WO2019078303A1 - Cover and vehicle-mounted fin type antenna device - Google Patents

Cover and vehicle-mounted fin type antenna device Download PDF

Info

Publication number
WO2019078303A1
WO2019078303A1 PCT/JP2018/038866 JP2018038866W WO2019078303A1 WO 2019078303 A1 WO2019078303 A1 WO 2019078303A1 JP 2018038866 W JP2018038866 W JP 2018038866W WO 2019078303 A1 WO2019078303 A1 WO 2019078303A1
Authority
WO
WIPO (PCT)
Prior art keywords
radome
antenna device
fin type
vehicle
type antenna
Prior art date
Application number
PCT/JP2018/038866
Other languages
French (fr)
Japanese (ja)
Inventor
智和 園嵜
夏比古 森
里路 文規
柴原 克夫
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201880061808.7A priority Critical patent/CN111108647B/en
Priority to EP18868445.0A priority patent/EP3700012A4/en
Priority to US16/649,168 priority patent/US11133579B2/en
Priority claimed from JP2018196689A external-priority patent/JP7110058B2/en
Publication of WO2019078303A1 publication Critical patent/WO2019078303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention includes, for example, a cover for an electromagnetic / electromagnetic wave generator attached to a wall surface of a house, a cover such as a radome for an electromagnetic / electromagnetic wave generator attached on a roof of a vehicle, and a cover such as a radome
  • the present invention relates to a fin type antenna device.
  • various antennas for receiving various radio waves are attached at suitable locations.
  • an antenna for AM / FM reception, an antenna for satellite radio reception, etc. is mounted on the roof of the vehicle (see, for example, Patent Document 1 below), and a keyless entry antenna is mounted on each door (for example, Reference 2).
  • the present inventors examined incorporating a plurality of (for example, four or more) antennas into a fin-type antenna device provided on the roof of a vehicle.
  • the cables connecting the respective antennas and the control unit can be integrated into one cable, so that the weight of the vehicle can be reduced and fuel consumption can be reduced.
  • the circuit board provided in the cover such as the radome tends to generate heat, and the electronic components on the circuit board deteriorate There is a risk of becoming a lifetime.
  • the cover such as the radome since the temperature in the cover such as the radome becomes high, the cover such as the radome may be deteriorated early.
  • an object of the present invention to improve the durability of an on-vehicle fin type antenna device provided with a cover such as a radome housing an electromagnetic / electromagnetic wave generator such as a plurality of antennas inside and a cover such as a radome inside.
  • the present invention is a cover formed as a housing that protects an electromagnetic / electromagnetic wave generator and can transmit electromagnetic / electromagnetic waves generated from the electromagnetic / electromagnetic wave generator, and the housing Provided is a cover formed of a resin material whose base resin is a crystalline resin and whose deflection temperature under load is 100 ° C. or higher.
  • the present invention is a radome that internally accommodates a plurality of antenna portions, a circuit board electrically connected to the plurality of antenna portions, and the plurality of antenna portions and the circuit board
  • An in-vehicle fin type antenna device wherein the radome is formed of a resin material having a crystalline resin as a base resin and a deflection temperature under load of 100 ° C. or more.
  • the cover such as radome by forming the cover such as radome with a resin material having a crystalline resin excellent in heat resistance as a base resin and having a deflection temperature under load of 100 ° C. or more, the cover such as radome at high temperature Since the strength is ensured, sufficient durability can be obtained even when an electromagnetic / electromagnetic wave generator such as a plurality of (particularly, four or more) antenna units is housed inside a cover such as a radome or even in the summer sun.
  • the deflection temperature under load is measured according to, for example, JIS K 7191-1, ASTM-D648, ISO75-1, and ISO75-2.
  • the conventional keyless entry antenna is dispersedly provided on the vehicle door etc. (specifically, right and left front side doors, automatic slide doors, back doors, trunk hoods, etc.), the number of cables extending from each antenna In particular, the weight is increased. Therefore, if the keyless entry antenna is integrated in the radome of the in-vehicle fin type antenna device, the number of cables is greatly reduced, and the weight reduction effect is large.
  • each antenna unit when a plurality of antenna units are accommodated in the radome, the antenna units are close to each other, so that interference between transmission and reception radio waves (electromagnetism / electromagnetic waves) of each antenna unit becomes a problem. Therefore, it is necessary to accurately arrange each antenna unit at a predetermined position (in particular, the relative position between the antenna units) so that interference of radio waves does not occur. There is a risk of misalignment. Therefore, if a filler is enclosed inside the radome and a plurality of antenna units are integrally held by this filler, relative positional deviation of each antenna unit can be prevented, and interference between transmission and reception radio waves of each antenna unit can be avoided. It can be prevented reliably.
  • the filler since the filler is in contact with the antenna portion, it is preferable that the filler does not affect the characteristics of the antenna portion (e.g., dielectric constant, dielectric loss tangent, etc.).
  • foam materials such as urethane, are mentioned, for example.
  • the dielectric loss tangent of the filler is preferably, for example, 0.02 or less.
  • the dielectric loss tangent of the resin material which forms covers, such as a radome is 0.01 or less, for example.
  • the dielectric loss tangent is determined, for example, based on the measurement method defined in ASTM D150, IEC 60250, JIS C 2138, and the most suitable measurement method is selected depending on the frequency, but the value does not differ depending on any measurement method. .
  • crystalline resin used as a base resin of resin material which forms covers such as a radome
  • PMP polymethylpentene
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PMP or LCP is particularly preferred. Since PMP has a very low density, it is possible to reduce the weight of covers such as radome.
  • LCP has the property that the orientation is increased and the strength is increased by thinning, and therefore weight reduction by thinning can be achieved while securing the strength.
  • base resin of the resin material which forms covers such as a radome
  • LCP which has a repeating structural unit shown, for example to following Chemical formula 1.
  • This LCP is a wholly aromatic polyester LCP, and is particularly excellent in heat resistance.
  • n 0 or 1
  • x, y and z each represent an arbitrary integer.
  • base resin of the resin material which forms covers is LCP which has a repeating structural unit shown, for example to following Chemical formula 2.
  • the LCP has appropriate heat resistance that can be used as a cover such as a radome, and has electrical characteristics such as a preferable dielectric tangent value that can be used as a cover such as a radome.
  • x and y each represent an arbitrary integer.
  • a waterproof air-permeable filter may be provided on the radome of the above-described on-vehicle fin type antenna device to restrict the passage of water and allow the passage of air.
  • this waterproof ventilation filter the heat in the radome can be released to the outside while preventing the water and dust from entering the radome, so the temperature rise in the radome is suppressed and the performance deterioration of the antenna unit is prevented. be able to.
  • a vehicle-mounted fin type antenna device provided with a cover such as a radome housing an electromagnetic / electromagnetic wave generating device such as a plurality of antenna units inside and a cover such as a radome Can be enhanced.
  • FIG. 4 is a cross-sectional view taken along the line XX in FIG.
  • the in-vehicle fin type antenna device 1 shown in FIG. 1 and FIG. 2 is housed in a base 2 mounted on the roof of a vehicle, a fin type radome (cover) 3 mounted on the base 2 and a space in the radome 3
  • the plurality of antenna units (electromagnetic / electromagnetic wave generator) and the circuit board 4 electrically connected to these are mainly provided.
  • an on-vehicle fin type antenna device 1 having four antenna units 5a to 5d is shown.
  • the base 2 has a flat plate shape, and is formed of, for example, a resin.
  • a fixing portion 2a for fixing to the roof of the vehicle is provided on the lower surface of the base 2.
  • the fixing portion 2a is made of, for example, a bolt, and the bolt is inserted into a through hole provided in the roof of the vehicle, and a nut is fastened to the bolt. It is fixed on the roof.
  • the base 2 is provided with a through hole 2b, and a cable 8 for connecting to a control unit (not shown) provided in the vehicle is inserted through the through hole 2b.
  • the radome 3 has a fin-shaped outer shape and has an internal space opened downward.
  • the base 2 is fixed to the lower opening of the radome 3 via a sealing member (not shown) such as a packing.
  • the radome 3 is formed of a resin material, and the surface (the outer surface) is coated.
  • the radome 3 has heat resistance (heat from direct sunlight and heat transfer from the body), weather resistance (wind and dust), UV resistance (direct sunlight), chemical resistance (detergent, wax, coating agent, etc.), strength Various characteristics are required, such as (for car wash with an automatic car wash machine, foreign object collision such as a bag or bag). Among these, heat resistance and strength are important, and in particular, it is necessary to select a material of radome 3 in consideration of strength at high temperature.
  • a crystalline resin excellent in heat resistance is used as the base resin of the resin material forming the radome 3.
  • the type and blending amount of the base resin and the additive were set such that the deflection temperature under load was 100 ° C. or more, preferably 150 ° C. or more.
  • specific examples of the material will be described.
  • any of PMP polymethylpentene
  • LCP liquid crystal polymer
  • PAS polyarylene sulfide
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PMP is excellent in oxygen permeability and chemical resistance. Since PMP has a low density, weight reduction of the radome 3 is possible. Since PMP does not hydrolyze, it has high water resistance and steam resistance. PMP has a high melting point of about 220 to 240 ° C. (eg, 235 ° C.), and for example, it has a high temperature deflection temperature of 100 ° C. or higher measured based on the test method of ASTM-D648 (0.45 MPa). Suitable for use in the environment.
  • PMP has small frequency dependence of dielectric characteristics.
  • the dielectric loss tangent (tan ⁇ ) of PMP measured based on the test method of ASTM-D150 is 0.0003 or less for both 10 kHz and 1 MHz, and exhibits a low value of 0.0008 even at 10 GHz.
  • the resin material containing PMP or PMP also has electrical characteristics that can be sufficiently used as the radome 3 of the in-vehicle fin type antenna device 1.
  • the dielectric loss tangent (tan ⁇ ) of a phenol resin measured based on the test method of ASTM-D150 is as high as, for example, 0.08 to 0.50 at 50 Hz to 1 MHz.
  • Such a material is not preferable as a resin material of the radome 3 of the in-vehicle fin type antenna device 1.
  • the dielectric loss tangent (tan ⁇ ) of the resin material forming the radome 3 of the in-vehicle fin type antenna device 1 is more preferably, for example, 0.001 or less under any measurement method and frequency condition.
  • x represents any integer.
  • LCP is excellent in heat resistance, flame retardancy, chemical resistance, gas barrier property, and vibration damping property, and has high strength and high elastic modulus.
  • LCP has a low coefficient of thermal expansion and is excellent in dimensional stability. Since LCP has the property that the orientation is enhanced and the strength is enhanced by thinning, the weight reduction can be achieved by thinning the radome 3 while securing the strength.
  • LCP examples include those having repeating structural units represented by the following chemical formulas 4 to 6. From the viewpoint of excellent heat resistance, the wholly aromatic polyester LCP represented by the chemical formula 4 is particularly preferable. Since LCP exhibits liquid crystallinity in a molten state, it has good fluidity at the time of molding, and can be easily molded even if the radome 3 is thin.
  • n 0 or 1
  • x, y and z each represent an arbitrary integer.
  • thermotropic liquid crystal polymer that can be melt-formed and shows anisotropy when it is melt-oriented exhibits an orientation characteristic unique to liquid crystals, and as a result of exhibiting self-reinforcing properties, its heat deformation resistance is high and inorganic
  • a reinforcing agent such as a heat resistant fibrous filler or a powdery filler of the system also contributes to the improvement of the heat distortion resistance at a small amount.
  • the resin material in which glass fiber etc. is added to LCP shown in the above-mentioned chemical formula 4 has a high value of deflection temperature under load measured based on the test method of ASTM-D 648 (1.8 MPa), for example, 240 ° C. or more Indicates
  • This resin material is also excellent in electrical properties such as dielectric properties, and for example, the dielectric loss tangent (tan ⁇ ) measured based on the test method of ASTM-D150 is as low as 0.003 to 0.004 at 1 GHz.
  • the resin material in which glass / inorganic substance, glass fiber, etc. is added to LCP shown in the above-mentioned chemical formula 5 has a deflection temperature under load measured based on the test method of ISO75-1, 2 (1.8 MPa). It shows a high value of 235 ° C or more.
  • This resin material is also excellent in electrical properties such as dielectric properties.
  • the dielectric loss tangent (tan ⁇ ) measured based on the test method of IEC 60250 is as low as 0.01 at 1 kHz and 0.01 at 1 MHz. Indicates a value.
  • the relative dielectric constant is a ratio of the capacitance Cx of the capacitor made of the insulating material to the capacitance C0 when the space between the electrodes is filled with a vacuum with the same electrode configuration.
  • the dielectric constant is a product of the relative dielectric constant ⁇ r of the insulating material and the dielectric constant ⁇ 0 of a vacuum.
  • the dielectric loss tangent is read from an LCR meter which is a measuring device.
  • the LCR meter is a device that measures mainly the parameters of passive components, such as L (inductance), C (capacitance), R (resistance), Z (impedance), and the like in an alternating current.
  • PAS such as PPS is excellent in heat resistance, cold resistance, chemical resistance, creep resistance, weather resistance and fatigue characteristics. PAS such as PPS is also excellent in flame retardancy and heat shock resistance. PAS such as PPS is also excellent as an insulating material, and even if the frequency changes, there is almost no influence on the dielectric constant, dielectric loss tangent or the like of each of the antenna parts 5a to 5d.
  • PAS is a synthetic resin generally represented by the following formula (1).
  • Ar in the following formula (1) is an arylene group, and examples of Ar include those represented by the following formulas (2) to (7).
  • X represents a halogen or CH 3 selected from F, Cl and Br, and m represents an integer of 1 to 4.
  • the content of the repeating unit (-Ar-S-) in the PAS is preferably 70 mol% or more, and more preferably 90 to 100 mol%.
  • the content rate of the repeating unit as referred to herein means the ratio of the repeating unit to 100% of all the monomers constituting the PAS.
  • Known methods can be used to obtain PAS. For example, reaction of halogen substituted aromatic compound with alkali sulfide (Japanese Patent Publication No. 44-27671), condensation reaction of aromatic compound with sulfur chloride in the presence of Lewis acid catalyst (Japanese Patent Publication No. 46-27255), or And a condensation reaction of thiophenols in the presence of an alkali catalyst or a copper salt (US Pat. No. 3,274,165).
  • sodium sulfide and p-dichlorobenzene are reacted in an amide solvent such as N-methyl pyrrolidone, dimethylacetamide or the like, or in a sulfone solvent such as sulfolane.
  • the components represented by the following formulas (8) to (12) can be included in PAS to be used as copolymerization components.
  • the addition amount of the components represented by the following formulas (8) to (12) can be less than 30 mol%, preferably less than 10 mol%, to 1 mol% or more with respect to 100% of all the monomers constituting the PAS. .
  • the PAS be of the cross-linked type or that it has partial cross-linking, ie partial cross-linking.
  • PASs having partial cross-linking are also called semi-crosslinked or semi-linear PASs.
  • the crosslinkable PAS increases the molecular weight to the required level by performing heat treatment in the presence of oxygen during the manufacturing process.
  • the crosslinkable PAS has a two-dimensional or three-dimensional crosslink structure in which some of the molecules mutually crosslink oxygen. Therefore, compared with the linear type PAS described below, it is excellent in maintaining high rigidity even in a high temperature environment, reducing creep deformation and being hard to relieve stress.
  • the cross-linked or semi-cross-linked PAS is superior in heat resistance, creep resistance and the like to the linear (non-crosslinked) PAS. Therefore, there are advantages such as less generation of burrs in injection molded articles as compared with linear type PAS.
  • linear type PAS since there is no heat treatment step in the production process, no cross-linked structure is contained in the molecule, and the molecule is linear in one dimension.
  • linear type PAS is characterized in that its rigidity is lower than that of crosslinked type PAS, and its toughness and elongation are somewhat high.
  • linear type PAS is excellent in the mechanical strength from a specific direction.
  • the linear type PAS has less moisture absorption, it has an advantage such as less dimensional change even in a high temperature and high humidity atmosphere.
  • linear type PAS can adjust a molecular weight, for example, and can make melt viscosity low.
  • filler such as fibrous filler such as glass fiber, whisker filler such as potassium titanate, flake filler such as mica, powder filler such as metal powder is added to linear type PAS. Even for mixed resin compositions, the injection moldability is not significantly impaired.
  • a method of forming crosslinks or forming partial crosslinks in PAS for example, a method of polymerizing a polymer having a low degree of polymerization and then heating in an atmosphere where air is present, or adding a crosslinking agent or a branching agent There is a way to
  • the apparent melt viscosity of PAS is preferably in the range of 1000 poise to 10000 poise. If the apparent melt viscosity is too low (less than 1000 poises), the strength of the radome 3 may be reduced. On the other hand, if the apparent melt viscosity is too high (more than 10000 poise), the formability may be reduced.
  • the melt viscosity of the crosslinkable PAS can be 1000 to 5000 poise, preferably 2000 to 4000 poise. If the melt viscosity is too low, mechanical properties such as creep resistance may deteriorate in a high temperature range of 150 ° C. or higher. In addition, when the melt viscosity is too large, the formability may be reduced.
  • the measurement of melt viscosity may be carried out with an enhanced flow tester under the conditions of a measurement temperature of 300 ° C, an orifice with a hole diameter of 1 mm, a length of 10 mm, a measurement load of 20 kg / cm 2 and a preheating time of 6 minutes. it can.
  • the thermal stability of PAS having a partial cross-linkage is that the rate of change in melt viscosity after 6 minutes and after 30 minutes in the above melt viscosity measurement conditions is in the range of -50% to 150%. Is preferred.
  • the molecular weight of PAS is preferably 13,000 to 30,000 in number average molecular weight in consideration of injection moldability, and more preferably 18,000 to 25,000 in number average molecular weight in consideration of fatigue resistance and high molding accuracy. If the number average molecular weight is less than 13,000, the molecular weight is too low, and fatigue resistance tends to be poor. On the other hand, when the number average molecular weight exceeds 30,000, although the fatigue resistance is improved, in order to achieve the required mechanical strength such as impact strength, for example, a fibrous filler such as glass fiber may be contained. It may be necessary. For example, when 10 to 50% by mass of glass fiber is contained, the melt viscosity at the time of molding exceeds the above upper limit (10000 poise).
  • a number average molecular weight here shows the number average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC method).
  • the melting point of PAS is, for example, about 220 to 290 ° C., preferably 280 to 290 ° C. In general, since the melting point of PPS is about 285 ° C., it is preferable to use PPS as PAS. In addition, since PAS has low water absorbency, the dimensional change due to water absorption of the radome 3 using PAS as a base material is reduced.
  • the radome 3 having the PAS as a base material is excellent in creep resistance, chemical resistance and the like in the radome 3 and has excellent stability in which dimensional change due to water absorption is reduced.
  • the deflection temperature under load measured based on the test method of ISO 75-1, 2 (1.8 MPa) is, for example, 105 ° C. or higher.
  • the deflection temperature under load measured based on the test method of ISO 75-1, 2 (1.8 MPa) is, for example, 275 ° C.
  • PAS such as PPS is also excellent in electrical characteristics such as dielectric characteristics.
  • a resin material having PAS such as PPS exhibits a low dielectric loss tangent (tan ⁇ ) of 0.001 to 0.008, which is measured based on the test method of IEC 60250. Specifically, the dielectric loss tangent (tan ⁇ ) of a resin material having PAS such as PPS exhibits a low value of 0.001 even at 1 MHz.
  • the resin material in which 40 wt% of glass fiber is added to PAS such as PPS has a low dielectric loss tangent (tan ⁇ ) of 0.001 at 1 KHz and 0.002 at 1 MHz as measured according to the test method of IEC 60250.
  • the resin material containing PAS such as PPS also has electrical characteristics that cause no problem even when used as the radome 3 of the in-vehicle fin type antenna device 1.
  • PBT has good dimensional stability, thermal stability, and chemical resistance (acid resistance, alkali resistance). PBT has well-balanced physical properties including electrical characteristics.
  • a resin material with 15 wt% of glass fiber added to PBT has a deflection temperature under load of 200 ° C. measured based on the test method of ISO 75-1, 2 (1.8 MPa).
  • the resin material containing 15 wt% of glass fiber added to PBT exhibits a dielectric loss tangent (tan ⁇ ) of 0.002 at 50 Hz, which is measured based on the test method of ASTM-D150.
  • Resin materials containing PBT show less change in dielectric properties over a wide temperature range, and are also less affected by frequency.
  • x represents any integer.
  • the additive for example, one or more selected from fibrous fillers such as glass fibers, whisker fillers such as potassium titanate, scale fillers such as mica, and powder fillers such as metal powder It can be used.
  • the radome 3 may be formed of a resin material consisting only of the base resin without blending the additive.
  • the circuit board 4 is fixed on the base 2 via the pedestal 9.
  • a circuit pattern (not shown) including an amplifier 4a and a control chip 4b (filter) is formed.
  • the antenna portions 5a to 5d are connected to one end of the circuit pattern via the conductive member 10, and the cable 8 is connected to the other end of the circuit pattern.
  • the antenna units 5a to 5d transmit and receive radio waves of different frequency bands (including only reception or transmission only).
  • an electromagnetic / electromagnetic wave generator such as an antenna for (registered trademark) and an antenna for ETC are accommodated in the radome 3.
  • These electromagnetic / electromagnetic wave generating devices are supposed to mainly transmit / receive electromagnetic / electromagnetic waves other than visible light, for example.
  • an electromagnetic / electromagnetic wave generator capable of transmitting / receiving electromagnetic / electromagnetic waves including visible light May be used.
  • Each of the antenna portions 5a to 5d has flat base bodies 6a to 6d and antenna patterns 7a to 7d provided on the surfaces of the respective base bodies 6a to 6d.
  • the substrates 6a to 6d are formed of a dielectric, and are formed of, for example, a resin or a ceramic.
  • the antenna patterns 7a to 7d are formed of thin conductive plates (for example, metal plates), and are attached to the bases 6a to 6d. In the present embodiment, the antenna patterns 7a to 7d are provided on the surfaces of the flat substrates 6a to 6d.
  • the antenna patterns 7a to 7d of the antenna units 5a to 5d have different shapes. One end of each of the antenna patterns 7a to 7d is electrically connected to the circuit pattern on the circuit board 4 through the conductive member 10.
  • all of the flat antenna portions 5a to 5d are erected, but the present invention is not limited thereto.
  • a part of the antenna portions 5a to 5d may be placed flat (arranged parallel to the base 2) It is also good.
  • the bases 6a to 6d of the antenna units 5a to 5d have the same shape, but the shapes and sizes of the bases 6a to 6d may be different.
  • flat antenna portions 5a to 5d are provided upright. Specifically, the bases 6a to 6d of the antenna units 5a to 5d are fixed to the support 11 erected on the base 2, and the antenna units 5a to 5d are provided radially around the support 11. In the illustrated example, the four flat antenna portions 5a to 5d are arranged in a cross shape in plan view. The plurality of antenna units 5a to 5d may be fixed to the radome 3 side.
  • the cables 8 connecting the antenna units 5a to 5d and the control unit provided on the vehicle body side are combined.
  • the signals received by the respective antenna units 5a to 5d are transmitted to the control unit via the common cable 8.
  • the weight of the cable is reduced to reduce the weight of the vehicle, thereby reducing fuel consumption.
  • the control chip 4b of the circuit board 4 connected to the antenna units 5a to 5d easily generates heat.
  • the inside of radome 3 may become hot.
  • the heat resistance of the radome 3 is particularly important.
  • the radome 3 is formed of a resin material having a crystalline resin excellent in heat resistance as a base resin, and the composition of this resin material has a deflection temperature under load of 100 ° C. or higher. It was set to be Thereby, the heat resistance of the radome 3, in particular, the strength at high temperature is ensured, and therefore, the durability is excellent even when a plurality of (particularly, four or more) antenna portions are accommodated inside.
  • a filler 12 is enclosed in the radome 3.
  • the filler 12 is provided to be in contact with all the antenna units 5a to 5d housed in the radome 3, and holds all the antenna units 5a to 5d in an integrated manner.
  • the whole of each of the antenna portions 5a to 5d is covered with the filler 12, and in the illustrated example, the entire inner space of the radome 3 is filled with the filler 12.
  • the filling material 12 may be partially provided inside the radome 3, and all the antenna parts 5a to 5d may be held by the filling material 12. At this time, the filler 12 may be in partial contact with each of the antenna portions 5a to 5d.
  • the respective antenna units 5a to 5d are close to each other, which may cause interference between radio waves transmitted and received by the respective antenna units 5a to 5d. is there.
  • the flat plate antenna portions 5a to 5b are erected and arranged in a cross shape in plan view to prevent interference between transmission and reception radio waves of the antenna portions 5a to 5d.
  • the filling material 12 is enclosed inside the radome 3, and all the antenna parts 5a to 5d are integrally held by the filling material 12, so that the respective antenna parts 5a to 5 It prevents position shift of 5d.
  • the filler 12 is preferably made of a material that hardly affects the characteristics (dielectric constant, dielectric loss tangent, etc.) of the antenna units 5a to 5d because the filler 12 contacts the antenna units 5a to 5d as described above.
  • the foam material can be suitably used as the filler 12 because the relative dielectric constant is close to that of air and the characteristics of the antenna portions 5a to 5d are less affected.
  • a foam material a chemical foam material or a physical foam material can be used. Chemical blowing agents are easy to handle because the decomposition temperature is around 140-160 ° C. Physical blowing agents have low thermal conductivity and are excellent in thermal insulation.
  • the filler 12 can be formed of, for example, a urethane foam.
  • the relative permittivity ( ⁇ ) of the urethane foam is set to 4.0 to 7.5.
  • the dielectric loss tangent (tan ⁇ ) of the urethane foam is, for example, a small value of 0.015 to 0.017 at 60 Hz.
  • the above-described on-vehicle fin-type antenna device 1 is manufactured, for example, through the following procedure. First, the antenna units 5a to 5d and the circuit board 4 are attached to the base 2. Thereafter, the base and the radome 3 are fixed, and the antenna units 5a to 5d and the like are accommodated inside. Thereafter, the filling material 12 is injected into the radome 3, and the antenna parts 5a to 5d are integrally held by the filling material 12. The injection of the filler 12 is performed, for example, from an inlet (not shown) provided in the base 2. After the filler 12 is injected, the inlet of the base 2 is sealed by a sealing member (not shown). The filler 12 may be injected through the hole originally provided in the base 2.
  • the manufacturing method of the fin-type antenna apparatus 1 for vehicles is not restricted above, For example, after attaching a several antenna part and a circuit board to the base 2, hold
  • the radome 3 may be provided with a waterproof ventilation filter 20.
  • the waterproof air-permeable filter 20 is provided at a position where the inside and the outside of the radome 3 communicate with each other.
  • the waterproof air-permeable filter 20 is disposed in the through hole 3 a provided in the radome 3.
  • a waterproof air-permeable filter 20 is provided on the side surface (rear surface) of the radome 3 on the vehicle rear side.
  • the waterproof ventilation filter 20 regulates the passage of water and allows the passage of air.
  • a porous film having innumerable fine pores can be used as the waterproof air-permeable filter 20.
  • a fluororesin-based porous film, a fluororesin nanofiber nonwoven fabric, or the like can be used.
  • the temperature rise in the radome 3 can be suppressed.
  • the pressure caused by the temperature difference between the inside and outside of the radome 3 can be suppressed, and the performance deterioration of the antenna portions 5a to 5d due to this pressure can be prevented.
  • external water and dust are blocked by the waterproof air-permeable filter 20 so that they do not intrude into the inside of the radome 3.
  • vehicle-mounted fin type antenna apparatus 1 which has four antenna part 5a-5d
  • vehicle part which has two to three antenna parts, or five or more
  • present invention can also be applied to a fin-type antenna device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Aerials (AREA)

Abstract

A vehicle-mounted fin type antenna device 1 is provided with: a plurality of antenna parts 5a-5d; a circuit board 4 electrically connected to the plurality of antenna parts 5a-5d; and a radome 3 housing the plurality of antenna parts 5a-5d and the circuit board 4 therein. The radome 3 is formed from a resin material using a crystalline resin as a base resin and having a deflection temperature under load of 100°C or more.

Description

カバーおよび車載用フィン型アンテナ装置Cover and fin type antenna device for vehicle
 本発明は、例えば家の壁面等に取り付けられる電磁気/電磁波発生装置用のカバー、車両のルーフ等の上に取り付けられる電磁気/電磁波発生装置用のレドーム等のカバー、及び、レドーム等のカバーを備えたフィン型アンテナ装置に関する。 The present invention includes, for example, a cover for an electromagnetic / electromagnetic wave generator attached to a wall surface of a house, a cover such as a radome for an electromagnetic / electromagnetic wave generator attached on a roof of a vehicle, and a cover such as a radome The present invention relates to a fin type antenna device.
 自動車等の車両には、各種電波を受信するための様々なアンテナが、それぞれに適した場所に取り付けられる。例えば、AM/FM受信用アンテナや衛星ラジオ受信用アンテナ等は車両のルーフ上に取り付けられ(例えば、下記の特許文献1参照)、キーレスエントリー用アンテナは各ドアに取り付けられる(例えば、下記の特許文献2参照)。 In a vehicle such as a car, various antennas for receiving various radio waves are attached at suitable locations. For example, an antenna for AM / FM reception, an antenna for satellite radio reception, etc. is mounted on the roof of the vehicle (see, for example, Patent Document 1 below), and a keyless entry antenna is mounted on each door (for example, Reference 2).
特開2016-25477号公報JP, 2016-25477, A 特開2016-211358号公報JP, 2016-211358, A
 しかし、車両の様々な部位にアンテナを設けることで、各アンテナと、車両に設けられた制御部とを接続するケーブルの数が多くなるため、車両の重量が増大して燃費の低下を招く。特に、近年、車両の無線通信機能が多様化し、車両に搭載されるアンテナの種類が多くなる傾向にあるため、各アンテナから延びるケーブルの重量増大が問題となる。 However, by providing antennas at various parts of the vehicle, the number of cables connecting each antenna and the control unit provided in the vehicle increases, so the weight of the vehicle increases and the fuel consumption decreases. In particular, in recent years, there is a tendency for the wireless communication function of the vehicle to be diversified and the types of antennas mounted on the vehicle tend to be increased, so that an increase in weight of cables extending from each antenna becomes a problem.
 そこで、本発明者らは、車両のルーフ上に設けられるフィン型アンテナ装置に、複数(例えば4個以上)のアンテナを内蔵することを検討した。これにより、各アンテナと制御部とを接続するケーブルを一本にまとめることができるため、車両を軽量化して低燃費化が図られる。 Therefore, the present inventors examined incorporating a plurality of (for example, four or more) antennas into a fin-type antenna device provided on the roof of a vehicle. As a result, the cables connecting the respective antennas and the control unit can be integrated into one cable, so that the weight of the vehicle can be reduced and fuel consumption can be reduced.
 しかし、車載用フィン型アンテナ装置のレドーム等のカバー内に複数のアンテナを収容すると、レドーム等のカバー内に設けられた回路基板が発熱しやすくなり、回路基板上の電子部品が劣化して短寿命になる恐れがある。また、レドーム等のカバー内の温度が高くなるため、レドーム等のカバーが早期に劣化するおそれがある。 However, when a plurality of antennas are accommodated in a cover such as a radome of a fin type antenna device for a vehicle, the circuit board provided in the cover such as the radome tends to generate heat, and the electronic components on the circuit board deteriorate There is a risk of becoming a lifetime. In addition, since the temperature in the cover such as the radome becomes high, the cover such as the radome may be deteriorated early.
 そこで、本発明は、内部に複数のアンテナ等の電磁気/電磁波発生装置を収容するレドーム等のカバー、及び、レドーム等のカバーを備えた車載用フィン型アンテナ装置の耐久性を高めることを目的とする。 Therefore, it is an object of the present invention to improve the durability of an on-vehicle fin type antenna device provided with a cover such as a radome housing an electromagnetic / electromagnetic wave generator such as a plurality of antennas inside and a cover such as a radome inside. Do.
 前記課題を解決するために、本発明は、電磁気/電磁波発生装置を保護し、且つ、電磁気/電磁波発生装置から生じる電磁気/電磁波を透過可能な筐体として形成されたカバーであって、前記筐体を、結晶性樹脂をベース樹脂とし、荷重たわみ温度が100℃以上である樹脂材料で形成したカバーを提供する。また、前記課題を解決するために、本発明は、複数のアンテナ部と、前記複数のアンテナ部と電気的に接続された回路基板と、前記複数のアンテナ部及び回路基板を内部に収容するレドームとを備えた車載用フィン型アンテナ装置であって、前記レドームを、結晶性樹脂をベース樹脂とし、荷重たわみ温度が100℃以上である樹脂材料で形成した車載用フィン型アンテナ装置を提供する。 In order to solve the above problems, the present invention is a cover formed as a housing that protects an electromagnetic / electromagnetic wave generator and can transmit electromagnetic / electromagnetic waves generated from the electromagnetic / electromagnetic wave generator, and the housing Provided is a cover formed of a resin material whose base resin is a crystalline resin and whose deflection temperature under load is 100 ° C. or higher. Furthermore, in order to solve the above problems, the present invention is a radome that internally accommodates a plurality of antenna portions, a circuit board electrically connected to the plurality of antenna portions, and the plurality of antenna portions and the circuit board An in-vehicle fin type antenna device, wherein the radome is formed of a resin material having a crystalline resin as a base resin and a deflection temperature under load of 100 ° C. or more.
 このように、レドーム等のカバーを、耐熱性に優れた結晶性樹脂をベース樹脂とし、且つ、荷重たわみ温度を100℃以上である樹脂材料で形成することで、高温時におけるレドーム等のカバーの強度が保証されるため、レドーム等のカバーの内部に複数(特に4個以上)のアンテナ部等の電磁気/電磁波発生装置を収容した場合や夏場の炎天下でも、十分な耐久性が得られる。尚、荷重たわみ温度の測定方法は、例えば、JIS K 7191-1、ASTM-D648、ISO75-1、ISO75-2による。 Thus, by forming the cover such as radome with a resin material having a crystalline resin excellent in heat resistance as a base resin and having a deflection temperature under load of 100 ° C. or more, the cover such as radome at high temperature Since the strength is ensured, sufficient durability can be obtained even when an electromagnetic / electromagnetic wave generator such as a plurality of (particularly, four or more) antenna units is housed inside a cover such as a radome or even in the summer sun. The deflection temperature under load is measured according to, for example, JIS K 7191-1, ASTM-D648, ISO75-1, and ISO75-2.
 従来のキーレスエントリー用アンテナは、車両のドア等(具体的には、左右のフロントサイドドア、自動スライドドア、バックドア、トランクフード等)に分散して設けられるため、各アンテナから延びるケーブルの数が多くなり、特に重量が嵩む。従って、キーレスエントリー用アンテナを、車載用フィン型アンテナ装置のレドーム内に集約すれば、ケーブル数が大幅に減るため、軽量化の効果が大きい。 Since the conventional keyless entry antenna is dispersedly provided on the vehicle door etc. (specifically, right and left front side doors, automatic slide doors, back doors, trunk hoods, etc.), the number of cables extending from each antenna In particular, the weight is increased. Therefore, if the keyless entry antenna is integrated in the radome of the in-vehicle fin type antenna device, the number of cables is greatly reduced, and the weight reduction effect is large.
 上記のようにレドーム内に複数のアンテナ部を収容すると、アンテナ部同士が近接するため、各アンテナ部の送受信電波(電磁気/電磁波)同士の干渉が問題となる。従って、電波の干渉が生じないように、各アンテナ部を所定の位置(特に各アンテナ部間の相対位置)に正確に配置する必要があるが、車両の走行時の振動等により、アンテナ部の位置がずれてしまうおそれがある。そこで、レドームの内部に充填材を封入し、この充填材により複数のアンテナ部を一体に保持すれば、各アンテナ部の相対的な位置ズレを防止し、各アンテナ部の送受信電波同士の干渉を確実に防止できる。このとき、充填材はアンテナ部に接触するため、アンテナ部の特性(例えば誘電率や誘電正接等)に影響を与えない材料であることが好ましい。このような充填材として、例えばウレタン等の発泡材料が挙げられる。 As described above, when a plurality of antenna units are accommodated in the radome, the antenna units are close to each other, so that interference between transmission and reception radio waves (electromagnetism / electromagnetic waves) of each antenna unit becomes a problem. Therefore, it is necessary to accurately arrange each antenna unit at a predetermined position (in particular, the relative position between the antenna units) so that interference of radio waves does not occur. There is a risk of misalignment. Therefore, if a filler is enclosed inside the radome and a plurality of antenna units are integrally held by this filler, relative positional deviation of each antenna unit can be prevented, and interference between transmission and reception radio waves of each antenna unit can be avoided. It can be prevented reliably. At this time, since the filler is in contact with the antenna portion, it is preferable that the filler does not affect the characteristics of the antenna portion (e.g., dielectric constant, dielectric loss tangent, etc.). As such a filler, foam materials, such as urethane, are mentioned, for example.
 充填材や樹脂材料の誘電正接は、低いほうがアンテナ部等の電磁気/電磁波発生装置の特性に影響を与えない。従って、充填材の誘電正接は、例えば0.02以下であることが好ましい。また、レドーム等のカバーを形成する樹脂材料の誘電正接は、例えば0.01以下であることが好ましい。このように、低い誘電正接の充填材や樹脂材料を用いることにより、アンテナ部等の電磁気/電磁波発生装置の特性への悪影響が回避される。尚、誘電正接は、例えば、ASTM D150、IEC 60250、JIS C 2138に定められる測定法に基づいて求められ、周波数によって最適な測定法が選択されるが、何れの測定法によっても値は異ならない。 The lower the dielectric loss tangent of the filler material or the resin material, the lower the value does not affect the characteristics of the electromagnetic / electromagnetic wave generator such as the antenna portion. Therefore, the dielectric loss tangent of the filler is preferably, for example, 0.02 or less. Moreover, it is preferable that the dielectric loss tangent of the resin material which forms covers, such as a radome, is 0.01 or less, for example. As described above, by using a filler material or resin material having a low dielectric loss tangent, adverse effects on the characteristics of the electromagnetic / electromagnetic wave generator such as the antenna unit can be avoided. The dielectric loss tangent is determined, for example, based on the measurement method defined in ASTM D150, IEC 60250, JIS C 2138, and the most suitable measurement method is selected depending on the frequency, but the value does not differ depending on any measurement method. .
 レドーム等のカバーを形成する樹脂材料のベース樹脂となる結晶性樹脂としては、例えば、PMP(ポリメチルペンテン)、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)の何れかを使用することができる。これらのうち、PMPあるいはLCPが特に好ましい。PMPは密度が非常に小さいため、レドーム等のカバーを軽量化することができる。また、LCPは、薄肉化することで配向性が高まって強度を高くなるという性質を有するため、強度を確保しながら薄肉化による軽量化を図ることができる。 As crystalline resin used as a base resin of resin material which forms covers, such as a radome, either PMP (polymethylpentene), LCP (liquid crystal polymer), PPS (polyphenylene sulfide), PBT (polybutylene terephthalate), for example Can be used. Of these, PMP or LCP is particularly preferred. Since PMP has a very low density, it is possible to reduce the weight of covers such as radome. In addition, LCP has the property that the orientation is increased and the strength is increased by thinning, and therefore weight reduction by thinning can be achieved while securing the strength.
 レドーム等のカバーを形成する樹脂材料のベース樹脂は、例えば下記の化学式1に示す繰り返し構造単位を有するLCPであることが好ましい。このLCPは、全芳香族ポリエステル系LCPであり、特に耐熱性に優れている。 It is preferable that base resin of the resin material which forms covers, such as a radome, is LCP which has a repeating structural unit shown, for example to following Chemical formula 1. This LCP is a wholly aromatic polyester LCP, and is particularly excellent in heat resistance.
Figure JPOXMLDOC01-appb-C000005
 この化学式1において、nは0または1を、x、y、zはそれぞれ任意の整数を表す。
Figure JPOXMLDOC01-appb-C000005
In this chemical formula 1, n represents 0 or 1, and x, y and z each represent an arbitrary integer.
 また、レドーム等のカバーを形成する樹脂材料のベース樹脂は、例えば下記の化学式2に示す繰り返し構造単位を有するLCPであることが好ましい。このLCPは、レドーム等のカバーとして使用可能な適度な耐熱性を有すると共に、レドーム等のカバーとして使用可能な好ましい誘電正接値などの電気特性を有する。 Moreover, it is preferable that base resin of the resin material which forms covers, such as a radome, is LCP which has a repeating structural unit shown, for example to following Chemical formula 2. The LCP has appropriate heat resistance that can be used as a cover such as a radome, and has electrical characteristics such as a preferable dielectric tangent value that can be used as a cover such as a radome.
 この化学式2において、x、yは、それぞれ任意の整数を表す。 In this chemical formula 2, x and y each represent an arbitrary integer.
 レドームの内部の温度が上昇すると、外気温との温度差によりレドーム内に圧力が生じ、この圧力がアンテナ部に悪影響を及ぼすおそれがある。そこで、上記の車載用フィン型アンテナ装置のレドームに、水の通過を規制して空気の通過を許容する防水通気フィルタを設けてもよい。この防水通気フィルタにより、レドーム内への水や塵の侵入を防止しながら、レドーム内の熱を外部に放出することができるため、レドーム内の温度上昇を抑えてアンテナ部の性能低下を防止することができる。 When the temperature inside the radome rises, a pressure difference may occur in the radome due to the temperature difference with the outside air temperature, and this pressure may adversely affect the antenna section. Therefore, a waterproof air-permeable filter may be provided on the radome of the above-described on-vehicle fin type antenna device to restrict the passage of water and allow the passage of air. With this waterproof ventilation filter, the heat in the radome can be released to the outside while preventing the water and dust from entering the radome, so the temperature rise in the radome is suppressed and the performance deterioration of the antenna unit is prevented. be able to.
 以上のように、本発明によれば、内部に複数のアンテナ部等の電磁気/電磁波発生装置を収容するレドーム等のカバー、及び、レドーム等のカバーを備えた車載用フィン型アンテナ装置の耐久性を高めることができる。 As described above, according to the present invention, the durability of a vehicle-mounted fin type antenna device provided with a cover such as a radome housing an electromagnetic / electromagnetic wave generating device such as a plurality of antenna units inside and a cover such as a radome Can be enhanced.
本発明の一実施形態に係る車載用フィン型アンテナ装置の断面図である。It is a sectional view of a fin type antenna system for mount concerning one embodiment of the present invention. 上記車載用フィン型アンテナ装置のアンテナ部及び回路基板の平面図である。It is a top view of an antenna part and a circuit board of the above-mentioned fin type antenna system for mount. 他の実施形態に係る車載用フィン型アンテナ装置の後面図である。It is a rear elevation view of a fin type antenna system for mount concerning another embodiment. 図3のX-X断面図である。FIG. 4 is a cross-sectional view taken along the line XX in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1及び図2に示す車載用フィン型アンテナ装置1は、車両のルーフ上に取り付けられるベース2と、ベース2に取り付けられたフィン型のレドーム(カバー)3と、レドーム3内の空間に収容された複数のアンテナ部(電磁気/電磁波発生装置)、及び、これらと電気的に接続された回路基板4とを主に備える。本実施形態では、4個のアンテナ部5a~5dを有する車載用フィン型アンテナ装置1を示す。 The in-vehicle fin type antenna device 1 shown in FIG. 1 and FIG. 2 is housed in a base 2 mounted on the roof of a vehicle, a fin type radome (cover) 3 mounted on the base 2 and a space in the radome 3 The plurality of antenna units (electromagnetic / electromagnetic wave generator) and the circuit board 4 electrically connected to these are mainly provided. In the present embodiment, an on-vehicle fin type antenna device 1 having four antenna units 5a to 5d is shown.
 ベース2は、平板状を成し、例えば樹脂で形成される。ベース2の下面には、車両のルーフに固定するための固定部2aが設けられる。固定部2aは、例えばボルトで構成され、車両のルーフに設けられた貫通穴にボルトを挿通し、このボルトにナットを締結することで、ベース2を含む車載用フィン型アンテナ装置1が車両のルーフ上に固定される。ベース2には貫通穴2bが設けられ、この貫通穴2bに、車両に設けられた制御部(図示省略)と接続するためのケーブル8が挿通される。 The base 2 has a flat plate shape, and is formed of, for example, a resin. On the lower surface of the base 2, a fixing portion 2a for fixing to the roof of the vehicle is provided. The fixing portion 2a is made of, for example, a bolt, and the bolt is inserted into a through hole provided in the roof of the vehicle, and a nut is fastened to the bolt. It is fixed on the roof. The base 2 is provided with a through hole 2b, and a cable 8 for connecting to a control unit (not shown) provided in the vehicle is inserted through the through hole 2b.
 レドーム3は、フィン型の外形を成し、下方を開口した内部空間を有する。レドーム3の下方の開口部には、ベース2がパッキン等のシール部材(図示省略)を介して固定される。レドーム3は、樹脂材料で形成され、その表面(外面)には塗装が施される。 The radome 3 has a fin-shaped outer shape and has an internal space opened downward. The base 2 is fixed to the lower opening of the radome 3 via a sealing member (not shown) such as a packing. The radome 3 is formed of a resin material, and the surface (the outer surface) is coated.
 レドーム3には、耐熱性(直射日光の熱やボディからの伝熱)、耐候性(風雨や塵)、耐紫外線性(直射日光)、耐薬品性(洗剤、ワックス、コーティング剤など)、強度(自動洗車機による洗車時、雹や霰などの異物衝突)等、様々な特性が要求される。これらのうち、耐熱性及び強度は重要であり、特に、高温時における強度を考慮してレドーム3の材質を選定する必要がある。本実施形態では、レドーム3を形成する樹脂材料のベース樹脂として、耐熱性に優れた結晶性樹脂を使用した。また、荷重たわみ温度が100℃以上、好ましくは150℃以上となるように、ベース樹脂及び添加材の種類及び配合量を設定した。以下、材料の具体例について説明する。 The radome 3 has heat resistance (heat from direct sunlight and heat transfer from the body), weather resistance (wind and dust), UV resistance (direct sunlight), chemical resistance (detergent, wax, coating agent, etc.), strength Various characteristics are required, such as (for car wash with an automatic car wash machine, foreign object collision such as a bag or bag). Among these, heat resistance and strength are important, and in particular, it is necessary to select a material of radome 3 in consideration of strength at high temperature. In the present embodiment, a crystalline resin excellent in heat resistance is used as the base resin of the resin material forming the radome 3. Further, the type and blending amount of the base resin and the additive were set such that the deflection temperature under load was 100 ° C. or more, preferably 150 ° C. or more. Hereinafter, specific examples of the material will be described.
 ベース樹脂となる結晶性樹脂としては、例えば、PMP(ポリメチルペンテン)、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)などのPAS(ポリアリーレンスルフィド)、PBT(ポリブチレンテレフタレート)の何れかを使用することができる。 As crystalline resin used as a base resin, any of PMP (polymethylpentene), LCP (liquid crystal polymer), PAS (polyarylene sulfide) such as PPS (polyphenylene sulfide), PBT (polybutylene terephthalate) is used, for example can do.
 PMPは、酸素透過性、耐薬品性に優れている。PMPは低密度なので、レドーム3の軽量化が可能となる。PMPは加水分解しないので、耐水性、耐スチーム性が高い。PMPは、融点が220~240℃程度(例えば235℃)と高く、例えばASTM-D648(0.45MPa)の試験法に基づいて測定された荷重たわみ温度が100℃以上のものがあるため、高温環境での使用に適している。 PMP is excellent in oxygen permeability and chemical resistance. Since PMP has a low density, weight reduction of the radome 3 is possible. Since PMP does not hydrolyze, it has high water resistance and steam resistance. PMP has a high melting point of about 220 to 240 ° C. (eg, 235 ° C.), and for example, it has a high temperature deflection temperature of 100 ° C. or higher measured based on the test method of ASTM-D648 (0.45 MPa). Suitable for use in the environment.
 また、PMPは、誘電特性の周波数依存が小さい。例えばASTM-D150の試験法に基づいて測定されたPMPの誘電正接(tanδ)は、10kHz、1MHzともに、0.0003以下とされ、10GHzでも、0.0008と低い値を示す。このように、PMPまたはPMPを含有する樹脂材料は、車載用フィン型アンテナ装置1のレドーム3として十分に使用可能な電気的特性も備えている。 In addition, PMP has small frequency dependence of dielectric characteristics. For example, the dielectric loss tangent (tan δ) of PMP measured based on the test method of ASTM-D150 is 0.0003 or less for both 10 kHz and 1 MHz, and exhibits a low value of 0.0008 even at 10 GHz. Thus, the resin material containing PMP or PMP also has electrical characteristics that can be sufficiently used as the radome 3 of the in-vehicle fin type antenna device 1.
 例えばASTM-D150の試験法に基づいて測定されたフェノール樹脂の誘電正接(tanδ)は、50Hz~1MHzでは例えば0.08~0.50と高い。このようなものは、車載用フィン型アンテナ装置1のレドーム3の樹脂材料としては好ましくない。 For example, the dielectric loss tangent (tan δ) of a phenol resin measured based on the test method of ASTM-D150 is as high as, for example, 0.08 to 0.50 at 50 Hz to 1 MHz. Such a material is not preferable as a resin material of the radome 3 of the in-vehicle fin type antenna device 1.
 車載用フィン型アンテナ装置1のレドーム3を形成する樹脂材料の誘電正接(tanδ)は、どのような測定方法及び周波数の条件下でも例えば0.001以下とされることがより望ましい。 The dielectric loss tangent (tan δ) of the resin material forming the radome 3 of the in-vehicle fin type antenna device 1 is more preferably, for example, 0.001 or less under any measurement method and frequency condition.
 PMPとして、下記の化学式3に示される繰り返し構造単位を有するものが挙げられる。 As PMP, one having a repeating structural unit represented by the following chemical formula 3 can be mentioned.
Figure JPOXMLDOC01-appb-C000007
 この化学式3において、xは任意の整数を表す。
Figure JPOXMLDOC01-appb-C000007
In this chemical formula 3, x represents any integer.
 LCPは、耐熱性、難燃性、耐薬品性、ガスバリア性、制振性に優れ、高強度、高弾性率を有する。LCPは、熱膨張率が低く、寸法安定性に優れている。LCPは、薄肉化することで配向性が高まって強度を高くなるという性質を有するため、強度を確保しながらレドーム3を薄肉化して軽量化を図ることができる。 LCP is excellent in heat resistance, flame retardancy, chemical resistance, gas barrier property, and vibration damping property, and has high strength and high elastic modulus. LCP has a low coefficient of thermal expansion and is excellent in dimensional stability. Since LCP has the property that the orientation is enhanced and the strength is enhanced by thinning, the weight reduction can be achieved by thinning the radome 3 while securing the strength.
 LCPとしては、下記の化学式4~6に示される繰り返し構造単位を有するものが挙げられる。耐熱性に優れることから、化学式4の全芳香族ポリエステル系LCPが特に好ましい。LCPは、溶融状態で液晶性を示すため、成形時の流動性がよく、レドーム3が薄肉状であっても容易に成形できる。 Examples of LCP include those having repeating structural units represented by the following chemical formulas 4 to 6. From the viewpoint of excellent heat resistance, the wholly aromatic polyester LCP represented by the chemical formula 4 is particularly preferable. Since LCP exhibits liquid crystallinity in a molten state, it has good fluidity at the time of molding, and can be easily molded even if the radome 3 is thin.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 これらの化学式4~6において、nは0または1を、x、y、zはそれぞれ任意の整数を表す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
In these chemical formulas 4 to 6, n represents 0 or 1, and x, y and z each represent an arbitrary integer.
 特に注目されている、溶融成形可能で溶融時に異方性を示すサーモトロピック液晶ポリマーは、液晶特有の配向性を示し、これが自己強化性を発揮する結果、それ自身の耐熱変形性が高く、無機系の耐熱性繊維状充填剤または粉末状充填剤等の補強剤の充填量も少量で耐熱変形性向上に寄与する。 In particular, a thermotropic liquid crystal polymer that can be melt-formed and shows anisotropy when it is melt-oriented exhibits an orientation characteristic unique to liquid crystals, and as a result of exhibiting self-reinforcing properties, its heat deformation resistance is high and inorganic The loading amount of a reinforcing agent such as a heat resistant fibrous filler or a powdery filler of the system also contributes to the improvement of the heat distortion resistance at a small amount.
 また、上記の化学式4に示すLCPにガラス繊維等が添加された樹脂材料は、ASTM-D648(1.8MPa)の試験法に基づいて測定された荷重たわみ温度が、例えば240℃以上と高い値を示す。この樹脂材料は、誘電特性等の電気的特性も優れており、例えば、ASTM-D150の試験法に基づいて測定された誘電正接(tanδ)が、1GHzで0.003~0.004と低い値を示す。 Moreover, the resin material in which glass fiber etc. is added to LCP shown in the above-mentioned chemical formula 4 has a high value of deflection temperature under load measured based on the test method of ASTM-D 648 (1.8 MPa), for example, 240 ° C. or more Indicates This resin material is also excellent in electrical properties such as dielectric properties, and for example, the dielectric loss tangent (tan δ) measured based on the test method of ASTM-D150 is as low as 0.003 to 0.004 at 1 GHz. Indicates
 また、上記の化学式5に示すLCPにガラス/無機物、ガラス繊維等が添加された樹脂材料は、ISO75-1、2(1.8MPa)の試験法に基づいて測定された荷重たわみ温度が、例えば235℃以上と高い値を示す。この樹脂材料も、誘電特性等の電気的特性に優れており、例えば、IEC 60250の試験法に基づいて測定された誘電正接(tanδ)は、1kHzで0.01、1MHzで0.01と低い値を示す。 Further, the resin material in which glass / inorganic substance, glass fiber, etc. is added to LCP shown in the above-mentioned chemical formula 5 has a deflection temperature under load measured based on the test method of ISO75-1, 2 (1.8 MPa). It shows a high value of 235 ° C or more. This resin material is also excellent in electrical properties such as dielectric properties. For example, the dielectric loss tangent (tan δ) measured based on the test method of IEC 60250 is as low as 0.01 at 1 kHz and 0.01 at 1 MHz. Indicates a value.
 なお、ASTM D150、IEC 60250、JIS C 2138に基づいた比誘電率および誘電率、誘電正接について説明すると、先ず、板状・シート状の測定対象に平板電極を接触させ、平行板コンデンサを作製する。次に、作製したコンデンサの静電容量を測定し、比誘電率を算出する。比誘電率とは、絶縁材料によって作製されたコンデンサの静電容量Cxの同一電極構成で電極間を真空で満たした場合の静電容量C0に対する比とされている。また、誘電率とは、絶縁材料の比誘電率εrと真空の誘電率ε0との積とされている。また、誘電正接は、測定装置であるLCRメータより読み取る。LCRメータとは、L(インダクタンス)、C(キャパシタンス)、R(レジスタンス)、Z(インピーダンス)等の主に受動部品のパラメータを交流で測定する装置とされている。 When describing the relative dielectric constant, dielectric constant, and dielectric loss tangent based on ASTM D150, IEC 60250, and JIS C 2138, first, a flat plate electrode is brought into contact with a plate-like / sheet-like object to produce a parallel plate capacitor. . Next, the capacitance of the manufactured capacitor is measured to calculate the relative dielectric constant. The relative dielectric constant is a ratio of the capacitance Cx of the capacitor made of the insulating material to the capacitance C0 when the space between the electrodes is filled with a vacuum with the same electrode configuration. Further, the dielectric constant is a product of the relative dielectric constant εr of the insulating material and the dielectric constant ε0 of a vacuum. Also, the dielectric loss tangent is read from an LCR meter which is a measuring device. The LCR meter is a device that measures mainly the parameters of passive components, such as L (inductance), C (capacitance), R (resistance), Z (impedance), and the like in an alternating current.
 PPS等のPASは、耐熱性、耐寒性、耐薬品性、耐クリープ性、耐候性、疲労特性に優れている。PPS等のPASは、難燃性や耐ヒートショック性も優れている。PPS等のPASは、絶縁材料としても優れており、周波数が変わっても各アンテナ部5a~5dの誘電率や誘電正接等にはほとんど影響がない。 PAS such as PPS is excellent in heat resistance, cold resistance, chemical resistance, creep resistance, weather resistance and fatigue characteristics. PAS such as PPS is also excellent in flame retardancy and heat shock resistance. PAS such as PPS is also excellent as an insulating material, and even if the frequency changes, there is almost no influence on the dielectric constant, dielectric loss tangent or the like of each of the antenna parts 5a to 5d.
 PASは、一般的に下記式(1)で示される合成樹脂である。下記式(1)中のArはアリーレン基であり、Arとしては、例えば下記式(2)~(7)に示されるものが挙げられる。なお、下記式(5)において、XはF、ClおよびBrから選ばれるハロゲンまたはCH3を示し、mは1~4の整数を示す。 PAS is a synthetic resin generally represented by the following formula (1). Ar in the following formula (1) is an arylene group, and examples of Ar include those represented by the following formulas (2) to (7). In the following formula (5), X represents a halogen or CH 3 selected from F, Cl and Br, and m represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 PASとしては、上記式(1)中のArが上記式(2)であるPPSを好適に用いることができる。PASは、繰り返し単位(-Ar-S-)の含有率が70モル%以上であることが好ましく、90~100モル%であることがより好ましい。ここでいう繰り返し単位の含有率とは、PASを構成する全モノマー100%に占める繰り返し単位の割合をいう。繰り返し単位の含有率が70モル%未満のPASを用いた際には、レドーム3を形成した際に、低い吸水性に基づく、レドーム3における寸法変化の低減などの安定性を得にくい傾向にある。 As PAS, PPS whose Ar in said Formula (1) is said Formula (2) can be used suitably. The content of the repeating unit (-Ar-S-) in the PAS is preferably 70 mol% or more, and more preferably 90 to 100 mol%. The content rate of the repeating unit as referred to herein means the ratio of the repeating unit to 100% of all the monomers constituting the PAS. When the PAS containing less than 70 mol% of the repeating unit is used, when forming the radome 3, it tends to be difficult to obtain stability such as reduction of dimensional change in the radome 3 based on low water absorption. .
 PASを得るには公知の方法を用いることができる。例えば、ハロゲン置換芳香族化合物と硫化アルカリとの反応(特公昭44-27671号公報)、ルイス酸触媒共存下における芳香族化合物と塩化硫黄との縮合反応(特公昭46-27255号公報)、または、アルカリ触媒もしくは銅塩などの共存下におけるチオフェノール類の縮合反応(米国特許第3274165号公報)などによって合成される。具体的な方法としては、硫化ナトリウムとp-ジクロロベンゼンとをN-メチルピロリドン、ジメチルアセトアミドなどのアミド系溶媒若しくはスルホランなどのスルホン系溶媒中で反応させることが挙げられる。 Known methods can be used to obtain PAS. For example, reaction of halogen substituted aromatic compound with alkali sulfide (Japanese Patent Publication No. 44-27671), condensation reaction of aromatic compound with sulfur chloride in the presence of Lewis acid catalyst (Japanese Patent Publication No. 46-27255), or And a condensation reaction of thiophenols in the presence of an alkali catalyst or a copper salt (US Pat. No. 3,274,165). As a specific method, sodium sulfide and p-dichlorobenzene are reacted in an amide solvent such as N-methyl pyrrolidone, dimethylacetamide or the like, or in a sulfone solvent such as sulfolane.
 PASの結晶性に影響を与えない範囲で、例えば、下記式(8)~(12)に示される成分をPASに含ませ、共重合成分とすることができる。下記式(8)~(12)に示される成分の添加量は、PASを構成する全モノマー100%に対して30モル%未満、好ましくは10モル%未満で1モル%以上とすることができる。 To the extent that the crystallinity of PAS is not affected, for example, the components represented by the following formulas (8) to (12) can be included in PAS to be used as copolymerization components. The addition amount of the components represented by the following formulas (8) to (12) can be less than 30 mol%, preferably less than 10 mol%, to 1 mol% or more with respect to 100% of all the monomers constituting the PAS. .
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 また、PASは、架橋型のものであるか、または部分的交差結合、すなわち、部分架橋を有するものであることが好ましい。部分的交差結合を有するPASは、半架橋型またはセミリニア型のPASとも呼ばれる。架橋型PASは、製造工程中に酸素存在下で熱処理を行うことによって分子量を必要な水準に高める。架橋型PASは、分子の一部がお互いに酸素を介して二次元または三次元の架橋構造を有する。そのため、次に述べるリニア型PASに比較して高温環境下においても高い剛性を保持し、クリープ変形が少ない点や、応力緩和されにくい点で優れる。このように、架橋型または半架橋型のPASは、リニア型(架橋のないもの)のPASに比べて耐熱性、耐クリープ性等に優れている。そのため、リニア型PASに比べて射出成形した成形品にバリの発生が少ないなどの利点がある。 It is also preferred that the PAS be of the cross-linked type or that it has partial cross-linking, ie partial cross-linking. PASs having partial cross-linking are also called semi-crosslinked or semi-linear PASs. The crosslinkable PAS increases the molecular weight to the required level by performing heat treatment in the presence of oxygen during the manufacturing process. The crosslinkable PAS has a two-dimensional or three-dimensional crosslink structure in which some of the molecules mutually crosslink oxygen. Therefore, compared with the linear type PAS described below, it is excellent in maintaining high rigidity even in a high temperature environment, reducing creep deformation and being hard to relieve stress. Thus, the cross-linked or semi-cross-linked PAS is superior in heat resistance, creep resistance and the like to the linear (non-crosslinked) PAS. Therefore, there are advantages such as less generation of burrs in injection molded articles as compared with linear type PAS.
 一方、リニア型PASは、製造工程において熱処理工程がないために分子中には架橋構造は含まれず、分子は一次元の直鎖状とされている。一般的にはリニア型PASは架橋型PASに比較して剛性が低く、靭性や伸びが多少高いのが特長とされている。また、リニア型PASは、特定方向からの機械的強度に優れたものである。さらにリニア型PASは、吸湿が少ないために高温多湿雰囲気でもさらに寸法変化が少ないなどの利点がある。また、リニア型PASは、例えば分子量を調整して溶融粘度を低くすることが可能となる。このため、リニア型PASに、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、金属粉末等の粉末状充填材などの充填剤を多量に混合させた樹脂組成物であっても、射出成形性は著しく阻害されない。 On the other hand, in the linear type PAS, since there is no heat treatment step in the production process, no cross-linked structure is contained in the molecule, and the molecule is linear in one dimension. In general, linear type PAS is characterized in that its rigidity is lower than that of crosslinked type PAS, and its toughness and elongation are somewhat high. Moreover, linear type PAS is excellent in the mechanical strength from a specific direction. Furthermore, since the linear type PAS has less moisture absorption, it has an advantage such as less dimensional change even in a high temperature and high humidity atmosphere. Moreover, linear type PAS can adjust a molecular weight, for example, and can make melt viscosity low. Therefore, a large amount of filler such as fibrous filler such as glass fiber, whisker filler such as potassium titanate, flake filler such as mica, powder filler such as metal powder is added to linear type PAS. Even for mixed resin compositions, the injection moldability is not significantly impaired.
 PASに架橋を形成するか、または部分的交差結合を形成する方法としては、例えば、低重合度のポリマを重合した後、空気が存在する雰囲気で加熱する方法や、架橋剤や分岐剤を添加する方法がある。 As a method of forming crosslinks or forming partial crosslinks in PAS, for example, a method of polymerizing a polymer having a low degree of polymerization and then heating in an atmosphere where air is present, or adding a crosslinking agent or a branching agent There is a way to
 PASの見かけの溶融粘度は、1000ポアズ以上10000ポアズ以下の範囲とするのが好ましい。見かけの溶融粘度が低すぎる(1000ポアズ未満)と、レドーム3の強度が低下するおそれがある。一方、見かけの溶融粘度が高くなり過ぎる(10000ポアズをこえる)と、成形性が低下するおそれがある。架橋性のPASの溶融粘度は1000~5000ポアズとすることができ、好ましくは2000~4000ポアズである。溶融粘度が低すぎると、150℃以上の高温域で耐クリープ特性などの機械的特性が低下するおそれがある。また、溶融粘度が大きすぎると成形性が低下するおそれがある。なお、溶融粘度の測定は、測定温度300℃、オリフィスが穴径1mm、長さ10mm、測定荷重20kg/cm2、予熱時間6分の条件下で、高化式フローテスタにて実施することができる。 The apparent melt viscosity of PAS is preferably in the range of 1000 poise to 10000 poise. If the apparent melt viscosity is too low (less than 1000 poises), the strength of the radome 3 may be reduced. On the other hand, if the apparent melt viscosity is too high (more than 10000 poise), the formability may be reduced. The melt viscosity of the crosslinkable PAS can be 1000 to 5000 poise, preferably 2000 to 4000 poise. If the melt viscosity is too low, mechanical properties such as creep resistance may deteriorate in a high temperature range of 150 ° C. or higher. In addition, when the melt viscosity is too large, the formability may be reduced. The measurement of melt viscosity may be carried out with an enhanced flow tester under the conditions of a measurement temperature of 300 ° C, an orifice with a hole diameter of 1 mm, a length of 10 mm, a measurement load of 20 kg / cm 2 and a preheating time of 6 minutes. it can.
 また、部分的交差結合を有するPASの熱安定性は、上記の溶融粘度測定条件にて、予熱6分後と30分後の溶融粘度の変化率が-50%~150%の範囲であることが好ましい。なお、変化率は下記の式で表される。
[変化率=(P30-P6)/P6×100(P6:予熱6分後の測定値、P30:予熱30分後の測定値)]
In addition, the thermal stability of PAS having a partial cross-linkage is that the rate of change in melt viscosity after 6 minutes and after 30 minutes in the above melt viscosity measurement conditions is in the range of -50% to 150%. Is preferred. The rate of change is expressed by the following equation.
[Percent change = (P30−P6) / P6 × 100 (P6: measured value after 6 minutes of preheating, P30: measured value after 30 minutes of preheating)]
 PASの分子量は、射出成形性を考慮すると、数平均分子量で13000~30000が好ましく、さらに耐疲労性、高成形精度を考慮すると、数平均分子量で18000~25000がより好ましい。数平均分子量が13000未満の場合には、分子量が低すぎて、耐疲労性が劣る傾向にある。一方、数平均分子量が30000をこえる場合には耐疲労性は向上するものの、必要な衝撃強度などの機械的強度を達成するために、例えば、ガラス繊維等の繊維状充填材を含有させることが必要な場合がある。例えば10~50質量%のガラス繊維を含有させると、成形時の溶融粘度が上記の上限値(10000ポアズ)をこえる。そのため、射出成形時にレドーム3の成形精度を確保することが困難になるおそれがある。なお、ここでの数平均分子量とは、PASを溶媒に溶解させた後、ゲル・パーミエーション・クロマトグラフ(GPC法)で測定されるポリスチレン換算での数平均分子量を示す。 The molecular weight of PAS is preferably 13,000 to 30,000 in number average molecular weight in consideration of injection moldability, and more preferably 18,000 to 25,000 in number average molecular weight in consideration of fatigue resistance and high molding accuracy. If the number average molecular weight is less than 13,000, the molecular weight is too low, and fatigue resistance tends to be poor. On the other hand, when the number average molecular weight exceeds 30,000, although the fatigue resistance is improved, in order to achieve the required mechanical strength such as impact strength, for example, a fibrous filler such as glass fiber may be contained. It may be necessary. For example, when 10 to 50% by mass of glass fiber is contained, the melt viscosity at the time of molding exceeds the above upper limit (10000 poise). Therefore, it may be difficult to secure the molding accuracy of the radome 3 at the time of injection molding. In addition, after dissolving PAS in a solvent, a number average molecular weight here shows the number average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC method).
 PASの融点は、例えば約220~290℃、好ましくは280~290℃である。一般にPPSの融点は、約285℃であるため、PASとしてPPSを用いることが好ましい。また、PASは吸水性が低いため、PASを母材とするレドーム3は吸水による寸法変化が低減される。PASを母材とするレドーム3は、レドーム3における耐クリープ性、耐薬品性等に優れると共に、吸水による寸法変化が低減されるという優れた安定性を有する。 The melting point of PAS is, for example, about 220 to 290 ° C., preferably 280 to 290 ° C. In general, since the melting point of PPS is about 285 ° C., it is preferable to use PPS as PAS. In addition, since PAS has low water absorbency, the dimensional change due to water absorption of the radome 3 using PAS as a base material is reduced. The radome 3 having the PAS as a base material is excellent in creep resistance, chemical resistance and the like in the radome 3 and has excellent stability in which dimensional change due to water absorption is reduced.
 また、PPS等のPASを有する樹脂材料は、ISO75-1、2(1.8MPa)の試験法に基づいて測定された荷重たわみ温度が、例えば105℃以上とされる。 Further, in the resin material having PAS such as PPS, the deflection temperature under load measured based on the test method of ISO 75-1, 2 (1.8 MPa) is, for example, 105 ° C. or higher.
 また、PPS等のPASにガラス繊維が40wt%添加された樹脂材料は、ISO75-1、2(1.8MPa)の試験法に基づいて測定された荷重たわみ温度が、例えば275℃とされる。 Further, in the resin material in which 40 wt% of glass fiber is added to PAS such as PPS, the deflection temperature under load measured based on the test method of ISO 75-1, 2 (1.8 MPa) is, for example, 275 ° C.
 また、PPS等のPASは、誘電特性等の電気的特性も優れている。PPS等のPASを有する樹脂材料は、IEC60250の試験法に基づいて測定された誘電正接(tanδ)が、0.001~0.008と低い値を示す。具体的に、PPS等のPASを有する樹脂材料の誘電正接(tanδ)は、1MHzでも0.001と低い値を示す。 In addition, PAS such as PPS is also excellent in electrical characteristics such as dielectric characteristics. A resin material having PAS such as PPS exhibits a low dielectric loss tangent (tan δ) of 0.001 to 0.008, which is measured based on the test method of IEC 60250. Specifically, the dielectric loss tangent (tan δ) of a resin material having PAS such as PPS exhibits a low value of 0.001 even at 1 MHz.
 また、PPS等のPASにガラス繊維が40wt%添加された樹脂材料は、IEC60250の試験法に基づいて測定された誘電正接(tanδ)が、1KHzで0.001、1MHzで0.002と低い値を示す。 Moreover, the resin material in which 40 wt% of glass fiber is added to PAS such as PPS has a low dielectric loss tangent (tan δ) of 0.001 at 1 KHz and 0.002 at 1 MHz as measured according to the test method of IEC 60250. Indicates
 このように、PPS等のPASを含有する樹脂材料は、車載用フィン型アンテナ装置1のレドーム3として使用しても問題のない電気的特性も備えている。 As described above, the resin material containing PAS such as PPS also has electrical characteristics that cause no problem even when used as the radome 3 of the in-vehicle fin type antenna device 1.
 PBTは、寸法安定性、熱安定性、耐薬品性(耐酸性、耐アルカリ性)が良好である。PBTは、電気特性をはじめ、物性のバランスが取れている。 PBT has good dimensional stability, thermal stability, and chemical resistance (acid resistance, alkali resistance). PBT has well-balanced physical properties including electrical characteristics.
 例えば、PBTにガラス繊維15wt%添加の樹脂材料は、ISO75-1、2(1.8MPa)の試験法に基づいて測定された荷重たわみ温度が200℃とされる。 For example, a resin material with 15 wt% of glass fiber added to PBT has a deflection temperature under load of 200 ° C. measured based on the test method of ISO 75-1, 2 (1.8 MPa).
 また、PBTにガラス繊維15wt%添加の樹脂材料は、ASTM-D150の試験法に基づいて測定された誘電正接(tanδ)が、50Hzで0.002の値を示す。PBTを含有する樹脂材料は、広い温度範囲にわたって誘電特性の変化が少なく、また、周波数による影響も少ない。 In addition, the resin material containing 15 wt% of glass fiber added to PBT exhibits a dielectric loss tangent (tan δ) of 0.002 at 50 Hz, which is measured based on the test method of ASTM-D150. Resin materials containing PBT show less change in dielectric properties over a wide temperature range, and are also less affected by frequency.
 PBTとして、下記の化学式12に示される繰り返し構造単位を有するものが挙げられる。 As PBT, those having a repeating structural unit represented by the following chemical formula 12 can be mentioned.
Figure JPOXMLDOC01-appb-C000016
 この化学式12において、xは任意の整数を表す。
Figure JPOXMLDOC01-appb-C000016
In this chemical formula 12, x represents any integer.
 添加材としては、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、金属粉末等の粉末状充填材の中から選択した一種以上を使用できる。尚、特に必要が無ければ、添加材を配合せず、ベース樹脂のみからなる樹脂材料でレドーム3を形成してもよい。 As the additive, for example, one or more selected from fibrous fillers such as glass fibers, whisker fillers such as potassium titanate, scale fillers such as mica, and powder fillers such as metal powder It can be used. In addition, if there is no need in particular, the radome 3 may be formed of a resin material consisting only of the base resin without blending the additive.
 回路基板4は、ベース2の上に台座9を介して固定される。回路基板4には、増幅器4aや制御チップ4b(フィルタ)等を含む回路パターン(図示省略)が形成される。回路パターンの一端には、各アンテナ部5a~5dが導電部材10を介して接続され、回路パターンの他端にはケーブル8が接続される。 The circuit board 4 is fixed on the base 2 via the pedestal 9. On the circuit board 4, a circuit pattern (not shown) including an amplifier 4a and a control chip 4b (filter) is formed. The antenna portions 5a to 5d are connected to one end of the circuit pattern via the conductive member 10, and the cable 8 is connected to the other end of the circuit pattern.
 アンテナ部5a~5dは、それぞれ異なる周波数帯の電波を送受信(受信のみあるいは送信のみの場合も含む)する。具体的には、例えば、AM/FM受信用アンテナ、3G/4G(LTE)通信用アンテナ、衛星ラジオ受信用アンテナ、GPS用アンテナ、無線LAN用アンテナ、車間通信用アンテナ、キーレスエントリー用アンテナ、Bluetooth(登録商標)用アンテナ、ETC用アンテナ等の電磁気/電磁波発生装置の中から選択された4種のアンテナが、レドーム3内に収容される。これらの電磁気/電磁波発生装置は、例えば可視光以外の電磁気/電磁波を主に発信/受信するものとされているが、例えば可視光を含む電磁気/電磁波を発信/受信可能な電磁気/電磁波発生装置が用いられてもよい。 The antenna units 5a to 5d transmit and receive radio waves of different frequency bands (including only reception or transmission only). Specifically, for example, AM / FM reception antenna, 3G / 4G (LTE) communication antenna, satellite radio reception antenna, GPS antenna, wireless LAN antenna, inter-vehicle communication antenna, keyless entry antenna, Bluetooth Four types of antennas selected from an electromagnetic / electromagnetic wave generator such as an antenna for (registered trademark) and an antenna for ETC are accommodated in the radome 3. These electromagnetic / electromagnetic wave generating devices are supposed to mainly transmit / receive electromagnetic / electromagnetic waves other than visible light, for example. For example, an electromagnetic / electromagnetic wave generator capable of transmitting / receiving electromagnetic / electromagnetic waves including visible light May be used.
 各アンテナ部5a~5dは、平板状の基体6a~6dと、各基体6a~6dの表面に設けられたアンテナパターン7a~7dとを有する。基体6a~6dは、誘電体で形成され、例えば樹脂やセラミックス等で形成される。アンテナパターン7a~7dは、薄肉の導電板(例えば金属板)で形成され、基体6a~6dに取り付けられる。本実施形態では、平板状の基体6a~6dの表面にアンテナパターン7a~7dが設けられる。各アンテナ部5a~5dのアンテナパターン7a~7dは異なる形状を成している。各アンテナパターン7a~7dの一端は、導電部材10を介して、回路基板4上の回路パターンに電気的に接続される。尚、図示例では、平板状のアンテナ部5a~5dを全て立設させているが、これに限らず、例えばアンテナ部5a~5dの一部を平置き(ベース2と平行に配置)してもよい。また、図示例では、各アンテナ部5a~5dの基体6a~6dが同一形状を成しているが、各基体6a~6dの形状や大きさを異ならせてもよい。 Each of the antenna portions 5a to 5d has flat base bodies 6a to 6d and antenna patterns 7a to 7d provided on the surfaces of the respective base bodies 6a to 6d. The substrates 6a to 6d are formed of a dielectric, and are formed of, for example, a resin or a ceramic. The antenna patterns 7a to 7d are formed of thin conductive plates (for example, metal plates), and are attached to the bases 6a to 6d. In the present embodiment, the antenna patterns 7a to 7d are provided on the surfaces of the flat substrates 6a to 6d. The antenna patterns 7a to 7d of the antenna units 5a to 5d have different shapes. One end of each of the antenna patterns 7a to 7d is electrically connected to the circuit pattern on the circuit board 4 through the conductive member 10. In the illustrated example, all of the flat antenna portions 5a to 5d are erected, but the present invention is not limited thereto. For example, a part of the antenna portions 5a to 5d may be placed flat (arranged parallel to the base 2) It is also good. In the illustrated example, the bases 6a to 6d of the antenna units 5a to 5d have the same shape, but the shapes and sizes of the bases 6a to 6d may be different.
 本実施形態では、平板状のアンテナ部5a~5dが立設して設けられる。具体的には、ベース2上に立設された支柱11に、各アンテナ部5a~5dの基体6a~6dが固定され、各アンテナ部5a~5dが支柱11を中心に放射状に設けられる。図示例では、4個の平板状のアンテナ部5a~5dが、平面視で十字形状となるように配置される。尚、複数のアンテナ部5a~5dをレドーム3側に固定してもよい。 In the present embodiment, flat antenna portions 5a to 5d are provided upright. Specifically, the bases 6a to 6d of the antenna units 5a to 5d are fixed to the support 11 erected on the base 2, and the antenna units 5a to 5d are provided radially around the support 11. In the illustrated example, the four flat antenna portions 5a to 5d are arranged in a cross shape in plan view. The plurality of antenna units 5a to 5d may be fixed to the radome 3 side.
 上記のように、レドーム3の内部に複数のアンテナ部5a~5dを収容することで、これらのアンテナ部5a~5dと、車体側に設けられた制御部とを接続するケーブル8とをまとめることができる。特に、本実施形態では、各アンテナ部5a~5dで受信した信号を、共通のケーブル8を介して制御部に伝達する。こうして、少ないケーブル8(本実施形態では一本のケーブル)を介して車載用フィン型アンテナ装置1と制御部とを接続することで、ケーブルの重量を低減して車両の軽量化し、もって低燃費化を図ることができる。 As described above, by accommodating the plurality of antenna units 5a to 5d in the radome 3, the cables 8 connecting the antenna units 5a to 5d and the control unit provided on the vehicle body side are combined. Can. In particular, in the present embodiment, the signals received by the respective antenna units 5a to 5d are transmitted to the control unit via the common cable 8. Thus, by connecting the on-vehicle fin type antenna device 1 and the control unit via the small number of cables 8 (one cable in the present embodiment), the weight of the cable is reduced to reduce the weight of the vehicle, thereby reducing fuel consumption. Can be implemented.
 このように、レドーム3の内部に複数(特に4個以上)のアンテナ部5a~5dを収容すると、アンテナ部5a~5dと接続された回路基板4の制御チップ4b等が発熱しやすくなるため、レドーム3の内部が高温になることがある。このような場合、レドーム3の耐熱性が特に重要となる。本実施形態では、上記のように、レドーム3を、耐熱性に優れた結晶性樹脂をベース樹脂とする樹脂材料で形成し、且つ、この樹脂材料の組成を、荷重たわみ温度が100℃以上となるように設定した。これにより、レドーム3の耐熱性、特に高温時における強度が保証されるため、内部に複数(特に4個以上)のアンテナ部を収容した場合でも優れた耐久性を有する。 As described above, when the plurality of (particularly, four or more) antenna units 5a to 5d are accommodated in the radome 3, the control chip 4b of the circuit board 4 connected to the antenna units 5a to 5d easily generates heat. The inside of radome 3 may become hot. In such a case, the heat resistance of the radome 3 is particularly important. In the present embodiment, as described above, the radome 3 is formed of a resin material having a crystalline resin excellent in heat resistance as a base resin, and the composition of this resin material has a deflection temperature under load of 100 ° C. or higher. It was set to be Thereby, the heat resistance of the radome 3, in particular, the strength at high temperature is ensured, and therefore, the durability is excellent even when a plurality of (particularly, four or more) antenna portions are accommodated inside.
 レドーム3の内部には、充填材12が封入される。充填材12は、レドーム3内に収容された全てのアンテナ部5a~5dに接触するように設けられ、全てのアンテナ部5a~5dを一体に保持する。本実施形態では、各アンテナ部5a~5dの全体が充填材12で覆われており、図示例では、レドーム3の内部空間の全域が充填材12で満たされている。尚、レドーム3の内部に充填材12を部分的に設け、この充填材12により全てのアンテナ部5a~5dを保持するようにしてもよい。このとき、充填材12が各アンテナ部5a~5dと部分的に接触するようにしてもよい。 A filler 12 is enclosed in the radome 3. The filler 12 is provided to be in contact with all the antenna units 5a to 5d housed in the radome 3, and holds all the antenna units 5a to 5d in an integrated manner. In the present embodiment, the whole of each of the antenna portions 5a to 5d is covered with the filler 12, and in the illustrated example, the entire inner space of the radome 3 is filled with the filler 12. Alternatively, the filling material 12 may be partially provided inside the radome 3, and all the antenna parts 5a to 5d may be held by the filling material 12. At this time, the filler 12 may be in partial contact with each of the antenna portions 5a to 5d.
 上記のように、レドーム3の内部に複数のアンテナ部5a~5dを収容する場合、各アンテナ部5a~5d同士が近接するため、各アンテナ部5a~5dが送受信する電波同士が干渉するおそれがある。このような電波同士の干渉が生じないように、各アンテナ部5a~5bをレドーム3内で所定の位置に正確に配置する必要がある。本実施形態では、平板状の各アンテナ部5a~5bを立設し、平面視で十字形状に配置することで、各アンテナ部5a~5dの送受信電波同士の干渉を防止している。本実施形態では、レドーム3の内部に充填材12を封入し、この充填材12で全てのアンテナ部5a~5dを一体に保持することで、車両の走行時の振動等による各アンテナ部5a~5dの位置ズレを防止している。 As described above, when the plurality of antenna units 5a to 5d are accommodated inside the radome 3, the respective antenna units 5a to 5d are close to each other, which may cause interference between radio waves transmitted and received by the respective antenna units 5a to 5d. is there. In order to prevent such interference between radio waves, it is necessary to accurately arrange each of the antenna units 5a and 5b in the radome 3 at a predetermined position. In the present embodiment, the flat plate antenna portions 5a to 5b are erected and arranged in a cross shape in plan view to prevent interference between transmission and reception radio waves of the antenna portions 5a to 5d. In the present embodiment, the filling material 12 is enclosed inside the radome 3, and all the antenna parts 5a to 5d are integrally held by the filling material 12, so that the respective antenna parts 5a to 5 It prevents position shift of 5d.
 充填材12は、上記のように各アンテナ部5a~5dに接触するため、アンテナ部5a~5dの特性(誘電率、誘電正接等)に影響を与えにくい材質であることが好ましい。例えば発泡材料は、比誘電率が空気に近く、アンテナ部5a~5dの特性への影響が小さいため、充填材12として好適に使用できる。発泡材料としては、化学発泡材料や、物理発泡材料を使用できる。化学発泡剤は、分解温度が140~160℃付近のため扱いやすい。物理発泡剤は、熱伝導率が低く、断熱性に優れている。この他、充填材12として、超臨界流体や、熱膨張性マイクロカプセル等を使用することもできる。具体的に、充填材12は、例えばウレタンの発砲体で形成することができる。ウレタンの発泡体の比誘電率(εγ)は、4.0~7.5とされる。また、ウレタンの発泡体の誘電正接(tanδ)は、例えば60Hzにて0.015~0.017の小さい値とされる。 The filler 12 is preferably made of a material that hardly affects the characteristics (dielectric constant, dielectric loss tangent, etc.) of the antenna units 5a to 5d because the filler 12 contacts the antenna units 5a to 5d as described above. For example, the foam material can be suitably used as the filler 12 because the relative dielectric constant is close to that of air and the characteristics of the antenna portions 5a to 5d are less affected. As a foam material, a chemical foam material or a physical foam material can be used. Chemical blowing agents are easy to handle because the decomposition temperature is around 140-160 ° C. Physical blowing agents have low thermal conductivity and are excellent in thermal insulation. Besides, as the filling material 12, a supercritical fluid, a thermally expandable microcapsule, etc. can also be used. Specifically, the filler 12 can be formed of, for example, a urethane foam. The relative permittivity (εγ) of the urethane foam is set to 4.0 to 7.5. The dielectric loss tangent (tan δ) of the urethane foam is, for example, a small value of 0.015 to 0.017 at 60 Hz.
 上記の車載用フィン型アンテナ装置1は、例えば以下の手順を経て製造される。まず、ベース2にアンテナ部5a~5d及び回路基板4を取り付け、その後、ベースとレドーム3とを固定してアンテナ部5a~5d等を内部に収容する。その後、レドーム3の内部に充填材12を注入し、充填材12でアンテナ部5a~5dを一体に保持する。充填材12の注入は、例えばベース2に設けられた注入口(図示省略)から行われる。充填材12を注入した後、ベース2の注入口は封止部材(図示省略)で封止される。尚、ベース2に元々設けられる穴を介して、充填材12の注入を行ってもよい。また、車載用フィン型アンテナ装置1の製造方法は上記に限らず、例えば、複数のアンテナ部及び回路基板をベース2に取り付けた後、充填材で複数のアンテナ部を一体に保持し、その後、レドーム3とベースとを固定してもよい。 The above-described on-vehicle fin-type antenna device 1 is manufactured, for example, through the following procedure. First, the antenna units 5a to 5d and the circuit board 4 are attached to the base 2. Thereafter, the base and the radome 3 are fixed, and the antenna units 5a to 5d and the like are accommodated inside. Thereafter, the filling material 12 is injected into the radome 3, and the antenna parts 5a to 5d are integrally held by the filling material 12. The injection of the filler 12 is performed, for example, from an inlet (not shown) provided in the base 2. After the filler 12 is injected, the inlet of the base 2 is sealed by a sealing member (not shown). The filler 12 may be injected through the hole originally provided in the base 2. Moreover, the manufacturing method of the fin-type antenna apparatus 1 for vehicles is not restricted above, For example, after attaching a several antenna part and a circuit board to the base 2, hold | maintain several antenna parts integrally with a filler, and then, The radome 3 and the base may be fixed.
 本発明は、上記の実施形態に限られない。例えば図3及び図4に示すように、レドーム3に防水通気フィルタ20を設けてもよい。防水通気フィルタ20は、レドーム3の内部と外部とを連通する位置に設けられ、例えば、レドーム3に設けられた貫通穴3aに防水通気フィルタ20が配される。図示例では、レドーム3の車両後方側の側面(後面)に、防水通気フィルタ20が設けられる。防水通気フィルタ20は、水の通過を規制し、空気の通過を許容するものである。防水通気フィルタ20としては、例えば無数の微細な空孔を有する多孔質膜が使用でき、具体的には、フッ素樹脂系多孔質膜や、フッ素樹脂ナノファイバー不織布等が使用できる。この防水通気フィルタ20を介して、レドーム3の内部の空気(熱)を外部に放出することにより、レドーム3内の温度上昇が抑えられる。これにより、レドーム3内と外気温との温度差が小さくなるため、レドーム3内外の温度差により生じる圧力が抑えられ、この圧力によるアンテナ部5a~5dの性能低下を防止できる。また、外部の水や塵は、防水通気フィルタ20で遮断されるため、これらがレドーム3の内部に侵入することはない。 The present invention is not limited to the above embodiment. For example, as shown in FIGS. 3 and 4, the radome 3 may be provided with a waterproof ventilation filter 20. The waterproof air-permeable filter 20 is provided at a position where the inside and the outside of the radome 3 communicate with each other. For example, the waterproof air-permeable filter 20 is disposed in the through hole 3 a provided in the radome 3. In the illustrated example, a waterproof air-permeable filter 20 is provided on the side surface (rear surface) of the radome 3 on the vehicle rear side. The waterproof ventilation filter 20 regulates the passage of water and allows the passage of air. As the waterproof air-permeable filter 20, for example, a porous film having innumerable fine pores can be used. Specifically, a fluororesin-based porous film, a fluororesin nanofiber nonwoven fabric, or the like can be used. By discharging the air (heat) inside the radome 3 to the outside through the waterproof ventilation filter 20, the temperature rise in the radome 3 can be suppressed. As a result, since the temperature difference between the inside of the radome 3 and the outside air temperature becomes small, the pressure caused by the temperature difference between the inside and outside of the radome 3 can be suppressed, and the performance deterioration of the antenna portions 5a to 5d due to this pressure can be prevented. In addition, external water and dust are blocked by the waterproof air-permeable filter 20 so that they do not intrude into the inside of the radome 3.
 また、上記の実施形態では、4個のアンテナ部5a~5dを有する車載用フィン型アンテナ装置1を示したが、これに限らず、アンテナ部が2~3個、あるいは5個以上である車載用フィン型アンテナ装置にも本発明を適用することができる。 Moreover, although said embodiment showed the vehicle-mounted fin type antenna apparatus 1 which has four antenna part 5a-5d, it is not limited to this, The vehicle part which has two to three antenna parts, or five or more The present invention can also be applied to a fin-type antenna device.
1     車載用フィン型アンテナ装置
2     ベース
3     レドーム(カバー)
4     回路基板
5a-5d     アンテナ部(電磁気/電磁波発生装置)
6a-6d     基体
7a-7d     アンテナパターン
8     ケーブル
12   充填材
20   防水通気フィルタ
1 Car-mounted fin type antenna device 2 Base 3 radome (cover)
4 Circuit board 5a-5d Antenna unit (electromagnetic / electromagnetic wave generator)
6a-6d substrate 7a-7d antenna pattern 8 cable 12 filler 20 waterproof air-permeable filter

Claims (16)

  1.  電磁気/電磁波発生装置を保護し、且つ、電磁気/電磁波発生装置から生じる電磁気/電磁波を透過可能な筐体として形成されたカバーであって、
     前記筐体を、結晶性樹脂をベース樹脂とし、荷重たわみ温度が100℃以上である樹脂材料で形成したカバー。
    A cover formed as a case that protects an electromagnetic / electromagnetic wave generator and can transmit electromagnetic / electromagnetic waves generated from the electromagnetic / electromagnetic wave generator,
    The cover formed by using a crystalline resin as a base resin and a resin material whose deflection temperature under load is 100 ° C. or higher.
  2.  前記樹脂材料の誘電正接が0.01以下である請求項1に記載のカバー。 The cover according to claim 1, wherein the dielectric loss tangent of the resin material is 0.01 or less.
  3.  前記樹脂材料のベース樹脂が、PMP、LCP、PPS、PBTの何れかである請求項1または2に記載のカバー。 The cover according to claim 1 or 2, wherein a base resin of the resin material is any one of PMP, LCP, PPS, and PBT.
  4.  前記樹脂材料のベース樹脂が、下記の化学式1に示す繰り返し構造単位を有するLCPである請求項1または2に記載のカバー。
    Figure JPOXMLDOC01-appb-C000001
     この化学式1において、nは0または1を、x、y、zはそれぞれ任意の整数を表す。
    The cover according to claim 1 or 2, wherein the base resin of the resin material is an LCP having a repeating structural unit represented by the following chemical formula 1.
    Figure JPOXMLDOC01-appb-C000001
    In this chemical formula 1, n represents 0 or 1, and x, y and z each represent an arbitrary integer.
  5.  前記樹脂材料のベース樹脂が、下記の化学式2に示す繰り返し構造単位を有するLCPである請求項1または2に記載のカバー。
    Figure JPOXMLDOC01-appb-C000002
     この化学式2において、x、yは、それぞれ任意の整数を表す。
    The cover according to claim 1 or 2, wherein the base resin of the resin material is an LCP having a repeating structural unit represented by the following chemical formula 2.
    Figure JPOXMLDOC01-appb-C000002
    In this chemical formula 2, x and y each represent an arbitrary integer.
  6.  複数のアンテナ部と、前記複数のアンテナ部と電気的に接続された回路基板と、前記複数のアンテナ部及び回路基板を内部に収容するレドームとを備えた車載用フィン型アンテナ装置であって、
     前記レドームを、結晶性樹脂をベース樹脂とし、荷重たわみ温度が100℃以上である樹脂材料で形成した車載用フィン型アンテナ装置。
    A vehicle-mounted fin-type antenna device comprising: a plurality of antenna units; a circuit board electrically connected to the plurality of antenna units; and a radome accommodating the plurality of antenna units and the circuit board therein,
    An in-vehicle fin type antenna device, wherein the radome is formed of a resin material having a crystalline resin as a base resin and a deflection temperature under load of 100 ° C. or higher.
  7.  前記アンテナ部を4個以上有する請求項6に記載の車載用フィン型アンテナ装置。 7. The on-vehicle fin type antenna device according to claim 6, wherein the antenna unit is four or more.
  8.  前記複数のアンテナ部が、キーレスエントリー用アンテナ部を含む請求項6または7に記載の車載用フィン型アンテナ装置。 The in-vehicle fin type antenna device according to claim 6, wherein the plurality of antenna units include a keyless entry antenna unit.
  9.  前記レドームの内部に充填材が封入され、該充填材により前記複数のアンテナ部を一体に保持した請求項6~8の何れか1項に記載の車載用フィン型アンテナ装置。 The in-vehicle fin type antenna device according to any one of claims 6 to 8, wherein a filler is sealed in the inside of the radome, and the plurality of antenna parts are integrally held by the filler.
  10.  前記充填材が発泡材料からなる請求項9に記載の車載用フィン型アンテナ装置。 10. The on-vehicle fin type antenna device according to claim 9, wherein the filler is made of a foam material.
  11.  前記充填材の誘電正接が0.02以下である請求項9又は10に記載の車載用フィン型アンテナ装置。 11. The on-vehicle fin type antenna device according to claim 9, wherein a dielectric loss tangent of the filler is 0.02 or less.
  12.  前記樹脂材料の誘電正接が0.01以下である請求項6~11の何れか1項に記載の車載用フィン型アンテナ装置。 The in-vehicle fin type antenna device according to any one of claims 6 to 11, wherein a dielectric loss tangent of the resin material is 0.01 or less.
  13.  前記樹脂材料のベース樹脂が、PMP、LCP、PPS、PBTの何れかである請求項6~12の何れか1項に記載の車載用フィン型アンテナ装置。 The on-vehicle fin type antenna device according to any one of claims 6 to 12, wherein a base resin of the resin material is any one of PMP, LCP, PPS, and PBT.
  14.  前記樹脂材料のベース樹脂が、下記の化学式3に示す繰り返し構造単位を有するLCPである請求項6~12の何れか1項に記載の車載用フィン型アンテナ装置。
    Figure JPOXMLDOC01-appb-C000003
     この化学式1において、nは0または1を、x、y、zはそれぞれ任意の整数を表す。
    The on-vehicle fin type antenna device according to any one of claims 6 to 12, wherein the base resin of the resin material is an LCP having a repeating structural unit represented by the following chemical formula 3.
    Figure JPOXMLDOC01-appb-C000003
    In this chemical formula 1, n represents 0 or 1, and x, y and z each represent an arbitrary integer.
  15.  前記樹脂材料のベース樹脂が、下記の化学式4に示す繰り返し構造単位を有するLCPである請求項6~12の何れか1項に記載の車載用フィン型アンテナ装置。
    Figure JPOXMLDOC01-appb-C000004
     この化学式2において、x、yは、それぞれ任意の整数を表す。
    The on-vehicle fin type antenna device according to any one of claims 6 to 12, wherein the base resin of the resin material is an LCP having a repeating structural unit represented by the following chemical formula 4.
    Figure JPOXMLDOC01-appb-C000004
    In this chemical formula 2, x and y each represent an arbitrary integer.
  16.  レドームに防水通気フィルタを設けた請求項6~15の何れか1項に記載の車載用フィン型アンテナ装置。 The on-vehicle fin type antenna device according to any one of claims 6 to 15, wherein the radome is provided with a waterproof ventilation filter.
PCT/JP2018/038866 2017-10-18 2018-10-18 Cover and vehicle-mounted fin type antenna device WO2019078303A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880061808.7A CN111108647B (en) 2017-10-18 2018-10-18 Housing and on-vehicle fin antenna device
EP18868445.0A EP3700012A4 (en) 2017-10-18 2018-10-18 Cover and vehicle-mounted fin type antenna device
US16/649,168 US11133579B2 (en) 2017-10-18 2018-10-18 Cover and vehicle-mounted fin type antenna device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-201930 2017-10-18
JP2017201930 2017-10-18
JP2018-173742 2018-09-18
JP2018173742 2018-09-18
JP2018196689A JP7110058B2 (en) 2017-10-18 2018-10-18 Cover and automotive fin-type antenna device
JP2018-196689 2018-10-18

Publications (1)

Publication Number Publication Date
WO2019078303A1 true WO2019078303A1 (en) 2019-04-25

Family

ID=66173728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038866 WO2019078303A1 (en) 2017-10-18 2018-10-18 Cover and vehicle-mounted fin type antenna device

Country Status (1)

Country Link
WO (1) WO2019078303A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241089A1 (en) * 2020-05-26 2021-12-02 豊田合成株式会社 Vehicle garnish
WO2022114161A1 (en) * 2020-11-27 2022-06-02 株式会社ヨコオ On-board antenna device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
JPS4427671B1 (en) 1964-11-07 1969-11-17
JPS4627255B1 (en) 1967-04-25 1971-08-07
JPH0235803A (en) * 1988-07-26 1990-02-06 Matsushita Electric Works Ltd Antenna device for loading moving body
JP2009273104A (en) * 2008-05-06 2009-11-19 Kojun Seimitsu Kogyo Kofun Yugenkoshi Joining structure for metallic member and plastic member, method for manufacturing thereof ,and housing for electronic device
JP2012080388A (en) * 2010-10-04 2012-04-19 Mitsumi Electric Co Ltd Antenna device
JP2012198537A (en) * 2011-03-10 2012-10-18 Ntn Corp Optical connector member and method for manufacturing the same
JP2015516786A (en) * 2012-05-16 2015-06-11 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Antenna module having a transmitting antenna member and a receiving antenna member
JP2016025477A (en) 2014-07-18 2016-02-08 株式会社ヨコオ On-vehicle antenna device
JP2016036104A (en) * 2014-08-04 2016-03-17 富士通株式会社 Wireless communication module
JP2016211358A (en) 2015-04-30 2016-12-15 カルソニックカンセイ株式会社 Vehicle keyless entry system and on-vehicle device control method
WO2017086377A1 (en) * 2015-11-19 2017-05-26 日本電気株式会社 Wireless communication device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4427671B1 (en) 1964-11-07 1969-11-17
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
JPS4627255B1 (en) 1967-04-25 1971-08-07
JPH0235803A (en) * 1988-07-26 1990-02-06 Matsushita Electric Works Ltd Antenna device for loading moving body
JP2009273104A (en) * 2008-05-06 2009-11-19 Kojun Seimitsu Kogyo Kofun Yugenkoshi Joining structure for metallic member and plastic member, method for manufacturing thereof ,and housing for electronic device
JP2012080388A (en) * 2010-10-04 2012-04-19 Mitsumi Electric Co Ltd Antenna device
JP2012198537A (en) * 2011-03-10 2012-10-18 Ntn Corp Optical connector member and method for manufacturing the same
JP2015516786A (en) * 2012-05-16 2015-06-11 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Antenna module having a transmitting antenna member and a receiving antenna member
JP2016025477A (en) 2014-07-18 2016-02-08 株式会社ヨコオ On-vehicle antenna device
JP2016036104A (en) * 2014-08-04 2016-03-17 富士通株式会社 Wireless communication module
JP2016211358A (en) 2015-04-30 2016-12-15 カルソニックカンセイ株式会社 Vehicle keyless entry system and on-vehicle device control method
WO2017086377A1 (en) * 2015-11-19 2017-05-26 日本電気株式会社 Wireless communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241089A1 (en) * 2020-05-26 2021-12-02 豊田合成株式会社 Vehicle garnish
WO2022114161A1 (en) * 2020-11-27 2022-06-02 株式会社ヨコオ On-board antenna device

Similar Documents

Publication Publication Date Title
WO2019078303A1 (en) Cover and vehicle-mounted fin type antenna device
CN110746754B (en) Laser-engraved liquid crystal polymer composition and preparation method thereof
CN101821823B (en) Case mold type capacitor and method for manufacturing the same
CN102186776B (en) Dielectric composite material containing said ceramic powder, and dielectric antenna
CN114391030B (en) Chemically compatible fluoropolymer blends
CN103717679A (en) Resin composition with high dielectric insulation properties
JP7110058B2 (en) Cover and automotive fin-type antenna device
TW202112885A (en) Thermoplastic polyester resin, thermoplastic polyester resin composition and molded article
KR20210032309A (en) Fiber reinforced resin substrate
CN115413285A (en) Thermoplastic resins for network applications
CN113087933B (en) Thermal insulation component and method of manufacturing a thermal insulation component
JPH09232855A (en) Electronic component
EP4082746A1 (en) Composite structure and manufacturing method therefor
JP2007227099A (en) High dielectric resin composition
JP6413424B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
EP3931248A1 (en) Poly(arylene sulphide) composition having high dielectric performance
CN113614162A (en) Fiber-reinforced resin base material
Bandyopadhyay et al. Dielectric behavior of polystyrene foam at microwave frequency
US20230407091A1 (en) Laser Activatable Polymer Composition
JP2020169276A (en) Resin composition, prepreg, laminated plate, multilayer printed wiring board and semiconductor package
EP4317525A1 (en) Plated molded article, method for producing plated molded article, and case component
JP7453635B1 (en) Polyarylene sulfide resin compositions, molded products and methods for producing them
KR20190048092A (en) Conductive polyarylene sulfide resin composition
Vologirov et al. Thermally cured sealants
WO2023218851A1 (en) Poly(arylene sulfide) resin composition, molded article, and production methods therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868445

Country of ref document: EP

Effective date: 20200518