JP6413424B2 - Thermoplastic resin composition, method for producing the same, and molded article - Google Patents

Thermoplastic resin composition, method for producing the same, and molded article Download PDF

Info

Publication number
JP6413424B2
JP6413424B2 JP2014148732A JP2014148732A JP6413424B2 JP 6413424 B2 JP6413424 B2 JP 6413424B2 JP 2014148732 A JP2014148732 A JP 2014148732A JP 2014148732 A JP2014148732 A JP 2014148732A JP 6413424 B2 JP6413424 B2 JP 6413424B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
range
resin composition
electrically conductive
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014148732A
Other languages
Japanese (ja)
Other versions
JP2016023248A (en
Inventor
鈴木 徹
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2014148732A priority Critical patent/JP6413424B2/en
Publication of JP2016023248A publication Critical patent/JP2016023248A/en
Application granted granted Critical
Publication of JP6413424B2 publication Critical patent/JP6413424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

本発明は、電気伝導性を安定して付与できる熱可塑性樹脂組成物と該組成物から成形される樹脂成形体、フィルムまたはシートに関する。   The present invention relates to a thermoplastic resin composition capable of stably imparting electrical conductivity and a resin molded body, film or sheet molded from the composition.

熱可塑性樹脂にカーボンブラックのような電気伝導性フィラーを溶融混練して製造される導電性熱可塑性樹脂を薄肉成形した導電性熱可塑性樹脂成形体、特にフィルム又はシートは、一般的に、半導体や電子部品の輸送や保管などに、また、電子写真等に用いられる転写ベルトなどに使用されている。導電性熱可塑性樹脂フィルム又はシートには、優れた導電性と表面平滑性が求められている。   A conductive thermoplastic resin molded product, particularly a film or sheet, formed by thinly molding a conductive thermoplastic resin produced by melting and kneading an electrically conductive filler such as carbon black in a thermoplastic resin, is generally a semiconductor or It is used for transportation and storage of electronic parts and for transfer belts used for electrophotography. The conductive thermoplastic resin film or sheet is required to have excellent conductivity and surface smoothness.

熱可塑性樹脂に電気伝導性を付与する方法としては、カーボンブラックや炭素繊維等の電気伝導性フィラーを2軸押出機やバンバリーミキサーなどで溶融混練する方法が一般的に行われている(特許文献1参照)。   As a method of imparting electrical conductivity to a thermoplastic resin, a method of melt-kneading an electrically conductive filler such as carbon black or carbon fiber with a twin screw extruder or a Banbury mixer is generally performed (Patent Literature). 1).

しかし、このような熱可塑性樹脂にカーボンブラックを溶融混練する方法で製造された熱可塑性樹脂フィルム又はシートを薄肉成形した場合、その表面にカーボンブラックの凝集物が発生するという問題がある。特に、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリフェニレンスルファイド等の熱可塑性樹脂を用いたシート又はフィルムにおいては、前記カーボンブラックの分散性が悪く、シート又はフィルム中でカーボンブラックの凝集体が形成される。その結果、成形体表面の外観を損ねたり、成形体表面の電気伝導性にばらつきが起こるなどの様々な問題が生じることがある。   However, when a thermoplastic resin film or sheet produced by melt-kneading carbon black in such a thermoplastic resin is formed into a thin wall, there is a problem that aggregates of carbon black are generated on the surface. In particular, in a sheet or film using a thermoplastic resin such as polycarbonate, polyethylene, polypropylene, polyphenylene ether, polyethylene terephthalate, or polyphenylene sulfide, the dispersibility of the carbon black is poor, and the aggregate of carbon black in the sheet or film. Is formed. As a result, various problems may occur, such as the appearance of the surface of the molded body being impaired or the electrical conductivity of the surface of the molded body being varied.

特に、半導体や電子部品との接触用途や、転写ベルトなどの用途では、非常に高精度の電気伝導性制御が求められており、上記のような電気伝導性フィラーの再凝集抑制による電気伝導性制御の精度向上や凝集物低減による表面外観の向上が求められていた。   In particular, in applications such as contact with semiconductors and electronic parts and in applications such as transfer belts, very high-precision electrical conductivity control is required. There has been a demand for improvement in surface appearance by improving control accuracy and reducing aggregates.

特開2003−147095号公報JP 2003-147095 A

そこで本発明が解決しようとする課題は、電気伝導性フィラーの凝集を抑制し、成形体表面の外観性向上と電気伝導性のばらつきを抑え、電気伝導性を安定して付与できる熱可塑性樹脂成形体およびその製造方法を提供すること、そのような成形体を成形可能な熱可塑性樹脂組成物およびその製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to suppress the aggregation of the electrically conductive filler, to improve the appearance of the molded body surface, to suppress the variation in the electrical conductivity, and to stably provide the electrical conductivity. It is providing the body and its manufacturing method, providing the thermoplastic resin composition which can shape | mold such a molded object, and its manufacturing method.

本願発明者らは種々の検討を行った結果、用いる電気伝導性フィラーをシリカで被覆した複合粒子としたものを用いることで、前記課題を解決できることを見出し、本発明を完成するに至った。   As a result of various studies, the inventors of the present application have found that the above problems can be solved by using composite particles in which the electrically conductive filler used is coated with silica, and the present invention has been completed.

すなわち、本発明は、熱可塑性樹脂(A)と、電気伝導性フィラーをシリカで被覆した複合粒子(B)を必須成分とする熱可塑性樹脂組成物であって、
熱可塑性樹脂(A)が50〜99質量%の範囲であり、前記複合粒子(B)が1〜50質量%の範囲であること、かつ、
前記複合粒子(B)の平均粒子径が0.1〜20の範囲であること、かつ、前記複合粒子が、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることを特徴とする熱可塑性樹脂組成物に関する。
That is, the present invention is a thermoplastic resin composition comprising, as essential components, a thermoplastic resin (A) and composite particles (B) in which an electrically conductive filler is coated with silica,
The thermoplastic resin (A) is in the range of 50 to 99% by mass, the composite particles (B) are in the range of 1 to 50% by mass, and
The composite particles (B) have an average particle size in the range of 0.1 to 20, and the composite particles have silica as a matrix and two or more particles of the electrically conductive filler are dispersed in the matrix. The present invention relates to a thermoplastic resin composition characterized by being a dispersion.

また、本発明は、前記記載の熱可塑性樹脂組成物を溶融成形してなる成形体に関する。   Moreover, this invention relates to the molded object formed by melt-molding the said thermoplastic resin composition.

また、本発明は、熱可塑性樹脂(A)と、複合粒子(B)とを、溶融混錬押出機に投入し、溶融混練する熱可塑性樹脂組成物の製造方法であって、
前記複合粒子(B)の平均粒子径が0.1〜20μmの範囲であること、かつ、
前記複合粒子が、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることを特徴とする熱可塑性樹脂組成物の製造方法に関する。
Further, the present invention is a method for producing a thermoplastic resin composition in which a thermoplastic resin (A) and composite particles (B) are charged into a melt kneading extruder and melt kneaded,
The average particle size of the composite particles (B) is in the range of 0.1 to 20 μm, and
The present invention relates to a method for producing a thermoplastic resin composition, wherein the composite particles are a dispersion in which two or more particles of the electrically conductive filler are dispersed in a matrix of silica.

本発明によれば、電気伝導性フィラーの凝集を抑制し、成形体表面の外観性向上と電気伝導性のばらつきを抑え、電気伝導性を安定して付与できる熱可塑性樹脂成形体およびその製造方法を提供すること、そのような成形体を成形可能な熱可塑性樹脂組成物およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoplastic resin molding which suppresses aggregation of an electroconductive filler, suppresses the external appearance improvement of a molded object surface, the dispersion | variation in electrical conductivity, and can provide electric conductivity stably, and its manufacturing method It is possible to provide a thermoplastic resin composition capable of molding such a molded body and a method for producing the same.

実施例で用いる複合粒子(b1)の走査型電子顕微鏡(SEM)写真(倍率1000倍)の電子写真図である。It is an electrophotographic figure of the scanning electron microscope (SEM) photograph (magnification 1000 times) of the composite particles (b1) used in the examples. 実施例で用いる複合粒子(b1)の1粒子の透過型電子顕微鏡(TEM)写真(倍率10000倍)の電子写真図である。It is an electrophotographic figure of a transmission electron microscope (TEM) photograph (magnification 10,000 times) of one particle of composite particles (b1) used in an example.

本発明の熱可塑性樹脂組成物は、熱可塑性樹脂(A)と、電気伝導性フィラーをシリカで被覆した複合粒子(B)を必須成分とする熱可塑性樹脂組成物であって、
熱可塑性樹脂(A)が50〜99質量%の範囲であり、前記複合粒子(B)が1〜50質量%の範囲であること、かつ、
前記複合粒子(B)の平均粒子径が0.1〜20μmの範囲であること、かつ、
前記複合粒子が、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることを特徴とする。
The thermoplastic resin composition of the present invention is a thermoplastic resin composition comprising, as essential components, a thermoplastic resin (A) and composite particles (B) in which an electrically conductive filler is coated with silica,
The thermoplastic resin (A) is in the range of 50 to 99% by mass, the composite particles (B) are in the range of 1 to 50% by mass, and
The average particle size of the composite particles (B) is in the range of 0.1 to 20 μm, and
The composite particle is a dispersion in which silica is used as a matrix and two or more particles of the electrically conductive filler are dispersed in the matrix.

本発明に用いる熱可塑性樹脂(A)としては、ポリオレフィン、ポリスチレン、ポリアミド、ハロゲン化ビニル樹脂、ポリアセタール、飽和ポリエステル、ポリカーボネート、ポリアリールスルホン、ポリアリールケトン、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリアリーレンサルファイドスルフォン、ポリアリレート、液晶ポリエステル、フッ素樹脂等の熱可塑性樹脂が挙げられるが、かかる群から選ばれる熱可塑性樹脂を単独で用いることもでき、または二種以上の熱可塑性樹脂を組み合わせてポリマーアロイとして用いることもできる。   As the thermoplastic resin (A) used in the present invention, polyolefin, polystyrene, polyamide, vinyl halide resin, polyacetal, saturated polyester, polycarbonate, polyarylsulfone, polyarylketone, polyarylene ether, polyarylene sulfide, polyarylether Thermoplastic resins such as ketone, polyethersulfone, polyarylene sulfide sulfone, polyarylate, liquid crystal polyester, fluororesin and the like can be mentioned, but a thermoplastic resin selected from such a group can be used alone, or two or more A thermoplastic resin can also be used in combination as a polymer alloy.

これらのうち、近年の電気出力向上に伴う発熱量の増加に対して充分に対応可能な耐熱性を有する点から、好ましくは融点が170℃以上、より好ましくは170〜390℃の範囲の熱可塑性樹脂、または、好ましくは軟化点が50℃以上、より好ましくは70〜200℃のエラストマ、ゴムが、好ましい樹脂群として挙げられ、具体的にはポリアミド6(6−ナイロン)、ポリアミド66(6,6−ナイロン)またはポリアミド12(12−ナイロン)などの脂肪族骨格を有するポリアミドや、ポリアミド6T(6T−ナイロン)、ポリアミド9T(9T−ナイロン)などの芳香族骨格を有するポリアミドなど融点が170℃以上、好ましくは170〜310℃の範囲であるポリアミドや、ポリブチレンテレフタレート、ポリイソブチレンテレフタレート、ポリエチレンテレフタレートまたはポリシクロヘキセンテレフタレートなどの融点が220℃以上、好ましくは220〜280℃の範囲であるポリエステル樹脂や、融点が265℃以上、好ましくは265〜350℃の範囲、さらに好ましくは280〜300℃の範囲であるポリフェニレンスルフィドに代表されるポリアリーレンスルフィドや、融点が300〜390℃の範囲であるポリエーテルエーテルケトンや、パラヒドロキシ安息香酸を骨格中に有する融点が300℃以上、好ましくは300℃〜熱分解温度(380℃)未満である液晶ポリマーや、融点が220℃以上、好ましくは220〜280℃の範囲であるシンジオタクチックポリスチレン等の融点が170〜390℃の範囲の熱可塑性樹脂といった、いわゆる汎用エンジニアリングプラスチックないしスーパーエンジニアリングプラスチックや、オレフィン系、スチレン系、ウレタン系、ポリエステル系、ポリアミド系、塩ビ系、フッ素系などのエラストマやゴムが挙げられ、このうち、優れた難燃性や寸法安定性を有するポリアリーレンスルフィドが好ましい。   Among these, the thermoplastic resin preferably has a melting point of 170 ° C. or higher, more preferably in the range of 170 to 390 ° C., from the viewpoint that it has sufficient heat resistance to cope with the increase in calorific value accompanying recent improvements in electrical output. Resin, or preferably an elastomer or rubber having a softening point of 50 ° C. or higher, more preferably 70 to 200 ° C. is mentioned as a preferable resin group. Specifically, polyamide 6 (6-nylon), polyamide 66 (6, Polyamide having an aliphatic skeleton such as 6-nylon) or polyamide 12 (12-nylon), or a polyamide having an aromatic skeleton such as polyamide 6T (6T-nylon) or polyamide 9T (9T-nylon). As described above, polyamide, polybutylene terephthalate, polyisobutylene terephthalate, preferably in the range of 170 to 310 ° C. A polyester resin having a melting point of 220 ° C. or higher, preferably 220 to 280 ° C., a melting point of 265 ° C. or higher, preferably 265 to 350 ° C., more preferably 280 to 350 ° C., such as tarate, polyethylene terephthalate or polycyclohexene terephthalate. A polyarylene sulfide typified by polyphenylene sulfide in the range of 300 ° C., a polyether ether ketone having a melting point in the range of 300 to 390 ° C., a melting point having parahydroxybenzoic acid in the skeleton of 300 ° C. or more, preferably Thermoplastic having a melting point in the range of 170 to 390 ° C., such as a liquid crystal polymer having a melting point of 300 ° C. to less than the thermal decomposition temperature (380 ° C.) or a syndiotactic polystyrene having a melting point of 220 ° C. or higher, preferably in the range of 220 to 280 ° C. So-called general-purpose resin Examples include engineering plastics and super engineering plastics, olefins, styrenes, urethanes, polyesters, polyamides, PVCs, fluorines, and other elastomers and rubbers. Of these, excellent flame retardancy and dimensional stability. Polyarylene sulfides having the following are preferred.

本発明に好ましく使用されるポリアリーレンスルフィド樹脂(A1)は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記式(1)   The polyarylene sulfide resin (A1) preferably used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. Specifically, the polyarylene sulfide resin (A1) is represented by the following formula (1):

(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位を繰り返し単位とする樹脂である。
ここで、前記式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂(A1)の機械的強度の点から水素原子であることが好ましく、その場合、下記式(2)で表されるパラ位で結合するもの、及び下記式(3)で表されるメタ位で結合するものが挙げられる。
(Wherein, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). It is a resin having a structural site as a repeating unit.
Here, in the structural part represented by the formula (1), it is particularly preferable that R 1 and R 2 in the formula are hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin (A1). In this case, those bonded at the para position represented by the following formula (2) and those bonded at the meta position represented by the following formula (3) are exemplified.

これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂(A)の耐熱性や結晶性の面で好ましい。 Among these, the heat resistance of the polyarylene sulfide resin (A) is that the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). It is preferable in terms of crystallinity.

また、前記ポリアリーレンスルフィド樹脂(A1)は、前記式(1)で表される構造部位のみならず、下記の構造式(4)〜(7)   In addition, the polyarylene sulfide resin (A1) includes not only the structural portion represented by the formula (1) but also the following structural formulas (4) to (7).

で表される構造部位を、前記式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記式(4)〜(7)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂(A1)の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂(A1)中に、上記式(4)〜(7)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
また、前記ポリアリーレンスルフィド樹脂(A1)は、その分子構造中に、下記式(8)
The structural site represented by the formula (1) may be included at 30 mol% or less of the total with the structural site represented by the formula (1). In particular, in the present invention, the structural site represented by the above formulas (4) to (7) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin (A1). When the polyarylene sulfide resin (A1) includes a structural moiety represented by the above formulas (4) to (7), the bonding mode thereof may be either a random copolymer or a block copolymer. May be.
The polyarylene sulfide resin (A1) has the following formula (8) in its molecular structure.

で表される3官能性の構造部位、或いは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 May have a trifunctional structural site represented by the formula (1) or a naphthyl sulfide bond, but is preferably 3 mol% or less, particularly 1 mol%, based on the total number of moles with other structural sites. The following is preferable.

また、ポリアリーレンスルフィド樹脂(A1)は300℃で測定した溶融粘度(V6)が2〜1,000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから5〜100〔Pa・s〕の範囲が好ましい。ただし、300℃で測定した溶融粘度(V6)とは、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との、前者/後者の比が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を表す。また、PAS樹脂(A1)は、その非ニュートン指数が0.90〜2.00の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90〜1.20の範囲、さらに0.95〜1.15の範囲であることが好ましく、特に0.95〜1.10であることが好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。   The polyarylene sulfide resin (A1) preferably has a melt viscosity (V6) measured at 300 ° C. in the range of 2 to 1,000 [Pa · s], and further has a good balance between fluidity and mechanical strength. Therefore, the range of 5 to 100 [Pa · s] is preferable. However, melt viscosity (V6) measured at 300 ° C. is an orifice having a temperature / 300 ° C., a load of 1.96 MPa, an orifice length and an orifice diameter of 10/1 using a flow tester. Represents the melt viscosity after holding for 6 minutes. The PAS resin (A1) preferably has a non-Newtonian index in the range of 0.90 to 2.00. When the linear polyarylene sulfide resin is used, the non-Newtonian index is preferably in the range of 0.90 to 1.20, more preferably in the range of 0.95 to 1.15, particularly 0.95 to 1.10. It is preferable that Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance. However, the non-Newtonian index (N value) is measured by measuring the shear rate and shear stress using a capillograph at 300 ° C, the ratio of the orifice length (L) to the orifice diameter (D), and L / D = 40. These are values calculated using the following formula.

[ただし、SRは剪断速度(秒−1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどポリアリーレンスルフィド樹脂は線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。 [Wherein SR represents a shear rate (second −1 ), SS represents a shear stress (dyne / cm 2 ), and K represents a constant. The closer the N value is to 1, the closer the polyarylene sulfide resin is to a linear structure, and the higher the N value, the more branched the structure is.

ポリアリーレンスルフィド樹脂(A1)の製造方法としては、特に限定されないが、例えば1)ジハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、硫黄と炭酸ソーダの存在下で重合させる方法、2)p−クロルチオフェノールと、更に必要ならばその他の共重合成分とを自己縮合させる方法、3)有機極性溶媒中で、スルフィド化剤とジハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを反応させる方法、4)ジヨード芳香族化合物と単体硫黄と必要に応じて重合禁止剤とを重合触媒の存在下で溶融重合する方法等が挙げられる。これらの方法のなかでも、3)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加しても良い。上記3)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物を含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02〜0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07−228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でポリハロ芳香族化合物、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01〜0.9モルの有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。   The production method of the polyarylene sulfide resin (A1) is not particularly limited. For example, 1) a method of polymerizing a dihalogenoaromatic compound and, if necessary, other copolymerization components in the presence of sulfur and sodium carbonate. 2) Self-condensation of p-chlorothiophenol with other copolymerization components if necessary, 3) In an organic polar solvent, sulfidizing agent and dihalogenoaromatic compound, and further if necessary Examples thereof include a method of reacting a copolymerization component, and 4) a method of melt polymerization of a diiodo aromatic compound, elemental sulfur and, if necessary, a polymerization inhibitor in the presence of a polymerization catalyst. Among these methods, the method 3) is versatile and preferable. In the reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above methods 3), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound and A method for producing a polyarylene sulfide resin by reacting with a sulfidizing agent and controlling the amount of water in the reaction system in the range of 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent ( Japanese Patent Application Laid-Open No. 07-228699), a polyhaloaromatic compound, an alkali metal hydrosulfide and an organic acid alkali metal salt in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent. 0.01-0.9 mol of organic acid alkali metal salt and 1 mol of water in the reaction system with respect to 1 mol of aprotic polar organic solvent A method of reacting while controlling the .02 mols (WO2010 / 058 713 pamphlet reference.) Is what is particularly preferably obtained by.

本発明で用いる電気伝導性フィラーとしては、公知の物が使用できる。例えば、ニッケル、銅、金、銀、アルミニウム、亜鉛、ニッケル、スズ、鉛、クロム、プラチナ、パラジウム、タングステン、モリブデンなどの金属材料およびこれら2種以上の合金、混合体、あるいはこれら金属の化合物で良好な電気伝導性を有するものや、人造黒鉛、天然黒鉛、ガラス状カーボン、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、カーボンナノファイバーなどの炭素材料およびこれら2種以上の混合体が挙げられる。特に、銀粉、カーボンブラックは、安定した導電性を実現し易いため好ましい。   A well-known thing can be used as an electrically conductive filler used by this invention. For example, a metal material such as nickel, copper, gold, silver, aluminum, zinc, nickel, tin, lead, chromium, platinum, palladium, tungsten, molybdenum, and an alloy or mixture of these two or more, or a compound of these metals Examples include those having good electrical conductivity, carbon materials such as artificial graphite, natural graphite, glassy carbon, carbon black, acetylene black, ketjen black, carbon fiber, carbon nanofiber, and mixtures of two or more of these. It is done. In particular, silver powder and carbon black are preferable because stable conductivity is easily realized.

電気伝導性フィラーの形状は、発明の効果を損ねなければ特に限定されることはなく、板状、球状、繊維状、無定形等いずれであってよい。   The shape of the electrically conductive filler is not particularly limited as long as the effects of the invention are not impaired, and may be any of a plate shape, a spherical shape, a fiber shape, an amorphous shape, and the like.

本発明の電気伝導性フィラーの一次粒子の平均粒子径が0.01〜10μmの範囲のものを用いることが好ましく、0.01〜5μmの範囲のものを用いることがより好ましい。この範囲の電気伝導性フィラーは、シラノール基を含有する化合物を用いて被覆してなることが、成形時の流動性の改善効果がより大きく、流動性をより良好とすることができ、安定的に良好な電気伝導性を奏することができる。   The average particle diameter of the primary particles of the electrically conductive filler of the present invention is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.01 to 5 μm. The electrically conductive filler in this range is formed by coating with a compound containing a silanol group, has a greater effect of improving fluidity during molding, can improve fluidity, and is stable. In addition, good electrical conductivity can be achieved.

このような銀粉としては、例えば、AG2−1C(DOWAエレクトロニクス株式会社製、平均粒径D50:0.8μm)、SPQ03S(三井金属鉱山株式会社製、平均粒径D50:0.5μm)、EHD(三井金属鉱山株式会社製、平均粒径D50:0.5μm)、シルベストC−34(株式会社徳力化学研究所製、平均粒径D50:0.35μm)、AG2−1(DOWAエレクトロニクス株式会社製、平均粒径D50:1.3μm)、シルベストAgS−050(株式会社徳力化学研究所製、平均粒径D50:1.4μm)などが挙げられる。   Examples of such silver powder include AG2-1C (manufactured by DOWA Electronics Co., Ltd., average particle size D50: 0.8 μm), SPQ03S (manufactured by Mitsui Metal Mining Co., Ltd., average particle size D50: 0.5 μm), EHD ( Mitsui Metal Mining Co., Ltd., average particle size D50: 0.5 μm), Sylbest C-34 (Tokuriku Chemical Laboratory Co., Ltd., average particle size D50: 0.35 μm), AG2-1 (DOWA Electronics Co., Ltd.) Average particle diameter D50: 1.3 μm), Sylbest AgS-050 (manufactured by Tokuru Chemical Laboratory Co., Ltd., average particle diameter D50: 1.4 μm) and the like.

また、カーボンブラックとしては、例えば、カーボン(電気化学工業株式会社製「デンカブラック粒状品」平均一次粒子径:35nm)、カーボン(電気化学工業株式会社製「デンカブラックHS−100」平均一次粒子径:48nm)、カーボン(ライオン株式会社製 ライオナイトEC200L 平均一次粒子径:40nm)、人造黒鉛(昭和電工株式会社製「UF−G5」平均粒径D50 3μm)などが挙げられる。   Examples of the carbon black include carbon (“DENKA BLACK granular product” average primary particle size: 35 nm manufactured by Denki Kagaku Kogyo Co., Ltd.), carbon (“DENKA BLACK HS-100” average primary particle size manufactured by Denki Kagaku Kogyo Co., Ltd.). : 48 nm), carbon (Lionite EC200L average primary particle size: 40 nm) manufactured by Lion Corporation, artificial graphite (“UF-G5” average particle diameter D50 3 μm manufactured by Showa Denko KK) and the like.

前記電気伝導性フィラーをシリカで被覆した複合粒子(B)の製法は、特に制限は無く例えば、以下の方法が挙げられる。   There is no restriction | limiting in particular in the manufacturing method of the composite particle (B) which coat | covered the said electroconductive filler with the silica, For example, the following method is mentioned.

複合粒子は、(1)電気伝導性フィラーと、シラノール基を有する化合物を加水分解させることによって得られるゾル溶液とを含む混合ゾル溶液を調製する工程と、(2)その混合ゾル溶液から複合粒子を形成する工程と、を経て製造することができる。   The composite particles include (1) a step of preparing a mixed sol solution containing an electrically conductive filler and a sol solution obtained by hydrolyzing a compound having a silanol group, and (2) a composite particle from the mixed sol solution. Can be manufactured through the process of forming.

例えば、電気伝導性フィラー及びシラノール基を有する化合物を含む混合ゾル溶液として、シリカコロイドの溶液に前記電気伝導性フィラーを混合して調製することができる。また、シリコンテトラメトキシド、シリコンテトラエトキシド等のシリコンアルコキシドの加水分解脱水縮合液に電気伝導性フィラーを混合して調製してもよい。さらに、シリカ源として水ガラス(珪酸ナトリウム)を混合ゾル溶液に加えてもよい。   For example, a mixed sol solution containing an electrically conductive filler and a compound having a silanol group can be prepared by mixing the electrically conductive filler in a silica colloid solution. Alternatively, it may be prepared by mixing an electrically conductive filler with a hydrolytic dehydration condensation liquid of silicon alkoxide such as silicon tetramethoxide or silicon tetraethoxide. Furthermore, water glass (sodium silicate) may be added to the mixed sol solution as a silica source.

混合ゾル溶液中の電気伝導性フィラーの含有率は、全固形分に対して、例えば0.1〜95質量%の範囲であることが好ましく、さらに20〜80質量%の範囲にあることがより好ましく、さらに50〜78質量%の範囲にあることが最も好ましい。   The content of the electrically conductive filler in the mixed sol solution is preferably, for example, in the range of 0.1 to 95% by mass and more preferably in the range of 20 to 80% by mass with respect to the total solid content. More preferably, it is most preferably in the range of 50 to 78% by mass.

混合ゾル溶液は、電気伝導性フィラーの分散性を向上させるために、分散剤を含んでいてもよい。分散剤としては、モノステアリン酸ソルビタン、モノオレイン酸ソルビタン、トリオレイン酸ソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、モノステアリン酸グリセリン、モノステアリン酸プロピレングリコール、イソステアリルグリセリルエーテル、モノステアリン酸ポリエチレングリコール、ジステアリン酸ポリエチレングリコール、ポリオキシエチレン硬化ヒマシ油等が挙げられる。   The mixed sol solution may contain a dispersant in order to improve the dispersibility of the electrically conductive filler. Dispersants include sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene lauryl ether, polyoxyethylene Examples include oxyethylene oleyl ether, sodium polyoxyethylene lauryl ether sulfate, glyceryl monostearate, propylene glycol monostearate, isostearyl glyceryl ether, polyethylene glycol monostearate, polyethylene glycol distearate, polyoxyethylene hydrogenated castor oil, and the like. .

次に、混合ゾル溶液から複合粒子を形成する。例えば、混合ゾル溶液を噴霧乾燥することによって、複合粒子を得ることができる。噴霧乾燥は、高温雰囲気下に液体を微粒化して散布することによって直接乾燥して粒子を得る技術である。噴霧乾燥は、例えば、スプレードライヤーを用いて、混合ゾル溶液の溶媒(水、アルコール等)が蒸発するのに十分な温度の雰囲気下に、混合ゾル溶液を噴霧することによって行うことができる。噴霧乾燥することによって、電気伝導性フィラーがシラノール基を有する化合物のコロイド粒子に囲まれて当該化合物のマトリックス中に強固に内包及び/又は分散された略球状の複合粒子が形成される。   Next, composite particles are formed from the mixed sol solution. For example, the composite particles can be obtained by spray drying the mixed sol solution. Spray drying is a technique in which particles are obtained by direct drying by atomizing and spraying a liquid in a high-temperature atmosphere. Spray drying can be performed, for example, by spraying the mixed sol solution using a spray dryer in an atmosphere at a temperature sufficient to evaporate the solvent (water, alcohol, etc.) of the mixed sol solution. By spray drying, substantially spherical composite particles are formed in which the electrically conductive filler is surrounded by colloidal particles of a compound having a silanol group and is firmly encapsulated and / or dispersed in the matrix of the compound.

噴霧乾燥工程の後に、得られた複合粒子を熱処理する工程をさらに行ってもよい。当該熱処理によって、複合粒子をさらに乾燥することができる。また、シリコンアルコキシド等の加水分解脱水縮合液を用いた場合には、脱水縮合をさらに進行させることもできる。   You may further perform the process of heat-processing the obtained composite particle after a spray-drying process. The composite particles can be further dried by the heat treatment. Further, when a hydrolytic dehydration condensate such as silicon alkoxide is used, dehydration condensation can be further advanced.

熱処理の温度及び時間については、目的に応じて適宜決定すればよい。この他、例えば、窒素、アルゴン等の不活性気体雰囲気中、シラノール基を有する化合物の粘性流動が起こる温度、例えば800〜1000℃で2〜5時間熱処理することができる。   What is necessary is just to determine suitably the temperature and time of heat processing according to the objective. In addition, for example, heat treatment can be performed at a temperature at which viscous flow of the compound having a silanol group occurs, for example, at 800 to 1000 ° C. for 2 to 5 hours in an inert gas atmosphere such as nitrogen or argon.

このようにして得られた複合粒子(B)は、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2以上が分散した分散体として得ることができる。得られた複合粒子の平均粒子径は、0.1〜20μmの範囲であり、好ましくは0.1〜10μmの範囲であり、さらに好ましくは0.1〜5μmの範囲である。当該範囲で、成形体表面における電気伝導性のばらつきを抑え、電気伝導性を安定して付与できる熱可塑性樹脂成形体を提供することができる。一方、0.1μm未満の場合には、複合粒子自身が凝集しやすくなり、成形体表面における電気伝導性のばらつきが大きくなる傾向となる。一方、20μmを超えると、成形体表面の外観性が低下する傾向となる。   The composite particles (B) thus obtained can be obtained as a dispersion in which silica is used as a matrix and two or more of the electrically conductive fillers are dispersed in the matrix. The average particle diameter of the obtained composite particles is in the range of 0.1 to 20 μm, preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.1 to 5 μm. Within this range, it is possible to provide a thermoplastic resin molded body that can suppress variation in electrical conductivity on the surface of the molded body and can stably impart electrical conductivity. On the other hand, when the particle size is less than 0.1 μm, the composite particles themselves tend to aggregate, and the variation in electrical conductivity on the surface of the molded body tends to increase. On the other hand, when it exceeds 20 μm, the appearance of the surface of the molded product tends to be lowered.

熱可塑性樹脂組成物中における前記熱可塑性樹脂(A)と前記複合粒子(B)の含有量は、本発明の効果を損なう範囲でなければ特に限定されるものではないが、優れた機械的強度や導電性、電気伝導性を安定して良好に付与できる観点から、熱可塑性樹脂(A)100質量部に対して、1質量部以上の範囲であることが好ましく、さらに3質量部以上の範囲であることがより好ましく、さらに5質量部以上の範囲であることが最も好ましい。一方、成形物の外観の悪化を抑制することができる点から、熱可塑性樹脂(A)100質量部に対して、50質量部以下の範囲であることが好ましく、さらに40質量部以下の範囲がより好ましく、さらに30質量部以下の範囲であることが最も好ましい。   The contents of the thermoplastic resin (A) and the composite particles (B) in the thermoplastic resin composition are not particularly limited as long as they do not impair the effects of the present invention, but have excellent mechanical strength. From the viewpoint of stably and satisfactorily imparting electrical conductivity and electrical conductivity, it is preferably in the range of 1 part by mass or more, more preferably in the range of 3 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (A) More preferably, it is most preferably in the range of 5 parts by mass or more. On the other hand, from the viewpoint of suppressing deterioration of the appearance of the molded product, the range is preferably 50 parts by mass or less, and more preferably 40 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). More preferably, it is most preferably in the range of 30 parts by mass or less.

本発明の熱可塑性樹脂(A)には、本発明の効果を損なわない範囲で、強度、耐熱性、寸法安定性等の性能を改善するため、上記成分に加え、さらに充填材やその他添加剤が含まれていてもよい。   In the thermoplastic resin (A) of the present invention, in addition to the above components, in addition to the above components, fillers and other additives are added in order to improve the performance such as strength, heat resistance and dimensional stability within the range not impairing the effects of the present invention. May be included.

当該添加剤としては、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤等の各種添加剤や、また用途に応じて、熱可塑性樹脂(A)とは異なる樹脂が含まれていてもよい。例えば、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂、或いは、弗素ゴム、シリコーンゴム等のエラストマ、特にエポキシ基、アミノ基、カルボキシ基、イソシアナト基または下記の構造式(1)、構造式(2)   The additive is different from the thermoplastic resin (A) according to various additives such as a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, and a lubricant, and depending on the application. Resin may be included. For example, polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluoroethylene, polydifluoride Synthetic resins such as ethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer, or elastomers such as fluorine rubber and silicone rubber, particularly epoxy group, amino group, carboxy group, isocyanato group or The following structural formula (1), structural formula (2)

(但し、構造式(1)、構造式(2)中、Rは炭素原子数1〜8のアルキル基を表す。)で表される部分構造からなる群から選ばれる少なくとも1種の官能基を有するポリオレフィンエラストマなどの樹脂が挙げられる。 (However, in Structural Formula (1) and Structural Formula (2), R represents an alkyl group having 1 to 8 carbon atoms.) At least one functional group selected from the group consisting of partial structures represented by Examples thereof include resins such as polyolefin elastomer.

また、充填材としても、粒状、繊維状などさまざまな形状の充填材等が挙げられ、例えば、ガラス繊維、シランガラス繊維、セラミック繊維、アラミド繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等の繊維状の充填材や、硫酸バリウム、硫酸カルシウム、クレー、パイロフィライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等が挙げられる。   Examples of the filler include fillers of various shapes such as granular and fibrous, for example, glass fiber, silane glass fiber, ceramic fiber, aramid fiber, potassium titanate, silicon carbide, calcium sulfate, calcium silicate. Fiber fillers such as natural fibers such as wollastonite, barium sulfate, calcium sulfate, clay, pyrophyllite, bentonite, sericite, zeolite, mica, mica, talc, attapulgite, ferrite, silicic acid Examples include calcium, calcium carbonate, magnesium carbonate, and glass beads.

これらの添加剤、充填剤の使用量は、それぞれの目的に応じて異なり、一概に規定することはできないが、熱可塑性樹脂(A)100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。また、前記充填剤の大きさは、本発明の効果を損ねない範囲であれば特に限定されるものではないが、表面外観性および表面平滑性の点から、平均粒子径が1μm未満の範囲であることが好ましい。一方、熱可塑性樹脂(A)との濡れ性に優れ、成形性および分散性が良好となる点から、10nm以上の範囲であることが好ましい。   The amount of these additives and fillers used varies depending on the purpose and cannot be specified in general, but is in the range of 0.01 to 1000 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A). Thus, it may be appropriately adjusted and used according to the purpose and application so as not to impair the effects of the present invention. Further, the size of the filler is not particularly limited as long as it does not impair the effects of the present invention, but from the viewpoint of surface appearance and surface smoothness, the average particle diameter is within a range of less than 1 μm. Preferably there is. On the other hand, the range of 10 nm or more is preferable from the viewpoint of excellent wettability with the thermoplastic resin (A) and good moldability and dispersibility.

本発明の熱可塑性樹脂組成物の製造方法は、本発明の効果を損なわなければ特に制限されず、例えば、原料である熱可塑性樹脂(A)と前記複合粒子(B)を、タンブラー又はヘンシェルミキサーなどで均一に混合、次いでバンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどを用いて溶融混練する方法などが挙げられる。なかでも十分な混練力を有する単軸または2軸の押出機を用いて溶融混練する方法が好ましい。   The method for producing the thermoplastic resin composition of the present invention is not particularly limited as long as the effects of the present invention are not impaired. For example, the thermoplastic resin (A) as the raw material and the composite particles (B) are tumbled or henshell mixer. And the like, followed by melt kneading using a Banbury mixer, a mixing roll, a single or twin screw extruder, a kneader, and the like. In particular, a melt kneading method using a single or twin screw extruder having a sufficient kneading force is preferable.

具体的には、前記熱可塑性樹脂(A)と前記複合粒子(B)と、更に必要に応じてその他の配合成分を、タンブラー又はヘンシェルミキサーなどで均一に混合、次いで二軸混練押出機などの溶融混練押出機に投入し、前記熱可塑性樹脂(A)が溶融する温度以上に設定し、溶融混練することにより得られる。溶融混練条件としては、樹脂成分の吐出量5〜500(kg/hr)の範囲と、スクリュー回転数100〜500(rpm)と、それらの比率(吐出量/スクリュー回転数)が0.02〜2(kg/hr/rpm)なる条件下に溶融混練する方法が好ましい方法として挙げられる。かかる条件下に製造することによって前記熱可塑性樹脂(A)をマトリックス(連続相)として、前記複合粒子(B)が微分散する熱可塑性樹脂組成物を好ましく製造することができる。   Specifically, the thermoplastic resin (A) and the composite particles (B) and, if necessary, other blending components are mixed uniformly with a tumbler or Henschel mixer, and then a twin-screw kneading extruder or the like. It is obtained by charging into a melt-kneading extruder, setting at a temperature higher than the temperature at which the thermoplastic resin (A) melts, and melt-kneading. As the melt-kneading conditions, the resin component discharge amount is in the range of 5 to 500 (kg / hr), the screw rotation speed is 100 to 500 (rpm), and the ratio thereof (discharge amount / screw rotation speed) is 0.02 to 0.02. A preferable method is melt kneading under a condition of 2 (kg / hr / rpm). By producing under such conditions, it is possible to preferably produce a thermoplastic resin composition in which the composite particles (B) are finely dispersed using the thermoplastic resin (A) as a matrix (continuous phase).

上記製造方法につき更に詳述すれば、前記した各成分を押出機内に投入し、設定温度300℃、樹脂温度320℃程度の温度条件下に溶融混練する方法が好ましく挙げられる。この際、樹脂成分の吐出量は回転数200rpmで4〜400kg/hrの範囲であることが好ましく、なかでも分散性の点から10〜250kg/hrであることがより好ましい。したがって、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)は、特に0.05〜1.25(kg/hr/rpm)であることが好ましい。   More specifically, the above-described production method is preferably a method in which the above-described components are put into an extruder and melt-kneaded under temperature conditions of a set temperature of 300 ° C. and a resin temperature of about 320 ° C. At this time, the discharge amount of the resin component is preferably in the range of 4 to 400 kg / hr at a rotation speed of 200 rpm, and more preferably 10 to 250 kg / hr from the viewpoint of dispersibility. Accordingly, the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is particularly 0.05 to 1.25 (kg / hr / rpm). Is preferred.

このようにして溶融混練された熱可塑性樹脂組成物はその後、直接各種公知の成形法を用いて成形体へと成形されるか、一旦、ペレットとして成形された後、次いで、これを各種成形機に供して溶融成形することにより、目的とする熱可塑性樹脂成形体に成形することができる。公知の成形法としては、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法およびブロー成形法などが挙げられる。   The thermoplastic resin composition melt-kneaded in this way is then directly molded into a molded body using various known molding methods, or once molded as pellets, and then molded into various molding machines. By subjecting it to melt molding, it can be molded into the desired thermoplastic resin molding. Known molding methods include injection molding, press molding, calendar molding, roll molding, extrusion molding, cast molding, and blow molding.

そして得られた成形体は、熱可塑性樹脂(A)からなるマトリックス(連続相)中に、電気伝導性フィラーをシリカで被覆した複合粒子(B)が微分散してなるものであって、前記複合粒子が、さらにシリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることから、電気伝導性を安定して付与することができる。   The obtained molded body is obtained by finely dispersing composite particles (B) obtained by coating an electrically conductive filler with silica in a matrix (continuous phase) made of a thermoplastic resin (A), Since the composite particles are a dispersion in which two or more particles of the electrically conductive filler are further dispersed in the matrix using silica as a matrix, the electrical conductivity can be stably imparted.

その理由は定かではないが、電気伝導性フィラー単独のものを使用した場合には、成形時に当該フィラーが再凝集し易く、成形条件により成形体の電気抵抗が大きく変動する。前記複合粒子(B)は電気伝導性フィラーをシリカで被覆・固定しているため再凝集が生じず、複合粒子自体も電気伝導性フィラーより大粒子径のため凝集し難く、更にシリカが電気伝導の障壁となるため、安定した導電性成形体を得ることが出来たものと考えられる。   The reason for this is not clear, but when an electrically conductive filler alone is used, the filler easily re-aggregates during molding, and the electrical resistance of the molded body varies greatly depending on molding conditions. Since the composite particles (B) are coated and fixed with an electrically conductive filler with silica, re-aggregation does not occur, and the composite particles themselves are more difficult to aggregate due to the larger particle size than the electrically conductive filler. Therefore, it is considered that a stable conductive molded body could be obtained.

目的とする形状に成形するためには、熱可塑性樹脂組成物のペレットをさらに成形機に供して押出成形法、射出成形法、圧縮成形法、吹込成形法、射出圧縮成形法などの公知の各種成形法に適用して、シートまたはフィルムとして得る(成形工程)。   In order to form the desired shape, the pellets of the thermoplastic resin composition are further subjected to a molding machine, and various known methods such as extrusion molding, injection molding, compression molding, blow molding, and injection compression molding are used. Apply to the molding method to obtain a sheet or film (molding process).

特に配合量が少ない添加剤は、成形工程直前に添加・混合してもよい。
本発明の熱可塑性樹脂成形体は、熱可塑性樹脂(A)の本来有する機械的強度、耐熱性、寸法安定性等の諸性能を活かして、例えば、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モータ、磁気ヘッドベース、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品などに代表される電気・電子部品、VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品などに代表される家庭、事務電気製品部品や、オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モータ部品、ライタ、タイプライタなどに代表される機械関連部品や、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品や、水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサ、水量センサ、水道メーターハウジングなどの水廻り部品や、バルブオルタネーターターミナル、オルタネーターコネクタ,ICレギュレータ、ライトディヤ用ポテンシオメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモータ用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモータ関係部品、デュストリビュータ、スタータースイッチ、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース、HEV用コンデンサーケース、車速センサ、ケーブルライナ、プラスチックギヤなどの自動車・車両関連部品など各種用途あるいはバグフィルター、保温衣料、不織布や縫い糸等の繊維若しくは粘着フィルム用基材、離型フィルム、回路基板、フィルムコンデンサ、モーター・トランス用絶縁フィルム、転写ベルト、回路基板、燃料チューブ等、フィルム用の材料、電磁波の遮蔽材などとして幅広く有用である。
In particular, additives with a small amount may be added and mixed immediately before the molding step.
The thermoplastic resin molded article of the present invention utilizes various performances such as mechanical strength, heat resistance, and dimensional stability inherent to the thermoplastic resin (A), for example, sensors, LED lamps, connectors, sockets, resistors. , Relay case, switch, coil bobbin, capacitor, variable capacitor case, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone, headphones, small motor, magnetic head base, semiconductor, liquid crystal, FDD carriage, Electrical / electronic parts such as FDD chassis, motor brush holder, parabolic antenna, computer-related parts, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio laser discs Audio equipment parts such as compact discs, lighting Houses represented by parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, office electrical product parts, office computer related parts, telephone equipment related parts, facsimile related parts, copying machine related parts, cleaning jigs Machine parts represented by motor parts, writers, typewriters, optical equipment represented by microscopes, binoculars, cameras, watches, precision machine parts, water taps, mixing faucets, pump parts, Various parts such as pipe joints, water volume control valves, relief valves, hot water temperature sensors, water volume sensors, water meter housings, valve alternator terminals, alternator connectors, IC regulators, light meter potentiometer bases, exhaust gas valves, etc. Various valves, fuel-related, exhaust system, intake system Air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake Pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, distributor, starter switch, starter relay, wire harness for transmission, window Washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, ho Automobile terminals such as electrical terminals, electrical component insulation plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition device cases, HEV condenser cases, vehicle speed sensors, cable liners, plastic gears, etc.・ Various applications such as vehicle-related parts, bag filters, heat insulation clothing, non-woven fabric and sewing thread fibers, adhesive film substrates, release films, circuit boards, film capacitors, motor / transformer insulation films, transfer belts, circuit boards, It is widely useful as a material for film such as a fuel tube, and as a shielding material for electromagnetic waves.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples.

[複合粒子の平均粒子径]
JIS−Z8825に準拠し、レーザー回折散乱式粒度分布測定装置(日機装株式会社 製 マイクロトラックMT3300EX II)により測定し、得られた写真像から任意の100点を測定し、体積分布基準の50%粒度(メジアン径)を測定した。
[Average particle diameter of composite particles]
Based on JIS-Z8825, measured with a laser diffraction scattering type particle size distribution measuring device (Microtrack MT3300EX II manufactured by Nikkiso Co., Ltd.), 100 arbitrary points were measured from the obtained photographic image, and 50% particle size based on volume distribution (Median diameter) was measured.

[複合粒子中の電気伝導性フィラーの一次粒子の平均粒子径]
複合粒子中の電気伝導性フィラー(カーボンブラック)の一次粒子径は透過型電子顕微鏡(TEM)により観察し、得られた写真像から任意の100点を測定し、体積分布基準の50%粒度(メジアン径)を測定した。
[Average particle diameter of primary particles of electrically conductive filler in composite particles]
The primary particle diameter of the electrically conductive filler (carbon black) in the composite particles is observed with a transmission electron microscope (TEM), and an arbitrary 100 points are measured from the obtained photographic image. The median diameter was measured.

(調製例1〜4)複合粒子の調製
電気伝導性ファイラー(1)〜(4)の水分散液(フィラー固形分:25質量%+ポリカルボン酸型高分子界面活性剤:1.7質量%)をジルコニアビーズミルにより調製した。この水分散液にテトラメトキシシラン及びコロイダルシリカ(日本化学工業社製:シリカドール(登録商標)30)を混合し、混合ゾルを得た。さらに、フィラー、シリカ、分散剤等の固形分が18.4%になるように純水を使って混合ゾルを希釈した。混合ゾルの無機固形分中のフィラーの含有率は、50〜78質量%の範囲であった。
(Preparation Examples 1 to 4) Preparation of composite particles Aqueous dispersion of electrically conductive filers (1) to (4) (filler solid content: 25% by mass + polycarboxylic acid type polymer surfactant: 1.7% by mass) ) Was prepared with a zirconia bead mill. Tetramethoxysilane and colloidal silica (manufactured by Nippon Chemical Industry Co., Ltd .: Silica Doll (registered trademark) 30) were mixed with this aqueous dispersion to obtain a mixed sol. Further, the mixed sol was diluted with pure water so that the solid content of the filler, silica, dispersant and the like was 18.4%. The filler content in the inorganic solid content of the mixed sol was in the range of 50 to 78 mass%.

次に、スプレードライヤー(藤崎電機社製MDL−050)を用いて混合ゾルを乾燥させ、電気伝導性フィラー内包シリカ粒子を作製した。平均粒径が0.1〜10μmの範囲に収まるように噴霧条件を設定した(推奨条件:ゾル送量=30g/分)。その後、600℃で7時間焼成して電気伝導性フィラーを含むシリカからなる複合粒子(b1)〜(b4)を得た。得られた複合粒子(b1)の走査型電子顕微鏡(SEM)写真(倍率1000)を図1に、複合粒子(b1)の透過型電子顕微鏡(TEM)写真(倍率10000)を図2に示した。   Next, the mixed sol was dried using a spray dryer (MDL-050 manufactured by Fujisaki Electric Co., Ltd.) to produce electrically conductive filler-encapsulated silica particles. The spraying conditions were set so that the average particle size was within the range of 0.1 to 10 μm (recommended condition: sol feed amount = 30 g / min). Then, it baked at 600 degreeC for 7 hours, and obtained the composite particle (b1)-(b4) which consists of a silica containing an electroconductive filler. A scanning electron microscope (SEM) photograph (magnification 1000) of the obtained composite particles (b1) is shown in FIG. 1, and a transmission electron microscope (TEM) photograph (magnification 10000) of the composite particles (b1) is shown in FIG. .

電気伝導性フィラー(1):カーボン(電気化学工業株式会社製「デンカブラック粒状品」平均粒子径35nm)
電気伝導性フィラー(2):カーボン(電気化学工業株式会社製「デンカブラックHS−100」平均粒子径48nm)
電気伝導性フィラー(3):カーボン(ライオン株式会社製「ライオナイトEC200L」平均粒子径40nm)
Electrically conductive filler (1): Carbon (Denka Black Granules manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 35 nm)
Electrically conductive filler (2): Carbon (“DENKA BLACK HS-100” average particle size 48 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.)
Electrically conductive filler (3): Carbon (“Lionite EC200L” average particle size 40 nm, manufactured by Lion Corporation)

(実施例1〜4/参考例1〜3)
下記表2〜3に示した熱可塑性樹脂(a1)と、複合粒子(b1〜b4)、更に必要に応じてその他の配合成分をタンブラーで均一に混合し、配合材料とした。その後、株式会社日本製鋼所製ベント付き2軸押出機「TEX−30」に前記配合材料を投入し、樹脂成分吐出量15kg/hr、スクリュー回転数200rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.075(kg/hr/rpm)、最大トルク40(A)、設定樹脂温度300℃で溶融混練して樹脂組成物のペレットを得た。
(Examples 1-4 / Reference Examples 1-3)
The thermoplastic resin (a1) shown in Tables 2 to 3 below, the composite particles (b1 to b4), and, if necessary, other blending components were uniformly mixed with a tumbler to obtain a blending material. Thereafter, the blended material was charged into a vented twin-screw extruder “TEX-30” manufactured by Nippon Steel Works, Ltd., resin component discharge rate 15 kg / hr, screw rotation speed 200 rpm, resin component discharge rate (kg / hr) And screw rotation speed (rpm) ratio (discharge amount / screw rotation speed) = 0.075 (kg / hr / rpm), maximum torque 40 (A), and melt kneading at a set resin temperature of 300 ° C. Pellets were obtained.

成形品の引張特性、表面光沢、表面抵抗率、体積抵抗率、表面外観性を測定するため、Tダイ押出機を用いて前記ペレットを設定温度300℃で溶融混練し、ロール温度70℃で押出成形して、厚み80〜100μmのフィルムを作製した。測定は以下の方法で行った。それらの結果を表2〜3に示す。なお、表中の単位は特に断りがない限り質量部である。   In order to measure the tensile properties, surface gloss, surface resistivity, volume resistivity, and surface appearance of the molded product, the pellets were melt-kneaded at a set temperature of 300 ° C using a T-die extruder and extruded at a roll temperature of 70 ° C. Molded to prepare a film having a thickness of 80 to 100 μm. The measurement was performed by the following method. The results are shown in Tables 2-3. In addition, the unit in a table | surface is a mass part unless there is particular notice.

[引張特性]
フィルムを15×110mmに切り出し、測定温度23℃、標線間距離50mm、試験速度10mm/minで、引張試験機(AGS−5kNX:株式会社 島津製作所製)により、引張強度を測定した。
[Tensile properties]
The film was cut into 15 × 110 mm, and the tensile strength was measured with a tensile tester (AGS-5kNX: manufactured by Shimadzu Corporation) at a measurement temperature of 23 ° C., a distance between marked lines of 50 mm, and a test speed of 10 mm / min.

[表面光沢]
(光沢値の測定)
光沢計「VG2000」(日本電色製)で光沢の測定を行い、その結果をグロスで示した。光沢の測定条件は入射角20度とした。
[Surface gloss]
(Gloss value measurement)
The gloss was measured with a gloss meter “VG2000” (manufactured by Nippon Denshoku), and the result was shown in gloss. The gloss measurement condition was an incident angle of 20 degrees.

<表面抵抗率、体積抵抗率>
表面抵抗率(Ω/□)及び体積抵抗率(Ω・cm)は、三菱化学株式会社製の抵抗測定器「ハイレスタUP・URSブローブ」を用いて23℃、55%RH環境下で測定した。実施例1〜5及び比較例1〜2で作製したフィルムを、縦方向に長さ300mmにカットしたベルトをサンプルとし、該サンプルの幅方向に等ピッチで任意の3ヶ所、縦方向に任意の4カ所の合計12ヶ所について、印加電圧100V、10秒後に表面抵抗率及び体積抵抗率をそれぞれ測定し、その平均値の常用対数値で示した。なお該測定サンプルは23℃、55%RH環境下で24時間放置してから測定した。
<Surface resistivity, volume resistivity>
The surface resistivity (Ω / □) and the volume resistivity (Ω · cm) were measured in a 23 ° C., 55% RH environment using a resistance measuring instrument “HIRESTA UP / URS probe” manufactured by Mitsubishi Chemical Corporation. The films produced in Examples 1 to 5 and Comparative Examples 1 and 2 were used as samples with belts cut in the longitudinal direction to a length of 300 mm, and arbitrary three locations in the longitudinal direction at arbitrary pitches in the longitudinal direction. The surface resistivity and the volume resistivity were measured at an applied voltage of 100 V and 10 seconds at a total of 12 locations of 4 locations, respectively, and the average values were shown as common logarithmic values. The measurement sample was measured after being left for 24 hours in an environment of 23 ° C. and 55% RH.

[表面抵抗率のばらつき]
上記12ヶ所の最大値と最小値の差をΔρsとした。
[体積抵抗率のばらつき]
上記12ヶ所の最大値と最小値の差をΔρvとした。
<表面抵抗率、体積抵抗率の電圧依存性>
上記12ヶ所について、印加電圧100V、250V、500Vにおける表面抵抗率及び体積抵抗率を測定し、その平均値を算出した。
[表面抵抗率の電圧依存性]
印加電圧100V、500Vの表面抵抗率の差を電圧依存性(Δρs100−500)とした。
[体積抵抗率の電圧依存性]
印加電圧100V、500Vの体積抵抗率の差を電圧依存性(Δρv100−500)とした。
[Variation of surface resistivity]
The difference between the maximum value and the minimum value at the 12 locations was defined as Δρs.
[Variation of volume resistivity]
The difference between the maximum value and the minimum value at the 12 locations was defined as Δρv.
<Voltage dependence of surface resistivity and volume resistivity>
The surface resistivity and volume resistivity at applied voltages of 100 V, 250 V, and 500 V were measured at the 12 locations, and the average values were calculated.
[Voltage dependence of surface resistivity]
The difference in surface resistivity between the applied voltages of 100 V and 500 V was defined as voltage dependency (Δρs 100-500 ).
[Voltage resistivity voltage dependency]
The difference in volume resistivity between the applied voltages of 100V and 500V was defined as voltage dependency (Δρv 100−500 ).

ただし、表中の各成分は以下のものを用いた。 However, the following were used for each component in the table.

熱可塑性樹脂(A)成分
PPS(a1):DIC株式会社製ポリアリーレンスルフィド樹脂(熱伝導率0.2(W/m・K)、V6溶融粘度15〔Pa・s〕
PA6(a2):宇部興産株式会社製ポリアミド6樹脂(熱伝導率0.25(W/m・K))
Thermoplastic resin (A) component PPS (a1): DIC Corporation polyarylene sulfide resin (thermal conductivity 0.2 (W / m · K), V6 melt viscosity 15 [Pa · s]
PA6 (a2): Polyamide 6 resin (thermal conductivity 0.25 (W / m · K)) manufactured by Ube Industries, Ltd.

(実施例5〜8/参考例4〜6)
混練時の二軸押出機の設定温度を260℃、成形時のTダイ押出機の設定温度を270℃、ロールを50℃とした以外は実施例1〜4/参考例1〜3と同様に、サンプルを作製、評価を行なった。
(Examples 5-8 / Reference Examples 4-6)
Examples 1-4 / Reference Examples 1-3 except that the setting temperature of the twin-screw extruder during kneading was 260 ° C., the setting temperature of the T-die extruder during molding was 270 ° C., and the roll was 50 ° C. Samples were prepared and evaluated.

Claims (10)

熱可塑性樹脂(A)と、電気伝導性フィラーをシリカで被覆した複合粒子(B)を必須成分とする熱可塑性樹脂組成物であって、
熱可塑性樹脂(A)が50〜99質量%の範囲であり、前記複合粒子(B)が1〜50質量%の範囲であること、かつ、
前記複合粒子(B)の平均粒子径が0.1〜20μmの範囲であること、かつ、前記複合粒子が、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることを特徴とし、
前記電気伝導性フィラーが、ニッケル、銅、金、銀、アルミニウム、亜鉛、スズ、鉛、クロム、プラチナ、パラジウム、タングステン、モリブデン、もしくはこれら2種以上の合金、人造黒鉛、天然黒鉛、ガラス状カーボン、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、カーボンナノファイバー、またはこれら2種以上の混合体である、熱可塑性樹脂組成物。
A thermoplastic resin composition comprising as essential components a thermoplastic resin (A) and composite particles (B) in which an electrically conductive filler is coated with silica,
The thermoplastic resin (A) is in the range of 50 to 99% by mass, the composite particles (B) are in the range of 1 to 50% by mass, and
The composite particles (B) have an average particle size in the range of 0.1 to 20 μm, and the composite particles have silica as a matrix, and two or more particles of the electrically conductive filler are dispersed in the matrix. It is a dispersion ,
The electrically conductive filler is nickel, copper, gold, silver, aluminum, zinc, tin, lead, chromium, platinum, palladium, tungsten, molybdenum, or an alloy of two or more thereof, artificial graphite, natural graphite, glassy carbon , Carbon black, acetylene black, ketjen black, carbon fiber, carbon nanofiber, or a mixture of two or more thereof.
前記熱可塑性樹脂(A)は、融点が170℃以上のものであるか、または軟化点が50℃以上のものである請求項1記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin (A) has a melting point of 170 ° C or higher, or a softening point of 50 ° C or higher. 電気伝導性フィラーの一次粒子の平均粒子径が0.01〜10μmの範囲である請求項1又は2記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1 or 2, wherein the average particle diameter of primary particles of the electrically conductive filler is in the range of 0.01 to 10 µm. 前記熱可塑性樹脂(A)と、前記複合粒子を溶融混練して得られるものである請求項1〜3の何れか一項記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 3, which is obtained by melt-kneading the thermoplastic resin (A) and the composite particles. 請求項1〜4の何れか一項記載の熱可塑性樹脂組成物を溶融成形してなる成形体。   The molded object formed by melt-molding the thermoplastic resin composition as described in any one of Claims 1-4. 熱可塑性樹脂(A)と、複合粒子(B)とを、溶融混錬押出機に投入し、溶融混練する熱可塑性樹脂組成物の製造方法であって、
前記複合粒子(B)の平均粒子径が0.1〜20μmの範囲であること、かつ、
前記複合粒子が、シリカをマトリックスとして、当該マトリックス中に前記電気伝導性フィラーの2粒子以上が分散した分散体であることを特徴とし、
前記電気伝導性フィラーが、ニッケル、銅、金、銀、アルミニウム、亜鉛、スズ、鉛、クロム、プラチナ、パラジウム、タングステン、モリブデン、もしくはこれら2種以上の合金、人造黒鉛、天然黒鉛、ガラス状カーボン、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、カーボンナノファイバー、またはこれら2種以上の混合体である、熱可塑性樹脂組成物の製造方法。
A thermoplastic resin (A) and a composite particle (B) are charged into a melt-kneading extruder and melt-kneaded for producing a thermoplastic resin composition,
The average particle size of the composite particles (B) is in the range of 0.1 to 20 μm, and
The composite particle is a dispersion in which two or more particles of the electrically conductive filler are dispersed in the matrix using silica as a matrix ,
The electrically conductive filler is nickel, copper, gold, silver, aluminum, zinc, tin, lead, chromium, platinum, palladium, tungsten, molybdenum, or an alloy of two or more thereof, artificial graphite, natural graphite, glassy carbon , Carbon black, acetylene black, ketjen black, carbon fiber, carbon nanofiber, or a mixture of two or more thereof, a method for producing a thermoplastic resin composition.
樹脂成分の吐出量5〜500(kg/hr)の範囲であり、スクリュー回転数100〜500(rpm)の範囲であり、かつそれらの比率(吐出量/スクリュー回転数)が0.02〜2(kg/hr/rpm)なる混練条件下に溶融混練する請求項6記載の熱可塑性樹脂組成物の製造方法。   The discharge amount of the resin component is in the range of 5 to 500 (kg / hr), the screw rotation speed is in the range of 100 to 500 (rpm), and the ratio (discharge amount / screw rotation speed) is 0.02 to 2. The method for producing a thermoplastic resin composition according to claim 6, wherein melt-kneading is performed under a kneading condition of (kg / hr / rpm). 熱可塑性樹脂(A)が50〜99質量%の範囲であり、前記複合粒子(B)が1〜50質量%の範囲である請求項6又は7記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to claim 6 or 7, wherein the thermoplastic resin (A) is in the range of 50 to 99 mass% and the composite particles (B) are in the range of 1 to 50 mass%. 前記熱可塑性樹脂(A)は、融点が170℃以上のものであるか、または軟化点が50℃以上のものである請求項6〜8の何れか一項記載の熱可塑性樹脂組成物の製造方法。   The thermoplastic resin composition (A) according to any one of claims 6 to 8, wherein the thermoplastic resin (A) has a melting point of 170 ° C or higher or a softening point of 50 ° C or higher. Method. 電気伝導性フィラーの一次粒子の平均粒子径が0.01〜10μmの範囲である請求項6〜9の何れか一項記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to any one of claims 6 to 9, wherein an average particle diameter of primary particles of the electrically conductive filler is in a range of 0.01 to 10 µm.
JP2014148732A 2014-07-22 2014-07-22 Thermoplastic resin composition, method for producing the same, and molded article Active JP6413424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148732A JP6413424B2 (en) 2014-07-22 2014-07-22 Thermoplastic resin composition, method for producing the same, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148732A JP6413424B2 (en) 2014-07-22 2014-07-22 Thermoplastic resin composition, method for producing the same, and molded article

Publications (2)

Publication Number Publication Date
JP2016023248A JP2016023248A (en) 2016-02-08
JP6413424B2 true JP6413424B2 (en) 2018-10-31

Family

ID=55270321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148732A Active JP6413424B2 (en) 2014-07-22 2014-07-22 Thermoplastic resin composition, method for producing the same, and molded article

Country Status (1)

Country Link
JP (1) JP6413424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209795B1 (en) * 2018-10-31 2021-02-01 주식회사 삼양사 Thermoplastic resin composition comprising metal particles and molded article produced using the same
JP7483396B2 (en) 2020-02-07 2024-05-15 キヤノン株式会社 Resin composition and resin molded body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789721A (en) * 1992-04-20 1995-04-04 Ishihara Sangyo Kaisha Ltd Spherical conductive titanium compound and its production
DE19632430C1 (en) * 1996-08-12 1998-02-12 Bayer Ag Process for the preparation of non-aqueous dispersions and their use
JP4407789B2 (en) * 2002-03-04 2010-02-03 戸田工業株式会社 Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP4035726B2 (en) * 2003-07-04 2008-01-23 信越化学工業株式会社 Silica dispersion, production method thereof, surface treatment agent and conductive powder
JP5084307B2 (en) * 2007-03-09 2012-11-28 独立行政法人科学技術振興機構 Β-1,3-glucan / conductive polymer composite coated with silica
CN101836265B (en) * 2007-10-22 2012-07-25 日本化学工业株式会社 Coated conductive powder and conductive adhesive using the same
JP5257194B2 (en) * 2009-03-26 2013-08-07 富士ゼロックス株式会社 Resin molded body, tubular body, transfer unit, and image forming apparatus
JP2014024947A (en) * 2012-07-26 2014-02-06 Dic Corp Polyarylene sulfide resin composition and moldings of the same

Also Published As

Publication number Publication date
JP2016023248A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5525682B2 (en) Polyarylene sulfide resin composition and molded article comprising the same
JP4747918B2 (en) Polyarylene sulfide composition
JP5618025B2 (en) Polyarylene sulfide resin composition and molded article
JP4747931B2 (en) Polyarylene sulfide composition
JP4747926B2 (en) Polyarylene sulfide composition
JPWO2019208377A1 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
JP6809083B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
WO2017057558A1 (en) Polyarylene sulfide resin composition, molded article, and production method
JP6413424B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP2007291300A (en) Polyarylene sulfide composition
WO2017069109A1 (en) Polyarylene sulfide resin composition, molded product, and methods for producing said composition and product
JP4929670B2 (en) Polyarylene sulfide composition
JP5790235B2 (en) Master Badge
JP4747731B2 (en) Polyarylene sulfide composition
JP6379821B2 (en) Polyarylene sulfide resin composition, process for producing the same, molded article, film or sheet, transfer belt for electrophotography, and image forming apparatus
JP2007302822A (en) Polyphenylene sulfide resin composition
JP2016037598A (en) Fiber reinforced thermoplastic resin composition and molded body thereof
JP6201456B2 (en) Polyarylene sulfide resin composition, molded article, and production method thereof
JP2002256147A (en) Highly heat conductive resin composition
JP7453635B1 (en) Polyarylene sulfide resin compositions, molded products and methods for producing them
JP5776405B2 (en) Polyarylene sulfide composition
WO2020116434A1 (en) Resin composition and molded body thereof
JP2012077164A (en) Polyarylene sulfide composition
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7136372B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250