WO2019078274A1 - 血液浄化装置 - Google Patents

血液浄化装置 Download PDF

Info

Publication number
WO2019078274A1
WO2019078274A1 PCT/JP2018/038713 JP2018038713W WO2019078274A1 WO 2019078274 A1 WO2019078274 A1 WO 2019078274A1 JP 2018038713 W JP2018038713 W JP 2018038713W WO 2019078274 A1 WO2019078274 A1 WO 2019078274A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
concentration
dialysate
clear space
unit
Prior art date
Application number
PCT/JP2018/038713
Other languages
English (en)
French (fr)
Inventor
理 河原林
晋也 長谷川
村上 智也
邦彦 秋田
将弘 豊田
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to EP18868007.8A priority Critical patent/EP3698822B1/en
Priority to CN201880067551.6A priority patent/CN111225693B/zh
Publication of WO2019078274A1 publication Critical patent/WO2019078274A1/ja
Priority to US16/845,285 priority patent/US11419963B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1605Physical characteristics of the dialysate fluid
    • A61M1/1609Physical characteristics of the dialysate fluid after use, i.e. downstream of dialyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1615Control or regulation using measurements made at different flow rates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/26Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving
    • A61M1/267Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving used for pumping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3638Degassing devices; Buffer reservoirs; Drip chambers; Blood filters with a vapour trap
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0496Urine
    • A61M2202/0498Urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • A61M2205/3389Continuous level detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient

Definitions

  • the present invention relates to a blood purification apparatus that calculates a clear space indicated as an index of purification amount of a patient by blood purification treatment.
  • Hemodialysis treatment is a blood processing that purifies while extracorporeally circulating a patient's blood.
  • a dialyzer as a blood purifier capable of circulating dialysate is provided, and a blood circuit for circulating the patient's blood extracorporeally is connected to the dialyzer, and the blood passes through the semipermeable membrane of the dialyzer. It comes in contact with a dialysate to remove waste or excess water in blood (removal of excess water is called "water removal").
  • the blood purified by the dialyzer is returned to the patient's body through the puncture needle, while wastes and excess water are discharged together with the dialysate through the dialysate discharge line.
  • CS clear space
  • Such clear space (CS) is, for example, as disclosed in Non-Patent Document 1, stores all of the dialysate drainage from the blood purifier (dialyser) generated by the blood purification treatment, and the stored dialysis By detecting the urea concentration in the liquid drainage, the removal amount of urea was calculated and determined.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a blood purification apparatus capable of obtaining a clear space in real time while avoiding the enlargement of the apparatus.
  • a blood circuit for circulating blood of a patient extracorporeally, and a blood purifier connected to the blood circuit for purifying blood circulating extracorporeally can be attached, and A dialysate introduction line for introducing a dialysate, a dialysate discharge line for discharging dialysate drainage generated with the blood purification by the blood purifier from the blood purifier, and dialysis flowing through the dialysate discharge line
  • a blood purification apparatus comprising a concentration detection unit for detecting the concentration of a predetermined substance in liquid drainage, wherein the concentration of the predetermined substance in the dialysate drainage flowing through the dialysis fluid discharge line and the concentration in the blood flowing through the blood circuit
  • the invention according to claim 2 is the blood purification apparatus according to claim 1, wherein the clear space calculation unit (However, CS: clear space, Cdeq: equilibrium value stored in the storage unit, Cd (t): concentration of a predetermined substance detected by the concentration detection unit, Qd (t): dialysate flow rate, t: blood purification treatment
  • the clear space is calculated according to the following equation: te: an end time of blood purification treatment.
  • the invention according to claim 3 is the blood purification apparatus according to claim 1 or 2, wherein the control unit reduces or stops the dialysate flow rate, increases the blood flow, or the dialysate through the blood purifier. To form the above-mentioned equilibrium state.
  • the invention according to claim 4 relates to the blood purification apparatus according to any one of claims 1 to 3, wherein the concentration detection unit emits a light to the dialysis fluid drainage, and the dialysis The dialysate based on the absorbance detected by the detection unit, comprising: a light receiving unit that receives transmitted light from the light emitting unit that has passed through the liquid drainage; and a detection unit that detects absorbance from the light reception intensity by the light reception unit. It is characterized in that the concentration of a predetermined substance in the drainage is detected.
  • the invention according to claim 5 is the blood purification apparatus according to claim 4, wherein the storage unit stores the absorbance detected by the detection unit in the equilibrium state as an equilibrium value, and the clear space calculation unit The clear space may be calculated based on the absorbance detected by the detection unit and the equilibrium value stored in the storage unit.
  • the invention according to claim 6 relates to the blood purification apparatus according to claim 5, wherein the clear space calculation unit (However, CS: clear space, Abs: absorbance detected by the detection unit, Abseq: equilibrium value stored in the storage unit, Qd (t): dialysate flow rate, t: arbitrary elapsed time in blood purification treatment, te : The blood purification treatment end time.)
  • the clear space is calculated by the following equation.
  • the invention according to claim 7 is the blood purification apparatus according to any one of claims 1 to 6, wherein the total volume of the patient is calculated based on the clear space calculated by the clear space calculation unit.
  • a liquid volume calculation unit is provided.
  • the invention according to claim 8 is characterized in that, in the blood purification apparatus according to any one of claims 1 to 7, the blood circuit and the blood purifier are attached.
  • the equilibrium state in which the concentration of the predetermined substance in the dialysate drainage flowing through the dialysate drainage line and the concentration of the predetermined substance in the blood flowing through the blood circuit are the same or similar.
  • the concentration value detected by the concentration detection unit is stored as an equilibrium value, and the patient is cleaned by blood purification treatment based on the detection value detected by the concentration detection unit and the equilibrium value stored in the storage unit. Since the clear space shown as an index of the amount is calculated, the upsizing of the apparatus can be avoided and the clear space can be obtained in real time.
  • the clear space calculation unit (However, CS: clear space, Cdeq: equilibrium value stored in the storage unit, Cd (t): concentration of a predetermined substance detected by the concentration detection unit, Qd (t): dialysate flow rate, t: blood purification treatment Any elapsed time in, te: blood purification treatment end time.) Since the clear space is calculated by the following arithmetic expression, the clear space can be accurately and easily obtained by using the concentration detection unit that detects the concentration of the predetermined substance in the dialysate drainage fluid.
  • control unit forms the equilibrium state by decreasing or stopping the dialysate flow rate, increasing the blood flow rate, or circulating the dialysate through the blood purifier.
  • An equilibrium state can be easily and easily formed.
  • the concentration detecting unit is a light emitting unit that emits light to the dialysate drainage fluid, and a light receiving unit that receives transmitted light from the light emitting unit that has passed through the dialysis fluid drainage fluid. And a detection unit for detecting the absorbance from the light reception intensity by the light reception unit, and the concentration of the predetermined substance in the dialysis solution drainage is detected based on the absorbance detected by the detection unit.
  • the concentration of a predetermined substance in the dialysate drainage can be detected with high accuracy without contacting blood with a sensor or the like.
  • the storage unit stores the absorbance detected by the detection unit in the equilibrium state as an equilibrium value
  • the clear space calculation unit stores the absorbance detected by the detection unit. Since the clear space is calculated based on the and the equilibrium value stored in the storage unit, the clear space can be determined in real time using the ratio of absorbance correlated with the ratio of the concentration of the predetermined substance.
  • the clear space calculation unit (However, CS: clear space, Abs: absorbance detected by the detection unit, Abseq: equilibrium value stored in the storage unit, Qd (t): dialysate flow rate, t: arbitrary elapsed time in blood purification treatment, te : The blood purification treatment end time.) Since the clear space is calculated by the following equation, the clear space can be determined accurately and easily using the ratio of the absorbance correlated with the ratio of the concentration of the predetermined substance.
  • the total fluid volume calculation unit for calculating the total fluid volume of the patient is provided based on the clear space calculated by the clear space calculation unit.
  • the total fluid volume of the patient can be determined accurately and in real time.
  • a schematic view showing a blood purification apparatus The schematic diagram which shows the density
  • the blood purification apparatus is for purifying the blood of a patient while extracorporeally circulating, and is applied to a hemodialysis apparatus used in hemodialysis treatment.
  • a hemodialysis apparatus used in hemodialysis treatment.
  • the blood circuit 1 mainly comprises an arterial blood circuit 1a and a venous blood circuit 1b consisting of flexible tubes, and the arterial blood circuit 1a and the venous blood circuit 1b
  • the dialyzer 2 is connected between them.
  • An arterial (blood removal or blood collection) puncture needle a is connected to the tip of the arterial blood circuit 1a, and an ironing type blood pump 3 and an air trap chamber 4a for degassing are disposed on the way ing.
  • a vein-side (blood-returning-side) puncture needle b is connected to the tip of the vein-side blood circuit 1b, and an air trap chamber 4b for degassing is connected in the middle.
  • the blood pump 3 when the blood pump 3 is driven in a state where the artery-side puncture needle a and the vein-side puncture needle b puncture the patient, the patient's blood passes through the artery-side blood circuit 1a while being defoamed by the air trap chamber 4a. After reaching the dialyzer 2, after blood purification and water removal are performed by the dialyzer 2, the air trap chamber 4b is defoamed and returned to the patient's body through the venous side blood circuit 1b. Thus, in the process of circulating the patient's blood in the blood circuit 1 extracorporeally, it is purified by the dialyzer 2.
  • the side of the puncture needle for blood removal (blood collection) is referred to as the "artery side”
  • the side of the puncture needle for blood return is referred to as the "vein side”.
  • “Venous side” does not mean that the blood vessel to be punctured is defined by either an artery or a vein.
  • a blood inlet port 2a, a blood outlet port 2b, a dialysate inlet port 2c and a dialysate outlet port 2d are formed in the housing of the dialyzer 2 (blood purifier).
  • the blood inlet port 2a The proximal end of the arterial blood circuit 1a is connected to the blood outlet port 2b, and the proximal end of the venous blood circuit 1b is connected to the blood outlet port 2b.
  • the dialysate inlet port 2 c and the dialysate outlet port 2 d are respectively connected to the tips of the dialysate inlet line 7 and the dialysate outlet line 8 extended from the dialysis device main body 6.
  • a plurality of hollow fibers are accommodated in the dialyzer 2, and the inside of the hollow fibers serves as a flow path for blood, and a flow of dialysate flows between the outer peripheral surface of the hollow fiber and the inner peripheral surface of the housing portion. It is considered to be a road.
  • a large number of minute holes (pores) penetrating the outer peripheral surface and the inner peripheral surface are formed to form a hollow fiber membrane, and waste products, excess water, etc. in blood are formed through the membrane. Are configured to permeate into the dialysate.
  • the dialysis apparatus main body 6 includes a dual pump P, a bypass line 9 connected by bypassing the pump chamber on the drainage side of the dual pump P in the dialysate discharge line 8, and It has the water pump 10 and is comprised.
  • the dual pump P is disposed across the dialysate inlet line 7 and the dialysate outlet line 8, and the dialysate is introduced from the dialysate inlet line 7 to the dialyzer 2, and the dialysis introduced into the dialyzer 2.
  • the fluid is discharged from the dialysate discharge line 8 together with the waste products in the blood.
  • means for example, what utilizes what is called a balancing chamber etc.
  • this double pump P may be used.
  • dialysate introduction line 7 is connected to the dialyzer 2 (dialysate introduction port 2c), and the other end is connected to a dialysate supply device (not shown) for preparing a dialysate of a predetermined concentration
  • One end of the dialysate discharge line 8 is connected to the dialyzer 2 (dialysate outlet port 2d), and the other end is connected to a drainage part (not shown).
  • the dialysate introduction line 7 introduces the dialysate supplied from the dialysate supply device into the dialyzer 2, and the dialysate discharge line 8 generates the dialysate drainage generated along with the purification of the blood by the dialyzer 2. Is discharged from the dialyzer 2 toward the drainage portion.
  • the water removal pump 10 is for removing water (excess water) from the patient's blood flowing through the dialyzer 2. That is, when the water removal pump 10 is driven, the volume of the liquid discharged from the dialysate discharge line 8 is larger than the amount of the dialysate introduced from the dialysate introduction line 7, and the larger volume corresponds to the volume of blood. Water is removed.
  • the drainage concentration sensor 5 (concentration detection unit) is disposed in the dialysate discharge line 8 in the dialysis device main body 6 and in the liquid that flows along with the blood purification of the dialyzer 2 (in the present embodiment, as a blood purifier)
  • concentration for example, the concentration of a substance such as urea or uric acid contained in the dialysate drainage fluid
  • the light emitting unit 16, the light receiving unit 17, and the detection unit 18 are mainly configured.
  • the light emitting unit 16 and the light receiving unit 17 are disposed at positions facing each other across the dialysate discharge line 8.
  • the light emitting unit 16 is a light source composed of an LED or the like that emits light (ultraviolet light (UV)) to a liquid (in this embodiment, the dialysate drainage discharged from the dialyzer 2), and the light transmitted through the liquid Light is received by the light receiving unit 17.
  • the light receiving unit 17 according to the present embodiment is formed of a light receiving element capable of generating a voltage according to the intensity of the received light, and the dialysate is detected by the detecting unit 18 based on the voltage according to the light receiving intensity. It is configured to detect the concentration of drainage.
  • the detection unit 18 detects the absorbance from the intensity of light received by the light receiving unit 17, and detects the concentration (the concentration of urea or the like) of the predetermined substance in the dialysis fluid drainage based on the absorbance.
  • the drainage concentration sensor 5 uses an optical sensor that emits ultraviolet light (UV) having a wavelength of about 300 nm (280 to 320 nm) from the light emitting unit 16, other light such as infrared light is used.
  • An optical sensor that emits light may be used, or a sensor in a form different from an optical sensor such as an enzyme sensor may be used.
  • the drainage concentration sensor 5 according to the present embodiment is disposed on the upstream side (the side connected to the dialyzer 2) from the dual pump P in the dialysate discharge line 8, but on the downstream side from the dual pump P You may arrange.
  • the control unit 11 is composed of a microcomputer and the like disposed in the dialysis device main body 6, and the concentration (the concentration of waste products such as urea) and the blood circuit of the predetermined material in the dialysate drainage fluid flowing through the dialysate drainage line 8 1 (the inlet of the dialyzer 2) forms an equilibrium state in which the concentration of a predetermined substance (the concentration of waste products such as urea) in the blood flowing is the same or similar.
  • the concentration (Cd) or the absorbance (Abs) is detected by the drainage concentration sensor 5 at points A to D while gradually reducing the dialysate flow rate (Qd).
  • the ratio of the concentration of both is 0.7 to 1 Means within the range of .3.
  • the ratio of the two concentrations is preferably in the range of 0.8 to 1.2, and more preferably in the range of 0.9 to 1.1.
  • the concentration (Cd) or the absorbance (Abs) remains constant (this constant is referred to as the equilibrium value (equilibrium concentration Cdeq or equilibrium absorbance Abseq)). Therefore, the concentration of the predetermined substance in the dialysate drainage fluid flowing through the dialysate drainage line 8 (the concentration of waste products such as urea) and the concentration of the predetermined substance in the blood flowing through the blood circuit 1 (waste wastewater such as urea) It can be seen that an “equilibrium” is formed in which the concentration of
  • the storage unit 12 is electrically connected to the control unit 11 and the drainage concentration sensor 5 and detects the detection value of the drainage concentration sensor 5 (concentration detection unit) in the equilibrium state (the concentration of the predetermined substance in the equilibrium state ( Cdeq) or absorbance (Abseq)) is stored as an "equilibrium value". That is, an equilibrium state is formed in the control unit 11, and the detection value detected by the drainage concentration sensor 5 in such an equilibrium state is an equilibrium value (equilibrium concentration (Cdeq) or equilibrium absorbance (Abseq)) Are stored in the storage unit 12 as
  • the clear space calculation unit 13 purifies the patient by blood purification treatment based on the detected value of the drainage concentration sensor 5 and the equilibrium value (equilibrium concentration (Cdeq) or equilibrium absorbance (Abseq)) stored in the storage unit 12
  • the “clear space (CS)” shown as a measure of quantity is calculated.
  • the clear space calculation unit 13 according to the present embodiment is configured to obtain the clear space (CS) as follows.
  • the blood concentration reference clearance (CLb) based on the blood concentration and the drainage concentration reference clearance (CLd) based on the dialysate drainage concentration are the same ( Consistency)
  • the clearance CL (CLb, CLd) is the concentration (Cd) of the predetermined substance (urea) in the dialysate drainage fluid and the concentration (Cbi) of the predetermined substance (urea) at the inlet of the dialyzer 2 in the blood circuit 1
  • Qd (Cd / Cbi) x Qd ... equation (a)) (for example, by Mineshima M., "Dializer performance and its evaluation", See “Clinical Engineering”, 2011, Vol. 22, No. 5, pp. 407-411).
  • the removal amount (M) can be determined by graphic integration of Qd ⁇ Cd (t) measured over time, the following equation (e) holds.
  • t indicates an arbitrary elapsed time in blood purification treatment
  • te indicates the blood purification treatment end time.
  • the clear space (CS) can be determined by standardizing the amount of removal (M) as Cb (0) (for example, Akiyasu Yamashita, "Basic and Clinical Dialysis of Blood Purification", 1999, Vol. 15, No. 12, pp. 113 to 118), the following equation (f) holds.
  • CS M / Cb (0) ... Formula (f)
  • the clear space (CS) can be obtained from the product of the ratio of the concentration (Cd) of the predetermined substance and the dialysate flow rate (Qd).
  • the clear space calculation unit 13 (However, CS: clear space, Cdeq: equilibrium value stored in the storage unit, Cd (t): concentration of a predetermined substance detected by the concentration detection unit, Qd (t): dialysate flow rate, te: blood purification treatment End time)
  • the clear space can be calculated by the following equation (the above equation (g)).
  • the clear space (CS) calculated in this way hardly affects the determined clear space (CS) even if the treatment conditions such as the blood flow rate and the dialysate flow rate are changed. There is no need to ask for clear space.
  • clyspace (CS) can be replaced by the ratio (Cd / Cdeq) of the concentration (Cd) of the predetermined substance in the above formula (g) to the ratio (Abs / Abseq) of absorbance (Abs), and Equation (h) of
  • the storage unit 12 stores the absorbance detected by the detection unit 19 (concentration detection unit) in the equilibrium state as an equilibrium value (equilibrium absorbance Abseq), and the clear space calculation unit 13 detects the absorbance by the detection unit 19
  • the clear space can be calculated based on the absorbance (Abs) and the equilibrium value (Abseq) stored in the storage unit 12.
  • the clear space calculation unit 13 in this case is (However, CS: clear space, Abs: absorbance detected in the detection unit, Abseq: equilibrium value stored in the storage unit, Qd (t): dialysate flow rate, te: blood purification treatment end time.)
  • the clear space can be calculated by the following equation (the above equation (g)).
  • the clear space (CS) calculated in this way hardly affects the calculated clearance (CS) even if the treatment conditions such as blood flow rate and dialysate flow rate are changed, for example. There is no need to ask for clear space.
  • the display unit 14 displays the clear space (CS) obtained by the clear space calculation unit 13 and includes, for example, a display screen provided on the dialysis device main body 6, a monitor connected to the dialysis device main body 6, or the like.
  • a medical worker such as a doctor can accurately grasp the clear space, and blood purification treatment (dialysis treatment) can be performed. It can be done smoothly.
  • the concentration (Cb) of the predetermined substance in the blood in the blood circuit 1 changes (decreases with the elapsed time), as shown by the solid line in FIG.
  • the total fluid volume calculation unit 15 calculates the total fluid volume of the patient (total fluid volume V (te) at the end of blood purification treatment) based on the clear space (CS) calculated by the clear space calculation unit 13 It is. Specifically, the total fluid volume (V) can be determined by the following calculation.
  • the clear space (CS) can be determined from the removal rate (Rc), the amount of body fluid (Vte) at the end of blood purification treatment and the amount of water removal ( ⁇ V) as shown by the following equation (k) (See, for example, Akiyasu Yamashita, “Fundure and Clinical Dialysis in Blood Purification”, 1999, Vol. 15, No. 12, P. 113-118).
  • CS Rc ⁇ V (te) + ⁇ V formula (k)
  • the blood pump 3 and the duplex pump P are driven in a state where the patient punctures the artery side puncture needle a and the vein side puncture needle b, and the blood is made to flow in the blood circuit 1 through the dialyzer 2
  • the dialysate is caused to flow in the introduction line 7 and the dialysate discharge line 8.
  • the detected value concentration Cd of predetermined substance or absorbance (Abs)
  • the drainage concentration sensor 5 concentration detection unit
  • S4 it is determined whether or not the detection value of the drainage concentration sensor 5 (concentration detection unit) has changed by a predetermined threshold or more. If there is a change by a predetermined threshold or more, the flow returns to S1 and the dialysate flow rate ( The Qd) is decreased by a predetermined value, and the steps S2 to S4 are sequentially performed. On the other hand, if it is determined in S4 that the detection value of the drainage concentration sensor 5 (concentration detection unit) does not change by more than the predetermined threshold (the detection value is constant), the process proceeds to S5 and the detection value is It is stored in the storage unit 12 as (Cdeq) or equilibrium absorbance (Abseq).
  • the drainage concentration sensor 5 concentration detector Since the "equilibrium” at which the detected value (concentration (Cd) or absorbance (Abs)) of the specified substance becomes constant reaches the detected value at the equilibrium state (point D), the equilibrium value (equilibrium concentration (Cdeq) or It is stored as the equilibrium absorbance (Abseq).
  • Clear space (CS) is determined by the following equation.
  • the storage unit 12 stores the relationship between the dialysate flow rate (Qd) and the clear space (CS) (see the lower drawing in the figure).
  • the dialysate flow rate (Qd) is decreased to form an equilibrium state, but the blood flow rate (Qb) may be increased to form an equilibrium state.
  • the detection value (concentration Cd or absorbance (Abs)) of the predetermined substance is stable in S2 in S2. If it is determined that it is stable, the process proceeds to S3, and the storage unit 12 stores the relationship between the blood flow volume (Qb) and the detected value (concentration Cd of the predetermined substance or absorbance (Abs)). .
  • the drainage concentration sensor 5 concentration detection unit Since the "equilibrium state” in which the detection value (concentration (Cd) or absorbance (Abs)) of the predetermined substance reaches a constant level, the detection value at the equilibrium state (point D) is an equilibrium value (equilibrium concentration (Cdeq) or equilibrium absorbance) It is stored as (Abseq).
  • control unit 11 forms the “equilibrium state” by the decrease in the dialysate flow rate (Qd) or the increase in the blood flow rate (Qb) as described above, the dialysate flow rate (Qd) is stopped.
  • the equilibrium state may be established or may be established by circulating the dialysate through the dialyzer 2 (blood purifier).
  • the control unit 11 forms an equilibrium state by decreasing or stopping the dialysate flow rate (Qd), increasing the blood flow rate (Qb), or circulating the dialysate through the dialyzer 2. Can be formed simply and easily.
  • an equilibrium state is formed in which the concentration of the predetermined substance in the dialysate drainage fluid flowing through the dialysate drainage line 8 and the concentration of the predetermined substance in the blood flowing through the blood circuit 1 are the same or similar.
  • the detection value of the drainage concentration sensor 5 concentration detection unit
  • the clear space (CS) shown as an index of the amount of purification of the patient by blood purification treatment is calculated, the enlargement of the device can be avoided and the clear space (CS) can be obtained in real time.
  • the clear space calculation unit 13 is: (However, CS: clear space, Cdeq: equilibrium value stored in the storage unit, Cd (t): concentration of a predetermined substance detected by the concentration detection unit, Qd (t): dialysate flow rate, te: blood purification treatment End time) Since the clear space is calculated by the following equation, the clear space can be accurately and easily obtained by using the drainage concentration sensor 5 which detects the concentration of the predetermined substance in the dialysate drainage.
  • the drainage concentration sensor 5 (concentration detection unit) transmits the transmitted light from the light emitting unit 16 that emits light to the dialysate drainage and the light emitting unit 16 that has permeated the dialysate drainage.
  • the light receiving unit 17 and the detection unit 18 for detecting the absorbance from the light reception intensity by the light reception unit 17 are provided, and the concentration of the predetermined substance in the dialysate drainage is detected based on the absorbance detected by the detection unit 18. It is possible to accurately detect the concentration of a predetermined substance in the dialysis fluid drainage without contacting the dialysis fluid drainage with a sensor or the like.
  • the storage unit 12 stores the absorbance detected by the detection unit 18 in the equilibrium state as the equilibrium value (Abseq), and the clear space calculation unit 13 detects the absorbance by the detection unit 18 Since the clear space is calculated based on the absorbance (Abs) and the equilibrium value (Abseq) stored in the storage unit 12, the clear space is calculated in real time using the ratio of the absorbance correlated with the ratio of the concentration of the predetermined substance. You can ask for
  • the clear space calculation unit 13 (However, CS: clear space, Abs: absorbance detected in the detection unit, Abseq: equilibrium value stored in the storage unit, Qd (t): dialysate flow rate, te: blood purification treatment end time.) Since the clear space is calculated by the following equation, the clear space can be determined accurately and easily using the ratio of the absorbance correlated with the ratio of the concentration of the predetermined substance.
  • the total fluid volume calculation unit 15 for calculating the total fluid volume of the patient is calculated based on the clear space calculated by the clear space calculation unit 13, the patient's more accurate and real time can be obtained by determining the clear space.
  • the total fluid volume can be determined. That is, while the total body fluid volume of the patient is usually estimated to be about several tens of percent (for example, about 60%) of the patient's weight, according to the present embodiment, the clear space calculated by the clear space calculation unit 13 It can be determined accurately and in real time based on the space.
  • a detection value and an equilibrium value of drainage concentration sensor 5 (concentration detection part) for calculating clear space are predetermined substances.
  • Other parameters may be used as long as they are parameters correlating to the concentration of, for example, the output voltage or the output current of the drainage concentration sensor 5 other than the absorbance.
  • the arithmetic expression for calculating the clear space in the clear space calculation unit 13 is not limited to the one described above, and may be obtained from another arithmetic expression.
  • the calculated clear space is displayed on the display unit 14.
  • notification may be given to a medical worker such as a doctor by other means such as a speaker, or the display may be included.
  • the clear space obtained by the clear space calculation unit 13 may be used exclusively for internal processing for setting at the time of treatment without notifying.
  • the present embodiment is applied to a hemodialysis apparatus, it may be applied to a blood purification apparatus used in other treatments (hemifiltration therapy, hemodiafiltration dialysis treatment, etc.) in which blood purification is performed while circulating extracorporeally. You may
  • a control unit that forms an equilibrium state in which the concentration of the predetermined substance in the dialysate drainage flowing in the dialysate drainage line and the concentration of the predetermined substance in the blood flowing in the blood circuit are the same or similar;

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • External Artificial Organs (AREA)

Abstract

本発明は、患者の血液を体外循環させる血液回路と、該血液回路に接続され、体外循環する血液を浄化する血液浄化器とが取り付け可能とされるとともに、前記血液浄化器に透析液を導入する透析液導入ラインと、前記血液浄化器による血液の浄化に伴って生じた透析液排液を当該血液浄化器から排出する透析液排出ラインと、前記透析液排出ラインを流れる透析液排液中の所定物質の濃度を検出する濃度検出部とを具備した血液浄化装置において、前記透析液排出ラインを流れる透析液排液中の所定物質の濃度と前記血液回路を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成する制御部と、前記平衡状態のときの前記濃度検出部の検出値を平衡値として記憶する記憶部と、前記濃度検出部の検出値と、前記記憶部で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出するクリアスペース算出部とを具備したことを特徴とする血液浄化装置である。

Description

血液浄化装置
 本発明は、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出する血液浄化装置に関するものである。
 患者の血液を体外循環させつつ浄化する血液処理として血液透析治療がある。かかる血液透析治療においては、透析液を流通させ得る血液浄化器としてのダイアライザを具備するとともに、患者の血液を体外循環させる血液回路を当該ダイアライザに接続させ、ダイアライザの半透膜を介して血液と透析液とを接触させ、血液中の老廃物或いは余剰水分を除去(余剰水分の除去は「除水」と称される)するようになっている。ダイアライザにて浄化された血液は、穿刺針を介して患者の体内に戻される一方、老廃物や余剰水分は、透析液と共に透析液排出ラインを介して外部に排出されるよう構成されている。
 ところで、血液浄化治療による患者の浄化量を適正に評価して把握することは、適切な治療を行う上で重要になっている。このような血液浄化治療による患者の浄化量を示す指標としてクリアスペース(CS)なる指標が挙げられる。かかるクリアスペース(CS)は、例えば非特許文献1にて開示されているように、血液浄化治療で生じた血液浄化器(ダイアライザ)からの透析液排液を全量貯留するとともに、その貯留した透析液排液中の尿素濃度を検出することにより、尿素の除去量を算出して求めていた。
『血液浄化の基礎』「臨床透析」1999年、Vol.15、No.11、P.75~79、山下明泰著
 しかしながら、上記従来の血液浄化装置においては、血液浄化治療で生じた血液浄化器からの透析液排液を全量貯留する必要があることから、その全量貯留するためのタンク等が必要となって装置が大型化してしまうとともに、リアルタイムにクリアスペースを求めることができないという問題があった。
 本発明は、このような事情に鑑みてなされたもので、装置の大型化を回避するとともに、リアルタイムにクリアスペースを求めることができる血液浄化装置を提供することにある。
 請求項1記載の発明は、患者の血液を体外循環させる血液回路と、該血液回路に接続され、体外循環する血液を浄化する血液浄化器とが取り付け可能とされるとともに、前記血液浄化器に透析液を導入する透析液導入ラインと、前記血液浄化器による血液の浄化に伴って生じた透析液排液を当該血液浄化器から排出する透析液排出ラインと、前記透析液排出ラインを流れる透析液排液中の所定物質の濃度を検出する濃度検出部とを具備した血液浄化装置において、前記透析液排出ラインを流れる透析液排液中の所定物質の濃度と前記血液回路を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成する制御部と、前記平衡状態のときの前記濃度検出部の検出値を平衡値として記憶する記憶部と、前記濃度検出部の検出値と、前記記憶部で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出するクリアスペース算出部とを具備したことを特徴とする。
 請求項2記載の発明は、請求項1記載の血液浄化装置において、前記クリアスペース算出部は、
Figure JPOXMLDOC01-appb-M000003
(但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)なる演算式によってクリアスペースを算出することを特徴とする。
 請求項3記載の発明は、請求項1又は請求項2記載の血液浄化装置において、前記制御部は、透析液流量を低下若しくは停止、血流量を増加、又は前記血液浄化器を介して透析液を循環させることにより前記平衡状態を形成することを特徴とする。
 請求項4記載の発明は、請求項1~3の何れか1つに記載の血液浄化装置において、前記濃度検出部は、前記透析液排液に対して光を照射する発光部と、前記透析液排液を透過した前記発光部からの透過光を受ける受光部と、前記受光部による受光強度から吸光度を検出する検出部とを具備し、前記検出部により検出された吸光度に基づき前記透析液排液中の所定物質の濃度を検出することを特徴とする。
 請求項5記載の発明は、請求項4記載の血液浄化装置において、前記記憶部は、前記平衡状態のときの前記検出部で検出される吸光度を平衡値として記憶し、前記クリアスペース算出部は、前記検出部で検出された吸光度と、前記記憶部で記憶された平衡値とに基づき、前記クリアスペースを算出することを特徴とする。
 請求項6記載の発明は、請求項5記載の血液浄化装置において、前記クリアスペース算出部は、
Figure JPOXMLDOC01-appb-M000004
(但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペースを算出することを特徴とする。
 請求項7記載の発明は、請求項1~6の何れか1つに記載の血液浄化装置において、前記クリアスペース算出部で算出されたクリアスペースに基づいて、患者の総体液量を算出する総体液量算出部を具備したことを特徴とする。
 請求項8記載の発明は、請求項1~7の何れか1つに記載の血液浄化装置において、前記血液回路と前記血液浄化器とが取り付けられたことを特徴とする。
 請求項1、8の発明によれば、透析液排出ラインを流れる透析液排液中の所定物質の濃度と前記血液回路を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成し、その平衡状態のときの濃度検出部の検出値を平衡値として記憶するとともに、濃度検出部の検出値と、記憶部で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出するので、装置の大型化を回避するとともに、リアルタイムにクリアスペースを求めることができる。
 請求項2の発明によれば、クリアスペース算出部は、
Figure JPOXMLDOC01-appb-M000005
(但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペースを算出したので、透析液排液中の所定物質の濃度を検出する濃度検出部を用いることによって、正確且つ容易にクリアスペースを求めることができる。
 請求項3の発明によれば、前記制御部は、透析液流量を低下若しくは停止、血流量を増加、又は前記血液浄化器を介して透析液を循環させることにより前記平衡状態を形成するので、平衡状態を簡易且つ容易に形成することができる。
 請求項4の発明によれば、前記濃度検出部は、前記透析液排液に対して光を照射する発光部と、前記透析液排液を透過した前記発光部からの透過光を受ける受光部と、前記受光部による受光強度から吸光度を検出する検出部とを具備し、前記検出部により検出された吸光度に基づき前記透析液排液中の所定物質の濃度を検出するので、透析液排液又は血液をセンサ等に接触させることなく透析液排液中の所定物質の濃度を精度よく検出することができる。
 請求項5の発明によれば、前記記憶部は、前記平衡状態のときの前記検出部で検出される吸光度を平衡値として記憶し、前記クリアスペース算出部は、前記検出部で検出された吸光度と、前記記憶部で記憶された平衡値とに基づき、前記クリアスペースを算出するので、所定物質の濃度の比率と相関する吸光度の比率を利用して、リアルタイムにクリアスペースを求めることができる。
 請求項6の発明によれば、クリアスペース算出部は、
Figure JPOXMLDOC01-appb-M000006
(但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペースを算出するので、所定物質の濃度の比率と相関する吸光度の比率を利用して、正確且つ容易にクリアスペースを求めることができる。
 請求項7の発明によれば、前記クリアスペース算出部で算出されたクリアスペースに基づいて、患者の総体液量を算出する総体液量算出部を具備したので、クリアスペースを求めることによって、より正確且つリアルタイムに患者の総体液量を求めることができる。
本発明の実施形態に係る血液浄化装置を示す模式図 同血液浄化装置における濃度検出部を示す模式図 同血液浄化装置の制御内容を示すフローチャート 同血液浄化装置により平衡状態を形成する過程(透析液流量を低下させる過程)の透析液流量(Qd)と検出値(Cd又はAbs)の関係及び平衡値(Cdeq又はAbseq)を示すグラフ、それに対応する透析液流量(Qd)と時間当たりのクリアスペース(CS(Δt))の関係を示すグラフ 同血液浄化装置により平衡状態を形成する過程(血流量を増加させる過程)の血流量(Qb)と検出値(Cb又はAbs)の関係及び平衡値(Cbeq又はAbseq)を示すグラフ、それに対応する血流量(Qb)と時間当たりのクリアスペース(CS(Δt))の関係を示すグラフ 時間経過に伴う濃度検出部の検出値(Abs)の変化(実線)と平衡値(Abseq)の変化(破線)を示すグラフ
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 本実施形態に係る血液浄化装置は、患者の血液を体外循環させつつ浄化するためのもので、血液透析治療で使用される血液透析装置に適用されたものである。かかる血液透析装置は、図1に示すように、患者の血液を体外循環させる血液回路1と、血液浄化器としてのダイアライザ2と、濃度検出部としての排液濃度センサ5と、ダイアライザ2に透析液を供給しつつ除水する透析装置本体6と、透析装置本体6に配設された透析液導入ライン7及び透析液排出ライン8と、制御部11と、記憶部12と、クリアスペース算出部13と、総体液量算出部15とから主に構成されている。
 血液回路1は、同図に示すように、可撓性チューブから成る動脈側血液回路1a及び静脈側血液回路1bから主に構成されており、これら動脈側血液回路1aと静脈側血液回路1bの間にダイアライザ2が接続されている。動脈側血液回路1aには、その先端に動脈(脱血又は採血)側穿刺針aが接続されるとともに、途中にしごき型の血液ポンプ3、除泡のためのエアトラップチャンバ4aが配設されている。一方、静脈側血液回路1bには、その先端に静脈側(返血側)穿刺針bが接続されるとともに、途中に除泡のためのエアトラップチャンバ4bが接続されている。
 そして、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ3を駆動させると、患者の血液は、エアトラップチャンバ4aで除泡されつつ動脈側血液回路1aを通ってダイアライザ2に至り、該ダイアライザ2によって血液浄化及び除水が施された後、エアトラップチャンバ4bで除泡されつつ静脈側血液回路1bを通って患者の体内に戻る。このように、患者の血液を血液回路1にて体外循環させる過程でダイアライザ2にて浄化するのである。なお、本明細書においては、血液を脱血(採血)する穿刺針の側を「動脈側」と称し、血液を返血する穿刺針の側を「静脈側」と称しており、「動脈側」及び「静脈側」は、穿刺の対象となる血管が動脈及び静脈の何れかによって定義されるものではない。
 ダイアライザ2(血液浄化器)は、その筐体部に、血液導入ポート2a、血液導出ポート2b、透析液導入ポート2c及び透析液導出ポート2dが形成されており、このうち血液導入ポート2aには動脈側血液回路1aの基端が、血液導出ポート2bには静脈側血液回路1bの基端がそれぞれ接続されている。また、透析液導入ポート2c及び透析液導出ポート2dは、透析装置本体6から延設された透析液導入ライン7及び透析液排出ライン8の先端とそれぞれ接続されている。
 ダイアライザ2内には、複数の中空糸が収容されており、該中空糸内部が血液の流路とされるとともに、中空糸外周面と筐体部の内周面との間が透析液の流路とされている。中空糸には、その外周面と内周面とを貫通した微少な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の老廃物や余剰水分等が透析液内に透過するよう構成されている。
 一方、透析装置本体6は、複式ポンプPと、透析液排出ライン8における複式ポンプPの排液側のポンプ室を迂回して接続されたバイパスライン9と、該バイパスライン9に接続された除水ポンプ10とを有して構成されている。複式ポンプPは、透析液導入ライン7及び透析液排出ライン8に跨って配設され、当該透析液導入ライン7からダイアライザ2に対して透析液を導入させるとともに、当該ダイアライザ2に導入された透析液を血液中の老廃物と共に透析液排出ライン8から排出させるものである。なお、かかる複式ポンプP以外の手段(例えば所謂バランシングチャンバ等を利用するもの)を用いてもよい。
 透析液導入ライン7の一端は、ダイアライザ2(透析液導入ポート2c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されているとともに、透析液排出ライン8の一端は、ダイアライザ2(透析液導出ポート2d)に接続されるとともに、他端が排液部(不図示)と接続されている。しかして、透析液導入ライン7は、透析液供給装置から供給された透析液をダイアライザ2に導入するとともに、透析液排出ライン8は、ダイアライザ2による血液の浄化に伴って生じた透析液排液を当該ダイアライザ2から排液部に向かって排出するよう構成されている。
 除水ポンプ10は、ダイアライザ2中を流れる患者の血液から水分(余剰水分)を除去するためのものである。すなわち、かかる除水ポンプ10を駆動させると、透析液導入ライン7から導入される透析液量よりも透析液排出ライン8から排出される液体の容量が多くなり、その多い容量分だけ血液中から水分が除去されるのである。
 排液濃度センサ5(濃度検出部)は、透析装置本体6内における透析液排出ライン8に配設され、ダイアライザ2の血液浄化に伴って流れる液体中(本実施形態においては、血液浄化器としてのダイアライザ2から排出された透析液排液中)の所定物質の濃度(例えば、透析液排液に含まれる尿素、尿酸等の物質濃度)を検出するものであり、図2に示すように、発光部16と、受光部17と、検出部18とから主に構成されている。なお、発光部16と受光部17とは、透析液排出ライン8を挟んで対向した位置にそれぞれ配設されている。
 発光部16は、液体(本実施形態においてはダイアライザ2から排出された透析液排液)に対して光(紫外線(UV))を照射するLED等から成る光源であり、その液体を透過した透過光を受光部17にて受けるようになっている。本実施形態に係る受光部17は、受光した光の強度に応じた電圧を生じさせ得る受光素子から成るものとされており、その受光強度に応じた電圧に基づき、検出部18にて透析液排液の濃度を検出するよう構成されている。検出部18は、受光部17による受光強度から吸光度を検出するもので、かかる吸光度に基づいて透析液排液中の所定物質の濃度(尿素等の濃度)を検出するようになっている。
 すなわち、透析液排出ライン8に透析液排液が流れた状態において発光部16から光を照射させれば、その照射された光が透析液排出ライン8にて流れる透析液排液を透過することとなるので、透析液排液の濃度に応じて光の吸収が図られた後、受光部17にて受光することとなる。そして、受光部17による受光強度(即ち、受光強度に応じて生じた電圧)の信号が検出部18に送信されるとともに、当該検出部18で測定された受光強度に基づいて吸光度が算出され、透析液排出ライン8を流れる透析液排液の濃度が検出されることとなる。
 なお、本実施形態に係る排液濃度センサ5は、波長が300nm程度(280~320nm)の紫外線(UV)を発光部16から発光させる光学センサを用いているが、赤外線等の他の光を発光させる光学センサを用いてもよく、或いは酵素センサ等の光学センサとは別個の形態のセンサを用いるようにしてもよい。また、本実施形態に係る排液濃度センサ5は、透析液排出ライン8における複式ポンプPより上流側(ダイアライザ2と接続する側)に配設されているが、当該複式ポンプPより下流側に配設してもよい。
 制御部11は、透析装置本体6に配設されたマイコン等から成るもので、透析液排出ライン8を流れる透析液排液中の所定物質の濃度(尿素等の老廃物の濃度)と血液回路1(ダイアライザ2の入口)を流れる血液中の所定物質の濃度(尿素等の老廃物の濃度)とが同一又は近似となる平衡状態を形成するものである。具体的には、図4に示すように、透析液流量(Qd)を徐々に低下させつつA~D点にて排液濃度センサ5により濃度(Cd)又は吸光度(Abs)を検出することにより、透析液流量(Qd)と濃度(Cd)又は吸光度(Abs)との関係を示すグラフを得ることができる。なお、透析液排出ライン8を流れる透析液排液中の所定物質の濃度と血液回路1を流れる血液中の所定物質の濃度とが近似するとは、両者の濃度の比が、0.7~1.3の範囲内にあることを意味する。当該両者の濃度の比は、0.8~1.2の範囲内にあることが好ましく、0.9~1.1の範囲内にあることが更に好ましい。
 この場合、D点から更に透析液流量(Qd)を低下させても濃度(Cd)又は吸光度(Abs)が一定値(かかる一定値を平衡値(平衡濃度Cdeq又は平衡吸光度Abseq)と称する)となっているため、透析液排出ライン8を流れる透析液排液中の所定物質の濃度(尿素等の老廃物の濃度)と血液回路1を流れる血液中の所定物質の濃度(尿素等の老廃物の濃度)とが同一又は近似となる「平衡状態」が形成されていることが分かる。
 記憶部12は、制御部11及び排液濃度センサ5と電気的に接続され、平衡状態のときの排液濃度センサ5(濃度検出部)の検出値(平衡状態のときの所定物質の濃度(Cdeq)又は吸光度(Abseq))を「平衡値」として記憶するものである。すなわち、制御部11にて平衡状態が形成されるとともに、かかる平衡状態のときに排液濃度センサ5にて検出された検出値は、平衡値(平衡濃度(Cdeq)又は平衡吸光度(Abseq))として記憶部12に記憶されるのである。
 クリアスペース算出部13は、排液濃度センサ5の検出値と、記憶部12で記憶された平衡値(平衡濃度(Cdeq)又は平衡吸光度(Abseq))とに基づき、血液浄化治療による患者の浄化量の指標として示される「クリアスペース(CS)」を算出するものである。本実施形態に係るクリアスペース算出部13は、以下のようにクリアスペース(CS)を求めるようになっている。
 先ず、ダイアライザ2における溶質除去の程度を表す性能指数として示されるクリアランス(CL)について着目する。クリアランス(CL)は、血流量(Qb)、透析液流量(Qd)及び総括物質移動係数(KA)のみの関数であり、透析液流量(Qd)が血流量(Qb)及び総括物質移動係数(KA)に対して十分小さいとき、透析液流量(Qd)が律速となり、血流量(Qb)及び総括物質移動係数(KA)に関係なくCL=Qdとなることが知られている(例えば、山下明泰著、「血液浄化の基礎・臨床透析」、1999年、Vol.15、No.8、P.101~105 参照)。
 一方、ダイアライザ2の浄化膜に対する吸着量を0と仮定すると、血液濃度を基準とした血液濃度基準クリアランス(CLb)と透析液排液濃度を基準とした排液濃度基準クリアランス(CLd)は同一(同意)であり、クリアランスCL(CLb、CLd)は、透析液排液中の所定物質(尿素)の濃度(Cd)及び血液回路1におけるダイアライザ2の入口の所定物質(尿素)の濃度(Cbi)の比率と、透析液流量(Qd)との積(CL=(Cd/Cbi)×Qd … 式(a))により求めることができる(例えば、峰島三千男著、「ダイアライザの性能とその評価」、「Clinical Engineering」、2011年、Vol.22、No.5、P.407~411 参照)。
 そして、透析液流量(Qd)が律速のとき、上述のようにクリアランス(CL)=透析液流量(Qd)となっていることから、式(a)から以下の式(b)が求められ、その式(b)から式(c)を求めることができる。なお、「Cdeq」は、透析液流量(Qd)を十分に低下させて律速となったときの透析液排液中の所定物質(尿素)の濃度を示している。
 CL/Qd=Cdeq/Cbi=1 … 式(b)
 Cbi=Cdeq … 式(c)
 一方、血液浄化治療直後(透析開始直後)において、上述した平衡状態になると、治療開始時の平衡値Cdeq(0)は、患者の初期濃度Cb(0)(すなわち、患者の体内の濃度)と同一又は近似となるので、以下の式(d)が成り立つ。
 Cb(0)=Cdeq(0) … 式(d)
 また、除去量(M)は、経時的に測定したQd×Cd(t)を図積分して求めることができるので、以下の如き式(e)が成り立つ。なお、「t」は、血液浄化治療における任意の経過時間、「te」は、血液浄化治療終了時間を示している。
Figure JPOXMLDOC01-appb-M000007
 そして、クリアスペース(CS)は、除去量(M)をCb(0)で標準化して求めることができる(例えば、山下明泰著、「血液浄化の基礎・臨床透析」、1999年、Vol.15、No.12、P.113~118 参照)ので、以下の式(f)が成り立つ。
 CS=M/Cb(0) … 式(f)
 ここで、式(d)及び式(e)の関係を式(f)に代入することにより、クリアスペース(CS)を求めるための以下の式(g)が成り立つことが分かる。すなわち、クリアスペース(CS)は、所定物質の濃度(Cd)の比率と透析液流量(Qd)の積から求めることができるのである。
Figure JPOXMLDOC01-appb-M000008
 このように、本実施形態に係るクリアスペース算出部13は、
Figure JPOXMLDOC01-appb-M000009
(但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式(上記式(g))にてクリアスペースを算出可能とされている。このように算出したクリアスペース(CS)は、例えば血流量や透析液流量等の治療条件を変更しても、求められたクリアスペース(CS)に影響がほとんど及ぼされず、治療条件の変更毎にクリアスペースを求める必要がない。
 さらに、所定物質の濃度(Cd)の比率(Cd/Cdeq)は、排液濃度センサ5(濃度検出部)における吸光度(Abs)の比率(Abs/Abseq)と相関することが分かっている(例えば、F. Uhlin, I. Fridolin, L. G. Lindberg et al.,「Estimation of Delivered Dialysis Dose by On-Line Monitoring of the Ultraviolet Absorbance in the Spent Dialysate」,American Journal of Kidney Diseases,2003年,Volume41,Issue5,P.1026~1036 参照)。
 したがって、クリスペース(CS)は、上記式(g)における所定物質の濃度(Cd)の比率(Cd/Cdeq)に代え、吸光度(Abs)の比率(Abs/Abseq)とすることができ、以下の式(h)にて求めることができる。
Figure JPOXMLDOC01-appb-M000010
 この場合、記憶部12は、平衡状態のときの検出部19(濃度検出部)で検出される吸光度を平衡値(平衡吸光度Abseq)として記憶し、クリアスペース算出部13は、検出部19で検出された吸光度(Abs)と、記憶部12で記憶された平衡値(Abseq)とに基づき、クリアスペースを算出可能とされている。
 しかして、この場合のクリアスペース算出部13は、
Figure JPOXMLDOC01-appb-M000011
(但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式(上記式(g))にてクリアスペースを算出可能とされている。このように算出したクリアスペース(CS)は、例えば血流量や透析液流量等の治療条件を変更しても、求められたクリスペース(CS)に影響がほとんど及ぼされず、治療条件の変更毎にクリアスペースを求める必要がない。
 表示部14は、クリアスペース算出部13で求められたクリアスペース(CS)を表示するもので、例えば透析装置本体6に設けられた表示画面や透析装置本体6と接続されたモニタ等から成る。この表示部14によりクリアスペース算出部13で求められたクリアスペース(CS)を表示することにより、医師等医療従事者がクリアスペースを正確に把握することができ、血液浄化治療(透析治療)を円滑に行わせることができる。
 なお、血液浄化治療が進行して血液回路1における血液中の所定物質の濃度(Cb)が変化(経過時間に伴って低下)すると、図6の実線に示すように、排液濃度センサ5の検出部19の検出値とされる吸光度(Abs)は、変化(低下)するとともに、同図の破線に示すように、平衡値(平衡吸光度Abs)も変化(低下)する。これは、排液濃度センサ5で検出される所定物質の濃度(Cd)についても同様である。
 総体液量算出部15は、クリアスペース算出部13で算出されたクリアスペース(CS)に基づいて、患者の総体液量(血液浄化治療終了時の総体液量V(te))を算出するものである。具体的には、以下のような演算によって総体液量(V)を求めることができる。
 所定の物質における濃度基準の除去率(Rc)は、以下の式(i)で示すように、血液浄化治療(透析治療)前後における血液中の所定物質の濃度(Cb)から求めることができる(例えば、山下明泰著、「血液浄化の基礎・臨床透析」、1999年、Vol.15、No.11、P.75~79 参照)。
 Rc=(Cb(0)-Cb(t))/Cb(0) … 式(i)
 また、血液中の所定物質の濃度(Cb)の変化率と排液濃度センサ5で検出される所定物質の濃度(Cd)の変化率とは、相関することが分かっている(例えば、F. Uhlin, I. Fridolin, L. G. Lindberg et al.,「Estimation of Delivered Dialysis Dose by On-Line Monitoring of the Ultraviolet Absorbance in the Spent Dialysate」,American Journal of Kidney Diseases,2003年,Volume41,Issue5,P.1026~1036 参照)ので、以下の式(j)で示すように、RcはCdから求めることができる。
 Rc=(Cd(0)-Cd(t))/Cd(0) … 式(j)
 一方、クリアスペース(CS)は、以下の式(k)で示すように、除去率(Rc)、血液浄化治療終了時の体液量(Vte)及び除水量(ΔV)から求められることが分かっている(例えば、山下明泰著、「血液浄化の基礎・臨床透析」、1999年、Vol.15、No.12、P.113~118 参照)。
 CS=Rc×V(te)+ΔV … 式(k)
 式(j)及び式(k)から、血液浄化治療後の患者の総体液量(Vte)は、以下のように求められる。
 CS(te)=(Cd(0)-Cd(t))/Cd(0)×V(te)+ΔV
 V(te)=(CS(te)-ΔV(te))/(1-Cd(te)/Cd(0)) …式(l)
 既述のように、CbとCdの比率は排液濃度センサ5(濃度検出部)で検出される吸光度(Abs)の比率と相関するので、以下の式(m)で示すように、血液浄化治療後の患者の総体液量V(te)は、Absの比率の組み合わせにて求められる。
 V(te)=(CS(te)-ΔV(te))/(1-Abs(te)/Abs(0)) …式(m)
 以上のように、総体液量算出部15は、V(te)=(CS(te)-ΔV(te))/(1-Cd(te)/Cd(0))なる演算式(上記式(l))、或いはV(te)=(CS(te)-ΔV(te))/(1-Abs(te)/Abs(0))なる演算式(上記式(m))によって患者の総体液量(血液浄化治療後の患者の総体液量)を算出可能とされている。なお、血液浄化治療時間を示す(te)に代えて、治療中の現時点の時間(t)とすれば、現時点における患者の総体液量を求めることができる。
 次に、本実施形態に係る血液浄化装置によってクリアスペースを求める工程について、図3のフローチャートに基づいて説明する。
 先ず、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で血液ポンプ3及び複式ポンプPを駆動させて、ダイアライザ2を介して血液回路1にて血液を流動させるとともに、透析液導入ライン7及び透析液排出ライン8にて透析液を流動させる。その状態において、S1にて透析液流量(Qd)を所定値だけ低下させた後、S2にて排液濃度センサ5(濃度検出部)の検出値(所定物質の濃度Cd又は吸光度(Abs))が安定するまで待ち、安定したと判断されると、S3に進んで、透析液流量(Qd)と検出値(所定物質の濃度Cd又は吸光度(Abs))の関係を記憶部12にて記憶する。
 そして、S4にて排液濃度センサ5(濃度検出部)の検出値が所定の閾値以上変化したか否かを判断し、所定の閾値以上の変化がある場合はS1に戻って透析液流量(Qd)を所定値だけ低下させ、S2~S4の工程を順次行う。一方、S4にて排液濃度センサ5(濃度検出部)の検出値が所定の閾値以上変化しない(検出値が一定)と判断されると、S5に進み、その検出値を平衡値(平衡濃度(Cdeq)又は平衡吸光度(Abseq)として記憶部12にて記憶させる。
 すなわち、図4に示すように、透析液流量(Qd)をA点~D点まで順次低下させ、D点から透析液流量(Qd)を更に低下させると、排液濃度センサ5(濃度検出部)の検出値(所定物質の濃度(Cd)又は吸光度(Abs))が一定となる「平衡状態」に達するので、その平衡状態(D点)における検出値を平衡値(平衡濃度(Cdeq)又は平衡吸光度(Abseq)として記憶するのである。
 その後、S6に進み、クリアスペース算出部13によって、
Figure JPOXMLDOC01-appb-M000012
(但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式、又は
Figure JPOXMLDOC01-appb-M000013
(但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペース(CS)が求められる。
 S6にてクリアスペース(CS)が求められると、図4に示すように、平衡値(Cdeq又はAbseq)、及び透析液流量(Qd)と排液濃度センサ5(濃度検出部)の検出値(Cd又はAbs)の関係(同図中、上図参照)に加え、透析液流量(Qd)とクリアスペース(CS)との関係(同図中、下図参照)を記憶部12にて記憶させることができる。
 また、本実施形態においては、透析液流量(Qd)を低下させて平衡状態を形成しているが、血流量(Qb)を増加させて平衡状態を形成するようにしてもよい。この場合、S1にて血流量(Qb)を所定値だけ上昇させた後、S2にて排液濃度センサ5(濃度検出部)の検出値(所定物質の濃度Cd又は吸光度(Abs))が安定するまで待ち、安定したと判断されると、S3に進んで、血流量(Qb)と検出値(所定物質の濃度Cd又は吸光度(Abs))の関係を記憶部12にて記憶することとなる。
 すなわち、図5に示すように、血流量(Qb)をA点~D点まで順次増加させ、D点から血流量(Qb)を更に増加させると、排液濃度センサ5(濃度検出部)の検出値(所定物質の濃度(Cd)又は吸光度(Abs))が一定となる「平衡状態」に達するので、その平衡状態(D点)における検出値を平衡値(平衡濃度(Cdeq)又は平衡吸光度(Abseq)として記憶するのである。
 本実施形態に係る制御部11は、上記の如く透析液流量(Qd)の低下又は血流量(Qb)の増加によって「平衡状態」を形成しているが、透析液流量(Qd)を停止させて平衡状態を形成するようにしてもよく、或いはダイアライザ2(血液浄化器)を介して透析液を循環させることにより平衡状態を形成するようにしてもよい。このように、制御部11は、透析液流量(Qd)を低下若しくは停止、血流量(Qb)を増加、又はダイアライザ2を介して透析液を循環させることにより平衡状態を形成するので、平衡状態を簡易且つ容易に形成することができる。
 上記実施形態によれば、透析液排出ライン8を流れる透析液排液中の所定物質の濃度と血液回路1を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成し、その平衡状態のときの排液濃度センサ5(濃度検出部)の検出値を平衡値として記憶するとともに、排液濃度センサ5の検出値と、記憶部12で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペース(CS)を算出するので、装置の大型化を回避するとともに、リアルタイムにクリアスペース(CS)を求めることができる。
 また、本実施形態に係るクリアスペース算出部13は、
Figure JPOXMLDOC01-appb-M000014
(但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペースを算出するので、透析液排液中の所定物質の濃度を検出する排液濃度センサ5を用いることによって、正確且つ容易にクリアスペースを求めることができる。
 さらに、本実施形態に係る排液濃度センサ5(濃度検出部)は、透析液排液に対して光を照射する発光部16と、透析液排液を透過した発光部16からの透過光を受ける受光部17と、受光部17による受光強度から吸光度を検出する検出部18とを具備し、検出部18により検出された吸光度に基づき透析液排液中の所定物質の濃度を検出するので、透析液排液をセンサ等に接触させることなく透析液排液中の所定物質の濃度を精度よく検出することができる。
 またさらに、本実施形態に係る記憶部12は、平衡状態のときの検出部18で検出される吸光度を平衡値(Abseq)として記憶し、クリアスペース算出部13は、検出部18で検出された吸光度(Abs)と、記憶部12で記憶された平衡値(Abseq)とに基づき、クリアスペースを算出するので、所定物質の濃度の比率と相関する吸光度の比率を利用して、リアルタイムにクリアスペースを求めることができる。
 特に、本実施形態に係るクリアスペース算出部13は、
Figure JPOXMLDOC01-appb-M000015
(但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、te:血液浄化治療終了時間とする。)
なる演算式によってクリアスペースを算出するので、所定物質の濃度の比率と相関する吸光度の比率を利用して、正確且つ容易にクリアスペースを求めることができる。
 また、クリアスペース算出部13で算出されたクリアスペースに基づいて、患者の総体液量を算出する総体液量算出部15を具備したので、クリアスペースを求めることによって、より正確且つリアルタイムに患者の総体液量を求めることができる。すなわち、通常、患者の総体液量は、患者の体重の数十%程度(例えば60%程度)と推定されるのに対し、本実施形態によれば、クリアスペース算出部13で算出されたクリアスペースに基づいて精度よく且つリアルタイムで求めることができるのである。
 以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えばクリアスペースを算出するための排液濃度センサ5(濃度検出部)の検出値及び平衡値は、所定物質の濃度に相関するパラメータであれば他のパラメータを用いてもよく、例えば吸光度の他、排液濃度センサ5の出力電圧や出力電流等であってもよい。また、クリアスペース算出部13においてクリアスペースを算出するための演算式は、上述のものに限らず、他の演算式から得られるものであってもよい。
 さらに、本実施形態においては、算出されたクリアスペースを表示部14にて表示させているが、スピーカ等の他の手段によって医師等医療従事者に報知するようにしてもよく、或いは表示を含む報知を行わせず、例えば、クリアスペース算出部13にて求められたクリアスペースを治療時の設定のための内部処理に専ら用いるようにしてもよい。なお、本実施形態においては血液透析装置に適用されているが、体外循環させつつ血液浄化を行う他の治療(血液濾過療法や血液濾過透析療法など)で使用される血液浄化装置に適用するようにしてもよい。
 透析液排出ラインを流れる透析液排液中の所定物質の濃度と血液回路を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成する制御部と、平衡状態のときの濃度検出部の検出値を平衡値として記憶する記憶部と、濃度検出部の検出値と、記憶部で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出するクリアスペース算出部とを具備した血液浄化装置であれば、他の機能が付加されたもの等にも適用することができる。
1 血液回路
1a 動脈側血液回路
1b 静脈側血液回路
2 ダイアライザ(血液浄化器)
3 血液ポンプ
4a、4b エアトラップチャンバ
5 排液濃度センサ(濃度検出部)
6 透析装置本体
7 透析液導入ライン
8 透析液排出ライン
9 バイパスライン
10 除水ポンプ
11 制御部
12 記憶部
13 クリアスペース算出部
14 表示部
15 総体液量算出部
16 発光部
17 受光部
18 検出部
P 複式ポンプ

Claims (8)

  1.  患者の血液を体外循環させる血液回路と、該血液回路に接続され、体外循環する血液を浄化する血液浄化器とが取り付け可能とされるとともに、
     前記血液浄化器に透析液を導入する透析液導入ラインと、
     前記血液浄化器による血液の浄化に伴って生じた透析液排液を当該血液浄化器から排出する透析液排出ラインと、
     前記透析液排出ラインを流れる透析液排液中の所定物質の濃度を検出する濃度検出部と、
    を具備した血液浄化装置において、
     前記透析液排出ラインを流れる透析液排液中の所定物質の濃度と前記血液回路を流れる血液中の所定物質の濃度とが同一又は近似となる平衡状態を形成する制御部と、
     前記平衡状態のときの前記濃度検出部の検出値を平衡値として記憶する記憶部と、
     前記濃度検出部の検出値と、前記記憶部で記憶された平衡値とに基づき、血液浄化治療による患者の浄化量の指標として示されるクリアスペースを算出するクリアスペース算出部と、
    を具備したことを特徴とする血液浄化装置。
  2.  前記クリアスペース算出部は、
    Figure JPOXMLDOC01-appb-M000001
    (但し、CS:クリアスペース、Cdeq:記憶部で記憶された平衡値、Cd(t):濃度検出部で検出された所定物質の濃度、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)
    なる演算式によってクリアスペースを算出することを特徴とする請求項1記載の血液浄化装置。
  3.  前記制御部は、透析液流量を低下若しくは停止、血流量を増加、又は前記血液浄化器を介して透析液を循環させることにより前記平衡状態を形成することを特徴とする請求項1又は請求項2記載の血液浄化装置。
  4.  前記濃度検出部は、前記透析液排液に対して光を照射する発光部と、前記透析液排液を透過した前記発光部からの透過光を受ける受光部と、前記受光部による受光強度から吸光度を検出する検出部とを具備し、前記検出部により検出された吸光度に基づき前記透析液排液中の所定物質の濃度を検出することを特徴とする請求項1~3の何れか1つに記載の血液浄化装置。
  5.  前記記憶部は、前記平衡状態のときの前記検出部で検出される吸光度を平衡値として記憶し、前記クリアスペース算出部は、前記検出部で検出された吸光度と、前記記憶部で記憶された平衡値とに基づき、前記クリアスペースを算出することを特徴とする請求項4記載の血液浄化装置。
  6.  前記クリアスペース算出部は、
    Figure JPOXMLDOC01-appb-M000002
    (但し、CS:クリアスペース、Abs:検出部で検出された吸光度、Abseq:記憶部で記憶された平衡値、Qd(t):透析液流量、t:血液浄化治療における任意の経過時間、te:血液浄化治療終了時間とする。)
    なる演算式によってクリアスペースを算出することを特徴とする請求項5記載の血液浄化装置。
  7.  前記クリアスペース算出部で算出されたクリアスペースに基づいて、患者の総体液量を算出する総体液量算出部を具備したことを特徴とする請求項1~6の何れか1つに記載の血液浄化装置。
  8.  前記血液回路と前記血液浄化器とが取り付けられたことを特徴とする請求項1~7の何れか1つに記載の血液浄化装置。
PCT/JP2018/038713 2017-10-17 2018-10-17 血液浄化装置 WO2019078274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18868007.8A EP3698822B1 (en) 2017-10-17 2018-10-17 Blood purification apparatus
CN201880067551.6A CN111225693B (zh) 2017-10-17 2018-10-17 血液净化装置
US16/845,285 US11419963B2 (en) 2017-10-17 2020-04-10 Blood purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201428 2017-10-17
JP2017201428A JP6914803B2 (ja) 2017-10-17 2017-10-17 血液浄化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/845,285 Continuation US11419963B2 (en) 2017-10-17 2020-04-10 Blood purification apparatus

Publications (1)

Publication Number Publication Date
WO2019078274A1 true WO2019078274A1 (ja) 2019-04-25

Family

ID=66174522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038713 WO2019078274A1 (ja) 2017-10-17 2018-10-17 血液浄化装置

Country Status (5)

Country Link
US (1) US11419963B2 (ja)
EP (1) EP3698822B1 (ja)
JP (1) JP6914803B2 (ja)
CN (1) CN111225693B (ja)
WO (1) WO2019078274A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173569A (ja) * 1989-11-21 1991-07-26 Fresenius Ag 血液透析パラメーターの体内測定法
US6702774B1 (en) * 1997-10-27 2004-03-09 Fresenius Medical Care Deutschland Gmbh Method of measuring dialysis or clearance of hemodialysis systems
US20060116624A1 (en) * 2002-10-30 2006-06-01 Sternby Jan P Method and an apparatus for determining the efficiency of dialysis
JP2007029705A (ja) * 2005-06-24 2007-02-08 Jms Co Ltd 腹膜透析及び血液透析併用プランニング装置
JP2017522141A (ja) * 2014-08-01 2017-08-10 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー 透析器を通る流体流れの方向を検出するための装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747360B8 (de) * 1997-10-27 2007-05-16 Fresenius Medical Care De Gmbh Verfahren zur Messung von Leistungsparametern von Stoff- und Energieaustausch Modulen
CN1204930C (zh) * 1998-10-23 2005-06-08 甘布罗股份公司 测量通道流量的装置
JP4379027B2 (ja) * 2003-05-14 2009-12-09 株式会社ジェイ・エム・エス 腹膜透析および血液透析併用プランニング方法ならびに腹膜透析および血液透析併用プランニング装置
DE502005006461D1 (de) * 2005-03-05 2009-03-05 Braun B Avitum Ag Dialysemaschine mit einer Einrichtung zur Bestimmung der Dialysedosis
JP4548349B2 (ja) * 2006-01-20 2010-09-22 株式会社ジェイ・エム・エス 血液透析装置
JP5261136B2 (ja) * 2008-10-31 2013-08-14 横河電機株式会社 血液分析方法
CN102378636B (zh) * 2009-03-31 2014-09-17 弗雷森纽斯医疗护理德国有限责任公司 用于确定和调节流体循环中至少一种溶解物质的浓度的装置和方法
JP5548917B2 (ja) * 2009-04-23 2014-07-16 ニプロ株式会社 毒素除去量測定装置の作動方法およびサンプリング装置
DE102010047215A1 (de) * 2010-09-29 2012-03-29 Bbraun Avitum Ag Dialysat-Profiling gesteuert durch UV-Kontrolle
DE102011102962A1 (de) * 2011-05-23 2012-11-29 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Erkennung eines Betriebszustandes einer extrakorporalen Blutbehandlung
JP5803543B2 (ja) * 2011-10-11 2015-11-04 ニプロ株式会社 透析液調製装置の診断方法と透析液調製装置
ES2717130T3 (es) * 2013-08-16 2019-06-19 Baxter Int Optimización de terapia de potasio sérico para hemoterapia de insuficiencia renal, especialmente hemodiálisis domiciliaria
JP6147146B2 (ja) * 2013-09-02 2017-06-14 日機装株式会社 血液浄化装置
CN106693096A (zh) * 2016-12-30 2017-05-24 北京迈淩医疗技术发展有限公司 能够在线测定尿素清除指数的血液透析装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173569A (ja) * 1989-11-21 1991-07-26 Fresenius Ag 血液透析パラメーターの体内測定法
US6702774B1 (en) * 1997-10-27 2004-03-09 Fresenius Medical Care Deutschland Gmbh Method of measuring dialysis or clearance of hemodialysis systems
US20060116624A1 (en) * 2002-10-30 2006-06-01 Sternby Jan P Method and an apparatus for determining the efficiency of dialysis
JP2007029705A (ja) * 2005-06-24 2007-02-08 Jms Co Ltd 腹膜透析及び血液透析併用プランニング装置
JP2017522141A (ja) * 2014-08-01 2017-08-10 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー 透析器を通る流体流れの方向を検出するための装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIHIRO YAMASHITA, BASICS OF BLOOD PURIFICATION: THE JAPANESE JOURNAL OF CLINICAL DIALYSIS, vol. 15, no. 11, 1999, pages 113 - 118
AKIHIRO YAMASHITA: "Basics of Blood Purification", THE JAPANESE JOURNAL OF CLINICAL DIALYSIS, vol. 15, no. 11, 1999, pages 75 - 79
F. UHLINI. FRIDOLINL. G. LINDBERG ET AL.: "Estimation of Delivered Dialysis Dose by On-Line Monitoring of the Ultraviolet Absorbance in the Spent Dialysate", AMERICAN JOURNAL OF KIDNEY DISEASES, vol. 41, no. 5, 2003, pages 1026 - 1036, XP028836390, DOI: 10.1016/S0272-6386(03)00200-2
MICHIO MINESHIMA: "Performance and Evaluation of Dialyzer", CLINICAL ENGINEERING, vol. 22, no. 5, 2011, pages 407 - 411

Also Published As

Publication number Publication date
EP3698822B1 (en) 2022-05-11
JP6914803B2 (ja) 2021-08-04
JP2019072281A (ja) 2019-05-16
US20200237988A1 (en) 2020-07-30
US11419963B2 (en) 2022-08-23
EP3698822A4 (en) 2021-07-28
CN111225693A (zh) 2020-06-02
EP3698822A1 (en) 2020-08-26
CN111225693B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
JP6147146B2 (ja) 血液浄化装置
JP4868772B2 (ja) 血液浄化装置
JP4822258B2 (ja) 血液透析装置
WO2006112154A1 (ja) 血液透析装置及び血液透析方法
JP2011120822A (ja) 血液浄化装置
JP2007105149A (ja) 血液浄化装置及びその再循環率算出方法
KR100570322B1 (ko) 다이알리산스를 결정하는 방법 및 이 방법을 위한 장치
JP4573231B2 (ja) 血液浄化装置
JP2006110118A (ja) 血液浄化装置及びその監視方法
WO2019078273A1 (ja) 血液浄化装置
WO2019078274A1 (ja) 血液浄化装置
JP2009273750A (ja) 血液透析システム
JP2010063644A (ja) 血液浄化装置
JP6893157B2 (ja) 血液浄化装置
JP7064308B2 (ja) 血液浄化装置
JP6983032B2 (ja) 血液浄化装置
JP4442825B2 (ja) 血液浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868007

Country of ref document: EP

Effective date: 20200518