到所述预设等分的分片电池片。图6是本申请一个实施例中得到的所述分片电池片的示意图,如图6所示,所述分片电池片3通过将所述多主栅电池片裂片成3等分得到。
S4:将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上。
图7是本申请一个实施例提供的所述分片电池片串的焊接结构示意图。如图7所示,所述分片电池片3正面焊接正面焊带41,所述分片电池片3的背面焊接背面焊带42。
图8是本例中所述焊带41/42与所述分片电池片3的焊接结构示意图,如图8所示,本例中,所述串焊的焊带41/42的横截面为长方形,所述焊带41/42的焊接面覆盖在所述分片电池片的主栅线上。横截面为长方形的焊带采用面焊的方式焊接在主栅线上,相对于现有的采用横截面为圆形的焊带以及现有的点焊工艺,可以焊接得更加牢固,可以进一步防止后续工艺使电池片产生裂纹或隐裂。
S5:对所述分片电池片串进行统一划片,在所述分片电池片串上划出平行于所述主栅线的用于裂片的平行划痕,所述平行划痕将所述分片电池片串划分成预设等分。
如图7所示,虚线对应的是所述平行划痕5,本例中,每条所述平行划痕5与其相邻的主栅线之间的距离均相等,所述平行划痕5到两侧的主栅线之间的距离相等。如图5所示,本例中,所述平行划痕5将具有12条主栅的电池片串分为6等分。
S6:利用所述平行划痕,将所述分片电池片串统一裂片得到柔性电池片串单元。
图9是本申请一个实施例中裂片得到的柔性电池片串单元,本例中,所述柔性电池片串单元包括两片分片电池片3,分片电池片3的正面焊接正面焊带41,背面焊接背面焊带42。所述柔性电池片串单元具有正极+和负极-,可以用于组成柔性光伏组件。
图10是本申请另一个实施例裂片得到的柔性电池片串单元,所述柔性电池片串单元只有1条主栅线,所述主栅线上焊接有焊带41/42,所述电池片串单元具有正负极,可以用于组成柔性光伏组件。
S7:将所述柔性电池片串单元作为组成柔性光伏组件的有序电路回路的基础单元。
图11是本例中所述柔性光伏组件组成方式的方法流程示意图,如图11所示,本例中,所述柔性光伏组件的组成方式,可以包括:
S701:按照预设版型,将与所述预设版型对应的预设数量的柔性电池片串单元成排排布。
本例中,所述将与所述预设版型对应的预设数量的柔性电池片串单元成排排布的方式,可以包括:将所述柔性电池片串单元的长度方向作为所述柔性光伏组件的宽度方向,成排排布在所述柔性光伏组件的长度方向上。
图16是本例中提供的所述柔性电池片串单元的排布方向示意图,如图16所示,所述柔性电池片串单元的长度方向作为应用型柔性光伏组件的宽度方向。
S702:利用汇流条将成排排布的所述柔性电池片串单元并联,形成版块。
S703:按照预设版型,将所述版块中多余的汇流条切除,使所述版块中的电池片串形成有序的电路,得到N个具有符合预设版型的具有正负极的柔性光伏组件,N≥1。
其中,所述汇流条切除的方式至少可以包括:冲压、激光切割。
本例中,所述柔性光伏组件的组成方式,还可以包括:
对所述柔性光伏组件中的每个电池片边缘进行边缘绝缘保护处理;
利用非玻璃或玻璃封装材料将所述柔性光伏组件封装。
本例中,所述绝缘保护处理的方式可以包括:在所述每个电池片边缘设置绝缘材料。
利用所述绝缘材料可以防止出现短路,进而可以尽可能地缩小电池片之间的间距,尽可能地提高光伏组件的效率。所述绝缘材料可以是绝缘漆、绝缘胶带等绝缘材料。
图12是本申请一个实施例中得到的柔性电池片串单元的排版示意图,如图12所示,本例中,排布得到的是具有2片电池片的电池片串单元单排排布的排版。
图13是本申请另一个实施例中得到的柔性电池片串单元的排版示意图,如图13所示,本例中,排布得到的是具有1片电池片的电池片串单元单排排布的排版。
图14是本申请又一个实施例中得到的柔性电池片串单元的排版示意图,如图14所示,本例中,排布得到的是具有2片电池片的电池片串单元2排排布的排版。
图15是本申请再一个实施例中得到的柔性电池片串单元的排版示意图,如图15所示,本例中,排布得到的是具有1片电池片的电池片串单元2排排布的排版。
当然,上述各实施中的排版都是示例性的,本申请其他实施例中,还可以根据具体的实施环境,选择其他版型的排版。
图17是本申请一个实施例中利用汇流条将排版好的电池片串连接后得到的所述版块的连接结构示意图,如图17所示,所述汇流条6分别与所述电池片串两端的焊带41/42焊接,将所述电池片串并联得到符合预设版型的版块。
图18是本申请另一个实施例中利用汇流条将排版好的电池片串连接后得到的所述版块的连接结构示意图,如图18所示,所述汇流条6分与所述电池片串两端和中间的焊带焊接,将所述2排电池片串并联得到符合预设版型的版块。
图19是将图17对应的所述版块按照预设版型切除汇流条后得到的柔性光伏组件的结构示意图,如图19所示,所述汇流条6被切除后,剩余的汇流条将所述电池片串串联形成有序的电路,得到一种版型的柔性光伏组件,图19中所述组件两端的汇流条6作为所述组件的引出线。
图20是将图18应的所述版块按照预设版型切除汇流条后得到的柔性光伏组件的结构示意图,如图20所示,所述汇流条6被切除后,剩余的汇流条6将所述电池片串连接形成有序的电路,得到另一种版型的柔性光伏组件,图20中所述组件两端的汇流条6作为所述组件的引出线。
图21是将图17对应的所述版块按照预设版型切除汇流条后得到的6个柔性光伏组件的结构示意图,所述汇流条被切除后,得到6个柔性光伏组件。如图21中,所述光伏组件的一侧焊接的汇流条6中间设置有隔断7,所述隔断7两侧的汇流条6作为引出线,另一侧的汇流条6将两串电池片串连接成有序的电路,得到柔性光伏组件。
当然,上述各实施例得到的柔性光伏组件只是示例性的,本申请其他实施例中,还可以将所述电池片串组成其他任意预设版型的柔性光伏组件,上述各工序均可以自动化规模化进行。
所述封装材料可以选用非玻璃的封装材料,正面的封装材料可以是透明的PC板、PMMA、PET、ETFE膜、FEP膜、硅胶、Tedlar PVF膜、PVDF膜等,背面的封装材料可以是环氧板、PC板、复合金属板、光伏背板等。选用非玻璃封装材料,可以更好地实现光伏组件的柔性功能。当然也可以采用玻璃封装材料,仍然可以实现相对的柔性功能。
图2是本申请所述一种柔性光伏组件制造方法另一种实施例的方法流程示意图。具体的,如图2所述,本申请提供的一种柔性光伏组件制造方法的另一种实施例可以包括:
S1:选用具有预设主栅线数的多主栅电池片。
S2:对所述多主栅电池片进行划片,在所述多主栅电池片上划出,垂直于所述主栅线的用于裂片的垂直划痕、平行于所述主栅线的用于裂片的平行划痕,所述垂直划痕将所述多主栅电池片划分成预设等分,所述平行划痕将所述多主栅电池片划分成预设等分。
图22是本例中所述垂直划痕和所述平行划痕的位置关系示意图,如图22所示,左半部分为所述多主栅电池片的正面,右半部分为所述多主栅电池片的背面,虚线对应的是所述垂直划痕和所述平行划痕。本例中,所述垂直划痕2将所述多主栅电池片划分为3等分,所述平行划痕5将所述多主栅电池片划分为6等分。
S3:利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片。
S4:将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上。
S5:利用所述平行划痕,将所述分片电池片串统一裂片得到预设柔性电池片串单元。
S6:将所述柔性电池片串单元作为组成柔性光伏组件的有序电路回路的基础单元。
本例中,所述将所述柔性电池片串单元排版组成柔性光伏组件,可以包括:
按照预设版型,将与所述预设版型对应的预设数量的柔性电池片串单元成排排布;
利用汇流条将成排排布的所述柔性电池片串单元并联,形成版块;
按照预设版型,将所述版块中多余的汇流条切除,使所述版块中的电池片串形成有序的电路,得到N个具有符合预设版型的具有正负极的柔性光伏组件,N≥1。
本例中所述柔性光伏组件制造方法中,所述选用具有预设主栅线数的多主栅电池片、将所述多主栅电池片裂片得到预设等分的分片电池片、将所述分片电池片串焊、将所述分片电池片串统一裂片得到预设柔性电池片串单元、将所述柔性电池片串单元排版组成柔性光伏组件的扩展可以参照前述实施例中所述方法的相关描述。
利用上述各实施例中所述的柔性光伏组件制造方法的实施方式,先将电池片在主栅线方向上分成分片电池片,将分片电池片串焊得到分片电池片串,再将分片电池片串进行统一裂片,得到柔性电池片串单元。由于选用了多主栅电池片,而且在串焊时采用了截面为长方形的焊带,焊带覆盖在主栅线上,可以有效避免在对分片电池片串裂片时产生平行于所述主栅线方向的裂纹或隐裂,可以有效保证电池片的可靠性。另外,本申请所述方法中的各个步骤以及整个工艺都可以自动化和规模化实施,不需要人工参与,可以有效节省人工成本,提高柔性光伏组件制造的效率,还可以提高光伏组件纵向和横向的形变能力,提高电池片的抗隐裂能力。所述柔性电池片串单元可以灵活组合,从而得到符合各种预设版型的柔性光伏组件,可以有效提高柔性光伏组件的制造效率。通过采用截面为长方形的焊带、在每个电池片边缘进行边缘绝缘保护处理等,可以有效提高柔性光伏组件的可靠性。
本说明书中的各个实施例采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而不脱离本申请的精神,希望所附的权利要求包括这些变形和变化而不脱离本申请的精神。

Claims (11)

  1. 一种柔性光伏组件制造方法,其特征在于,所述方法包括:
    选用具有预设主栅线数的多主栅电池片;
    对所述多主栅电池片进行划片,在所述多主栅电池片上划出垂直于所述主栅线的用于裂片的垂直划痕,所述垂直划痕将所述多主栅电池片划分成预设等分;
    利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片;
    将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上;
    对所述分片电池片串进行统一划片,在所述分片电池片串上划出平行于所述主栅线的用于裂片的平行划痕,所述平行划痕将所述分片电池片串划分成预设等分;
    利用所述平行划痕,将所述分片电池片串统一裂片得到柔性电池片串单元;
    将所述柔性电池片串单元作为组成柔性光伏组件的有序电路回路的基础单元。
  2. 一种柔性光伏组件制造方法,其特征在于,所述方法包括:
    选用具有预设主栅线数的多主栅电池片;
    对所述多主栅电池片进行划片,在所述多主栅电池片上划出,垂直于所述主栅线的用于裂片的垂直划痕、平行于所述主栅线的用于裂片的平行划痕,所述垂直划痕将所述多主栅电池片划分成预设等分,所述平行划痕将所述多主栅电池片划分成预设等分;
    利用所述垂直划痕,将所述多主栅电池片裂片得到预设等分的分片电池片;
    将所述分片电池片串焊,得到分片电池片串,所述串焊的焊带沿着所述主栅线焊接在所述分片电池片的主栅线上;
    利用所述平行划痕,将所述分片电池片串统一裂片得到预设柔性电池片串单元;
    将所述柔性电池片串单元作为组成柔性光伏组件的有序电路的基础单元。
  3. 如权利要求1或2所述的一种柔性光伏组件制造方法,其特征在于,每条所述平行划痕与其相邻的主栅线之间的距离均相等。
  4. 如权利要求1或2所述的一种柔性光伏组件制造方法,其特征在于,所述柔性光伏组件的组成方式包括:
    按照预设版型,将与所述预设版型对应的预设数量的柔性电池片串单元成排排布;
    利用汇流条将成排排布的所述柔性电池片串单元并联,形成版块;
    按照预设版型,将所述版块中多余的汇流条切除,使所述版块中的电池片串形成有序的电路,得到N个具有符合预设版型的具有正负极的柔性光伏组件,N≥1。
  5. 如权利要求4所述的一种柔性光伏组件制造方法,其特征在于,所述切除的方式至少包括:冲压、激光切割。
  6. 如权利要求1或2所述的一种柔性光伏组件制造方法,其特征在于,所述多主栅电池片的主栅数大于等于10。
  7. 如权利要求1或2所述的一种柔性光伏组件制造方法,其特征在于,所述串焊的焊带的横截面为长方形,所述焊带的焊接面覆盖在所述分片电池片的主栅线上。
  8. 如权利要求1或2所述的一种柔性光伏组件制造方法,其特征在于,所述串焊的方式包括:采用串焊机进行串焊。
  9. 如权利要求4所述的一种柔性光伏组件制造方法,其特征在于,所述柔性光伏组件的组成方式还包括:
    对所述柔性光伏组件中的每个电池片边缘进行边缘绝缘保护处理;
    利用非玻璃或玻璃封装材料将所述柔性光伏组件封装。
  10. 如权利要求9所述的一种柔性光伏组件制造方法,其特征在于,所述绝缘保护处理的方式包括:
    在所述每个电池片边缘设置绝缘材料。
  11. 如权利要求4所述的一种柔性光伏组件制造方法,其特征在于,所述将与所述预设版型对应的预设数量的柔性电池片串单元成排排布的方式,包括:
    将所述柔性电池片串单元的长度方向作为所述柔性光伏组件的宽度方向,成排排布在所述柔性光伏组件的长度方向上。
PCT/CN2017/112163 2017-10-30 2017-11-21 一种柔性光伏组件制造方法 WO2019085056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711040972.3A CN108878577A (zh) 2017-10-30 2017-10-30 一种柔性光伏组件制造方法
CNCN201711040972.3 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085056A1 true WO2019085056A1 (zh) 2019-05-09

Family

ID=64325522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112163 WO2019085056A1 (zh) 2017-10-30 2017-11-21 一种柔性光伏组件制造方法

Country Status (2)

Country Link
CN (1) CN108878577A (zh)
WO (1) WO2019085056A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920878B (zh) * 2019-02-28 2021-05-07 苏州携创新能源科技有限公司 一种柔性光伏组件制造方法
CN110085697B (zh) * 2019-05-21 2021-03-30 苏州携创新能源科技有限公司 一种低功率太阳能光伏组件加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760777A (zh) * 2011-04-29 2012-10-31 无锡尚德太阳能电力有限公司 太阳电池、太阳电池组件及其制备方法
CN103178160A (zh) * 2013-03-19 2013-06-26 四川钟顺太阳能开发有限公司 一种线性聚光组件生产工艺
CN106229354A (zh) * 2016-08-26 2016-12-14 泰州中来光电科技有限公司 一种太阳能电池串及其制备方法和组件、***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281936B (zh) * 2008-04-24 2011-05-11 珈伟太阳能(武汉)有限公司 单面指状交叉式太阳能电池片的切割方法
CN104600141B (zh) * 2015-02-06 2018-04-03 协鑫集成科技股份有限公司 太阳能电池组件
CN104900734B (zh) * 2015-06-16 2017-01-25 江苏东昇光伏科技有限公司 太阳能电池组件及其制备方法
CN106601863B (zh) * 2015-10-20 2018-01-09 沃沛斯(上海)贸易有限公司 一种提高离网型光伏组件生产效率的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760777A (zh) * 2011-04-29 2012-10-31 无锡尚德太阳能电力有限公司 太阳电池、太阳电池组件及其制备方法
CN103178160A (zh) * 2013-03-19 2013-06-26 四川钟顺太阳能开发有限公司 一种线性聚光组件生产工艺
CN106229354A (zh) * 2016-08-26 2016-12-14 泰州中来光电科技有限公司 一种太阳能电池串及其制备方法和组件、***

Also Published As

Publication number Publication date
CN108878577A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US20090065043A1 (en) Method of coupling photovoltaic cells and film for implementing it
WO2019085056A1 (zh) 一种柔性光伏组件制造方法
US4306108A (en) Solar power supply for spacecraft
US20100218799A1 (en) Process for connecting photovoltaic cells in series, a photovoltaic cell connectable in series using the process, and a module obtained with the process
JP7030683B2 (ja) 宇宙空間品質の太陽電池アレイの製造方法
CN107534069B (zh) 太阳能电池模块的制造方法
CN103038896A (zh) 用于接通和连接太阳能电池的方法和由此建立的太阳能电池组合体
EP3608975A1 (en) Methods of manufacturing a shingled solar module
JP2008147260A (ja) インターコネクタ、太陽電池ストリング、太陽電池モジュールおよび太陽電池モジュール製造方法
EP4404281A1 (en) Flexible photovoltaic cell assembly and manufacturing method therefor
JP2009016713A (ja) 太陽電池の製造方法および太陽電池ならびに印刷用スクリーン
CN111540801A (zh) 一种低温硅异质结电池组件的制作与修复方法
CN111244209A (zh) 叠瓦组件及其制造方法
AU2023229510A1 (en) Fabrication method for photovoltaic module and photovoltaic module
JP3926822B2 (ja) 半導体装置及び半導体装置の製造方法
CN210634255U (zh) 一种丝网印刷定位装置
JP3017420B2 (ja) 太陽電池モジュール
US11749764B2 (en) Solar cell module and fabricating methods thereof
JP5336086B2 (ja) 半導体デバイスの製造方法
JP6163014B2 (ja) 太陽電池モジュールの製造方法
EP1556903A1 (en) Process for assembly of photovoltaic modules
CN113765478A (zh) 接线盒、光伏组件和光伏组件制造方法
CN110310910B (zh) 在制造柔性电路衬底复合体期间运输其阵列的方法和装置
JP2005167161A (ja) 太陽電池モジュールの製造方法
RU2651642C1 (ru) Фотоэлектрический преобразователь с самовосстанавливающимся контактом

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930182

Country of ref document: EP

Kind code of ref document: A1