WO2019077994A1 - Terahertz device - Google Patents

Terahertz device Download PDF

Info

Publication number
WO2019077994A1
WO2019077994A1 PCT/JP2018/036842 JP2018036842W WO2019077994A1 WO 2019077994 A1 WO2019077994 A1 WO 2019077994A1 JP 2018036842 W JP2018036842 W JP 2018036842W WO 2019077994 A1 WO2019077994 A1 WO 2019077994A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
conductive
rectifying
terminal
disposed
Prior art date
Application number
PCT/JP2018/036842
Other languages
French (fr)
Japanese (ja)
Inventor
俊和 向井
在瑛 金
一魁 鶴田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018155898A external-priority patent/JP7192188B2/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN201880067881.5A priority Critical patent/CN111226305B/en
Priority to US16/755,839 priority patent/US10957598B2/en
Publication of WO2019077994A1 publication Critical patent/WO2019077994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode

Definitions

  • the present disclosure relates to a terahertz device.
  • the present disclosure has as its main object to provide a more preferable terahertz device.
  • a terahertz device includes a semiconductor substrate, a terahertz element, and a first rectifying element.
  • the terahertz element is disposed on the semiconductor substrate.
  • the first rectifying element is electrically connected in parallel to the terahertz element.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 2;
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. FIG.
  • FIG. 9 is another cross-sectional view along the line IX-IX in FIG. 2;
  • FIG. 3 is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 3 is a cross-sectional view taken along the line XII-XII in FIG.
  • FIG. 5 is another cross-sectional view along the line XII-XII in FIG. 2; It is sectional drawing in alignment with the XIV-XIV line of FIG.
  • It is a circuit diagram of the terahertz element of the first embodiment, a first rectifying element, and a second rectifying element. It is sectional drawing of the 1st rectifier of 1st Embodiment. It is sectional drawing of the 2nd rectifier of 1st Embodiment.
  • FIG. 23 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element, including two cross-sectional views along the line XXIII-XXIII in FIG. 22.
  • FIG. 2 is a cross-sectional view of the terahertz device of the first embodiment. It is a top view of the semiconductor component of the 1st modification of a 1st embodiment. It is a top view of the terahertz device of the 1st modification of a 1st embodiment. It is a top view of the terahertz device of the 2nd modification of a 1st embodiment. It is a top view of the terahertz device of the 3rd modification of a 1st embodiment.
  • FIG. 2 is a cross-sectional view of the terahertz device of the first embodiment. It is a top view of the semiconductor component of the 1st modification of a 1st embodiment. It is a top view of the terahertz device of the 1s
  • FIG. 7 is a cross-sectional view of a terahertz device of another modification of the first embodiment. It is a figure which shows an example of the shape of planar view of a 2nd part. It is a figure which shows an example of the shape of planar view of a 2nd part. It is a figure which shows an example of the shape of planar view of a 2nd part. It is a figure which shows an example of the shape of planar view of a 2nd part. It is a figure which shows an example of the shape of planar view of a 2nd part. It is a figure which shows an example of the shape of planar view of a 2nd part.
  • FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29.
  • FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29.
  • FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29.
  • FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29.
  • FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29.
  • It is a perspective view of the terahertz device of the modification of a 1st embodiment. It is a perspective view of the terahertz device of the modification of a 1st embodiment. It is a top view of the terahertz device of the modification of a 1st embodiment. It is a top view of the terahertz device of the modification of a 1st embodiment.
  • a certain thing A is located on a certain thing B means "a certain thing A is in contact with a certain thing B", and "a certain thing A and "Intermediate thing with another thing B” is included.
  • the terms “some A is laminated to some B” and “some A is laminated onto some B” refer to “some A as being unless otherwise noted. And “being laminated to a certain thing B while being interposed with another thing between a certain thing A and a certain thing B”.
  • FIGS. 1 to 24 A first embodiment of the present disclosure will be described using FIGS. 1 to 24.
  • FIG. 1 is a perspective view of the terahertz device of the first embodiment.
  • the terahertz device A1 shown in the figure includes a semiconductor component B1, a support 8, a resin portion 85, and wires 871 and 872.
  • FIG. 2 is a plan view of the semiconductor component of the first embodiment.
  • the semiconductor component B1 shown in the figure oscillates a high frequency electromagnetic wave of a frequency in the terahertz band.
  • the semiconductor component B1 does not oscillate, but may receive, high frequency electromagnetic waves in the terahertz band.
  • the semiconductor component B1 may be one that oscillates and receives high frequency electromagnetic waves in the terahertz band.
  • the semiconductor component B1 includes the semiconductor substrate 1, the first conductive layer 2, the second conductive layer 3, the insulating layer 4 (see FIG. 5 and the like), the terahertz element 5, the first rectifying element 61, the first And a second rectifying element 62.
  • the semiconductor substrate 1 is made of a semiconductor and has a semi-insulating property.
  • the semiconductor constituting the semiconductor substrate 1 is, for example, InP, but may be a semiconductor other than InP.
  • the semiconductor substrate 1 has a surface 11. The surface 11 faces in the thickness direction Z1 (see FIG. 5 etc.) of the semiconductor substrate 1.
  • the semiconductor substrate 1 includes edges 131-134.
  • the edge 131 and the edge 133 are spaced apart from each other in the first direction X1.
  • the edge 131 and the edge 133 both extend along the second direction X2.
  • the second direction X2 is orthogonal to the first direction X1.
  • the edge 132 and the edge 134 are spaced apart from each other in the second direction X2. Both the edge 132 and the edge 134 extend along the first direction X1.
  • Edge 131 is connected to edge 132
  • edge 132 is connected to edge 133
  • edge 133 is connected to edge 134
  • edge 134 is connected to edge 131.
  • FIG. 4 is a partially enlarged view of region IV of FIG.
  • FIG. 5 is a cross-sectional view showing the details of the terahertz element of the first embodiment.
  • the terahertz element 5 shown in FIGS. 2, 4 and 5 is formed on a semiconductor substrate 1.
  • the terahertz element 5 is electrically connected to the first conductor layer 2 and the second conductor layer 3.
  • the electromagnetic wave emitted from the terahertz element 5 is reflected by the back reflector metal layer 88, and the terahertz element 5 has a surface emission radiation pattern in a direction (thickness direction Z1) perpendicular to the semiconductor substrate 1.
  • the terahertz element 5 is typically an RTD.
  • the terahertz element 5 may be configured by a diode other than the RTD or a transistor.
  • a Tannet (Tunnet T: Tunnel Transit Time) diode an IMP ATT (Impact Ionization Avalanche Transit Time) diode, a GaAs based field effect transistor (FET: Field Effect Transistor), a GaN based FET, a high electron A mobility transistor (HEMT: High Electron Mobility Transistor) or a heterojunction bipolar transistor (HBT) can be comprised.
  • FIG. 6 is a partial enlarged view of FIG.
  • the GaInAs layer 92a is disposed in the semiconductor layer 91a (made of, for example, GaInAs) and is doped with an n-type impurity.
  • the GaInAs layer 93a is disposed on the GaInAs layer 92a and is not doped with impurities.
  • An AlAs layer 94 a is disposed on the GaInAs layer 93 a, an InGaAs layer 95 is disposed on the AlAs layer 94 a, and an AlAs layer 94 b is located on the InGaAs layer 95.
  • the AlAs layer 94a, the InGaAs layer 95, and the AlAs layer 94b constitute an RTD portion.
  • the GaInAs layer 93b is disposed on the AlAs layer 94b and is not doped with impurities.
  • the GaInAs layer 92b is disposed on the GaInAs layer 93b and is doped with an n-type impurity.
  • a GaInAs layer 91b is disposed on the GaInAs layer 92b and is heavily doped with n-type impurities. Then, the first conductor layer 2 is located on the GaInAs layer 91 b.
  • a GaInAs layer heavily doped with an n-type impurity may be interposed between the GaInAs layer 91 b and the first conductor layer 2, unlike FIG. 6. Thereby, the contact between the first conductor layer 2 and the GaInAs layer 91 b can be improved.
  • the region R11 is a region for oscillating the terahertz wave.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is another cross-sectional view along the line IX-IX in FIG.
  • FIG. 13 is another cross-sectional view along the line XII-XII in FIG.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG.
  • the insulating layer 4 shown in FIG. 8 is formed on the semiconductor substrate 1.
  • the insulating layer 4 is made of, for example, SiO 2 .
  • the material forming the insulating layer 4 may be Si 3 N 4 , SiON, HfO 2 , or Al 2 O 3 .
  • the thickness of the insulating layer 4 is, for example, 10 nm to 1000 nm.
  • the insulating layer 4 can be formed by, for example, a CVD method or a sputtering method.
  • the first conductive layer 2 and the second conductive layer 3 are respectively formed on the semiconductor substrate 1.
  • the first conductor layer 2 and the second conductor layer 3 are insulated from each other.
  • the terahertz element 5 is separated from the second conductor layer 3 in the first direction X1 orthogonal to the thickness direction Z1 of the semiconductor substrate 1.
  • the first conductor layer 2 and the second conductor layer 3 each have a laminated structure of metal.
  • the laminated structure of each of the first conductor layer 2 and the second conductor layer 3 is, for example, a structure in which Au, Pd, and Ti are laminated.
  • each of the first conductor layer 2 and the second conductor layer 3 is, for example, a structure in which Au and Ti are laminated.
  • the thickness of each of the first conductor layer 2 and the second conductor layer 3 is, for example, 10 to 2000 nm.
  • Each of the first conductor layer 2 and the second conductor layer 3 can be formed by vacuum evaporation, sputtering, or the like.
  • the first conductive layer 2 includes a first portion 21, a first inductance portion 22, a first capacitor portion 23, and a first electrode 25.
  • the second conductor layer 3 includes a second portion 31, a second inductance portion 32, a second capacitor portion 33, and a second electrode 35.
  • the first portion 21 extends along the first direction X1.
  • the first portion 21 includes a first conductive portion 214 and a second conductive portion 215.
  • the first conductive portion 214 is a long rectangular portion.
  • the first conductive portion 214 may extend along the first direction X1 and function as an antenna.
  • the second conductive portion 215 extends from the first conductive portion 214 toward the second conductive layer 3 in the thickness direction Z1.
  • the second conductive portion 215 overlaps the terahertz element 5 in the thickness direction Z1.
  • the first inductance portion 22 shown in FIGS. 2 and 4 is connected to the first portion 21 and the first capacitor portion 23 and extends from the first portion 21 to the first capacitor portion 23 along the second direction X2.
  • the first inductance unit 22 functions as an inductance.
  • the length L1 (see FIG. 4) in the second direction X2 of the first inductance portion 22 is, for example, 5 ⁇ m to 100 ⁇ m.
  • the width of the first inductance portion 22 is, for example, 1 ⁇ m to 10 ⁇ m.
  • the second portion 31 extends along the third direction X3.
  • the third direction X3 is the direction opposite to the first direction X1.
  • the second portion 31 can function as an antenna.
  • the second inductance portion 32 is connected to the second portion 31 and the second capacitor portion 33, and extends from the second portion 31 to the second capacitor portion 33 along the second direction X2.
  • the second inductance unit 32 functions as an inductance.
  • the length L2 (see FIG. 4) in the second direction X2 of the second inductance portion 32 is, for example, 5 ⁇ m to 100 ⁇ m.
  • the width of the second inductance portion 32 is, for example, 1 ⁇ m to 10 ⁇ m.
  • the first capacitor portion 23 is located on the side of the terahertz element 5 in the second direction X2.
  • the first capacitor portion 23 is rectangular in the thickness direction Z1.
  • FIG. 3 is a view in which the first conductive layer 2 is omitted from FIG.
  • the second capacitor unit 33 is located on the side of the terahertz element 5 in the second direction X2. As shown in FIGS. 12 and 13, the first capacitor portion 23 is interposed between the second capacitor portion 33 and the semiconductor substrate 1. Unlike the present embodiment, the second capacitor unit 33 may be interposed between the first capacitor unit 23 and the semiconductor substrate 1. The second capacitor portion 33 is stacked on the first capacitor portion 23 and is insulated from the first capacitor portion 23 via the insulating layer 4. The second capacitor unit 33 and the first capacitor unit 23 constitute a capacitor. In the present embodiment, the second capacitor portion 33 is rectangular in the thickness direction Z1.
  • the first electrode 25 is connected to the first capacitor unit 23.
  • the first electrode 25 is rectangular.
  • the first electrode 25 is a pad portion to which the wire 871 (see FIG. 11) is bonded.
  • the first electrode 25 has a portion in direct contact with the semiconductor substrate 1. The contact portion overlaps the wire bonding portion in which the wire 871 and the first electrode 25 are in contact in the thickness direction Z1.
  • the first electrode 25 in the thickness direction Z1, includes edges 251 to 254.
  • the edge 251 and the edge 253 both extend along the second direction X2.
  • the edge 252 and the edge 254 are spaced apart from each other in the second direction X2.
  • the edge 252 and the edge 254 both extend along the first direction X1.
  • Edge 251 connects to edge 252, which connects to edge 253, which is spaced apart from edge 254, which connects to edge 251.
  • the edge 251 and the edge 252 respectively extend to the edge 131 and the edge 132 in the thickness direction Z1.
  • the edge 251 and the edge 252 may not extend to the edge 131 and the edge 132 in the thickness direction Z1, respectively.
  • the second electrode 35 is connected to the second capacitor unit 33.
  • the second electrode 35 is rectangular.
  • the second electrode 35 is a pad portion to which the wire 872 (see FIG. 14) is bonded.
  • the second electrode 35 has a portion in direct contact with the semiconductor substrate 1. The contact portion overlaps the wire bonding portion in which the wire 872 and the second electrode 35 are in contact in the thickness direction Z1.
  • the second electrode 35 extends to the edge 133 and the edge 132 in the thickness direction Z1. Unlike the present embodiment, the second electrode 35 may not reach the edge 133 and the edge 132 in the thickness direction Z1. In this case, when dicing the semiconductor substrate 1 in the manufacturing process of the semiconductor component B1, it is possible to suppress the generation of burrs that may be generated by cutting the second electrode 35.
  • the second electrode 35 includes edges 351 to 354 in the thickness direction Z1.
  • the edge 351 and the edge 353 both extend along the second direction X2.
  • the edge 352 and the edge 354 are spaced apart from each other in the second direction X2.
  • Both the edge 352 and the edge 354 extend along the first direction X1.
  • Edge 351 connects to edge 352
  • edge 352 connects to edge 353
  • edge 353 connects to edge 354 and edge 354 is spaced from edge 351.
  • the edge 352 and the edge 353 respectively extend to the edge 132 and the edge 133 in the thickness direction Z1.
  • the edge 352 and the edge 353 may not extend to the edge 132 and the edge 133, respectively, in the thickness direction Z1.
  • FIG. 15 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element of the first embodiment.
  • the first rectifying element 61 is electrically connected in parallel to the terahertz element 5.
  • the first rectifying element 61 is, for example, a diode. Examples of such diodes include zener diodes, Schottky diodes, and light emitting diodes.
  • the first rectifying element 61 includes a first terminal 61A and a second terminal 61B. In the first rectifying element 61, the electrical direction from the first terminal 61A to the second terminal 61B is the forward direction. In normal use, in the first rectifying element 61, current easily flows from the first terminal 61A to the second terminal 61B, and current hardly flows from the second terminal 61B to the first terminal 61A.
  • FIG. 16 is a cross-sectional view of an example of the first rectifying element of the first embodiment.
  • the first rectifying element 61 includes a first semiconductor layer 611 and a second semiconductor layer 612.
  • the first semiconductor layer 611 and the second semiconductor layer 612 are stacked on each other.
  • the first semiconductor layer 611 has a first conductivity type
  • the second semiconductor layer 612 has a second conductivity type opposite to the first conductivity type.
  • the first conductivity type is p-type
  • the second conductivity type is n-type.
  • the first conductivity type is p-type.
  • FIG. 18 shows the current-voltage characteristics of the first rectifying element 61.
  • the direction in which current flows from the first terminal 61A to the second terminal 61B is positive.
  • the absolute value of the first rising voltage value V611 of the first rectifying element 61 is smaller than the absolute value of the first breakdown voltage value V612 of the first rectifying element 61.
  • the first rising voltage value V611 may be larger than the lower limit (the absolute value of the voltage value V11, see FIG. 20) of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave.
  • the first rising voltage value V611 may be larger than the upper limit (the absolute value of the voltage value V12, see FIG.
  • the absolute value of voltage value V11 is, for example, 0.3 to 0.5 V
  • the absolute value of voltage value V12 is, for example, 0.5 to 0.7 V.
  • the absolute value of the first rising voltage value V611 is, for example, 0.4 to 0.9 V.
  • the absolute value of the first breakdown voltage value V612 is, for example, 2 to 8V.
  • the second rectifying element 62 is electrically connected in parallel to the terahertz element 5.
  • the second rectifying element 62 is, for example, a diode. Examples of such diodes include zener diodes, Schottky diodes, and light emitting diodes.
  • the second rectifying element 62 includes a first terminal 62A and a second terminal 62B. In the second rectifying element 62, the electrical direction from the first terminal 62A to the second terminal 62B is the forward direction. In normal use, in the second rectifying element 62, current easily flows from the first terminal 62A to the second terminal 62B, and current hardly flows from the second terminal 62B to the first terminal 62A.
  • FIG. 17 is a cross-sectional view of an example of the second rectifying element of the first embodiment.
  • the second rectifying element 62 includes a first semiconductor layer 621 and a second semiconductor layer 622.
  • the second semiconductor layer 621 and the second semiconductor layer 622 are stacked on each other.
  • the first semiconductor layer 621 has a first conductivity type
  • the second semiconductor layer 622 has a second conductivity type opposite to the first conductivity type.
  • the first conductivity type is p-type
  • the second conductivity type is n-type.
  • the first conductivity type is p-type.
  • FIG. 18 shows the current-voltage characteristics of the second rectifying element 62.
  • the direction in which current flows from the first terminal 62A to the second terminal 62B is positive.
  • the absolute value of the second rising voltage value V621 of the second rectifying element 62 is smaller than the absolute value of the second breakdown voltage value V622 of the second rectifying element 62.
  • the second rising voltage value V621 may be larger than the lower limit (the absolute value of the voltage value V11, see FIG. 20) of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave.
  • the second rising voltage value V621 may be larger than the upper limit (the absolute value of the voltage value V12, see FIG.
  • the absolute value of the second rising voltage value V621 is, for example, 0.4 to 0.9 V.
  • the absolute value of the second breakdown voltage value V622 is, for example, 2 to 8V.
  • the first terminal 61 ⁇ / b> A of the first rectifier element 61 is electrically connected to the second terminal 62 ⁇ / b> B of the second rectifier element 62.
  • the second terminal 61 B of the first rectifying element 61 is electrically connected to the first terminal 62 A of the second rectifying element 62. Therefore, the current-voltage characteristics of the combined element including the first and second rectifying elements 61 and 62 are as shown in FIG. As shown in FIG.
  • FIG. 22 is a partially enlarged view of a region XXII of FIG.
  • FIG. 23 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element, including two cross-sectional views along line XXIII-XXIII in FIG.
  • each of the first rectifier element 61 and the second rectifier element 62 is formed on the semiconductor substrate 1.
  • the first rectifying element 61 and the second rectifying element 62 respectively show the first conductive layer 2 (the first electrode 25 in the example shown in FIGS. 22 and 23) and the second conductive layer 3 (the FIGS. 22 and 23). In the example, it is electrically interposed between the second electrodes 35).
  • a semiconductor layer 71 (first semiconductor layer) and a semiconductor layer 72 (second semiconductor layer) are formed on the semiconductor substrate 1.
  • the semiconductor layer 71 and the semiconductor layer 72 are stacked on each other.
  • the semiconductor layer 71 has a first conductivity type, and the semiconductor layer 72 has a second conductivity type opposite to the first conductivity type.
  • the semiconductor layer 71 can constitute, for example, the first semiconductor layer 611 of the first rectifying element 61 and the first semiconductor layer 621 of the second rectifying element 62.
  • the semiconductor layer 72 can constitute the second semiconductor layer 612 of the first rectifying element 61 and the second semiconductor layer 622 of the second rectifying element 62.
  • the first conductive layer 2 (more specifically, the first electrode 25) has portions 256 and 257, and the second conductive layer 3 (more specifically, the second electrode 35). ) Have sites 356, 357.
  • the portions 256 and 357 are in contact with the semiconductor layer 71, and the portions 257 and 356 are in contact with the semiconductor layer 72.
  • the portion 256 can constitute the first terminal 61A of the first rectifying element 61
  • the second electrode 356 can constitute the second terminal 61B of the first rectifying element 61.
  • the portion 257 can constitute the second terminal 62B of the second rectifying element 62
  • the portion 357 can constitute the first terminal 62A of the second rectifying element 62.
  • FIG. 22 and FIG. 23 show an example in which the first rectifying element 61 and the second rectifying element 62 are formed between the first electrode 25 and the second electrode 35, the first electrode in the first conductive layer 2 is shown.
  • the first rectifying element 61 and the second electrode 35 may be formed between the portion other than 25 and the portion of the second conductor layer 3 other than the second electrode 35.
  • the present disclosure shows an example in which two rectifying elements of the first rectifying element 61 and the second rectifying element 62 are formed, only one of the first rectifying element 61 and the second rectifying element 62 is formed. It is also good.
  • the present disclosure shows an example in which two rectification elements of the first rectification element 61 and the second rectification element 62 are formed, in addition to the first rectification element 61 and the second rectification element 62, the terahertz element 5 is electrically There may be additional elements connected in series or in parallel.
  • FIG. 24 is a cross-sectional view of the terahertz device of the first embodiment.
  • a semiconductor component B1 is disposed on a support 8 shown in FIG.
  • the support 8 includes a substrate 81 and a conductor layer 82.
  • Wiring board 81 is, for example, a glass epoxy board.
  • a semiconductor component B1 is disposed on the wiring substrate 81.
  • the conductor layer 82 is formed on the wiring substrate 81.
  • the conductor layer 82 includes a first conductive element 821 and a second conductive element 822.
  • the first conductive element 821 and the second conductive element 822 are spaced apart from one another.
  • the support 8 may not have a glass epoxy substrate.
  • the support 8 may comprise one or more leads derived from a lead frame.
  • the resin portion 85 is disposed on the wiring board 81.
  • Resin portion 85 is made of, for example, an epoxy resin.
  • the resin portion 85 has a surface 853.
  • the surface 853 faces one side in the thickness direction of the wiring substrate 81 (which coincides with the thickness direction Z1 of the semiconductor substrate 1 in the present embodiment).
  • a space 851 in which the semiconductor component B1 is accommodated is formed in the resin portion 85.
  • the space 851 has a first side 851A and a second side 851B.
  • the first side surface 851A is inclined with respect to the direction Z1.
  • the second side surface 851B is located between the first side surface 851A and the wiring board 81 in the thickness direction Z1.
  • the second side surface 851 B extends along the thickness direction Z 1 of the wiring substrate 81.
  • the dimension of the second side surface 851B in the thickness direction Z1 is larger than the dimension of the terahertz element B1 in the thickness direction Z1.
  • the metal layer 86 may be disposed on the first side surface 851A.
  • the metal layer 86 may also be disposed on the second side surface 851B.
  • the metal layer 86 may be a metal plated layer.
  • the metal layer 86 reflects the terahertz wave more efficiently.
  • the wires 871 and 872 are bonded to the semiconductor component B1 and the wiring board 81 (more strictly, the conductor layer 82).
  • the wire 871 is bonded to the first electrode 25 of the semiconductor component B1 and the first conductive element 822 in the conductive layer 82.
  • the wire 872 is bonded to the second electrode 35 of the semiconductor component B1 and the second conductive element 821 in the conductive layer 82.
  • the first side surface 851A and the second side surface 851B may be made of metal.
  • the terahertz device A1 includes a first rectifying element 61 electrically connected in parallel to the terahertz element 5. According to such a configuration, even if a large voltage is applied to both ends of the terahertz element 5 by, for example, static electricity or the like, it becomes possible to cause current to flow through the first rectifying element 61. As a result, the flow of a large current to the terahertz element 5 can be suppressed, so that the terahertz element 5 can be prevented from breakdown due to static electricity or the like.
  • the terahertz device A1 includes a second rectifying element 62 electrically connected in parallel to both the terahertz element 5 and the first rectifying element 61. According to such a configuration, the terahertz element 5 can be prevented from breakdown due to static electricity or the like for the same reason as described above.
  • the electrical direction from the first terminal 61A to the second terminal 61B is the forward direction.
  • the electrical direction from the first terminal 62A to the second terminal 62B is the forward direction.
  • the first terminal 61 ⁇ / b> A of the first rectifying element 61 is electrically connected to the second terminal 62 ⁇ / b> B of the second rectifying element 62.
  • each of the first rectifier element 61 and the second rectifier element 62 is formed on the semiconductor substrate 1.
  • Such a configuration can be realized while avoiding the increase in size of the semiconductor substrate 1 as much as possible. Therefore, the present embodiment is suitable for avoiding the upsizing of the terahertz device A1.
  • Each configuration of the following modification differs from the configuration shown in FIG. 2 in that the first rectifier element 61 and the second rectifier element 62 are not formed on the semiconductor substrate 1 as shown in FIG. Since the other points are substantially the same, the description will be omitted.
  • the electrical arrangement of the terahertz element 5, the first rectifying element 61, and the second rectifying element 62 is as shown in FIG.
  • Each structure of the following modification can apply the description regarding drawings other than FIG. 22, FIG. 23 in the said embodiment.
  • FIG. 26 is a plan view of the terahertz device of the first modified example of the first embodiment.
  • the first conductive element 821 includes a first portion 821A and a second portion 821B.
  • the imaginary boundaries of the first portion 821A and the second portion 821B are indicated by the two-dot chain lines extending vertically in FIG.
  • the first portion 821A includes an edge 821E.
  • the first portion 821A extends in the longitudinal direction in FIG.
  • the second portion 821 B extends from the first portion 821 A toward the second conductive element 822.
  • the second portion 821B includes an edge 821F. Edge 821F is connected to edge 821E.
  • the 1st rectification element 61 is arranged at the 1st part 821A.
  • the terahertz element 5 is disposed in the first portion 821A and the second portion 821B.
  • the second conductive element 822 includes a first portion 822A and two second portions 822B.
  • the imaginary boundaries of the first portion 822A and the second portion 822B are indicated by the two-dot chain lines extending longitudinally in FIG.
  • a portion of the first portion 822A faces the second portion 821B.
  • the first portion 822A includes an edge 822E.
  • the second portion 822B extends from the first portion 822A toward the first conductive element 821.
  • the second portion 822B includes an edge 822F.
  • a portion of each second portion 822B faces the first portion 821A.
  • Edge 822F is connected to edge 822E.
  • the recess 822R is formed by the first portion 822A and the two second portions 822B.
  • the second portion 821 B of the first conductive element 821 is disposed in the recess 822 R.
  • the 2nd rectification element 62 is arranged at the 1st part 822A and the 2nd part 822B
  • the wire 861 is bonded to the first rectifying element 61 and the second portion 822 B of the second conductive element 822.
  • the wire 862 is bonded to the second rectifying element 62 and the second portion 822 B of the second conductive element 822.
  • the wire 871 is bonded to the semiconductor component B1 and the first portion 821A of the first conductive element 821.
  • the wire 872 is bonded to the semiconductor component B1 and the first portion 822A of the second conductive element 822.
  • the wires 861, 862, 871, 872 are all formed in a plan view avoiding the virtual straight line LL extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment). ing.
  • each of the wires 861, 862, 871, 872 is a virtual straight line extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment) in plan view. Do not cross to LL. In plan view, the first rectifier element 61 and the second rectifier element 62 are disposed on opposite sides of the virtual straight line LL.
  • all of the wires 861, 862, 871, 872 are virtual straight lines LL extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment) in plan view. It is formed avoiding the. According to such a configuration, the wires 861, 862, 871, 872 can hardly affect the oscillation (or reception) of the terahertz wave.
  • the first rectifier element 61 and the second rectifier element 62 are disposed on opposite sides of the virtual straight line LL.
  • the semiconductor component B ⁇ b> 1 can be easily disposed on the center side in plan view of the support 8. It is possible to further reduce the area of the support 8 in plan view while making it difficult to affect the oscillation (or reception) of the terahertz wave.
  • the shapes of the first conductive element 821 and the second conductive element 822 are partially different.
  • the first rectifying element 61 is disposed at the second portion 821B.
  • the semiconductor component B1 is disposed in the first portion 821A and the second portion 821B. According to such a configuration, since the first rectifying element 61 can be disposed further to the right in FIG. 27, the area reduction of the support 8 in a plan view can be realized as compared with the modification shown in FIG.
  • the first rectifier element 61 and the second rectifier element 62 may be arranged.
  • the present disclosure shows an example in which the terahertz device includes the support and the resin portion, but the terahertz device may be a chip type equivalent to the semiconductor device of the present disclosure.
  • FIG. 29 shows another modification.
  • the terahertz device A12 illustrated in FIG. 29 differs from the terahertz device A1 illustrated in FIG. 24 in that the terahertz device A12 further includes a member G10.
  • the configuration of this modification may be combined with a terahertz device other than the terahertz device A1 shown in FIG.
  • the member G ⁇ b> 10 is disposed in the resin portion 85.
  • the member G10 is exposed to the space 851.
  • the space 851 is defined by the resin portion 85 and the member G10.
  • the space 851 formed in the resin portion 85 is filled with a gas. Examples of such gases include, for example, inert gases (eg, nitrogen) and air.
  • the member G10 has a plate shape, but may have another shape.
  • the member G10 may be formed in the resin portion 85 via the bonding layer G12.
  • the space 851 may be sealed by the member G10 (and the bonding layer G12).
  • at least one portion for inserting the member G10 into the resin portion 85 in order to facilitate the arrangement of the member G10 in the resin portion 85 portions 888A to 888D in FIG. 39, FIG. The site 888 may be formed.
  • the member G10 includes a first portion G11, a second portion G13, and a third portion G15.
  • the first portion G11 is made of, for example, an insulating material.
  • the first portion G11 may be, for example, a substrate (including a sheet or a film). It is preferable that the material forming the first portion G11 be, for example, one having a low absorption loss with respect to the terahertz wave and a high transmittance of the terahertz wave.
  • a thin film sheet with a low dielectric constant, a Si substrate with high resistance, or the like can be used as a substrate constituting the first portion G11. When a Si substrate is used, it is easy to form a laminated structure.
  • Other examples of the material constituting the first portion G11 include, for example, a polymer and MgO.
  • the first portion G11 can be formed by transferring a pattern to a sheet-like material.
  • MgO MgO
  • the merit that the absorption loss of the terahertz wave can be reduced can be enjoyed.
  • a compound semiconductor SiC, GaN, GaAs, InP, sapphire, or the like
  • the resistivity may be increased by adjusting the dopant to the compound semiconductor.
  • the second portion G13 is made of, for example, a conductive material (for example, a metal (for example, Cu, Al, Au or the like)).
  • the second portion G13 can exhibit a desired function for terahertz waves.
  • the second portion G13 can exhibit, for example, at least one of the polarization function of the terahertz wave band, the frequency filter function, and the planar lens function.
  • the second portion G13 may include a plurality of layers.
  • the second portion G13 includes G131 and G132.
  • the plurality of layers G131 and G132 are disposed at different positions in the direction Z1 of FIG. 29 (ie, at different height positions).
  • Each of the layers G131 and G132 may exhibit a desired function.
  • the shapes and functions of the layers G131 and G132 in plan view may be different from each other, or may be identical to each other.
  • the second portion G13 may have a structure of only one layer (for example, only the layer G131).
  • the second portion G13 may include three or more layers.
  • the second portion G13 may include at least one band portion, at least one annular portion, and / or at least one dot in a plan view.
  • 30 to 34 show specific examples of the shape of the second portion G13 in plan view.
  • Each layer G131, G132 shown in FIG. 29 may have any of the shapes shown in FIGS. 30 to 34 described later.
  • the second portion G13 shown in FIG. 30 has a plurality of strip portions (i.e., slit structures) in a plan view.
  • the function that can be exhibited by the second portion G13 shown in FIG. 30 is, for example, the polarization function of the terahertz wave band or the frequency filter function.
  • the second portion G13 shown in FIG. 31 has a plurality of annular portions (ie, ring structures) in a plan view.
  • the function that can be exhibited by the second portion G13 shown in FIG. 31 is, for example, an antenna function or a light collecting function.
  • the second portion G13 shown in FIG. 32 has a plurality of dots (that is, a dot structure) in a plan view.
  • the function that can be exerted by the second portion G13 shown in FIG. 32 is, for example, a beam pattern control function or a two-dimensional resonator function.
  • the shape of planar view of 2nd part G13 may be shown in FIG.33 and FIG.34.
  • the third portion G15 is disposed on the second portion G13.
  • the third portion G15 is made of, for example, an insulating material. Examples of such insulating materials include, for example, SiO 2 , SiN, resins, and polymers.
  • the third portion G15 may include a plurality of layers G151 and G152. The plurality of layers G151 and G152 are stacked on one another.
  • the separation distance LL between the member G10 and the semiconductor component B1 shown in FIG. 29 may be smaller than, for example, one wavelength of the terahertz wave from the semiconductor component B1 (effective wavelength in the existing space).
  • the separation distance LL is smaller than one wavelength of the terahertz wave from the semiconductor component B1 (the effective wavelength in the existing space)
  • the terahertz wave from the semiconductor component B1 is appropriately transferred to the outside by using near field coupling. Can be released.
  • the separation distance LL may be smaller than 1 mm.
  • the layer G131 of the second portion G13 is formed in the first portion G11.
  • the layer G131 may be made of metal.
  • Layer G131 can be formed, for example, by patterning.
  • a layer G151 of the third portion G15 is formed.
  • the layer G151 can be formed, for example, by polishing the surface after forming an insulating material on the layer G131. In addition, the said surface grinding
  • polishing does not need to be performed.
  • a layer G132 and a layer G152 are sequentially formed. Thereafter, dicing is performed to manufacture a member G10 shown in FIG.
  • FIG. 41 shows a plan view of the device of this modification.
  • the apparatus shown in the figure is a combination of the configuration shown in FIG. 26 and the configuration shown in FIG.
  • the central point C11 of the semiconductor device B1 coincides with the symmetry point C12 of the second portion G13 (the second portion G13 is symmetrical with respect to the symmetry point C12 in plan view).
  • the configuration shown in FIG. 26 may be combined with the configuration shown in any of FIGS. FIGS. 42 to 45 each show a combination of the configuration shown in FIG. 26 and the configurations shown in FIGS. 31 to 34. Also in FIGS. 42 to 45, the central point C11 of the semiconductor device B1 coincides with the symmetry point C12 of the second portion G13 (the second portion G13 is symmetrical with respect to the symmetry point C12 in plan view). ing.
  • the space 851 formed in the resin portion 85 is filled with a gas. According to such a configuration, it is possible to suppress that the terahertz wave attenuates when passing through the resin, as compared with the case where the space 851 is filled with the resin. Further, according to this modification, the resin adhering to the semiconductor component B1 can reduce or prevent the occurrence of the problem that the boundary conditions change and the resonance mode in the chip substrate is affected.
  • the second portion G13 is made of a conductive material. According to such a configuration, it is possible to cause the second portion G13 to exhibit a desired function for the terahertz wave. Thereby, a more suitable terahertz device can be provided.
  • the second portion G13 may include a plurality of layers G131. In this case, for example, different functions can be exhibited in the plurality of layers G131.
  • the present disclosure includes embodiments regarding the following appendices.
  • Each of the first and second rectifying elements includes a first terminal and a second terminal, and in each of the first and second rectifying elements, the first terminal is directed to the second terminal.
  • the electrical direction is forward,
  • the first rectifying device has a first rising voltage value and a first breakdown voltage value
  • the second rectifying device has a second rising voltage value and a second breakdown voltage value.
  • the absolute value of the first rising voltage value is smaller than the absolute value of the first breakdown voltage value
  • the absolute value of the second rising voltage value is smaller than the absolute value of the second breakdown voltage value
  • the terahertz device according to Appendix 2 or 3 wherein the first rising voltage value and the second rising voltage value are larger than the lower limit of the absolute value of the value in the voltage range where the terahertz element oscillates the terahertz wave.
  • the terahertz device according to claim 4 wherein the first rising voltage value and the second rising voltage value are larger than an upper limit of an absolute value of values in a voltage region where the terahertz element oscillates a terahertz wave.
  • the semiconductor device further comprises a first conductor layer and a second conductor layer which are respectively formed on the semiconductor substrate and insulated from each other.
  • the first rectifying element and the second rectifying element are both formed on the semiconductor substrate, and are electrically interposed between the first conductor layer and the second conductor layer.
  • the terahertz device according to any one of 2 to 5.
  • the semiconductor device further includes a first semiconductor layer and a second semiconductor layer formed on the semiconductor substrate and stacked on each other.
  • the first semiconductor layer has a first conductivity type
  • the second semiconductor layer has a second conductivity type opposite to the first conductivity type.
  • the first terminal of the first rectifying element and the second terminal of the second rectifying element are constituted by the first conductive layer
  • [Supplementary Note 8] Further comprising first and second conductive portions insulated from each other; The terahertz element is electrically interposed between the first conductive site and the second conductive site, The first conductive portion extends in the first direction from the side where the terahertz element is located in a plan view, and the second conductive portion is first side when the terahertz element is located in a plan view. 5.
  • the terahertz device according to any of appendices 2 to 5, extending along a direction opposite to the direction.
  • the semiconductor device further comprises a support on which the semiconductor substrate is disposed, The terahertz element and a first wire bonded to the support, further comprising: The terahertz device according to claim 8, wherein the first wire is formed to avoid an imaginary straight line extending along the first conductive portion in a plan view.
  • the terahertz element and a second wire bonded to the support further comprising: The terahertz device according to claim 9, wherein the second wire is formed avoiding the virtual straight line in a plan view.
  • the terahertz device according to Appendix 9 or 10, wherein the first rectifying element and the second rectifying element are disposed on opposite sides of the virtual straight line in plan view.
  • the support includes a first conductive element and a second conductive element insulated from each other, The terahertz device and the first rectifying element are disposed in the first conductive element, and the second rectifying element is disposed in the second conductive element. Terahertz device.
  • the first conductive element includes a first portion, and a second portion extending from the first portion toward the second conductive element, The terahertz device according to claim 12, wherein the terahertz device is disposed at the second portion of the first conductive element.
  • the terahertz device according to appendix 13 wherein the first rectifying element is arranged at the second portion of the first conductive element.
  • the terahertz device according to Appendix 13 or 14 wherein the second conductive element includes a portion facing the first portion, and the second rectifying element is disposed at the portion in the second conductive element.
  • [Supplementary Note 16] A resin portion in which a space surrounding the terahertz element is formed; A member disposed in the resin portion and exposed to the air gap; 15. The terahertz device according to any one of appendices 1 to 15, wherein the space is filled with a gas.
  • the member includes a first portion disposed in the resin portion and a second portion disposed in the first portion, The terahertz device according to claim 16, wherein the second portion is made of a conductive material.

Abstract

According to one aspect of the present disclosure, a terahertz device is provided. The terahertz device includes a semiconductor substrate, a terahertz element, and a first rectifying element. The terahertz element is disposed on the semiconductor substrate. The first rectifying element is electrically connected in parallel to the terahertz element.

Description

テラヘルツ装置Terahertz device
 本開示は、テラヘルツ装置に関する。 The present disclosure relates to a terahertz device.
 近年、トランジスタなどの電子デバイスの微細化が進み、その大きさがナノサイズになってきたため、量子効果と呼ばれる新しい現象が観測されるようになっている。そして、この量子効果を利用した超高速デバイスや新機能デバイスの実現を目指した開発が進められている。そのような環境の中で、特に、テラヘルツ帯と呼ばれる、周波数が0.1THz~10THzの周波数領域を利用して大容量通信や情報処理、あるいはイメージングや計測などを行う試みが行われている。この周波数領域は、光と電波の中間の未開拓領域であり、この周波数帯で動作するデバイスが実現されれば、上述したイメージング、大容量通信・情報処理のほか、物性、天文、生物などのさまざまな分野における計測など、多くの用途に利用されることが期待されている。 In recent years, miniaturization of electronic devices such as transistors has progressed, and their size has become nano-sized, so a new phenomenon called quantum effect is being observed. Then, development aimed at realizing ultra-high-speed devices and new functional devices utilizing this quantum effect is in progress. In such an environment, in particular, attempts are being made to perform large-capacity communication, information processing, imaging, measurement, etc. using a frequency range of 0.1 THz to 10 THz, which is called a terahertz band. This frequency range is an unexplored range between light and radio waves, and if a device operating in this frequency range is realized, physical properties, astronomy, organisms, etc. as well as the imaging, mass communication, and information processing described above. It is expected to be used for many applications, such as measurement in various fields.
 本開示は、より好ましいテラヘルツ装置を提供することをその主たる課題とする。 The present disclosure has as its main object to provide a more preferable terahertz device.
 本開示の第1の側面によると、テラヘルツ装置が提供される。前記テラヘルツ装置は、半導体基板と、テラヘルツ素子と、第1整流素子と、を含む。前記テラヘルツ素子は、前記半導体基板上に配置されている。前記第1整流素子は、前記テラヘルツ素子と電気的に並列接続されている。 According to a first aspect of the present disclosure, a terahertz device is provided. The terahertz device includes a semiconductor substrate, a terahertz element, and a first rectifying element. The terahertz element is disposed on the semiconductor substrate. The first rectifying element is electrically connected in parallel to the terahertz element.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
第1実施形態のテラヘルツ装置の斜視図である。It is a perspective view of the terahertz device of a 1st embodiment. 第1実施形態の半導体部品の平面図である。It is a top view of the semiconductor component of a 1st embodiment. 図2から第1導電体層を省略した図である。It is the figure which abbreviate | omitted the 1st conductor layer from FIG. 図2の領域IVの部分拡大図である。It is the elements on larger scale of the area | region IV of FIG. 第1実施形態のテラヘルツ素子の詳細を示す断面図である。It is sectional drawing which shows the detail of the terahertz element of 1st Embodiment. 図5の部分拡大図である。It is the elements on larger scale of FIG. 図2のVII-VII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 2; 図2のVIII-VIII線に沿う断面図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 図2のIX-IX線に沿う断面図である。FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 図2のIX-IX線に沿う他の断面図である。FIG. 9 is another cross-sectional view along the line IX-IX in FIG. 2; 図2のXI-XI線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line XI-XI in FIG. 図2のXII-XII線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line XII-XII in FIG. 図2のXII-XII線に沿う他の断面図である。FIG. 5 is another cross-sectional view along the line XII-XII in FIG. 2; 図2のXIV-XIV線に沿う断面図である。It is sectional drawing in alignment with the XIV-XIV line of FIG. 第1実施形態のテラヘルツ素子、第1整流素子、第2整流素子の回路図である。It is a circuit diagram of the terahertz element of the first embodiment, a first rectifying element, and a second rectifying element. 第1実施形態の第1整流素子の断面図である。It is sectional drawing of the 1st rectifier of 1st Embodiment. 第1実施形態の第2整流素子の断面図である。It is sectional drawing of the 2nd rectifier of 1st Embodiment. 第1実施形態の第1整流素子の電流電圧特性の一例を示すグラフである。It is a graph which shows an example of the current voltage characteristic of the 1st rectifier of a 1st embodiment. 第1実施形態の第2整流素子の電流電圧特性の一例を示すグラフである。It is a graph which shows an example of the current voltage characteristic of the 2nd rectification element of a 1st embodiment. 第1実施形態のテラヘルツ素子の電流電圧特性の一例を示すグラフである。It is a graph which shows an example of the current-voltage characteristic of the terahertz element of 1st Embodiment. 第1実施形態の第1整流素子と第2整流素子とからなる合成素子の電流電圧特性の一例を示すグラフである。It is a graph which shows an example of the current-voltage characteristic of the synthetic | combination element which consists of a 1st rectification element of 1st Embodiment, and a 2nd rectification element. 図2の領域XXIIの部分拡大図である。It is the elements on larger scale of area | region XXII of FIG. 図22のXXIII-XXIII線に沿う2つの断面図を含む、テラヘルツ素子、第1整流素子、第2整流素子の回路図である。FIG. 23 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element, including two cross-sectional views along the line XXIII-XXIII in FIG. 22. 第1実施形態のテラヘルツ装置の断面図である。FIG. 2 is a cross-sectional view of the terahertz device of the first embodiment. 第1実施形態の第1変形例の半導体部品の平面図である。It is a top view of the semiconductor component of the 1st modification of a 1st embodiment. 第1実施形態の第1変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the 1st modification of a 1st embodiment. 第1実施形態の第2変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the 2nd modification of a 1st embodiment. 第1実施形態の第3変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the 3rd modification of a 1st embodiment. 第1実施形態の他の変形例のテラヘルツ装置の断面図である。FIG. 7 is a cross-sectional view of a terahertz device of another modification of the first embodiment. 第2部分の平面視の形状の一例を示す図である。It is a figure which shows an example of the shape of planar view of a 2nd part. 第2部分の平面視の形状の一例を示す図である。It is a figure which shows an example of the shape of planar view of a 2nd part. 第2部分の平面視の形状の一例を示す図である。It is a figure which shows an example of the shape of planar view of a 2nd part. 第2部分の平面視の形状の一例を示す図である。It is a figure which shows an example of the shape of planar view of a 2nd part. 第2部分の平面視の形状の一例を示す図である。It is a figure which shows an example of the shape of planar view of a 2nd part. 図29に示した第1部分を製造する際の一時点における構造の断面図である。FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29. 図29に示した第1部分を製造する際の一時点における構造の断面図である。FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29. 図29に示した第1部分を製造する際の一時点における構造の断面図である。FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29. 図29に示した第1部分を製造する際の一時点における構造の断面図である。FIG. 30 is a cross-sectional view of the structure at one time in manufacturing the first portion shown in FIG. 29. 第1実施形態の変形例のテラヘルツ装置の斜視図である。It is a perspective view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の斜視図である。It is a perspective view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the modification of a 1st embodiment. 第1実施形態の変形例のテラヘルツ装置の平面図である。It is a top view of the terahertz device of the modification of a 1st embodiment.
 以下、本開示の実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings.
 「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接していること」、および、「ある物Aとある物Bとの間に他の物を介在していること」を含む。同様に、「ある物Aがある物Bに積層されている」および「ある物Aがある物B上に積層されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接積層されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに積層されていること」を含む。 The terms "some A is formed on some B" and "the some A is formed on some B" are defined as "if some A has some A directly "Being formed" and "being formed in a certain thing B while being in the middle of a certain thing A while interposing another thing between a certain thing A and a certain thing B". Similarly, the terms "an item A is located on an item B" and "an item A is located on an item B" mean "an item A is located unless otherwise specified." It is included that it is disposed directly to B, and that "an object A is disposed to an object B while interposing another object between the object A and the object B". Similarly, "a certain thing A is located on a certain thing B" means "a certain thing A is in contact with a certain thing B", and "a certain thing A and "Intermediate thing with another thing B" is included. Similarly, the terms “some A is laminated to some B” and “some A is laminated onto some B” refer to “some A as being unless otherwise noted. And “being laminated to a certain thing B while being interposed with another thing between a certain thing A and a certain thing B”.
<第1実施形態>
 図1~図24を用いて、本開示の第1実施形態について説明する。
First Embodiment
A first embodiment of the present disclosure will be described using FIGS. 1 to 24.
 図1は、第1実施形態のテラヘルツ装置の斜視図である。 FIG. 1 is a perspective view of the terahertz device of the first embodiment.
 同図に示すテラヘルツ装置A1は、半導体部品B1と、支持体8と、樹脂部85と、ワイヤ871、872と、を備える。 The terahertz device A1 shown in the figure includes a semiconductor component B1, a support 8, a resin portion 85, and wires 871 and 872.
 図2は、第1実施形態の半導体部品の平面図である。 FIG. 2 is a plan view of the semiconductor component of the first embodiment.
 同図に示す半導体部品B1は、テラヘルツ帯の周波数の高周波電磁波を発振する。半導体部品B1はテラヘルツ帯の高周波電磁波を発振するものではなく、受信するものであってもよい。半導体部品B1はテラヘルツ帯の高周波電磁波を発振および受信するものであってもよい。半導体部品B1は、半導体基板1と、第1導電体層2と、第2導電体層3と、絶縁層4(図5等参照)と、テラヘルツ素子5と、第1整流素子61と、第2整流素子62と、を備える。 The semiconductor component B1 shown in the figure oscillates a high frequency electromagnetic wave of a frequency in the terahertz band. The semiconductor component B1 does not oscillate, but may receive, high frequency electromagnetic waves in the terahertz band. The semiconductor component B1 may be one that oscillates and receives high frequency electromagnetic waves in the terahertz band. The semiconductor component B1 includes the semiconductor substrate 1, the first conductive layer 2, the second conductive layer 3, the insulating layer 4 (see FIG. 5 and the like), the terahertz element 5, the first rectifying element 61, the first And a second rectifying element 62.
 半導体基板1は、半導体よりなり、半絶縁性を有する。半導体基板1を構成する半導体は、たとえば、InPであるが、InP以外の半導体であってもよい。半導体基板1は、表面11を有する。表面11は半導体基板1の厚さ方向Z1(図5等参照)を向いている。 The semiconductor substrate 1 is made of a semiconductor and has a semi-insulating property. The semiconductor constituting the semiconductor substrate 1 is, for example, InP, but may be a semiconductor other than InP. The semiconductor substrate 1 has a surface 11. The surface 11 faces in the thickness direction Z1 (see FIG. 5 etc.) of the semiconductor substrate 1.
 図2に示すように、半導体基板1は、縁131~134を含む。縁131および縁133は互いに第1方向X1に離間している。縁131および縁133はいずれも、第2方向X2に沿って延びている。第2方向X2は、第1方向X1に直交している。縁132および縁134は互いに第2方向X2に離間している。縁132および縁134はいずれも、第1方向X1に沿って延びている。縁131は縁132につながり、縁132は縁133につながり、縁133は縁134につながり、縁134は縁131につながっている。 As shown in FIG. 2, the semiconductor substrate 1 includes edges 131-134. The edge 131 and the edge 133 are spaced apart from each other in the first direction X1. The edge 131 and the edge 133 both extend along the second direction X2. The second direction X2 is orthogonal to the first direction X1. The edge 132 and the edge 134 are spaced apart from each other in the second direction X2. Both the edge 132 and the edge 134 extend along the first direction X1. Edge 131 is connected to edge 132, edge 132 is connected to edge 133, edge 133 is connected to edge 134, and edge 134 is connected to edge 131.
 図4は、図2の領域IVの部分拡大図である。図5は、第1実施形態のテラヘルツ素子の詳細を示す断面図である。 FIG. 4 is a partially enlarged view of region IV of FIG. FIG. 5 is a cross-sectional view showing the details of the terahertz element of the first embodiment.
 図2、図4、図5に示すテラヘルツ素子5は、半導体基板1に形成されている。テラヘルツ素子5は、第1導電体層2および第2導電体層3に導通している。テラヘルツ素子5は、テラヘルツ素子5から放射された電磁波は、裏面反射体金属層88に反射されて、半導体基板1に対して垂直方向(厚さ方向Z1)の面発光放射パターンを有する。 The terahertz element 5 shown in FIGS. 2, 4 and 5 is formed on a semiconductor substrate 1. The terahertz element 5 is electrically connected to the first conductor layer 2 and the second conductor layer 3. The electromagnetic wave emitted from the terahertz element 5 is reflected by the back reflector metal layer 88, and the terahertz element 5 has a surface emission radiation pattern in a direction (thickness direction Z1) perpendicular to the semiconductor substrate 1.
 テラヘルツ素子5は典型的にはRTDである。テラヘルツ素子5は、RTD以外のダイオードや、トランジスタによって構成されていてもよい。テラヘルツ素子5としては、例えば、タンネット(TUNNETT:Tunnel Transit Time)ダイオード、インパット(IMPATT:Impact Ionization Avalanche Transit Time)ダイオード、GaAs系電界効果トランジスタ(FET:Field Effect Transistor)、GaN系FET、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)、あるいは、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)により構成されうる。 The terahertz element 5 is typically an RTD. The terahertz element 5 may be configured by a diode other than the RTD or a transistor. As the terahertz element 5, for example, a Tannet (Tunnet T: Tunnel Transit Time) diode, an IMP ATT (Impact Ionization Avalanche Transit Time) diode, a GaAs based field effect transistor (FET: Field Effect Transistor), a GaN based FET, a high electron A mobility transistor (HEMT: High Electron Mobility Transistor) or a heterojunction bipolar transistor (HBT) can be comprised.
 テラヘルツ素子5を実現するための一例を、図6を用いて説明する。図6は、図5の部分拡大図である。GaInAs層92aが、半導体層91a(たとえばGaInAsよりなる)に配置され、n型不純物がドープされている。GaInAs層93aは、GaInAs層92aに配置され、不純物がドープされていない。AlAs層94aがGaInAs層93aに配置され、InGaAs層95が、AlAs層94aに配置され、AlAs層94bがInGaAs層95上に位置している。AlAs層94aとInGaAs層95とAlAs層94bはRTD部を構成する。GaInAs層93bは、AlAs層94bに配置され、不純物がドープされていない。GaInAs層92bは、GaInAs層93bに配置され、n型不純物がドープされている。GaInAs層91bがGaInAs層92bに配置され、n型不純物が高濃度にドープされている。そして、第1導電体層2がGaInAs層91b上に位置している。 An example for realizing the terahertz element 5 will be described with reference to FIG. FIG. 6 is a partial enlarged view of FIG. The GaInAs layer 92a is disposed in the semiconductor layer 91a (made of, for example, GaInAs) and is doped with an n-type impurity. The GaInAs layer 93a is disposed on the GaInAs layer 92a and is not doped with impurities. An AlAs layer 94 a is disposed on the GaInAs layer 93 a, an InGaAs layer 95 is disposed on the AlAs layer 94 a, and an AlAs layer 94 b is located on the InGaAs layer 95. The AlAs layer 94a, the InGaAs layer 95, and the AlAs layer 94b constitute an RTD portion. The GaInAs layer 93b is disposed on the AlAs layer 94b and is not doped with impurities. The GaInAs layer 92b is disposed on the GaInAs layer 93b and is doped with an n-type impurity. A GaInAs layer 91b is disposed on the GaInAs layer 92b and is heavily doped with n-type impurities. Then, the first conductor layer 2 is located on the GaInAs layer 91 b.
 図示は省略するが、図6とは異なり、n型不純物を高濃度にドープされたGaInAs層が、GaInAs層91bおよび第1導電体層2の間に介在していてもよい。これにより、第1導電体層2とGaInAs層91bとのコンタクトが良好になりうる。 Although not shown, a GaInAs layer heavily doped with an n-type impurity may be interposed between the GaInAs layer 91 b and the first conductor layer 2, unlike FIG. 6. Thereby, the contact between the first conductor layer 2 and the GaInAs layer 91 b can be improved.
 図20に示すように、テラヘルツ素子5の電流電圧特性を示すグラフにおいて、傾きが負の値となる領域R11が存在する。領域R11がテラヘルツ波を発振する領域である。 As shown in FIG. 20, in the graph showing the current-voltage characteristics of the terahertz element 5, there is a region R11 where the slope has a negative value. The region R11 is a region for oscillating the terahertz wave.
 図7は、図2のVII-VII線に沿う断面図である。図8は、図2のVIII-VIII線に沿う断面図である。図9は、図2のIX-IX線に沿う断面図である。図10は、図2のIX-IX線に沿う他の断面図である。図11は、図2のXI-XI線に沿う断面図である。図12は、図2のXII-XII線に沿う断面図である。図13は、図2のXII-XII線に沿う他の断面図である。図14は、図2のXIV-XIV線に沿う断面図である。 7 is a cross-sectional view taken along the line VII-VII in FIG. FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. FIG. 10 is another cross-sectional view along the line IX-IX in FIG. FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. FIG. 13 is another cross-sectional view along the line XII-XII in FIG. FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG.
 図8に示す絶縁層4は、半導体基板1上に形成されている。絶縁層4は、たとえば、SiO2よりなる。あるいは、絶縁層4を構成する材料は、Si34、SiON、HfO2、あるいはAl23であってもよい。絶縁層4の厚さは、たとえば、10nm~1000nmである。絶縁層4は、たとえば、CVD法、あるいはスパッタリング法によって形成されうる。 The insulating layer 4 shown in FIG. 8 is formed on the semiconductor substrate 1. The insulating layer 4 is made of, for example, SiO 2 . Alternatively, the material forming the insulating layer 4 may be Si 3 N 4 , SiON, HfO 2 , or Al 2 O 3 . The thickness of the insulating layer 4 is, for example, 10 nm to 1000 nm. The insulating layer 4 can be formed by, for example, a CVD method or a sputtering method.
 図2等に示すように、第1導電体層2および第2導電体層3は各々、半導体基板1上に各々形成されている。第1導電体層2および第2導電体層3は互いに絶縁されている。半導体基板1の厚さ方向Z1視において、半導体基板1の厚さ方向Z1に直交する第1方向X1に第2導電体層3からテラヘルツ素子5が離間している。第1導電体層2および第2導電体層3は各々、金属の積層構造を有する。第1導電体層2および第2導電体層3の各々の積層構造は、たとえば、Au、Pd、およびTiが積層された構造である。あるいは、第1導電体層2および第2導電体層3の各々の積層構造は、たとえば、AuおよびTiが積層された構造である。第1導電体層2および第2導電体層3の各々の厚さは、例えば、10~2000nmである。第1導電体層2および第2導電体層3は各々、いずれも真空蒸着法、あるいはスパッタリング法などによって形成されうる。 As shown in FIG. 2 and the like, the first conductive layer 2 and the second conductive layer 3 are respectively formed on the semiconductor substrate 1. The first conductor layer 2 and the second conductor layer 3 are insulated from each other. In the thickness direction Z1 of the semiconductor substrate 1, the terahertz element 5 is separated from the second conductor layer 3 in the first direction X1 orthogonal to the thickness direction Z1 of the semiconductor substrate 1. The first conductor layer 2 and the second conductor layer 3 each have a laminated structure of metal. The laminated structure of each of the first conductor layer 2 and the second conductor layer 3 is, for example, a structure in which Au, Pd, and Ti are laminated. Alternatively, the laminated structure of each of the first conductor layer 2 and the second conductor layer 3 is, for example, a structure in which Au and Ti are laminated. The thickness of each of the first conductor layer 2 and the second conductor layer 3 is, for example, 10 to 2000 nm. Each of the first conductor layer 2 and the second conductor layer 3 can be formed by vacuum evaporation, sputtering, or the like.
 第1導電体層2は、第1部位21と、第1インダクタンス部22と、第1キャパシタ部23と、第1電極25と、を含む。第2導電体層3は、第2部位31と、第2インダクタンス部32と、第2キャパシタ部33と、第2電極35と、を含む。 The first conductive layer 2 includes a first portion 21, a first inductance portion 22, a first capacitor portion 23, and a first electrode 25. The second conductor layer 3 includes a second portion 31, a second inductance portion 32, a second capacitor portion 33, and a second electrode 35.
 図2、図4、図5に示すように、第1部位21は、第1方向X1に沿って延びる。第1部位21は、第1導電部214と、第2導電部215と、を含む。 As shown in FIG. 2, FIG. 4 and FIG. 5, the first portion 21 extends along the first direction X1. The first portion 21 includes a first conductive portion 214 and a second conductive portion 215.
 図2、図4においては、第1導電部214は長矩形状の部位である。第1導電部214は、第1方向X1に沿って延び、アンテナとして機能しうる。第2導電部215は、厚さ方向Z1視において、第1導電部214から第2導電体層3に向かって延び出ている。第2導電部215は、厚さ方向Z1視において、テラヘルツ素子5に重なっている。 In FIG. 2 and FIG. 4, the first conductive portion 214 is a long rectangular portion. The first conductive portion 214 may extend along the first direction X1 and function as an antenna. The second conductive portion 215 extends from the first conductive portion 214 toward the second conductive layer 3 in the thickness direction Z1. The second conductive portion 215 overlaps the terahertz element 5 in the thickness direction Z1.
 図2、図4等に示す第1インダクタンス部22は、第1部位21および第1キャパシタ部23につながり且つ第1部位21から第1キャパシタ部23まで第2方向X2に沿って延びている。第1インダクタンス部22は、インダクタンスとして機能する。第1インダクタンス部22の第2方向X2の長さL1(図4参照)は、たとえば、5μm~100μmである。第1インダクタンス部22の幅は、たとえば、1μm~10μmである。 The first inductance portion 22 shown in FIGS. 2 and 4 is connected to the first portion 21 and the first capacitor portion 23 and extends from the first portion 21 to the first capacitor portion 23 along the second direction X2. The first inductance unit 22 functions as an inductance. The length L1 (see FIG. 4) in the second direction X2 of the first inductance portion 22 is, for example, 5 μm to 100 μm. The width of the first inductance portion 22 is, for example, 1 μm to 10 μm.
 第2部位31は、第3方向X3に沿って延びる。第3方向X3は第1方向X1とは反対の方向である。第2部位31は、アンテナとして機能しうる。第2インダクタンス部32は、第2部位31および第2キャパシタ部33につながり且つ第2部位31から第2キャパシタ部33まで第2方向X2に沿って延びている。第2インダクタンス部32は、インダクタンスとして機能する。第2インダクタンス部32の第2方向X2の長さL2(図4参照)は、たとえば、5μm~100μmである。第2インダクタンス部32の幅は、たとえば、1μm~10μmである。 The second portion 31 extends along the third direction X3. The third direction X3 is the direction opposite to the first direction X1. The second portion 31 can function as an antenna. The second inductance portion 32 is connected to the second portion 31 and the second capacitor portion 33, and extends from the second portion 31 to the second capacitor portion 33 along the second direction X2. The second inductance unit 32 functions as an inductance. The length L2 (see FIG. 4) in the second direction X2 of the second inductance portion 32 is, for example, 5 μm to 100 μm. The width of the second inductance portion 32 is, for example, 1 μm to 10 μm.
 図2、図4等に示すように、第1キャパシタ部23は、テラヘルツ素子5に対し第2方向X2側に位置する。本実施形態では、第1キャパシタ部23は厚さ方向Z1視において矩形状である。 As shown in FIG. 2, FIG. 4, etc., the first capacitor portion 23 is located on the side of the terahertz element 5 in the second direction X2. In the present embodiment, the first capacitor portion 23 is rectangular in the thickness direction Z1.
 図3は、図2から第1導電体層2を省略した図である。 FIG. 3 is a view in which the first conductive layer 2 is omitted from FIG.
 第2キャパシタ部33は、テラヘルツ素子5に対し第2方向X2側に位置する。図12、図13に示すように、第2キャパシタ部33と半導体基板1との間に、第1キャパシタ部23が介在している。本実施形態とは異なり、第1キャパシタ部23と半導体基板1との間に第2キャパシタ部33が介在していてもよい。第2キャパシタ部33は、第1キャパシタ部23に積層され、且つ、絶縁層4を介して第1キャパシタ部23から絶縁されている。第2キャパシタ部33と第1キャパシタ部23とが、キャパシタを構成する。本実施形態では、第2キャパシタ部33は厚さ方向Z1視において矩形状である。 The second capacitor unit 33 is located on the side of the terahertz element 5 in the second direction X2. As shown in FIGS. 12 and 13, the first capacitor portion 23 is interposed between the second capacitor portion 33 and the semiconductor substrate 1. Unlike the present embodiment, the second capacitor unit 33 may be interposed between the first capacitor unit 23 and the semiconductor substrate 1. The second capacitor portion 33 is stacked on the first capacitor portion 23 and is insulated from the first capacitor portion 23 via the insulating layer 4. The second capacitor unit 33 and the first capacitor unit 23 constitute a capacitor. In the present embodiment, the second capacitor portion 33 is rectangular in the thickness direction Z1.
 第1電極25は、第1キャパシタ部23につながっている。本実施形態では、第1電極25は矩形状である。本実施形態では、第1電極25は、ワイヤ871(図11参照)がボンディングされるパッド部である。図11に示すように、第1電極25は、半導体基板1に直接接する部位を有する。当該接する部位は、厚さ方向Z1視において、ワイヤ871と第1電極25とが接するワイヤボンディング部に重なっている。 The first electrode 25 is connected to the first capacitor unit 23. In the present embodiment, the first electrode 25 is rectangular. In the present embodiment, the first electrode 25 is a pad portion to which the wire 871 (see FIG. 11) is bonded. As shown in FIG. 11, the first electrode 25 has a portion in direct contact with the semiconductor substrate 1. The contact portion overlaps the wire bonding portion in which the wire 871 and the first electrode 25 are in contact in the thickness direction Z1.
 本実施形態では、図2に示すように、厚さ方向Z1視において、第1電極25は、縁251~254を含む。縁251および縁253はいずれも、第2方向X2に沿って延びている。縁252および縁254は互いに第2方向X2に離間している。縁252および縁254はいずれも、第1方向X1に沿って延びている。縁251は縁252につながり、縁252は縁253につながり、縁253は縁254から離間し、縁254は縁251につながっている。縁251および縁252は、厚さ方向Z1視において、縁131および縁132にそれぞれ至っている。本実施形態とは異なり、縁251および縁252が、厚さ方向Z1視において、縁131および縁132にそれぞれ至っていなくてもよい。 In the present embodiment, as shown in FIG. 2, in the thickness direction Z1, the first electrode 25 includes edges 251 to 254. The edge 251 and the edge 253 both extend along the second direction X2. The edge 252 and the edge 254 are spaced apart from each other in the second direction X2. The edge 252 and the edge 254 both extend along the first direction X1. Edge 251 connects to edge 252, which connects to edge 253, which is spaced apart from edge 254, which connects to edge 251. The edge 251 and the edge 252 respectively extend to the edge 131 and the edge 132 in the thickness direction Z1. Unlike the present embodiment, the edge 251 and the edge 252 may not extend to the edge 131 and the edge 132 in the thickness direction Z1, respectively.
 第2電極35は、第2キャパシタ部33につながっている。本実施形態では、第2電極35は矩形状である。本実施形態では、第2電極35は、ワイヤ872(図14参照)がボンディングされるパッド部である。図12に示すように、第2電極35は、半導体基板1に直接接する部位を有する。当該接する部位は、厚さ方向Z1視において、ワイヤ872と第2電極35とが接するワイヤボンディング部に重なっている。 The second electrode 35 is connected to the second capacitor unit 33. In the present embodiment, the second electrode 35 is rectangular. In the present embodiment, the second electrode 35 is a pad portion to which the wire 872 (see FIG. 14) is bonded. As shown in FIG. 12, the second electrode 35 has a portion in direct contact with the semiconductor substrate 1. The contact portion overlaps the wire bonding portion in which the wire 872 and the second electrode 35 are in contact in the thickness direction Z1.
 本実施形態では、図2に示すように、厚さ方向Z1視において、第2電極35は、縁133および縁132に至っている。本実施形態とは異なり、厚さ方向Z1視において、第2電極35は、縁133および縁132に至っていなくてもよい。この場合、半導体部品B1の製造工程において、半導体基板1をダイシングする際に、第2電極35を切断することによって生じうるバリの発生を抑制できる。 In the present embodiment, as shown in FIG. 2, the second electrode 35 extends to the edge 133 and the edge 132 in the thickness direction Z1. Unlike the present embodiment, the second electrode 35 may not reach the edge 133 and the edge 132 in the thickness direction Z1. In this case, when dicing the semiconductor substrate 1 in the manufacturing process of the semiconductor component B1, it is possible to suppress the generation of burrs that may be generated by cutting the second electrode 35.
 本実施形態では、図2に示すように、厚さ方向Z1視において、第2電極35は、縁351~354を含む。縁351および縁353はいずれも、第2方向X2に沿って延びている。縁352および縁354は互いに第2方向X2に離間している。縁352および縁354はいずれも、第1方向X1に沿って延びている。縁351は縁352につながり、縁352は縁353につながり、縁353は縁354につながり、縁354は縁351から離間している。縁352および縁353は、厚さ方向Z1視において、縁132および縁133にそれぞれ至っている。本実施形態とは異なり、縁352および縁353が、厚さ方向Z1視において、縁132および縁133にそれぞれ至っていなくてもよい。 In the present embodiment, as shown in FIG. 2, the second electrode 35 includes edges 351 to 354 in the thickness direction Z1. The edge 351 and the edge 353 both extend along the second direction X2. The edge 352 and the edge 354 are spaced apart from each other in the second direction X2. Both the edge 352 and the edge 354 extend along the first direction X1. Edge 351 connects to edge 352, edge 352 connects to edge 353, edge 353 connects to edge 354 and edge 354 is spaced from edge 351. The edge 352 and the edge 353 respectively extend to the edge 132 and the edge 133 in the thickness direction Z1. Unlike the present embodiment, the edge 352 and the edge 353 may not extend to the edge 132 and the edge 133, respectively, in the thickness direction Z1.
 図15は、第1実施形態のテラヘルツ素子、第1整流素子、第2整流素子の回路図である。図15に示すように、第1整流素子61は、テラヘルツ素子5と電気的に並列接続されている。第1整流素子61は、たとえばダイオードである。このようなダイオードの具体例は、ツェナーダイオード、ショットキーダイオード、および発光ダイオードを含む。第1整流素子61は、第1端子61Aおよび第2端子61Bを含む。第1整流素子61において、第1端子61Aから第2端子61Bに向かう電気的な方向が順方向である。通常の使用では、第1整流素子61において、第1端子61Aから第2端子61Bに向かって電流が流れやすく、第2端子61Bから第1端子61Aに向かって電流は流れにくい。 FIG. 15 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element of the first embodiment. As shown in FIG. 15, the first rectifying element 61 is electrically connected in parallel to the terahertz element 5. The first rectifying element 61 is, for example, a diode. Examples of such diodes include zener diodes, Schottky diodes, and light emitting diodes. The first rectifying element 61 includes a first terminal 61A and a second terminal 61B. In the first rectifying element 61, the electrical direction from the first terminal 61A to the second terminal 61B is the forward direction. In normal use, in the first rectifying element 61, current easily flows from the first terminal 61A to the second terminal 61B, and current hardly flows from the second terminal 61B to the first terminal 61A.
 図16は、第1実施形態の第1整流素子の一例の断面図である。図16に示すように、第1整流素子61は、第1半導体層611および第2半導体層612を含む。第1半導体層611および第2半導体層612は互いに積層されている。第1半導体層611は第1の導電型を有し、第2半導体層612は第1の導電型とは反対の第2の導電型を有する。第1の導電型がp型であるとき第2の導電型はn型である。第2の導電型がn型であるとき第1の導電型はp型である。 FIG. 16 is a cross-sectional view of an example of the first rectifying element of the first embodiment. As shown in FIG. 16, the first rectifying element 61 includes a first semiconductor layer 611 and a second semiconductor layer 612. The first semiconductor layer 611 and the second semiconductor layer 612 are stacked on each other. The first semiconductor layer 611 has a first conductivity type, and the second semiconductor layer 612 has a second conductivity type opposite to the first conductivity type. When the first conductivity type is p-type, the second conductivity type is n-type. When the second conductivity type is n-type, the first conductivity type is p-type.
 図18は、第1整流素子61の電流電圧特性を示す。同図では、第1端子61Aから第2端子61Bに電流が流れる方向を正方向としている。同図に示すように、第1整流素子61の第1立ち上がり電圧値V611の絶対値は、第1整流素子61の第1降伏電圧値V612の絶対値よりも小さい。第1立ち上がり電圧値V611は、テラヘルツ素子5がテラヘルツ波を発振する電圧領域R11における値の絶対値の下限(電圧値V11の絶対値であり、図20参照)よりも大きくてもよい。第1立ち上がり電圧値V611は、テラヘルツ素子5がテラヘルツ波を発振する電圧領域R11における値の絶対値の上限(電圧値V12の絶対値であり、図20参照)よりも大きくてもよい。電圧値V11の絶対値は、たとえば、0.3~0.5Vであり、電圧値V12の絶対値は、たとえば、0.5~0.7Vである。第1立ち上がり電圧値V611の絶対値は、たとえば、0.4~0.9Vである。第1降伏電圧値V612の絶対値は、たとえば、2~8Vである。 FIG. 18 shows the current-voltage characteristics of the first rectifying element 61. In the figure, the direction in which current flows from the first terminal 61A to the second terminal 61B is positive. As shown in the figure, the absolute value of the first rising voltage value V611 of the first rectifying element 61 is smaller than the absolute value of the first breakdown voltage value V612 of the first rectifying element 61. The first rising voltage value V611 may be larger than the lower limit (the absolute value of the voltage value V11, see FIG. 20) of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave. The first rising voltage value V611 may be larger than the upper limit (the absolute value of the voltage value V12, see FIG. 20) of the absolute value of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave. The absolute value of voltage value V11 is, for example, 0.3 to 0.5 V, and the absolute value of voltage value V12 is, for example, 0.5 to 0.7 V. The absolute value of the first rising voltage value V611 is, for example, 0.4 to 0.9 V. The absolute value of the first breakdown voltage value V612 is, for example, 2 to 8V.
 図15に示すように、第2整流素子62は、テラヘルツ素子5と電気的に並列接続されている。第2整流素子62は、たとえばダイオードである。このようなダイオードの具体例は、ツェナーダイオード、ショットキーダイオード、および発光ダイオードを含む。第2整流素子62は、第1端子62Aおよび第2端子62Bを含む。第2整流素子62において、第1端子62Aから第2端子62Bに向かう電気的な方向が順方向である。通常の使用では、第2整流素子62において、第1端子62Aから第2端子62Bに向かって電流が流れやすく、第2端子62Bから第1端子62Aに向かって電流は流れにくい。 As shown in FIG. 15, the second rectifying element 62 is electrically connected in parallel to the terahertz element 5. The second rectifying element 62 is, for example, a diode. Examples of such diodes include zener diodes, Schottky diodes, and light emitting diodes. The second rectifying element 62 includes a first terminal 62A and a second terminal 62B. In the second rectifying element 62, the electrical direction from the first terminal 62A to the second terminal 62B is the forward direction. In normal use, in the second rectifying element 62, current easily flows from the first terminal 62A to the second terminal 62B, and current hardly flows from the second terminal 62B to the first terminal 62A.
 図17は、第1実施形態の第2整流素子の一例の断面図である。図17に示すように、第2整流素子62は、第1半導体層621および第2半導体層622を含む。第2半導体層621および第2半導体層622は互いに積層されている。第1半導体層621は第1の導電型を有し、第2半導体層622は第1の導電型とは反対の第2の導電型を有する。第1の導電型がp型であるとき第2の導電型はn型である。第2の導電型がn型であるとき第1の導電型はp型である。 FIG. 17 is a cross-sectional view of an example of the second rectifying element of the first embodiment. As shown in FIG. 17, the second rectifying element 62 includes a first semiconductor layer 621 and a second semiconductor layer 622. The second semiconductor layer 621 and the second semiconductor layer 622 are stacked on each other. The first semiconductor layer 621 has a first conductivity type, and the second semiconductor layer 622 has a second conductivity type opposite to the first conductivity type. When the first conductivity type is p-type, the second conductivity type is n-type. When the second conductivity type is n-type, the first conductivity type is p-type.
 図18は、第2整流素子62の電流電圧特性を示す。同図では、第1端子62Aから第2端子62Bに電流が流れる方向を正方向としている。同図に示すように、第2整流素子62の第2立ち上がり電圧値V621の絶対値は、第2整流素子62の第2降伏電圧値V622の絶対値よりも小さい。第2立ち上がり電圧値V621は、テラヘルツ素子5がテラヘルツ波を発振する電圧領域R11における値の絶対値の下限(電圧値V11の絶対値であり、図20参照)よりも大きくてもよい。第2立ち上がり電圧値V621は、テラヘルツ素子5がテラヘルツ波を発振する電圧領域R11における値の絶対値の上限(電圧値V12の絶対値であり、図20参照)よりも大きくてもよい。第2立ち上がり電圧値V621の絶対値は、たとえば、0.4~0.9Vである。第2降伏電圧値V622の絶対値は、たとえば、2~8Vである。 FIG. 18 shows the current-voltage characteristics of the second rectifying element 62. In the figure, the direction in which current flows from the first terminal 62A to the second terminal 62B is positive. As shown in the figure, the absolute value of the second rising voltage value V621 of the second rectifying element 62 is smaller than the absolute value of the second breakdown voltage value V622 of the second rectifying element 62. The second rising voltage value V621 may be larger than the lower limit (the absolute value of the voltage value V11, see FIG. 20) of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave. The second rising voltage value V621 may be larger than the upper limit (the absolute value of the voltage value V12, see FIG. 20) of the absolute value of the value in the voltage region R11 in which the terahertz element 5 oscillates the terahertz wave. The absolute value of the second rising voltage value V621 is, for example, 0.4 to 0.9 V. The absolute value of the second breakdown voltage value V622 is, for example, 2 to 8V.
 図15に示すように、第1整流素子61の第1端子61Aは、第2整流素子62の第2端子62Bに導通している。第1整流素子61の第2端子61Bは、第2整流素子62の第1端子62Aに導通している。したがって、第1整流素子61および第2整流素子62からなる合成素子の電流電圧特性は、図21に示すようになる。図21に示すように、第1端子61Aから第2端子61Bに電流が向かう方向を正方向とした場合、第1立ち上がり電圧値V611において、電流電圧曲線が急激に立ち上り、また、第2立ち上がり電圧値V621の絶対値の負の値において、電流電圧曲線は急激に降下する。 As shown in FIG. 15, the first terminal 61 </ b> A of the first rectifier element 61 is electrically connected to the second terminal 62 </ b> B of the second rectifier element 62. The second terminal 61 B of the first rectifying element 61 is electrically connected to the first terminal 62 A of the second rectifying element 62. Therefore, the current-voltage characteristics of the combined element including the first and second rectifying elements 61 and 62 are as shown in FIG. As shown in FIG. 21, when the direction from the first terminal 61A to the second terminal 61B is a positive direction, the current-voltage curve rises sharply at the first rising voltage value V611, and the second rising voltage At negative values of the absolute value of the value V 621, the current-voltage curve drops sharply.
 第1整流素子61および第2整流素子62の具体例構造の一例について説明する。図22は、図2の領域XXIIの部分拡大図である。図23は、図22のXXIII-XXIII線に沿う2つの断面図を含む、テラヘルツ素子、第1整流素子、第2整流素子の回路図である。 An example of the specific example structure of the 1st rectification element 61 and the 2nd rectification element 62 is explained. FIG. 22 is a partially enlarged view of a region XXII of FIG. FIG. 23 is a circuit diagram of the terahertz element, the first rectifying element, and the second rectifying element, including two cross-sectional views along line XXIII-XXIII in FIG.
 図2、図22、図23に示す例においては、第1整流素子61および第2整流素子62はいずれも、半導体基板1上に形成されている。第1整流素子61および第2整流素子62は各々、第1導電体層2(図22、図23に示す例では第1電極25)および第2導電体層3(図22、図23に示す例では第2電極35)の間に電気的に介在している。図23に示すように、半導体基板1上には、半導体層71(第1半導体層)および半導体層72(第2半導体層)が形成されている。半導体層71および半導体層72は互いに積層されている。半導体層71は第1導電型を有し、半導体層72は第1導電型とは反対の第2導電型を有する。半導体層71は、たとえば、第1整流素子61の第1半導体層611、および、第2整流素子62の第1半導体層621を構成しうる。半導体層72は、第1整流素子61の第2半導体層612、および、第2整流素子62の第2半導体層622を構成しうる。 In the example shown in FIG. 2, FIG. 22 and FIG. 23, each of the first rectifier element 61 and the second rectifier element 62 is formed on the semiconductor substrate 1. The first rectifying element 61 and the second rectifying element 62 respectively show the first conductive layer 2 (the first electrode 25 in the example shown in FIGS. 22 and 23) and the second conductive layer 3 (the FIGS. 22 and 23). In the example, it is electrically interposed between the second electrodes 35). As shown in FIG. 23, on the semiconductor substrate 1, a semiconductor layer 71 (first semiconductor layer) and a semiconductor layer 72 (second semiconductor layer) are formed. The semiconductor layer 71 and the semiconductor layer 72 are stacked on each other. The semiconductor layer 71 has a first conductivity type, and the semiconductor layer 72 has a second conductivity type opposite to the first conductivity type. The semiconductor layer 71 can constitute, for example, the first semiconductor layer 611 of the first rectifying element 61 and the first semiconductor layer 621 of the second rectifying element 62. The semiconductor layer 72 can constitute the second semiconductor layer 612 of the first rectifying element 61 and the second semiconductor layer 622 of the second rectifying element 62.
 図23に示すように、第1導電体層2(より具体的には第1電極25)は、部位256、257を有し、第2導電体層3(より具体的には第2電極35)は部位356、357を有する。部位256、357は、半導体層71に接しており、部位257、356は、半導体層72に接している。そして、同図に示す例においては、部位256が、第1整流素子61の第1端子61Aを構成し、第2電極356が第1整流素子61の第2端子61Bを構成しうる。同図に示す例においては、部位257が第2整流素子62の第2端子62Bを構成し、部位357が第2整流素子62の第1端子62Aを構成しうる。 As shown in FIG. 23, the first conductive layer 2 (more specifically, the first electrode 25) has portions 256 and 257, and the second conductive layer 3 (more specifically, the second electrode 35). ) Have sites 356, 357. The portions 256 and 357 are in contact with the semiconductor layer 71, and the portions 257 and 356 are in contact with the semiconductor layer 72. Then, in the example shown in the figure, the portion 256 can constitute the first terminal 61A of the first rectifying element 61, and the second electrode 356 can constitute the second terminal 61B of the first rectifying element 61. In the example shown in the figure, the portion 257 can constitute the second terminal 62B of the second rectifying element 62, and the portion 357 can constitute the first terminal 62A of the second rectifying element 62.
 図22、図23では、第1電極25および第2電極35の間に第1整流素子61および第2整流素子62が形成された例を示したが、第1導電体層2における第1電極25以外の部位と、第2導電体層3における第2電極35以外の部位との間に、第1整流素子61および第2電極35が形成されていてもよい。本開示では第1整流素子61および第2整流素子62の2つの整流素子が形成された例を示しているが、第1整流素子61および第2整流素子62の1つのみが形成されていてもよい。本開示では第1整流素子61および第2整流素子62の2つの整流素子が形成された例を示しているが、第1整流素子61および第2整流素子62に加え、テラヘルツ素子5に電気的に直列あるいは並列に接続された追加の素子が配置されていてもよい。 Although FIG. 22 and FIG. 23 show an example in which the first rectifying element 61 and the second rectifying element 62 are formed between the first electrode 25 and the second electrode 35, the first electrode in the first conductive layer 2 is shown. The first rectifying element 61 and the second electrode 35 may be formed between the portion other than 25 and the portion of the second conductor layer 3 other than the second electrode 35. Although the present disclosure shows an example in which two rectifying elements of the first rectifying element 61 and the second rectifying element 62 are formed, only one of the first rectifying element 61 and the second rectifying element 62 is formed. It is also good. Although the present disclosure shows an example in which two rectification elements of the first rectification element 61 and the second rectification element 62 are formed, in addition to the first rectification element 61 and the second rectification element 62, the terahertz element 5 is electrically There may be additional elements connected in series or in parallel.
 図24は、第1実施形態のテラヘルツ装置の断面図である。図24に示す支持体8には半導体部品B1が配置されている。支持体8は、基板81および導電体層82を含む。配線基板81は、たとえばガラスエポキシ基板である。配線基板81には、半導体部品B1が配置されている。導電体層82は、配線基板81に形成されている。導電体層82は、第1導電エレメント821および第2導電エレメント822を含む。第1導電エレメント821および第2導電エレメント822は互いに離間している。支持体8は、ガラスエポキシ基板を備えていなくてもよい。支持体8は、リードフレームに由来する1または複数のリードを備えていてもよい。 FIG. 24 is a cross-sectional view of the terahertz device of the first embodiment. A semiconductor component B1 is disposed on a support 8 shown in FIG. The support 8 includes a substrate 81 and a conductor layer 82. Wiring board 81 is, for example, a glass epoxy board. A semiconductor component B1 is disposed on the wiring substrate 81. The conductor layer 82 is formed on the wiring substrate 81. The conductor layer 82 includes a first conductive element 821 and a second conductive element 822. The first conductive element 821 and the second conductive element 822 are spaced apart from one another. The support 8 may not have a glass epoxy substrate. The support 8 may comprise one or more leads derived from a lead frame.
 樹脂部85は、配線基板81に配置されている。樹脂部85は、たとえばエポキシ樹脂よりなる。樹脂部85は、表面853を有する。表面853は、配線基板81の厚さ方向(本実施形態では半導体基板1の厚さ方向Z1と一致する)の一方を向いている。樹脂部85には、半導体部品B1が収容された空間851が形成されている。空間851は、第1側面851Aおよび第2側面851Bを有する。第1側面851Aは、方向Z1に対し傾斜している。第2側面851Bは、厚さ方向Z1において、第1側面851Aおよび配線基板81の間に位置する。第2側面851Bは配線基板81の厚さ方向Z1に沿って延びている。厚さ方向Z1における、第2側面851Bの寸法は、厚さ方向Z1における、テラヘルツ素子B1の寸法よりも、大きい。 The resin portion 85 is disposed on the wiring board 81. Resin portion 85 is made of, for example, an epoxy resin. The resin portion 85 has a surface 853. The surface 853 faces one side in the thickness direction of the wiring substrate 81 (which coincides with the thickness direction Z1 of the semiconductor substrate 1 in the present embodiment). In the resin portion 85, a space 851 in which the semiconductor component B1 is accommodated is formed. The space 851 has a first side 851A and a second side 851B. The first side surface 851A is inclined with respect to the direction Z1. The second side surface 851B is located between the first side surface 851A and the wiring board 81 in the thickness direction Z1. The second side surface 851 B extends along the thickness direction Z 1 of the wiring substrate 81. The dimension of the second side surface 851B in the thickness direction Z1 is larger than the dimension of the terahertz element B1 in the thickness direction Z1.
 金属層86は、第1側面851Aに配置されているとよい。金属層86は、第2側面851Bにも配置されていてもよい。金属層86は、金属がめっきされた層であるとよい。金属層86は、テラヘルツ波をより効率的に反射する。ワイヤ871,872は、半導体部品B1と配線基板81(より厳密には導電体層82)に接合されている。ワイヤ871は、半導体部品B1の第1電極25と、導電体層82における第1導電エレメント822とに接合されている。ワイヤ872は、半導体部品B1の第2電極35と、導電体層82における第2導電エレメント821とに接合されている。図示した例とは異なり、第1側面851Aおよび第2側面851Bは金属により構成されていてもよい。 The metal layer 86 may be disposed on the first side surface 851A. The metal layer 86 may also be disposed on the second side surface 851B. The metal layer 86 may be a metal plated layer. The metal layer 86 reflects the terahertz wave more efficiently. The wires 871 and 872 are bonded to the semiconductor component B1 and the wiring board 81 (more strictly, the conductor layer 82). The wire 871 is bonded to the first electrode 25 of the semiconductor component B1 and the first conductive element 822 in the conductive layer 82. The wire 872 is bonded to the second electrode 35 of the semiconductor component B1 and the second conductive element 821 in the conductive layer 82. Unlike the illustrated example, the first side surface 851A and the second side surface 851B may be made of metal.
 次に、本実施形態の作用効果について説明する。 Next, the operation and effect of the present embodiment will be described.
 本実施形態においては、図15に示したように、テラヘルツ装置A1は、テラヘルツ素子5と電気的に並列接続された第1整流素子61を備える。このような構成によると、テラヘルツ素子5の両端に、たとえば静電気等によって大電圧が印加されたとしても、第1整流素子61を経由して電流を流すことが可能となる。これにより、テラヘルツ素子5に大電流が流れることを抑制できるため、テラヘルツ素子5が静電気等によって故障することを回避しうる。 In the present embodiment, as shown in FIG. 15, the terahertz device A1 includes a first rectifying element 61 electrically connected in parallel to the terahertz element 5. According to such a configuration, even if a large voltage is applied to both ends of the terahertz element 5 by, for example, static electricity or the like, it becomes possible to cause current to flow through the first rectifying element 61. As a result, the flow of a large current to the terahertz element 5 can be suppressed, so that the terahertz element 5 can be prevented from breakdown due to static electricity or the like.
 本実施形態においては、図15に示したように、テラヘルツ装置A1は、テラヘルツ素子5と第1整流素子61とのいずれにも電気的に並列接続された第2整流素子62を備える。このような構成によると、上述したのと同様の理由により、テラヘルツ素子5が静電気等によって故障することを回避しうる。 In the present embodiment, as shown in FIG. 15, the terahertz device A1 includes a second rectifying element 62 electrically connected in parallel to both the terahertz element 5 and the first rectifying element 61. According to such a configuration, the terahertz element 5 can be prevented from breakdown due to static electricity or the like for the same reason as described above.
 本実施形態においては、第1整流素子61において、第1端子61Aから第2端子61Bに向かう電気的な方向が順方向である。第2整流素子62において、第1端子62Aから第2端子62Bに向かう電気的な方向が順方向である。第1整流素子61の第1端子61Aは、第2整流素子62の第2端子62Bに導通している。このような構成によると、第2端子61Bに対する第1端子61Aの電圧が正となる非常に高い電圧が、テラヘルツ素子5の両端に印加された場合には、第1端子61Aから第2端子61Bに向かって第1整流素子61を介して電流が流れる。第2端子61Bに対する第1端子61Aの電圧が負となる非常に高い電圧が、テラヘルツ素子5の両端に印加された場合には、第1端子62Aから第2端子62Bに向かって第2整流素子62を介して電流が流れる。これにより、テラヘルツ素子5に印加されうる電圧の正負に関わらず、テラヘルツ素子5に過大な電流が流れる可能性を低減できる。したがって、より効果的に、テラヘルツ素子5が静電気等によって故障することを回避しうる。 In the present embodiment, in the first rectifying element 61, the electrical direction from the first terminal 61A to the second terminal 61B is the forward direction. In the second rectifying element 62, the electrical direction from the first terminal 62A to the second terminal 62B is the forward direction. The first terminal 61 </ b> A of the first rectifying element 61 is electrically connected to the second terminal 62 </ b> B of the second rectifying element 62. According to such a configuration, when a very high voltage at which the voltage of the first terminal 61A with respect to the second terminal 61B is positive is applied to both ends of the terahertz element 5, the first terminal 61A to the second terminal 61B Current flows through the first rectifying element 61 toward the When a very high voltage that the voltage of the first terminal 61A is negative with respect to the second terminal 61B is applied to both ends of the terahertz element 5, the second rectifying element from the first terminal 62A to the second terminal 62B A current flows through 62. Thus, regardless of whether the voltage that can be applied to the terahertz element 5 is positive or negative, the possibility of an excessive current flowing in the terahertz element 5 can be reduced. Therefore, it is possible to more effectively avoid the failure of the terahertz element 5 due to static electricity or the like.
 本実施形態においては、第1整流素子61および第2整流素子62はいずれも、半導体基板1上に形成されている。このような構成は、半導体基板1の大型化を招くことを極力回避しつつ実現しうる。したがって、本実施形態は、テラヘルツ装置A1の大型化を回避するのに適する。 In the present embodiment, each of the first rectifier element 61 and the second rectifier element 62 is formed on the semiconductor substrate 1. Such a configuration can be realized while avoiding the increase in size of the semiconductor substrate 1 as much as possible. Therefore, the present embodiment is suitable for avoiding the upsizing of the terahertz device A1.
<変形例>
 以下の説明では、上記と同一または類似の構成については上記と同一の符号を付し、説明を適宜省略する。
<Modification>
In the following description, the same or similar components as those described above are denoted by the same reference numerals as those described above, and the description will be appropriately omitted.
 以下の変形例の各構成は、図25に示すように、第1整流素子61および第2整流素子62が、半導体基板1上に形成されていない点において、図2に示した構成と異なり、その他の点は略同様であるから説明を省略する。テラヘルツ素子5、第1整流素子61、および第2整流素子62の電気的な配置は、図15に示したものである。以下の変形例の各構成は、上記実施形態における、図22、図23以外の図面に関する説明を適用できる。 Each configuration of the following modification differs from the configuration shown in FIG. 2 in that the first rectifier element 61 and the second rectifier element 62 are not formed on the semiconductor substrate 1 as shown in FIG. Since the other points are substantially the same, the description will be omitted. The electrical arrangement of the terahertz element 5, the first rectifying element 61, and the second rectifying element 62 is as shown in FIG. Each structure of the following modification can apply the description regarding drawings other than FIG. 22, FIG. 23 in the said embodiment.
 図26は、第1実施形態の第1変形例のテラヘルツ装置の平面図である。図26のテラヘルツ装置A2では、第1導電エレメント821は、第1部位821Aおよび第2部位821Bを含む。第1部位821Aおよび第2部位821Bの仮想上の境界を、図26にて縦に延びる二点鎖線で示している。第1部位821Aは、縁821Eを含む。第1部位821Aは、図26における縦方向に沿って延びている。第2部位821Bは、第2導電エレメント822に向かって第1部位821Aから延び出ている。第2部位821Bは、縁821Fを含む。縁821Fは、縁821Eにつながっている。同図では、第1部位821Aに、第1整流素子61が配置されている。また、第1部位821Aおよび第2部位821Bに、テラヘルツ素子5が配置されている。 FIG. 26 is a plan view of the terahertz device of the first modified example of the first embodiment. In the terahertz device A2 of FIG. 26, the first conductive element 821 includes a first portion 821A and a second portion 821B. The imaginary boundaries of the first portion 821A and the second portion 821B are indicated by the two-dot chain lines extending vertically in FIG. The first portion 821A includes an edge 821E. The first portion 821A extends in the longitudinal direction in FIG. The second portion 821 B extends from the first portion 821 A toward the second conductive element 822. The second portion 821B includes an edge 821F. Edge 821F is connected to edge 821E. In the same figure, the 1st rectification element 61 is arranged at the 1st part 821A. In addition, the terahertz element 5 is disposed in the first portion 821A and the second portion 821B.
 図26では、第2導電エレメント822は、第1部位822Aおよび2つの第2部位822Bを含む。第1部位822Aおよび第2部位822Bの仮想上の境界を、図26にて縦に延びる二点鎖線で示している。第1部位822Aの一部は、第2部位821Bに対向している。第1部位822Aは、縁822Eを含む。第2部位822Bは、第1部位822Aから第1導電エレメント821に向かって延び出ている。第2部位822Bは、縁822Fを含む。各第2部位822Bの一部は、第1部位821Aに対向している。縁822Fは縁822Eにつながっている。図26では、第1部位822Aと2つの第2部位822Bとによって、凹部822Rが形成されている。凹部822Rには、第1導電エレメント821の第2部位821Bが配置されている。同図では、第1部位822Aと第2部位822Bとに第2整流素子62が配置されている。 In FIG. 26, the second conductive element 822 includes a first portion 822A and two second portions 822B. The imaginary boundaries of the first portion 822A and the second portion 822B are indicated by the two-dot chain lines extending longitudinally in FIG. A portion of the first portion 822A faces the second portion 821B. The first portion 822A includes an edge 822E. The second portion 822B extends from the first portion 822A toward the first conductive element 821. The second portion 822B includes an edge 822F. A portion of each second portion 822B faces the first portion 821A. Edge 822F is connected to edge 822E. In FIG. 26, the recess 822R is formed by the first portion 822A and the two second portions 822B. The second portion 821 B of the first conductive element 821 is disposed in the recess 822 R. In the same figure, the 2nd rectification element 62 is arranged at the 1st part 822A and the 2nd part 822B.
 ワイヤ861は、第1整流素子61と、第2導電エレメント822における第2部位822Bと、に接合されている。ワイヤ862は、第2整流素子62と、第2導電エレメント822における第2部位822Bと、に接合されている。ワイヤ871は、半導体部品B1と、第1導電エレメント821における第1部位821Aと、に接合されている。ワイヤ872は、半導体部品B1と、第2導電エレメント822における第1部位822Aと、に接合されている。ワイヤ861、862、871、872はいずれも、平面視において、第1部位21および第2部位31(本実施形態ではいずれもアンテナとして機能しうる)に沿って延びる仮想直線LLを避けて形成されている。図示の例においては、ワイヤ861、862、871、872はいずれも、平面視において、第1部位21および第2部位31(本実施形態ではいずれもアンテナとして機能しうる)に沿って延びる仮想直線LLに交差しない。平面視において、仮想直線LLを挟んで互いに反対側に、第1整流素子61および第2整流素子62が配置されている。 The wire 861 is bonded to the first rectifying element 61 and the second portion 822 B of the second conductive element 822. The wire 862 is bonded to the second rectifying element 62 and the second portion 822 B of the second conductive element 822. The wire 871 is bonded to the semiconductor component B1 and the first portion 821A of the first conductive element 821. The wire 872 is bonded to the semiconductor component B1 and the first portion 822A of the second conductive element 822. The wires 861, 862, 871, 872 are all formed in a plan view avoiding the virtual straight line LL extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment). ing. In the illustrated example, each of the wires 861, 862, 871, 872 is a virtual straight line extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment) in plan view. Do not cross to LL. In plan view, the first rectifier element 61 and the second rectifier element 62 are disposed on opposite sides of the virtual straight line LL.
 本変形例では、ワイヤ861、862、871、872はいずれも、平面視において、第1部位21および第2部位31(本実施形態ではいずれもアンテナとして機能しうる)に沿って延びる仮想直線LLを避けて形成されている。このような構成によると、ワイヤ861、862、871、872が、テラヘルツの発振(あるいは受信)に影響を与えにくくできる。影響を与えにくくできる理由の一つとしては、たとえば、導体(すなわちワイヤ)が、第1部位21および第2部位31(本実施形態ではいずれもアンテナとして機能しうる)に関して形成される電磁場に影響しにくいことが、考えられる。 In this modification, all of the wires 861, 862, 871, 872 are virtual straight lines LL extending along the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment) in plan view. It is formed avoiding the. According to such a configuration, the wires 861, 862, 871, 872 can hardly affect the oscillation (or reception) of the terahertz wave. One of the reasons why the influence can be made difficult is, for example, the influence of the electromagnetic field formed by the conductor (that is, the wire) on the first portion 21 and the second portion 31 (both can function as an antenna in this embodiment) It is thought that it is difficult to do.
 本変形例では、平面視において、仮想直線LLを挟んで互いに反対側に、第1整流素子61および第2整流素子62が配置されている。このような構成によると、半導体部品B1を支持体8の平面視におけるより中心側に配置しやすい。テラヘルツの発振(あるいは受信)に影響を与えにくくしつつ、平面視における支持体8の面積をより小さくすることが可能となる。 In the present modification, in plan view, the first rectifier element 61 and the second rectifier element 62 are disposed on opposite sides of the virtual straight line LL. According to such a configuration, the semiconductor component B <b> 1 can be easily disposed on the center side in plan view of the support 8. It is possible to further reduce the area of the support 8 in plan view while making it difficult to affect the oscillation (or reception) of the terahertz wave.
 図27に示す変形例では、第1導電エレメント821および第2導電エレメント822の形状が一部異なる。図27では、第2部位821Bに、第1整流素子61が配置されている。第1部位821Aおよび第2部位821Bに、半導体部品B1が配置されている。このような構成によると、第1整流素子61を図27におけるより右側に配置できるので、図26に示す変形例と比較して、支持体8の平面視における小面積化を実現しうる。 In the modification shown in FIG. 27, the shapes of the first conductive element 821 and the second conductive element 822 are partially different. In FIG. 27, the first rectifying element 61 is disposed at the second portion 821B. The semiconductor component B1 is disposed in the first portion 821A and the second portion 821B. According to such a configuration, since the first rectifying element 61 can be disposed further to the right in FIG. 27, the area reduction of the support 8 in a plan view can be realized as compared with the modification shown in FIG.
 図28に示す変形例のように、第1整流素子61および第2整流素子62を配置してもよい。 As in the modification shown in FIG. 28, the first rectifier element 61 and the second rectifier element 62 may be arranged.
 本開示では、テラヘルツ装置が支持体および樹脂部を含むものである例を示したが、テラヘルツ装置は、本開示の半導体装置に相当するチップタイプのものであってもよい。 The present disclosure shows an example in which the terahertz device includes the support and the resin portion, but the terahertz device may be a chip type equivalent to the semiconductor device of the present disclosure.
 図29には、別の変形例を示している。図29に示すテラヘルツ装置A12は、部材G10を更に備える点において、図24に示したテラヘルツ装置A1とは異なる。本変形例の構成は、図24に示したテラヘルツ装置A1以外のテラヘルツ装置と組み合わせてもよい。 FIG. 29 shows another modification. The terahertz device A12 illustrated in FIG. 29 differs from the terahertz device A1 illustrated in FIG. 24 in that the terahertz device A12 further includes a member G10. The configuration of this modification may be combined with a terahertz device other than the terahertz device A1 shown in FIG.
 図29に示すように、部材G10は、樹脂部85に配置されている。部材G10は、空間851に露出している。本変形例では、空間851は、樹脂部85および部材G10に規定されている。本変形例においては、樹脂部85に形成された空間851には、気体が充填されている。当該気体の具体例は、たとえば、不活性気体(たとえば窒素)および空気を含む。本変形例では、部材G10は、板状であるが、他の形状であってもよい。部材G10は、たとえば、接合層G12を介して、樹脂部85に形成されていてもよい。空間851は、部材G10(および接合層G12)によって、密閉されていてもよい。図39、図40に示すように、部材G10を樹脂部85に配置しやすくするために、樹脂部85に部材G10をはめ込むための少なくとも1つの部位(図39では部位888A~888D、図40では部位888)を形成してもよい。 As shown in FIG. 29, the member G <b> 10 is disposed in the resin portion 85. The member G10 is exposed to the space 851. In the present modification, the space 851 is defined by the resin portion 85 and the member G10. In the present modification, the space 851 formed in the resin portion 85 is filled with a gas. Examples of such gases include, for example, inert gases (eg, nitrogen) and air. In the present modification, the member G10 has a plate shape, but may have another shape. For example, the member G10 may be formed in the resin portion 85 via the bonding layer G12. The space 851 may be sealed by the member G10 (and the bonding layer G12). As shown in FIGS. 39 and 40, at least one portion for inserting the member G10 into the resin portion 85 in order to facilitate the arrangement of the member G10 in the resin portion 85 (portions 888A to 888D in FIG. 39, FIG. The site 888) may be formed.
 図29に示すように、本変形例においては、部材G10は、第1部分G11と、第2部分G13と、第3部分G15とを含む。 As shown in FIG. 29, in the present modification, the member G10 includes a first portion G11, a second portion G13, and a third portion G15.
 第1部分G11は、たとえば絶縁材料よりなる。第1部分G11は、たとえば、基板(シートやフィルム状のものも含む)であってもよい。第1部分G11を構成する材料は、たとえば、テラヘルツ波に対する吸収損失が低く、かつ、テラヘルツ波の透過率が高いものであることが、好ましい。たとえば、第1部分G11を構成する基板として、低誘電率の薄膜シートや高抵抗のSi基板等を用いることができる。Si基板を用いた場合、積層構造を形成しやすい。第1部分G11を構成する材料の他の例は、たとえば、ポリマーおよびMgOを含む。ポリマーを用いる場合、たとえば、シート状に加工したものにパターンを転写することにより、第1部分G11を形成できる。MgOを用いた場合、テラヘルツ波の吸収損失を小さく出来るメリットを享受しうる。あるいは、第1部分G11を構成する材料として、化合物半導体(SiC、GaN、GaAs、InP、サファイヤ等)を用いてもよい。化合物半導体にドーパントを調整して、抵抗率を大きくしてもよい。 The first portion G11 is made of, for example, an insulating material. The first portion G11 may be, for example, a substrate (including a sheet or a film). It is preferable that the material forming the first portion G11 be, for example, one having a low absorption loss with respect to the terahertz wave and a high transmittance of the terahertz wave. For example, a thin film sheet with a low dielectric constant, a Si substrate with high resistance, or the like can be used as a substrate constituting the first portion G11. When a Si substrate is used, it is easy to form a laminated structure. Other examples of the material constituting the first portion G11 include, for example, a polymer and MgO. In the case of using a polymer, for example, the first portion G11 can be formed by transferring a pattern to a sheet-like material. When MgO is used, the merit that the absorption loss of the terahertz wave can be reduced can be enjoyed. Alternatively, a compound semiconductor (SiC, GaN, GaAs, InP, sapphire, or the like) may be used as a material forming the first portion G11. The resistivity may be increased by adjusting the dopant to the compound semiconductor.
 第2部分G13は、たとえば、導電材料(たとえば金属(たとえば、Cu、Al、あるいはAu等))よりなる。第2部分G13は、テラヘルツ波に対する所望の機能を発揮しうる。具体的には、第2部分G13は、たとえば、テラヘルツ波帯の偏光機能、周波数フィルター機能、および平面レンズ機能の少なくとも1つの機能を発揮しうる。 The second portion G13 is made of, for example, a conductive material (for example, a metal (for example, Cu, Al, Au or the like)). The second portion G13 can exhibit a desired function for terahertz waves. Specifically, the second portion G13 can exhibit, for example, at least one of the polarization function of the terahertz wave band, the frequency filter function, and the planar lens function.
 第2部分G13は、複数の層を含んでいてもよい。図29に示す例では、第2部分G13は、G131、G132を含んでいる。複数の層G131、G132は、互いに図29の方向Z1において異なる位置に(すなわち異なる高さ位置に)配置されている。各層G131、G132が、所望の機能を発揮するとよい。また、各層G131、G132の平面視の形状や機能が互いに異なっていてもよいし、互いに同一であってもよい。図29とは異なり、第2部分G13が一層のみ(たとえば層G131のみ)の構造であってもよい。また、第2部分G13が、3以上の層を含んでいてもよい。 The second portion G13 may include a plurality of layers. In the example shown in FIG. 29, the second portion G13 includes G131 and G132. The plurality of layers G131 and G132 are disposed at different positions in the direction Z1 of FIG. 29 (ie, at different height positions). Each of the layers G131 and G132 may exhibit a desired function. Further, the shapes and functions of the layers G131 and G132 in plan view may be different from each other, or may be identical to each other. Unlike FIG. 29, the second portion G13 may have a structure of only one layer (for example, only the layer G131). In addition, the second portion G13 may include three or more layers.
 第2部分G13は、平面視において、少なくとも1つの帯状部分、少なくとも1つの環状部分、および少なくとも1つのドットの少なくともいずれかを含んでいてもよい。図30~図34に、平面視の第2部分G13の形状の具体例を示す。図29に示す各層G131、G132が、後述の図30~図34のいずれかの形状を有していてもよい。 The second portion G13 may include at least one band portion, at least one annular portion, and / or at least one dot in a plan view. 30 to 34 show specific examples of the shape of the second portion G13 in plan view. Each layer G131, G132 shown in FIG. 29 may have any of the shapes shown in FIGS. 30 to 34 described later.
 図30に示す第2部分G13は、平面視において、複数の帯状部分(すなわち、スリット構造)を有している。図30に示す第2部分G13により発揮されうる機能は、たとえば、テラヘルツ波帯の偏光機能や周波数フィルター機能である。図31に示す第2部分G13は、平面視において、複数の環状部分(すなわち、リング構造)を有している。図31に示す第2部分G13により発揮されうる機能は、たとえば、アンテナ機能や集光機能である。図32に示す第2部分G13は、平面視において、複数のドット(すなわち、ドット構造)を有している。図32に示す第2部分G13により発揮されうる機能は、たとえば、ビームパターン制御機能や二次元共振器機能である。その他、第2部分G13の平面視の形状が、図33や図34に示すものであってもよい。 The second portion G13 shown in FIG. 30 has a plurality of strip portions (i.e., slit structures) in a plan view. The function that can be exhibited by the second portion G13 shown in FIG. 30 is, for example, the polarization function of the terahertz wave band or the frequency filter function. The second portion G13 shown in FIG. 31 has a plurality of annular portions (ie, ring structures) in a plan view. The function that can be exhibited by the second portion G13 shown in FIG. 31 is, for example, an antenna function or a light collecting function. The second portion G13 shown in FIG. 32 has a plurality of dots (that is, a dot structure) in a plan view. The function that can be exerted by the second portion G13 shown in FIG. 32 is, for example, a beam pattern control function or a two-dimensional resonator function. In addition, the shape of planar view of 2nd part G13 may be shown in FIG.33 and FIG.34.
 図29に示すように、第3部分G15は、第2部分G13上に配置されている。第3部分G15は、たとえば絶縁材料よりなる。このような絶縁材料の具体例は、たとえば、SiO2、SiN、樹脂、および、ポリマーを含む。図29に示すように、第3部分G15は、複数の層G151、G152を含んでいてもよい。複数の層G151、G152は互いに積層されている。 As shown in FIG. 29, the third portion G15 is disposed on the second portion G13. The third portion G15 is made of, for example, an insulating material. Examples of such insulating materials include, for example, SiO 2 , SiN, resins, and polymers. As shown in FIG. 29, the third portion G15 may include a plurality of layers G151 and G152. The plurality of layers G151 and G152 are stacked on one another.
 図29に示す、部材G10と半導体部品B1との離間距離LLは、たとえば、半導体部品B1からのテラヘルツ波の1波長(存在する空間中の実効波長)よりも小さくてもよい。離間距離LLが半導体部品B1からのテラヘルツ波の1波長(存在する空間中の実効波長)よりも小さい場合、近接場のカップリングを用いることで、半導体部品B1からのテラヘルツ波を適切に外部へと放出させうる。たとえば、半導体部品B1が空気中に存在する場合には、1波長は1mm程度であるため、離間距離LLは1mmよりも小さくてもよい。 The separation distance LL between the member G10 and the semiconductor component B1 shown in FIG. 29 may be smaller than, for example, one wavelength of the terahertz wave from the semiconductor component B1 (effective wavelength in the existing space). When the separation distance LL is smaller than one wavelength of the terahertz wave from the semiconductor component B1 (the effective wavelength in the existing space), the terahertz wave from the semiconductor component B1 is appropriately transferred to the outside by using near field coupling. Can be released. For example, when the semiconductor component B1 is present in the air, since one wavelength is about 1 mm, the separation distance LL may be smaller than 1 mm.
 図35~図38を用いて、部材G10の製造方法につき簡単に説明する。まず、図35に示すように、第1部分G11に、第2部分G13の層G131を形成する。層G131は金属よりなっていてもよい。層G131は、たとえばパターンニングにより形成されうる。次に、図36に示すように、第3部分G15の層G151を形成する。層G151は、たとえば、絶縁材料を層G131上に形成した後に、表面研磨することにより形成されうる。なお、当該表面研磨が行われなくてもよい。次に、図35および図36を用いて説明したのと同様に、図37、図38に示すように、層G132および層G152を順次形成する。その後、ダイシングを行うことにより、図38に示す部材G10が製造される。 The method of manufacturing the member G10 will be briefly described with reference to FIGS. First, as shown in FIG. 35, the layer G131 of the second portion G13 is formed in the first portion G11. The layer G131 may be made of metal. Layer G131 can be formed, for example, by patterning. Next, as shown in FIG. 36, a layer G151 of the third portion G15 is formed. The layer G151 can be formed, for example, by polishing the surface after forming an insulating material on the layer G131. In addition, the said surface grinding | polishing does not need to be performed. Next, as described with reference to FIGS. 35 and 36, as shown in FIGS. 37 and 38, a layer G132 and a layer G152 are sequentially formed. Thereafter, dicing is performed to manufacture a member G10 shown in FIG.
 図41には、本変形例の装置の平面図を示している。同図に示す装置は、図26に示した構成と、図30に示した構成と、を組み合わせたものである。図41においては、半導体装置B1の中心点C11と、第2部分G13の対称点C12(平面視において、対称点C12について第2部分G13が点対称となっている)とが一致している。 FIG. 41 shows a plan view of the device of this modification. The apparatus shown in the figure is a combination of the configuration shown in FIG. 26 and the configuration shown in FIG. In FIG. 41, the central point C11 of the semiconductor device B1 coincides with the symmetry point C12 of the second portion G13 (the second portion G13 is symmetrical with respect to the symmetry point C12 in plan view).
 図41に示したものとは異なり、図26に示した構成と、図31~34のいずれかに示した構成と、を組み合わせてもよい。図42~図45は、それぞれ、図26に示した構成と、図31~34に示した構成と、を組み合わせたものである。図42~図45においても、半導体装置B1の中心点C11と、第2部分G13の対称点C12(平面視において、対称点C12について第2部分G13が点対称となっている)とが一致している。 Unlike the configuration shown in FIG. 41, the configuration shown in FIG. 26 may be combined with the configuration shown in any of FIGS. FIGS. 42 to 45 each show a combination of the configuration shown in FIG. 26 and the configurations shown in FIGS. 31 to 34. Also in FIGS. 42 to 45, the central point C11 of the semiconductor device B1 coincides with the symmetry point C12 of the second portion G13 (the second portion G13 is symmetrical with respect to the symmetry point C12 in plan view). ing.
 図29に示す変形例では、樹脂部85に形成された空間851には、気体が充填されている。このような構成によると、空間851に樹脂が充填されている場合と比べて、テラヘルツ波が樹脂を透過する際に減衰することを、抑制できる。また、本変形例によると、樹脂が半導体部品B1に付着することにより、境界条件が変化してしまいチップ基板内での共振モードに影響する問題の発生を低減あるいは防止できる。 In the modified example shown in FIG. 29, the space 851 formed in the resin portion 85 is filled with a gas. According to such a configuration, it is possible to suppress that the terahertz wave attenuates when passing through the resin, as compared with the case where the space 851 is filled with the resin. Further, according to this modification, the resin adhering to the semiconductor component B1 can reduce or prevent the occurrence of the problem that the boundary conditions change and the resonance mode in the chip substrate is affected.
 本変形例においては、第2部分G13は導電材料よりなる。このような構成によると、第2部分G13に、テラヘルツ波に対する所望の機能を発揮させることが可能となる。これにより、より好適なテラヘルツ装置が提供されうる。また、第2部分G13は、複数の層G131を含んでいてもよい。この場合には、複数の層G131に、たとえば、異なる機能を発揮させることが可能となる。 In the present modification, the second portion G13 is made of a conductive material. According to such a configuration, it is possible to cause the second portion G13 to exhibit a desired function for the terahertz wave. Thereby, a more suitable terahertz device can be provided. The second portion G13 may include a plurality of layers G131. In this case, for example, different functions can be exhibited in the plurality of layers G131.
 本開示は、上述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。 The present disclosure is not limited to the embodiments described above. The specific configuration of each part of the present disclosure can be varied in design in many ways.
 本開示は以下の付記に関する実施形態を含む。
  [付記1]
 半導体基板と、
 前記半導体基板上に配置されたテラヘルツ素子と、
 前記テラヘルツ素子と電気的に並列接続された第1整流素子と、を備える、テラヘルツ装置。
  [付記2]
 前記テラヘルツ素子と前記第1整流素子とのいずれにも電気的に並列接続された第2整流素子を更に備える、付記1に記載のテラヘルツ装置。
  [付記3]
 前記第1整流素子および前記第2整流素子は各々、第1端子および第2端子を含み、前記第1整流素子および前記第2整流素子の各々において、前記第1端子から前記第2端子に向かう電気的な方向が順方向であり、
 前記第1整流素子の前記第1端子は、前記第2整流素子の前記第2端子に導通している、付記2に記載のテラヘルツ装置。
  [付記4]
 前記第1整流素子は、第1立ち上がり電圧値および第1降伏電圧値を有し、前記第2整流素子は、第2立ち上がり電圧値および第2降伏電圧値を有し、
 前記第1立ち上がり電圧値の絶対値は、前記第1降伏電圧値の絶対値よりも小さく、
 前記第2立ち上がり電圧値の絶対値は、前記第2降伏電圧値の絶対値よりも小さく、
 前記第1立ち上がり電圧値および前記第2立ち上がり電圧値は、前記テラヘルツ素子がテラヘルツ波を発振する電圧領域における値の絶対値の下限よりも、大きい、付記2または付記3に記載のテラヘルツ装置。
  [付記5]
 前記第1立ち上がり電圧値および前記第2立ち上がり電圧値は、前記テラヘルツ素子がテラヘルツ波を発振する電圧領域における値の絶対値の上限よりも、大きい、付記4に記載のテラヘルツ装置。
  [付記6]
 前記半導体基板上に各々形成され、互いに絶縁された第1導電体層および第2導電体層を更に備え、
 前記第1整流素子および前記第2整流素子はいずれも、前記半導体基板上に形成され、且つ、前記第1導電体層および前記第2導電体層の間に電気的に介在している、付記2ないし付記5のいずれかに記載のテラヘルツ装置。
  [付記7]
 前記半導体基板上に各々形成され、且つ、互いに積層された第1半導体層および第2半導体層を更に備え、
 前記第1半導体層は、第1導電型を有し、前記第2半導体層は、前記第1導電型とは反対の第2導電型を有し、
 前記第1整流素子の前記第1端子と、前記第2整流素子の前記第2端子とは、前記第1導電体層によって構成され、
 前記第1整流素子の前記第2端子と、前記第2整流素子の前記第1端子とは、前記第2導電体層によって構成されている、付記6に記載のテラヘルツ装置。
  [付記8]
 互いに絶縁された第1導電部位および第2導電部位を更に備え、
 前記テラヘルツ素子は、前記第1導電部位および前記第2導電部位の間に電気的に介在しており、
 前記第1導電部位は、平面視において、前記テラヘルツ素子の位置する側から第1方向に沿って延びており、前記第2導電部位は、平面視において、前記テラヘルツ素子の位置する側から第1方向とは反対方向に沿って延びている、付記2ないし付記5のいずれかに記載のテラヘルツ装置。
  [付記9]
 前記半導体基板が配置された支持体を更に備え、
 前記テラヘルツ素子および前記支持体に接合された第1ワイヤを更に備え、
 前記第1ワイヤは、平面視において、前記第1導電部位に沿って延びる仮想直線を避けて形成されている、付記8に記載のテラヘルツ装置。
  [付記10]
 前記テラヘルツ素子および前記支持体に接合された第2ワイヤを更に備え、
 前記第2ワイヤは、平面視において、前記仮想直線を避けて形成されている、付記9に記載のテラヘルツ装置。
  [付記11]
 前記第1整流素子および前記第2整流素子は、平面視において、前記仮想直線を挟んで互いに反対側に配置されている、付記9または付記10に記載のテラヘルツ装置。
  [付記12]
 前記支持体は、互いに絶縁された第1導電エレメントおよび第2導電エレメントを含み、
 前記テラヘルツ装置および前記第1整流素子は、前記第1導電エレメントに配置されており、前記第2整流素子は、前記第2導電エレメントに配置されている、付記8ないし付記11のいずれかに記載のテラヘルツ装置。
  [付記13]
 前記第1導電エレメントは、第1部位と、前記第2導電エレメントに向かって前記第1部位から延び出る第2部位と、を含み、
 前記テラヘルツ装置は、前記第1導電エレメントにおける前記第2部位に配置されている、付記12に記載のテラヘルツ装置。
  [付記14]
 前記第1整流素子は、前記第1導電エレメントの前記第2部位に配置されている、付記13に記載のテラヘルツ装置。
  [付記15]
 前記第2導電エレメントは、前記第1部位に対向する部位を含み、前記第2整流素子は、前記第2導電エレメントにおける前記部位に配置されている、付記13または付記14に記載のテラヘルツ装置。
  [付記16]
 前記テラヘルツ素子を包囲する空間が形成された樹脂部と、
 前記樹脂部に配置され、前記空隙に露出した部材と、を更に備え、
 前記空間には、気体が充填されている、付記1ないし付記15のいずれかに記載のテラヘルツ装置。
  [付記17]
 前記部材は、前記樹脂部に配置された第1部分と、前記第1部分に配置された第2部分と、を含み、
 前記第2部分は、導電材料よりなる、付記16に記載のテラヘルツ装置。
  [付記18]
 前記第2部分は、少なくとも1つの帯状部分、少なくとも1つの環状部分、および少なくとも1つのドットの少なくともいずれかを含む、付記17に記載のテラヘルツ装置。
The present disclosure includes embodiments regarding the following appendices.
[Supplementary Note 1]
A semiconductor substrate,
A terahertz element disposed on the semiconductor substrate;
A terahertz device, comprising: a first rectifying element electrically connected in parallel to the terahertz element.
[Supplementary Note 2]
The terahertz device according to claim 1, further comprising a second rectifying element electrically connected in parallel to both the terahertz element and the first rectifying element.
[Supplementary Note 3]
Each of the first and second rectifying elements includes a first terminal and a second terminal, and in each of the first and second rectifying elements, the first terminal is directed to the second terminal. The electrical direction is forward,
The terahertz device according to claim 2, wherein the first terminal of the first rectifying element is electrically connected to the second terminal of the second rectifying element.
[Supplementary Note 4]
The first rectifying device has a first rising voltage value and a first breakdown voltage value, and the second rectifying device has a second rising voltage value and a second breakdown voltage value.
The absolute value of the first rising voltage value is smaller than the absolute value of the first breakdown voltage value,
The absolute value of the second rising voltage value is smaller than the absolute value of the second breakdown voltage value,
The terahertz device according to Appendix 2 or 3, wherein the first rising voltage value and the second rising voltage value are larger than the lower limit of the absolute value of the value in the voltage range where the terahertz element oscillates the terahertz wave.
[Supplementary Note 5]
The terahertz device according to claim 4, wherein the first rising voltage value and the second rising voltage value are larger than an upper limit of an absolute value of values in a voltage region where the terahertz element oscillates a terahertz wave.
[Supplementary Note 6]
The semiconductor device further comprises a first conductor layer and a second conductor layer which are respectively formed on the semiconductor substrate and insulated from each other.
The first rectifying element and the second rectifying element are both formed on the semiconductor substrate, and are electrically interposed between the first conductor layer and the second conductor layer. The terahertz device according to any one of 2 to 5.
[Supplementary Note 7]
The semiconductor device further includes a first semiconductor layer and a second semiconductor layer formed on the semiconductor substrate and stacked on each other.
The first semiconductor layer has a first conductivity type, and the second semiconductor layer has a second conductivity type opposite to the first conductivity type.
The first terminal of the first rectifying element and the second terminal of the second rectifying element are constituted by the first conductive layer,
The terahertz device according to claim 6, wherein the second terminal of the first rectifying element and the first terminal of the second rectifying element are configured by the second conductive layer.
[Supplementary Note 8]
Further comprising first and second conductive portions insulated from each other;
The terahertz element is electrically interposed between the first conductive site and the second conductive site,
The first conductive portion extends in the first direction from the side where the terahertz element is located in a plan view, and the second conductive portion is first side when the terahertz element is located in a plan view. 5. The terahertz device according to any of appendices 2 to 5, extending along a direction opposite to the direction.
[Supplementary Note 9]
The semiconductor device further comprises a support on which the semiconductor substrate is disposed,
The terahertz element and a first wire bonded to the support, further comprising:
The terahertz device according to claim 8, wherein the first wire is formed to avoid an imaginary straight line extending along the first conductive portion in a plan view.
[Supplementary Note 10]
The terahertz element and a second wire bonded to the support, further comprising:
The terahertz device according to claim 9, wherein the second wire is formed avoiding the virtual straight line in a plan view.
[Supplementary Note 11]
The terahertz device according to Appendix 9 or 10, wherein the first rectifying element and the second rectifying element are disposed on opposite sides of the virtual straight line in plan view.
[Supplementary Note 12]
The support includes a first conductive element and a second conductive element insulated from each other,
The terahertz device and the first rectifying element are disposed in the first conductive element, and the second rectifying element is disposed in the second conductive element. Terahertz device.
[Supplementary Note 13]
The first conductive element includes a first portion, and a second portion extending from the first portion toward the second conductive element,
The terahertz device according to claim 12, wherein the terahertz device is disposed at the second portion of the first conductive element.
[Supplementary Note 14]
15. The terahertz device according to appendix 13, wherein the first rectifying element is arranged at the second portion of the first conductive element.
[Supplementary Note 15]
The terahertz device according to Appendix 13 or 14, wherein the second conductive element includes a portion facing the first portion, and the second rectifying element is disposed at the portion in the second conductive element.
[Supplementary Note 16]
A resin portion in which a space surrounding the terahertz element is formed;
A member disposed in the resin portion and exposed to the air gap;
15. The terahertz device according to any one of appendices 1 to 15, wherein the space is filled with a gas.
[Supplementary Note 17]
The member includes a first portion disposed in the resin portion and a second portion disposed in the first portion,
The terahertz device according to claim 16, wherein the second portion is made of a conductive material.
[Supplementary Note 18]
20. The terahertz device of paragraph 17, wherein the second portion comprises at least one band portion, at least one annular portion, and / or at least one dot.

Claims (18)

  1.  半導体基板と、
     前記半導体基板上に配置されたテラヘルツ素子と、
     前記テラヘルツ素子と電気的に並列接続された第1整流素子と、を備える、テラヘルツ装置。
    A semiconductor substrate,
    A terahertz element disposed on the semiconductor substrate;
    A terahertz device, comprising: a first rectifying element electrically connected in parallel to the terahertz element.
  2.  前記テラヘルツ素子と前記第1整流素子とのいずれにも電気的に並列接続された第2整流素子を更に備える、請求項1に記載のテラヘルツ装置。 The terahertz device according to claim 1, further comprising a second rectifying device electrically connected in parallel to both the terahertz device and the first rectifying device.
  3.  前記第1整流素子および前記第2整流素子は各々、第1端子および第2端子を含み、前記第1整流素子および前記第2整流素子の各々において、前記第1端子から前記第2端子に向かう電気的な方向が順方向であり、
     前記第1整流素子の前記第1端子は、前記第2整流素子の前記第2端子に導通している、請求項2に記載のテラヘルツ装置。
    Each of the first and second rectifying elements includes a first terminal and a second terminal, and in each of the first and second rectifying elements, the first terminal is directed to the second terminal. The electrical direction is forward,
    The terahertz device according to claim 2, wherein the first terminal of the first rectifying element is electrically connected to the second terminal of the second rectifying element.
  4.  前記第1整流素子は、第1立ち上がり電圧値および第1降伏電圧値を有し、前記第2整流素子は、第2立ち上がり電圧値および第2降伏電圧値を有し、
     前記第1立ち上がり電圧値の絶対値は、前記第1降伏電圧値の絶対値よりも小さく、
     前記第2立ち上がり電圧値の絶対値は、前記第2降伏電圧値の絶対値よりも小さく、
     前記第1立ち上がり電圧値および前記第2立ち上がり電圧値は、前記テラヘルツ素子がテラヘルツ波を発振する電圧領域における値の絶対値の下限よりも、大きい、請求項2または請求項3に記載のテラヘルツ装置。
    The first rectifying device has a first rising voltage value and a first breakdown voltage value, and the second rectifying device has a second rising voltage value and a second breakdown voltage value.
    The absolute value of the first rising voltage value is smaller than the absolute value of the first breakdown voltage value,
    The absolute value of the second rising voltage value is smaller than the absolute value of the second breakdown voltage value,
    The terahertz device according to claim 2 or 3, wherein the first rising voltage value and the second rising voltage value are larger than the lower limit of the absolute value of the value in the voltage range where the terahertz element oscillates the terahertz wave. .
  5.  前記第1立ち上がり電圧値および前記第2立ち上がり電圧値は、前記テラヘルツ素子がテラヘルツ波を発振する電圧領域における値の絶対値の上限よりも、大きい、請求項4に記載のテラヘルツ装置。 The terahertz device according to claim 4, wherein the first rising voltage value and the second rising voltage value are larger than an upper limit of an absolute value of values in a voltage region where the terahertz element oscillates a terahertz wave.
  6.  前記半導体基板上に各々形成され、互いに絶縁された第1導電体層および第2導電体層を更に備え、
     前記第1整流素子および前記第2整流素子はいずれも、前記半導体基板上に形成され、且つ、前記第1導電体層および前記第2導電体層の間に電気的に介在している、請求項2ないし請求項5のいずれかに記載のテラヘルツ装置。
    The semiconductor device further comprises a first conductor layer and a second conductor layer which are respectively formed on the semiconductor substrate and insulated from each other.
    The first rectifier element and the second rectifier element are both formed on the semiconductor substrate, and are electrically interposed between the first conductor layer and the second conductor layer. A terahertz device according to any one of claims 2 to 5.
  7.  前記半導体基板上に各々形成され、且つ、互いに積層された第1半導体層および第2半導体層を更に備え、
     前記第1半導体層は、第1導電型を有し、前記第2半導体層は、前記第1導電型とは反対の第2導電型を有し、
     前記第1整流素子の前記第1端子と、前記第2整流素子の前記第2端子とは、前記第1導電体層によって構成され、
     前記第1整流素子の前記第2端子と、前記第2整流素子の前記第1端子とは、前記第2導電体層によって構成されている、請求項6に記載のテラヘルツ装置。
    The semiconductor device further includes a first semiconductor layer and a second semiconductor layer formed on the semiconductor substrate and stacked on each other.
    The first semiconductor layer has a first conductivity type, and the second semiconductor layer has a second conductivity type opposite to the first conductivity type.
    The first terminal of the first rectifying element and the second terminal of the second rectifying element are constituted by the first conductive layer,
    The terahertz device according to claim 6, wherein the second terminal of the first rectifying element and the first terminal of the second rectifying element are configured by the second conductive layer.
  8.  互いに絶縁された第1導電部位および第2導電部位を更に備え、
     前記テラヘルツ素子は、前記第1導電部位および前記第2導電部位の間に電気的に介在しており、
     前記第1導電部位は、平面視において、前記テラヘルツ素子の位置する側から第1方向に沿って延びており、前記第2導電部位は、平面視において、前記テラヘルツ素子の位置する側から第1方向とは反対方向に沿って延びている、請求項2ないし請求項5のいずれかに記載のテラヘルツ装置。
    Further comprising first and second conductive portions insulated from each other;
    The terahertz element is electrically interposed between the first conductive site and the second conductive site,
    The first conductive portion extends in the first direction from the side where the terahertz element is located in a plan view, and the second conductive portion is first side when the terahertz element is located in a plan view. The terahertz device according to any one of claims 2 to 5, extending along a direction opposite to the direction.
  9.  前記半導体基板が配置された支持体を更に備え、
     前記テラヘルツ素子および前記支持体に接合された第1ワイヤを更に備え、
     前記第1ワイヤは、平面視において、前記第1導電部位に沿って延びる仮想直線を避けて形成されている、請求項8に記載のテラヘルツ装置。
    The semiconductor device further comprises a support on which the semiconductor substrate is disposed,
    The terahertz element and a first wire bonded to the support, further comprising:
    The terahertz device according to claim 8, wherein the first wire is formed to avoid an imaginary straight line extending along the first conductive portion in a plan view.
  10.  前記テラヘルツ素子および前記支持体に接合された第2ワイヤを更に備え、
     前記第2ワイヤは、平面視において、前記仮想直線を避けて形成されている、請求項9に記載のテラヘルツ装置。
    The terahertz element and a second wire bonded to the support, further comprising:
    The terahertz device according to claim 9, wherein the second wire is formed to avoid the virtual straight line in a plan view.
  11.  前記第1整流素子および前記第2整流素子は、平面視において、前記仮想直線を挟んで互いに反対側に配置されている、請求項9または請求項10に記載のテラヘルツ装置。 The terahertz device according to claim 9, wherein the first rectifying element and the second rectifying element are disposed on opposite sides of the virtual straight line in a plan view.
  12.  前記支持体は、互いに絶縁された第1導電エレメントおよび第2導電エレメントを含み、
     前記テラヘルツ装置および前記第1整流素子は、前記第1導電エレメントに配置されており、前記第2整流素子は、前記第2導電エレメントに配置されている、請求項8ないし請求項11のいずれかに記載のテラヘルツ装置。
    The support includes a first conductive element and a second conductive element insulated from each other,
    12. The terahertz device and the first rectifying element are disposed in the first conductive element, and the second rectifying element is disposed in the second conductive element. The terahertz device described in.
  13.  前記第1導電エレメントは、第1部位と、前記第2導電エレメントに向かって前記第1部位から延び出る第2部位と、を含み、
     前記テラヘルツ装置は、前記第1導電エレメントにおける前記第2部位に配置されている、請求項12に記載のテラヘルツ装置。
    The first conductive element includes a first portion, and a second portion extending from the first portion toward the second conductive element,
    The terahertz device according to claim 12, wherein the terahertz device is disposed at the second portion of the first conductive element.
  14.  前記第1整流素子は、前記第1導電エレメントの前記第2部位に配置されている、請求項13に記載のテラヘルツ装置。 The terahertz device according to claim 13, wherein the first rectifying element is disposed at the second portion of the first conductive element.
  15.  前記第2導電エレメントは、前記第1部位に対向する部位を含み、前記第2整流素子は、前記第2導電エレメントにおける前記部位に配置されている、請求項13または請求項14に記載のテラヘルツ装置。 The terahertz wave according to claim 13 or 14, wherein the second conductive element includes a portion facing the first portion, and the second rectifying element is disposed at the portion in the second conductive element. apparatus.
  16.  前記テラヘルツ素子を包囲する空間が形成された樹脂部と、
     前記樹脂部に配置され、前記空隙に露出した部材と、を更に備え、
     前記空間には、気体が充填されている、請求項1ないし請求項15のいずれかに記載のテラヘルツ装置。
    A resin portion in which a space surrounding the terahertz element is formed;
    A member disposed in the resin portion and exposed to the air gap;
    The terahertz device according to any one of claims 1 to 15, wherein the space is filled with a gas.
  17.  前記部材は、前記樹脂部に配置された第1部分と、前記第1部分に配置された第2部分と、を含み、
     前記第2部分は、導電材料よりなる、請求項16に記載のテラヘルツ装置。
    The member includes a first portion disposed in the resin portion and a second portion disposed in the first portion,
    The terahertz device according to claim 16, wherein the second portion is made of a conductive material.
  18.  前記第2部分は、少なくとも1つの帯状部分、少なくとも1つの環状部分、および少なくとも1つのドットの少なくともいずれかを含む、請求項17に記載のテラヘルツ装置。 18. The terahertz device of claim 17, wherein the second portion comprises at least one band portion, at least one annular portion, and / or at least one dot.
PCT/JP2018/036842 2017-10-18 2018-10-02 Terahertz device WO2019077994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880067881.5A CN111226305B (en) 2017-10-18 2018-10-02 Terahertz device
US16/755,839 US10957598B2 (en) 2017-10-18 2018-10-02 Terahertz device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017201992 2017-10-18
JP2017-201992 2017-10-18
JP2018-155898 2018-08-23
JP2018155898A JP7192188B2 (en) 2017-10-18 2018-08-23 Terahertz device

Publications (1)

Publication Number Publication Date
WO2019077994A1 true WO2019077994A1 (en) 2019-04-25

Family

ID=66174346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036842 WO2019077994A1 (en) 2017-10-18 2018-10-02 Terahertz device

Country Status (1)

Country Link
WO (1) WO2019077994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070921A1 (en) * 2019-10-10 2021-04-15 ローム株式会社 Terahertz device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055366A1 (en) * 2003-11-14 2005-06-16 Hitachi, Ltd. Vehicle-mounted radar
JP2010206683A (en) * 2009-03-05 2010-09-16 Japan Radio Co Ltd Planar antenna
JP2015180049A (en) * 2014-02-28 2015-10-08 キヤノン株式会社 Oscillation element, and oscillator using the same
JP2017069678A (en) * 2015-09-29 2017-04-06 トッパン・フォームズ株式会社 Electronic apparatus and design method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055366A1 (en) * 2003-11-14 2005-06-16 Hitachi, Ltd. Vehicle-mounted radar
JP2010206683A (en) * 2009-03-05 2010-09-16 Japan Radio Co Ltd Planar antenna
JP2015180049A (en) * 2014-02-28 2015-10-08 キヤノン株式会社 Oscillation element, and oscillator using the same
JP2017069678A (en) * 2015-09-29 2017-04-06 トッパン・フォームズ株式会社 Electronic apparatus and design method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070921A1 (en) * 2019-10-10 2021-04-15 ローム株式会社 Terahertz device

Similar Documents

Publication Publication Date Title
US10868167B2 (en) Semiconductor device
JP6510802B2 (en) Terahertz device and method of manufacturing the same
US20110057235A1 (en) Semiconductor device
US10066984B2 (en) Terahertz device module
US20070228401A1 (en) Semiconductor device
US11699846B2 (en) Terahertz element and semiconductor device
US11081452B2 (en) Field effect transistor and semiconductor device
EP4084064A1 (en) Semiconductor device
CN111226305B (en) Terahertz device
WO2019077994A1 (en) Terahertz device
US20230395455A1 (en) Semiconductor device, electronic device, and semiconductor device preparation method
US11469682B2 (en) Semiconductor device
US20130168873A1 (en) Power semiconductor device and manufacturing method thereof
US11156550B2 (en) Terahertz-wave detector and terahertz unit
JP2005026434A (en) Semiconductor device
KR101435479B1 (en) Semiconductor device and methode of manufacturing thereof
JP2000101067A (en) Semiconductor device and integrated circuit device
JP6990948B1 (en) Diodes, power receiving devices and power transmission systems
JP2000114423A (en) Mounting method for semiconductor device
JP6737485B2 (en) diode
CN117747656A (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN114695278A (en) Semiconductor device and preparation method thereof
JP2008177475A (en) Electronic component
JP2020115500A (en) Terahertz device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869211

Country of ref document: EP

Kind code of ref document: A1