WO2019082825A1 - Control device for rotating electrical machine - Google Patents

Control device for rotating electrical machine

Info

Publication number
WO2019082825A1
WO2019082825A1 PCT/JP2018/039078 JP2018039078W WO2019082825A1 WO 2019082825 A1 WO2019082825 A1 WO 2019082825A1 JP 2018039078 W JP2018039078 W JP 2018039078W WO 2019082825 A1 WO2019082825 A1 WO 2019082825A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
arm switch
winding
upper arm
lower arm
Prior art date
Application number
PCT/JP2018/039078
Other languages
French (fr)
Japanese (ja)
Inventor
満 柴沼
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880069028.7A priority Critical patent/CN111264027B/en
Publication of WO2019082825A1 publication Critical patent/WO2019082825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present disclosure relates to a control device of a rotating electrical machine.
  • control device As this kind of control device, as seen in Patent Document 1, there is known one that controls driving of a rotating electrical machine provided with one winding group.
  • the control device includes a current detection unit that detects a current flowing through a winding of the rotating electrical machine, and operates an inverter to apply a rectangular wave voltage to the winding of the rotating electrical machine based on a detection value of the current detection unit.
  • the present disclosure has as its main object to provide a control device of a rotating electrical machine that can suppress a decrease in detection accuracy of a current used for operating the inverter.
  • the present disclosure relates to a control device of a rotating electric machine applied to a control system including a rotating electric machine having a plurality of sets of multiphase windings wound around a stator, and an inverter for applying a voltage to each winding.
  • a current detection unit that detects a current flowing in a winding, and an operation unit that operates the inverter to apply a rectangular wave voltage to each of the winding groups based on a detection value of the current detection unit;
  • the detection unit detects a current flowing through the target winding in the detection period.
  • a detection period is a period in which the current flowing in the winding group not including the target winding, which is a winding whose current is to be detected, among the plurality of winding groups does not interfere with the current flowing in the target winding. ing.
  • the current detection unit detects the current flowing in the target winding. For this reason, the fall of detection accuracy of the current used for operation of an inverter can be controlled.
  • FIG. 1 is an entire configuration diagram of a control system of a rotating electrical machine according to a first embodiment
  • FIG. 2 is a diagram showing the spatial phase difference of the winding group
  • FIG. 3 is a block diagram showing processing of the control unit and the drive unit
  • FIG. 4 is a diagram showing 180 ° rectangular wave energization control
  • FIG. 5 is a diagram showing that current detection accuracy is reduced due to interference
  • FIG. 6 is a diagram showing the relationship between each voltage vector
  • FIG. 7 is a diagram showing a U-phase current detection period
  • FIG. 8 is a diagram showing a V-phase current detection period
  • FIG. 1 is an entire configuration diagram of a control system of a rotating electrical machine according to a first embodiment
  • FIG. 2 is a diagram showing the spatial phase difference of the winding group
  • FIG. 3 is a block diagram showing processing of the control unit and the drive unit
  • FIG. 4 is a diagram showing 180 ° rectangular wave energization control
  • FIG. 5 is a diagram showing that
  • FIG. 9 is a diagram showing a W-phase current detection period
  • FIG. 10 is a diagram showing current detection timing
  • FIG. 11 is a flowchart of current detection timing determination processing and correction value calculation processing.
  • FIG. 12 is a time chart showing the current amplitude difference of the U and V phases
  • FIG. 13 is an entire configuration diagram of a control system of a rotating electrical machine according to a second embodiment
  • FIG. 14 is a block diagram showing processing of the control unit and the first drive unit
  • FIG. 15 is a flowchart of current detection timing determination processing and correction value calculation processing.
  • the control system includes a rotating electrical machine 10.
  • the rotary electric machine 10 has a multiphase multiple winding, and specifically, is a synchronous machine having a three-phase double winding.
  • the rotary electric machine 10 is of the winding field type.
  • the rotor 11 of the rotary electric machine 10 is provided with a field winding 12 for forming a magnetic pole.
  • a field current flows through the field winding 12.
  • the function as a generator what is provided with the function as an electric motor is used as the rotary electric machine 10 in this embodiment.
  • the rotor 11 is made common to the first and second winding groups 14 and 15.
  • Each of the first winding group 14 and the second winding group 15 consists of star-connected three-phase windings.
  • the first winding group 14 has U, V, W phase windings 14U, 14V, 14W which are mutually shifted by 120 ° in electrical angle
  • the second winding group 15 is X which is mutually shifted by 120 ° in electrical angle
  • Y, Z phase windings 15X, 15Y, 15Z In the present embodiment, as shown in FIG.
  • the spatial phase difference ⁇ which is the angle between the first winding group 14 and the second winding group 15, is set to 30 ° in electrical angle. More specifically, X-phase winding 15X is advanced by 30 ° in electrical angle with respect to U-phase winding 14U.
  • the first winding group 14 and the second winding group 15 have the same configuration. Specifically, the number of turns of each of phase windings 14U to 14W constituting first winding group 14 and the number of turns of each phase windings 15X to 15Z constituting second winding group 15 are set equal. ing.
  • the control system includes a positive electrode side conductive member 20, a DC power supply 21, and a module MJ.
  • the positive electrode side conductive member 20 is, for example, a bus bar.
  • the direct current power supply 21 is, for example, a storage battery, more specifically, a secondary battery.
  • Module MJ is a series connection of X-phase upper and lower arm switches SXH and SXL, a series connection of Y-phase upper and lower arm switches SYH and SYL, a series connection of Z-phase upper and lower arm switches SZH and SZL, U A series connection of upper and lower arm switches SUH and SUL, a series connection of upper V-phase and lower arm switches SVH and SVL, a series connection of upper W-phase and lower arm switches SWH and SWL, and a drive unit DU ing.
  • each of the switches SXH to SWL is an N-channel MOSFET.
  • the drive unit DU is an application specific integrated circuit (ASIC).
  • the positive electrode terminal of the DC power supply 21 is connected to the positive electrode side conductive member 20.
  • the ground terminal is connected to the negative terminal of the DC power supply 21.
  • the positive electrode side conductive member 20 is connected to the drain which is the high potential side terminal of each upper arm switch SXH, SYH, SZH, SUH, SVH, SWH.
  • a ground is connected to a source which is a low potential side terminal of each of the lower arm switches SXL, SYL, SZL, SUL, SVL, and SWL.
  • a first end of an X-phase winding 15X is connected to a connection point between the X-phase upper and lower arm switches SXH and SXL via an X-phase conductive member 22X such as a bus bar.
  • the first end of the Y-phase winding 15Y is connected to the connection point of the Y-phase upper and lower arm switches SYH and SYL via a Y-phase conductive member 22Y such as a bus bar.
  • the first end of the Z-phase winding 15Z is connected to the connection point of the Z-phase upper and lower arm switches SZH and SZL via a Z-phase conductive member 22Z such as a bus bar.
  • the second ends of the X, Y, Z phase windings 15X, 15Y, 15Z are connected at a neutral point.
  • a first end of a U-phase winding 14U is connected to a connection point between the U-phase upper and lower arm switches SUH and SUL via a U-phase conductive member 22U such as a bus bar.
  • the first end of the V-phase winding 14V is connected to the connection point of the V-phase upper and lower arm switches SVH and SVL via a V-phase conductive member 22V such as a bus bar.
  • the first end of the W-phase winding 14W is connected to the connection point of the W-phase upper and lower arm switches SWH and SWL via a W-phase conductive member 22W such as a bus bar.
  • the second ends of the U, V, W phase windings 14U, 14V, 14W are connected at a neutral point.
  • the upper and lower arm switches of each phase and the positive electrode side conductive member 20 constitute an inverter.
  • the control system includes a control unit 30.
  • the control unit 30 includes a CPU and a memory, and the CPU executes a program stored in the memory.
  • the control unit 30 exchanges information with each of the drive units DU1 to DU3 in order to control the control amount of the rotary electric machine 10 to the command value.
  • the control amount is torque
  • the command value thereof is command torque Trq *.
  • the torque control according to the present embodiment is position sensorless control that does not use the detection value of an angle detector such as a resolver that directly detects an electrical angle. Further, in the present embodiment, in order to control the torque of the rotary electric machine 10 to the command torque Trq *, 180-degree rectangular wave energization control is used.
  • the drive unit DU corresponds to a control device of the rotary electric machine 10.
  • the functions provided by the drive unit DU and the control unit 30 can be provided, for example, by software recorded in a tangible memory device and a computer that executes the software, hardware, or a combination thereof.
  • Voltage command setting unit 31 has a voltage amplitude required to control the torque of rotating electrical machine 10 to command torque Trq * based on command torque Trq * and estimated angular velocity ⁇ est output from addition unit 47 described later.
  • Set Vamp and voltage phase ⁇ The voltage amplitude Vamp is the magnitude of a voltage vector applied to the winding of the rotating electrical machine 10.
  • the voltage phase is the angle between the voltage vector and the reference axis.
  • the reference axis is, for example, the d axis in the dq coordinate system.
  • the voltage amplitude Vamp and the voltage phase ⁇ may be set based on, for example, map information in which the voltage amplitude Vamp and the voltage phase ⁇ are defined in association with the command torque Trq * and the estimated angular velocity ⁇ est.
  • the first current detection unit 41 detects currents flowing in the U, V, W phase conductive members 22U, 22V, 22W as U, V, W phase currents IUr, IVr, IWr.
  • the second current detection unit 42 detects currents flowing through the X, Y, Z phase conductive members 22X, 22Y, 22Z as X, Y, Z phase currents IXr, IYr, IZr.
  • the phase difference calculation unit 43 is a phase difference between at least one phase current of the X, Y, Z phase currents IXr, IYr, IZr detected by the second current detection unit 42 and a phase voltage corresponding to the phase. Calculate ⁇ r.
  • the phase difference between the Z-phase current IXr and the phase voltage of the Z-phase is calculated.
  • the phase difference is calculated based on, for example, the zero cross timing of the phase current and the phase voltage.
  • the zero cross timing of the phase voltage of the Z phase may be calculated based on the Z phase drive signal GZ generated by the signal generation unit 50 described later.
  • the target phase difference setting unit 44 sets a target phase difference ⁇ * based on the voltage phase ⁇ set by the voltage command setting unit 31.
  • the target phase difference ⁇ * may be set based on, for example, map information in which the target phase difference ⁇ * is defined in association with the voltage phase ⁇ .
  • the phase deviation calculating unit 45 calculates the phase deviation ⁇ by subtracting the phase difference ⁇ r from the target phase difference ⁇ *.
  • the feedback control unit 46 calculates a basic angular velocity ⁇ c, which is a basic value of the electrical angular velocity of the rotary electric machine 10, as an operation amount for feedback control of the phase deviation ⁇ to zero.
  • a basic angular velocity ⁇ c which is a basic value of the electrical angular velocity of the rotary electric machine 10
  • proportional integral control is used as feedback control.
  • the adding unit 47 calculates an estimated angular velocity ⁇ est which is an estimated value of the electrical angular velocity by adding the initial value ⁇ 0 of the electrical angular velocity of the rotary electric machine 10 to the basic angular velocity ⁇ c.
  • the initial value ⁇ 0 may be calculated based on, for example, the induced voltage generated in each phase winding.
  • the integrator 48 integrates the estimated angular velocity ⁇ est in time to calculate an estimated electrical angle ⁇ est which is an estimated value of the electrical angle of the rotary electric machine 10.
  • the correction unit 49 calculates a corrected electric angle ⁇ f by subtracting a correction value ⁇ C calculated by a correction value calculation unit 51 described later from the estimated electric angle ⁇ est.
  • the signal generation unit 50 generates X, Y, W phase drive signals GX, GY, GZ, U, V, W phase drive signals GU, GV, based on the voltage amplitude Vamp, the voltage phase ⁇ and the corrected electrical angle ⁇ f. Generate GW and.
  • the X, Y, and Z phase drive signals GX, GY, and GZ turn on the X, Y, and Z phase upper arm switches SXH, SYH, and SZH by the theoretical value H, and lower the X, Y, and Z phases. It instructs to turn off the arm switches SXL, SYL and SZL.
  • the X, Y and Z phase drive signals GX, GY and GZ turn off the X, Y and Z phase upper arm switches SXH, SYH and SZH according to the theoretical value L, and the X, Y and Z phase lower arm switches SXL. , SYL and SZL are instructed to be turned on.
  • the U, V, W phase drive signals GU, GV, GW turn on the U, V, W phase upper arm switches SUH, SVH, SWH by the theoretical value H, and the U, V, W phase lower arm switches It instructs to turn off SUL, SVL and SWL.
  • the switches SXH, SXL, SYH, SYL, SZH, SZL, SUH, SUL, SVH, SVL, SWH, SWL are turned on or off in accordance with the generated drive signals GX, GY, GZ, GU, GV, GW.
  • the upper arm switch and the lower arm switch are alternately turned on with a dead time.
  • the signal generation unit 50 first generates X, Y, Z phase drive signals GX, GY, GZ as shown in FIG.
  • the X, Y, Z phase drive signals GX, GY, GZ consist of a period of logic H over an electrical angle range of 180 ° and a period of logic L over an electrical angle range of 180 °.
  • the switching timing from L to H is mutually shifted by 120 °.
  • the signal generation unit 50 delays the phases of the generated X, Y, Z phase drive signals GX, GY, GZ by the space phase difference ⁇ (30 °) to generate the U, V, W phase drive signals GU, GV, GW. Generate Specifically, the signal generation unit 50 delays the U-phase drive signal GU relative to the X-phase drive signal GX by the spatial phase difference ⁇ .
  • the phase difference calculation unit 43, the target phase difference setting unit 44, the phase deviation calculation unit 45, the feedback control unit 46, the addition unit 47, the integrator 48, the correction unit 49, and the signal generation unit 50 corresponds to Further, the phase difference calculation unit 43, the target phase difference setting unit 44, the phase deviation calculation unit 45, the feedback control unit 46, the addition unit 47, and the integrator 48 correspond to a position estimation unit.
  • the correction value calculation unit 51 calculates the correction value ⁇ C based on the U, V, W phase currents IUr, IVr, IWr detected by the first current detection unit 41.
  • the correction value ⁇ C is used to suppress a change in the rotational speed of the rotor 11.
  • the present embodiment is characterized in the detection timing of the current used to calculate the correction value ⁇ C. The current detection timing of the present embodiment will be described below after the problem regarding the current detection timing is described.
  • FIG. 5 shows the transition of U-phase current.
  • the waveform in the case of no interference shows the transition of the U-phase current when only the U, V, W phase among the U, V, W, X, Y, Z phases is energized, and in the case of interference
  • the waveform of (1) shows the transition of the U-phase current when all of the U, V, W, X, Y and Z phases are energized.
  • VU, VV, VW, VX, VY and VZ indicate U, V, W, X, Y and Z phase voltages
  • IU, IV, IW, IX, IY and IZ indicate U , V, W, X, Y, Z phase current
  • L indicates the self-inductance of each phase, and indicates the mutual inductance in the same winding group
  • m indicates the mutual inductance between the first and second winding groups 14 and 15.
  • eU, eV, eW, eX, eY and eZ indicate induced voltages of U, V, W, X, Y and Z phases.
  • the components in the first row and the fourth column and the components in the first row and the fifth column have the same absolute value and opposite sign.
  • This is, as shown in FIG. 6, in a relationship in which the U-phase component of the X-phase voltage vector VX and the U-phase component of the Y-phase voltage vector VY cancel each other. It shows that there is a relation in which m ⁇ dIX / dt and “ ⁇ m ⁇ dIY / dt” are offset.
  • the component in the second row and the fifth column and the component in the second row and the sixth column have the same absolute value and opposite sign. This is because, as shown in FIG. 6, the V-phase component of the Y-phase voltage vector VY and the V-phase component of the Z-phase voltage vector VZ are offset, and “m ⁇ dIY / dt” and “-m It shows that there is an offset relationship with x dIZ / dt.
  • V from the on timing te of the X phase lower arm switch SXL to the on timing tf of the U phase lower arm switch SUL appearing immediately after that timing V phase current from V phase first period and ON timing tg of X phase upper arm switch SXH to ON timing th of U phase upper arm switch SUH appearing immediately after the timing is V phase current It is considered as a detection period.
  • the target winding is the V-phase winding 14 V
  • the quadrature phase is the X phase.
  • the component in the third row and the fifth column is 0 in the 6 ⁇ 6 matrix of the above equation (eq1). This indicates that the W-phase current is not influenced by the time change of the Y-phase current because the W-phase voltage vector VW and the Y-phase voltage vector VY are orthogonal as shown in FIG. .
  • the component in the third row and the fourth column and the component in the third row and the sixth column have the same absolute value and opposite sign. This is because, as shown in FIG. 6, the W-phase component of the Z-phase voltage vector VZ and the W-phase component of the X-phase voltage vector VX are offset, and “-m ⁇ dIX / dt” and “m It shows that there is an offset relationship with x dIZ / dt.
  • W from the on-timing ti of the Y-phase lower arm switch SYL to the on-timing tj of the U-phase lower arm switch SUL appearing immediately after that timing The W phase current period from the on phase tk of the phase 1st period and the Y phase upper arm switch SYH to the on timing tm of the U phase upper arm switch SUH appearing immediately after that timing is the W phase current It is considered as a detection period.
  • the target winding is the W-phase winding 14W
  • the orthogonal phase is the Y-phase.
  • the on-timing ta of the Z-phase lower arm switch SZL and the on-timing tc of the Z-phase upper arm switch SZH are the first current detection unit 41. It is set to the detection timing of U phase current IUr by. Further, in the V-phase current detection period, the on-timing t of the X-phase lower arm switch SXL and the on-timing tg of the X-phase upper arm switch SXH are set to the detection timing of the V-phase current IVr by the first current detection unit 41. It is done.
  • the on timing ti of the Y phase lower arm switch SYL and the on timing tk of the Y phase upper arm switch SYH are set to the detection timing of the W phase current IWr by the first current detection unit 41. It is done.
  • U, V and W phase currents IUr, IVr and IWr are detected twice each in one cycle of the electrical angle.
  • FIG. 11 shows the procedure of the process of determining the current detection timing and the process of calculating the correction value ⁇ C according to the present embodiment. This process is repeatedly performed, for example, every predetermined processing cycle by cooperation of the second current detection unit 42 and the correction value calculation unit 51.
  • step S10 it is determined whether either the condition that the X-phase drive signal GX has switched from H to L or the condition that the X-phase drive signal GX has switched from L to H has been satisfied.
  • This process is a process for determining whether or not it is a detection timing of the V-phase current IVr.
  • step S10 When an affirmative determination is made in step S10, the process proceeds to step S11, and the V-phase current IVr is detected.
  • step S12 the absolute value of V-phase current IVr [n-1] detected in the previous time is subtracted from the absolute value of V-phase current IVr [n] detected in the current processing cycle to obtain V-phase current amplitude difference ⁇ IV.
  • FIG. 12 shows an example of how to calculate the V-phase current amplitude difference ⁇ IV.
  • 12 (a) shows the transition of U and V phase currents IUr and IVr
  • FIGS. 12 (b) and 12 (c) show the transition of X and Z phase drive signals GX and GZ.
  • FIG. 12 shows a state where the rotational speed of the rotor 11 is gradually rising.
  • the respective timings ta, tc, te and tg correspond to the respective timings ta, tc, te and tg shown in FIG.
  • a correction value ⁇ C is calculated based on the V-phase current amplitude difference ⁇ IV.
  • a correction value ⁇ C is calculated as an operation amount for feedback control of the V-phase current amplitude difference ⁇ IV to zero.
  • proportional integral control is used as feedback control.
  • the calculated correction value ⁇ C is output to the correction unit 49.
  • step S10 If a negative determination is made in step S10, the process proceeds to step S14, and either the condition that the Y phase drive signal GY has switched from H to L or the condition that the Y phase drive signal GY has switched from L to H is satisfied. It is determined whether it has been done.
  • This process is a process for determining whether or not it is the detection timing of the W-phase current IWr.
  • step S14 If an affirmative determination is made in step S14, the process proceeds to step S15, and the W-phase current IWr is detected.
  • step S16 the W-phase current amplitude difference ⁇ IW is obtained by subtracting the absolute value of the W-phase current IWr [n-1] detected last time from the absolute value of the W-phase current IWr [n] detected in the current processing cycle.
  • step S17 the correction value ⁇ C is calculated based on the W-phase current amplitude difference ⁇ IW.
  • a correction value ⁇ C is calculated as an operation amount for feedback control of the W-phase current amplitude difference ⁇ IW to zero.
  • proportional integral control is used as feedback control.
  • the calculated correction value ⁇ C is output to the correction unit 49.
  • step S14 If a negative determination is made in step S14, the process proceeds to step S18, and either the condition that the Z phase drive signal GZ has switched from H to L or the condition that the Z phase drive signal GZ has switched from L to H is satisfied. It is determined whether it has been done.
  • This process is a process for determining whether or not it is a detection timing of the U-phase current IUr.
  • step S18 When an affirmative determination is made in step S18, the process proceeds to step S19, and the U-phase current IUr is detected.
  • step S20 the difference between the U-phase current amplitudes ⁇ IU is obtained by subtracting the absolute value of the U-phase current IUr [n-1] detected last time from the absolute value of the U-phase current IUr [n] detected in the current processing cycle.
  • a correction value ⁇ C is calculated based on the U-phase current amplitude difference ⁇ IU.
  • a correction value ⁇ C is calculated as an operation amount for feedback control of the U-phase current amplitude difference ⁇ IU to zero.
  • proportional integral control is used as feedback control.
  • the calculated correction value ⁇ C is output to the correction unit 49. By the process described above, the correction value ⁇ C is calculated three times in one electrical angle cycle.
  • the processing of steps S12, S16, and S20 corresponds to the change amount calculation unit. Also, the processing of steps S13, S17, and S21 and the correction unit 49 correspond to a position correction unit.
  • the on timing ta of the Z phase lower arm switch SZL and the on timing tc of the Z phase upper arm switch SZH are set to the detection timing of the U phase current IUr.
  • the U-phase current IUr can be detected while avoiding a period in which a current interfering with the U-phase current IUr flows, and the detected U-phase current IUr is not subjected to low-pass filter processing for removing high frequency noise. It is possible to suppress a decrease in detection accuracy of U-phase current IUr. As a result, it is possible to suppress a decrease in torque controllability in position sensorless control.
  • the control system comprises first, second and third modules M1, M2 and M3.
  • the first module M1 includes a series connection of Z-phase upper and lower arm switches SZH and SZL, a series connection of U-phase upper and lower arm switches SUH and SUL, and a first drive unit DU1.
  • the first drive unit DU1 is an ASIC.
  • the first drive unit DU1 detects U and Z phase currents IUr and IZr flowing through the U and Z phase conductive members 22U and 22Z.
  • the second module M2 includes a series connection of X-phase upper and lower arm switches SXH and SXL, a series connection of V-phase upper and lower arm switches SVH and SVL, and a second drive unit DU2.
  • the second drive unit DU2 is an ASIC.
  • the second drive unit DU2 detects X and V phase currents IXr and IVr flowing through the X and V phase conductive members 22X and 22V.
  • the third module M3 includes a series connection of Y-phase upper and lower arm switches SYH and SYL, a series connection of W-phase upper and lower arm switches SWH and SWL, and a third drive unit DU3.
  • the third drive unit DU3 is an ASIC.
  • the third drive unit DU3 detects Y and W phase currents IYr and IWr flowing through the Y and W phase conductive members 22Y and 22W.
  • each of the drive units DU1 to DU3 and the control unit 30 can be provided by, for example, software recorded in a substantial memory device and a computer that executes the software, hardware, or a combination thereof. .
  • FIG. 14 shows a functional block diagram of processing of the first drive unit DU1.
  • the same components as or the corresponding components to those shown in FIG. 3 are denoted by the same reference numerals for the sake of convenience.
  • the first current detection unit 41 detects the U-phase current IUr, and the second current detection unit 42 detects the Z-phase current IZr.
  • the signal generation unit 50 generates U and Z phase drive signals GU and GZ.
  • the first current detection unit 41 detects the V-phase current IVr, and the second current detection unit 42 detects the X-phase current IXr.
  • the signal generation unit 50 generates the V, X-phase drive signals GV, GX.
  • the first current detection unit 41 detects the W-phase current Iwr, and the second current detection unit 42 detects the Y-phase current IYr.
  • the signal generator 50 generates W, Y phase drive signals GW, GY.
  • FIG. 15 shows the procedure of the process of determining the current detection timing and the process of calculating the correction value ⁇ C according to the present embodiment. This process is repeatedly performed, for example, every predetermined processing cycle by cooperation of the second current detection unit 42 and the correction value calculation unit 51 of the first drive unit DU1.
  • the same processes as the configuration shown in FIG. 11 are given the same reference numerals for the sake of convenience.
  • step S18 when an affirmative determination is made in step S18, the process proceeds to step S19. Thereafter, the processes of steps S20 and S21 are performed.
  • the second current detection unit 42 and the correction value calculation unit 51 of the second drive unit DU2 perform the processes of steps S10 to S13 in FIG. Further, the second current detection unit 42 and the correction value calculation unit 51 of the third drive unit DU3 perform the processes of steps S14 to S17 of FIG.
  • the calculation process of the estimated electrical angle ⁇ est and the correction value ⁇ C can be completed in each of the modules M1 to M3. Therefore, the number of signal lines for exchanging information among the modules M1 to M3 can be reduced.
  • the detection timing of the U-phase current IUr is not limited to the timings ta and tc shown in FIGS. 7 and 10.
  • the detection timing of U-phase current IUr may be set to either timing ta or tc.
  • the difference between the detected U-phase current IUr and the W-phase current IWr detected immediately after that may be calculated as the current amplitude difference.
  • the detection timing of the U-phase current IUr is not limited to the switch switching timing, but may be any timing in the U-phase current detection period.
  • the detection timing of the V-phase current IVr is not limited to the timings te and tg shown in FIGS. 8 and 10.
  • the detection timing of the V-phase current IVr may be set to either the timing te or tg.
  • the detection timing of the V-phase current IVr is not limited to the switch switching timing, but may be any timing in the V-phase current detection period.
  • the detection timing of the W-phase current IWr is not limited to the timings ti and tk shown in FIG. 9 and FIG.
  • the detection timing of the W-phase current IWr may be set to either timing ti or tk.
  • the detection timing of the W-phase current IWr is not limited to the switch switching timing, but may be any timing in the W-phase current detection period.
  • the correction value ⁇ C is calculated based on the U, V, and W phase currents, but the present invention is not limited to this. Even if the correction value ⁇ C is calculated based on the X, Y, and Z phase currents Good.
  • the phase difference calculation unit 43 uses the detection value of the first current detection unit 41
  • the correction value calculation unit 51 uses the detection value of the second current detection unit 42. Just do it.
  • the detection timing of the X, Y, Z phase current used to calculate the correction value ⁇ C may be set in the same manner as the detection timing of the U, V, W phase current described above.
  • the current amplitude difference may be calculated based on detected values of three or more phase currents. For example, the difference between the phase current detected in the previous processing cycle and the phase current detected in the last two processing cycles is calculated as the previous current amplitude difference. Then, the difference between the phase current detected in the current processing cycle and the phase current detected in the previous processing cycle is calculated as the current amplitude difference. Then, the final current amplitude difference used in steps S13, S17 and S21 is calculated as the average value of the current current amplitude difference and the previous current amplitude difference.
  • the torque control of the rotating electrical machine is not limited to the one using position sensorless control, but the detection value of the angle detector may be used.
  • the main body of the process of determining the current detection timing and the process of calculating the correction value is not limited to the drive units DU and DU1 to DU3, and may be the control unit 30, for example.
  • the control amount of the rotating electrical machine is not limited to the torque, and may be, for example, a rotational speed.
  • the upper and lower arm switches constituting the inverter are not limited to N-channel MOSFETs, and may be IGBTs, for example.
  • the rotating electrical machine is not limited to one having a spatial phase difference ⁇ of 30 °, but may have a spatial phase difference ⁇ having a value slightly different from 30 °. Even in this case, it is possible to suppress a decrease in current detection accuracy.
  • the rotating electric machine is not limited to the one having two winding groups, and may have three or more winding groups. Further, the rotating electrical machine is not limited to the winding field type, and may be, for example, a permanent magnet field type in which a permanent magnet is provided on the rotor. The rotating electrical machine is not limited to three-phase ones, and may be multi-phase ones other than three phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

This control device (DU, DU1-DU3) for a rotating electrical machine is applied to a control system comprising: a rotating electrical machine (10) having a plurality of sets (14, 15) of multiphase winding wires wound around a stator (13); and inverters (SXH-SWL, 20) that apply a voltage to each winding wire. The control device comprises: a current detection unit (42) that detects currents flowing through the winding wires; and operation units (43-50) that operate the inverters to apply a rectangular voltage to each winding wire group on the basis of a detection value of the current detection unit. The current detection unit detects the current flowing through a target winding wire during a detection period, if the detection period is designated as a period during which the current flowing through a winding wire group does not interfere with the current flowing through the target winding wire, the winding wire group being from among the plurality of winding wire groups and not including the target winding wire for which a current flowing therethrough is to be detected.

Description

回転電機の制御装置Control device of rotating electric machine 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月24日に出願された日本出願番号2017-205452号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-205452 filed on October 24, 2017, the contents of which are incorporated herein by reference.
 本開示は、回転電機の制御装置に関する。 The present disclosure relates to a control device of a rotating electrical machine.
 この種の制御装置としては、特許文献1に見られるように、1つの巻線群を備える回転電機を駆動制御するものが知られている。この制御装置は、回転電機の巻線に流れる電流を検出する電流検出部を備え、電流検出部の検出値に基づいて、回転電機の巻線に矩形波電圧を印加すべくインバータを操作する。 As this kind of control device, as seen in Patent Document 1, there is known one that controls driving of a rotating electrical machine provided with one winding group. The control device includes a current detection unit that detects a current flowing through a winding of the rotating electrical machine, and operates an inverter to apply a rectangular wave voltage to the winding of the rotating electrical machine based on a detection value of the current detection unit.
特開2010-11642号公報Unexamined-Japanese-Patent No. 2010-11642
 ところで、回転電機としては、多相の巻線群を複数組備えるものもある。この回転電機においては、複数の巻線群のうち、電流を検出しようとする巻線と、他の巻線との間に相互インダクタンスが存在する。この場合、他の巻線に流れる電流が、電流を検出しようとする巻線に流れる電流に干渉してしまう。その結果、インバータの操作に用いられる電流の検出精度が低下するおそれがある。 By the way, there is also a thing provided with multiple sets of multi-phase winding groups as a rotary electric machine. In this rotating electric machine, among the plurality of winding groups, mutual inductance exists between a winding whose current is to be detected and the other windings. In this case, the current flowing in the other winding interferes with the current flowing in the winding whose current is to be detected. As a result, the detection accuracy of the current used to operate the inverter may be reduced.
 本開示は、インバータの操作に用いられる電流の検出精度の低下を抑制できる回転電機の制御装置を提供することを主たる目的とする。 The present disclosure has as its main object to provide a control device of a rotating electrical machine that can suppress a decrease in detection accuracy of a current used for operating the inverter.
 本開示は、ステータに巻回された多相の巻線を複数組有する回転電機と、前記各巻線に電圧を印加するインバータと、を備える制御システムに適用される回転電機の制御装置において、前記巻線に流れる電流を検出する電流検出部と、前記電流検出部の検出値に基づいて、前記各巻線群に矩形波電圧を印加すべく前記インバータを操作する操作部と、を備え、複数の前記巻線群のうち、電流を検出しようとする巻線である対象巻線を含まない巻線群に流れる電流が前記対象巻線に流れる電流に干渉しない期間を検出期間とする場合、前記電流検出部は、前記検出期間において前記対象巻線に流れる電流を検出する。 The present disclosure relates to a control device of a rotating electric machine applied to a control system including a rotating electric machine having a plurality of sets of multiphase windings wound around a stator, and an inverter for applying a voltage to each winding. A current detection unit that detects a current flowing in a winding, and an operation unit that operates the inverter to apply a rectangular wave voltage to each of the winding groups based on a detection value of the current detection unit; When a period in which current flowing in a winding group not including a target winding which is a winding whose current is to be detected among the winding groups does not interfere with current flowing in the target winding is a detection period, The detection unit detects a current flowing through the target winding in the detection period.
 本開示では、複数の巻線群のうち、電流を検出しようとする巻線である対象巻線を含まない巻線群に流れる電流が対象巻線に流れる電流に干渉しない期間が検出期間とされている。この検出期間において、電流検出部は、対象巻線に流れる電流を検出する。このため、インバータの操作に用いられる電流の検出精度の低下を抑制することができる。 In the present disclosure, a detection period is a period in which the current flowing in the winding group not including the target winding, which is a winding whose current is to be detected, among the plurality of winding groups does not interfere with the current flowing in the target winding. ing. In the detection period, the current detection unit detects the current flowing in the target winding. For this reason, the fall of detection accuracy of the current used for operation of an inverter can be controlled.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る回転電機の制御システムの全体構成図であり、 図2は、巻線群の空間位相差を示す図であり、 図3は、制御部及び駆動部の処理を示すブロック図であり、 図4は、180°矩形波通電制御を示す図であり、 図5は、干渉に起因して電流検出精度が低下することを示す図であり、 図6は、各電圧ベクトルの関係を示す図であり、 図7は、U相電流検出期間を示す図であり、 図8は、V相電流検出期間を示す図であり、 図9は、W相電流検出期間を示す図であり、 図10は、電流検出タイミングを示す図であり、 図11は、電流検出タイミングの決定処理及び補正値算出処理のフローチャートであり、 図12は、U,V相の電流振幅差を示すタイムチャートであり、 図13は、第2実施形態に係る回転電機の制御システムの全体構成図であり、 図14は、制御部及び第1駆動部の処理を示すブロック図であり、 図15は、電流検出タイミングの決定処理及び補正値算出処理のフローチャートである。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 1 is an entire configuration diagram of a control system of a rotating electrical machine according to a first embodiment, FIG. 2 is a diagram showing the spatial phase difference of the winding group, FIG. 3 is a block diagram showing processing of the control unit and the drive unit, FIG. 4 is a diagram showing 180 ° rectangular wave energization control, FIG. 5 is a diagram showing that current detection accuracy is reduced due to interference; FIG. 6 is a diagram showing the relationship between each voltage vector, FIG. 7 is a diagram showing a U-phase current detection period, FIG. 8 is a diagram showing a V-phase current detection period; FIG. 9 is a diagram showing a W-phase current detection period, FIG. 10 is a diagram showing current detection timing, FIG. 11 is a flowchart of current detection timing determination processing and correction value calculation processing. FIG. 12 is a time chart showing the current amplitude difference of the U and V phases, FIG. 13 is an entire configuration diagram of a control system of a rotating electrical machine according to a second embodiment, FIG. 14 is a block diagram showing processing of the control unit and the first drive unit; FIG. 15 is a flowchart of current detection timing determination processing and correction value calculation processing.
 <第1実施形態>
 以下、本開示に係る制御装置を具体化した第1実施形態について、図面を参照しつつ説明する。
First Embodiment
Hereinafter, a first embodiment of a control device according to the present disclosure will be described with reference to the drawings.
 図1に示すように、制御システムは、回転電機10を備えている。回転電機10は、多相多重巻線を有しており、具体的には、3相2重巻線を有する同期機である。本実施形態において、回転電機10は、巻線界磁型のものである。回転電機10のロータ11には、磁極を形成するための界磁巻線12が設けられている。界磁巻線12には、界磁電流が流れる。なお、本実施形態では、回転電機10として、発電機としての機能に加えて、電動機としての機能を備えるものが用いられている。 As shown in FIG. 1, the control system includes a rotating electrical machine 10. The rotary electric machine 10 has a multiphase multiple winding, and specifically, is a synchronous machine having a three-phase double winding. In the present embodiment, the rotary electric machine 10 is of the winding field type. The rotor 11 of the rotary electric machine 10 is provided with a field winding 12 for forming a magnetic pole. A field current flows through the field winding 12. In addition, in addition to the function as a generator, what is provided with the function as an electric motor is used as the rotary electric machine 10 in this embodiment.
 回転電機10のステータ13には、2つの電機子巻線群である第1巻線群14,第2巻線群15が巻回されている。第1,第2巻線群14,15に対して、ロータ11が共通化されている。第1巻線群14及び第2巻線群15のそれぞれは、星形結線された3相巻線からなる。第1巻線群14は、電気角で互いに120°ずれたU,V,W相巻線14U,14V,14Wを有し、第2巻線群15は、電気角で互いに120°ずれたX,Y,Z相巻線15X,15Y,15Zを有している。本実施形態では、図2に示すように、第1巻線群14と第2巻線群15とのなす角度である空間位相差Δαが電気角で30°とされている。より具体的には、X相巻線15Xが、U相巻線14Uに対して電気角で30°進んでいる。なお、本実施形態では、第1巻線群14と第2巻線群15とが同じ構成とされている。具体的には、第1巻線群14を構成する各相巻線14U~14Wそれぞれの巻数と、第2巻線群15を構成する各相巻線15X~15Zそれぞれの巻数とが等しく設定されている。 A first winding group 14 and a second winding group 15, which are two armature winding groups, are wound around the stator 13 of the rotary electric machine 10. The rotor 11 is made common to the first and second winding groups 14 and 15. Each of the first winding group 14 and the second winding group 15 consists of star-connected three-phase windings. The first winding group 14 has U, V, W phase windings 14U, 14V, 14W which are mutually shifted by 120 ° in electrical angle, and the second winding group 15 is X which is mutually shifted by 120 ° in electrical angle , Y, Z phase windings 15X, 15Y, 15Z. In the present embodiment, as shown in FIG. 2, the spatial phase difference Δα, which is the angle between the first winding group 14 and the second winding group 15, is set to 30 ° in electrical angle. More specifically, X-phase winding 15X is advanced by 30 ° in electrical angle with respect to U-phase winding 14U. In the present embodiment, the first winding group 14 and the second winding group 15 have the same configuration. Specifically, the number of turns of each of phase windings 14U to 14W constituting first winding group 14 and the number of turns of each phase windings 15X to 15Z constituting second winding group 15 are set equal. ing.
 制御システムは、正極側導電部材20と、直流電源21と、モジュールMJとを備えている。正極側導電部材20は、例えばバスバーである。直流電源21は、例えば、蓄電池であり、より具体的には2次電池である。モジュールMJは、X相上,下アームスイッチSXH,SXLの直列接続体、Y相上,下アームスイッチSYH,SYLの直列接続体、Z相上,下アームスイッチSZH,SZLの直列接続体、U相上,下アームスイッチSUH,SULの直列接続体、V相上,下アームスイッチSVH,SVLの直列接続体、W相上,下アームスイッチSWH,SWLの直列接続体、及び駆動部DUを備えている。本実施形態において、各スイッチSXH~SWLは、NチャネルMOSFETである。また、駆動部DUは、ASIC(Application Specific Integrated Circuit)である。 The control system includes a positive electrode side conductive member 20, a DC power supply 21, and a module MJ. The positive electrode side conductive member 20 is, for example, a bus bar. The direct current power supply 21 is, for example, a storage battery, more specifically, a secondary battery. Module MJ is a series connection of X-phase upper and lower arm switches SXH and SXL, a series connection of Y-phase upper and lower arm switches SYH and SYL, a series connection of Z-phase upper and lower arm switches SZH and SZL, U A series connection of upper and lower arm switches SUH and SUL, a series connection of upper V-phase and lower arm switches SVH and SVL, a series connection of upper W-phase and lower arm switches SWH and SWL, and a drive unit DU ing. In the present embodiment, each of the switches SXH to SWL is an N-channel MOSFET. In addition, the drive unit DU is an application specific integrated circuit (ASIC).
 正極側導電部材20には、直流電源21の正極端子が接続されている。直流電源21の負極端子には、グランドが接続されている。各上アームスイッチSXH,SYH,SZH,SUH,SVH,SWHの高電位側端子であるドレインには、正極側導電部材20が接続されている。各下アームスイッチSXL,SYL,SZL,SUL,SVL,SWLの低電位側端子であるソースには、グランドが接続されている。 The positive electrode terminal of the DC power supply 21 is connected to the positive electrode side conductive member 20. The ground terminal is connected to the negative terminal of the DC power supply 21. The positive electrode side conductive member 20 is connected to the drain which is the high potential side terminal of each upper arm switch SXH, SYH, SZH, SUH, SVH, SWH. A ground is connected to a source which is a low potential side terminal of each of the lower arm switches SXL, SYL, SZL, SUL, SVL, and SWL.
 X相上,下アームスイッチSXH,SXLの接続点には、バスバー等のX相導電部材22Xを介して、X相巻線15Xの第1端が接続されている。Y相上,下アームスイッチSYH,SYLの接続点には、バスバー等のY相導電部材22Yを介して、Y相巻線15Yの第1端が接続されている。Z相上,下アームスイッチSZH,SZLの接続点には、バスバー等のZ相導電部材22Zを介して、Z相巻線15Zの第1端が接続されている。X,Y,Z相巻線15X,15Y,15Zの第2端は、中性点で接続されている。 A first end of an X-phase winding 15X is connected to a connection point between the X-phase upper and lower arm switches SXH and SXL via an X-phase conductive member 22X such as a bus bar. The first end of the Y-phase winding 15Y is connected to the connection point of the Y-phase upper and lower arm switches SYH and SYL via a Y-phase conductive member 22Y such as a bus bar. The first end of the Z-phase winding 15Z is connected to the connection point of the Z-phase upper and lower arm switches SZH and SZL via a Z-phase conductive member 22Z such as a bus bar. The second ends of the X, Y, Z phase windings 15X, 15Y, 15Z are connected at a neutral point.
 U相上,下アームスイッチSUH,SULの接続点には、バスバー等のU相導電部材22Uを介して、U相巻線14Uの第1端が接続されている。V相上,下アームスイッチSVH,SVLの接続点には、バスバー等のV相導電部材22Vを介して、V相巻線14Vの第1端が接続されている。W相上,下アームスイッチSWH,SWLの接続点には、バスバー等のW相導電部材22Wを介して、W相巻線14Wの第1端が接続されている。U,V,W相巻線14U,14V,14Wの第2端は、中性点で接続されている。なお、各相の上,下アームスイッチと、正極側導電部材20とがインバータを構成する。 A first end of a U-phase winding 14U is connected to a connection point between the U-phase upper and lower arm switches SUH and SUL via a U-phase conductive member 22U such as a bus bar. The first end of the V-phase winding 14V is connected to the connection point of the V-phase upper and lower arm switches SVH and SVL via a V-phase conductive member 22V such as a bus bar. The first end of the W-phase winding 14W is connected to the connection point of the W-phase upper and lower arm switches SWH and SWL via a W-phase conductive member 22W such as a bus bar. The second ends of the U, V, W phase windings 14U, 14V, 14W are connected at a neutral point. The upper and lower arm switches of each phase and the positive electrode side conductive member 20 constitute an inverter.
 制御システムは、制御部30を備えている。制御部30は、CPU及びメモリを備え、メモリに格納されたプログラムをCPUにて実行する。制御部30は、回転電機10の制御量をその指令値に制御すべく、各駆動部DU1~DU3と情報のやり取りを行う。本実施形態において、制御量はトルクであり、その指令値は指令トルクTrq*である。本実施形態に係るトルク制御は、電気角を直接検出するレゾルバ等の角度検出器の検出値を用いない位置センサレス制御である。また、本実施形態では、回転電機10のトルクを指令トルクTrq*に制御するために、180度矩形波通電制御が用いられる。 The control system includes a control unit 30. The control unit 30 includes a CPU and a memory, and the CPU executes a program stored in the memory. The control unit 30 exchanges information with each of the drive units DU1 to DU3 in order to control the control amount of the rotary electric machine 10 to the command value. In the present embodiment, the control amount is torque, and the command value thereof is command torque Trq *. The torque control according to the present embodiment is position sensorless control that does not use the detection value of an angle detector such as a resolver that directly detects an electrical angle. Further, in the present embodiment, in order to control the torque of the rotary electric machine 10 to the command torque Trq *, 180-degree rectangular wave energization control is used.
 図3を用いて、駆動部DU及び制御部30が行う処理について説明する。本実施形態において、駆動部DUが回転電機10の制御装置に相当する。なお、駆動部DU及び制御部30が提供する機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。 The process performed by the drive unit DU and the control unit 30 will be described with reference to FIG. In the present embodiment, the drive unit DU corresponds to a control device of the rotary electric machine 10. The functions provided by the drive unit DU and the control unit 30 can be provided, for example, by software recorded in a tangible memory device and a computer that executes the software, hardware, or a combination thereof.
 まず、制御部30の処理について説明する。 First, the process of the control unit 30 will be described.
 電圧指令設定部31は、指令トルクTrq*と、後述する加算部47から出力された推定角速度ωestとに基づいて、回転電機10のトルクを指令トルクTrq*に制御するために要求される電圧振幅Vamp及び電圧位相δを設定する。電圧振幅Vampは、回転電機10の巻線に印加される電圧ベクトルの大きさである。電圧位相は、電圧ベクトルと基準となる軸とのなす角度である。基準となる軸は、例えば、dq座標系におけるd軸である。なお、電圧振幅Vamp及び電圧位相δは、例えば、指令トルクTrq*及び推定角速度ωestと関係付けられて電圧振幅Vamp及び電圧位相δが規定されたマップ情報に基づいて設定されればよい。 Voltage command setting unit 31 has a voltage amplitude required to control the torque of rotating electrical machine 10 to command torque Trq * based on command torque Trq * and estimated angular velocity ωest output from addition unit 47 described later. Set Vamp and voltage phase δ. The voltage amplitude Vamp is the magnitude of a voltage vector applied to the winding of the rotating electrical machine 10. The voltage phase is the angle between the voltage vector and the reference axis. The reference axis is, for example, the d axis in the dq coordinate system. The voltage amplitude Vamp and the voltage phase δ may be set based on, for example, map information in which the voltage amplitude Vamp and the voltage phase δ are defined in association with the command torque Trq * and the estimated angular velocity ωest.
 続いて、駆動部DUの処理について説明する。 Subsequently, processing of the drive unit DU will be described.
 第1電流検出部41は、U,V,W相導電部材22U,22V,22Wに流れる電流をU,V,W相電流IUr,IVr,IWrとして検出する。第2電流検出部42は、X,Y,Z相導電部材22X,22Y,22Zに流れる電流をX,Y,Z相電流IXr,IYr,IZrとして検出する。 The first current detection unit 41 detects currents flowing in the U, V, W phase conductive members 22U, 22V, 22W as U, V, W phase currents IUr, IVr, IWr. The second current detection unit 42 detects currents flowing through the X, Y, Z phase conductive members 22X, 22Y, 22Z as X, Y, Z phase currents IXr, IYr, IZr.
 位相差算出部43は、第2電流検出部42で検出されたX,Y,Z相電流IXr,IYr,IZrのうち、少なくとも1つの相電流と、その相に対応する相電圧との位相差ξrを算出する。本実施形態では、Z相電流IXrとZ相の相電圧との位相差を算出する。位相差は、例えば、相電流及び相電圧のゼロクロスタイミングに基づいて算出される。なお、Z相の相電圧のゼロクロスタイミングは、後述する信号生成部50で生成されたZ相駆動信号GZに基づいて算出されればよい。 The phase difference calculation unit 43 is a phase difference between at least one phase current of the X, Y, Z phase currents IXr, IYr, IZr detected by the second current detection unit 42 and a phase voltage corresponding to the phase. Calculate ξ r. In the present embodiment, the phase difference between the Z-phase current IXr and the phase voltage of the Z-phase is calculated. The phase difference is calculated based on, for example, the zero cross timing of the phase current and the phase voltage. The zero cross timing of the phase voltage of the Z phase may be calculated based on the Z phase drive signal GZ generated by the signal generation unit 50 described later.
 目標位相差設定部44は、電圧指令設定部31により設定された電圧位相δに基づいて、目標位相差ξ*を設定する。なお、目標位相差ξ*は、例えば、電圧位相δと関係付けられて目標位相差ξ*が規定されたマップ情報に基づいて設定されればよい。 The target phase difference setting unit 44 sets a target phase difference ξ * based on the voltage phase δ set by the voltage command setting unit 31. The target phase difference ξ * may be set based on, for example, map information in which the target phase difference ξ * is defined in association with the voltage phase δ.
 位相偏差算出部45は、目標位相差ξ*から位相差ξrを減算することにより、位相偏差Δξを算出する。 The phase deviation calculating unit 45 calculates the phase deviation Δξ by subtracting the phase difference ξr from the target phase difference ξ *.
 フィードバック制御部46は、位相偏差Δξを0にフィードバック制御するための操作量として、回転電機10の電気角速度の基本値である基本角速度ωcを算出する。本実施形態では、フィードバック制御として、比例積分制御が用いられている。 The feedback control unit 46 calculates a basic angular velocity ωc, which is a basic value of the electrical angular velocity of the rotary electric machine 10, as an operation amount for feedback control of the phase deviation Δξ to zero. In this embodiment, proportional integral control is used as feedback control.
 加算部47は、回転電機10の電気角速度の初期値ω0を基本角速度ωcに加算することにより、電気角速度の推定値である推定角速度ωestを算出する。なお、初期値ω0は、例えば、各相巻線に生じる誘起電圧に基づいて算出されればよい。 The adding unit 47 calculates an estimated angular velocity ωest which is an estimated value of the electrical angular velocity by adding the initial value ω0 of the electrical angular velocity of the rotary electric machine 10 to the basic angular velocity ωc. The initial value ω0 may be calculated based on, for example, the induced voltage generated in each phase winding.
 積分器48は、推定角速度ωestを時間積分することにより、回転電機10の電気角の推定値である推定電気角θestを算出する。 The integrator 48 integrates the estimated angular velocity ωest in time to calculate an estimated electrical angle θest which is an estimated value of the electrical angle of the rotary electric machine 10.
 補正部49は、推定電気角θestから、後述する補正値算出部51により算出された補正値ΔCを減算することにより、補正後電気角θfを算出する。 The correction unit 49 calculates a corrected electric angle θf by subtracting a correction value ΔC calculated by a correction value calculation unit 51 described later from the estimated electric angle θest.
 信号生成部50は、電圧振幅Vamp、電圧位相δ及び補正後電気角θfに基づいて、X,Y,W相駆動信号GX,GY,GZと、U,V,W相駆動信号GU,GV,GWとを生成する。 The signal generation unit 50 generates X, Y, W phase drive signals GX, GY, GZ, U, V, W phase drive signals GU, GV, based on the voltage amplitude Vamp, the voltage phase δ and the corrected electrical angle θf. Generate GW and.
 本実施形態において、X,Y,Z相駆動信号GX,GY,GZは、論値Hにより、X,Y,Z相上アームスイッチSXH,SYH,SZHをオンし、X,Y,Z相下アームスイッチSXL,SYL,SZLをオフすることを指示する。また、X,Y,Z相駆動信号GX,GY,GZは、論値Lにより、X,Y,Z相上アームスイッチSXH,SYH,SZHをオフし、X,Y,Z相下アームスイッチSXL,SYL,SZLをオンすることを指示する。同様に、U,V,W相駆動信号GU,GV,GWは、論値Hにより、U,V,W相上アームスイッチSUH,SVH,SWHをオンし、U,V,W相下アームスイッチSUL,SVL,SWLをオフすることを指示する。生成された各駆動信号GX,GY,GZ,GU,GV,GWに従って、各スイッチSXH,SXL,SYH,SYL,SZH,SZL,SUH,SUL,SVH,SVL,SWH,SWLがオンオフされる。なお、各相において、上アームスイッチ及び下アームスイッチは、実際には、デッドタイムを挟みつつ交互にオンされる。 In the present embodiment, the X, Y, and Z phase drive signals GX, GY, and GZ turn on the X, Y, and Z phase upper arm switches SXH, SYH, and SZH by the theoretical value H, and lower the X, Y, and Z phases. It instructs to turn off the arm switches SXL, SYL and SZL. The X, Y and Z phase drive signals GX, GY and GZ turn off the X, Y and Z phase upper arm switches SXH, SYH and SZH according to the theoretical value L, and the X, Y and Z phase lower arm switches SXL. , SYL and SZL are instructed to be turned on. Similarly, the U, V, W phase drive signals GU, GV, GW turn on the U, V, W phase upper arm switches SUH, SVH, SWH by the theoretical value H, and the U, V, W phase lower arm switches It instructs to turn off SUL, SVL and SWL. The switches SXH, SXL, SYH, SYL, SZH, SZL, SUH, SUL, SVH, SVL, SWH, SWL are turned on or off in accordance with the generated drive signals GX, GY, GZ, GU, GV, GW. In each phase, in practice, the upper arm switch and the lower arm switch are alternately turned on with a dead time.
 信号生成部50は、まず、図4に示すようなX,Y,Z相駆動信号GX,GY,GZを生成する。X,Y,Z相駆動信号GX,GY,GZは、180°の電気角範囲に渡る論理Hの期間と、180°の電気角範囲に渡る論理Lの期間とからなる。X,Y,Z相駆動信号GX,GY,GZは、LからHへの切り替えタイミングが、互いに120°ずらされている。 The signal generation unit 50 first generates X, Y, Z phase drive signals GX, GY, GZ as shown in FIG. The X, Y, Z phase drive signals GX, GY, GZ consist of a period of logic H over an electrical angle range of 180 ° and a period of logic L over an electrical angle range of 180 °. In the X, Y and Z phase drive signals GX, GY and GZ, the switching timing from L to H is mutually shifted by 120 °.
 信号生成部50は、生成したX,Y,Z相駆動信号GX,GY,GZの位相を空間位相差Δα(30°)だけ遅らせることにより、U,V,W相駆動信号GU,GV,GWを生成する。詳しくは、信号生成部50は、U相駆動信号GUをX相駆動信号GXに対して空間位相差Δαだけ遅らせる。 The signal generation unit 50 delays the phases of the generated X, Y, Z phase drive signals GX, GY, GZ by the space phase difference Δα (30 °) to generate the U, V, W phase drive signals GU, GV, GW. Generate Specifically, the signal generation unit 50 delays the U-phase drive signal GU relative to the X-phase drive signal GX by the spatial phase difference Δα.
 ちなみに、本実施形態において、位相差算出部43、目標位相差設定部44、位相偏差算出部45、フィードバック制御部46、加算部47、積分器48、補正部49及び信号生成部50が操作部に相当する。また、位相差算出部43、目標位相差設定部44、位相偏差算出部45、フィードバック制御部46、加算部47、積分器48が位置推定部に相当する。 Incidentally, in the present embodiment, the phase difference calculation unit 43, the target phase difference setting unit 44, the phase deviation calculation unit 45, the feedback control unit 46, the addition unit 47, the integrator 48, the correction unit 49, and the signal generation unit 50 It corresponds to Further, the phase difference calculation unit 43, the target phase difference setting unit 44, the phase deviation calculation unit 45, the feedback control unit 46, the addition unit 47, and the integrator 48 correspond to a position estimation unit.
 補正値算出部51は、第1電流検出部41により検出されたU,V,W相電流IUr,IVr,IWrに基づいて、補正値ΔCを算出する。補正値ΔCは、ロータ11の回転速度の変化を抑制するために用いられる。本実施形態では、補正値ΔCの算出に用いられる電流の検出タイミングに特徴がある。以下、電流検出タイミングに関する問題を説明した後、本実施形態の電流検出タイミングについて説明する。 The correction value calculation unit 51 calculates the correction value ΔC based on the U, V, W phase currents IUr, IVr, IWr detected by the first current detection unit 41. The correction value ΔC is used to suppress a change in the rotational speed of the rotor 11. The present embodiment is characterized in the detection timing of the current used to calculate the correction value ΔC. The current detection timing of the present embodiment will be described below after the problem regarding the current detection timing is described.
 図5にU相電流の推移を示す。図5において、干渉なしの場合の波形は、U,V,W,X,Y,Z相のうちU,V,W相のみに通電したときのU相電流の推移を示し、干渉ありの場合の波形は、U,V,W,X,Y,Z相の全てに通電したときのU相電流の推移を示す。 FIG. 5 shows the transition of U-phase current. In FIG. 5, the waveform in the case of no interference shows the transition of the U-phase current when only the U, V, W phase among the U, V, W, X, Y, Z phases is energized, and in the case of interference The waveform of (1) shows the transition of the U-phase current when all of the U, V, W, X, Y and Z phases are energized.
 電流検出タイミングが時刻t2から時刻t1にずれると、干渉ありの場合、干渉なしの場合と比較して電流検出値が大きくずれる。これは、下式(eq1)に示すように、巻線間の相互インダクタンスL,mに起因する。下式(eq1)は、回転電機10の電圧方程式を示す。 When the current detection timing is shifted from time t2 to time t1, in the presence of interference, the current detection value is largely shifted as compared with the case of no interference. This is due to the mutual inductance L, m between the windings as shown in the following equation (eq1). The following equation (eq1) shows a voltage equation of the rotating electrical machine 10.
Figure JPOXMLDOC01-appb-M000001
 上式(eq1)において、VU,VV,VW,VX,VY,VZは、U,V,W,X,Y,Z相電圧を示し、IU,IV,IW,IX,IY,IZは、U,V,W,X,Y,Z相電流を示す。Lは、各相の自己インダクタンスを示し、同一の巻線群内における相互インダクタンスを示し、mは第1,第2巻線群14,15との間における相互インダクタンスを示す。eU,eV,eW,eX,eY,eZは、U,V,W,X,Y,Z相の誘起電圧を示す。
Figure JPOXMLDOC01-appb-M000001
In the above equation (eq1), VU, VV, VW, VX, VY and VZ indicate U, V, W, X, Y and Z phase voltages, and IU, IV, IW, IX, IY and IZ indicate U , V, W, X, Y, Z phase current. L indicates the self-inductance of each phase, and indicates the mutual inductance in the same winding group, and m indicates the mutual inductance between the first and second winding groups 14 and 15. eU, eV, eW, eX, eY and eZ indicate induced voltages of U, V, W, X, Y and Z phases.
 ここで、U相に着目すると、上式(eq1)の右辺の6×6の行列において、1行6列目の成分が0となっている。これは、図6に示すように、U相電圧ベクトルVUとZ相電圧ベクトルVZとが直交していることにより、Z相電流の時間変化の影響をU相電流が受けないことを示している。なお、U,V,W相電圧ベクトルVU,VV,VWは、電気角で120°ずれており、X,Y,Z相電圧ベクトルVX,VY,VZも、電気角で120°ずれている。 Here, focusing on the U phase, in the 6 × 6 matrix on the right side of the above equation (eq1), the component in the first row and the sixth column is zero. This indicates that the U-phase current is not affected by the time change of the Z-phase current because the U-phase voltage vector VU and the Z-phase voltage vector VZ are orthogonal as shown in FIG. . The U, V, W phase voltage vectors VU, VV, VW are shifted by 120 ° in electrical angle, and the X, Y, Z phase voltage vectors VX, VY, VZ are also shifted by 120 ° in electrical angle.
 また、上式(eq1)の6×6の行列において、1行4列目の成分と1行5列目の成分とが、絶対値が同一でかつ符号が反対となっている。これは、図6に示すように、X相電圧ベクトルVXのU相成分と、Y相電圧ベクトルVYのU相成分とが相殺される関係にあり、例えばZ相のスイッチング状態の切り替え時における「m×dIX/dt」と「-m×dIY/dt」とが相殺される関係にあることを示している。 Further, in the 6 × 6 matrix of the above equation (eq1), the components in the first row and the fourth column and the components in the first row and the fifth column have the same absolute value and opposite sign. This is, as shown in FIG. 6, in a relationship in which the U-phase component of the X-phase voltage vector VX and the U-phase component of the Y-phase voltage vector VY cancel each other. It shows that there is a relation in which m × dIX / dt and “−m × dIY / dt” are offset.
 以上から、本実施形態では、図7に示すように、Z相下アームスイッチSZLのオンタイミングtaから、そのタイミングの直後に出現するW相下アームスイッチSWLのオンタイミングtbよりも前までのU相第1期間、及びZ相上アームスイッチSZHのオンタイミングtcから、そのタイミングの直後に出現するW相上アームスイッチSWHのオンタイミングtdよりも前までのU相第2期間が、U相電流検出期間とされている。この場合、対象巻線はU相巻線14Uであり、直交相はZ相である。 From the above, in the present embodiment, as shown in FIG. 7, U from the on-timing ta of the Z-phase lower arm switch SZL to the on-timing tb of the W-phase lower arm switch SWL appearing immediately after that timing U-phase current from U-phase second period and U-phase second period from on-timing tc of Z-phase upper arm switch SZH to on-timing td of W-phase upper arm switch SWH appearing immediately after the timing It is considered as a detection period. In this case, the target winding is the U-phase winding 14U, and the quadrature phase is the Z-phase.
 続いて、V相に着目すると、上式(eq1)の6×6の行列において、2行4列目の成分が0となっている。これは、図6に示すように、V相電圧ベクトルVVとX相電圧ベクトルVXとが直交していることにより、X相電流の時間変化の影響をV相電流が受けないことを示している。 Subsequently, focusing on the V phase, in the 6 × 6 matrix of the above equation (eq1), the component in the second row and the fourth column is zero. This indicates that the V-phase current is not affected by the time change of the X-phase current because the V-phase voltage vector VV and the X-phase voltage vector VX are orthogonal to each other as shown in FIG. .
 また、上式(eq1)の6×6の行列において、2行5列目の成分と2行6列目の成分とが、絶対値が同一でかつ符号が反対となっている。これは、図6に示すように、Y相電圧ベクトルVYのV相成分と、Z相電圧ベクトルVZのV相成分とが相殺される関係にあり、「m×dIY/dt」と「-m×dIZ/dt」とが相殺される関係にあることを示している。 Further, in the 6 × 6 matrix of the above equation (eq1), the component in the second row and the fifth column and the component in the second row and the sixth column have the same absolute value and opposite sign. This is because, as shown in FIG. 6, the V-phase component of the Y-phase voltage vector VY and the V-phase component of the Z-phase voltage vector VZ are offset, and “m × dIY / dt” and “-m It shows that there is an offset relationship with x dIZ / dt.
 以上から、本実施形態では、図8に示すように、X相下アームスイッチSXLのオンタイミングteから、そのタイミングの直後に出現するU相下アームスイッチSULのオンタイミングtfよりも前までのV相第1期間、及びX相上アームスイッチSXHのオンタイミングtgから、そのタイミングの直後に出現するU相上アームスイッチSUHのオンタイミングthよりも前までのV相第2期間が、V相電流検出期間とされている。この場合、対象巻線はV相巻線14Vであり、直交相はX相である。 From the above, in this embodiment, as shown in FIG. 8, V from the on timing te of the X phase lower arm switch SXL to the on timing tf of the U phase lower arm switch SUL appearing immediately after that timing V phase current from V phase first period and ON timing tg of X phase upper arm switch SXH to ON timing th of U phase upper arm switch SUH appearing immediately after the timing is V phase current It is considered as a detection period. In this case, the target winding is the V-phase winding 14 V, and the quadrature phase is the X phase.
 続いて、W相に着目すると、上式(eq1)の6×6の行列において、3行5列目の成分が0となっている。これは、図6に示すように、W相電圧ベクトルVWとY相電圧ベクトルVYとが直交していることにより、Y相電流の時間変化の影響をW相電流が受けないことを示している。 Subsequently, focusing on the W phase, the component in the third row and the fifth column is 0 in the 6 × 6 matrix of the above equation (eq1). This indicates that the W-phase current is not influenced by the time change of the Y-phase current because the W-phase voltage vector VW and the Y-phase voltage vector VY are orthogonal as shown in FIG. .
 また、上式(eq1)の6×6の行列において、3行4列目の成分と3行6列目の成分とが、絶対値が同一でかつ符号が反対となっている。これは、図6に示すように、Z相電圧ベクトルVZのW相成分と、X相電圧ベクトルVXのW相成分とが相殺される関係にあり、「-m×dIX/dt」と「m×dIZ/dt」とが相殺される関係にあることを示している。 Further, in the 6 × 6 matrix of the above equation (eq1), the component in the third row and the fourth column and the component in the third row and the sixth column have the same absolute value and opposite sign. This is because, as shown in FIG. 6, the W-phase component of the Z-phase voltage vector VZ and the W-phase component of the X-phase voltage vector VX are offset, and “-m × dIX / dt” and “m It shows that there is an offset relationship with x dIZ / dt.
 以上から、本実施形態では、図9に示すように、Y相下アームスイッチSYLのオンタイミングtiから、そのタイミングの直後に出現するU相下アームスイッチSULのオンタイミングtjよりも前までのW相第1期間、及びY相上アームスイッチSYHのオンタイミングtkから、そのタイミングの直後に出現するU相上アームスイッチSUHのオンタイミングtmよりも前までのW相第2期間が、W相電流検出期間とされている。この場合、対象巻線はW相巻線14Wであり、直交相はY相である。 From the above, in the present embodiment, as shown in FIG. 9, W from the on-timing ti of the Y-phase lower arm switch SYL to the on-timing tj of the U-phase lower arm switch SUL appearing immediately after that timing The W phase current period from the on phase tk of the phase 1st period and the Y phase upper arm switch SYH to the on timing tm of the U phase upper arm switch SUH appearing immediately after that timing is the W phase current It is considered as a detection period. In this case, the target winding is the W-phase winding 14W, and the orthogonal phase is the Y-phase.
 本実施形態では、図10に示すように、U相電流検出期間において、Z相下アームスイッチSZLのオンタイミングtaと、Z相上アームスイッチSZHのオンタイミングtcとが、第1電流検出部41によるU相電流IUrの検出タイミングに設定されている。また、V相電流検出期間において、X相下アームスイッチSXLのオンタイミングteと、X相上アームスイッチSXHのオンタイミングtgとが、第1電流検出部41によるV相電流IVrの検出タイミングに設定されている。また、W相電流検出期間において、Y相下アームスイッチSYLのオンタイミングtiと、Y相上アームスイッチSYHのオンタイミングtkとが、第1電流検出部41によるW相電流IWrの検出タイミングに設定されている。これにより、電気角1周期において、U,V,W相電流IUr,IVr,IWrがそれぞれ2回検出される。 In the present embodiment, as shown in FIG. 10, in the U-phase current detection period, the on-timing ta of the Z-phase lower arm switch SZL and the on-timing tc of the Z-phase upper arm switch SZH are the first current detection unit 41. It is set to the detection timing of U phase current IUr by. Further, in the V-phase current detection period, the on-timing t of the X-phase lower arm switch SXL and the on-timing tg of the X-phase upper arm switch SXH are set to the detection timing of the V-phase current IVr by the first current detection unit 41. It is done. Further, in the W phase current detection period, the on timing ti of the Y phase lower arm switch SYL and the on timing tk of the Y phase upper arm switch SYH are set to the detection timing of the W phase current IWr by the first current detection unit 41. It is done. Thus, U, V and W phase currents IUr, IVr and IWr are detected twice each in one cycle of the electrical angle.
 図11に、本実施形態に係る電流検出タイミングの決定処理及び補正値ΔCの算出処理の手順を示す。この処理は、第2電流検出部42及び補正値算出部51の協働により、例えば所定の処理周期毎に繰り返し実行される。 FIG. 11 shows the procedure of the process of determining the current detection timing and the process of calculating the correction value ΔC according to the present embodiment. This process is repeatedly performed, for example, every predetermined processing cycle by cooperation of the second current detection unit 42 and the correction value calculation unit 51.
 ステップS10では、X相駆動信号GXがHからLに切り替わったとの条件、及びX相駆動信号GXがLからHに切り替わったとの条件のいずれかが成立したか否かを判定する。この処理は、V相電流IVrの検出タイミングであるか否かを判定するための処理である。 In step S10, it is determined whether either the condition that the X-phase drive signal GX has switched from H to L or the condition that the X-phase drive signal GX has switched from L to H has been satisfied. This process is a process for determining whether or not it is a detection timing of the V-phase current IVr.
 ステップS10において肯定判定した場合には、ステップS11に進み、V相電流IVrを検出する。 When an affirmative determination is made in step S10, the process proceeds to step S11, and the V-phase current IVr is detected.
 ステップS12では、今回の処理周期で検出したV相電流IVr[n]の絶対値から、前回検出したV相電流IVr[n-1]の絶対値を減算することにより、V相電流振幅差ΔIV(電流の振幅変化量に相当)を算出する。なお、図12に、V相電流振幅差ΔIVの算出態様の一例を示す。図12(a)は、U,V相電流IUr,IVrの推移を示し、図12(b),(c)は、X,Z相駆動信号GX,GZの推移を示す。図12は、ロータ11の回転速度が徐々に上昇している状態を示す。図12において、各タイミングta,tc,te,tgは、先の図10に示した各タイミングta,tc,te,tgに対応している。 In step S12, the absolute value of V-phase current IVr [n-1] detected in the previous time is subtracted from the absolute value of V-phase current IVr [n] detected in the current processing cycle to obtain V-phase current amplitude difference ΔIV. Calculate (corresponding to the amount of change in amplitude of the current). FIG. 12 shows an example of how to calculate the V-phase current amplitude difference ΔIV. 12 (a) shows the transition of U and V phase currents IUr and IVr, and FIGS. 12 (b) and 12 (c) show the transition of X and Z phase drive signals GX and GZ. FIG. 12 shows a state where the rotational speed of the rotor 11 is gradually rising. In FIG. 12, the respective timings ta, tc, te and tg correspond to the respective timings ta, tc, te and tg shown in FIG.
 ステップS13では、V相電流振幅差ΔIVに基づいて、補正値ΔCを算出する。本実施形態では、V相電流振幅差ΔIVを0にフィードバック制御するための操作量として、補正値ΔCを算出する。本実施形態では、フィードバック制御として、比例積分制御が用いられている。算出した補正値ΔCは、補正部49に出力される。 In step S13, a correction value ΔC is calculated based on the V-phase current amplitude difference ΔIV. In the present embodiment, a correction value ΔC is calculated as an operation amount for feedback control of the V-phase current amplitude difference ΔIV to zero. In this embodiment, proportional integral control is used as feedback control. The calculated correction value ΔC is output to the correction unit 49.
 ステップS10において否定判定した場合には、ステップS14に進み、Y相駆動信号GYがHからLに切り替わったとの条件、及びY相駆動信号GYがLからHに切り替わったとの条件のいずれかが成立したか否かを判定する。この処理は、W相電流IWrの検出タイミングであるか否かを判定するための処理である。 If a negative determination is made in step S10, the process proceeds to step S14, and either the condition that the Y phase drive signal GY has switched from H to L or the condition that the Y phase drive signal GY has switched from L to H is satisfied. It is determined whether it has been done. This process is a process for determining whether or not it is the detection timing of the W-phase current IWr.
 ステップS14において肯定判定した場合には、ステップS15に進み、W相電流IWrを検出する。ステップS16では、今回の処理周期で検出したW相電流IWr[n]の絶対値から、前回検出したW相電流IWr[n-1]の絶対値を減算することにより、W相電流振幅差ΔIWを算出する。 If an affirmative determination is made in step S14, the process proceeds to step S15, and the W-phase current IWr is detected. In step S16, the W-phase current amplitude difference ΔIW is obtained by subtracting the absolute value of the W-phase current IWr [n-1] detected last time from the absolute value of the W-phase current IWr [n] detected in the current processing cycle. Calculate
 ステップS17では、W相電流振幅差ΔIWに基づいて、補正値ΔCを算出する。本実施形態では、W相電流振幅差ΔIWを0にフィードバック制御するための操作量として、補正値ΔCを算出する。本実施形態では、フィードバック制御として、比例積分制御が用いられている。算出した補正値ΔCは、補正部49に出力される。 In step S17, the correction value ΔC is calculated based on the W-phase current amplitude difference ΔIW. In the present embodiment, a correction value ΔC is calculated as an operation amount for feedback control of the W-phase current amplitude difference ΔIW to zero. In this embodiment, proportional integral control is used as feedback control. The calculated correction value ΔC is output to the correction unit 49.
 ステップS14において否定判定した場合には、ステップS18に進み、Z相駆動信号GZがHからLに切り替わったとの条件、及びZ相駆動信号GZがLからHに切り替わったとの条件のいずれかが成立したか否かを判定する。この処理は、U相電流IUrの検出タイミングであるか否かを判定するための処理である。 If a negative determination is made in step S14, the process proceeds to step S18, and either the condition that the Z phase drive signal GZ has switched from H to L or the condition that the Z phase drive signal GZ has switched from L to H is satisfied. It is determined whether it has been done. This process is a process for determining whether or not it is a detection timing of the U-phase current IUr.
 ステップS18において肯定判定した場合には、ステップS19に進み、U相電流IUrを検出する。ステップS20では、今回の処理周期で検出したU相電流IUr[n]の絶対値から、前回検出したU相電流IUr[n-1]の絶対値を減算することにより、U相電流振幅差ΔIUを算出する。 When an affirmative determination is made in step S18, the process proceeds to step S19, and the U-phase current IUr is detected. In step S20, the difference between the U-phase current amplitudes ΔIU is obtained by subtracting the absolute value of the U-phase current IUr [n-1] detected last time from the absolute value of the U-phase current IUr [n] detected in the current processing cycle. Calculate
 ステップS21では、U相電流振幅差ΔIUに基づいて、補正値ΔCを算出する。本実施形態では、U相電流振幅差ΔIUを0にフィードバック制御するための操作量として、補正値ΔCを算出する。本実施形態では、フィードバック制御として、比例積分制御が用いられている。算出した補正値ΔCは、補正部49に出力される。以上説明した処理により、1電気角周期において、補正値ΔCが3回算出される。 In step S21, a correction value ΔC is calculated based on the U-phase current amplitude difference ΔIU. In the present embodiment, a correction value ΔC is calculated as an operation amount for feedback control of the U-phase current amplitude difference ΔIU to zero. In this embodiment, proportional integral control is used as feedback control. The calculated correction value ΔC is output to the correction unit 49. By the process described above, the correction value ΔC is calculated three times in one electrical angle cycle.
 なお、本実施形態において、ステップS12,S16,S20の処理が変化量算出部に相当する。また、ステップS13,S17,S21の処理及び補正部49が位置補正部に相当する。 In the present embodiment, the processing of steps S12, S16, and S20 corresponds to the change amount calculation unit. Also, the processing of steps S13, S17, and S21 and the correction unit 49 correspond to a position correction unit.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described above, the following effects can be obtained.
 Z相下アームスイッチSZLのオンタイミングtaと、Z相上アームスイッチSZHのオンタイミングtcとが、U相電流IUrの検出タイミングに設定されている。これにより、U相電流IUrに干渉する電流が流れている期間を避けてU相電流IUrを検出することができ、検出したU相電流IUrに高周波ノイズを除去するローパスフィルタ処理を施すことなく、U相電流IUrの検出精度の低下を抑制することができる。これにより、位置センサレス制御におけるトルク制御性の低下を抑制することができる。 The on timing ta of the Z phase lower arm switch SZL and the on timing tc of the Z phase upper arm switch SZH are set to the detection timing of the U phase current IUr. As a result, the U-phase current IUr can be detected while avoiding a period in which a current interfering with the U-phase current IUr flows, and the detected U-phase current IUr is not subjected to low-pass filter processing for removing high frequency noise. It is possible to suppress a decrease in detection accuracy of U-phase current IUr. As a result, it is possible to suppress a decrease in torque controllability in position sensorless control.
 また、Z相下アームスイッチSZLのオンへの切り替えタイミングと、Z相上アームスイッチSZHのオンへの切り替えタイミングとが検出タイミングに設定されることにより、検出タイミングの設定を簡素にできる。その結果、駆動部DUの演算負荷を低減することができる。 Further, by setting the switching timing of the Z-phase lower arm switch SZL to ON and the switching timing of the Z-phase upper arm switch SZH to detection timing, setting of the detection timing can be simplified. As a result, the calculation load of the drive unit DU can be reduced.
 なお、上述した効果は、V,W相電流IVr,IWrの検出についても同様である。 The above-described effect is the same for detection of the V and W phase currents IVr and IWr.
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図13に示すように、モジュールの構成が変更されている。なお、図13において、先の図1に示した構成と同一の構成又は対応する構成については、便宜上、同一の符号を付している。
Second Embodiment
Hereinafter, the second embodiment will be described focusing on differences from the first embodiment with reference to the drawings. In the present embodiment, as shown in FIG. 13, the configuration of the module is changed. Note that, in FIG. 13, the same components as or the corresponding components to those shown in FIG. 1 are denoted by the same reference numerals for the sake of convenience.
 制御システムは、第1,第2,第3モジュールM1,M2,M3を備えている。第1モジュールM1は、Z相上,下アームスイッチSZH,SZLの直列接続体と、U相上,下アームスイッチSUH,SULの直列接続体と、第1駆動部DU1とを備えている。第1駆動部DU1は、ASICである。第1駆動部DU1により、U,Z相導電部材22U,22Zを流れるU,Z相電流IUr,IZrが検出される。 The control system comprises first, second and third modules M1, M2 and M3. The first module M1 includes a series connection of Z-phase upper and lower arm switches SZH and SZL, a series connection of U-phase upper and lower arm switches SUH and SUL, and a first drive unit DU1. The first drive unit DU1 is an ASIC. The first drive unit DU1 detects U and Z phase currents IUr and IZr flowing through the U and Z phase conductive members 22U and 22Z.
 第2モジュールM2は、X相上,下アームスイッチSXH,SXLの直列接続体と、V相上,下アームスイッチSVH,SVLの直列接続体と、第2駆動部DU2とを備えている。第2駆動部DU2は、ASICである。第2駆動部DU2により、X,V相導電部材22X,22Vを流れるX,V相電流IXr,IVrが検出される。 The second module M2 includes a series connection of X-phase upper and lower arm switches SXH and SXL, a series connection of V-phase upper and lower arm switches SVH and SVL, and a second drive unit DU2. The second drive unit DU2 is an ASIC. The second drive unit DU2 detects X and V phase currents IXr and IVr flowing through the X and V phase conductive members 22X and 22V.
 第3モジュールM3は、Y相上,下アームスイッチSYH,SYLの直列接続体と、W相上,下アームスイッチSWH,SWLの直列接続体と、第3駆動部DU3とを備えている。第3駆動部DU3は、ASICである。第3駆動部DU3により、Y,W相導電部材22Y,22Wを流れるY,W相電流IYr,IWrが検出される。 The third module M3 includes a series connection of Y-phase upper and lower arm switches SYH and SYL, a series connection of W-phase upper and lower arm switches SWH and SWL, and a third drive unit DU3. The third drive unit DU3 is an ASIC. The third drive unit DU3 detects Y and W phase currents IYr and IWr flowing through the Y and W phase conductive members 22Y and 22W.
 なお、各駆動部DU1~DU3及び制御部30が提供する機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。 The functions provided by each of the drive units DU1 to DU3 and the control unit 30 can be provided by, for example, software recorded in a substantial memory device and a computer that executes the software, hardware, or a combination thereof. .
 続いて、第1~第3駆動部DU1~DU3及び制御部30が行う処理について、第1実施形態との相違点を中心に説明する。図14には、第1駆動部DU1の処理の機能ブロック図を示す。なお、図14において、先の図3に示した構成と同一の構成又は対応する構成については、便宜上、同一の符号を付している。 Next, processing performed by the first to third drive units DU1 to DU3 and the control unit 30 will be described focusing on differences from the first embodiment. FIG. 14 shows a functional block diagram of processing of the first drive unit DU1. In FIG. 14, the same components as or the corresponding components to those shown in FIG. 3 are denoted by the same reference numerals for the sake of convenience.
 第1電流検出部41は、U相電流IUrを検出し、第2電流検出部42は、Z相電流IZrを検出する。信号生成部50は、U,Z相駆動信号GU,GZを生成する。 The first current detection unit 41 detects the U-phase current IUr, and the second current detection unit 42 detects the Z-phase current IZr. The signal generation unit 50 generates U and Z phase drive signals GU and GZ.
 なお、第2駆動部DU2において、第1電流検出部41は、V相電流IVrを検出し、第2電流検出部42は、X相電流IXrを検出する。信号生成部50は、V,X相駆動信号GV,GXを生成する。また、第3駆動部DU3において、第1電流検出部41は、W相電流Iwrを検出し、第2電流検出部42は、Y相電流IYrを検出する。信号生成部50は、W,Y相駆動信号GW,GYを生成する。 In the second drive unit DU2, the first current detection unit 41 detects the V-phase current IVr, and the second current detection unit 42 detects the X-phase current IXr. The signal generation unit 50 generates the V, X-phase drive signals GV, GX. Further, in the third drive unit DU3, the first current detection unit 41 detects the W-phase current Iwr, and the second current detection unit 42 detects the Y-phase current IYr. The signal generator 50 generates W, Y phase drive signals GW, GY.
 図15に、本実施形態に係る電流検出タイミングの決定処理及び補正値ΔCの算出処理の手順を示す。この処理は、第1駆動部DU1の第2電流検出部42及び補正値算出部51の協働により、例えば所定の処理周期毎に繰り返し実行される。なお、図15において、先の図11に示した構成と同一の処理については、便宜上、同一の符号を付している。 FIG. 15 shows the procedure of the process of determining the current detection timing and the process of calculating the correction value ΔC according to the present embodiment. This process is repeatedly performed, for example, every predetermined processing cycle by cooperation of the second current detection unit 42 and the correction value calculation unit 51 of the first drive unit DU1. In FIG. 15, the same processes as the configuration shown in FIG. 11 are given the same reference numerals for the sake of convenience.
 この一連の処理では、ステップS18において肯定判定した場合には、ステップS19に進む。その後、ステップS20、S21の処理を行う。 In this series of processing, when an affirmative determination is made in step S18, the process proceeds to step S19. Thereafter, the processes of steps S20 and S21 are performed.
 なお、第2駆動部DU2の第2電流検出部42及び補正値算出部51は、図11のステップS10~S13の処理を行う。また、第3駆動部DU3の第2電流検出部42及び補正値算出部51は、図11のステップS14~S17の処理を行う。 The second current detection unit 42 and the correction value calculation unit 51 of the second drive unit DU2 perform the processes of steps S10 to S13 in FIG. Further, the second current detection unit 42 and the correction value calculation unit 51 of the third drive unit DU3 perform the processes of steps S14 to S17 of FIG.
 以上説明した本実施形態では、各モジュールM1~M3において、推定電気角θest及び補正値ΔCの算出処理を完結することができる。このため、各モジュールM1~M3間で情報をやりとりするための信号線の数を減らすことができる。 In the present embodiment described above, the calculation process of the estimated electrical angle θest and the correction value ΔC can be completed in each of the modules M1 to M3. Therefore, the number of signal lines for exchanging information among the modules M1 to M3 can be reduced.
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
<Other Embodiments>
The above embodiments may be modified as follows.
 ・上記各実施形態において、U相電流IUrの検出タイミングとしては、図7,図10に示したタイミングta,tcに限らない。例えば、U相電流IUrの検出タイミングが、タイミングta又はtcのいずれかに設定されていてもよい。この場合、例えば、検出されたU相電流IUrと、その直後に検出されたW相電流IWrとの差が、電流振幅差として算出されてもよい。 In the above embodiments, the detection timing of the U-phase current IUr is not limited to the timings ta and tc shown in FIGS. 7 and 10. For example, the detection timing of U-phase current IUr may be set to either timing ta or tc. In this case, for example, the difference between the detected U-phase current IUr and the W-phase current IWr detected immediately after that may be calculated as the current amplitude difference.
 また、U相電流IUrの検出タイミングとしては、スイッチの切り替えタイミングに限らず、U相電流検出期間における任意のタイミングであってもよい。 The detection timing of the U-phase current IUr is not limited to the switch switching timing, but may be any timing in the U-phase current detection period.
 ・上記各実施形態において、V相電流IVrの検出タイミングとしては、図8,図10に示したタイミングte,tgに限らない。例えば、V相電流IVrの検出タイミングが、タイミングte又はtgのいずれかに設定されていてもよい。また、V相電流IVrの検出タイミングとしては、スイッチの切り替えタイミングに限らず、V相電流検出期間における任意のタイミングであってもよい。 In the above embodiments, the detection timing of the V-phase current IVr is not limited to the timings te and tg shown in FIGS. 8 and 10. For example, the detection timing of the V-phase current IVr may be set to either the timing te or tg. The detection timing of the V-phase current IVr is not limited to the switch switching timing, but may be any timing in the V-phase current detection period.
 ・上記各実施形態において、W相電流IWrの検出タイミングとしては、図9,図10に示したタイミングti,tkに限らない。例えば、W相電流IWrの検出タイミングが、タイミングti又はtkのいずれかに設定されていてもよい。また、W相電流IWrの検出タイミングとしては、スイッチの切り替えタイミングに限らず、W相電流検出期間における任意のタイミングであってもよい。 In the above embodiments, the detection timing of the W-phase current IWr is not limited to the timings ti and tk shown in FIG. 9 and FIG. For example, the detection timing of the W-phase current IWr may be set to either timing ti or tk. The detection timing of the W-phase current IWr is not limited to the switch switching timing, but may be any timing in the W-phase current detection period.
 ・上記各実施形態では、U,V,W相の電流に基づいて補正値ΔCが算出されたがこれに限らず、X,Y,Z相の電流に基づいて補正値ΔCが算出されてもよい。この場合、例えば、図3に示す構成おいて、位相差算出部43において第1電流検出部41の検出値が用いられ、補正値算出部51において第2電流検出部42の検出値が用いられればよい。また、この場合、補正値ΔCの算出に用いるX,Y,Z相の電流の検出タイミングは、上述したU,V,W相の電流の検出タイミングと同様に設定されればよい。 In the above embodiments, the correction value ΔC is calculated based on the U, V, and W phase currents, but the present invention is not limited to this. Even if the correction value ΔC is calculated based on the X, Y, and Z phase currents Good. In this case, for example, in the configuration shown in FIG. 3, the phase difference calculation unit 43 uses the detection value of the first current detection unit 41, and the correction value calculation unit 51 uses the detection value of the second current detection unit 42. Just do it. Further, in this case, the detection timing of the X, Y, Z phase current used to calculate the correction value ΔC may be set in the same manner as the detection timing of the U, V, W phase current described above.
 ・電流振幅差が、3つ以上の相電流の検出値に基づいて算出されてもよい。例えば、前回の処理周期で検出された相電流と、前々回の処理周期で検出された相電流との差が前回の電流振幅差として算出される。そして、今回の処理周期で検出された相電流と、前回の処理周期で検出された相電流との差が今回の電流振幅差として算出される。そして、今回の電流振幅差と、前回の電流振幅差との平均値として、ステップS13、S17、S21で用いられる最終的な電流振幅差が算出される。 The current amplitude difference may be calculated based on detected values of three or more phase currents. For example, the difference between the phase current detected in the previous processing cycle and the phase current detected in the last two processing cycles is calculated as the previous current amplitude difference. Then, the difference between the phase current detected in the current processing cycle and the phase current detected in the previous processing cycle is calculated as the current amplitude difference. Then, the final current amplitude difference used in steps S13, S17 and S21 is calculated as the average value of the current current amplitude difference and the previous current amplitude difference.
 ・回転電機のトルク制御としては、位置センサレス制御を用いたものに限らず、角度検出器の検出値が用いられるものであってもよい。 The torque control of the rotating electrical machine is not limited to the one using position sensorless control, but the detection value of the angle detector may be used.
 ・電流検出タイミングの決定処理及び補正値の算出処理の主体としては、駆動部DU,DU1~DU3に限らず、例えば制御部30であってもよい。 The main body of the process of determining the current detection timing and the process of calculating the correction value is not limited to the drive units DU and DU1 to DU3, and may be the control unit 30, for example.
 ・回転電機の制御量としては、トルクに限らず、例えば回転速度であってもよい。 The control amount of the rotating electrical machine is not limited to the torque, and may be, for example, a rotational speed.
 ・インバータを構成する上,下アームスイッチとしては、NチャネルMOSFETに限らず、例えばIGBTであってもよい。 The upper and lower arm switches constituting the inverter are not limited to N-channel MOSFETs, and may be IGBTs, for example.
 ・回転電機としては、空間位相差Δαが30°のものに限らず、空間位相差Δαが30°から多少ずれた値のものであってもよい。この場合であっても、電流検出精度の低下を抑制することはできる。 The rotating electrical machine is not limited to one having a spatial phase difference Δα of 30 °, but may have a spatial phase difference Δα having a value slightly different from 30 °. Even in this case, it is possible to suppress a decrease in current detection accuracy.
 ・回転電機としては、巻線群を2つ備えるものに限らず、巻線群を3つ以上備えるものであってもよい。また、回転電機としては、巻線界磁型のものに限らず、例えば、ロータに永久磁石が設けられた永久磁石界磁型のものであってもよい。また、回転電機としては、3相のものに限らず、3相以外の多相のものであってもよい。 The rotating electric machine is not limited to the one having two winding groups, and may have three or more winding groups. Further, the rotating electrical machine is not limited to the winding field type, and may be, for example, a permanent magnet field type in which a permanent magnet is provided on the rotor. The rotating electrical machine is not limited to three-phase ones, and may be multi-phase ones other than three phases.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.

Claims (7)

  1.  ステータ(13)に巻回された多相の巻線を複数組(14,15)有する回転電機(10)と、
     前記各巻線に電圧を印加するインバータ(SXH~SWL,20)と、を備える制御システムに適用される回転電機の制御装置(DU,DU1~DU3)において、
     前記巻線に流れる電流を検出する電流検出部(42)と、
     前記電流検出部の検出値に基づいて、前記各巻線群に矩形波電圧を印加すべく前記インバータを操作する操作部(43~50)と、を備え、
     複数の前記巻線群のうち、電流を検出しようとする巻線である対象巻線を含まない巻線群に流れる電流が前記対象巻線に流れる電流に干渉しない期間を検出期間とする場合、前記電流検出部は、前記検出期間において前記対象巻線に流れる電流を検出する回転電機の制御装置。
    A rotating electric machine (10) having a plurality of sets (14, 15) of multiphase windings wound around a stator (13);
    In a control device (DU, DU1 to DU3) of a rotary electric machine applied to a control system comprising: an inverter (SXH to SWL, 20) for applying a voltage to each of the windings
    A current detection unit (42) for detecting the current flowing through the winding;
    An operation unit (43 to 50) for operating the inverter to apply a rectangular wave voltage to each of the winding groups based on the detection value of the current detection unit;
    In a case where a period in which a current flowing in a winding group not including a target winding which is a winding whose current is to be detected among a plurality of winding groups does not interfere with a current flowing in the target winding is a detection period. The control device for a rotating electrical machine, wherein the current detection unit detects a current flowing through the target winding in the detection period.
  2.  前記回転電機は、3相の巻線を複数組有し、
     前記インバータは、各相に対応した上アームスイッチ(SXH~SWH)及び下アームスイッチ(SXL~SWL)の直列接続体を有し、
     前記対象巻線の相の電圧ベクトルと直交する電圧ベクトルの相を直交相とする場合、前記検出期間は、前記直交相における前記下アームスイッチのオンタイミングから、そのタイミングの直後に出現する前記直交相とは別の相における前記下アームスイッチのオンタイミングよりも前までの期間、及び前記直交相における前記上アームスイッチのオンタイミングから、そのタイミングの直後に出現する前記直交相とは別の相における前記上アームスイッチのオンタイミングよりも前までの期間のうち、少なくとも一方の期間である請求項1に記載の回転電機の制御装置。
    The electric rotating machine has a plurality of sets of three-phase windings,
    The inverter has a series connection of upper arm switches (SXH to SWH) and lower arm switches (SXL to SWL) corresponding to each phase,
    When the phase of the voltage vector orthogonal to the voltage vector of the phase of the target winding is made to be an orthogonal phase, the detection period is the orthogonal that appears immediately after the timing from the on timing of the lower arm switch in the orthogonal phase. From a period before the on timing of the lower arm switch in a phase different from that of the lower arm, and from the on timing of the upper arm switch in the quadrature phase, a phase different from the quadrature phase appearing immediately after the timing The control device for a rotating electrical machine according to claim 1, wherein at least one of the periods up to the on-timing of the upper arm switch in at least one of the two.
  3.  前記電流検出部は、前記直交相における前記下アームスイッチのオンタイミング、及び前記直交相における前記上アームスイッチのオンタイミングのうち、少なくとも一方のタイミングで前記対象巻線に流れる電流を検出する請求項2に記載の回転電機の制御装置。 The current detection unit detects a current flowing through the target winding at at least one of the on timing of the lower arm switch in the quadrature phase and the on timing of the upper arm switch in the quadrature phase. The control apparatus of the rotary electric machine as described in 2.
  4.  前記操作部は、
     前記矩形波電圧の位相と、前記電流検出部により検出された電流との位相差に基づいて、前記回転電機のロータ(11)の回転位置情報を推定する位置推定部(43~48)と、
     前記電流検出部の検出値に基づいて、前記対象巻線に流れる電流の振幅変化量を算出する変化量算出部(S12,S16,S20)と、
     算出された前記振幅変化量に基づいて、前記位置推定部により推定された前記回転位置情報を補正する位置補正部(S13,S17,S21,49)と、を含み、
     補正された前記回転位置情報に基づいて、前記回転電機の矩形波駆動を行うべく前記インバータを操作する請求項2又は3に記載の回転電機の制御装置。
    The operation unit is
    Position estimation units (43 to 48) for estimating rotational position information of the rotor (11) of the rotating electrical machine based on the phase difference between the phase of the rectangular wave voltage and the current detected by the current detection unit;
    A change amount calculation unit (S12, S16, S20) that calculates an amplitude change amount of the current flowing through the target winding based on the detection value of the current detection unit;
    A position correction unit (S13, S17, S21, 49) for correcting the rotational position information estimated by the position estimation unit based on the calculated amplitude change amount;
    The control device for a rotating electrical machine according to claim 2 or 3, wherein the inverter is operated to perform rectangular wave driving of the rotating electrical machine based on the corrected rotational position information.
  5.  前記回転電機は、電気角で120度ずれたU,V,W相巻線(14U~14W)を含む第1巻線群(14)と、電気角で120度ずれたX,Y,Z相巻線(15X~15Z)を含む第2巻線群(15)と、を有し、
     前記インバータは、
     前記上アームスイッチとして、前記Z相巻線に接続されたZ相上アームスイッチ(SZH)及び前記U相巻線に接続されたU相上アームスイッチ(SUH)を有し、前記下アームスイッチとして、前記Z相上アームスイッチに直列接続されたZ相下アームスイッチ(SZL)及び前記U相上アームスイッチに直列接続されたU相下アームスイッチ(SUL)を有する第1モジュール(M1)と、
     前記上アームスイッチとして、前記X相巻線に接続されたX相上アームスイッチ(SXH)及び前記V相巻線に接続されたV相上アームスイッチ(SVH)を有し、前記下アームスイッチとして、前記X相上アームスイッチに直列接続されたX相下アームスイッチ(SXL)及び前記V相上アームスイッチに直列接続されたV相下アームスイッチ(SVL)を有する第2モジュール(M2)と、
     前記上アームスイッチとして、前記Y相巻線に接続されたY相上アームスイッチ(SYH)及び前記W相巻線に接続されたW相上アームスイッチ(SWH)を有し、前記下アームスイッチとして、前記Y相上アームスイッチに直列接続されたY相下アームスイッチ(SYL)及び前記W相上アームスイッチに直列接続されたW相下アームスイッチ(SWL)を有する第3モジュール(M3)と、を含み、
     前記電流検出部及び前記操作部が前記各モジュールに備えられている請求項4に記載の回転電機の制御装置。
    The electric rotating machine has a first winding group (14) including U, V, W phase windings (14U to 14W) shifted by 120 degrees in electrical angle, X, Y, Z phases shifted by 120 degree in electrical angle A second winding group (15) including the windings (15X to 15Z);
    The inverter is
    A Z-phase upper arm switch (SZH) connected to the Z-phase winding and a U-phase upper arm switch (SUH) connected to the U-phase winding as the upper arm switch, and as the lower arm switch A first module (M1) having a Z-phase lower arm switch (SZL) serially connected to the Z-phase upper arm switch and a U-phase lower arm switch (SUL) serially connected to the U-phase upper arm switch;
    As the upper arm switch, there is provided an X phase upper arm switch (SXH) connected to the X phase winding and a V phase upper arm switch (SVH) connected to the V phase winding, and as the lower arm switch A second module (M2) having an X-phase lower arm switch (SXL) serially connected to the X-phase upper arm switch and a V-phase lower arm switch (SVL) serially connected to the V-phase upper arm switch;
    The upper arm switch includes a Y-phase upper arm switch (SYH) connected to the Y-phase winding and a W-phase upper arm switch (SWH) connected to the W-phase winding, and the lower arm switch A third module (M3) having a Y-phase lower arm switch (SYL) serially connected to the Y-phase upper arm switch and a W-phase lower arm switch (SWL) serially connected to the W-phase upper arm switch; Including
    The control device for a rotating electrical machine according to claim 4, wherein the current detection unit and the operation unit are provided in each of the modules.
  6.  前記回転電機は、電気角で120度ずれたU,V,W相巻線(14U~14W)を含む第1巻線群(14)と、電気角で120度ずれたX,Y,Z相巻線(15X~15Z)を含む第2巻線群(15)と、を有し、
     前記インバータは、前記上アームスイッチとして、前記X相巻線に接続されたX相上アームスイッチ(SXH)、前記Y相巻線に接続されたY相上アームスイッチ(SYH)、前記Z相巻線に接続されたZ相上アームスイッチ(SZH)、前記U相巻線に接続されたU相上アームスイッチ(SUH)、前記V相巻線に接続されたV相上アームスイッチ(SVH)及び前記W相巻線に接続されたW相上アームスイッチ(SWH)を有し、前記下アームスイッチとして、前記X相上アームスイッチに直列接続されたX相下アームスイッチ(SXL)、前記Y相上アームスイッチに直列接続されたY相下アームスイッチ(SYL)、前記Z相上アームスイッチに直列接続されたZ相下アームスイッチ(SZL)、前記U相上アームスイッチに直列接続されたU相下アームスイッチ(SUL)、前記V相上アームスイッチに直列接続されたV相下アームスイッチ(SVL)及び前記W相上アームスイッチに直列接続されたW相下アームスイッチ(SWL)を有するモジュール(MJ)として構成されており、
     前記電流検出部及び前記操作部が前記モジュールに備えられている請求項4に記載の回転電機の制御装置。
    The electric rotating machine has a first winding group (14) including U, V, W phase windings (14U to 14W) shifted by 120 degrees in electrical angle, X, Y, Z phases shifted by 120 degree in electrical angle A second winding group (15) including the windings (15X to 15Z);
    The inverter includes, as the upper arm switch, an X-phase upper arm switch (SXH) connected to the X-phase winding, a Y-phase upper arm switch (SYH) connected to the Y-phase winding, and the Z-phase winding Z-phase upper arm switch (SZH) connected to the wire, U-phase upper arm switch (SUH) connected to the U-phase winding, V-phase upper arm switch (SVH) connected to the V-phase winding, X-phase lower arm switch (SXL) having a W-phase upper arm switch (SWH) connected to the W-phase winding, and being serially connected to the X-phase upper arm switch as the lower arm switch; Y-phase lower arm switch (SYL) serially connected to upper arm switch, Z-phase lower arm switch (SZL) serially connected to Z-phase upper arm switch, series connected to U-phase upper arm switch U-phase lower arm switch (SUL), V-phase lower arm switch (SVL) serially connected to the V-phase upper arm switch, and W-phase lower arm switch (SWL) serially connected to the W-phase upper arm switch Configured as a module (MJ) with
    The control device for a rotating electrical machine according to claim 4, wherein the current detection unit and the operation unit are provided in the module.
  7.  前記第1巻線群と前記第2巻線群とのなす位相差が電気角で30°である請求項5又は6に記載の回転電機の制御装置。 The control device for a rotating electrical machine according to claim 5 or 6, wherein a phase difference between the first winding group and the second winding group is 30 ° in electrical angle.
PCT/JP2018/039078 2017-10-24 2018-10-19 Control device for rotating electrical machine WO2019082825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069028.7A CN111264027B (en) 2017-10-24 2018-10-19 Control device for rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017205452A JP6958230B2 (en) 2017-10-24 2017-10-24 Rotating electric machine control device
JP2017-205452 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019082825A1 true WO2019082825A1 (en) 2019-05-02

Family

ID=66246552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039078 WO2019082825A1 (en) 2017-10-24 2018-10-19 Control device for rotating electrical machine

Country Status (3)

Country Link
JP (1) JP6958230B2 (en)
CN (1) CN111264027B (en)
WO (1) WO2019082825A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325893A (en) * 1991-04-24 1992-11-16 Hitachi Ltd Controller of ac motor
JP2007151366A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Motor driver and automobile using the same
JP2017163786A (en) * 2016-03-11 2017-09-14 株式会社東芝 Motor drive system and washing machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072145A (en) * 2009-09-28 2011-04-07 Toshiba Corp Motor drive system
CN102668368B (en) * 2009-12-28 2014-12-24 三菱电机株式会社 Power conversion device for electric vehicle
EP3176943B1 (en) * 2014-09-04 2019-10-30 Nsk Ltd. Motor control device, failure detection method, electric power steering device equipped with same, and vehicle
JP6358103B2 (en) * 2015-01-14 2018-07-18 株式会社デンソー Multi-winding rotating electrical machine control device
US9923504B2 (en) * 2015-01-21 2018-03-20 Mitsubishi Electric Corporation Control device for AC rotary machine and control device for electric power steering
JP2017131045A (en) * 2016-01-21 2017-07-27 株式会社デンソー Rotary electric machine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325893A (en) * 1991-04-24 1992-11-16 Hitachi Ltd Controller of ac motor
JP2007151366A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Motor driver and automobile using the same
JP2017163786A (en) * 2016-03-11 2017-09-14 株式会社東芝 Motor drive system and washing machine

Also Published As

Publication number Publication date
JP2019080427A (en) 2019-05-23
JP6958230B2 (en) 2021-11-02
CN111264027B (en) 2023-09-15
CN111264027A (en) 2020-06-09

Similar Documents

Publication Publication Date Title
US8390223B2 (en) Control device for electric motor drive device
US8232753B2 (en) Control device for electric motor drive apparatus
JP5502126B2 (en) Drive device for multi-winding rotating machine
CN108156837B (en) Control device for AC rotating machine and electric power steering device
WO2019008676A1 (en) Inverter device and electric power steering device
JP6390489B2 (en) Inverter control device
JP2017038442A (en) Control device for AC rotary electric machine
JP6685452B1 (en) Control device for rotating electric machine
JP6424773B2 (en) Control device of AC rotating electric machine
WO2017030055A1 (en) Device and method for controlling rotary machine
WO2019150984A1 (en) Control device for three-phase synchronous electric motor
JP6958230B2 (en) Rotating electric machine control device
US11228271B2 (en) Control device for three-phase synchronous motor and electric power steering device using the same
JP7062084B2 (en) Control device for AC rotary electric machine
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device
JP4604760B2 (en) AC motor drive system
JP2017038444A (en) Control device for AC rotary electric machine
JP7294982B2 (en) motor controller
JP6361540B2 (en) Control device for rotating electrical machine
WO2024095475A1 (en) Motor control method and motor control device
JP2022023411A (en) Inverter control device
JP2023123084A (en) Control device for rotary electrical machine and program
JP2018113753A (en) Controller of ac motor
JP2015177705A (en) Control device for motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869586

Country of ref document: EP

Kind code of ref document: A1