WO2019080485A1 - 测量方法及设备 - Google Patents

测量方法及设备

Info

Publication number
WO2019080485A1
WO2019080485A1 PCT/CN2018/087210 CN2018087210W WO2019080485A1 WO 2019080485 A1 WO2019080485 A1 WO 2019080485A1 CN 2018087210 W CN2018087210 W CN 2018087210W WO 2019080485 A1 WO2019080485 A1 WO 2019080485A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
interval
configuration
time
channel quality
Prior art date
Application number
PCT/CN2018/087210
Other languages
English (en)
French (fr)
Inventor
姚楚婷
郑德来
王键
徐海博
邝奕如
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18871448.9A priority Critical patent/EP3678407A4/en
Priority to US16/759,196 priority patent/US11290905B2/en
Publication of WO2019080485A1 publication Critical patent/WO2019080485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a measurement method and device.
  • a terminal device can communicate with a base station within a serving cell. If the signal quality of the serving cell is not good, cell handover can be performed. Before the cell handover is performed, the terminal device measures the signal quality of the target measurement cell and reports it to the base station. The base station determines whether to switch the terminal device to the target measurement cell according to the measurement result reported by the terminal device. The terminal device performs cell measurement into the same frequency measurement and the inter-frequency measurement.
  • the same-frequency measurement refers to the cell measurement performed when the serving cell where the terminal device is currently located and the cell to be measured are in the same carrier frequency band.
  • the inter-frequency measurement refers to the cell measurement performed when the serving cell where the terminal device is currently located and the cell to be measured are not in a carrier frequency band.
  • the terminal device When the terminal device performs inter-frequency measurement, if the terminal device has only one set of radio frequency receivers, the base station needs to configure a measurement gap to the terminal device for measurement. Within the set measurement interval length, the terminal device adjusts the frequency band of the radio frequency receiver to the frequency band of the cell to be measured, and performs inter-frequency measurement. During the measurement interval length, the terminal device does not perform data interaction with the serving cell. After the end of the measurement interval length, the terminal device converts the frequency band of the radio frequency receiver back to the serving cell.
  • the base station can set the repetition period of the measurement interval and the measurement interval length in the measurement interval repetition period.
  • a plurality of cells to be measured operating in the frequency band to be measured may be measured within the length of the measurement interval.
  • the terminal device reports the measurement result to the base station.
  • the terminal device continues to perform the inter-frequency measurement within the measurement interval length in the next measurement interval period.
  • the terminal device needs to perform inter-frequency measurement in the reserved measurement interval length in each measurement interval period, and has no report. Measurement results. In the inter-frequency measurement process, the base station and the terminal device do not perform data interaction, thereby causing waste of data transmission time of the terminal device.
  • the embodiment of the present application provides a measurement method and device.
  • the measurement interval can be used to occupy the time domain resource of the second device communication, which can save the time for the second device to use for data transmission and improve the service quality of the second device.
  • the embodiment of the present application provides a measurement method, including: a first device sends a message carrying a time parameter configuration to a second device, where the time parameter is configured to configure the second device to send a first measurement message. Or the time when the first device sends the first interval configuration to the second device.
  • the first device may send a time parameter configuration to the second device, where the time parameter configuration is configured to configure the time at which the first device sends the first interval configuration to the second device, or configure the second The time at which the device sends the measured first measurement message to the first device.
  • the first device may resend the second device according to the first measurement message or the time parameter configuration.
  • An interval configuration can reduce the time interval resource occupied by the second device by the measurement interval, save the time for the second device to use for data transmission, and improve the service quality of the second device.
  • the method further includes: the first device sending a message carrying the second interval configuration and the first event configuration to the second device; the second interval configured to configure the second The time resource that the device performs the measurement; the first event is configured to configure an event that triggers the second device to send the second measurement message.
  • the method further comprises: if the first device increases at a time point of the time parameter configuration, or during a time period configured by the time parameter, or at a time configured by the time parameter The second measurement corresponding to the first increment, or the second measurement message sent by the second device is not received, and the first The device sends a message carrying the first interval configuration to the second device, where the first interval configuration is different from the second interval configuration.
  • the method further comprises: if the first device increases at a time point of the time parameter configuration, or during a time period configured by the time parameter, or at a time configured by the time parameter Receiving the first measurement message sent by the second device, the first device, in a time point corresponding to the first increment, or in a time period corresponding to the second time increment of the time parameter configured by the time parameter Sending, to the second device, a message carrying the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a measurement method, including: receiving, by a second device, a message carrying a time parameter configuration from a first device, where the time parameter is configured to configure the second device to send a first measurement message.
  • the second device is at a point in time when the time parameter is configured, or in a time period during which the time parameter is configured, or a time point corresponding to a time increment in the time parameter configuration time, or in a time point corresponding to
  • the first measurement message is sent within a time period corresponding to the time increase time increment of the time parameter configuration.
  • the second device may receive a time parameter configuration sent by the first device, and configure, by the time parameter configuration, a time for the second device to receive the first interval configuration sent by the first device, or And configuring a time at which the second device sends the measured first measurement message to the first device.
  • the first device may resend the second device according to the first measurement message or the time parameter configuration.
  • An interval configuration can reduce the time interval resource occupied by the second device by the measurement interval, save the time for the second device to use for data transmission, and improve the service quality of the second device.
  • the method before the sending, by the second device, the first measurement message, the method further includes: the second device receiving, by the first device, a second interval configuration and a first event configuration
  • the first interval is configured to configure a time resource for the second device to perform measurement
  • the first event is configured to configure an event that triggers the second device to send the second measurement message.
  • the method further includes: receiving, by the second device, a first interval configuration sent by the first device, where the first interval configuration Different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a measurement method, including: receiving, by a second device, a time parameter configuration from a first device, where the time parameter is configured to configure the second device to receive, sent by the first device The time of the first interval configuration; the time at which the second device increases the time increment in the time point configured by the time parameter, or in the time period configured by the time parameter, or in the time configured by the time parameter Receiving, in a time period corresponding to the time increase time increment configured by the time parameter, receiving the first interval configuration sent by the first device.
  • the second device may receive a time parameter configuration sent by the first device, and configure, by the time parameter configuration, a time for the second device to receive the first interval configuration sent by the first device, where The first device may resend the first interval to the second device according to the first measurement message or the time parameter configuration, if the second device does not detect the switchable measurement target in the time point or the time period indicated by the time parameter configuration.
  • the second device after receiving the reconfigured first interval configuration sent by the first device, performs measurement interval measurement according to the reconfigured first interval configuration parameter to detect whether there is a switchable measurement target.
  • the reconfigured first interval configuration can reduce the situation that the measurement interval frequently occupies the uplink and downlink time domain resources of the second device, and improve the service quality of the second device.
  • the method before the second device receives the first interval configuration sent by the first device, the method further includes: the second device receiving the second interval configuration sent by the first device And the first event is configured to configure a time resource that is measured by the second device, where the first interval configuration is different from the second interval configuration; the first event configuration is configured to configure An event that triggers the second device to send a second measurement message.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a measurement method, including: the first device sends a message carrying the first configuration to the second device, where the first configuration is used to indicate that the second device is triggered by using the first event. Transmitting a first measurement message, where the first event includes at least one of: a channel quality of the measurement target is lower than a first threshold, and a channel quality of the measurement target is lower than a channel quality of a serving cell of the second device, where The channel quality of the measurement target is lower than the first threshold and the channel quality of the serving cell of the second device is higher than a second threshold, and the channel quality of the measurement target is lower than the channel of the serving cell of the second device The quality and the channel quality of the serving cell of the second device is higher than the second threshold.
  • the first configuration sent by the first device to the second device defines a first event.
  • the second device may trigger the first device according to the received first defined event.
  • the first measurement message is sent, and the second device can reconfigure the first interval configuration for the first device according to the first measurement message, and the reconfigured first interval configuration can reduce the time interval resource occupied by the second device by the measurement interval, which can save
  • the second device is used for data transmission time to improve the service quality of the second device.
  • the channel quality of the measurement target is lower than the first threshold, including: the channel quality of the measurement target is lower than a third threshold, or the channel quality of the measurement target is lower than a third threshold and the first a sum of the offsets;
  • the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, including: the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, or The channel quality of the measurement target is lower than the sum of the channel quality of the serving cell of the second device and the second offset;
  • the channel quality of the serving cell of the second device is higher than the second threshold, including: The channel quality of the serving cell of the second device is higher than the fourth threshold, or the channel quality of the serving cell of the second device is higher than the sum of the fourth threshold and the third offset.
  • the method further includes: the first device sends a message carrying the second interval configuration to the second device; and the second interval is configured to configure a time when the second device performs measurement Resources.
  • the method further includes: the first device receiving the first measurement sent by the second device The first device sends a first interval configuration to the second device, where the first interval configuration is different from the second interval configuration.
  • the method further includes: the first device sending a message carrying the second configuration to the second device; the second configuration is configured to configure a frequency at which the second device performs the measurement At least one of information, cell information, or system information.
  • the second configuration and the first configuration are carried in the same or different messages and sent to the second device.
  • the first configuration is configured to configure the first threshold, the second threshold, the third threshold, the fourth threshold, the first offset, and the second bias And at least one of the third offsets is set.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a measurement method, including: receiving, by the second device, a message that is sent by the first device and carrying the first configuration; the first configuration is used to indicate that the second event is triggered by using the first event.
  • the device sends a first measurement message, where the first event includes at least one of: the channel quality of the measurement target is lower than a first threshold, and the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, The channel quality of the measurement target is lower than the first threshold and the channel quality of the serving cell of the second device is higher than a second threshold, and the channel quality of the measurement target is lower than that of the serving cell of the second device Channel quality, and the channel quality of the serving cell of the second device is higher than the second threshold; when the first event is triggered, the second device sends the first measurement message to the first device.
  • the second device may send a first measurement message to the first device according to the received first event, and the second device may re-determine according to the first measurement message.
  • a device is configured with a first interval configuration. Compared with the second interval configuration, the first interval configuration can reduce the time interval resource used by the second device to communicate with the measurement interval, save time for the second device to use for data transmission, and improve the second device. Quality of service.
  • the channel quality of the measurement target is lower than the first threshold, including: the channel quality of the measurement target is lower than a third threshold, or the channel quality of the measurement target is lower than a third threshold and the first a sum of the offsets;
  • the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, including: the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, or The channel quality of the measurement target is lower than the sum of the channel quality of the serving cell of the second device and the second offset;
  • the channel quality of the serving cell of the second device is higher than the second threshold, including: The channel quality of the serving cell of the second device is higher than the fourth threshold, or the channel quality of the serving cell of the second device is higher than the sum of the fourth threshold and the third offset.
  • the method further includes: the second device receives a message that is sent by the first device and carries a second interval configuration; and the second interval is configured to configure the second device to perform measurement. Time resources.
  • the method further includes: when the first event is triggered, the second device is The first device sends the first measurement message; the second device receives the message that is sent by the first device and carries the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the method further includes: the first device receiving a message that is sent by the second device and carrying the second configuration; and the second configuration is configured to configure the second device to perform the measurement. At least one of frequency information, cell information, or system information.
  • the second configuration and the first configuration are carried in the same or different messages and sent to the second device.
  • the first configuration is configured to configure the first threshold, the second threshold, the third threshold, the fourth threshold, the first offset, and the second bias And at least one of the third offsets is set.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the first measurement message includes or indicates at least one piece of information: a channel quality of the measurement target, an identifier of the measurement target, and a indication that the second device does not detect the switchable measurement The information of the target and the measurement interval configuration desired by the second device.
  • the measurement interval configuration desired by the second device includes any one or more of the following: a measurement interval repetition period desired by the second device; the second device expects measurement in the first time An interval repeating cycle; the second device expects a measurement interval to erupt a repetition period; the second device expects a measurement interval to erupt a repetition period in a second time; the second device desires a measurement interval length; the second The measurement interval length of the device is expected to be in a third time; the number of repetitions of the measurement interval expected by the second device is repeated; the second device expects the number of repetitions of the measurement interval in the fourth time to be repeated; the second device It is desirable to cancel the second interval configuration; the second device desires to cancel the second interval configuration in a fifth time.
  • the measurement interval configuration desired by the second device may be a longer measurement interval repetition period, a shorter measurement interval length, a longer measurement interval burst repetition period, fewer measurement interval burst repetitions, and the first measurement interval configuration is cancelled.
  • One or more of the above configuration parameters may be set in a preset time.
  • the one or more configurations may reduce the time interval resource occupied by the second device during the measurement interval, and the second device may be saved. The time of data transmission improves the quality of service of the second device.
  • the first interval configuration is different from the second interval configuration, and includes at least one of: a measurement interval repetition period of the first interval configuration is greater than a measurement interval repetition period of the second interval configuration; The measurement interval repetition period of the first interval configuration is greater than the measurement interval repetition period of the second interval configuration in the sixth time interval; the measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration; The measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration in the seventh time interval; the measurement interval burst repetition period of the first interval configuration is greater than the measurement interval of the second interval configuration The burst interval of the measurement interval of the first interval configuration is greater than the burst repetition period of the measurement interval of the second interval configuration in the eighth time interval; the number of bursts of the measurement interval of the first interval configuration is less than The measurement interval of the second interval configuration is repeated; the measurement interval of the first interval configuration is bursting The number of repetitions of the measurement interval that is smaller than the measurement interval of the second interval configuration in the ninth time
  • the reconfigured first interval configuration may be set to a longer measurement interval repetition period, a shorter measurement interval length, a longer measurement interval burst repetition period, and fewer measurement interval burst repetitions than the second interval configuration If the number of the first measurement interval is canceled, the configuration parameters may be set within a preset time.
  • the one or more configurations may be used to reduce the time interval in which the measurement interval occupies communication of the second device. The resource can save the time for the second device to use for data transmission and improve the service quality of the second device.
  • an embodiment of the present application provides a measurement method, including:
  • the first device determines a time parameter configuration; the time parameter is configured to configure a time when the first device sends the first interval configuration to the second device.
  • the time parameter configuration may be set, and the time for the first device to send the first interval configuration to the second device is configured by the time parameter configuration.
  • the first device may resend the first interval configuration to the second device according to the time parameter configuration, in a case that the second device does not detect the switchable measurement target in the time point or the time period indicated by the time parameter configuration indication, The time interval resource used for the communication of the second device is reduced, and the time for the second device to use the data transmission is saved, and the service quality of the second device is improved.
  • the method further includes: the first device sending a message carrying the second interval configuration and the first event configuration to the second device; the second interval configured to configure the second The time resource that the device performs the measurement; the first event is configured to configure an event that triggers the second device to send the second measurement message.
  • the method further comprises: if the first device increases at a time point of the time parameter configuration, or during a time period configured by the time parameter, or at a time configured by the time parameter The second measurement corresponding to the first increment, or the second measurement message sent by the second device is not received, and the first The device sends a message carrying the first interval configuration to the second device, where the first interval configuration is different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a measurement method, including: receiving, by a second device, a message that is sent by the first device and that carries a second interval configuration and a first event configuration;
  • the second device performs a measurement time resource;
  • the first event is configured to configure an event that triggers the second device to send a second measurement message; and
  • the second device is configured according to the second interval configuration and the first event
  • the measurement interval measurement is performed at a time point or a time period indicated by the time parameter configuration determined by the first device; the time parameter is configured to configure a time when the first device sends the first interval configuration to the second device.
  • the time parameter configuration may be set, and the time for the first device to send the first interval configuration to the second device is configured by the time parameter configuration.
  • the first device may resend the first interval configuration to the second device according to the time parameter configuration, in a case that the second device does not detect the switchable measurement target in the time point or the time period indicated by the time parameter configuration indication,
  • the time interval resource used for the communication of the second device is reduced, and the time for the second device to use the data transmission is saved, and the service quality of the second device is improved.
  • the method further comprises: if the first device increases at a time point of the time parameter configuration, or during a time period configured by the time parameter, or at a time configured by the time parameter The second measurement corresponding to the first increment, or the second measurement message sent by the second device, the second The device receives the message that is sent by the first device and that carries the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages received at the second device.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device is a network device or a terminal device
  • the second device is a network device or a terminal device.
  • the embodiment of the present application provides a first device, where the first device includes a module or a unit for performing the measurement method provided by the first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a second device, where the second device includes a module or unit for performing the measurement method provided by the second aspect or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a second device, where the second device includes a module or a unit for performing the measurement method provided by the third aspect or any possible implementation manner of the third aspect.
  • the embodiment of the present application provides a first device, where the first device includes a module or a unit for performing the measurement method provided by the fourth aspect or any possible implementation manner of the fourth aspect.
  • the embodiment of the present application provides a second device, where the second device includes a module or a unit for performing the measurement method provided by the fifth aspect or any possible implementation manner of the fifth aspect.
  • the embodiment of the present application provides a first device, where the first device includes a module or a unit for performing the measurement method provided by any of the possible implementations of the sixth aspect or the sixth aspect.
  • the embodiment of the present application provides a second device, where the second device includes a module or a unit for performing the measurement method provided by any one of the seventh aspect or the seventh aspect.
  • the embodiment of the present application provides a first device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory to perform the measurement method provided by the first aspect or any of the possible implementations of the first aspect.
  • the embodiment of the present application provides a second device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the second aspect or the second aspect.
  • the embodiment of the present application provides a second device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the third aspect or the third aspect.
  • the embodiment of the present application provides a first device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the fourth aspect or the fourth aspect.
  • the embodiment of the present application provides a second device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the fifth aspect or the fifth aspect.
  • the embodiment of the present application provides a first device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting data a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the sixth aspect or the sixth aspect.
  • the embodiment of the present application provides a second device, including: a processor, a memory, a transceiver, and a bus; a processor, a transceiver, and a memory communicate with each other through a bus; and a transceiver for receiving and transmitting Data; a memory for storing instructions; a processor for invoking instructions in the memory, performing the measurement method provided by any of the possible implementations of the seventh aspect or the seventh aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the first aspect or the first aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the second aspect or the second aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the third aspect or the third aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the fourth aspect or the fourth aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the fifth aspect or the fifth aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the sixth aspect or the sixth aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is run on the device, causing the device to perform any of the seventh aspect or the seventh aspect The measurement method provided by the implementation.
  • the embodiment of the present application provides a computer program, the computer program comprising instructions, when the instruction is run on a device, causing the device to perform the first aspect or any possible implementation manner of the first aspect The measurement method provided.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is run on the device, causing the device to perform the second aspect or any of the possible implementation manners of the second aspect Measuring method.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is run on a device, causing the device to perform any of the possible implementation manners of the third aspect or the third aspect.
  • the measurement method provided.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is run on the device, causing the device to perform any of the possible implementation manners of the fourth aspect or the fourth aspect.
  • the measurement method provided.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is run on a device, causing the device to perform any of the possible implementation manners of the fifth aspect or the fifth aspect.
  • the measurement method provided.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is run on the device, causing the device to perform any of the possible implementation manners of the sixth aspect or the sixth aspect.
  • the measurement method provided.
  • the embodiment of the present application provides a computer program, the computer program comprising instructions, when the instruction is run on a device, causing the device to perform any of the possible implementation manners of the seventh aspect or the seventh aspect The measurement method provided.
  • the embodiment of the present application provides a chip product of the device to perform the method in the first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a chip product of the device, to perform the method in any of the possible implementations of the second aspect or the second aspect.
  • the embodiment of the present application provides a chip product of the device, to perform the method in any of the possible implementations of the third aspect or the third aspect.
  • the embodiment of the present application provides a chip product of the device, to perform the method in any of the possible implementations of the fourth aspect or the fourth aspect.
  • the embodiment of the present application provides a chip product of the device to perform the method in any of the possible implementations of the fifth aspect or the fifth aspect.
  • the embodiment of the present application provides a chip product of the device to perform the method in any of the possible implementations of the sixth aspect or the sixth aspect.
  • the embodiment of the present application provides a chip product of the device, to perform the method in any of the possible implementations of the seventh aspect or the seventh aspect.
  • the first device may send a time parameter configuration to the second device, where the time parameter configuration is configured to configure the time at which the first device sends the first interval configuration to the second device, or configure the second The time at which the device sends the measured first measurement message to the first device.
  • the first device may resend the second device according to the first measurement message or the time parameter configuration.
  • the first interval configuration may be to set a longer measurement interval repetition period, a shorter measurement interval length, a longer measurement interval burst repetition period, fewer measurement interval burst repetitions, and cancel the first measurement
  • One or more of the interval configurations may also be configured in a preset time. The one or more configurations may reduce the time interval resource occupied by the second device during the measurement interval, and the second device may be saved. For the time of data transmission, improve the quality of service of the second device.
  • FIG. 1 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an interval configuration of a uniform measurement interval provided in the prior art
  • FIG. 3 is a schematic diagram of an interval configuration of a non-uniform measurement interval provided in the prior art
  • FIG. 4 is a schematic diagram of a reconfiguration interval configuration provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another reconfiguration interval configuration provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another reconfiguration interval configuration provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another reconfiguration interval configuration provided by an embodiment of the present application.
  • FIG. 8 is a schematic flow chart of a measurement method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for configuring a measurement interval according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another method for configuring a measurement interval according to an embodiment of the present application.
  • FIG. 11 is a schematic flow chart of another measurement method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart diagram of still another measurement method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart diagram of still another measurement method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a first device 10 and a second device 20 according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of another first device 10 and a second device 20 according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another first device 10 and a second device 20 according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of still another first device 10 and second device 20 according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a first device 10 according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a second device 20 according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the network system includes a first device 10 and a second device 20.
  • the first device 10 and the second device 20 can establish a communication connection and perform data interaction through the communication connection.
  • the embodiment of the present application is described by taking the first device 10 as a network device and the second device 20 as a terminal device. It can be understood that the present application can also be extended to the case where the first device 10 is a network device and the second device 20 is a network device. The application can still be extended to that the first device 10 is a terminal device, and the second device 20 is a terminal device.
  • the method may be a network device or a terminal device. Both devices can be network devices and terminal devices. This application does not limit this.
  • an area covered by the network device 10 or an area covered by one or more sector antennas on the network device 10 may be referred to as a cell.
  • the terminal device 20 can communicate with the network device 10 through a wireless channel.
  • a cell that implements communication between the terminal device 20 and the network device 10 may be referred to as a serving cell of the terminal device 20.
  • the frequency at which the terminal device 20 communicates with the network device 10 in the cell is the carrier frequency of the cell.
  • data transmitted between the network device 10 and the terminal device 20 through a wireless channel is carried on a carrier of a fixed frequency (or fixed frequency band), and the frequency (or center frequency) may be referred to as a carrier of the serving cell. frequency.
  • the network device 10 may be a base station, and the base station may be used for communicating with one or more terminal devices 20, and may also be used for communicating with one or more base stations having partial terminal device functions (such as a macro base station and a micro base station, such as Incoming point, communication between).
  • the base station may be a base transceiver station (BTS) in a time division synchronous code division multiple access (TD-SCDMA) system, or may be a long term evolution (LTE) system.
  • Evolved serial node (eNB) and fifth-generation (5th-Generation, 5G) mobile communication system, base station in a new radio (NR) system.
  • the base station may also be an access point (AP), a transmission and receiving point (TRP), a central unit (CU), or other network entity, and may include the functions of the above network entities. Some or all features.
  • the network device 10 may have other names, which are not specifically limited in the embodiment of the present invention.
  • the terminal device 20 may be a mobile user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a user terminal, or a user agent.
  • the access terminal may be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or an in-vehicle device, a wearable device, a terminal in a 5G system, or a terminal in a publicly evolved public land mobile network (PLMN). Wait.
  • the terminal device 20 may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial device.
  • Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, transportation safety A wireless terminal in a wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the specific technical and specific device modes adopted by the network device 10 and the terminal device 20 are not limited in the embodiment of the present application.
  • the network system shown in FIG. 1 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application.
  • Those skilled in the art may know that with the evolution of the network system and the emergence of new business scenarios, the present application
  • the technical solutions provided are equally applicable to similar technical issues.
  • the following is a description of the measurement target of the cell as the first device. It is to be understood that the foregoing measurement target is not limited to the scenario of the cell measurement. The same applies to the similar service scenario.
  • the network device 10 and the terminal device 20 are affected to communicate.
  • the terminal device 20 is located at the edge of the serving cell, or the terminal device 20 is located in an area where the channel quality is drastically reduced, such as a garage or an elevator.
  • the channel quality of the cell adjacent to the serving cell can be detected.
  • the terminal device 20 can perform data communication through the serving cell of the network device 10, and the carrier frequency is f1 when performing communication.
  • the cell to be detected by the terminal device 20 may be referred to as a target measurement cell.
  • the number of target measurement cells may be one or more. As shown in FIG.
  • the target measurement cell may include a target measurement cell A and a target measurement cell B.
  • the carrier frequency of the target measurement cell may be the same as the serving cell or may be different from the serving cell. As shown in FIG. 1, the carrier frequencies of the target measurement cell A and the target measurement cell B are both f2.
  • the target measurement cell and the serving cell may be in the same communication system or may not be in the same communication system, which is not limited in this application.
  • the communication system refers to, for example, 3GPP, 5G mobile communication system, universal mobile telecommunication system (UMTS), Code Division Multiple Access (CDMA) communication system, Global System for Mobile Communication (Global System for Mobile Communication) , GSM), WiFi communication system, etc. In addition, it may also be a new or newly defined communication system in the future, which is not limited in this application.
  • the intra-frequency measurement is a cell measurement performed by the terminal device 20 when the carrier frequency of the target measurement cell is the same as the carrier frequency of the serving cell of the terminal device 20.
  • the terminal device 20 performs intra-frequency measurement according to the configuration of the network device 10.
  • the inter-frequency measurement refers to the cell measurement performed by the terminal device 20 when the carrier frequency of the target measurement cell is different from the carrier frequency of the serving cell of the terminal device 20.
  • the terminal device 20 performs inter-frequency measurement according to the configuration of the network device 10.
  • the inter-frequency measurement since the carrier frequency of the transmitter on the terminal device 20 is still the carrier frequency of the serving cell, the inter-frequency measurement needs to first convert the carrier frequency of the transmitter on the terminal device 20 to the carrier frequency of the target measurement cell, after which Then channel quality measurement is performed.
  • the 3rd generation partnership project (3GPP) proposes a measurement interval to complete the above process. That is, a period of time is reserved, during which the terminal device 20 does not exchange any data with the network device 10, but shifts the carrier frequency to the target measurement cell and performs inter-frequency channel quality measurement.
  • the reserved period of time can be referred to as the measurement gap length (MGL).
  • the network device 10 transmits a measurement interval related configuration to the terminal device 20.
  • the measurement configuration of the network device 10 configuration terminal device 20 may include an interval configuration and an event configuration. The following describes the interval configuration and event configuration.
  • the interval configuration can be used to configure the time resource for network device configuration, and the interval configuration can be periodic.
  • the interval configuration can include multiple modes, and parameter configurations (eg, MGL, measurement interval repetition period, LMGRP, etc.) are different in different modes.
  • MGL is 6 ms
  • the measurement gap repetition period (MGRP) is 40 ms, that is, the time interval in which the measurement interval is repeated twice is 40 ms.
  • the MGL is 6ms and the MGRP is 80ms. Which mode is used for the measurement is determined by the parameter gapOffset, which is sent by the network device 10 to the terminal device 20 by carrying a message carrying the measurement configuration information.
  • FIG. 2 is a schematic diagram of an interval configuration of a uniform measurement interval provided in the prior art.
  • the terminal device performs inter-frequency measurement, and the MGL occurs once every MGRP, that is, the terminal device performs an inter-frequency measurement every MGRP.
  • the measurement interval may also be a non-uniform measurement interval, which means that within a burst repetition period, the measurement interval is only included in a part of the time.
  • FIG. 3 is a schematic diagram of an interval configuration of a non-uniform measurement interval provided in the prior art. As shown in FIG.
  • an explosion repetition period is divided into two parts T1 and T2.
  • the network device 10 configures one of the parameter configurations of the above-described interval configuration for the terminal device 20 in T1, and the terminal device 20 performs the inter-frequency measurement according to the parameter configuration.
  • the inter-frequency measurement may be performed multiple times in T1, and the number of times of performing the inter-frequency measurement is determined by the number of gaps per burst.
  • the number of repetitions of the measurement gap burst refers to the number of MGRPs included in T1, which may be 13.
  • the network device does not configure the time resource of the inter-frequency measurement for the terminal device 20.
  • the period duration of the burst repeat period may be indicated by gapOffset when configuring the mode of the measurement interval.
  • the cycle duration of the burst repeat period (LMGRP) can be any of the following: 1.28s, 2.56s, 5.12s, and 10.24s.
  • Event configuration The network device 10 configures an event (ie, a trigger condition) for the terminal device 20 to report a measurement report. That is to say, once the terminal device 20 detects that the trigger condition is satisfied, the measurement report is reported to the network device 10.
  • an event ie, a trigger condition
  • the event configuration may be an intra-system measurement event, and the intra-system measurement event is identified by Ax, such as one or more of an A3 event, an A4 event, and an A5 event, or may be an inter-system measurement event, such as a B1 event.
  • Ax such as one or more of an A3 event, an A4 event, and an A5 event
  • inter-system measurement event such as a B1 event.
  • the system refers to the same communication system, and the systems refer to different communication systems. It should be noted that the method flow and equipment of the measurement involved in the present application can be applied to the inter-frequency measurement, and can also be applied to the different system measurement.
  • the A3 event is used as an example.
  • the trigger condition of the A3 event is that the target measurement cell has a channel quality higher than a threshold than the serving cell.
  • the triggering condition may be that the terminal device reports the measurement report when the preset timer timing is satisfied.
  • the threshold may be pre-configured by the network device 10 to the terminal device 20. If the event configured for the terminal device 20 is configured as an A3 event, in the MGL of the measurement interval, the terminal device 20 needs to meet the trigger condition of the A3 event, that is, the target measurement cell ratio detected by the terminal device 20 within the preset timing time.
  • the channel quality of the serving cell is higher than a threshold, and the terminal device 20 is triggered to report the measurement report.
  • the measurement report content reported by the terminal device 20 may include: an identifier for identifying the current measurement, a measurement result of the serving cell (channel quality, etc.), and a measurement result (channel quality, etc.) of the target measurement cell.
  • the network device 10 can configure the terminal device 20 to perform cell handover according to the received measurement report described above.
  • the event configuration is described above by taking the event configuration as the A3 event as an example. It can be understood that the application is not limited to the case where the event is configured as an A3 event, and may also be one or more of the A4 event, the A5 event, and the B1 event in the 3GPP standard. For a specific description of the event, refer to the 3GPP standard, where not Let me repeat.
  • the measurement report may be sent to the network device 10 by the terminal device 20 in the form of a measurement message.
  • the parameters of the interval configuration, the parameters of the interval configuration (such as MGRP, LMGRP, measurement gap burst number and MGL) and event configuration are not limited to the definitions and descriptions in the existing standards, and future communication systems (such as 5G, new air ports, etc.) The definitions of these concepts may also change without affecting the application of this application.
  • the purpose of the network device 10 configuring the measurement interval for the terminal device 20 is to find a target measurement cell with better channel quality.
  • the terminal device 10 always performs the inter-frequency measurement according to the configured measurement interval, and cannot find the switchable target measurement cell.
  • the terminal device 20 In the MGL of the configured measurement interval, the terminal device 20 cannot perform data communication, and the measurement interval frequently occupies the uplink and downlink time domain resources of the terminal device 20, thereby causing waste of resources and reducing the service quality of the terminal device 20.
  • the present application provides a measurement method, which can assist the first device to distinguish the situation where the second device is located.
  • the measurement interval frequently occupies the time domain resource, saves the uplink and downlink time domain resources of the second device, and improves the service quality of the second device when the channel quality of the measurement target is not good.
  • the main inventive principle of the present application may include: when the first device sends the second interval configuration and the first event configuration for measurement to the second device, the time parameter configuration (such as a timer) may be sent to the second device simultaneously or sequentially. And configuring, by the time parameter configuration, a time for the first device to send the first interval configuration to the second device, or configuring, by the time parameter configuration, a time for the second device to send the measured first measurement message to the first device.
  • the time parameter configuration such as a timer
  • the first device may resend the second device according to the first measurement message or the time parameter configuration.
  • the first interval configuration is different from the second interval configuration, and the first interval configuration may be a longer measurement interval repetition period and a longer measurement interval in the sixth time than the second interval configuration.
  • the one or more interval configurations configured by the first device 10 for the second device 20 may reduce the time interval resource occupied by the second device by the measurement interval, and save time for the second device to be used for data transmission, and improve the The quality of service of the two devices.
  • the first device is a network device
  • the second device is a terminal device:
  • FIG. 4 is a schematic diagram of a reconfiguration interval configuration according to an embodiment of the present application.
  • the measurement interval repetition period is changed from 40 ms to 80 ms.
  • the frequency of the time domain resource occupied by the terminal device on the uplink and downlink of the terminal device can be reduced, and the time for the terminal device to use for data transmission can be saved, and the service quality of the terminal device can be improved.
  • the terminal device may no longer perform measurement interval measurement beyond the sixth time.
  • the terminal device can also be restored to the second interval configuration after the sixth time.
  • the terminal device may perform operations according to the configuration of the network device, which is not limited in this application.
  • FIG. 5 is a schematic diagram of another reconfiguration interval configuration provided by an embodiment of the present application.
  • the time (T2) can reduce the frequency of time-domain resources occupied by the network device on the uplink and downlink of the measurement device, which can save time for the terminal device to use for data transmission and improve the service quality of the terminal device.
  • the terminal device may no longer perform measurement interval measurement beyond the seventh time.
  • the terminal device can also be restored to the second interval configuration after the seventh time.
  • the terminal device may perform operations according to the configuration of the network device, which is not limited in this application.
  • FIG. 6 is a schematic diagram of still another reconfiguration interval configuration provided by an embodiment of the present application.
  • the measurement interval length is changed from 6ms to 4ms, which can reduce the time-domain resources occupied by the network device on the uplink and downlink of the measurement interval, which can save the time for the terminal device to use for data transmission and improve the service quality of the terminal device.
  • the terminal device may no longer perform measurement interval measurement beyond the eighth time.
  • the terminal device can also be restored to the second interval configuration after the eighth time.
  • the terminal device may be configured according to the configuration of the network device, which is not limited in this application.
  • FIG. 7 is a schematic diagram of still another reconfiguration interval configuration provided by an embodiment of the present application.
  • the number of repetitions of measurement interval bursts is changed from 13 to 5, which can reduce the amount of time-domain resources occupied by the network device on the uplink and downlink of the measurement interval, which can save time for the terminal device to use for data transmission and improve the terminal equipment. service quality.
  • the terminal device may no longer perform measurement interval measurement beyond the ninth time.
  • the terminal device can also be restored to the second interval configuration beyond the ninth time.
  • the terminal device may be configured according to the configuration of the network device, which is not limited in this application.
  • the first interval after reconfiguration is configured to cancel the first measurement interval configuration. Or the first interval is configured to cancel the first measurement interval configuration in the tenth time.
  • the measurement of the first measurement interval is performed.
  • the measurement interval measurement is not performed.
  • the measurement interval can be used to reduce the frequency of time-domain resources on the network device. This can save time for the terminal device to transmit data and improve the service quality of the terminal device.
  • the canceling the first measurement interval configuration in the tenth time means that the terminal device uses the canceled first measurement interval configuration in the tenth time, that is, the measurement interval measurement is not performed.
  • the terminal device may no longer perform measurement interval measurement for more than tenth time.
  • the terminal device can also be restored to the second interval configuration after the tenth time.
  • the terminal device may be configured according to the configuration of the network device, which is not limited in this application.
  • FIG. 8 is a schematic flowchart diagram of a measurement method according to an embodiment of the present application.
  • the second device when the time period configured by the time parameter is exceeded, the second device sends a first measurement message to the first device for notifying the first device that the switchable measurement target is not detected.
  • the first device reconfigures the first interval configuration for the second device according to the first measurement message.
  • the measurement method includes, but is not limited to, the following steps S801-S806.
  • the first device sends a message carrying a time parameter configuration to the second device.
  • the time parameter is configured to configure a time at which the second device sends the measured first measurement message.
  • the time parameter configuration time may be a time point corresponding to the time parameter configuration, or a time point configured during the time parameter configuration, or a time point corresponding to the first incremental increase in the time parameter configuration time, or an increase in the time parameter configuration time.
  • the time period corresponding to the second increment is hereinafter referred to as the time point or time period indicated by the time parameter configuration.
  • the time parameter configuration may be configuration information of a timer configured by the first device to the second device.
  • the time parameter configuration may also be the system time of the first device or the system time of the second device.
  • the time parameter configuration may also be a system frame number of the first device or a range of system frame numbers of the first device.
  • the duration of the time parameter configuration may characterize the duration that the second device can tolerate without detecting the switchable target measurement cell. In the case that the second device has not detected the switchable measurement target in the time period in which the time parameter is configured, it indicates that the state in which the second device does not detect the switchable measurement target has continued for a while.
  • the duration of the time parameter configuration described above refers to the duration between the time point (or time period) at which the second device starts to perform the measurement gap measurement and the time parameter configuration indication.
  • the duration of the time parameter configuration refers to the length of time that the second device starts measuring gap measurement until the timer timing time arrives.
  • the first device may further send the second interval configuration and the first event configuration to the second device.
  • Any two or three configurations of the second interval configuration, the first event configuration, and the time parameter configuration may be carried in the same message and sent to the second device, or the first device may be carried in two or three times. Different messages are sent to the second device.
  • the time parameter configuration of the first device may be configured when the second device is already performing the measurement interval measurement, or when the first device is configured to configure the measurement interval for the second device, that is, the second interval configuration and the first event are configured. When configured. This application does not limit this.
  • the second interval configuration and the first event configuration are described in detail below.
  • the second interval configuration is used to configure a time resource for the second device to perform measurement.
  • the second interval configuration and the first interval configuration mentioned later may include configuring one or more of MGRP, LMGRP, MGL, and measurement gap burst repetitions.
  • the second device performs measurement interval measurement on the corresponding time resource according to the configuration of the one or more parameters above.
  • the second interval configuration can be understood as an interval configuration in which the first device is first configured for the second device.
  • the first interval configuration may be an interval configuration configured by the first device to reconfigure the second device when the first device does not detect the switchable measurement target.
  • the first event configuration is configured to configure an event that triggers the second device to send the measured second measurement message.
  • the first event configuration may be configured by the identifier of the measurement event.
  • the second device reports the second measurement message to the first device, and may include an identifier for identifying the current measurement, the serving cell. Measurement results (channel quality, etc.), measurement results of the target measurement cell (channel quality, etc.).
  • the first event configuration may be an A3 event, that is, when the second device detects that the trigger condition of the A3 event is met, triggering to report the second measurement message to the first device.
  • the trigger condition of the first event may also be a condition for determining other events in which the second device detects the switchable measurement target.
  • one or more of the A5 event, the B1 event, and the like may also be conditions for a newly defined measurement event in the future.
  • the second device does not send the second measurement message to the first device, indicating that the second device does not detect the switchable time. Measurement target. Then the second device sends a first measurement message to the first device.
  • the channel quality may be characterized by one or more of the following parameters: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), and received signal strength (received signal strength) Indication, RSSI).
  • RSRP reference signal receiving power
  • RSSI received signal strength
  • the channel quality may also include other parameters that characterize the strength of the signal that the second device communicates with the first device, which is not limited in this embodiment of the present application.
  • step S802 The second device receives the message carrying the time parameter configuration, and performs measurement interval measurement before the time point or time period indicated by the time parameter configuration indication. If the second device detects the switchable measurement target, step S803 is performed.
  • the second device may perform measurement of the measurement interval according to the received second interval configuration and the first event configuration, to detect whether there is a switchable. Measurement target. Specifically, the second device detects, on the time resource provided by the second interval configuration, whether the measurement target satisfies the trigger condition of the first event configuration.
  • the first event is configured as an A3 event
  • the second device detects, on the defined MGL every 40 ms, whether the channel quality of the measurement target is higher than a channel quality of the current serving cell by a certain threshold. If the A3 event is triggered, the second device sends a measurement report to the first device. If not triggered, the second device will not report the measurement report and continue to perform the measurement in the next 40 ms MGL.
  • the second device sends the measured first measurement message to the first device when the time point or the time period indicated by the time parameter configuration is exceeded.
  • the first measurement message is at a time point configured by the time parameter, or in a time period configured by the time parameter, or a time point corresponding to the first increment is added at a time configured by the time parameter, or the time parameter is If the second device does not trigger the sending of the second measurement message to the first device, the second device goes to the first time. The device sent.
  • the first measurement message may include or indicate at least one of the following: a channel quality of the measurement target, an identifier of the measurement target, information indicating that the second device does not detect the switchable measurement target, and a measurement desired by the second device.
  • the measurement interval configuration desired by the second device includes any one or more of the following: a measurement interval repetition period desired by the second device, a measurement interval repetition period expected by the second device in the first time, and a measurement interval explosion expected by the second device.
  • the repetition period, the measurement interval of the second device expected to be in the second time, the repetition period of the measurement interval, the length of the measurement interval desired by the second device, the length of the measurement interval expected by the second device in the third time, and the expected measurement interval of the second device The number of repetitions of the second device is expected to be repeated in the measurement interval of the fourth time, the second device desires to cancel the second interval configuration, and the second device desires to cancel the second interval configuration in the fifth time.
  • the timer indicates a time when the second device sends the first measurement message.
  • the second device may send the first measurement message to the first device, if the second device does not trigger the second measurement message to be sent to the first device. .
  • the second device may send the second measurement message to the first device, and the second device sends the second measurement message to the first device.
  • the first measurement message The second device may send the second measurement message to the first device, but the second device does not trigger the second event to be sent to the first device.
  • a device sends a first measurement message.
  • the device sends a first measurement message to the first device.
  • the first increment and the second increment may be positive numbers, negative numbers, or zeros, which is not limited in this application.
  • the first device Due to the time delay of the message being transmitted between the second device and the first device, after the second device sends the above first measurement message to the first device, the first device is in the time point (time period) indicated by the time parameter configuration. The time at which the first measurement message is received is detected to be added to the deviation of the message transmission. In addition, the time parameter configuration of the first device and the second device to detect the received message may also be added to the deviation of the time between the first device and the second device system.
  • the time parameter configuration may also be the system time of the first device, the system time range of the first device, the system time of the second device, or the system time range of the second device.
  • the time parameter configuration may also be a system frame number of the first device or a system frame number of the first device.
  • the second The device receives the system frame number (frame number range) of the first device.
  • the second device sends the first measurement message when the system frame number of the first device is the same as the system frame number of the configured first device or is included in the configured system frame number range of the first device.
  • the time parameter configuration is specifically described by taking the timer as an example. It can be understood that the related description is also applicable to the scenario where the time parameter is configured as the above system time, system time range, system frame number or system frame number range. Let me repeat.
  • the second device may send the first event corresponding to the first device to the first device.
  • the second measurement message informs the first device of the information about the switchable target measurement cell detected by the first device.
  • the first device determines, according to the received information about the switchable target measurement cell, whether to issue an instruction for cell handover. In this case, the second device may set the time parameter configuration time to be invalid when reporting the second measurement message to the first device.
  • the first device may simultaneously send one or more configurations of the first interval configuration, the first event configuration, and the time parameter configuration to one or more second devices in the measurement target by means of a broadcast.
  • the message that the above message is uniformly configured for the second device within the measurement target.
  • the first device may separately configure the foregoing message for each second device according to the specific situation of each second device, that is, the second interval configuration is customized for each second device in the measurement target.
  • the time parameter configuration may also be performed without the first device being issued, and the second device may be known.
  • the time parameter configuration can be protocol defined and the second device can be determined according to the protocol.
  • the time parameter configuration may also be pre-stored internally by the second device. This application does not limit the way to obtain the time parameter configuration.
  • the first device sends a message carrying the first interval configuration to the second device.
  • the first device may determine the first interval configuration according to the first measurement message.
  • the first interval configuration is different from the second interval configuration.
  • the method may include at least one of the following: the measurement interval repetition period of the first interval configuration is greater than the measurement interval repetition period of the second interval configuration, and the measurement interval repetition period of the first interval configuration is greater than the second interval configuration in the sixth time interval.
  • the measurement interval repetition period, the measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration, and the measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration in the seventh time, and the first interval configuration
  • the measurement interval eruption repetition period is greater than the measurement interval of the second interval configuration, and the measurement interval of the first interval configuration is an outbreak repetition period, and the first interval is greater than the measurement interval of the second interval configuration.
  • the number of repetitions of the measurement interval of the configured measurement interval is smaller than the number of repetitions of the measurement interval of the second interval configuration, and the number of repetitions of the measurement interval of the first interval configuration is less than the number of repetitions of the measurement interval of the second interval configuration.
  • the first interval configuration is to cancel the second interval configuration, the first interval
  • the configuration instructs the second device to cancel the second interval configuration in the tenth time.
  • the second device when the first measurement message includes the measurement interval configuration desired by the second device, substantially the second device itself does not detect the switchable measurement target during the default measurement process, and sets the desired measurement interval configuration according to requirements.
  • the result that the switchable measurement target is not detected during the measurement may be determined by the terminal device according to the measurement result, or may be determined by the network device according to the first measurement message reported by the terminal device.
  • the measurement result of the multiple measurement targets such as channel quality, etc.
  • the identifiers of the multiple measurement targets may also be included.
  • the second interval configuration of the first device reconfiguration may be configured according to the measurement interval configuration desired by the second device, or may be the channel quality and/or the measurement target of the measurement target reported by the first device according to the second device.
  • the identifier is determined, and the first device is determined according to the measurement interval configuration and the measurement target information that are required by the second device, which is not limited in this application.
  • the first measurement message reported by the second device may include: (1) the channel quality of the measurement target, including the RSRP1 value of the channel quality of the measurement target A is 6 dB, and the RSRP2 value of the channel quality of the measurement target B is 8 dB;
  • the (1) in the first measurement message is used by the first device to determine whether the second device detects the switchable measurement target.
  • (2) of the first measurement message is a measurement interval configuration in which the second device determines that it has no switchable measurement target and expects.
  • the first device may accept the judgment of the second device (there is no measurement target that can be switched), and accept the requirement of the second device (the desired measurement interval configuration), and restart the device for the first device.
  • the first device may also not accept the judgment and expectation of the second device, and determine the measurement interval configuration configured for the second device again according to (1) in the first measurement message, and reconfigure the measurement interval configured for the second device.
  • the first device may further refer to the judgment and expectation of the second device, and determine, according to (1) in the first measurement message, a measurement interval configuration (first interval configuration) configured for the terminal device to be: an uneven measurement interval.
  • a measurement interval configuration (first interval configuration) configured for the terminal device to be: an uneven measurement interval.
  • the second device receives the message carrying the first interval configuration, and performs measurement interval measurement according to the first interval configuration.
  • the second device may perform measurement of the measurement interval according to the received reconfigured first interval configuration and the previously received first event configuration to detect whether there is a switchable measurement target. Specifically, it is detected on the time resource provided by the first interval configuration whether the measurement target satisfies the trigger condition of the first event configuration.
  • the first event is configured as an A3 event, and the second device detects, on the defined MGL every 80 ms, whether the channel quality of the measurement target is higher than a certain threshold of the current serving cell. If the A3 event is triggered, the second device sends a measurement report to the first device. If not triggered, the second device will not report the measurement report and continue to perform the detection in the next 80 ms MGL.
  • the number of time parameter configurations may be one or more.
  • the first device may send another time parameter configuration to the second device, and perform step S801 using the other time parameter configuration.
  • the time parameter is configured as a timer.
  • FIG. 9 is a schematic diagram of a method for configuring a measurement interval according to an embodiment of the present application.
  • the first device first sends a message carrying a timer (which may be only sending the timer 1 or the timer 1 and the timer 2) to the second device, and sends the message to the second device.
  • the second interval configuration the message of the first event configuration.
  • the second device performs measurement interval measurement according to the second interval configuration and the first event configuration, and measures whether there is a switchable measurement target.
  • the first device When the first device exceeds the timing point or time period of the timer 1 and has not received the second measurement message sent by the second device, that is, the switchable measurement target has not been detected, the first device sends the second measurement device to the second device.
  • the second device performs measurements according to the first interval configuration and the first event configuration, and measures whether there is a switchable measurement target.
  • the first device starts the timer 2, and the timing of the timer 2 can be longer than the timer 1 timing.
  • the measurement sent by the second device is not received yet.
  • the message (the measurement message reported by the second device to the first device after the first event configuration is triggered) indicates that the second device has not detected the switchable measurement target, and the first device sends the third interval configuration to the second device.
  • the third interval configuration may have a longer measurement interval repetition period, a longer measurement interval burst repetition period, a shorter measurement interval length, and fewer measurement intervals in the number of bursts than the first interval configuration.
  • the multiple timers may be sent by the first device to the second device in the same message, for example, the first device is configured in the second interval configuration and the first event configuration. When sent to the second device. Then, the first device sequentially turns on a plurality of timers. As shown in Figure 9, timer 1 is turned on first, and when timer 1 times out, timer 2 is turned on. A plurality of timers (timer 1, timer 2) may not be simultaneously transmitted to the second device, for example, first, the timer 1 is transmitted, and the timer 1 is turned on. When Timer 1 times out, Timer 2 is sent again and Timer 2 is turned on.
  • FIG. 10 is a schematic diagram of another method for configuring a measurement interval according to an embodiment of the present application.
  • Timer 1 and Timer 2 can be carried in the same message and sent to the second device.
  • the first device sends multiple timers to the second device, multiple timers are simultaneously enabled on the first device side, and the timer duration of the timer 2 is greater than the timer duration of the timer 1.
  • the first device sends a message carrying the first interval configuration to the second device.
  • the measurement message sent by the second device is not received (the measurement message reported by the second device to the first device after the first event configuration is triggered), then the first device The device sends a message carrying the third interval configuration to the second device.
  • the first device may also send multiple system time (or system time range) to the second device or System frame number (or system frame number range). It can be analogized to the above-mentioned timer, and will not be described here.
  • the following uses the first device as the network device, and the second device as the terminal device.
  • the terminal device detects that the channel quality of the serving cell is not good
  • the terminal device detects that the trigger condition of the A2 event is met, and reports the A2 to the network device.
  • the measurement report corresponding to the event.
  • the network device determines, according to the measurement report, that the terminal device needs to perform inter-frequency measurement.
  • the configuration network device is configured to perform measurement interval measurement.
  • the network device can also configure the first event configuration for the terminal device as an A3 event.
  • the network device is configured to perform measurement interval measurement. By determining whether the A3 event is triggered, it is determined whether to perform measurement to report the second measurement message.
  • the network device also sends a timer with a time parameter configured to 2 minutes to the terminal device. The timer is used to configure the condition that the terminal device does not trigger the A3 event within 2 minutes.
  • the terminal device does not send the measurement report corresponding to the A3 event to the network device (carrying in the second measurement message), and the terminal device sends the first message to the network device. Measure the message.
  • the first measurement message may include: a channel quality of the target measurement cell and a channel quality of the serving cell.
  • the network device carries the above second interval configuration, the first event configuration, and the time parameter configuration in a message and sends the message to the terminal device.
  • the terminal device receives the above message, the timer is started, and the A3 event measurement is performed on the target measurement cell on the time resource configured by the second interval within 2 minutes. Since the terminal device is in a deep fading scenario, the channel quality of the surrounding cells is poor. Therefore, the A3 event is not triggered within 2 minutes.
  • the terminal device does not trigger the second measurement message reporting the measurement report carrying the A3 event. Then, when the 2 min timing time arrives, the terminal device may send the first measurement message to the network device.
  • MGRP 40ms
  • MGL 6ms
  • the network device receives the first measurement message sent by the terminal device when the timer expires, indicating that the terminal device does not detect the switchable target measurement.
  • the cell can reconfigure the measurement interval configuration for the terminal device, which can reduce the situation that the measurement interval frequently occupies the uplink and downlink time domain resources of the terminal device, and improve the service quality of the terminal device.
  • FIG. 11 is a schematic flowchart diagram of another measurement method provided by an embodiment of the present application.
  • the first device when the time or time period indicated by the time parameter configuration is exceeded, the first device still does not receive the second measurement sent by the second device for informing the first device that there is a switchable measurement target.
  • the first device reconfigures the first interval configuration for the second device.
  • the measurement method includes, but is not limited to, the following steps S1101-S1104.
  • the first device sends a message carrying a time parameter configuration to the second device.
  • the second device receives the message carrying the time parameter configuration, and performs measurement interval measurement before the time indicated by the time parameter configuration arrives.
  • S1103 The first device sends a message carrying the first interval configuration to the second device when the time point or the time period indicated by the time parameter configuration is exceeded.
  • S1104 The second device receives the message carrying the first interval configuration, and performs measurement interval measurement according to the first interval configuration.
  • steps S1101, S1102, and S1104 may refer to steps S801, S802, and S805 in the embodiment described in FIG. 8 respectively, and details are not described herein again.
  • the first device increases the second increase in the time point of the time parameter configuration, or in the time parameter configured time period, or in the time parameter configuration time, or the time parameter configuration time
  • the first device sends a message carrying the first interval configuration to the second device, and the first interval configuration is different from the second interval configuration.
  • the second device does not detect the second measurement message in the time or period of time indicated by the time parameter configuration indication, indicating that the state in which the second device does not trigger the trigger condition of the first event configuration has continued for a period of time.
  • the trigger condition of the first event configuration is that the first device detects the measurement target that can be switched.
  • the first device does not detect the second measurement message within the time or time period indicated by the time parameter configuration, and the first device determines that there is no (possibly no) measurement target that can be switched in the measurement target of the second device.
  • the first device reconfigures the first interval configuration for the second device.
  • the first interval configuration is different from the second interval configuration, and may include at least one of the following: the measurement interval repetition period of the first interval configuration is greater than the measurement interval repetition period of the second interval configuration; and the measurement interval repetition period of the first interval configuration is The sixth interval is greater than the measurement interval repetition period of the second interval configuration; the measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration; the measurement interval length of the first interval configuration is less than the second interval in the seventh interval The configured measurement interval length; the measurement interval eruption repetition period of the first interval configuration is greater than the burst repetition period of the measurement interval of the second interval configuration; and the measurement interval eruption repetition period of the first interval configuration is greater than the second interval configuration in the eighth time interval The burst interval of the measurement interval is repeated; the number of repetitions of the measurement interval of the first interval configuration is smaller than the number of repetitions of the measurement interval of the second interval configuration; the number of repetitions of the measurement interval of the first interval configuration is less than the second time in the ninth time The interval between measurement intervals of the interval configuration
  • the time parameter that the first device can configure for the second device is configured as a timer with a timing of 1 min.
  • the first event configuration configured by the first device for the second device may be that the A3 event triggers the second device to report the second measurement message to the first device.
  • the target measurement cell measured by the second device is likely to have a bad channel quality, and the first event configuration is not triggered, and the first device does not receive the second measurement message of the second device.
  • the first interval configuration is reconfigured: the MGRP is changed from 40 ms to 80 ms, and the frequency at which the MGL occupies the uplink and downlink time domain resources of the second device decreases.
  • the measurement interval is reconfigured to a non-uniform measurement interval by a uniform measurement interval.
  • the second device does not perform the measurement interval measurement, and the time interval without the measurement interval is increased compared to the uniform measurement interval.
  • the interval length of the measurement interval can be reduced to occupy the frequency of the downlink time domain resource on the second device.
  • reconfiguring the first interval configuration may also be to cancel the measurement interval.
  • the first interval configuration of the reconfiguration may be within a certain period of time, for example, the measurement interval repetition period of the first interval configuration is greater than the measurement interval repetition period of the second interval configuration in the sixth time; the measurement of the first interval configuration The interval length is smaller than the measurement interval length of the second interval configuration in the seventh time interval; the measurement interval burst repetition period of the first interval configuration is greater than the burst repetition period of the measurement interval of the second interval configuration in the eighth time; The number of repetitions of the measurement interval burst is less than the number of repetitions of the measurement interval of the second interval configuration in the ninth time; the first interval configuration indicates that the second device cancels the second interval configuration in the tenth time.
  • the second device After receiving the reconfigured first interval configuration sent by the first device, the second device performs measurement interval measurement according to the reconfigured first interval configuration parameter to detect whether there is a switchable measurement target.
  • the reconfigured first interval configuration can reduce the situation that the measurement interval frequently occupies the uplink and downlink time domain resources of the second device, and improve the service quality of the second device.
  • FIG. 12 is a schematic flowchart diagram of still another measurement method provided by an embodiment of the present application.
  • the first device is configured to detect a first event in which the measurement target channel quality is not good, and the second device detects whether all the measurement target channel qualities are poor according to the newly configured first event. If yes, the first measurement message is reported to the first device, and the first device configures the first interval configuration for the second device according to the first measurement message, where the first interval configuration is different from the second interval configuration when the first event configuration is performed. .
  • the measurement method includes, but is not limited to, the following steps S1201-S1205.
  • S1201 The first device sends a message carrying the first configuration to the second device.
  • the first configuration is used to indicate that the first device is used to trigger the second device to send the measured first measurement message.
  • the first event includes at least one of the following: the channel quality of the measurement target is lower than the first threshold, and the measurement target The channel quality is lower than the channel quality of the serving cell of the second device, the channel quality of the measurement target is lower than the first threshold, and the channel quality of the serving cell of the second device is higher than the second threshold, and the channel quality of the measurement target is lower than the second The channel quality of the serving cell of the device and the channel quality of the serving cell of the second device is above a second threshold.
  • the measurement report may be sent to the first device, where the measurement report may be carried in the first measurement message and sent to the first device.
  • the triggering condition of the first event may be any one of the foregoing, or may be any multiple, and may be determined according to the first configuration of the first device to the second device.
  • the first configuration is that the channel quality of the measurement target is lower than the first threshold and the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, and the second device detects that the channel quality that satisfies the measurement target is lower than the first
  • the threshold is measured, and the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, that is, the first measurement message is sent to the first device.
  • the first configuration is that the channel quality of the measurement target is lower than the first threshold and the channel quality of the serving cell of the second device is higher than the second threshold, the second device detects that the channel quality that meets the measurement target is lower than the first threshold. And the channel quality of the serving cell of the second device is higher than the second threshold, that is, the first measurement message is sent to the first device.
  • the first event described above may be predefined, such as a protocol defining a first event. It should be understood that the above examples are only used to explain the embodiments of the present application, and should not be construed as limiting.
  • the channel quality of the measurement target is lower than the first threshold, and may include: the channel quality of the measurement target is lower than a third threshold, or the channel quality of the measurement target is lower than a sum of the third threshold and the first offset.
  • the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, and may include: the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, or the channel quality of the measurement target is lower than the service of the second device.
  • the sum of the channel quality of the cell and the second offset The channel quality of the serving cell of the second device is higher than the fourth threshold, or the channel quality of the serving cell of the second device is higher than the fourth threshold. The sum of the three offsets.
  • the first threshold may be a third threshold or a sum of the third threshold and the first offset.
  • the second threshold may be a fourth threshold or a sum of the fourth threshold and the third offset.
  • the first configuration may be configured to configure the first threshold, the second threshold, the third threshold, the fourth threshold, the first offset, the second offset, and the third offset at least one.
  • the second offset may include one or more of the following: a frequency specific offset of the measurement target, a cell specific offset, a hysteresis amount, and an event offset.
  • the frequency specific offset, cell specific offset is the associated offset value that the network device configures for the terminal device measurement.
  • the amount of hysteresis, the event offset is the associated offset value that the network device configures for the measurement event for the terminal device.
  • the channel quality satisfying the above measurement target is lower than the first threshold.
  • the first device may further send a message carrying the second configuration to the second device.
  • the second configuration and the first configuration may be carried in the same or different messages and sent to the second device.
  • the second configuration is configured to configure at least one of frequency information, cell information, or system information that the second device performs measurement.
  • the second configuration can be used to determine a measurement target for the first event. Specifically, the measured frequency information may determine that the measurement target is a frequency or a frequency range indicated by the frequency information.
  • the cell information may be a specified measurement target; the system information may be a measurement target in a specified system.
  • the second device receives the message that is sent by the first device and carries the first configuration, and performs measurement interval measurement according to the message that carries the first configuration.
  • the first device may further send a message carrying the second interval configuration to the second device, where the second interval is configured to configure the time resource of the second device to perform the measurement.
  • the second device may perform detection of the first event trigger condition on the time resource determined by the second interval configuration. If the trigger condition that satisfies the first event is detected, the first measurement message may be sent to the first device.
  • the first device may further send, to the second device, a third configuration that carries the second event.
  • the second event may be an event for the second device to determine (or possibly have) a switchable measurement target in the measurement target, such as an A3 event or the like.
  • the second device may perform detection of the first event trigger condition on the time resource determined by the second interval configuration, and also perform detection of the second event trigger condition, and if the trigger condition that satisfies the first event is detected, may be sent to the first device.
  • the first measurement message If the trigger condition that satisfies the second event is detected, the message carrying the measurement report of the second event may be sent to the first device.
  • the trigger condition of the first event detection is that there is no (or may not have) the measurement target that can be switched
  • the trigger condition of the second event detection is that there is (or may have) the measurement target that can be switched. Therefore, when the measurement is performed on the time resource determined by the second interval configuration, the trigger condition of one of the two events is generally triggered, so that the second device reports the measurement report of the trigger event to the first device. In this way, the first device can obtain the measurement report of the measurement target in time, and reconfigure the first interval configuration for the first device according to the corresponding measurement report.
  • the second device sends the first measurement message to the first device.
  • the first measurement message may be sent to the first device.
  • the first measurement message may include or indicate at least one piece of information: a channel quality of the measurement target, an identifier of the measurement target, information and a location indicating that the second device does not detect the switchable measurement target The measurement interval configuration desired by the second device.
  • the measurement interval configuration desired by the second device includes any one or more of the following: a measurement interval repetition period desired by the second device; a measurement interval repetition period of the second device expected in the first time; a desired measurement of the second device Interval burst repetition period; second device expects a measurement interval eruption period in a second time; second measurement device desired measurement interval length; second device expectation measurement interval length in a third time; second device desired measurement
  • the number of repetitions of the interval burst is that the second device expects the number of repetitions to be repeated in the measurement interval of the fourth time; the second device desires to cancel the second interval configuration; the second device desires to cancel the second interval configuration in the fifth time .
  • the first device sends a message carrying the first interval configuration to the second device.
  • the second device performs measurement interval measurement according to the received first interval configuration.
  • steps S1204-S1205 in the embodiment of the present application, reference may be made to steps S804-S805 in the embodiment described in FIG. 8, and details are not described herein again.
  • the second device may send a first measurement message to the first device according to the received newly defined first event, and the second device may re-first according to the first measurement message.
  • the device is configured with the first interval configuration. Compared with the second interval configuration, the first interval configuration can reduce the time interval resource used by the second device to communicate with the measurement interval, save time for the second device to use for data transmission, and improve the second device. service quality.
  • FIG. 13 is a schematic flowchart diagram of still another measurement method provided by an embodiment of the present application.
  • the first device sets the time parameter configuration when configuring the second interval configuration and the first event configuration to the second device.
  • the first device reconfigures the first interval configuration for the second device.
  • the measurement method includes, but is not limited to, the following steps S1301-S1305.
  • the first device determines a time parameter configuration.
  • the first device sends a second interval configuration and a first event configuration to the second device.
  • the first device may further send the second interval configuration and the first event configuration to the second device.
  • the first device determines that the time parameter configuration may be when the second device is already performing measurement measurement, or when the first device configures the measurement interval for the second device, that is, configuring the second interval configuration, the first event configuration time.
  • the time parameter configuration may be determined by the first device when configuring the second interval configuration and the first event configuration for the second device.
  • the first device may be configured to configure the second interval configuration and the first event configuration to the second device, that is, the first device first configures the second interval configuration, the first event configuration, and the second device performs the measurement interval. After measuring for a period of time, the first device determines the time parameter configuration. This application does not limit this.
  • the time parameter is configured to configure a time when the first device sends the first interval configuration to the second device.
  • the second interval is configured to configure a time resource for the second device to perform measurement; and the first event is configured to configure an event that triggers the second device to send the measured second measurement message.
  • the time parameter configuration may be a timer
  • the first device may determine that the timer starts to be timed, and the timer is set for the measurement interval.
  • the first device triggering the timer to start timing may be when the second device is already performing measurements, or when the first device is to configure measurements for the second device.
  • the second timer may be that the first device triggers the start timing when the measurement interval is configured for the first device. It may also be triggered when the second interval configuration and the first event configuration are different. This application does not limit this.
  • the time parameter configuration may also be the system time (or system time range) of the first device, or the system frame number (or system frame number range) of the first device.
  • S1303 The second device performs measurement interval measurement according to the second interval configuration and the first event configuration.
  • the second device may perform measurement of the measurement interval according to the received second interval configuration and the first event configuration to detect whether there is a switchable measurement target. Specifically, the second device detects, on the time resource provided by the second interval configuration, whether the measurement target satisfies the trigger condition of the first event configuration.
  • the first event is configured as an A3 event, and the second device detects, on the defined MGL every 40 ms, whether the channel quality of the measurement target is higher than a channel quality of the current serving cell by a certain threshold. If the above conditions are met, the second device sends a measurement report to the first device. If not, the second device will not report the measurement report and continue to perform the measurement in the next 40 ms MGL.
  • the first device increases the second increase in the time point of the time parameter configuration, or in the time parameter configured time period, or in the time parameter configuration time, or the time parameter configuration time
  • the first device sends a message carrying the first interval configuration to the second device, and the first interval configuration is different from the second interval configuration. It can be understood that the second device does not detect the second measurement message during the time parameter configuration time, indicating that the state that the second device does not trigger the trigger condition of the first event configuration has continued for a period of time.
  • the trigger condition of the first event configuration is that the first device detects the measurement target that can be switched.
  • the first device does not detect the second measurement message within the time parameter configuration time, and the first device determines that there is no (possibly no) measurement target that can be switched in the measurement target of the second device.
  • the first device reconfigures the first interval configuration for the second device.
  • the first interval configuration is different from the second interval configuration, and may include at least one of the following: the measurement interval repetition period of the first interval configuration is greater than the measurement interval repetition period of the second interval configuration; and the measurement interval repetition period of the first interval configuration is The sixth interval is greater than the measurement interval repetition period of the second interval configuration; the measurement interval length of the first interval configuration is smaller than the measurement interval length of the second interval configuration; the measurement interval length of the first interval configuration is less than the second interval in the seventh interval The configured measurement interval length; the measurement interval eruption repetition period of the first interval configuration is greater than the burst repetition period of the measurement interval of the second interval configuration; and the measurement interval eruption repetition period of the first interval configuration is greater than the second interval configuration in the eighth time interval The burst interval of the measurement interval is repeated; the number of repetitions of the measurement interval of the first interval configuration is smaller than the number of repetitions of the measurement interval of the second interval configuration; the number of repetitions of the measurement interval of the first interval configuration is less than the second time in the ninth time The interval between measurement intervals of the interval configuration
  • the second device determines that the measurement target that can be switched is measured.
  • the first device may cancel the time parameter configuration described above.
  • the number of time parameter configurations may be one or more.
  • the first device may determine another time parameter configuration, and perform step S1301 using the another time parameter configuration.
  • the time parameter is configured as a timer.
  • the first device first starts the timer 1 locally, and sends the second interval configuration and the first event configuration to the second device.
  • the second device performs measurement interval measurement according to the second interval configuration and the first event configuration, and measures whether there is a switchable measurement target.
  • the first device When the first device exceeds the timing point or time period of the timer 1 and does not receive the second measurement message sent by the second device, the first device sends a message carrying the first interval configuration to the second device.
  • the first device resets and starts the timer 2, and the timer 2 can be timed longer than the timer 1 time.
  • the second device is not received yet.
  • the measurement message is sent (the measurement message reported by the second device to the first device after the first event configuration is triggered)
  • the first device After the measurement message is sent (the measurement message reported by the second device to the first device after the first event configuration is triggered), the first device sends a message carrying the third interval configuration to the second device.
  • the third interval configuration may have a longer measurement interval repetition period, a longer measurement interval burst repetition period, a shorter measurement interval length, fewer measurement intervals, and the number of repetitions and cancellations compared to the first interval configuration.
  • timer 1, timer 2 may be set by the first device at the same time, for example, when the first device is configured to be sent in the second interval configuration and the first event configuration, and simultaneously set, and sequentially turned on. . As shown in Figure 9, timer 1 is turned on first, and when timer 1 times out, timer 2 is turned on. Multiple timers (timer 1, timer 2) may not be set at the same time. For example, first set timer 1 and start timer 1, and when timer 1 times out, set timer 2, and Turn on timer 2.
  • Timer 1 and Timer 2 can be simultaneously set by the first device.
  • the timing is simultaneously set and simultaneously started, and the timing duration of the timer 2 is greater than the timing duration of the timer 1.
  • the first device sends a message carrying the first interval configuration to the second device.
  • the measurement message sent by the second device is not received (the measurement message reported by the second device to the first device after the first event configuration is triggered), then the first device The device sends a message carrying the third interval configuration to the second device.
  • time parameter configuration is system time (or system time range) or system frame number (or system frame number range)
  • system frame number or system frame number range
  • time parameter configuration may also be configured to configure multiple system time (or system time range) or system frame number (or system frame) Number range). It can be analogized to the above-mentioned timer, and will not be described here.
  • the first device performs measurement interval measurement according to the received first interval configuration.
  • the first device may set the time parameter configuration.
  • the second device determines that there is no (may not) Switch measurement targets. Then the first device reconfigures the first measurement interval configuration for the second device.
  • the second device After receiving the reconfigured first interval configuration sent by the first device, the second device performs measurement interval measurement according to the reconfigured first interval configuration parameter, and detects whether the first event configuration is triggered to detect whether there is a switchable Measurement target.
  • the change of the foregoing measurement parameters may reduce the situation that the measurement interval frequently occupies the uplink and downlink time domain resources of the second device, and improve the service quality of the second device.
  • FIG. 14 is a schematic structural diagram of a first device 10 and a second device 20 according to an embodiment of the present application. As shown in FIG. 14, there may be a communication connection between the first device 10 and the second device 20, which enables data communication between the two. The description is expanded below.
  • the first device 10 may include a processing unit 101 and a sending unit 102, where:
  • the processing unit 101 is configured to generate a message carrying a time parameter configuration
  • the sending unit 102 is configured to send, to the second device 20, a message carrying a time parameter configuration
  • the time parameter is configured to configure a time at which the second device 20 sends the first measurement message.
  • the sending unit 102 is further configured to send, to the second device 20, a message that carries a second interval configuration and a first event configuration, where the second interval is configured to configure the second device. 20: a time resource for performing measurement; the first event configured to configure an event that triggers the second device 20 to send a second measurement message.
  • the sending unit 102 is further configured to: if the first device is configured at a time point of the time parameter, or in a time period configured by the time parameter, or at the time The time of the parameter configuration is increased by the time point corresponding to the first increment, or the first measurement message sent by the second device is received within a time period corresponding to the time increment of the time parameter configured by the second parameter, Sending, to the second device 20, a message carrying the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the second device 20 may include a processing unit 201, a receiving unit 202, and a sending unit 203, where:
  • the receiving unit 202 is configured to receive, from the first device 10, a message carrying a time parameter configuration
  • the time parameter is configured to configure a time when the second device 20 sends the first measurement message
  • the processing unit 201 is configured to generate a first measurement message.
  • the sending unit 203 is configured to increase a time increment corresponding to a time point in the time parameter configuration, or in a time period configured by the time parameter, or in a time configured by the time parameter, or in a time point corresponding to the time parameter configuration
  • the first measurement message is sent within a time period corresponding to the time increase time increment of the time parameter configuration.
  • the receiving unit 202 is further configured to receive the message that is sent by the first device 10 and that carries the second interval configuration and the first event configuration. ;
  • the first interval is configured to configure a time resource that the second device 20 performs measurement
  • the first event is configured to configure an event that triggers the second device 20 to send a second measurement message.
  • the receiving unit 202 is further configured to receive the first interval configuration sent by the first device 10, where the first interval configuration is The second interval configuration is different.
  • the functions of the processing unit 101 and the transmitting unit 102 in the first device 10, and the processing unit 201, the receiving unit 202, and the transmitting unit 203 in the second device 20 may correspond to the measurement method embodiment shown in FIG. The corresponding description will not be repeated here.
  • FIG. 15 is a schematic structural diagram of another first device 10 and a second device 20 according to an embodiment of the present application. As shown in FIG. 15, there may be a communication connection between the first device 10 and the second device 20, which enables data communication between the two. The description is expanded below.
  • the first device 10 may include a processing unit 301 and a sending unit 302, where:
  • the processing unit 301 is configured to generate a message carrying a time parameter configuration.
  • the sending unit 302 is configured to send, to the second device 20, a message carrying a time parameter configuration
  • the time parameter is configured to configure a time at which the first device 10 sends the first interval configuration to the second device 20.
  • the sending unit 302 is further configured to send, to the second device 20, a message that carries a second interval configuration and a first event configuration, where the second interval is configured to configure the second device. 20: a time resource for performing measurement; the first event configured to configure an event that triggers the second device 20 to send a second measurement message.
  • the sending unit 302 is further configured to: if the first device 10 is configured at a time point of the time parameter, or in a time period configured by the time parameter, or in the time parameter The configured time is increased by the time point corresponding to the first increment, or the second measurement message sent by the second device 20 is not received within the time period corresponding to the time increment of the time parameter configured by the second increment. Sending, to the second device 20, a message carrying the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the second device 20 may include a processing unit 401 and a receiving unit 402, where:
  • the receiving unit 402 is configured to receive a time parameter configuration from the first device.
  • the time parameter is configured to configure a time when the second device receives the first interval configuration sent by the first device
  • the processing unit 401 is configured to generate a first interval configuration.
  • the receiving unit 402 is further configured to: at a time point of configuring the time parameter, or a time point corresponding to the time parameter configuration, or a time point corresponding to the time parameter configuration time, or Receiving the first interval configuration sent by the first device, in a time period corresponding to the time increase time increment configured by the time parameter.
  • the receiving unit 402 before the receiving unit 402 receives the first interval configuration sent by the first device, the receiving unit 402 is further configured to receive the second interval configuration and the first An event configuration;
  • the second interval is configured to configure a time resource that is measured by the second device, where the first interval configuration is different from the second interval configuration;
  • the first event is configured to configure an event that triggers the second device to send a second measurement message.
  • the functions of the processing unit 301 and the transmitting unit 302 in the first device 10, and the processing unit 401 and the receiving unit 402 in the second device 20 may correspond to the measurement method embodiment shown in FIG. The corresponding description will not be repeated here.
  • FIG. 16 is a schematic structural diagram of still another first device 10 and a second device 20 according to an embodiment of the present application. As shown in FIG. 16, there may be a communication connection between the first device 10 and the second device 20, which enables data communication between the two. The description is expanded below.
  • the first device 10 may include a processing unit 501 and a sending unit 502, where:
  • the processing unit 501 is configured to generate a message that carries the first configuration.
  • the sending unit 502 is configured to send, to the second device 20, a message that carries the first configuration.
  • the first configuration is used to indicate that the second device 20 is triggered to send the first measurement message by using the first event
  • the first event includes at least one of: a channel quality of the measurement target is lower than a first threshold, a channel quality of the measurement target is lower than a channel quality of a serving cell of the second device, and a channel quality of the measurement target Lower than the first threshold and the channel quality of the serving cell of the second device is higher than a second threshold, the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, and the second The channel quality of the serving cell of the device is higher than the second threshold.
  • the sending unit 502 is further configured to send, to the second device 20, a message that carries the second interval configuration.
  • the second interval is configured to configure a time resource that the second device 20 performs measurement.
  • the first device 10 further includes a receiving unit 503, after the sending unit 502 sends the second interval configuration to the second device 20, the receiving unit 503 is configured to receive The first measurement message sent by the second device 20;
  • the sending unit 502 is further configured to send a first interval configuration to the second device 20, where the first interval configuration is different from the second interval configuration.
  • the second device 20 may include a processing unit 601 and a receiving unit 602, where:
  • the receiving unit 602 is configured to receive a message that is sent by the first device 10 and that carries the first configuration.
  • the first configuration is used to indicate that the second device 20 is triggered to send the first measurement message by using the first event
  • the processing unit 601 is configured to generate a first measurement message.
  • the first event includes at least one of: a channel quality of the measurement target is lower than a first threshold, a channel quality of the measurement target is lower than a channel quality of a serving cell of the second device, and a channel quality of the measurement target Lower than the first threshold and the channel quality of the serving cell of the second device is higher than a second threshold, the channel quality of the measurement target is lower than the channel quality of the serving cell of the second device, and the second The channel quality of the serving cell of the device is higher than the second threshold; when the first event is triggered, the second device 20 sends the first measurement message to the first device.
  • the receiving unit 602 is further configured to receive the message that is sent by the first device 10 and that carries the second interval configuration.
  • the second interval is configured to configure a time resource that the second device performs measurement.
  • the second device 20 further includes a sending unit 603, after receiving the message that the first device 10 sends the second interval configuration, the sending unit 603, Sending the first measurement message to the first device 10 when the first event is triggered;
  • the receiving unit 602 is further configured to receive a message that is sent by the first device 10 and that carries a first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the functions of the processing unit 501 and the transmitting unit 502 in the first device 10, and the processing unit 601, the receiving unit 602, and the transmitting unit 603 in the second device 20 may correspond to the measurement shown in FIG. Corresponding descriptions of method embodiments are not described herein.
  • FIG. 17 is a schematic structural diagram of still another first device 10 and second device 20 according to an embodiment of the present application. As shown in FIG. 17, there may be a communication connection between the first device 10 and the second device 20, which enables data communication between the two. The description is expanded below.
  • the first device 10 may include a processing unit 701, where:
  • the processing unit 701 is configured to determine a carrying time parameter configuration, where the time parameter is configured to configure a time when the first device 10 sends the first interval configuration to the second device 20.
  • the first device 10 further includes a sending unit 702, configured to send, to the second device 20, a message carrying a second interval configuration and a first event configuration; the second interval A time resource configured to configure the second device 20 to perform measurement; the first event configured to configure an event that triggers the second device 20 to send a second measurement message.
  • a sending unit 702 configured to send, to the second device 20, a message carrying a second interval configuration and a first event configuration; the second interval A time resource configured to configure the second device 20 to perform measurement; the first event configured to configure an event that triggers the second device 20 to send a second measurement message.
  • the sending unit 702 is further configured to: if the first device 10 is configured at a time point of the time parameter configuration, or in a time period configured by the time parameter, or configured in the time parameter
  • the second measurement message sent by the second device 20 is not received, and the second measurement message sent by the second device 20 is not received in the time period corresponding to the time increase of the first increment or the time interval in which the time parameter is configured to increase.
  • the second device 20 sends a message carrying the first interval configuration, where the first interval configuration is different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device 20.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device 10 is a network device or a terminal device
  • the second device 20 is a network device or a terminal device.
  • the second device 20 may include a processing unit 801 and a receiving unit 802, where:
  • the receiving unit 802 is configured to receive a message that is sent by the first device 10 and that carries a second interval configuration and a first event configuration, where the second interval is configured to configure a time resource that the second device 20 performs measurement.
  • the first event is configured to configure an event that triggers the second device 20 to send a second measurement message;
  • the processing unit 801 is configured to perform measurement interval measurement according to the second interval configuration and the first event configuration.
  • the receiving unit 802 is further configured to: if the first device 10 is configured at a time point of the time parameter configuration, or in a time period configured by the time parameter, or configured in the time parameter The second measurement message sent by the second device 20 is not received, and the second measurement message sent by the second device 20 is not received, and the time is increased.
  • the message that is sent by the first device 10 and that carries the first interval configuration is different from the second interval configuration.
  • the second interval configuration, the first event configuration, and the time parameter configuration are carried in the same or different messages and sent to the second device 20.
  • the measurement is an inter-frequency measurement or an inter-system measurement.
  • the first device 10 is a network device or a terminal device
  • the second device 20 is a network device or a terminal device.
  • the functions of the processing unit 701 and the transmitting unit 702 in the first device 10, and the processing unit 601 and the receiving unit 602 in the second device 20 may correspond to the measurement method embodiment shown in FIG. The corresponding description will not be repeated here.
  • FIG. 18 is a schematic structural diagram of a first device 10 according to an embodiment of the present application.
  • the first device 10 includes one or more processors 1801, a memory 1802, a communication interface 1803, a transmitter 1805, a receiver 1806, a coupler 1807, and an antenna 1808. These components may be connected by bus 1804 or other means, and FIG. 18 is exemplified by a bus connection. among them:
  • Communication interface 1803 can be used by first device 10 to communicate with other communication devices, such as second device 20.
  • the communication interface 1803 may be a long term evolution (LTE) system communication interface, or may be a 5G or a future communication interface of the new air interface.
  • LTE long term evolution
  • the first device 10 may also be configured with a wired communication interface 1803 to support wired communication.
  • a backhaul link between a first device 10 and other network devices may be a wired communication connection.
  • the transmitter 1805 can be used to perform transmission processing on messages or data output by the processor 1801.
  • transmitter 1805 and receiver 1806 can be viewed as a wireless modem.
  • the number of the transmitter 1805 and the receiver 1806 may each be one or more.
  • Transmitter 1805 and receiver 1806 may also be implemented by one or more transceivers.
  • Antenna 1808 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 1807 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 1806.
  • Memory 1802 is coupled to processor 1801 for storing various software programs and/or sets of instructions.
  • the memory 1802 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 1802 can also store a program of measurement methods that can be used to communicate with one or more additional devices, one or more second devices.
  • the processor 1801 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and perform measurements and the like.
  • the processor 1801 can be used to read and execute computer readable instructions. Specifically, the processor 1801 can be used to call a program of the measurement method stored in the memory 1802.
  • the memory 1802 can be used to store an implementation of the measurement method provided by one or more embodiments of the present application on the first device 10 side. Specifically, the processor 1801 can be used to execute the procedure of the measurement method stored in the memory 1802 to perform the steps of the measurement method shown in any one of FIG. 8, FIG. 11, FIG. 12, and FIG.
  • the first device 10 shown in FIG. 18 is only one implementation of the embodiment of the present application. In an actual application, the first device 10 may further include more or fewer components, which are not limited herein.
  • FIG. 19 is a schematic structural diagram of a second device 20 according to an embodiment of the present application.
  • the second device 20 includes one or more processors 1901, a memory 1902, a communication interface 1903, a transmitter 1905, a receiver 1906, a coupler 1907, and an antenna 1908. These components can be connected by bus 1904 or other means, and FIG. 19 is exemplified by a bus connection. among them:
  • Communication interface 1903 can be used by second device 20 to communicate with other communication devices, such as first device 10.
  • the communication interface 1903 may be an LTE system communication interface, or may be a 5G or a future communication interface of a new air interface.
  • the second device 20 may also be configured with a wired communication interface 1903 to support wired communication.
  • a backhaul link between a second device 20 and other network devices may be a wired communication connection.
  • the transmitter 1905 can be used to perform transmission processing on messages or data output by the processor 1901.
  • transmitter 1905 and receiver 1906 can be viewed as a wireless modem.
  • the number of the transmitter 1905 and the receiver 1906 may each be one or more.
  • Transmitter 1905 and receiver 1906 may also be implemented by one or more transceivers.
  • the antenna 1908 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 1907 can be used to divide the mobile pass signal into multiple channels and assign it to multiple receivers 1906.
  • Memory 1902 is coupled to processor 1901 for storing various software programs and/or sets of instructions.
  • the memory 1902 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 1902 can also store a program of measurement methods that can be used to communicate with one or more additional devices, one or more first devices 10.
  • the processor 1901 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and perform measurements and the like.
  • the processor 1901 can be used to read and execute computer readable instructions. Specifically, the processor 1901 can be used to call a program of the measurement method stored in the memory 1902.
  • the memory 1902 can be used to store an implementation of the measurement method provided by one or more embodiments of the present application on the second device 20 side.
  • the processor 1901 can be used to execute the procedure of the measurement method stored in the memory 1902 to perform the steps of the measurement method shown in any one of FIGS. 8, 11, 12, and 13 on the second device 20 side.
  • the second device 20 shown in FIG. 19 is only one implementation of the embodiment of the present application. In actual applications, the second device 20 may further include more or fewer components, which are not limited herein.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software program instructions.
  • the software program instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (electrically EPROM) , EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a transceiver or relay device.
  • the processor and the storage medium may also reside as a discrete component in the first device or the second device.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • a general purpose processor can be a microprocessor or any conventional processor.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量方法,所述方法可包括:第一设备向第二设备发送携带时间参数配置的消息;所述时间参数配置用以配置所述第二设备发送测量的第一测量消息的时间,或者用以配置所述第一设备向所述第二设备发送第一间隔配置的时间。上述方案可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。

Description

测量方法及设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种测量方法及设备。
背景技术
在蜂窝移动通信***中,终端设备在服务小区内可以与基站进行通信。如果服务小区的信号质量不好,可以进行小区切换。在进行小区切换前,终端设备将测量目标测量小区的信号质量,并上报给基站,基站根据终端设备上报的测量结果决定是否将终端设备切换到目标测量小区。终端设备进行小区测量分为同频测量和异频测量。同频测量是指终端设备当前所在的服务小区和待测量的小区在同一个载波频段上时进行的小区测量。异频测量是指终端设备当前所在的服务小区和待测量的小区不在一个载波频段上时进行的小区测量。
当终端设备进行异频测量时,如果终端设备仅有一套射频接收机,基站需要向终端设备配置测量间隔(measurement gap)以进行测量。在设置的测量间隔长度内,终端设备将射频接收机的频段调至待测量的小区的频段,进行异频测量。在测量间隔长度内,终端设备与服务小区不进行数据交互。在测量间隔长度结束后,终端设备将射频接收机的频段转回服务小区。
基站可以设置测量间隔的重复周期、测量间隔重复周期中的测量间隔长度。在测量间隔长度内可以对工作于待测量频段的多个待测量的小区进行测量。当测量到信道质量好的目标测量小区时,终端设备向基站上报测量结果。当未测量到信号质量好的目标测量小区时,终端设备在下一个测量间隔周期中的测量间隔长度内继续进行异频测量。然而,当终端设备处于深衰落场景或者其他周围小区信号质量都比较差的情况下,终端设备在每个测量间隔周期中均需在预留的测量间隔长度一直进行异频测量,并且无上报的测量结果。而异频测量过程中基站与终端设备不进行数据交互,从而造成终端设备数据传输时间的浪费。
发明内容
本申请实施例提供一种测量方法及设备。可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
第一方面,本申请实施例提供了一种测量方法,包括:第一设备向第二设备发送携带时间参数配置的消息;所述时间参数配置用以配置所述第二设备发送第一测量消息的时间,或者用以配置所述第一设备向所述第二设备发送第一间隔配置的时间。第一设备在向第二设备配置测量间隔时,可以向第二设备发送时间参数配置,通过该时间参数配置来配置第一设备向第二设备发送第一间隔配置的时间,或者来配置第二设备向第一设备发送测量的第一测量消息的时间。在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据第一测量消息或者时间参数配置重新向第二设备发送第一间隔配置,可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述方法还包括:所述第一设备向所述第二设备发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
在一个实施例中,所述方法还包括:如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备发送的所述第二测量消息,所述第一设备向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述方法还包括:如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,接收到所述第二设备发送的所述第一测量消息,所述第一设备向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,所述第二设备是网络设备或终端设备。
第二方面,本申请实施例提供了一种测量方法,包括:第二设备从第一设备接收携带时间参数配置的消息;所述时间参数配置用以配置所述第二设备发送第一测量消息的时间;所述第二设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,发送所述第一测量消息。第二设备在接收第一设备发送的测量间隔配置时,可以接收第一设备发送的时间参数配置,通过该时间参数配置来配置第二设备接收第一设备发送的第一间隔配置的时间,或者来配置第二设备向第一设备发送测量的第一测量消息的时间。在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据第一测量消息或者时间参数配置重新向第二设备发送第一间隔配置,可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述第二设备发送所述第一测量消息之前,所述方法还包括:所述第二设备接收所述第一设备发送的携带第二间隔配置和第一事件配置的消息;所述第一间隔配置用以配置所述第二设备进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
在一个实施例中,所述第二设备发送所述第一测量消息之后,所述方法还包括:所述第二设备接收所述第一设备发送的第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,所述第二设备是网络设备或终端设备。
第三方面,本申请实施例提供了一种测量方法,包括:第二设备从第一设备接收时间参数配置;所述时间参数配置用以配置所述第二设备接收所述第一设备发送的第一间隔配置的时间;所述第二设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,接收所述第一设备发送的所述第一间隔配置。第二设备在接收第一设备发送的测量间隔配置时,可以接收第一设备发送的时间参数配置,通过该时间参数配置来配置第二设备接收第一设备发送的第一间隔配置的时间,在该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据第一测量消息或者时间参数配置重新向第二设备发送第一间隔配置,第二设备在接收到第一设备发送的重新配置的第一间隔配置后,根据上述重新配置的第一间隔配置的参数执行测量间隔测量,检测是否有可切换的测量目标。在测量目标信道质量均不好时,上述重新配置的第一间隔配置,可以减少测量间隔频繁占用第二设备的上下行时域资源的情况,提高第二设备的服务质量。
在一个实施例中,所述第二设备接收所述第一设备发送的所述第一间隔配置之前,所述方法还包括:所述第二设备接收所述第一设备发送的第二间隔配置和第一事件配置;所述第二间隔配置用以配置所述第二设备进行测量的时间资源,所述第一间隔配置与所述第二间隔配置不同;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,所述第二设备是网络设备或终端设备。
第四方面,本申请实施例提供了一种测量方法,包括:第一设备向第二设备发送携带第一配置的消息;所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值。第一设备向第二设备发送的第一配置,定义了第一事件,在没有可以切换的测量目标的情况下,第二设备可以根据接收到的该新定义的第一事件触发向第一设备发送第一测量消息,第二设备可以根据该第一测量消息重新为第一设备配置第一间隔配置,重新配置的第一间隔配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
在一个实施例中,所述方法还包括:所述第一设备向所述第二设备发送携带第二间隔配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
在一个实施例中,所述第一设备向所述第二设备发送所述第二间隔配置之后,所述方法还包括:所述第一设备接收所述第二设备发送的所述第一测量消息;所述第一设备向所述第二设备发送第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述方法还包括:所述第一设备向所述第二设备发送携带第二配置的消息;所述第二配置用以配置所述第二设备进行所述测量的频率信息、小区信息或者***信息中的至少一个。
在一个实施例中,所述第二配置和所述第一配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述第一配置用以配置所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第一偏置、所述第二偏置和所述第三偏置中的至少一个。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,第二设备是网络设备或终端设备。
第五方面,本申请实施例提供了一种测量方法,包括:第二设备接收第一设备发送的携带第一配置的消息;所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值;当所述第一事件触发时,所述第二设备向所述第一设备发送所述第一测量消息。在没有可以切换的测量目标的情况下,第二设备可以根据接收到的该新定义的第一事件触发向第一设备发送第一测量消息,第二设备可以根据该第一测量消息重新为第一设备配置第一间隔配置,与第二间隔配置相比,第一间隔配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
在一个实施例中,所述方法还包括:所述第二设备接收所述第一设备发送的携带第二间隔配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
在一个实施例中,所述第二设备接收所述第一设备发送的携带第二间隔配置的消息之后,所述方法还包括:所述第一事件触发时,所述第二设备向所述第一设备发送所述第一测量消息;所述第二设备接收所述第一设备发送的携带第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述方法还包括:所述第一设备接收所述第二设备发送的携带第二配 置的消息;所述第二配置用以配置所述第二设备进行所述测量的频率信息、小区信息或者***信息中的至少一个。
在一个实施例中,所述第二配置和所述第一配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述第一配置用以配置所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值、所述第一偏置、所述第二偏置和所述第三偏置中的至少一个。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,第二设备是网络设备或终端设备。
在一个实施例中,所述第一测量消息,包括或指示以下至少一项信息:测量目标的信道质量、所述测量目标的标识、用于指示所述第二设备未检测到可切换的测量目标的信息和所述第二设备期望的测量间隔配置。
在一个实施例中,所述第二设备期望的测量间隔配置包括以下任一项或多项:所述第二设备期望的测量间隔重复周期;所述第二设备期望在第一时间内的测量间隔重复周期;所述第二设备期望的测量间隔爆发重复周期;所述第二设备期望在第二时间内的测量间隔爆发重复周期;所述第二设备期望的测量间隔长度;所述第二设备期望在第三时间内的测量间隔长度;所述第二设备期望的测量间隔爆发重复个数;所述第二设备期望在第四时间内的测量间隔爆发重复个数;所述第二设备期望取消所述第二间隔配置;所述第二设备期望在第五时间内取消所述第二间隔配置。第二设备期望的测量间隔配置可以是更长的测量间隔重复周期、更短的测量间隔长度、更长的测量间隔爆发重复周期、更少的测量间隔爆发重复个数,取消第一测量间隔配置中的一种或几种,也可以在预设时间内设置上述配置参数,通过上述一种或几种的配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,第一间隔配置与所述第二间隔配置不同,包括以下至少一项:所述第一间隔配置的测量间隔重复周期大于所述第二间隔配置的测量间隔重复周期;所述第一间隔配置的测量间隔重复周期在第六时间内大于所述第二间隔配置的测量间隔重复周期;所述第一间隔配置的测量间隔长度小于所述第二间隔配置的测量间隔长度;所述第一间隔配置的测量间隔长度在第七时间内小于所述第二间隔配置的测量间隔长度;所述第一间隔配置的测量间隔爆发重复周期大于所述第二间隔配置的测量间隔的爆发重复周期;所述第一间隔配置的测量间隔爆发重复周期在第八时间内大于所述第二间隔配置的测量间隔的爆发重复周期;所述第一间隔配置的测量间隔爆发重复个数小于所述第二间隔配置的测量间隔爆发重复个数;所述第一间隔配置的测量间隔爆发重复个数在第九时间内小于所述第二间隔配置的测量间隔爆发重复个数;所述第一间隔配置是取消所述第二间隔配置;所述第一间隔配置指示所述第二设备在第十时间内取消所述第二间隔配置。重新配置的第一间隔配置,与第二间隔配置相比,可以是设置更长的测量间隔重复周期、更短的测量间隔长度、更长的测量间隔爆发重复周期、更少的测量间隔爆发重复个数,取消第一测量间隔配置中的一种或几种,也可以在预设时间内设置上述配置参数,通过上述一种或几种的配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
第六方面,本申请实施例提供了一种测量方法,包括:
第一设备确定时间参数配置;所述时间参数配置用以配置所述第一设备向所述第二设备 发送第一间隔配置的时间。第一设备在向第二设备配置测量间隔时,可以设置时间参数配置,通过该时间参数配置来配置第一设备向第二设备发送第一间隔配置的时间。在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据时间参数配置重新向第二设备发送第一间隔配置,可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述方法还包括:所述第一设备向所述第二设备发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
在一个实施例中,所述方法还包括:如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备发送的所述第二测量消息,所述第一设备向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,所述第二设备是网络设备或终端设备。
第七方面,本申请实施例提供了一种测量方法,包括:第二设备接收所述第一设备发送的携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件;第二设备根据第二间隔配置和第一事件配置在所述第一设备确定的时间参数配置指示的时间点或时间段内执行测量间隔测量;所述时间参数配置用以配置所述第一设备向所述第二设备发送第一间隔配置的时间。第一设备在向第二设备配置测量间隔时,可以设置时间参数配置,通过该时间参数配置来配置第一设备向第二设备发送第一间隔配置的时间。在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据时间参数配置重新向第二设备发送第一间隔配置,可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
在一个实施例中,所述方法还包括:如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备发送的所述第二测量消息,所述第二设备接收所述第一设备发送的携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中在所述第二设备接收的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备是网络设备或终端设备,所述第二设备是网络设备或终端设备。
第八方面,本申请实施例提供了一种第一设备,该第一设备包括用于执行第一方面或第一方面的任一种可能实现方式所提供的测量方法的模块或单元。
第九方面,本申请实施例提供了一种第二设备,该第二设备包括用于执行第二方面或第二方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十方面,本申请实施例提供了一种第二设备,该第二设备包括用于执行第三方面或第三方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十一方面,本申请实施例提供了一种第一设备,该第一设备包括用于执行第四方面或第四方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十二方面,本申请实施例提供了一种第二设备,该第二设备包括用于执行第五方面或第五方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十三方面,本申请实施例提供了一种第一设备,该第一设备包括用于执行第六方面或第六方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十四方面,本申请实施例提供了一种第二设备,该第二设备包括用于执行第七方面或第七方面的任一种可能实现方式所提供的测量方法的模块或单元。
第十五方面,本申请实施例提供了一种第一设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第一方面或第一方面的任一种可能实现方式所提供的测量方法。
第十六方面,本申请实施例提供了一种第二设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第二方面或第二方面的任一种可能实现方式所提供的测量方法。
第十七方面,本申请实施例提供了一种第二设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第三方面或第三方面的任一种可能实现方式所提供的测量方法。
第十八方面,本申请实施例提供了一种第一设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第四方面或第四方面的任一种可能实现方式所提供的测量方法。
第十九方面,本申请实施例提供了一种第二设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第五方面或第五方面的任一种可能实现方式所提供的测量方法。
第二十方面,本申请实施例提供了一种第一设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第六方面或第六方面的任一种可能实现方式所提供的测量方法。
第二十一方面,本申请实施例提供了一种第二设备,包括:处理器,存储器,收发器和总线;处理器、收发器、存储器通过总线相互通信;收发器,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,执行第七方面或第七方面的任一种可能实现方式所提供的测量方法。
第二十二方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第一方面或第一方面的任一种可能实现方式所提供的测量方法。
第二十三方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第二方面或第二方面的任一种可能实现方式所提供的测量方法。
第二十四方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第三方面或第三方面的任一种可能实现方式所提供的测量方法。
第二十五方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第四方面或第四方面的任一种可能实现方式所提供的测量方法。
第二十六方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第五方面或第五方面的任一种可能实现方式所提供的测量方法。
第二十七方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第六方面或第六方面的任一种可能实现方式所提供的测量方法。
第二十八方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令在设备上运行时,使得设备执行第七方面或第七方面的任一种可能实现方式所提供的测量方法。
第二十九方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第一方面或第一方面的任一种可能实现方式所提供的测量方法。
第三十方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第二方面或第二方面的任一种可能实现方式所提供的测量方法。
第三十一方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第三方面或第三方面的任一种可能实现方式所提供的测量方法。
第三十二方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第四方面或第四方面的任一种可能实现方式所提供的测量方法。
第三十三方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第五方面或第五方面的任一种可能实现方式所提供的测量方法。
第三十四方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令在设备上运行时,使得设备执行第六方面或第六方面的任一种可能实现方式所提供的测量方法。
第三十五方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指 令在设备上运行时,使得设备执行第七方面或第七方面的任一种可能实现方式所提供的测量方法。
第三十六方面,本申请实施例提供了一种设备的芯片产品,以执行第一方面或第一方面的任意可能的实现方式中的方法。
第三十七方面,本申请实施例提供了一种设备的芯片产品,以执行第二方面或第二方面的任意可能的实现方式中的方法。
第三十八方面,本申请实施例提供了一种设备的芯片产品,以执行第三方面或第三方面的任意可能的实现方式中的方法。
第三十九方面,本申请实施例提供了一种设备的芯片产品,以执行第四方面或第四方面的任意可能的实现方式中的方法。
第四十方面,本申请实施例提供了一种设备的芯片产品,以执行第五方面或第五方面的任意可能的实现方式中的方法。
第四十一方面,本申请实施例提供了一种设备的芯片产品,以执行第六方面或第六方面的任意可能的实现方式中的方法。
第四十二方面,本申请实施例提供了一种设备的芯片产品,以执行第七方面或第七方面的任意可能的实现方式中的方法。
第一设备在向第二设备配置测量间隔时,可以向第二设备发送时间参数配置,通过该时间参数配置来配置第一设备向第二设备发送第一间隔配置的时间,或者来配置第二设备向第一设备发送测量的第一测量消息的时间。在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据第一测量消息或者时间参数配置重新向第二设备发送第一间隔配置,该第一间隔配置可以是设置更长的测量间隔重复周期、更短的测量间隔长度、更长的测量间隔爆发重复周期、更少的测量间隔爆发重复个数,取消第一测量间隔配置中的一种或几种,也可以在预设时间内设置上述配置参数,通过上述一种或几种的配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种网络***的架构示意图;
图2是现有技术中提供的一种均匀的测量间隔的间隔配置示意图;
图3是现有技术中提供的一种不均匀的测量间隔的间隔配置示意图;
图4是本申请实施例提供的一种重新配置间隔配置的示意图;
图5是本申请实施例提供的另一种重新配置间隔配置的示意图;
图6是本申请实施例提供的又一种重新配置间隔配置的示意图;
图7是本申请实施例提供的再一种重新配置间隔配置的示意图;
图8是本申请实施例提供的一种测量方法的流程示意图;
图9是本申请实施例提供的一种测量间隔的配置方法的示意图;
图10是本申请实施例提供的另一种测量间隔的配置方法的示意图;
图11是本申请实施例提供的另一种测量方法的流程示意图;
图12是本申请实施例提供的又一种测量方法的流程示意图;
图13是本申请实施例提供的再一种测量方法的流程示意图;
图14是本申请实施例提供的一种第一设备10和第二设备20的结构示意图;
图15是本申请实施例提供的另一种第一设备10和第二设备20的结构示意图;
图16是本申请实施例提供的又一种第一设备10和第二设备20的结构示意图;
图17是本申请实施例提供的再一种第一设备10和第二设备20的结构示意图;
图18是本申请实施例提供的一种第一设备10的结构示意图;
图19是本申请实施例提供的一种第二设备20的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了更好的理解本申请实施例,首先对本申请涉及的网络***进行介绍。
请参见图1,是本发明实施例提供的一种网络***的架构示意图。如图1所示,该网络***包括第一设备10和第二设备20。其中,第一设备10和第二设备20可以建立通信连接,并通过该通信连接进行数据交互。本申请实施例以第一设备10为网络设备、第二设备20为终端设备为例介绍。可以理解的是,本申请还可以扩展为第一设备10为网络设备、第二设备20为网络设备的情况,本申请仍可以扩展为第一设备10为终端设备、第二设备20为终端设备的情况,本申请又可以扩展为第一设备10为终端设备、第二设备20为网络设备的情况,本申请涉及的方法流程及设备中,第一设备均可以是网络设备或者终端设备,第二设备均可以是网络设备和终端设备。本申请对此不做限定。
在蜂窝移动通信***中,网络设备10所覆盖的区域或网络设备10上某一个或多个扇形天线所覆盖的区域可以称为小区。在这个区域内,如图1所示,终端设备20可以通过无线信道与网络设备10进行通信。实现终端设备20与网络设备10通信的小区可以称为终端设备20的服务小区。小区中终端设备20与网络设备10通信的频率为小区的载波频率。如图1所示,通过无线信道在网络设备10和终端设备20之间传输的数据承载在一个固定频率(或者固定频段)的载波上,该频率(或者中心频率)可以称为服务小区的载波频率。
网络设备10可以为基站,基站可以用于与一个或多个终端设备20进行通信,也可以用于与一个或多个具有部分终端设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(time division synchronous code division multiple access,TD-SCDMA)***中的基站收发台(base transceiver station,BTS),也可以是长期演进(long term evolution,LTE)***中的演进型基站(evolutional node B,eNB),以及第五代(5th-Generation,5G)移动通信***、新空口(new radio,NR)***中的基站。另外,基站也可以为接入点(access point,AP)、传输节点(transmission and receiving point,TRP)、中心单元(central unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。在未来的通信***中,网络设备10还可以有其他名称,本发明实施例不作具体限定。
终端设备20可以是可移动的用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、用户终端、或用户代理。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或车载设备、可穿戴设备、5G***中的终端 或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端等。具体的,终端设备20可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请的实施例对网络设备10和终端设备20所采用的具体技术和具体设备形态不做限定。图1示出的网络***仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络***的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。以下以小区作为第一设备的测量目标为例进行介绍,可以理解的是,上述的测量目标不限于小区测量的场景,对于类似的业务场景,本申请同样适用,本申请对此不作限定。
当终端设备20所在的服务小区上信道质量较差时,会影响网络设备10和终端设备20进行通信。例如,当终端设备20位于服务小区的边缘,或者,终端设备20位于车库、电梯等信道质量急剧减小的区域中。此时,为保证终端设备20较好的数据通信,可以检测与服务小区临近的小区的信道质量。如图1所示,终端设备20可以通过网络设备10的服务小区进行数据通信,进行通信时载波频率为f1。终端设备20要检测的小区可以称为目标测量小区。目标测量小区的数量可以为一个或多个,如图1所示,目标测量小区可以包含目标测量小区A和目标测量小区B。目标测量小区的载波频率可以和服务小区相同,也可以和服务小区不同。如图1所示,目标测量小区A和目标测量小区B的载波频率均为f2。目标测量小区与服务小区可以是在相同的通信***中,也可以不在相同的通信***中,本申请对此不作限定。通信***是指例如,3GPP、5G移动通信***、全球移动通信***(universal mobile telecommunication system UMTS)、码分多址(Code Division Multiple Access,CDMA)通信***、全球移动通信***(Global System for Mobile Communication,GSM)、WiFi通信***等等。另外,也可以是未来新出现或者新定义的通信***,本申请对此不作限定。
根据目标测量小区的载波频率是否与服务小区相同,信道质量测量分为同频测量和异频测量。其中,同频测量是在目标测量小区的载波频率与终端设备20的服务小区的载波频率相同时,终端设备20进行的小区测量。如图1所示,当f1=f2时,终端设备20根据网络设备10的配置进行同频测量。异频测量是指目标测量小区的载波频率与终端设备20的服务小区的载波频率不相同时,终端设备20进行的小区测量。如图1所示,当f1≠f2时,终端设备20根据网络设备10的配置进行异频测量。异频测量时,由于终端设备20上发射机的载波频率仍然是服务小区的载波频率,要进行异频测量需要首先将终端设备20上发射机的载波频率转换为目标测量小区的载波频率,之后再进行信道质量测量。第三代合作伙伴计划(3rd generation partnership project,3GPP)提出测量间隔的方式完成上述的过程。即预留一段时间,在这段时间内,终端设备20与网络设备10不交互任何数据,而是将载波频率转向目标测量小区,并进行异频信道质量测量。预留的这段时间可以称为测量间隔长度(measurement gap length,MGL)。
当需要进行异频或异***测量时,网络设备10向终端设备20发送测量间隔相关配置。网络设备10配置终端设备20的测量配置可以包含间隔配置和事件配置。下面分别间隔配置 和事件配置进行描述。
(1)间隔配置:间隔配置可以为网络设备配置进行测量的时间资源,间隔配置可以是周期的。
间隔配置可以包含多种模式,不同模式下参数配置(例如MGL、测量间隔的重复周期、LMGRP等)不同。在一种模式下,MGL为6ms,测量间隔的重复周期(measurement gap repetition period,MGRP)为40ms,即重复出现两次测量间隔的时间间隔为40ms。在另一种模式下,MGL为6ms,MGRP为80ms。采用哪种模式进行测量由参数gapOffset决定,该参数是由网络设备10通过携带测量配置信息的消息下发给终端设备20的。
间隔配置还可以分为均匀(uniform)的和不均匀的(non-uniform)。请参阅图2,图2是现有技术中提供的一种均匀的测量间隔的间隔配置示意图。如图2所示,在MGL内,终端设备进行异频测量,并且,每隔MGRP会出现一次MGL,即终端设备每隔MGRP进行一次异频测量。测量间隔还可以是不均匀的测量间隔,不均匀的测量间隔是指在爆发重复周期(burst repetition period)内,测量间隔仅包含在其中一部分时间内。请参阅图3,图3是现有技术中提供的一种不均匀的测量间隔的间隔配置示意图。如图3所示,在一个爆发重复周期内,即LMGRP内,一个爆发重复周期分为两部分T1和T2。在T1内网络设备10为终端设备20配置上述间隔配置的模式中的一种参数配置,终端设备20根据参数配置执行异频测量。在T1内可以是多次执行异频测量,执行异频测量的次数由测量间隙爆发重复个数(number of gaps per burst)确定。测量间隙爆发重复个数是指T1中包含的MGRP的个数,可以是13个。而在T2内,网络设备不为终端设备20配置异频测量的时间资源。爆发重复周期的周期时长可以是在配置测量间隔的模式时,通过gapOffset指示的。爆发重复周期(LMGRP)的周期时长可以是以下任一种:1.28s、2.56s、5.12s和10.24s等。
(2)事件配置:网络设备10配置终端设备20上报测量报告的事件(即触发条件)。也即是说,一旦终端设备20检测到触发条件被满足,就向网络设备10上报测量报告。
具体地,事件配置可以是***内测量事件,***内测量事件采用Ax来标识,如A3事件、A***和A5事件等等中的一个或多个,也可以是***间测量事件,如B1事件。这里***内是指相同的通信***,***间是指不同的通信***。需要进行说明的是,本申请中涉及的测量的方法流程和设备可以应用到异频测量,也可以应用到异***测量。
对于事件配置,以A3事件举例说明,A3事件的触发条件是目标测量小区比服务小区信道质量高于一个门限。触发条件可以是在预设定时器定时时间内均满足才会触发终端设备上报测量报告。该门限值可以是网络设备10预先配置给终端设备20的。如果配置给终端设备20的事件配置为A3事件,则在测量间隔的MGL中,终端设备20要满足上述A3事件的触发条件,即在预设定时时间内终端设备20检测到的目标测量小区比服务小区信道质量高于一个门限,才会触发终端设备20上报测量报告。
终端设备20上报的测量报告内容可以包括:用于标识本次测量的标识、服务小区的测量结果(信道质量等)、目标测量小区的测量结果(信道质量等)。网络设备10可以根据接收到的上述的测量报告配置终端设备20进行小区切换。以上以事件配置为A3事件为例介绍了事件配置。可以理解的是,本申请不限于事件配置为A3事件的情况,也可以是3GPP标准中的A***、A5事件和B1事件中的一个或多个,事件的具体描述可参考3GPP标准,这里不再赘述。
本申请实施例中,测量报告可以是以测量消息的形式在由终端设备20发送给网络设备 10的。
关于间隔配置的模式、间隔配置的各个参数(如MGRP、LMGRP、测量间隙爆发重复个数和MGL)和事件配置不限于现有标准中的定义和说明,未来通信***(如5G、新空口等)中关于这些概念的定义还可能发生变化,不影响本申请的适用。
现有技术中,在服务小区信道质量差的情况下,网络设备10为终端设备20配置测量间隔的目的是希望寻找到信道质量更好的目标测量小区。然而,在目标测量小区信道质量均不好时,终端设备10按照配置的测量间隔一直执行异频测量,且不能寻找到可切换的目标测量小区。而在配置的测量间隔的MGL内,终端设备20不能进行数据通信,测量间隔频繁占用终端设备20的上下行时域资源,从而造成资源浪费,降低了终端设备20的服务质量。
基于上述图1的网络***的架构示意图,本申请提供了一种测量方法,可以协助第一设备区分第二设备所处的情况。减少在第二设备没有可切换的测量目标时,测量间隔频繁占用时域资源,节省第二设备的上下行时域资源,在测量目标的信道质量均不好时,提高第二设备的服务质量。
本申请涉及的主要发明原理可包括:第一设备在向第二设备发送用于测量的第二间隔配置、第一事件配置时,可以同时或者先后向第二设备发送时间参数配置(如定时器),通过该时间参数配置来配置第一设备向第二设备发送第一间隔配置的时间,或者通过该时间参数配置来配置第二设备向第一设备发送测量的第一测量消息的时间。
在与该时间参数配置指示的时间点或时间段内,第二设备未检测到可切换的测量目标的情况下,第一设备可以根据第一测量消息或者时间参数配置重新向第二设备发送第一间隔配置,该第一间隔配置与第二间隔配置不同,该第一间隔配置与第二间隔配置相比,可以是设置更长的测量间隔重复周期、在第六时间内更长的测量间隔重复周期、更长的测量间隔爆发重复周期、在第七时间内更长的测量间隔爆发重复周期、更短的测量间隔长度、第八时间内更短的测量间隔长度、更少的测量间隔爆发重复个数、在第九时间内更少的测量间隔爆发重复个数、取消第一测量间隔配置、在第十时间内取消第二间隔配置中的一种或几种。通过上述第一设备10重新为第二设备20配置的一种或几种的间隔配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
以第一设备为网络设备,第二设备为终端设备举例:
(1)更长的测量间隔重复周期、在第六时间内更长的测量间隔重复周期
请参阅图4,图4是本申请实施例提供的一种重新配置间隔配置的示意图。如图4所示,网络设备为终端设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,并且为均匀的测量间隔。也就是说,每隔40ms终端设备进行一次测量,每次测量间隔的间隔长度为6ms,在这6ms内终端设备不能与网络设备交互数据。重新配置后的第一间隔配置为:MGRP=80ms,MGL=6ms,或者在第六时间内MGRP=80ms,MGL=6ms。测量间隔重复周期由40ms改变为80ms,如图4所示,可以减少测量间隔占用终端设备上下行的时域资源的频率,可以节省终端设备用于数据传输的时间,提高终端设备的服务质量。
在第六时间内更长的测量间隔重复周期表示在第六时间内终端设备使用第一间隔配置为:MGRP=80ms,MGL=6ms进行测量。超过第六时间终端设备可以不再执行测量间隔测量。超过第六时间终端设备也还可以恢复到第二间隔配置。超过第六时间后,终端设备还可以是根据网络设备的配置执行操作,本申请对此不作限定。
(2)更长的测量间隔爆发重复周期、在第七时间内更长的测量间隔爆发重复周期
请参阅图5,图5是本申请实施例提供的另一种重新配置间隔配置的示意图。如图5所示,网络设备为终端设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=1.28s。重新配置后的第一间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=2.56s。或者第一间隔配置为在第七时间内MGRP=40ms,MGL=6ms,LMGRP=2.56s,LMGRP由1.28s改变为2.56s,如图5所示,延长了终端设备设备不进行异频测量的时间(T2),可以减少测量间隔占用网络设备上下行的时域资源的频率,可以节省终端设备用于数据传输的时间,提高终端设备的服务质量。
在第七时间内更长的测量间隔爆发重复周期表示在第七时间内终端设备使用第一间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=2.56s执行测量间隔测量。超过第七时间终端设备可以不再执行测量间隔测量。超过第七时间终端设备也还可以恢复到第二间隔配置。超过第七时间后,终端设备还可以是根据网络设备的配置执行操作,本申请对此不作限定。
(3)更短的测量间隔长度、第八时间内更短的测量间隔长度
请参阅图6,图6是本申请实施例提供的又一种重新配置间隔配置的示意图。如图6所示,网络设备为终端设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,并且为均匀的测量间隔。也就是说,每隔40ms终端设备进行一次测量,每次测量间隔的间隔长度为6ms,在这6ms内终端设备不能与网络设备交互数据。重新配置后的第一间隔配置为:MGRP=40ms,MGL=4ms。或者第一间隔配置为:在第八时间MGRP=40ms,MGL=4ms。如图6所示,测量间隔长度由6ms改变为4ms,可以减少测量间隔占用网络设备上下行的时域资源量,可以节省终端设备用于数据传输的时间,提高终端设备的服务质量。
第八时间内更短的测量间隔长度表示在第八时间内终端设备使用第一间隔配置为:MGRP=40ms,MGL=4ms执行测量间隔测量。超过第八时间终端设备可以不再执行测量间隔测量。超过第八时间终端设备也还可以恢复到第二间隔配置。超过第八时间后,终端设备还可以是根据网络设备的配置执行,本申请对此不作限定。
(4)更少的测量间隔爆发重复个数、在第九时间内更少的测量间隔爆发重复个数
请参阅图7,图7是本申请实施例提供的再一种重新配置间隔配置的示意图。如图7所示,网络设备为终端设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=1.28s,测量间隔爆发重复个数为13个。重新配置后的第一间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=1.28s,测量间隔爆发重复个数为5个。或者第一间隔配置为:在第九时间内MGRP=40ms,MGL=6ms,LMGRP=1.28s,测量间隔爆发重复个数为5个。如图7所示,测量间隔爆发重复个数由13个变为5个,可以减少测量间隔占用网络设备上下行的时域资源量,可以节省终端设备用于数据传输的时间,提高终端设备的服务质量。
第九时间内更少的测量间隔爆发重复个数表示在第九时间内终端设备使用第一间隔配置为:MGRP=40ms,MGL=6ms,LMGRP=1.28s,测量间隔爆发重复个数为10个,执行测量间隔测量。超过第九时间终端设备可以不再执行测量间隔测量。超过第九时间终端设备也还可以恢复到第二间隔配置。超过第九时间后,终端设备还可以是根据网络设备的配置执行,本申请对此不作限定。
(5)取消第一测量间隔配置、在第十时间内取消第二间隔配置
网络设备为终端设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,并且为均匀的测量间隔。也就是说,每隔40ms终端设备进行一次测量,每次测量间隔的间隔长度为6ms, 在这6ms内终端设备不能与网络设备交互数据。重新配置后的第一间隔配置为:取消第一测量间隔配置。或者第一间隔配置为:在第十时间内取消第一测量间隔配置。取消第一测量间隔配置是指不再执行测量间隔测量,可以减少测量间隔占用网络设备上下行的时域资源的频率,可以节省终端设备用于数据传输的时间,提高终端设备的服务质量。
在第十时间内取消第一测量间隔配置表示在第十时间内终端设备使用取消第一测量间隔配置,即不执行测量间隔测量。超过第十时间终端设备可以不再执行测量间隔测量。超过第十时间终端设备也还可以恢复到第二间隔配置。超过第十时间后,终端设备还可以是根据网络设备的配置执行,本申请对此不作限定。
基于上述主要发明原理,下面说明本申请提供几个实施例。
请参阅图8,图8是本申请实施例提供的一种测量方法的流程示意图。在图8所描述的实施例中,超过时间参数配置的时间段时,第二设备会向第一设备发送第一测量消息,用于告知第一设备没有检测到可切换的测量目标。第一设备根据第一测量消息重新为第二设备配置第一间隔配置。
如图8所示,该测量方法包括但不限于如下步骤S801-S806。
S801、第一设备向第二设备发送携带时间参数配置的消息。
本申请实施例中,时间参数配置用以配置第二设备发送测量的第一测量消息的时间。时间参数配置的时间可以是时间参数配置对应的时间点、或者在时间参数配置的时间段内、或者在时间参数配置的时间增加第一增量对应的时间点、或者在时间参数配置的时间增加第二增量对应的时间段内,以下称为时间参数配置指示的时间点或时间段。
具体地,时间参数配置可以是第一设备配置给第二设备的一个定时器的配置信息。时间参数配置也可以是第一设备的***时间,或者第二设备的***时间。时间参数配置还可以是第一设备的***帧号或第一设备的***帧号的范围。时间参数配置的时长可以表征第二设备可以容忍的没有检测到可切换目标测量小区的持续时长。在超过时间参数配置的时间段,第二设备还未检测到可切换的测量目标的情况下,表明第二设备未检测到可切换的测量目标的状态已持续一段时间。上述的时间参数配置的时长是指第二设备开始进行测量间隙测量与时间参数配置指示的时间点(或时间段)之间的时长。例如,时间参数配置为定时器时,时间参数配置的时长是指第二设备开始进行测量间隙测量直至定时器定时时间到达所经历的时长。
本申请实施例中,第一设备还可以向第二设备发送第二间隔配置、第一事件配置。第二间隔配置、第一事件配置以及时间参数配置中任两个或三个配置可以是承载在同一个消息中下发给第二设备的,也可以是第一设备分两次或三次承载在不同的消息中下发给第二设备的。第一设备下发该时间参数配置可以是在第二设备已经在执行测量间隔测量的时候,或者,第一设备要为第二设备配置测量间隔的时候,即配置第二间隔配置、第一事件配置的时候。本申请对此不作限定。下面对第二间隔配置和第一事件配置进行详细介绍。
第二间隔配置:用以配置第二设备进行测量的时间资源。第二间隔配置和后面提到的第一间隔配置可以包括对MGRP、LMGRP、MGL、测量间隙爆发重复个数中的一个或多个参数进行配置。第二设备根据以上一个或多个参数的配置在对应的时间资源上执行测量间隔测量。第二间隔配置可以理解为第一设备首先为第二设备配置的间隔配置。第一间隔配置可以是第一设备在获知第一设备未检测到可切换的测量目标时,重新为第二设备配置的间隔配置。例如,为第二设备配置的第二间隔配置为均匀间隔配置:MGRP=40ms,MGL=6ms。为第二 设备配置的第一间隔配置为非均匀间隔配置:MGRP=40ms,MGL=6ms,LMGRP=1.28s。
第一事件配置:用以配置触发第二设备发送测量的第二测量消息的事件。第一事件配置可以通过测量事件的标识来配置,当第一事件的触发条件被触发时,第二设备向第一设备上报第二测量消息,可以包括用于标识本次测量的标识、服务小区的测量结果(信道质量等)、目标测量小区的测量结果(信道质量等)。具体地,第一事件配置可以是A3事件,即第二设备检测到满足A3事件的触发条件时,触发向第一设备上报第二测量消息。另外,第一事件的触发条件也可以是用于确定第二设备检测到可切换的测量目标的其他事件的条件。例如,A5事件和B1事件等等中的一个或多个,也可以是未来新定义的测量事件的条件。在超过时间参数配置指示的时间点或时间段,第一事件配置的条件没有被触发,第二设备即不会向第一设备发送第二测量消息,则表明第二设备未检测到可切换的测量目标。则第二设备会向第一设备发送第一测量消息。
其中,信道质量可以通过以下一个参数或多个参数来表征:参考信号接收功率(reference Signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和接收信号强度指示(received signal strength indication,RSSI)。信道质量还可以包含其他的表征第二设备与第一设备通信的信号的强弱的参数,本申请实施例对此不作限定。
S802、第二设备接收携带时间参数配置的消息,在时间参数配置指示的时间点或时间段到来之前,执行测量间隔测量,如果第二设备检测到可切换的测量目标则执行步骤S803。
本申请实施例中,在时间参数配置指示的时间点或时间段到来之前,第二设备可以根据接收到的第二间隔配置和第一事件配置,执行测量间隔的测量,以检测是否有可切换的测量目标。具体地,第二设备在第二间隔配置提供的时间资源上检测测量目标是否满足第一事件配置的触发条件。例如,第二间隔配置为:MGRP=40ms,MGL=6ms,且为均匀的测量间隔。第一事件配置为A3事件,则第二设备每40ms在定义的MGL上检测测量目标的信道质量是否比当前的服务小区的信道质量高于一定阈值。如果触发A3事件,则第二设备向第一设备发送测量报告。如果未触发,则第二设备不会上报测量报告,在下一个40ms的MGL中继续执行测量。
S803、第二设备在超出时间参数配置指示的时间点或时间段时,向第一设备发送测量的第一测量消息。
本申请实施例中,第一测量消息是在时间参数配置的时间点、或者在时间参数配置的时间段内、或者在时间参数配置的时间增加第一增量对应的时间点、或者在时间参数配置的时间增加第二增量对应的时间段内,第一事件配置的条件仍未被触发,导致第二设备未触发向第一设备发送第二测量消息的情况下,第二设备向第一设备发送的。
其中,第一测量消息可以包括或指示以下至少一项信息:测量目标的信道质量、测量目标的标识、用于指示第二设备未检测到可切换的测量目标的信息和第二设备期望的测量间隔配置。第二设备期望的测量间隔配置包括以下任一项或多项:第二设备期望的测量间隔重复周期、第二设备期望在第一时间内的测量间隔重复周期、第二设备期望的测量间隔爆发重复周期、第二设备期望在第二时间内的测量间隔爆发重复周期、第二设备期望的测量间隔长度、第二设备期望在第三时间内的测量间隔长度、第二设备期望的测量间隔爆发重复个数第二设备期望在第四时间内的测量间隔爆发重复个数、第二设备期望取消所述第二间隔配置、第二设备期望在第五时间内取消所述第二间隔配置。
具体地,当时间参数配置是第一设备配置给第二设备的一个定时器的配置信息时,该定 时器指示第二设备发送第一测量消息的时间。可以是定时器定时的时刻到达时,第一事件配置的条件仍未被触发,导致第二设备未触发向第一设备发送第二测量消息,则第二设备向第一设备发送第一测量消息。也可以是定时器定时的时刻到达前一段时间内,第一事件配置的条件仍未被触发,导致第二设备未触发向第一设备发送第二测量消息,则第二设备向第一设备发送第一测量消息。还可以是定时器定时时间增加第一增量的时刻到达时,第一事件配置的条件仍未被触发,导致第二设备未触发向第一设备发送第二测量消息,则第二设备向第一设备发送第一测量消息。还可以是定时器定时时间增加第二增量的时刻到达前一段时间内,第一事件配置的条件仍未被触发,导致第二设备未触发向第一设备发送第二测量消息,则第二设备向第一设备发送第一测量消息。上述的第一增量和第二增量均可以是正数,也可以是负数,还可以是0,本申请对此不作限定。
由于消息在第二设备与第一设备间传递的时间延误,第二设备在将以上的第一测量消息发送给第一设备后,第一设备在时间参数配置指示的时间点(时间段内)检测接收该第一测量消息的时间需要加上消息传输的偏差。另外,第一设备与第二设备检测接收消息的时间参数配置也可以加上第一设备与第二设备***时间的偏差。
另外,时间参数配置还可以是第一设备的***时间、第一设备的***时间范围、第二设备的***时间或者第二设备的***时间范围。时间参数配置还可以是第一设备的***帧号或第一设备的***帧号的范围,当时间参数配置是第一设备的***帧号或第一设备的***帧号的范围时,第二设备接收该第一设备的***帧号(帧号范围)。当前第一设备的***帧号与配置的第一设备的***帧号相同或者包含在配置的该第一设备的***帧号范围内时,所述第二设备发送第一测量消息。上述以定时器为例具体描述了时间参数配置,可以理解的是,相关的描述同样适用于时间参数配置为上述的***时间、***时间范围、***帧号或者***帧号范围的情景,这里不再赘述。
第二设备接收到第一设备的配置后,如果第二设备在时间参数配置的时间内,检测到第一事件配置的条件被触发,第二设备可以向第一设备发送第一事件对应的第二测量消息,告知第一设备检测到的可切换的目标测量小区的相关信息。第一设备根据接收到的可切换的目标测量小区的相关信息决定是否下发小区切换的指令。在这种情况下,第二设备可以在向第一设备上报第二测量消息时,设置时间参数配置的时间无效。
本申请实施例中,第一设备可以通过广播的方式向测量目标内的一个或多个第二设备同时发送携带该第一间隔配置、第一事件配置以及时间参数配置中的一个或多个配置的消息,即对于测量目标内的第二设备统一配置上述消息。另外,第一设备也可以根据每个第二设备的具体情况为每个第二设备单独配置上述的消息,即为测量目标内每个第二设备定制化不同的携带该第一间隔配置、第一事件配置以及时间参数配置中的一个或多个配置的消息。
另外,不限于上述的方式,在未来的通信***或通信协议中,时间参数配置也可以是无需第一设备下发,第二设备即可获知的。例如,该时间参数配置可以是协议定义的,第二设备可根据协议确定的。再例如,时间参数配置也可以是第二设备内部预存的。本申请对时间参数配置的获取途径不作限制。
S804、第一设备向第二设备发送携带第一间隔配置的消息。
本申请实施例中,第一设备接收到第一测量消息后,可以根据第一测量消息确定第一间隔配置。第一间隔配置与第二间隔配置不同。具体地,可以包括以下至少一项:第一间隔配置的测量间隔重复周期大于第二间隔配置的测量间隔重复周期、第一间隔配置的测量间隔重 复周期在第六时间内大于第二间隔配置的测量间隔重复周期、第一间隔配置的测量间隔长度小于第二间隔配置的测量间隔长度、第一间隔配置的测量间隔长度在第七时间内小于第二间隔配置的测量间隔长度、第一间隔配置的测量间隔爆发重复周期大于第二间隔配置的测量间隔的爆发重复周期、第一间隔配置的测量间隔爆发重复周期在第八时间内大于第二间隔配置的测量间隔的爆发重复周期、第一间隔配置的测量间隔爆发重复个数小于第二间隔配置的测量间隔爆发重复个数、第一间隔配置的测量间隔爆发重复个数在第九时间内小于第二间隔配置的测量间隔爆发重复个数、第一间隔配置是取消第二间隔配置、第一间隔配置指示第二设备在第十时间内取消第二间隔配置。
可以理解的是,当第一测量消息中包含第二设备期望的测量间隔配置时,实质上第二设备自身默认测量过程中未检测到可切换的测量目标,并根据需求设置期望测量间隔配置。测量过程中未检测到可切换的测量目标这一结果可以是终端设备根据测量结果判定的,也可以是网络设备根据终端设备上报的第一测量消息判定的。第一测量消息中包含的测量目标的数量为多个时,第一测量消息中可以包含这多个测量目标的测量结果(如信道质量等),也可以包含这多个测量目标的标识。其中,第一设备重新配置的第二间隔配置可以是按照第二设备期望的测量间隔配置进行配置的,也可以是第一设备根据第二设备上报的测量目标的信道质量和/或测量目标的标识确定的,还可以是第一设备根据第二设备期望的测量间隔配置和测量目标的信息确定的,本申请对此不作限定。
例如,第二设备上报的第一测量消息可以包含:(1)测量目标的信道质量,包括测量目标A的信道质量的RSRP1值为6dB,测量目标B的信道质量的RSRP2值为8dB;(2)第二设备期望的测量间隔的参数为:不均匀的测量间隔、MGRP=40ms、LMGRP=2.56s、MGL=6ms。其中,第一测量消息中的(1)是用于第一设备判断第二设备是否检测到可切换的测量目标的。第一测量消息中的(2)是第二设备判断其没有可切换的测量目标,并期望的测量间隔配置。第一设备在接收到上述的第一测量消息后,可以接受第二设备的判断(没有可以切换的测量目标),并接受第二设备的需求(期望的测量间隔配置),为第一设备重新配置的第一测量间隔配置为:不均匀的测量间隔、MGRP=40ms、LMGRP=2.56s、MGL=6ms。第一设备也可以不接受第二设备的判断和期望,直接根据第一测量消息中的(1)确定重新为第二设备配置的测量间隔配置,重新为第二设备配置的测量间隔配置(第一间隔配置)为:不均匀的测量间隔、MGRP=80ms、LMGRP=1.28s、MGL=6ms。第一设备还可以将第二设备的判断和期望作为参考,并根据第一测量消息中的(1)确定重新为终端设备配置的测量间隔配置(第一间隔配置)为:不均匀的测量间隔、MGRP=40ms、LMGRP=1.28s、MGL=6ms。
S805、第二设备接收携带第一间隔配置的消息,根据第一间隔配置执行测量间隔测量。
本申请实施例中,第二设备可以根据接收到的重新配置的第一间隔配置和之前接收到的第一事件配置,执行测量间隔的测量,以检测是否有可切换的测量目标。具体地,在第一间隔配置提供的时间资源上检测测量目标是否满足第一事件配置的触发条件。例如,第一间隔配置为:MGRP=80ms,MGL=6ms。第一事件配置为A3事件,则第二设备每80ms在定义的MGL上检测测量目标的信道质量是否比当前的服务小区的信道质量高于一定阈值。如果触发A3事件,则第二设备向第一设备发送测量报告。如果未触发,则第二设备不会上报测量报告,在下一个80ms的MGL中继续执行检测。
本申请实施例中,时间参数配置的数量可以是一个或多个。步骤S804之后,第一设备可以向第二设备发送另一个时间参数配置,并使用该另一个时间参数配置执行步骤S801。具体 地,以时间参数配置为定时器(timer)为例,请参阅如9,图9是本申请实施例提供的一种测量间隔的配置方法的示意图。如图9所示,第一设备首先向第二设备发送携带定时器(可以是只发送定时器1,也可以是同时发送定时器1和定时器2)的消息,并向第二设备发送携带第二间隔配置、第一事件配置的消息。第二间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=40ms。第二设备根据第二间隔配置、第一事件配置进行测量间隔测量,测量是否有可切换的测量目标。
第一设备超过定时器1的定时时间点或时间段时,还没有接收到第二设备发送的第二测量消息,即还没有检测到可切换的测量目标,则第一设备向第二设备发送携带第一间隔配置的消息。如图9所示,第一间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=80ms。第二设备根据第一间隔配置和第一事件配置执行测量,测量是否有可切换的测量目标。第一设备开启定时器2,定时器2的定时时间可以比定时器1定时时间更长,第一设备超过定时器2的定时时间点或时间段时,还没有接收到第二设备发送的测量消息(第一事件配置触发后第二设备向第一设备上报的测量消息),则表明第二设备还没有检测到可切换的测量目标,则第一设备向第二设备发送携带第三间隔配置的消息。与第一间隔配置相比,第三间隔配置可以有设置更长的测量间隔重复周期、更长的测量间隔爆发重复周期、更短的测量间隔长度和更少的测量间隔爆发重复个数中的一种或几种。如图9所示,第三间隔配置可以是:不均匀测量间隔、MGL=6ms、MGRP=40ms和LMGRP=1.28s。
其中,多个的定时器(定时器1、定时器2)可以是第一设备携带在同一个消息中发送给第二设备的,如第一设备在第二间隔配置和第一事件配置下发时,发送给第二设备的。然后,第一设备依次开启多个的定时器。如图9所示,定时器1先开启,在定时器1超时的情况下,定时器2开启。多个的定时器(定时器1、定时器2)也可以不是同时发送给第二设备的,例如,首先发送定时器1,并开启定时器1。在定时器1超时的情况下,再发送定时器2,并开启定时器2。
另外,多个的定时器也可以是第一设备同时发送给第二设备并同时在第一设备(第二设备)开启的。请参阅如图10,图10是本申请实施例提供的另一种测量间隔的配置方法的示意图。如图10所示,定时器1和定时器2可以是携带在同一个消息中发送给第二设备的。如第一设备在向第二设备发送多个定时器时,同时在第一设备侧开启多个定时器,且定时器2的定时时长大于定时器1的定时时长。在定时器1定时超时还没有接收到第二设备发送的第二测量消息,则第一设备向第二设备发送携带第一间隔配置的消息。第一间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=80ms。第一设备超过定时器2的定时时间点或时间段时,还没有接收到第二设备发送的测量消息(第一事件配置触发后第二设备向第一设备上报的测量消息),则第一设备向第二设备发送携带第三间隔配置的消息。
当时间参数配置是***时间(或者***时间范围)或者***帧号(或者***帧号范围)的情况下,第一设备也可以是向第二设备发送多个***时间(或者***时间范围)或者***帧号(或者***帧号范围)。可以类比上述的定时器的情况,这里不再赘述。
下面以第一设备为网络设备,第二设备为终端设备举例说明,当终端设备检测到服务小区的信道质量不好时,终端设备检测到满足A2事件的触发条件,并向网络设备上报该A2事件对应的测量报告。网络设备根据该测量报告判断终端设备需要进行异频测量。则向终端设备配置第二间隔配置为均匀间隔配置:MGRP=40ms,MGL=6ms。在每个MGRP(40ms)内的MGL(6ms)中,配置网络设备执行测量间隔测量。网络设备还可以为终端设备配置第一 事件配置为A3事件。则表明在每个MGRP(40ms)内的MGL(6ms)中,配置网络设备执行测量间隔测量。通过判断上述的A3事件是否触发,决定是否进行测量上报第二测量消息。网络设备还向终端设备发送时间参数配置为2min的定时器。该定时器用来配置终端设备在2min内仍未触发A3事件的条件,终端设备未向网络设备发送A3事件对应的测量报告(携带在第二测量消息中),则终端设备向网络设备发送第一测量消息。第一测量消息可以包含:目标测量小区的信道质量为和服务小区的信道质量。网络设备将以上的第二间隔配置、第一事件配置以及时间参数配置携带在消息中发送给终端设备。终端设备接收到上述消息时,开启定时器计时,在2min内在第二间隔配置的时间资源上对目标测量小区进行A3事件测量。由于终端设备处于深衰落场景,周围小区信道质量都较差,因此,2min内,均未触发A3事件。终端设备未触发上报携带A3事件的测量报告的第二测量消息。则在2min定时时间到达时,终端设备可以向网络设备发送第一测量消息。网络设备根据接收到的该第一测量消息重新为终端设备设置第一测量间隔为不均匀间隔配置:MGRP=40ms,MGL=6ms,LMGRP=1.28s。终端设备处在深衰落场景中时,目标测量小区信道质量均不好,网络设备在定时器定时时间到达时接收到终端设备发送的第一测量消息,表明终端设备未检测到可切换的目标测量小区,可以为终端设备重新配置测量间隔配置,可以减少测量间隔频繁占用终端设备的上下行时域资源的情况,提高终端设备的服务质量。
请参阅图11,图11是本申请实施例提供的另一种测量方法的流程示意图。在图11所描述的实施例中,超过时间参数配置指示的时间或时间段时,第一设备仍然没有接收到第二设备发送的用于告知第一设备有可切换的测量目标的第二测量消息时,第一设备重新为第二设备配置第一间隔配置。
如图11所示,该测量方法包括但不限于如下步骤S1101-S1104。
S1101、第一设备向第二设备发送携带时间参数配置的消息。
S1102、第二设备接收携带时间参数配置的消息,在时间参数配置指示的时间到来之前执行测量间隔测量。
S1103、第一设备在超出时间参数配置指示的时间点或时间段时,向第二设备发送携带第一间隔配置的消息。
S1104、第二设备接收携带第一间隔配置的消息,根据第一间隔配置执行测量间隔测量。
本申请实施例中,步骤S1101、S1102和S1104的描述可以相应的参考图8所描述的实施例中的步骤S801、S802和S805,这里不再赘述。
如果第一设备在时间参数配置的时间点、或者在时间参数配置的时间段内、或者在时间参数配置的时间增加第一增量对应的时间点、或者在时间参数配置的时间增加第二增量对应的时间段内,没有收到第二设备发送的测量的第二测量消息,第一设备向第二设备发送携带第一间隔配置的消息,第一间隔配置与第二间隔配置不同。可以理解的是,第一设备在超过时间参数配置指示的时间或时间段,还未检测到第二测量消息,表明第二设备未触发第一事件配置的触发条件的状态已经持续一段时间。而第一事件配置的触发条件是第一设备检测到可以切换的测量目标。因此,第一设备在时间参数配置指示的时间或时间段内,未检测到第二测量消息,则第一设备判断第二设备的测量目标中没有(可能没有)可以切换的测量目标。第一设备即重新为第二设备配置第一间隔配置。
第一间隔配置与所述第二间隔配置不同,可以包括以下至少一项:第一间隔配置的测量 间隔重复周期大于第二间隔配置的测量间隔重复周期;第一间隔配置的测量间隔重复周期在第六时间内大于第二间隔配置的测量间隔重复周期;第一间隔配置的测量间隔长度小于第二间隔配置的测量间隔长度;第一间隔配置的测量间隔长度在第七时间内小于第二间隔配置的测量间隔长度;第一间隔配置的测量间隔爆发重复周期大于第二间隔配置的测量间隔的爆发重复周期;第一间隔配置的测量间隔爆发重复周期在第八时间内大于第二间隔配置的测量间隔的爆发重复周期;第一间隔配置的测量间隔爆发重复个数小于第二间隔配置的测量间隔爆发重复个数;第一间隔配置的测量间隔爆发重复个数在第九时间内小于第二间隔配置的测量间隔爆发重复个数;第一间隔配置是取消第二间隔配置;第一间隔配置指示第二设备在第十时间内取消第二间隔配置。
例如,第一设备可以为第二设备配置的时间参数配置为:定时时间为1min的定时器。第一设备还可以为第二设备配置的第二间隔配置为:MGRP=40ms,MGL=6ms,并且为均匀的测量间隔。也就是说,每隔40ms第二设备进行一次测量,每次测量间隔的间隔长度为6ms,在这6ms内第二设备不能与第一设备交互数据。第一设备为第二设备配置的第一事件配置可以是A3事件触发第二设备向第一设备上报第二测量消息。在定时器定时结束时,第一设备还没有检测到第二设备发送的第二测量消息,第一设备可以向第二设备发送携带第一间隔配置的消息,第一间隔配置为:MGRP=80ms,MGL=6ms,并且为非均匀的测量间隔,LMGRP=1.28s。
在定时器定时1min结束时,表明第二设备测量的目标测量小区很有可能信道质量均不好才会导致第一事件配置没有被触发,第一设备没有接收到第二设备的第二测量消息。重新配置第一间隔配置之后:MGRP由40ms变为80ms,MGL占用第二设备上下行时域资源的频率减小。测量间隔由均匀的测量间隔重新配置为不均匀的测量间隔,在LMGRP的T2时间段,第二设备不进行测量间隔测量,相比于均匀的测量间隔,多出一段没有测量间隔的时间,从而可以减小测量间隔的间隔长度占用第二设备上下行时域资源的频率。另外,重新配置第一间隔配置还可以是取消测量间隔。
上述重新配置的第一间隔配置均可以是在一定的时间内的,如第一间隔配置的测量间隔重复周期在第六时间内大于第二间隔配置的测量间隔重复周期;第一间隔配置的测量间隔长度在第七时间内小于第二间隔配置的测量间隔长度;第一间隔配置的测量间隔爆发重复周期在第八时间内大于第二间隔配置的测量间隔的爆发重复周期;第一间隔配置的测量间隔爆发重复个数在第九时间内小于第二间隔配置的测量间隔爆发重复个数;第一间隔配置指示第二设备在第十时间内取消第二间隔配置。
第二设备在接收到第一设备发送的重新配置的第一间隔配置后,根据上述重新配置的第一间隔配置的参数执行测量间隔测量,检测是否有可切换的测量目标。在测量目标信道质量均不好时,上述重新配置的第一间隔配置,可以减少测量间隔频繁占用第二设备的上下行时域资源的情况,提高第二设备的服务质量。
请参阅图12,图12是本申请实施例提供的又一种测量方法的流程示意图。在图12所描述的实施例中,第一设备配置的用于检测测量目标信道质量均不好的第一事件,第二设备根据新配置的第一事件检测是否所有的测量目标信道质量都差,如果是,向第一设备上报第一测量消息,第一设备根据第一测量消息为第二设备配置第一间隔配置,该第一间隔配置与执行第一事件配置时的第二间隔配置不同。
如图12所示,该测量方法包括但不限于如下步骤S1201-S1205。
S1201、第一设备向第二设备发送携带第一配置的消息。
本申请实施例中,第一配置用以指示使用第一事件触发第二设备发送测量的第一测量消息;第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,测量目标的信道质量低于第二设备的服务小区的信道质量,测量目标的信道质量低于第一阈值且第二设备的服务小区的信道质量高于第二阈值,测量目标的信道质量低于第二设备的服务小区的信道质量且第二设备的服务小区的信道质量高于第二阈值。当第二设备检测到满足上述第一事件中的任意一个或多个触发条件,可以向第一设备发送测量报告,测量报告可以是携带在第一测量消息中发送给第一设备的。
第一事件的触发条件可以是上述任一项,也可以是任意多项,具体可以是根据第一设备配置给第二设备的第一配置确定。例如,第一配置是测量目标的信道质量低于第一阈值且测量目标的信道质量低于第二设备的服务小区的信道质量,则第二设备检测到满足测量目标的信道质量低于第一阈值,且测量目标的信道质量低于第二设备的服务小区的信道质量,即向第一设备发送第一测量消息。再例如,第一配置是测量目标的信道质量低于第一阈值且第二设备的服务小区的信道质量高于第二阈值,则第二设备检测到满足测量目标的信道质量低于第一阈值且满足第二设备的服务小区的信道质量高于第二阈值,即向第一设备发送第一测量消息。可以预定义上述第一事件,例如协议定义第一事件。可以理解的是,上述例子仅用于解释本申请实施例,不应构成限定。
其中,测量目标的信道质量低于第一阈值,可以包括:测量目标的信道质量低于第三阈值,或者测量目标的信道质量低于第三阈值与第一偏置的和。测量目标的信道质量低于第二设备的服务小区的信道质量,可以包括:测量目标的信道质量低于第二设备的服务小区的信道质量,或者测量目标的信道质量低于第二设备的服务小区的信道质量与第二偏置的和。第二设备的服务小区的信道质量高于第二阈值,可以包括:第二设备的服务小区的信道质量高于第四阈值,或者第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
其中,上述的“低于”可以理解为“小于或者等于”,“低于”可以是“在预设定时器内始终低于”。上述的第一偏置、第二偏置和第三偏置均可以是正数,也均可以是负数,还均可以是0,本申请对此不作限定。第一阈值可以是第三阈值,也可以是第三阈值与第一偏置的和。第二阈值可以是第四阈值,也可以是第四阈值与第三偏置的和。
预定义上述第一事件后,第一配置可以是用以配置上述的第一阈值,第二阈值,第三阈值,第四阈值,第一偏置,第二偏置,第三偏置中的至少一个。在第一设备为网络设备,第二设备为终端设备时,第二偏置可以包含以下一项或几项:测量目标的频率特定偏置、小区特定偏置、滞后量、事件偏置。频率特定偏置、小区特定偏置为网络设备为终端设备测量配置的相关偏置值。滞后量、事件偏置为网络设备为终端设备针对测量事件配置的相关偏置值。
如果测量目标为多个,这多个测量目标中信道质量最高的值小于第一阈值时,即满足上述的测量目标的信道质量低于第一阈值。
本申请实施例中,第一设备还可以向第二设备发送携带第二配置的消息;第二配置和第一配置可以是携带在相同或者不同的消息中发送给第二设备的。第二配置用以配置第二设备进行测量的频率信息、小区信息或者***信息中的至少一个。第二配置可以用于确定第一事件的测量目标。具体地,测量的频率信息可以确定测量目标为该频率信息指示的频率或频率范围。小区信息可以是指定的测量目标;***信息可以是指定的***中的测量目标。
S1202、第二设备接收第一设备发送的携带第一配置的消息,根据携带第一配置的消息执行测量间隔测量。
本申请实施例中,第一设备还可以向所述第二设备发送携带第二间隔配置的消息;所述第二间隔配置用以配置所述第二设备进行所述测量的时间资源。第二设备可以在第二间隔配置确定的时间资源上执行第一事件触发条件的检测,如果检测到满足第一事件的触发条件,可以向第一设备发送第一测量消息。
另外第一设备还可以向所述第二设备发送携带第二事件的第三配置。第二事件可以是用于第二设备确定测量目标中有(或者可能有)可切换的测量目标的事件,例如A3事件等。第二设备可以在第二间隔配置确定的时间资源上执行第一事件触发条件的检测,也执行第二事件触发条件的检测,如果检测到满足第一事件的触发条件,可以向第一设备发送第一测量消息。如果检测到满足第二事件的触发条件,可以向第一设备发送携带第二事件的测量报告的消息。可以理解的是,第一事件检测的触发条件是没有(或者可能没有)可以切换的测量目标,而第二事件检测的触发条件是有(或者可能有)可以切换的测量目标。因此在第二间隔配置确定的时间资源上执行测量时,一般地均会触发两个事件中的一个事件的触发条件,从而第二设备向第一设备上报触发事件的测量报告。这样第一设备可以及时获取测量目标的测量报告,并根据对应的测量报告重新为第一设备配置第一间隔配置。
S1203、第二设备向第一设备发送所述第一测量消息。
本申请实施例中,如果第二设备检测到满足第一事件的触发条件,则可以向第一设备发送第一测量消息。第一测量消息,可以包括或指示以下至少一项信息:所述测量目标的信道质量、所述测量目标的标识、用于指示所述第二设备未检测到可切换的测量目标的信息和所述第二设备期望的测量间隔配置。
其中,第二设备期望的测量间隔配置包括以下任一项或多项:第二设备期望的测量间隔重复周期;第二设备期望在第一时间内的测量间隔重复周期;第二设备期望的测量间隔爆发重复周期;第二设备期望在第二时间内的测量间隔爆发重复周期;第二设备期望的测量间隔长度;第二设备期望在第三时间内的测量间隔长度;第二设备期望的测量间隔爆发重复个数第二设备期望在第四时间内的测量间隔爆发重复个数;第二设备期望取消所述第二间隔配置;第二设备期望在第五时间内取消所述第二间隔配置。
S1204、第一设备向所述第二设备发送携带第一间隔配置的消息。
S1205、第二设备根据接收到的第一间隔配置执行测量间隔测量。
本申请实施例中,步骤S1204-S1205的具体描述可以参考图8所描述的实施例中的步骤S804-S805,不再赘述。
在没有可以切换的测量目标的情况下,第二设备可以根据接收到的新定义的第一事件触发向第一设备发送第一测量消息,第二设备可以根据该第一测量消息重新为第一设备配置第一间隔配置,与第二间隔配置相比,第一间隔配置可以减少测量间隔占用第二设备通信的时域资源,可以节省第二设备用于数据传输的时间,提高第二设备的服务质量。
请参阅图13,图13是本申请实施例提供的再一种测量方法的流程示意图。在图13所描述的实施例中,第一设备在向第二设备配置第二间隔配置和第一事件配置时,设置时间参数配置。超过时间参数配置指示的时间点或者时间段,第一设备仍未接收到用于表示检测到可切换的测量目标的第二测量消息时,第一设备重新为第二设备配置第一间隔配置。
如图13所示,该测量方法包括但不限于如下步骤S1301-S1305。
S1301、第一设备确定时间参数配置。
S1302、第一设备向第二设备发送第二间隔配置、第一事件配置。
本申请实施例中,第一设备还可以向第二设备发送第二间隔配置、第一事件配置。第一设备确定该时间参数配置可以是在第二设备已经在执行测量测量的时候,或者,第一设备要为第二设备配置测量间隔的时候,即配置第二间隔配置、第一事件配置的时候。具体地,该时间参数配置可以是第一设备在给第二设备配置第二间隔配置和第一事件配置时确定的。也可以是第一设备向第二设备配置第二间隔配置、第一事件配置后确定的,即第一设备首先向第二设备配置第二间隔配置、第一事件配置,第二设备执行测量间隔测量一段时间后,第一设备确定时间参数配置。本申请对此不作限定。
本申请实施例中,时间参数配置用以配置第一设备向第二设备发送第一间隔配置的时间。第二间隔配置用以配置第二设备进行测量的时间资源;第一事件配置用以配置触发第二设备发送测量的第二测量消息的事件。本申请实施例中,第一事件配置和第二间隔配置的具体描述可以参考图8所描述的实施例中步骤S801的具体描述,这里不再赘述。
本申请实施例中,时间参数配置可以是定时器,第一设备可以确定该定时器开始计时时间,该定时器是针对测量间隔设置的。第一设备触发该定时器开始计时可以是在第二设备已经在执行测量的时候,或者,第一设备要为第二设备配置测量的时候。具体地,该第二定时器可以是第一设备在给第一设备配置测量间隔时,触发开始计时的。也可以是与下发第二间隔配置、第一事件配置不同时触发的。本申请对此不作限定。
时间参数配置还可以是第一设备的***时间(或者***时间范围),或者第一设备的***帧号(或者***帧号范围)。
S1303、第二设备根据第二间隔配置、第一事件配置执行测量间隔测量。
本申请实施例中,第二设备可以根据接收到的第二间隔配置和第一事件配置,执行测量间隔的测量,以检测是否有可切换的测量目标。具体地,第二设备在第二间隔配置提供的时间资源上检测测量目标是否满足第一事件配置的触发条件。例如,第二间隔配置为:MGRP=40ms,MGL=6ms。第一事件配置为A3事件,则第二设备每40ms在定义的MGL上检测测量目标的信道质量是否比当前的服务小区的信道质量高于一定阈值。如果满足上述的条件,则第二设备向第一设备发送测量报告。如果不满足,则第二设备不会上报测量报告,在下一个40ms的MGL中继续执行测量。
S1304、第一设备超过时间参数配置指示的时间点或时间段时,还没有接收到第二设备发送的第二测量消息,则第一设备向第二设备发送携带第一间隔配置的消息。
如果第一设备在时间参数配置的时间点、或者在时间参数配置的时间段内、或者在时间参数配置的时间增加第一增量对应的时间点、或者在时间参数配置的时间增加第二增量对应的时间段内,没有收到第二设备发送的测量的第二测量消息,第一设备向第二设备发送携带第一间隔配置的消息,第一间隔配置与第二间隔配置不同。可以理解的是,第一设备在时间参数配置的时间内,还未检测到第二测量消息,表明第二设备未触发第一事件配置的触发条件的状态已经持续一段时间。而第一事件配置的触发条件是第一设备检测到可以切换的测量目标。因此,第一设备在时间参数配置的时间内,未检测到第二测量消息,则第一设备判断第二设备的测量目标中没有(可能没有)可以切换的测量目标。第一设备即重新为第二设备配置第一间隔配置。
第一间隔配置与所述第二间隔配置不同,可以包括以下至少一项:第一间隔配置的测量间隔重复周期大于第二间隔配置的测量间隔重复周期;第一间隔配置的测量间隔重复周期在第六时间内大于第二间隔配置的测量间隔重复周期;第一间隔配置的测量间隔长度小于第二间隔配置的测量间隔长度;第一间隔配置的测量间隔长度在第七时间内小于第二间隔配置的测量间隔长度;第一间隔配置的测量间隔爆发重复周期大于第二间隔配置的测量间隔的爆发重复周期;第一间隔配置的测量间隔爆发重复周期在第八时间内大于第二间隔配置的测量间隔的爆发重复周期;第一间隔配置的测量间隔爆发重复个数小于第二间隔配置的测量间隔爆发重复个数;第一间隔配置的测量间隔爆发重复个数在第九时间内小于第二间隔配置的测量间隔爆发重复个数;第一间隔配置是取消第二间隔配置;第一间隔配置指示第二设备在第十时间内取消第二间隔配置。
本申请实施例中,如果第一设备在时间参数配置指示的时间到来之前,接收到第二设备发送的第二测量消息,则表明第二设备测量到了可以切换的测量目标。第一设备在接收到该第二测量消息时,可以取消上述的时间参数配置。
本申请实施例中,时间参数配置的数量可以是一个或多个。第一设备向第二设备发送携带第一间隔配置的消息之后,第一设备可以确定另一个时间参数配置,并使用该另一个时间参数配置执行步骤S1301。具体地,以时间参数配置为定时器(timer)为例,如图9所示,第一设备首先在本地开启定时器1,并向第二设备发送第二间隔配置、第一事件配置。第二间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=40ms。第二设备根据第二间隔配置、第一事件配置进行测量间隔测量,测量是否有可切换的测量目标。
第一设备超过定时器1的定时时间点或时间段时,还没有接收到第二设备发送的第二测量消息,则第一设备向第二设备发送携带第一间隔配置的消息。如图9所示,第一间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=80ms。第一设备重新设置并开启定时器2,定时器2的定时时间可以比定时器1定时时间更长,第一设备超过定时器2的定时时间点或时间段时,还没有接收到第二设备发送的测量消息(第一事件配置触发后第二设备向第一设备上报的测量消息),则第一设备向第二设备发送携带第三间隔配置的消息。与第一间隔配置相比,第三间隔配置可以有设置更长的测量间隔重复周期、更长的测量间隔爆发重复周期、更短的测量间隔长度、更少的测量间隔爆发重复个数和取消第一测量间隔配置中的一种或几种。如图9所示,第三间隔配置可以是:不均匀测量间隔、MGL=6ms、MGRP=40ms和LMGRP=1.28s。
其中,多个的定时器(定时器1、定时器2)可以是第一设备同时设置的,如第一设备在第二间隔配置和第一事件配置下发时,同时设置的,依次开启的。如图9所示,定时器1先开启,在定时器1超时的情况下,定时器2开启。多个的定时器(定时器1、定时器2)也可以不是同时设置的,例如,首先设置定时器1,并开启定时器1,在定时器1超时的情况下,设置定时器2,并开启定时器2。
另外,多个的定时器可以是第一设备同时设置并同时开启的。如图10所示,定时器1和定时器2可以是第一设备同时设置的。如第一设备向第二设备发送第二间隔配置和第一事件配置时,同时设置的并同时开始计时,且定时器2的定时时长大于定时器1的定时时长。在定时器1定时超时还没有接收到第二设备发送的第二测量消息,则第一设备向第二设备发送携带第一间隔配置的消息。第一间隔配置可以是:均匀测量间隔、MGL=6ms、MGRP=80ms。第一设备超过定时器2的定时时间点或时间段时,还没有接收到第二设备发送的测量消息(第 一事件配置触发后第二设备向第一设备上报的测量消息),则第一设备向第二设备发送携带第三间隔配置的消息。
当时间参数配置是***时间(或者***时间范围)或者***帧号(或者***帧号范围)的情况下,也可以是配置多个***时间(或者***时间范围)或者***帧号(或者***帧号范围)。可以类比上述的定时器的情况,这里不再赘述。
S1305、第一设备根据接收到的第一间隔配置执行测量间隔测量。
第一设备可以设置时间参数配置,在时间参数配置指示的时间到来之前,第二设备还未向第一设备发送检测到可切换测量目标的相关信息时,第一设备判断没有(可能没有)可切换测量目标。则第一设备重新为第二设备配置第一测量间隔配置。第二设备在接收到第一设备发送的重新配置的第一间隔配置后,根据上述重新配置的第一间隔配置的参数执行测量间隔测量,检测是否触发第一事件配置,以检测是否有可切换的测量目标。在测量目标信道质量均不好时,上述测量参数的改变,可以减少测量间隔频繁占用第二设备的上下行时域资源的情况,提高第二设备的服务质量。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例提供的设备。
基于图1的网络***架构,图14是本申请实施例提供的一种第一设备10和第二设备20的结构示意图。如图14所示,第一设备10和第二设备20之间可存在通信连接,可实现二者之间的数据通信。下面展开描述。
其中,如图14所示,该第一设备10可以包括处理单元101和发送单元102,其中:
处理单元101,用于生成携带时间参数配置的消息;
所述发送单元102,用于向第二设备20发送携带时间参数配置的消息;
所述时间参数配置用以配置所述第二设备20发送第一测量消息的时间。
作为一种可能的实施方式,发送单元102,还用于向所述第二设备20发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备20进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备20发送第二测量消息的事件。
作为一种可能的实施方式,所述发送单元102,还用于如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,接收到所述第二设备发送的所述第一测量消息,向所述第二设备20发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
其中,如图14所示,该第二设备20可以包括处理单元201、接收单元202和发送单元203,其中:
所述接收单元202,用于从第一设备10接收携带时间参数配置的消息;
所述时间参数配置用以配置所述第二设备20发送第一测量消息的时间;
处理单元201,用于生成第一测量消息;
所述发送单元203,用于在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,发送所述第一测量消息。
作为一种可能的实施方式,发送单元203发送所述第一测量消息之前,所述接收单元202, 还用于接收所述第一设备10发送的携带第二间隔配置和第一事件配置的消息;
所述第一间隔配置用以配置所述第二设备20进行测量的时间资源;
所述第一事件配置用以配置触发所述第二设备20发送第二测量消息的事件。
作为一种可能的实施方式,发送单元203发送所述第一测量消息之后,所述接收单元202,还用于接收所述第一设备10发送的第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
在该实施例中,第一设备10中处理单元101和发送单元102,第二设备20中处理单元201、接收单元202和发送单元203的功能可以对应参照图8所示的测量方法实施例的相应描述,这里不再赘述。
基于图1的网络***架构,图15是本申请实施例提供的另一种第一设备10和第二设备20的结构示意图。如图15所示,第一设备10和第二设备20之间可存在通信连接,可实现二者之间的数据通信。下面展开描述。
其中,如图15所示,该第一设备10可以包括处理单元301和发送单元302,其中:
处理单元301,用于生成携带时间参数配置的消息;
所述发送单元302,用于向第二设备20发送携带时间参数配置的消息;
时间参数配置用以配置所述第一设备10向所述第二设备20发送第一间隔配置的时间。
作为一种可能的实施方式,发送单元302,还用于向所述第二设备20发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备20进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备20发送第二测量消息的事件。
作为一种可能的实施方式,发送单元302,还用于如果所述第一设备10在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备20发送的所述第二测量消息,向所述第二设备20发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
其中,如图15所示,该第二设备20可以包括处理单元401和接收单元402,其中:
接收单元402,用于从第一设备接收时间参数配置;
所述时间参数配置用以配置所述第二设备接收所述第一设备发送的第一间隔配置的时间;
处理单元401,用于生成第一间隔配置;
所述接收单元402,还用于在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,接收所述第一设备发送的所述第一间隔配置。
作为一种可能的实施方式,接收单元402接收所述第一设备发送的所述第一间隔配置之前,所述接收单元402,还用于接收所述第一设备发送的第二间隔配置和第一事件配置;
所述第二间隔配置用以配置所述第二设备进行测量的时间资源,所述第一间隔配置与所述第二间隔配置不同;
所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
在图15所描述的实施例中,第一设备10中处理单元301和发送单元302,第二设备20中处理单元401和接收单元402的功能可以对应参照图11所示的测量方法实施例的相应描述, 这里不再赘述。
基于图1的网络***架构,图16是本申请实施例提供的又一种第一设备10和第二设备20的结构示意图。如图16所示,第一设备10和第二设备20之间可存在通信连接,可实现二者之间的数据通信。下面展开描述。
其中,如图16所示,该第一设备10可以包括处理单元501和发送单元502,其中:
处理单元501,用于生成携带第一配置的消息;
发送单元502,用于向第二设备20发送携带第一配置的消息;
所述第一配置用以指示使用第一事件触发所述第二设备20发送第一测量消息;
所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值。
作为一种可能的实施方式,发送单元502,还用于向所述第二设备20发送携带第二间隔配置的消息;
所述第二间隔配置用以配置所述第二设备20进行测量的时间资源。
作为一种可能的实施方式,所述第一设备10还包括接收单元503,所述发送单元502向所述第二设备20发送所述第二间隔配置之后,所述接收单元503,用于接收所述第二设备20发送的所述第一测量消息;
所述发送单元502,还用于向所述第二设备20发送第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
其中,如图16所示,该第二设备20可以包括处理单元601和接收单元602,其中:
所述接收单元602,用于接收第一设备10发送的携带第一配置的消息;
所述第一配置用以指示使用第一事件触发所述第二设备20发送第一测量消息;
处理单元601,用于生成第一测量消息;
所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值;当所述第一事件触发时,所述第二设备20向所述第一设备发送所述第一测量消息。
作为一种可能的实施方式,接收单元602,还用于接收所述第一设备10发送的携带第二间隔配置的消息;
所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
作为一种可能的实施方式,所述第二设备20还包括发送单元603,所述接收单元602接收所述第一设备10发送的携带第二间隔配置的消息之后;所述发送单元603,用于所述第一事件触发时,向所述第一设备10发送所述第一测量消息;
所述接收单元602,还用于接收所述第一设备10发送的携带第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在图16所描述的实施例中,第一设备10中处理单元501和发送单元502,第二设备20 中处理单元601、接收单元602和发送单元603的功能可以对应参照图12所示的测量方法实施例的相应描述,这里不再赘述。
基于图1的网络***架构,图17是本申请实施例提供的再一种第一设备10和第二设备20的结构示意图。如图17所示,第一设备10和第二设备20之间可存在通信连接,可实现二者之间的数据通信。下面展开描述。
其中,如图17所示,该第一设备10可以包括处理单元701,其中:
处理单元701,用于确定携带时间参数配置;所述时间参数配置用以配置所述第一设备10向所述第二设备20发送第一间隔配置的时间。
在一个实施例中,所述第一设备10还包括发送单元702,发送单元702,用于向所述第二设备20发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备20进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备20发送第二测量消息的事件。
在一个实施例中,发送单元702,还用于如果所述第一设备10在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备20发送的所述第二测量消息,向所述第二设备20发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备20的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备10是网络设备或终端设备,所述第二设备20是网络设备或终端设备。
其中,如图17所示,该第二设备20可以包括处理单元801和接收单元802,其中:
所述接收单元802,用于接收所述第一设备10发送的携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备20进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备20发送第二测量消息的事件;
处理单元801,用于根据第二间隔配置和第一事件配置执行测量间隔测量。
在一个实施例中,接收单元802,还用于如果所述第一设备10在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备20发送的所述第二测量消息,接收所述第一设备10发送的携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
在一个实施例中,所述第二间隔配置、所述第一事件配置和所述时间参数配置是携带在相同或者不同的消息中发送给所述第二设备20的。
在一个实施例中,所述测量是异频测量或者异***测量。
在一个实施例中,所述第一设备10是网络设备或终端设备,所述第二设备20是网络设备或终端设备。
在图17所描述的实施例中,第一设备10中处理单元701和发送单元702,第二设备20 中处理单元601和接收单元602的功能可以对应参照图13所示的测量方法实施例的相应描述,这里不再赘述。
基于图1的网络***架构,图18是本申请实施例提供的一种第一设备10的结构示意图。如图18所示,该第一设备10包括:一个或多个处理器1801、存储器1802、通信接口1803、发射器1805、接收器1806、耦合器1807和天线1808。这些部件可通过总线1804或者其他方式连接,图18以通过总线连接为例。其中:
通信接口1803可用于第一设备10与其他通信设备,例如第二设备20,进行通信。具体的,通信接口1803可以是长期演进(long term evolution,LTE)***通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,第一设备10还可以配置有有线的通信接口1803来支持有线通信,例如一个第一设备10与其他网络设备之间的回程链接可以是有线通信连接。
发射器1805可用于对处理器1801输出的消息或数据进行发射处理。
在本申请的一些实施例中,发射器1805和接收器1806可看作一个无线调制解调器。在第一设备10中,发射器1805和接收器1806的数量均可以是一个或者多个。发射器1805和接收器1806也可以是由一个或多个收发器来实现的。天线1808可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器1807可用于将移动通信号分成多路,分配给多个的接收器1806。
存储器1802与处理器1801耦合,用于存储各种软件程序和/或多组指令。存储器1802可以存储操作***(下述简称***),例如uCOS、VxWorks、RTLinux等嵌入式操作***。存储器1802还可以存储测量方法的程序,该测量方法的程序可用于与一个或多个附加设备,一个或多个第二设备进行通信。
处理器1801可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并进行测量等。
本申请实施例中,处理器1801可用于读取和执行计算机可读指令。具体的,处理器1801可用于调用存储于存储器1802中的测量方法的程序。存储器1802可用于存储本申请的一个或多个实施例提供的测量方法在第一设备10侧的实现程序。具体地,处理器1801可用于调用存储于存储器1802中的测量方法的程序执行图8、图11、图12和图13中的任一个图所示的测量方法在第一设备10侧的步骤。
需要说明的,图18所示的第一设备10仅仅是本申请实施例的一种实现方式,实际应用中,第一设备10还可以包括更多或更少的部件,这里不作限制。
基于图1的网络***架构,图19是本申请实施例提供的一种第二设备20的结构示意图。如图19所示,该第二设备20包括:一个或多个处理器1901、存储器1902、通信接口1903、发射器1905、接收器1906、耦合器1907和天线1908。这些部件可通过总线1904或者其他方式连接,图19以通过总线连接为例。其中:
通信接口1903可用于第二设备20与其他通信设备,例如第一设备10,进行通信。具体的,通信接口1903可以是LTE***通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,第二设备20还可以配置有有线的通信接口1903来支持有线通信,例如一个第二设备20与其他网络设备之间的回程链接可以是有线通信连接。
发射器1905可用于对处理器1901输出的消息或数据进行发射处理。
在本申请的一些实施例中,发射器1905和接收器1906可看作一个无线调制解调器。在第二设备20中,发射器1905和接收器1906的数量均可以是一个或者多个。发射器1905和接收器1906也可以是由一个或多个收发器来实现的。天线1908可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器1907可用于将移动通信号分成多路,分配给多个的接收器1906。
存储器1902与处理器1901耦合,用于存储各种软件程序和/或多组指令。存储器1902可以存储操作***(下述简称***),例如uCOS、VxWorks、RTLinux等嵌入式操作***。存储器1902还可以存储测量方法的程序,该测量方法的程序可用于与一个或多个附加设备,一个或多个第一设备10进行通信。
处理器1901可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并进行测量等。
本申请实施例中,处理器1901可用于读取和执行计算机可读指令。具体的,处理器1901可用于调用存储于存储器1902中的测量方法的程序。存储器1902可用于存储本申请的一个或多个实施例提供的测量方法在第二设备20侧的实现程序。具体地,处理器1901可用于调用存储于存储器1902中的测量方法的程序执行图8、图11、图12和图13中的任一个图所示的测量方法在第二设备20侧的步骤。
需要说明的,图19所示的第二设备20仅仅是本申请实施例的一种实现方式,实际应用中,第二设备20还可以包括更多或更少的部件,这里不作限制。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件程序指令的方式来实现。软件程序指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于收发机或中继设备中。当然,处理器和存储介质也可以作为分立组件存在于第一设备或第二设备中。
可以理解的是,在本申请中,不同实施例之间的技术术语、技术方案可以依据其内在的逻辑相互参考、相互引用,本申请并不对技术术语和技术方案所适用的实施例进行限定。对不同实施例中的技术方案相互组合,还可以形成新的实施例。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (40)

  1. 一种测量方法,其特征在于,包括:
    第一设备向第二设备发送携带时间参数配置的消息;
    所述时间参数配置用以配置所述第二设备发送第一测量消息的时间,或者用以配置所述第一设备向所述第二设备发送第一间隔配置的时间。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送携带第二间隔配置和第一事件配置的消息;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源;
    所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备发送的所述第二测量消息,所述第一设备向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,接收到所述第二设备发送的所述第一测量消息,所述第一设备向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  5. 一种测量方法,其特征在于,包括:
    第二设备从第一设备接收携带时间参数配置的消息;
    所述时间参数配置用以配置所述第二设备发送第一测量消息的时间;
    所述第二设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,发送所述第一测量消息。
  6. 根据权利要求5所述的方法,其特征在于,所述第二设备发送所述第一测量消息之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的携带第二间隔配置和第一事件配置的消息;
    所述第一间隔配置用以配置所述第二设备进行测量的时间资源;
    所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第二设备发送所述第一测量消息之后,所述方法还包括:
    所述第二设备接收所述第一设备发送的第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
  8. 一种测量方法,其特征在于,包括:
    第二设备从第一设备接收时间参数配置;
    所述时间参数配置用以配置所述第二设备接收所述第一设备发送的第一间隔配置的时间;
    所述第二设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,接收所述第一设备发送的所述第一间隔配置。
  9. 根据权利要求8所述的方法,其特征在于,所述第二设备接收所述第一设备发送的所述第一间隔配置之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的第二间隔配置和第一事件配置;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源,所述第一间隔配置与所述第二间隔配置不同;
    所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  10. 一种测量方法,其特征在于,包括:
    第一设备向第二设备发送携带第一配置的消息;
    所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;
    所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;
    所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;
    所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送携带第二间隔配置的消息;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
  13. 根据权利要求12所述的方法,其特征在于,所述第一设备向所述第二设备发送所述第二间隔配置之后,所述方法还包括:
    所述第一设备接收所述第二设备发送的所述第一测量消息;
    所述第一设备向所述第二设备发送第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
  14. 一种测量方法,其特征在于,包括:
    第二设备接收第一设备发送的携带第一配置的消息;
    所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;
    所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值;当所述第一事件触发时,所述第二设备向所述第一设备发送所述第一测量消息。
  15. 根据权利要求14所述的方法,其特征在于,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;
    所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;
    所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的携带第二间隔配置的消息;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
  17. 根据权利要求16所述的方法,其特征在于,所述第二设备接收所述第一设备发送的携带第二间隔配置的消息之后,所述方法还包括:
    所述第一事件触发时,所述第二设备向所述第一设备发送所述第一测量消息;
    所述第二设备接收所述第一设备发送的携带第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  18. 根据权利要求1、2、4-7和10-17中的任一项所述的方法,其特征在于,所述第一测量消息,包括或指示以下至少一项信息:
    测量目标的信道质量、所述测量目标的标识、用于指示所述第二设备未检测到可切换的测量目标的信息和所述第二设备期望的测量间隔配置。
  19. 根据权利要求18所述的方法,其特征在于,所述第二设备期望的测量间隔配置包括以下任一项或多项:
    所述第二设备期望的测量间隔重复周期;
    所述第二设备期望在第一时间内的测量间隔重复周期;
    所述第二设备期望的测量间隔爆发重复周期;
    所述第二设备期望在第二时间内的测量间隔爆发重复周期;
    所述第二设备期望的测量间隔长度;
    所述第二设备期望在第三时间内的测量间隔长度;
    所述第二设备期望的测量间隔爆发重复个数;
    所述第二设备期望在第四时间内的测量间隔爆发重复个数;
    所述第二设备期望取消所述第二间隔配置;
    所述第二设备期望在第五时间内取消所述第二间隔配置。
  20. 根据权利要求3、4、7、9、13和17中的任一项所述的方法,其特征在于,第一间隔配置与所述第二间隔配置不同,包括以下至少一项:
    所述第一间隔配置的测量间隔重复周期大于所述第二间隔配置的测量间隔重复周期;
    所述第一间隔配置的测量间隔重复周期在第六时间内大于所述第二间隔配置的测量间隔重复周期;
    所述第一间隔配置的测量间隔长度小于所述第二间隔配置的测量间隔长度;
    所述第一间隔配置的测量间隔长度在第七时间内小于所述第二间隔配置的测量间隔长度;
    所述第一间隔配置的测量间隔爆发重复周期大于所述第二间隔配置的测量间隔的爆发重复周期;
    所述第一间隔配置的测量间隔爆发重复周期在第八时间内大于所述第二间隔配置的测量间隔的爆发重复周期;
    所述第一间隔配置的测量间隔爆发重复个数小于所述第二间隔配置的测量间隔爆发重复个数;
    所述第一间隔配置的测量间隔爆发重复个数在第九时间内小于所述第二间隔配置的测量间隔爆发重复个数;
    所述第一间隔配置是取消所述第二间隔配置;
    所述第一间隔配置指示所述第二设备在第十时间内取消所述第二间隔配置。
  21. 一种第一设备,其特征在于,包括发送单元,其中:
    所述发送单元,用于向第二设备发送携带时间参数配置的消息;
    所述时间参数配置用以配置所述第二设备发送第一测量消息的时间,或者用以配置所述第一设备向所述第二设备发送第一间隔配置的时间。
  22. 根据权利要求21所述的第一设备,其特征在于,所述发送单元,还用于向所述第二设备发送携带第二间隔配置和第一事件配置的消息;所述第二间隔配置用以配置所述第二设备进行测量的时间资源;所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  23. 根据权利要求22所述的第一设备,其特征在于,所述发送单元,还用于如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,没有收到所述第二设备发送的所述第二测量消息,向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  24. 根据权利要求22所述的第一设备,其特征在于,所述发送单元,还用于如果所述第一设备在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加第一增量对应的时间点、或者在所述时间参数配置的时间增加第二增量对应的时间段内,接收到所述第二设备发送的所述第一测量消息,向所述第二设备发送携带所述第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  25. 一种第二设备,其特征在于,包括接收单元和发送单元,其中:
    所述接收单元,用于从第一设备接收携带时间参数配置的消息;
    所述时间参数配置用以配置所述第二设备发送第一测量消息的时间;
    所述发送单元,用于在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置 的时间增加时间增量对应的时间段内,发送所述第一测量消息。
  26. 根据权利要求25所述的第二设备,其特征在于,所述发送单元发送所述第一测量消息之前,所述接收单元,还用于接收所述第一设备发送的携带第二间隔配置和第一事件配置的消息;
    所述第一间隔配置用以配置所述第二设备进行测量的时间资源;
    所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  27. 根据权利要求25或26所述的第二设备,其特征在于,所述发送单元发送所述第一测量消息之后,所述接收单元,还用于接收所述第一设备发送的第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
  28. 一种第二设备,其特征在于,包括接收单元,其中:
    所述接收单元,用于从第一设备接收时间参数配置;
    所述时间参数配置用以配置所述第二设备接收所述第一设备发送的第一间隔配置的时间;
    所述接收单元,还用于在所述时间参数配置的时间点、或者在所述时间参数配置的时间段内、或者在所述时间参数配置的时间增加时间增量对应的时间点、或者在所述时间参数配置的时间增加时间增量对应的时间段内,接收所述第一设备发送的所述第一间隔配置。
  29. 根据权利要求28所述的第二设备,其特征在于,所述接收单元接收所述第一设备发送的所述第一间隔配置之前,所述接收单元,还用于接收所述第一设备发送的第二间隔配置和第一事件配置;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源,所述第一间隔配置与所述第二间隔配置不同;
    所述第一事件配置用以配置触发所述第二设备发送第二测量消息的事件。
  30. 一种第一设备,其特征在于,包括发送单元,其中:
    所述发送单元,用于向第二设备发送携带第一配置的消息;
    所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;
    所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值。
  31. 根据权利要求30所述的第一设备,其特征在于,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;
    所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;
    所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
  32. 根据权利要求30或31所述的第一设备,其特征在于,所述发送单元,还用于向所 述第二设备发送携带第二间隔配置的消息;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
  33. 根据权利要求32所述的第一设备,其特征在于,所述第一设备还包括接收单元,所述发送单元向所述第二设备发送所述第二间隔配置之后,所述接收单元,用于接收所述第二设备发送的所述第一测量消息;
    所述发送单元,还用于向所述第二设备发送第一间隔配置,所述第一间隔配置与所述第二间隔配置不同。
  34. 一种第二设备,其特征在于,包括接收单元,其中:
    所述接收单元,用于接收第一设备发送的携带第一配置的消息;
    所述第一配置用以指示使用第一事件触发所述第二设备发送第一测量消息;
    所述第一事件包括以下至少一项:测量目标的信道质量低于第一阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,所述测量目标的信道质量低于所述第一阈值且所述第二设备的服务小区的信道质量高于第二阈值,所述测量目标的信道质量低于所述第二设备的服务小区的信道质量且所述第二设备的服务小区的信道质量高于所述第二阈值;当所述第一事件触发时,所述第二设备向所述第一设备发送所述第一测量消息。
  35. 根据权利要求34所述的第二设备,其特征在于,所述测量目标的信道质量低于第一阈值,包括:所述测量目标的信道质量低于第三阈值,或者所述测量目标的信道质量低于第三阈值与第一偏置的和;
    所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,包括:所述测量目标的信道质量低于所述第二设备的服务小区的信道质量,或者所述测量目标的信道质量低于所述第二设备的服务小区的信道质量与第二偏置的和;
    所述第二设备的服务小区的信道质量高于第二阈值,包括:所述第二设备的服务小区的信道质量高于第四阈值,或者所述第二设备的服务小区的信道质量高于第四阈值与第三偏置的和。
  36. 根据权利要求34或35所述的第二设备,其特征在于,所述接收单元,还用于接收所述第一设备发送的携带第二间隔配置的消息;
    所述第二间隔配置用以配置所述第二设备进行测量的时间资源。
  37. 根据权利要求36所述的第二设备,其特征在于,所述第二设备还包括发送单元,所述接收单元接收所述第一设备发送的携带第二间隔配置的消息之后,所述发送单元,用于所述第一事件触发时,向所述第一设备发送所述第一测量消息;
    所述接收单元,还用于接收所述第一设备发送的携带第一间隔配置的消息,所述第一间隔配置与所述第二间隔配置不同。
  38. 根据权利要求21、22、24-27和30-37中的任一项所述的设备,其特征在于,所述第一测量消息,包括或指示以下至少一项信息:
    测量目标的信道质量、所述测量目标的标识、用于指示所述第二设备未检测到可切换的测量目标的信息和所述第二设备期望的测量间隔配置。
  39. 根据权利要求38所述的设备,其特征在于,所述第二设备期望的测量间隔配置包括以下任一项或多项:
    所述第二设备期望的测量间隔重复周期;
    所述第二设备期望在第一时间内的测量间隔重复周期;
    所述第二设备期望的测量间隔爆发重复周期;
    所述第二设备期望在第二时间内的测量间隔爆发重复周期;
    所述第二设备期望的测量间隔长度;
    所述第二设备期望在第三时间内的测量间隔长度;
    所述第二设备期望的测量间隔爆发重复个数;
    所述第二设备期望在第四时间内的测量间隔爆发重复个数;
    所述第二设备期望取消所述第二间隔配置;
    所述第二设备期望在第五时间内取消所述第二间隔配置。
  40. 根据权利要求23、24、27、29、33和37中的任一项所述的设备,其特征在于,第一间隔配置与所述第二间隔配置不同,包括以下至少一项:
    所述第一间隔配置的测量间隔重复周期大于所述第二间隔配置的测量间隔重复周期;
    所述第一间隔配置的测量间隔重复周期在第六时间内大于所述第二间隔配置的测量间隔重复周期;
    所述第一间隔配置的测量间隔长度小于所述第二间隔配置的测量间隔长度;
    所述第一间隔配置的测量间隔长度在第七时间内小于所述第二间隔配置的测量间隔长度;
    所述第一间隔配置的测量间隔爆发重复周期大于所述第二间隔配置的测量间隔的爆发重复周期;
    所述第一间隔配置的测量间隔爆发重复周期在第八时间内大于所述第二间隔配置的测量间隔的爆发重复周期;
    所述第一间隔配置的测量间隔爆发重复个数小于所述第二间隔配置的测量间隔爆发重复个数;
    所述第一间隔配置的测量间隔爆发重复个数在第九时间内小于所述第二间隔配置的测量间隔爆发重复个数;
    所述第一间隔配置是取消所述第二间隔配置;
    所述第一间隔配置指示所述第二设备在第十时间内取消所述第二间隔配置。
PCT/CN2018/087210 2017-10-25 2018-05-17 测量方法及设备 WO2019080485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18871448.9A EP3678407A4 (en) 2017-10-25 2018-05-17 MEASURING METHOD AND DEVICE
US16/759,196 US11290905B2 (en) 2017-10-25 2018-05-17 Measurement method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711012270.4 2017-10-25
CN201711012270.4A CN109714781B (zh) 2017-10-25 2017-10-25 测量方法及设备

Publications (1)

Publication Number Publication Date
WO2019080485A1 true WO2019080485A1 (zh) 2019-05-02

Family

ID=66247723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087210 WO2019080485A1 (zh) 2017-10-25 2018-05-17 测量方法及设备

Country Status (4)

Country Link
US (1) US11290905B2 (zh)
EP (1) EP3678407A4 (zh)
CN (1) CN109714781B (zh)
WO (1) WO2019080485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230379067A1 (en) * 2022-05-18 2023-11-23 Rohde & Schwarz Gmbh & Co. Kg Augmented reality spectrum monitoring system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020010480A2 (pt) 2018-01-11 2020-10-20 Telefonaktiebolaget Lm Ericsson (Publ) métodos, primeira estação base, segunda estação base, e, equipamento de usuário
MX2020007673A (es) 2018-01-19 2020-09-14 Nokia Technologies Oy Métodos, dispositivos y medio legible por computadora para la nueva medición de gestión de radio.
JPWO2019240238A1 (ja) * 2018-06-15 2021-03-11 本田技研工業株式会社 制御装置及びプログラム
US11689763B2 (en) * 2020-09-28 2023-06-27 T-Mobile Usa, Inc. Cross-party diagnostics
CN113038506B (zh) * 2021-02-04 2023-03-10 维沃移动通信有限公司 测量方法及装置
KR20230162704A (ko) * 2021-04-01 2023-11-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 사전 구성된 측정 갭 패턴들과 정상 측정 갭 패턴들 사이에서의 전환
US20240236787A1 (en) * 2021-10-21 2024-07-11 Intel Corporation User equipment (ue) switching between networks using measurement gaps
WO2023148424A1 (en) * 2022-02-07 2023-08-10 Nokia Technologies Oy Method and apparatus for measuring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958091A (zh) * 2011-08-22 2013-03-06 中兴通讯股份有限公司 异频测量参数的配置方法及装置
CN104137621A (zh) * 2012-02-28 2014-11-05 诺基亚公司 用于小小区搜索的测量方案
US20150201338A1 (en) * 2014-01-13 2015-07-16 Qualcomm Incorporated Configuring measurement gap groups for wireless systems
CN104956711A (zh) * 2013-01-28 2015-09-30 夏普株式会社 无线通信***、终端装置、基站装置、无线通信方法以及集成电路
WO2017166549A1 (en) * 2016-03-31 2017-10-05 Intel IP Corporation Measurement gap configuration

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262680A (zh) 2007-03-09 2008-09-10 华为技术有限公司 无线宽带接入中的信道测量资源分配方法和***
CN101330732B (zh) * 2007-06-22 2013-08-21 中兴通讯股份有限公司 一种周期位置定位的优化处理方法
KR101676045B1 (ko) 2010-02-09 2016-11-15 엘지전자 주식회사 무선 통신 시스템에서 로그된 측정 폐기 방법 및 장치
CN102685793B (zh) * 2011-03-18 2015-07-29 ***通信集团公司 基于第一网络获取第二网络的测量量的方法、***及装置
US8918096B2 (en) 2011-07-15 2014-12-23 Nokia Corporation Method and apparatus providing multi-level proximity indication and small cell discovery
CN103384387B (zh) * 2012-05-02 2016-06-15 展讯通信(上海)有限公司 调度切换控制方法与***、用户终端、网络设备
CN102711167B (zh) * 2012-05-25 2015-07-22 中兴通讯股份有限公司 一种测量ue与基站之间的参考信号的方法和基站
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
CN105264941A (zh) * 2013-10-31 2016-01-20 华为技术有限公司 一种测量配置方法、识别和测量方法、宏基站及ue
CN104717614A (zh) * 2013-12-17 2015-06-17 电信科学技术研究院 一种mbms测量方法、***及基站、用户设备
US20150245235A1 (en) * 2014-02-24 2015-08-27 Yang Tang Measurement gap patterns
US10111066B2 (en) * 2015-01-28 2018-10-23 Hfi Innovation Inc. Methods to support measurements for user equipment
US10681576B2 (en) * 2015-04-13 2020-06-09 Qualcomm Incorporated Measurement gap enhancements
US20170094713A1 (en) * 2015-09-25 2017-03-30 Qualcomm Incorporated Aligning measurement gap with drx wakeup period

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958091A (zh) * 2011-08-22 2013-03-06 中兴通讯股份有限公司 异频测量参数的配置方法及装置
CN104137621A (zh) * 2012-02-28 2014-11-05 诺基亚公司 用于小小区搜索的测量方案
CN104956711A (zh) * 2013-01-28 2015-09-30 夏普株式会社 无线通信***、终端装置、基站装置、无线通信方法以及集成电路
US20150201338A1 (en) * 2014-01-13 2015-07-16 Qualcomm Incorporated Configuring measurement gap groups for wireless systems
WO2017166549A1 (en) * 2016-03-31 2017-10-05 Intel IP Corporation Measurement gap configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678407A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230379067A1 (en) * 2022-05-18 2023-11-23 Rohde & Schwarz Gmbh & Co. Kg Augmented reality spectrum monitoring system

Also Published As

Publication number Publication date
EP3678407A1 (en) 2020-07-08
CN109714781A (zh) 2019-05-03
US20200322827A1 (en) 2020-10-08
EP3678407A4 (en) 2021-03-03
US11290905B2 (en) 2022-03-29
CN109714781B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2019080485A1 (zh) 测量方法及设备
US11297618B2 (en) Method for device to device communication, and terminal device
EP3605932B1 (en) Beam management methods, terminal device, network device and computer program
JP7241070B2 (ja) 通信方法及び通信装置
CN112996091B (zh) 传输功率控制方法、相关设备及***
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
EP2901800B1 (en) Wireless wide area network (wwan) managed device to device communication using narrowband wi-fi in a licensed band
CN107820728B (zh) 随机接入的方法和装置
EP3703393A1 (en) Resource selection method in d2d communication, and terminal device
WO2020082304A1 (zh) 切换资源池的方法、终端设备和通信设备
CA3044493A1 (en) Resource configuration method and apparatus
CN111277979B (zh) 载波选取的方法、通信设备、存储介质和芯片
CA3065121A1 (en) Method for configuring anr, terminal device, base station, and core network device
CN109842915B (zh) 一种通信方法和装置以及***
WO2020029811A1 (zh) 测量间隔的配置方法及网络节点
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和***
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2019023851A1 (zh) 通信方法、通信装置和***
CN109803436B (zh) 一种随机接入方法及装置
WO2021062775A1 (zh) 一种寻呼消息的检测方法、装置及通信设备
JP6629428B2 (ja) ワイヤレスローカルエリアネットワークwlan測定および報告方法ならびに関連デバイス
TWI759500B (zh) 無線資源管理測量的方法和設備
TW201815184A (zh) 用於切換的方法和裝置
CN112584412B (zh) 一种波束切换的方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871448

Country of ref document: EP

Effective date: 20200331

NENP Non-entry into the national phase

Ref country code: DE