WO2019080610A1 - 摄像镜头 - Google Patents

摄像镜头

Info

Publication number
WO2019080610A1
WO2019080610A1 PCT/CN2018/100471 CN2018100471W WO2019080610A1 WO 2019080610 A1 WO2019080610 A1 WO 2019080610A1 CN 2018100471 W CN2018100471 W CN 2018100471W WO 2019080610 A1 WO2019080610 A1 WO 2019080610A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image pickup
imaging
object side
optical axis
Prior art date
Application number
PCT/CN2018/100471
Other languages
English (en)
French (fr)
Inventor
高雪
李明
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721397246.2U external-priority patent/CN207336905U/zh
Priority claimed from CN201711007882.4A external-priority patent/CN107577034B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/273,584 priority Critical patent/US11029501B2/en
Publication of WO2019080610A1 publication Critical patent/WO2019080610A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an imaging lens, and more particularly, to an imaging lens including seven lenses.
  • CMOS complementary metal oxide semiconductor
  • a reduction in the size of the pixel means that the amount of light passing through the lens will become smaller during the same exposure time.
  • the lens needs to have a large amount of light to ensure image quality.
  • the number of apertures Fno (the total effective focal length of the lens/the diameter of the lens) of the existing lens is usually 2.0 or more. Although this kind of lens can meet the requirements of miniaturization, it can not guarantee the imaging quality of the lens in the case of insufficient light (such as rainy days, dusk, etc.), hand shake, etc., so the number of apertures Fno is 2.0 or more.
  • the imaging requirements of the order is usually 2.0 or more.
  • the present application provides an imaging lens that can be applied to a portable electronic product that can at least solve or partially solve the above-described at least one disadvantage of the prior art, for example, a large aperture imaging lens.
  • the present application provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens having positive refractive power, a second lens having negative refractive power, and optical focusing. a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, the image side may be a convex surface; and the negative optical focus
  • the seventh lens of the degree may have a convex side.
  • the effective focal length of the second lens and the total effective focal length f of the imaging lens can satisfy -3 ⁇ f2/f ⁇ -1.5.
  • the total effective focal length f of the imaging lens and the entrance pupil diameter EPD of the imaging lens may satisfy f/EPD ⁇ 2.0.
  • the total effective focal length f of the imaging lens, the effective focal length f1 of the first lens, and the effective focal length f2 of the second lens may satisfy 1 ⁇
  • the radius of curvature R2 of the image side of the first lens and the effective focal length f1 of the first lens may satisfy 1.3 ⁇ R2/f1 ⁇ 2.
  • the sixth lens may have a positive power; the effective focal length f6 of the sixth lens and the optical total length TTL of the imaging lens may satisfy 0.6 ⁇ f6 / TTL ⁇ 1.3.
  • the effective focal length f7 of the seventh lens and the center thickness CT7 of the seventh lens on the optical axis may satisfy -5 ⁇ f7 / CT7 ⁇ -4.
  • the object side of the first lens may be convex; the total effective focal length f of the imaging lens and the radius of curvature R1 of the object side of the first lens may satisfy 2 ⁇ f/R1 ⁇ 2.6.
  • the radius of curvature R1 of the object side surface of the first lens and the curvature radius R14 of the image side surface of the seventh lens may satisfy 1 ⁇ R1/R14 ⁇ 1.5.
  • the effective half-diameter DT11 of the object side of the first lens and the effective half-diameter DT51 of the object side of the fifth lens may satisfy 0.8 ⁇ DT11/DT51 ⁇ 1.2.
  • the intersection of the object side surface and the optical axis of the seventh lens to the effective half-diameter apex of the object side of the seventh lens on the optical axis SAG71 and the center thickness CT7 of the seventh lens on the optical axis can satisfy - 0.5 ⁇ SAG71/CT7 ⁇ 0.
  • the optical total length TTL of the imaging lens is half the ImgH of the diagonal length of the effective pixel area on the imaging surface of the imaging lens, and can satisfy TTL/ImgH ⁇ 1.65.
  • the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 1 ⁇ CT3/CT4 ⁇ 1.5.
  • the center thickness CT4 of the fourth lens on the optical axis may satisfy CT4/CT5 ⁇ 1 at the center thickness CT5 of the fifth lens on the optical axis.
  • the separation distance T56 of the fifth lens and the sixth lens on the optical axis and the separation distance T67 of the sixth lens and the seventh lens on the optical axis may satisfy 1.5 ⁇ T56/T67 ⁇ 3.2.
  • the present application provides an image pickup lens comprising, in order from an object side to an image side along an optical axis, a first lens having a positive power; a second lens having a negative power; having a light a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, the image side may be a convex surface; and the negative light
  • the seventh lens of the power can have a convex side.
  • the total effective focal length f of the imaging lens, the effective focal length f1 of the first lens, and the effective focal length f2 of the second lens may satisfy 1 ⁇
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • the effective focal length f6 of the sixth lens and the optical total length TTL of the imaging lens can satisfy 0.6 ⁇ f6/TTL ⁇ 1.3.
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • the radius of curvature R2 of the image side surface of the first lens and the effective focal length f1 of the first lens may satisfy 1.3 ⁇ R2/f1 ⁇ 2.
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • the radius of curvature R1 of the object side surface of the first lens and the curvature radius R14 of the image side surface of the seventh lens may satisfy 1 < R1/R14 < 1.5.
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • the separation distance T56 of the fifth lens and the sixth lens on the optical axis and the separation distance T67 of the sixth lens and the seventh lens on the optical axis may satisfy 1.5 ⁇ T56/T67 ⁇ 3.2.
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • the effective half-diameter DT11 of the object side surface of the first lens and the effective half-diameter DT51 of the object side surface of the fifth lens can satisfy 0.8 ⁇ DT11/DT51 ⁇ 1.2.
  • the present application further provides an image pickup lens comprising, in order from the object side to the image side along the optical axis, a first lens having a positive power; a second lens having a negative power; a third lens having a power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power, the object side may be a convex surface, and the image side may be a convex surface;
  • the seventh lens of the power of the object may have a convex side.
  • intersection of the object side surface and the optical axis of the seventh lens to the apex of the effective half-diameter of the object side of the seventh lens on the optical axis SAG71 and the center thickness CT7 of the seventh lens on the optical axis can satisfy -0.5 ⁇ SAG71/ CT7 ⁇ 0.
  • a plurality of (for example, seven) lenses are used, and the above-mentioned image pickup lens is ultra-thin by rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect such as miniaturization, large aperture, and high image quality.
  • FIG. 1 is a schematic structural view of an image pickup lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural diagram of an image pickup lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an image pickup lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 3;
  • FIG. 7 is a schematic structural diagram of an image pickup lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 4;
  • FIG. 9 is a schematic structural diagram of an image pickup lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 5;
  • FIG. 11 is a schematic structural diagram of an image pickup lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of an image pickup lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural diagram of an image pickup lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 8.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the imaging lens according to an exemplary embodiment of the present application may include, for example, seven lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens.
  • the seven lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the imaging lens of the present application may satisfy the conditional expression f/EPD ⁇ 2.0, where f is the total effective focal length of the imaging lens, and EPD is the entrance pupil diameter of the imaging lens. More specifically, f and EPD can further satisfy f/EPD ⁇ 1.9, for example, 1.51 ⁇ f / EPD ⁇ 1.87.
  • Configuring the lens to meet the conditional expression f/EPD ⁇ 2.0 can make the lens have the advantage of a larger aperture, which can increase the amount of light passing through the system and enhance the imaging effect in a dark environment.
  • the imaging lens of the present application may satisfy the conditional expression -3 ⁇ f2 / f ⁇ - 1.5, where f2 is the effective focal length of the second lens, and f is the total effective focal length of the imaging lens. More specifically, f2 and f can further satisfy -3 ⁇ f2 / f ⁇ -2.1, for example, -2.97 ⁇ f2 / f ⁇ - 2.19. Reasonably assigning the power of the second lens can effectively shorten the optical total length of the lens and ensure the ultra-thin characteristics of the lens.
  • the imaging lens of the present application may satisfy conditional expression ⁇ f/f1
  • the focal length, f2, is the effective focal length of the second lens. More specifically, f, f1, and f2 may further satisfy 1.20 ⁇
  • the imaging lens of the present application may satisfy the conditional expression 0.6 ⁇ f6/TTL ⁇ 1.3, where f6 is the effective focal length of the sixth lens, and TTL is the optical total length of the imaging lens (ie, from the first lens The center of the object side to the distance of the imaging surface of the camera lens on the optical axis). More specifically, f6 and TTL can further satisfy 0.6 ⁇ f6 / TTL ⁇ 0.8, for example, 0.69 ⁇ f6 / TTL ⁇ 0.78. Proper control of the ratio of f6 to TTL allows the imaging system to meet the compact size requirements.
  • the imaging lens of the present application can satisfy the conditional TTL/ImgH ⁇ 1.65, wherein TTL is the total optical length of the imaging lens, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the imaging lens. . More specifically, TTL and ImgH can further satisfy 1.37 ⁇ TTL / ImgH ⁇ 1.54. The conditional TTL/ImgH ⁇ 1.65 is satisfied, which can effectively compress the size of the imaging system and ensure the miniaturization of the lens.
  • the imaging lens of the present application may satisfy the conditional expression 2 ⁇ f/R1 ⁇ 2.6, where f is the total effective focal length of the imaging lens, and R1 is the radius of curvature of the object side of the first lens. More specifically, f and R1 can further satisfy 2.06 ⁇ f / R1 ⁇ 2.51. Reasonably arranging the radius of curvature of the first lens can easily balance the aberration of the imaging system and improve the optical performance of the imaging system.
  • the imaging lens of the present application may satisfy the conditional expression 1.3 ⁇ R2/f1 ⁇ 2, where R2 is the radius of curvature of the image side of the first lens, and f1 is the effective focal length of the first lens. More specifically, R2 and f1 may further satisfy 1.4 ⁇ R2 / f1 ⁇ 1.9, for example, 1.48 ⁇ R2 / f1 ⁇ 1.82.
  • R2 and f1 By reasonably controlling the ratio of R2 and f1, the deflection angle of the edge field of view light in the first lens can be effectively controlled, thereby effectively reducing the sensitivity of the system.
  • the imaging lens of the present application may satisfy Conditional Formula ⁇ R1/R14 ⁇ 1.5, where R1 is the radius of curvature of the object side surface of the first lens, and R14 is the radius of curvature of the image side surface of the seventh lens. More specifically, R1 and R14 may further satisfy 1.10 ⁇ R1/R14 ⁇ 1.40, for example, 1.10 ⁇ R1/R14 ⁇ 1.31. Reasonable control of the ratio of R1 and R14 can effectively balance the aberrations of the imaging system.
  • the imaging lens of the present application may satisfy the conditional expression -5 ⁇ f7/CT7 ⁇ -4, where f7 is the effective focal length of the seventh lens, and CT7 is the center thickness of the seventh lens on the optical axis. More specifically, f7 and CT7 can further satisfy -4.6 ⁇ f7 / CT7 ⁇ - 4.3, for example, -4.55 ⁇ f7 / CT7 ⁇ - 4.35. Proper control of the ratio of f7 to CT7 can effectively reduce the size of the back end of the imaging system.
  • the imaging lens of the present application may satisfy Conditional Formula ⁇ CT3/CT4 ⁇ 1.5, where CT3 is the center thickness of the third lens on the optical axis, and CT4 is the center of the fourth lens on the optical axis. thickness. More specifically, CT3 and CT4 can further satisfy 1.1 ⁇ CT3 / CT4 ⁇ 1.4, for example, 1.14 ⁇ CT3 / CT4 ⁇ 1.37. Reasonable control of the center thickness of the third lens and the fourth lens can ensure the processability of the third lens and the spherical aberration contribution rate of the fourth lens, so that the on-axis field of view of the imaging system has good imaging quality.
  • the imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ T56/T67 ⁇ 3.2, where T56 is the separation distance of the fifth lens and the sixth lens on the optical axis, and T67 is the sixth lens and the The distance between the seven lenses on the optical axis. More specifically, T56 and T67 can further satisfy 1.9 ⁇ T56 / T67 ⁇ 3.2, for example, 1.91 ⁇ T56 / T67 ⁇ 3.11.
  • Reasonably controlling the on-axis spacing distance of the fifth lens, the sixth lens and the seventh lens is beneficial to ensure that the imaging system has a good processing gap, and is advantageous for ensuring better optical path deflection in the imaging system.
  • the imaging lens of the present application may satisfy the conditional expression CT4/CT5 ⁇ 1, where CT4 is the center thickness of the fourth lens on the optical axis, and CT5 is the center thickness of the fifth lens on the optical axis. More specifically, CT4 and CT5 may further satisfy 0 ⁇ CT4/CT5 ⁇ 1, and further, CT4 and CT5 may satisfy 0.50 ⁇ CT4/CT5 ⁇ 1, for example, 0.50 ⁇ CT4/CT5 ⁇ 0.99.
  • the imaging lens of the present application can satisfy the conditional formula 0.8 ⁇ DT11/DT51 ⁇ 1.2, wherein DT11 is the effective half diameter of the object side of the first lens, and DT51 is the effective half of the object side of the fifth lens. caliber. More specifically, DT11 and DT51 can further satisfy 0.9 ⁇ DT11 / DT51 ⁇ 1.1, for example, 0.97 ⁇ DT11 / DT51 ⁇ 1.05.
  • the deflection angle of the edge field of view at the first lens and the fifth lens can be reasonably controlled, thereby effectively reducing the sensitivity of the imaging system.
  • the imaging lens of the present application may satisfy the conditional expression -0.5 ⁇ SAG71/CT7 ⁇ 0, wherein the SAG71 is an effective half-caliber of the intersection of the object side and the optical axis of the seventh lens to the object side of the seventh lens.
  • the distance of the apex on the optical axis, CT7 is the center thickness of the seventh lens on the optical axis.
  • SAG71 and CT7 may further satisfy -0.5 ⁇ SAG71/CT7 ⁇ -0.1, for example, -0.45 ⁇ SAG71/CT7 ⁇ -0.19.
  • the third-order coma of the seventh lens can be controlled within a reasonable range, so that the coma generated by the seventh lens can be used to balance the front lens (ie, from the object side to the seventh). The amount of coma generated by each lens between the lenses, so that the imaging system has good imaging quality.
  • the imaging lens may further include at least one aperture to enhance the imaging quality of the lens.
  • the aperture may be disposed at any position between the object side and the image side as needed, for example, the diaphragm may be disposed between the first lens and the second lens.
  • the above-described image pickup lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive member on the image plane.
  • the image pickup lens according to the above embodiment of the present application may employ a plurality of lenses, such as the seven sheets described above.
  • a plurality of lenses such as the seven sheets described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the camera lens is more advantageous for production processing and can be applied to portable electronic products.
  • the image pickup lens of the above configuration has advantages such as ultra-thinness, miniaturization, large aperture, and high image quality.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the various results and advantages described in this specification can be obtained without changing the number of lenses constituting the imaging lens without departing from the technical solution claimed in the present application.
  • the image pickup lens is not limited to including seven lenses.
  • the camera lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an image pickup lens according to Embodiment 1 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface, the image side surface S6 is a concave surface,
  • the fourth lens L4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is a convex surface.
  • the side surface S14 is concave.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 1, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S14 in the embodiment 1. .
  • Table 3 gives the total effective focal length f of the image pickup lens of Embodiment 1, the effective focal lengths f1 to f7 of the respective lenses, and the optical total length TTL of the image pickup lens (that is, from the center of the object side surface S1 of the first lens L1 to the image plane S17).
  • the camera lens in Embodiment 1 satisfies:
  • f/EPD 1.51
  • f is the total effective focal length of the camera lens
  • EPD is the entrance pupil diameter of the camera lens
  • F2/f -2.57, where f2 is the effective focal length of the second lens L2, and f is the total effective focal length of the imaging lens;
  • F6 / TTL 0.78, wherein f6 is the effective focal length of the sixth lens L6, and TTL is the total optical length of the camera lens;
  • TTL/ImgH 1.54, where TTL is the total optical length of the camera lens, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface S17;
  • f/R1 2.06, where f is the total effective focal length of the imaging lens, and R1 is the radius of curvature of the object side surface S1 of the first lens L1;
  • R2/f1 1.50, where R2 is the radius of curvature of the image side surface S2 of the first lens L1, and f1 is the effective focal length of the first lens L1;
  • R1/R14 1.10, where R1 is the radius of curvature of the object side surface S1 of the first lens L1, and R14 is the radius of curvature of the image side surface S14 of the seventh lens L7;
  • F7/CT7 -4.55, where f7 is the effective focal length of the seventh lens L7, and CT7 is the center thickness of the seventh lens L7 on the optical axis;
  • CT3/CT4 1.14, where CT3 is the center thickness of the third lens L3 on the optical axis, and CT4 is the center thickness of the fourth lens L4 on the optical axis;
  • T56/T67 2.18, where T56 is the separation distance of the fifth lens L5 and the sixth lens L6 on the optical axis, and T67 is the separation distance of the sixth lens L6 and the seventh lens L7 on the optical axis;
  • CT4/CT5 0.99, where CT4 is the center thickness of the fourth lens L4 on the optical axis, and CT5 is the center thickness of the fifth lens L5 on the optical axis;
  • DT11 / DT51 1.00, wherein DT11 is the effective half diameter of the object side surface S1 of the first lens L1, and DT51 is the effective half diameter of the object side surface S9 of the fifth lens L5;
  • SAG71/CT7 -0.19, wherein SAG71 is the distance from the intersection of the object side surface S13 of the seventh lens L7 and the optical axis to the apex of the effective half-diameter of the object side surface S13 of the seventh lens L7 on the optical axis, and CT7 is the seventh lens L7.
  • 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after passing through the lens.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an image pickup lens according to Embodiment 2 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a stop STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface, the image side surface S6 is a concave surface,
  • the fourth lens L4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is The convex surface, like the side surface S14, is a concave surface.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the image plane S17.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the total effective focal length f of the image pickup lens of Example 2, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • 4A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the lens.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the fourth lens L4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is The convex surface, like the side surface S14, is a concave surface.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 7 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 3, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 shows the total effective focal length f of the image pickup lens of Example 3, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 6A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the image pickup lens of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the image pickup lens of Embodiment 3, which shows deviations of different image heights on the image plane after the light passes through the lens. 6A to 6D, the imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an image pickup lens according to Embodiment 4 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is a convex surface.
  • the side surface S14 is concave.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 10 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 4, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the total effective focal length f of the image pickup lens of Example 4, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the image pickup lens of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an image pickup lens according to Embodiment 5 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is a convex surface.
  • the side surface S14 is concave.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 5, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the total effective focal length f of the image pickup lens of Example 5, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 10A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the image pickup lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D is a graph showing the magnification chromatic aberration curve of the image pickup lens of Embodiment 5, which shows the deviation of the different image heights on the image plane after the light passes through the lens. 10A to 10D, the imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a block diagram showing the structure of an image pickup lens according to Embodiment 6 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a stop STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the negative refractive power, the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is The convex surface, like the side surface S14, is a concave surface.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 16 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the total effective focal length f of the image pickup lens of Example 6, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 12A shows an axial chromatic aberration curve of the image pickup lens of Example 6, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 12B shows an astigmatism curve of the image pickup lens of Embodiment 6, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the image pickup lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the image pickup lens of Example 6, which shows the deviation of the different image heights on the image plane after the light passes through the lens. 12A to 12D, the imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an image pickup lens according to Embodiment 7 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the negative refractive power, the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is The convex surface, like the side surface S14, is a concave surface.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 shows the total effective focal length f of the image pickup lens of Example 7, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 14A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 14B shows an astigmatism curve of the image pickup lens of Embodiment 7, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the image pickup lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an image pickup lens according to Embodiment 8 of the present application.
  • the imaging lens sequentially includes, from the object side to the image side along the optical axis, a first lens L1, a pupil STO, a second lens L2, a third lens L3, and a fourth.
  • the lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, the filter L8, and the imaging surface S17.
  • the first lens L1 has positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the third lens L3 has a concave surface
  • the positive refractive power, the object side surface S5 is a convex surface, the image side surface S6 is a concave surface,
  • the fourth lens L4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the sixth lens L6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface
  • the seventh lens L7 has a negative refractive power
  • the object side surface S13 is The convex surface, like the side surface S14, is a concave surface.
  • the filter L8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 22 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 8, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical.
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 shows the total effective focal length f of the image pickup lens of Example 8, the effective focal lengths f1 to f7 of the respective lenses, the optical total length TTL of the image pickup lens, and the half ImgH of the diagonal length of the effective pixel area on the image plane S17.
  • Fig. 16A shows an axial chromatic aberration curve of the image pickup lens of Example 8, which shows that light rays of different wavelengths are deviated from the focus point after passing through the lens.
  • Fig. 16B shows an astigmatism curve of the image pickup lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the image pickup lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the image pickup lens of Example 8, which shows the deviation of the different image heights on the image plane after the light passes through the lens. 16A to 16D, the imaging lens given in Embodiment 8 can achieve good imaging quality.
  • Embodiments 1 to 8 respectively satisfy the relationships shown in Table 25 below.
  • the application also provides an imaging device, the electronic photosensitive element of which may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or may be a camera module integrated on a mobile electronic device such as a mobile phone or a tablet computer.
  • the image pickup apparatus is equipped with the image pickup lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种摄像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第七透镜,其物侧面为凸面。其中,第二透镜的有效焦距与摄像镜头的总有效焦距f满足-3≤f2/f<-1.5。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2017年10月25日提交于中国国家知识产权局(SIPO)的、专利申请号为201711007882.4的中国专利申请以及于2017年10月25日提交至SIPO的、专利申请号为201721397246.2的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,本申请涉及一种包括七片透镜的摄像镜头。
背景技术
随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的摄像镜头的高成像品质及小型化提出了更高的要求。
像元尺寸的减小意味着在相同曝光时间内,镜头的通光量将会变小。但是,在环境昏暗的条件下,镜头需要具有较大的通光量才能确保成像品质。现有镜头通常配置的光圈数Fno(镜头的总有效焦距/镜头的入瞳直径)均在2.0或2.0以上。此类镜头虽能满足小型化要求,却无法在光线不足(如阴雨天、黄昏等)、手抖等情况下保证镜头的成像品质,故光圈数Fno为2.0或2.0以上镜头已经无法满足更高阶的成像要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头,例如,大孔径摄像镜头。
一方面,本申请提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第二透镜的有效焦距与摄像镜头的总有效焦距f可满足-3≤f2/f<-1.5。
在一个实施方式中,摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD可满足f/EPD<2.0。
在一个实施方式中,摄像镜头的总有效焦距f、第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足1<|f/f1|+|f/f2|<1.55。
在一个实施方式中,第一透镜的像侧面的曲率半径R2与第一透镜的有效焦距f1可满足1.3<R2/f1<2。
在一个实施方式中,第六透镜可具有正光焦度;第六透镜的有效焦距f6与摄像镜头的光学总长度TTL可满足0.6<f6/TTL<1.3。
在一个实施方式中,第七透镜的有效焦距f7与第七透镜于光轴上的中心厚度CT7可满足-5<f7/CT7<-4。
在一个实施方式中,第一透镜的物侧面可为凸面;摄像镜头的总有效焦距f与第一透镜的物侧面的曲率半径R1可满足2<f/R1<2.6。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第七透镜的像侧面的曲率半径R14可满足1<R1/R14<1.5。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与第五透镜的物侧面的有效半口径DT51可满足0.8<DT11/DT51<1.2。
在一个实施方式中,第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半口径顶点在光轴上的距离SAG71与第七透镜于光轴上的中心厚度CT7可满足-0.5<SAG71/CT7<0。
在一个实施方式中,摄像镜头的光学总长度TTL与摄像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.65。
在一个实施方式中,第三透镜于光轴上的中心厚度CT3与第四透镜于光轴上的中心厚度CT4可满足1<CT3/CT4<1.5。
在一个实施方式中,第四透镜于光轴上的中心厚度CT4于第五透 镜于光轴上的中心厚度CT5可满足CT4/CT5≤1。
在一个实施方式中,第五透镜和第六透镜于光轴上的间隔距离T56与第六透镜和第七透镜于光轴上的间隔距离T67可满足1.5<T56/T67<3.2。
另一方面,本申请提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,摄像镜头的总有效焦距f、第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足1<|f/f1|+|f/f2|<1.55。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第六透镜的有效焦距f6与摄像镜头的光学总长度TTL可满足0.6<f6/TTL<1.3。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第一透镜的像侧面的曲率半径R2与第一透镜的有效焦距f1可满足1.3<R2/f1<2。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第 一透镜的物侧面的曲率半径R1与第七透镜的像侧面的曲率半径R14可满足1<R1/R14<1.5。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第五透镜和第六透镜于光轴上的间隔距离T56与第六透镜和第七透镜于光轴上的间隔距离T67可满足1.5<T56/T67<3.2。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第一透镜的物侧面的有效半口径DT11与第五透镜的物侧面的有效半口径DT51可满足0.8<DT11/DT51<1.2。
又一方面,本申请还提供了这样一种摄像镜头,该镜头沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜,其物侧面可为凸面,像侧面可为凸面;具有负光焦度的第七透镜,其物侧面可为凸面。其中,第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半口径顶点在光轴上的距离SAG71与第七透镜于光轴上的中心厚度CT7可满足-0.5<SAG71/CT7<0。
本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有超薄、小型化、大孔径、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2A至图2D分别示出了实施例1的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4A至图4D分别示出了实施例2的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6A至图6D分别示出了实施例3的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8A至图8D分别示出了实施例4的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10A至图10D分别示出了实施例5的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12A至图12D分别示出了实施例6的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14A至图14D分别示出了实施例7的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;
图16A至图16D分别示出了实施例8的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式 的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本 申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,本申请的摄像镜头可满足条件式f/EPD<2.0,其中,f为摄像镜头的总有效焦距,EPD为摄像镜头的入瞳直径。更具体地,f和EPD进一步可满足f/EPD<1.9,例如,1.51≤f/EPD≤1.87。摄像镜头的总有效焦距f和入瞳直径EPD的比值越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。将镜头配置成满足条件式f/EPD<2.0,可以使得镜头具有较大光圈的优势,从而可以增加***的通光量,增强暗环境下的成像效果。
在示例性实施方式中,本申请的摄像镜头可满足条件式-3≤f2/f<-1.5,其中,f2为第二透镜的有效焦距,f为摄像镜头的总有效焦距。更具体地,f2和f进一步可满足-3≤f2/f<-2.1,例如,-2.97≤f2/f≤-2.19。合理分配第二透镜的光焦度,可有效缩短镜头的光学总长度,保证镜头的超薄特性。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<|f/f1|+|f/f2|<1.55,其中,f为摄像镜头的总有效焦距,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f、f1和f2进一步可满足1.20<|f/f1|+|f/f2|<1.55,例如,1.25≤|f/f1|+|f/f2|≤1.51。合理分配第一透镜和第二透镜的光焦度,可以减小光学的偏转角,进而降低成像***的敏感性。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.6<f6/TTL<1.3,其中,f6为第六透镜的有效焦距,TTL为摄像镜头的光学总长度(即,从第一透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离)。更具体地,f6和TTL进一步可满足0.6<f6/TTL<0.8,例如,0.69≤f6/TTL≤0.78。合理控制f6和TTL的比值,可使得成像 ***满足尺寸紧凑的要求。
在示例性实施方式中,本申请的摄像镜头可满足条件式TTL/ImgH<1.65,其中,TTL为摄像镜头的光学总长度,ImgH为摄像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.37≤TTL/ImgH≤1.54。满足条件式TTL/ImgH<1.65,可有效压缩成像***的尺寸,保证镜头的小型化特性。
在示例性实施方式中,本申请的摄像镜头可满足条件式2<f/R1<2.6,其中,f为摄像镜头的总有效焦距,R1为第一透镜的物侧面的曲率半径。更具体地,f和R1进一步可满足2.06≤f/R1≤2.51。合理布置第一透镜的曲率半径,可以较为容易的平衡成像***的像差,提升成像***的光学性能。
在示例性实施方式中,本申请的摄像镜头可满足条件式1.3<R2/f1<2,其中,R2为第一透镜的像侧面的曲率半径,f1为第一透镜的有效焦距。更具体地,R2和f1进一步可满足1.4<R2/f1<1.9,例如,1.48≤R2/f1≤1.82。通过合理控制R2和f1的比值,能够有效地控制边缘视场光线在第一透镜的偏转角度,进而能够有效地降低***的敏感性。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<R1/R14<1.5,其中,R1为第一透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径。更具体地,R1和R14进一步可满足1.10≤R1/R14<1.40,例如,1.10≤R1/R14≤1.31。合理控制R1和R14的比值,可有效地平衡成像***的像差。
在示例性实施方式中,本申请的摄像镜头可满足条件式-5<f7/CT7<-4,其中,f7为第七透镜的有效焦距,CT7为第七透镜于光轴上的中心厚度。更具体地,f7和CT7进一步可满足-4.6<f7/CT7<-4.3,例如,-4.55≤f7/CT7≤-4.35。合理控制f7和CT7的比值,能够有效地缩小成像***的后端尺寸。
在示例性实施方式中,本申请的摄像镜头可满足条件式1<CT3/CT4<1.5,其中,CT3为第三透镜于光轴上的中心厚度,CT4为第四透镜于光轴上的中心厚度。更具体地,CT3和CT4进一步可满足 1.1<CT3/CT4<1.4,例如,1.14≤CT3/CT4≤1.37。合理控制第三透镜和第四透镜的中心厚度,能够保证第三透镜的加工性以及第四透镜的球差贡献率,使得成像***的轴上视场区域具有良好的成像质量。
在示例性实施方式中,本申请的摄像镜头可满足条件式1.5<T56/T67<3.2,其中,T56为第五透镜和第六透镜于光轴上的间隔距离,T67为第六透镜和第七透镜于光轴上的间隔距离。更具体地,T56和T67进一步可满足1.9<T56/T67<3.2,例如,1.91≤T56/T67≤3.11。合理控制第五透镜、第六透镜和第七透镜的轴上间隔距离,有利于保证成像***具有良好的加工间隙,且有利于保证成像***内具有较好的光路偏折。
在示例性实施方式中,本申请的摄像镜头可满足条件式CT4/CT5≤1,其中,CT4为第四透镜于光轴上的中心厚度,CT5为第五透镜于光轴上的中心厚度。更具体地,CT4和CT5进一步可满足0<CT4/CT5≤1,更进一步地,CT4和CT5可满足0.50≤CT4/CT5≤1,例如,0.50≤CT4/CT5≤0.99。合理控制第四透镜和第五透镜的中心厚度,能够保证第四透镜的加工性以及第五透镜的球差贡献率,使得成像***的轴上视场区域具有良好的成像质量。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<DT11/DT51<1.2,其中,DT11为第一透镜的物侧面的有效半口径,DT51为第五透镜的物侧面的有效半口径。更具体地,DT11和DT51进一步可满足0.9<DT11/DT51<1.1,例如,0.97≤DT11/DT51≤1.05。通过合理控制第一透镜和第五透镜物侧面的有效半口径,能够合理控制边缘视场在第一透镜和第五透镜处的偏转角度,进而能够有效地降低成像***的敏感性。
在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<SAG71/CT7<0,其中,SAG71为第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半口径顶点在光轴上的距离,CT7为第七透镜于光轴上的中心厚度。更具体地,SAG71和CT7进一步可满足-0.5<SAG71/CT7<-0.1,例如,-0.45≤SAG71/CT7≤-0.19。通过合理控制SAG71和CT7的比值,能够将第七透镜的三阶慧差控制在合理范 围内,使得第七透镜所产生的慧差能够用以平衡前端各透镜(即,从物侧至第七透镜间的各透镜)产生的慧差量,从而使得成像***具有良好的成像质量。
在示例性实施方式中,摄像镜头还可包括至少一个光阑,以提升镜头的成像质量。光阑可根据需要设置在物侧至像侧间的任意位置处,例如,光阑可设置在第一透镜与第二透镜之间。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的摄像镜头,还具有例如超薄、小型化、大孔径、高成像品质等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该摄像镜头不限于包括七个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像镜头。图1 示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜L5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000001
Figure PCTCN2018100471-appb-000002
表1
由表1可知,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018100471-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.2510E-02 2.7649E-01 -1.1950E+00 2.9877E+00 -4.6362E+00 4.4974E+00 -2.6599E+00 8.7574E-01 -1.2323E-01
S2 -4.2699E-02 -5.2153E-01 3.6451E+00 -1.2234E+01 2.4201E+01 -2.9422E+01 2.1581E+01 -8.7654E+00 1.5141E+00
S3 -2.0269E-01 1.0594E+00 -5.6930E+00 2.0993E+01 -4.8444E+01 6.9649E+01 -6.0599E+01 2.9193E+01 -5.9756E+00
S4 -2.6261E-02 -8.8568E-01 8.4026E+00 -3.8786E+01 1.0835E+02 -1.8811E+02 1.9826E+02 -1.1609E+02 2.8978E+01
S5 -5.1076E-02 1.0895E+00 -8.6595E+00 3.7846E+01 -1.0212E+02 1.7180E+02 -1.7598E+02 1.0054E+02 -2.4538E+01
S6 -1.2113E-01 6.2936E-01 -3.5422E+00 1.2074E+01 -2.7558E+01 4.1451E+01 -3.9979E+01 2.2573E+01 -5.6093E+00
S7 -2.8963E-01 1.5154E+00 -7.2490E+00 2.0903E+01 -3.8121E+01 4.3966E+01 -3.1651E+01 1.3359E+01 -2.5698E+00
S8 -6.2172E-01 2.7484E+00 -9.8942E+00 2.3201E+01 -3.5125E+01 3.3444E+01 -1.9163E+01 5.9476E+00 -7.4437E-01
S9 6.7447E-03 -8.1883E-01 2.6274E+00 -4.9504E+00 6.3252E+00 -5.4795E+00 2.9656E+00 -8.7877E-01 1.0730E-01
S10 -7.0290E-02 -2.4344E-01 4.9701E-01 -5.2363E-01 5.3066E-01 -5.3210E-01 3.4405E-01 -1.1352E-01 1.4655E-02
S11 5.3341E-02 1.1931E-01 -3.8251E-01 2.9748E-01 -5.1412E-02 -8.9953E-02 7.6338E-02 -2.5020E-02 3.0989E-03
S12 3.7899E-02 4.0393E-01 -6.7321E-01 5.1170E-01 -2.2628E-01 6.1508E-02 -1.0192E-02 9.4969E-04 -3.8218E-05
S13 -4.5666E-02 -1.2536E-01 2.0002E-01 -1.1851E-01 3.7082E-02 -6.6831E-03 6.9106E-04 -3.7373E-05 7.8434E-07
S14 -1.1549E-01 5.8679E-02 -2.8312E-02 1.2142E-02 -4.4883E-03 1.1728E-03 -1.8695E-04 1.6097E-05 -5.7253E-07
表2
表3给出实施例1中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面S17在光轴上的距离)以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.33 3.89 -8.56 15.59 -35.36
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 19.56 3.50 -2.91 4.50 2.93
表3
实施例1中的摄像镜头满足:
f/EPD=1.51,其中,f为摄像镜头的总有效焦距,EPD为摄像镜头的入瞳直径;
f2/f=-2.57,其中,f2为第二透镜L2的有效焦距,f为摄像镜头的总有效焦距;
|f/f1|+|f/f2|=1.25,其中,f为摄像镜头的总有效焦距,f1为第一透镜L1的有效焦距,f2为第二透镜L2的有效焦距;
f6/TTL=0.78,其中,f6为第六透镜L6的有效焦距,TTL为摄像镜头的光学总长度;
TTL/ImgH=1.54,其中,TTL为摄像镜头的光学总长度,ImgH为成像面S17上有效像素区域对角线长的一半;
f/R1=2.06,其中,f为摄像镜头的总有效焦距,R1为第一透镜L1的物侧面S1的曲率半径;
R2/f1=1.50,其中,R2为第一透镜L1的像侧面S2的曲率半径,f1为第一透镜L1的有效焦距;
R1/R14=1.10,其中,R1为第一透镜L1的物侧面S1的曲率半径,R14为第七透镜L7的像侧面S14的曲率半径;
f7/CT7=-4.55,其中,f7为第七透镜L7的有效焦距,CT7为第七透镜L7于光轴上的中心厚度;
CT3/CT4=1.14,其中,CT3为第三透镜L3于光轴上的中心厚度,CT4为第四透镜L4于光轴上的中心厚度;
T56/T67=2.18,其中,T56为第五透镜L5和第六透镜L6于光轴上的间隔距离,T67为第六透镜L6和第七透镜L7于光轴上的间隔距离;
CT4/CT5=0.99,其中,CT4为第四透镜L4于光轴上的中心厚度, CT5为第五透镜L5于光轴上的中心厚度;
DT11/DT51=1.00,其中,DT11为第一透镜L1的物侧面S1的有效半口径,DT51为第五透镜L5的物侧面S9的有效半口径;
SAG71/CT7=-0.19,其中,SAG71为第七透镜L7的物侧面S13和光轴的交点至第七透镜L7的物侧面S13的有效半口径顶点在光轴上的距离,CT7为第七透镜L7于光轴上的中心厚度。
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的 光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000004
表4
由表4可知,在实施例2中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3930E-02 1.2714E-01 -5.1925E-01 1.2275E+00 -1.8043E+00 1.6424E+00 -9.0159E-01 2.6848E-01 -3.3011E-02
S2 -5.6505E-02 -1.7634E-01 1.3081E+00 -4.2093E+00 7.9293E+00 -9.1646E+00 6.3562E+00 -2.4237E+00 3.9005E-01
S3 -1.6659E-01 4.1678E-01 -1.5096E+00 5.4679E+00 -1.2747E+01 1.8307E+01 -1.5731E+01 7.4238E+00 -1.4767E+00
S4 -3.8892E-02 -5.2915E-01 5.7519E+00 -2.8088E+01 8.3374E+01 -1.5413E+02 1.7297E+02 -1.0777E+02 2.8618E+01
S5 3.8886E-03 1.9758E-01 -2.2826E+00 1.0874E+01 -3.1706E+01 5.7209E+01 -6.2577E+01 3.8013E+01 -9.8046E+00
S6 -3.8996E-02 8.6322E-02 -1.1008E+00 5.5385E+00 -1.7730E+01 3.4625E+01 -4.0406E+01 2.5925E+01 -6.9715E+00
S7 -2.0249E-01 4.0417E-01 -2.3143E+00 8.5850E+00 -2.1305E+01 3.4109E+01 -3.4337E+01 1.9915E+01 -5.0068E+00
S8 -2.2043E-01 3.4174E-02 6.8110E-01 -3.4629E+00 8.7129E+00 -1.3417E+01 1.2462E+01 -6.3563E+00 1.3696E+00
S9 -1.4656E-01 -8.8763E-02 4.2818E-01 -6.8469E-01 7.0294E-01 -6.5986E-01 4.8562E-01 -2.1200E-01 4.0018E-02
S10 -9.2762E-02 -1.7742E-01 4.2695E-01 -4.7926E-01 3.7452E-01 -2.5014E-01 1.2912E-01 -3.8932E-02 4.8109E-03
S11 1.3903E-01 -1.7691E-01 6.6168E-02 -4.5795E-02 3.5943E-02 -1.3582E-02 6.3155E-05 1.3660E-03 -2.5829E-04
S12 8.1625E-02 2.4137E-01 -4.6845E-01 3.8114E-01 -1.8008E-01 5.2536E-02 -9.3893E-03 9.4866E-04 -4.1631E-05
S13 -1.1350E-01 5.6420E-02 1.9490E-02 -2.4697E-02 8.8729E-03 -1.6480E-03 1.7235E-04 -9.6759E-06 2.2795E-07
S14 -8.6430E-02 4.0138E-02 -1.2190E-02 1.1359E-03 4.9128E-04 -1.8384E-04 2.6278E-05 -1.7702E-06 4.6443E-08
表5
表6示出了实施例2中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.80 3.75 -8.52 14.07 -111.75
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -448.40 3.48 -2.46 4.69 3.41
表6
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面;第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000005
表7
由表7可知,在实施例3中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.5911E-03 5.6993E-02 -2.2184E-01 4.8241E-01 -6.2517E-01 4.6334E-01 -1.7960E-01 2.4369E-02 1.4495E-03
S2 -6.3435E-02 -9.0401E-02 9.3071E-01 -3.3366E+00 6.9764E+00 -8.9958E+00 7.0024E+00 -3.0174E+00 5.5262E-01
S3 -1.3763E-01 2.4572E-01 -8.5397E-01 3.8156E+00 -1.0458E+01 1.7273E+01 -1.6993E+01 9.1935E+00 -2.1065E+00
S4 -4.8742E-02 -1.9081E-01 2.5148E+00 -1.1954E+01 3.5173E+01 -6.4942E+01 7.3052E+01 -4.5703E+01 1.2214E+01
S5 2.3251E-02 -4.8838E-02 -7.9351E-02 -1.0273E-01 1.4180E+00 -4.0717E+00 5.5824E+00 -3.8543E+00 1.1331E+00
S6 4.3942E-03 -9.5442E-02 3.1352E-02 6.7082E-01 -4.8760E+00 1.4057E+01 -2.0638E+01 1.5337E+01 -4.5289E+00
S7 -1.7407E-01 2.6241E-01 -1.8288E+00 7.5941E+00 -2.1063E+01 3.6953E+01 -3.9063E+01 2.2695E+01 -5.5302E+00
S8 -1.7192E-01 7.8399E-02 -6.1871E-02 -2.7147E-01 4.6371E-01 -1.2667E-01 -2.6332E-01 2.2955E-01 -5.5038E-02
S9 -1.2206E-01 -4.6193E-03 3.0401E-01 -8.8319E-01 1.4215E+00 -1.5788E+00 1.1469E+00 -4.7763E-01 8.5220E-02
S10 -1.1471E-01 -2.1695E-02 1.6498E-01 -2.4888E-01 2.1787E-01 -1.4256E-01 7.0661E-02 -2.1617E-02 2.8383E-03
S11 7.0700E-02 -7.5491E-02 -1.3111E-01 3.5891E-01 -5.3010E-01 4.6591E-01 -2.3929E-01 6.5971E-02 -7.5239E-03
S12 2.8159E-02 2.5744E-01 -4.0394E-01 2.8852E-01 -1.2267E-01 3.2691E-02 -5.4518E-03 5.3420E-04 -2.3988E-05
S13 -1.5745E-01 1.7350E-01 -8.9997E-02 2.6853E-02 -5.1141E-03 6.4778E-04 -5.3685E-05 2.6527E-06 -5.9242E-08
S14 -9.3938E-02 5.9791E-02 -2.8644E-02 9.2467E-03 -2.0062E-03 2.9246E-04 -2.7871E-05 1.5705E-06 -3.9248E-08
表8
表9示出了实施例3中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.95 3.76 -8.63 12.54 -44.52
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -635.02 3.54 -2.43 4.76 3.41
表9
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤 光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000006
表10
由表10可知,在实施例4中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施 例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.8164E-03 -2.3021E-02 1.5498E-01 -5.4826E-01 1.0849E+00 -1.2909E+00 9.0825E-01 -3.5537E-01 5.9403E-02
S2 -6.7109E-02 -5.9848E-03 3.3427E-01 -1.0865E+00 1.8848E+00 -2.0491E+00 1.3803E+00 -5.2566E-01 8.6393E-02
S3 -1.6274E-01 4.3061E-01 -1.5606E+00 5.7849E+00 -1.4188E+01 2.1667E+01 -1.9921E+01 1.0137E+01 -2.1943E+00
S4 -8.0253E-02 1.9268E-01 -2.9574E-01 1.9083E+00 -8.0928E+00 1.8657E+01 -2.3920E+01 1.6203E+01 -4.4509E+00
S5 4.3668E-02 -2.5465E-01 5.5527E-01 -4.5213E-01 -3.6360E+00 1.4178E+01 -2.3633E+01 1.9568E+01 -6.4551E+00
S6 -4.0854E-02 -1.3633E-01 -5.7711E-02 2.0050E+00 -9.3998E+00 2.1534E+01 -2.7898E+01 1.9695E+01 -5.8570E+00
S7 -1.7580E-01 -1.0072E-01 -7.7022E-01 4.3459E+00 -1.0555E+01 1.4181E+01 -1.0959E+01 4.6754E+00 -8.6484E-01
S8 -9.4743E-02 -4.1414E-01 1.2227E+00 -3.3482E+00 8.1258E+00 -1.3764E+01 1.4259E+01 -8.1043E+00 1.9463E+00
S9 -9.5943E-02 -1.3867E-01 3.0293E-01 -3.3040E-01 5.4693E-01 -9.0943E-01 7.6990E-01 -2.9377E-01 4.0673E-02
S10 -1.0166E-01 -2.5258E-01 8.0035E-01 -1.6688E+00 2.6405E+00 -2.7590E+00 1.7221E+00 -5.7569E-01 7.9087E-02
S11 1.7030E-01 -2.9779E-01 3.4808E-01 -5.1913E-01 5.5585E-01 -3.7079E-01 1.4723E-01 -3.1691E-02 2.8361E-03
S12 1.4209E-01 1.4322E-01 -4.1090E-01 3.7819E-01 -1.9282E-01 5.9571E-02 -1.1178E-02 1.1808E-03 -5.4086E-05
S13 -8.6610E-02 -2.6839E-02 9.5674E-02 -5.7412E-02 1.5948E-02 -2.2970E-03 1.5882E-04 -2.9746E-06 -1.1248E-07
S14 -8.1591E-02 2.4774E-02 1.8591E-03 -5.6561E-03 2.5195E-03 -5.8048E-04 7.5661E-05 -5.2687E-06 1.5224E-07
表11
表12示出了实施例4中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.74 3.64 -8.22 15.31 76.39
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -43.13 3.15 -2.30 4.56 3.08
表12
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000007
Figure PCTCN2018100471-appb-000008
表13
由表13可知,在实施例5中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.0551E-04 3.0026E-02 -1.1089E-01 2.2595E-01 -2.6806E-01 1.5227E-01 -6.5149E-03 -3.9346E-02 1.3378E-02
S2 -5.2015E-02 -7.1564E-02 3.8739E-01 -9.9658E-01 1.6662E+00 -1.8460E+00 1.2664E+00 -4.8169E-01 7.7113E-02
S3 -1.1495E-01 3.2475E-02 1.7174E-01 1.1787E-01 -1.1378E+00 2.1560E+00 -2.0803E+00 1.0824E+00 -2.4113E-01
S4 -2.8264E-02 -1.9850E-01 1.8803E+00 -8.5804E+00 2.6411E+01 -5.2230E+01 6.3462E+01 -4.3093E+01 1.2619E+01
S5 3.0428E-02 -4.1536E-01 1.9552E+00 -9.4253E+00 2.9910E+01 -5.9589E+01 7.2047E+01 -4.8233E+01 1.3780E+01
S6 1.4904E-02 -5.5515E-01 2.4919E+00 -9.6007E+00 2.4377E+01 -3.9502E+01 3.9500E+01 -2.2203E+01 5.3444E+00
S7 -1.6130E-01 4.7353E-02 -2.0712E+00 1.0179E+01 -2.7196E+01 4.3871E+01 -4.1925E+01 2.1379E+01 -4.3400E+00
S8 -1.0893E-01 -2.3527E-01 3.3539E-01 -3.9584E-01 1.0267E+00 -2.0499E+00 2.2162E+00 -1.3147E+00 3.6598E-01
S9 -8.5152E-02 -1.6386E-01 4.5281E-01 -1.1069E+00 2.3641E+00 -3.2289E+00 2.5055E+00 -1.0116E+00 1.6667E-01
S10 -9.7417E-02 -1.5208E-01 4.2939E-01 -9.3997E-01 1.6612E+00 -1.8806E+00 1.2458E+00 -4.3945E-01 6.3755E-02
S11 1.4509E-01 -1.5861E-01 1.0665E-01 -2.0310E-01 2.4658E-01 -1.7022E-01 6.8455E-02 -1.4809E-02 1.3191E-03
S12 1.3331E-01 1.6545E-01 -3.8250E-01 2.9365E-01 -1.1728E-01 2.5184E-02 -2.5474E-03 4.5267E-05 7.0686E-06
S13 -1.0207E-01 2.6699E-02 6.4830E-03 1.9414E-02 -2.1403E-02 8.4021E-03 -1.6344E-03 1.5996E-04 -6.3221E-06
S14 -9.0439E-02 4.5947E-02 -2.1362E-02 8.8635E-03 -3.0540E-03 7.5309E-04 -1.1683E-04 9.9840E-06 -3.5534E-07
表14
表15示出了实施例5中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.75 3.58 -8.90 18.59 90.70
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -75.56 3.19 -2.27 4.56 3.08
表15
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的摄像镜头的倍率色差曲线,其表示 光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面;第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000009
Figure PCTCN2018100471-appb-000010
表16
由表16可知,在实施例6中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.7750E-04 4.0207E-02 -1.6732E-01 4.0534E-01 -6.2409E-01 5.9325E-01 -3.3700E-01 9.7385E-02 -1.0367E-02
S2 -5.1596E-02 -5.2802E-02 1.4964E-01 -1.0663E-01 -1.1388E-01 2.9461E-01 -2.7885E-01 1.3525E-01 -2.7625E-02
S3 -9.9317E-02 6.6921E-03 -2.2974E-02 1.0298E+00 -2.9027E+00 3.9373E+00 -2.9243E+00 1.1447E+00 -1.8395E-01
S4 -4.6002E-03 -2.2266E-01 1.6017E+00 -6.7565E+00 2.0360E+01 -3.9805E+01 4.7813E+01 -3.2071E+01 9.3116E+00
S5 5.0687E-02 -3.6169E-01 1.4000E+00 -6.2971E+00 1.9705E+01 -3.9078E+01 4.7041E+01 -3.1292E+01 8.8904E+00
S6 -8.3882E-03 -5.0086E-01 2.0204E+00 -7.0682E+00 1.6503E+01 -2.4771E+01 2.2834E+01 -1.1746E+01 2.5662E+00
S7 -1.7231E-01 -1.2135E-01 -9.7132E-01 5.7184E+00 -1.6533E+01 2.8818E+01 -3.0188E+01 1.7136E+01 -3.9335E+00
S8 -1.0387E-01 -2.7680E-01 6.6994E-01 -1.7038E+00 4.0119E+00 -6.0709E+00 5.2413E+00 -2.4008E+00 4.8321E-01
S9 -9.9993E-02 -9.5016E-02 3.4788E-01 -8.3128E-01 1.8253E+00 -2.6351E+00 2.1360E+00 -8.9462E-01 1.5269E-01
S10 -1.1673E-01 -8.0658E-02 3.0430E-01 -6.6320E-01 1.1636E+00 -1.3156E+00 8.6310E-01 -2.9873E-01 4.2204E-02
S11 1.0958E-01 -9.7921E-02 1.5330E-02 -5.8817E-02 8.9526E-02 -6.8385E-02 3.0766E-02 -7.5162E-03 7.5527E-04
S12 1.3582E-01 8.6344E-02 -2.0942E-01 1.1631E-01 -1.1783E-02 -1.3652E-02 6.2368E-03 -1.0787E-03 6.9402E-05
S13 -1.0932E-01 4.0235E-02 -3.8002E-03 2.4754E-02 -2.3902E-02 9.3236E-03 -1.8475E-03 1.8629E-04 -7.6428E-06
S14 -8.1176E-02 3.0950E-02 -6.1060E-03 -6.2063E-04 5.9247E-04 -1.1205E-04 5.7468E-06 5.2076E-07 -5.0079E-08
表17
表18示出了实施例6中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.75 3.62 -11.11 -164.83 16.06
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -61.38 3.18 -2.22 4.56 3.08
表18
图12A示出了实施例6的摄像镜头的轴上色差曲线,其表示不同 波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面;第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000011
Figure PCTCN2018100471-appb-000012
表19
由表19可知,在实施例7中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9470E-03 5.9079E-02 -2.5000E-01 6.2731E-01 -9.9866E-01 9.9127E-01 -5.9416E-01 1.8909E-01 -2.4187E-02
S2 -5.1916E-02 -7.9253E-02 3.2517E-01 -6.7064E-01 9.9558E-01 -1.0750E+00 7.4648E-01 -2.8833E-01 4.6252E-02
S3 -9.6307E-02 -2.2559E-02 1.6668E-01 2.7814E-01 -9.5164E-01 6.5020E-01 4.8869E-01 -8.2445E-01 2.9723E-01
S4 7.5238E-04 -2.8121E-01 1.9946E+00 -8.5449E+00 2.5497E+01 -4.9030E+01 5.7892E+01 -3.8216E+01 1.0922E+01
S5 5.9919E-02 -4.6251E-01 2.0732E+00 -9.5739E+00 2.9957E+01 -5.9051E+01 7.0639E+01 -4.6790E+01 1.3227E+01
S6 -1.0006E-03 -5.5019E-01 2.2064E+00 -7.6114E+00 1.7336E+01 -2.4846E+01 2.1435E+01 -1.0157E+01 2.0163E+00
S7 -1.7164E-01 -6.8875E-02 -1.5239E+00 8.8392E+00 -2.7340E+01 5.1518E+01 -5.8119E+01 3.5575E+01 -8.9622E+00
S8 -1.0826E-01 -2.4999E-01 5.5310E-01 -1.2089E+00 2.3812E+00 -2.6946E+00 1.1908E+00 1.6468E-01 -1.7714E-01
S9 -1.0231E-01 -1.0716E-01 4.4050E-01 -1.0656E+00 2.1325E+00 -2.8383E+00 2.1695E+00 -8.6343E-01 1.3984E-01
S10 -1.1812E-01 -8.4912E-02 3.3588E-01 -7.3397E-01 1.2420E+00 -1.3608E+00 8.7432E-01 -2.9832E-01 4.1691E-02
S11 1.1117E-01 -1.0299E-01 3.1637E-02 -9.2358E-02 1.2846E-01 -9.6552E-02 4.3389E-02 -1.0669E-02 1.0862E-03
S12 1.3597E-01 8.7825E-02 -2.0684E-01 1.0616E-01 -9.9885E-04 -1.9335E-02 7.8772E-03 -1.3275E-03 8.4934E-05
S13 -1.1203E-01 4.3991E-02 -7.9466E-03 2.8601E-02 -2.6171E-02 1.0111E-02 -2.0052E-03 2.0337E-04 -8.4222E-06
S14 -8.7772E-02 4.1321E-02 -1.5802E-02 4.9293E-03 -1.4134E-03 3.4692E-04 -5.8639E-05 5.5700E-06 -2.1932E-07
表20
表21示出了实施例7中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.74 3.52 -10.13 -91.00 14.41
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -53.16 3.18 -2.21 4.56 3.08
表21
图14A示出了实施例7的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片L8和成像面S17。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜L4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面;第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜L6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面;第七透镜L7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片L8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100471-appb-000013
表22
由表22可知,在实施例8中,第一透镜L1至第七透镜L7中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.6924E-04 2.3538E-02 -9.1561E-02 1.7250E-01 -1.7724E-01 5.9275E-02 4.2443E-02 -4.6119E-02 1.1788E-02
S2 -5.9832E-02 -5.3346E-02 5.0247E-01 -1.6029E+00 2.9824E+00 -3.4314E+00 2.3725E+00 -9.0107E-01 1.4411E-01
S3 -1.2687E-01 1.3952E-01 -1.5064E-01 6.3880E-01 -1.5929E+00 2.1472E+00 -1.5790E+00 5.7943E-01 -7.4494E-02
S4 -4.7959E-02 -1.5015E-01 2.0399E+00 -9.8116E+00 2.9470E+01 -5.5661E+01 6.4059E+01 -4.0999E+01 1.1211E+01
S5 2.2387E-02 -6.1593E-02 -7.3586E-02 1.4619E-01 -8.5956E-02 -3.9472E-01 9.2848E-01 -9.1225E-01 4.0034E-01
S6 -2.4768E-02 8.1096E-02 -9.4703E-01 4.1510E+00 -1.2010E+01 2.1711E+01 -2.3740E+01 1.4330E+01 -3.6156E+00
S7 -1.9208E-01 1.7248E-01 -7.0573E-01 2.2699E+00 -5.8586E+00 1.0269E+01 -1.1283E+01 6.9697E+00 -1.7999E+00
S8 -2.0784E-01 3.2467E-02 4.1429E-01 -2.0952E+00 4.9244E+00 -6.9770E+00 6.0050E+00 -2.8855E+00 5.9857E-01
S9 -1.5260E-01 9.2261E-03 1.8748E-01 -3.8625E-01 3.7583E-01 -2.7475E-01 1.7680E-01 -8.7842E-02 2.1089E-02
S10 -1.1501E-01 -9.6273E-02 2.7807E-01 -3.1465E-01 2.1157E-01 -9.3141E-02 2.5998E-02 -3.7703E-03 1.5132E-04
S11 1.1522E-01 -1.9703E-01 1.9607E-02 2.0622E-01 -3.5859E-01 3.0580E-01 -1.4551E-01 3.7077E-02 -3.9830E-03
S12 1.8518E-01 -6.5478E-02 -3.9937E-02 2.8295E-02 4.4322E-03 -9.1505E-03 3.3577E-03 -5.3362E-04 3.2427E-05
S13 -1.3328E-01 5.0363E-02 4.6496E-02 -4.2917E-02 1.4792E-02 -2.7335E-03 2.8761E-04 -1.6315E-05 3.8904E-07
S14 -9.2011E-02 4.1673E-02 -1.0094E-02 -8.4478E-04 1.2182E-03 -3.2699E-04 4.2417E-05 -2.7586E-06 7.2048E-08
表23
表24示出了实施例8中摄像镜头的总有效焦距f、各透镜的有效焦距f1至f7、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm)
数值 3.95 3.85 -9.02 12.03 -69.00
参数 f5(mm) f6(mm) f7(mm) TTL(mm) ImgH(mm)
数值 -43.80 3.59 -2.49 4.76 3.41
表24
图16A示出了实施例8的摄像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的摄像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足以下表25所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
f/EPD 1.51 1.75 1.87 1.72 1.73 1.74 1.74 1.83
f2/f -2.57 -2.24 -2.19 -2.20 -2.38 -2.97 -2.71 -2.29
|f/f1|+|f/f2| 1.25 1.46 1.51 1.48 1.47 1.37 1.43 1.46
f6/TTL 0.78 0.74 0.74 0.69 0.70 0.70 0.70 0.76
TTL/ImgH 1.54 1.37 1.40 1.48 1.48 1.48 1.48 1.40
f/R1 2.06 2.42 2.51 2.44 2.47 2.45 2.44 2.48
R2/f1 1.50 1.52 1.52 1.57 1.60 1.58 1.82 1.48
R1/R14 1.10 1.25 1.26 1.28 1.29 1.30 1.31 1.23
f7/CT7 -4.55 -4.39 -4.35 -4.41 -4.52 -4.53 -4.51 -4.45
CT3/CT4 1.14 1.37 1.36 1.36 1.34 1.34 1.34 1.35
T56/T67 2.18 2.40 3.11 2.27 2.74 3.09 3.11 1.91
CT4/CT5 0.99 0.71 0.57 0.81 0.80 0.81 0.79 0.50
DT11/DT51 1.00 0.99 0.97 1.02 1.03 1.05 1.05 0.97
SAG71/CT7 -0.19 -0.30 -0.31 -0.41 -0.34 -0.45 -0.44 -0.36
表25
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机、平板电脑等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 摄像镜头,其特征在于,所述摄像镜头沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜,其物侧面为凸面,像侧面为凸面;
    具有负光焦度的第七透镜,其物侧面为凸面;以及
    其中,所述第二透镜的有效焦距与所述摄像镜头的总有效焦距f满足-3≤f2/f<-1.5。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的总有效焦距f与所述摄像镜头的入瞳直径EPD满足f/EPD<2.0。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足1<|f/f1|+|f/f2|<1.55。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足1.3<R2/f1<2。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述第六透镜具有正光焦度;
    所述第六透镜的有效焦距f6与所述摄像镜头的光学总长度TTL满足0.6<f6/TTL<1.3。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第七透镜于所述光轴上的中心厚度CT7满足-5<f7/CT7<-4。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凸面;
    所述摄像镜头的总有效焦距f与所述第一透镜的物侧面的曲率半径R1满足2<f/R1<2.6。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第七透镜的像侧面的曲率半径R14满足1<R1/R14<1.5。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述第五透镜的物侧面的有效半口径DT51满足0.8<DT11/DT51<1.2。
  10. 根据权利要求1所述的摄像镜头,其特征在于,所述第七透镜的物侧面和所述光轴的交点至所述第七透镜物侧面的有效半口径顶点在所述光轴上的距离SAG71与所述第七透镜于所述光轴上的中心厚度CT7满足-0.5<SAG71/CT7<0。
  11. 根据权利要求1至10中任一项所述的摄像镜头,其特征在于,所述摄像镜头的光学总长度TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.65。
  12. 根据权利要求11所述的摄像镜头,其特征在于,所述第三透镜于所述光轴上的中心厚度CT3与所述第四透镜于所述光轴上的中心厚度CT4满足1<CT3/CT4<1.5。
  13. 根据权利要求11所述的摄像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4于所述第五透镜于所述光轴上的中心厚度CT5满足CT4/CT5≤1。
  14. 根据权利要求11所述的摄像镜头,其特征在于,所述第五透镜和所述第六透镜于所述光轴上的间隔距离T56与所述第六透镜和所述第七透镜于所述光轴上的间隔距离T67满足1.5<T56/T67<3.2。
  15. 摄像镜头,其特征在于,所述摄像镜头沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜,其物侧面为凸面,像侧面为凸面;
    具有负光焦度的第七透镜,其物侧面为凸面;以及
    其中,所述摄像镜头的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足1<|f/f1|+|f/f2|<1.55。
  16. 根据权利要求15所述的摄像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第七透镜的像侧面的曲率半径R14满足1<R1/R14<1.5。
  17. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凸面;
    所述摄像镜头的总有效焦距f与所述第一透镜的物侧面的曲率半径R1满足2<f/R1<2.6。
  18. 根据权利要求15所述的摄像镜头,其特征在于,所述第一透 镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足1.3<R2/f1<2。
  19. 根据权利要求15至18中任一项所述的摄像镜头,其特征在于,所述摄像镜头的总有效焦距f与所述摄像镜头的入瞳直径EPD满足f/EPD<2.0。
  20. 根据权利要求19所述的摄像镜头,其特征在于,所述第二透镜的有效焦距与所述摄像镜头的总有效焦距f满足-3≤f2/f<-1.5。
  21. 根据权利要求19所述的摄像镜头,其特征在于,所述第六透镜的有效焦距f6与所述摄像镜头的光学总长度TTL满足0.6<f6/TTL<1.3。
  22. 根据权利要求19所述的摄像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第七透镜于所述光轴上的中心厚度CT7满足-5<f7/CT7<-4。
  23. 根据权利要求19所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述第五透镜的物侧面的有效半口径DT51满足0.8<DT11/DT51<1.2。
  24. 根据权利要求22所述的摄像镜头,其特征在于,所述第七透镜的物侧面和所述光轴的交点至所述第七透镜物侧面的有效半口径顶点在所述光轴上的距离SAG71与所述第七透镜于所述光轴上的中心厚度CT7满足-0.5<SAG71/CT7<0。
  25. 根据权利要求15所述的摄像镜头,其特征在于,所述第三透镜于所述光轴上的中心厚度CT3与所述第四透镜于所述光轴上的中心厚度CT4满足1<CT3/CT4<1.5。
  26. 根据权利要求15所述的摄像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4于所述第五透镜于所述光轴上的中心厚度CT5满足CT4/CT5≤1。
  27. 根据权利要求15所述的摄像镜头,其特征在于,所述第五透镜和所述第六透镜于所述光轴上的间隔距离T56与所述第六透镜和所述第七透镜于所述光轴上的间隔距离T67满足1.5<T56/T67<3.2。
  28. 根据权利要求25至27中任一项所述的摄像镜头,其特征在于,所述摄像镜头的光学总长度TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.65。
PCT/CN2018/100471 2017-10-25 2018-08-14 摄像镜头 WO2019080610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/273,584 US11029501B2 (en) 2017-10-25 2019-02-12 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721397246.2U CN207336905U (zh) 2017-10-25 2017-10-25 摄像镜头
CN201721397246.2 2017-10-25
CN201711007882.4A CN107577034B (zh) 2017-10-25 2017-10-25 摄像镜头
CN201711007882.4 2017-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,584 Continuation US11029501B2 (en) 2017-10-25 2019-02-12 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2019080610A1 true WO2019080610A1 (zh) 2019-05-02

Family

ID=66246238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100471 WO2019080610A1 (zh) 2017-10-25 2018-08-14 摄像镜头

Country Status (2)

Country Link
US (1) US11029501B2 (zh)
WO (1) WO2019080610A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983194B1 (ko) * 2017-10-31 2019-05-28 삼성전기주식회사 촬상 광학계
KR102000009B1 (ko) * 2017-11-20 2019-07-15 삼성전기주식회사 촬상 광학계
CN109613679B (zh) * 2018-12-31 2021-09-28 诚瑞光学(常州)股份有限公司 摄像光学镜头
KR102270301B1 (ko) 2019-06-17 2021-06-30 삼성전기주식회사 촬상 광학계
KR102271340B1 (ko) * 2019-06-17 2021-07-01 삼성전기주식회사 촬상 광학계
CN110908075B (zh) * 2019-12-05 2020-10-30 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN113009670A (zh) * 2019-12-20 2021-06-22 三营超精密光电(晋城)有限公司 望远式成像镜头
CN114740596B (zh) * 2022-03-22 2023-09-05 江西晶超光学有限公司 光学***、取像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203606556U (zh) * 2012-11-21 2014-05-21 康达智株式会社 摄像镜头
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
US20170184822A1 (en) * 2015-12-24 2017-06-29 AAC Technologies Pte. Ltd. Photographic optical system
CN106950681A (zh) * 2017-05-22 2017-07-14 浙江舜宇光学有限公司 摄像镜头
CN107577034A (zh) * 2017-10-25 2018-01-12 浙江舜宇光学有限公司 摄像镜头
CN207336905U (zh) * 2017-10-25 2018-05-08 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144973B2 (ja) * 2013-06-21 2017-06-07 カンタツ株式会社 撮像レンズ
JP6160423B2 (ja) 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP6376561B2 (ja) * 2014-10-29 2018-08-22 カンタツ株式会社 撮像レンズ
TWI604210B (zh) 2015-09-17 2017-11-01 先進光電科技股份有限公司 光學成像系統(二)
TWI600920B (zh) 2015-09-17 2017-10-01 先進光電科技股份有限公司 光學成像系統(一)
TWI608268B (zh) 2015-09-24 2017-12-11 先進光電科技股份有限公司 光學成像系統(一)
TWI609195B (zh) 2015-09-24 2017-12-21 先進光電科技股份有限公司 光學成像系統(二)
WO2019052220A1 (zh) * 2017-09-13 2019-03-21 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203606556U (zh) * 2012-11-21 2014-05-21 康达智株式会社 摄像镜头
US20170184822A1 (en) * 2015-12-24 2017-06-29 AAC Technologies Pte. Ltd. Photographic optical system
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
CN106950681A (zh) * 2017-05-22 2017-07-14 浙江舜宇光学有限公司 摄像镜头
CN107577034A (zh) * 2017-10-25 2018-01-12 浙江舜宇光学有限公司 摄像镜头
CN207336905U (zh) * 2017-10-25 2018-05-08 浙江舜宇光学有限公司 摄像镜头

Also Published As

Publication number Publication date
US20190170987A1 (en) 2019-06-06
US11029501B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
CN107577034B (zh) 摄像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2019101052A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像***
WO2020093725A1 (zh) 摄像光学***
WO2019210739A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020088022A1 (zh) 光学成像镜片组
WO2019100768A1 (zh) 光学成像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019080610A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2020042765A1 (zh) 影像镜头
WO2019218628A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019056776A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869492

Country of ref document: EP

Kind code of ref document: A1