WO2019077756A1 - フレークアイス製造装置、フレークアイス製造方法 - Google Patents

フレークアイス製造装置、フレークアイス製造方法 Download PDF

Info

Publication number
WO2019077756A1
WO2019077756A1 PCT/JP2017/038088 JP2017038088W WO2019077756A1 WO 2019077756 A1 WO2019077756 A1 WO 2019077756A1 JP 2017038088 W JP2017038088 W JP 2017038088W WO 2019077756 A1 WO2019077756 A1 WO 2019077756A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
metal plate
flake
scraper
manufacturing apparatus
Prior art date
Application number
PCT/JP2017/038088
Other languages
English (en)
French (fr)
Inventor
美雄 廣兼
伊朗 井筒
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Priority to PCT/JP2017/038088 priority Critical patent/WO2019077756A1/ja
Publication of WO2019077756A1 publication Critical patent/WO2019077756A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/142Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the outer walls of cooled bodies

Definitions

  • the present invention relates to a flake ice production apparatus and a flake ice production method.
  • Patent Document 1 a cylindrical body having a refrigerant flow passage on its inner surface, a shaft disposed and rotated on a central axis of the cylindrical body, and a plurality of sheets attached to the shaft at intervals in the axial direction
  • a sherbet ice making apparatus with a plate-like scraper is described.
  • the sherbet ice producing apparatus produces ice from raw water supplied to the refrigerant flow path, and the ice is scraped off by a rotating shaft to produce flake ice.
  • the sherbet ice manufacturing apparatus disclosed in Patent Document 1 can manufacture uniform flake ice by setting the clearance between the cylinder and the plate-like scraper at a constant interval. To do so, the cylinder must be machined into a true circle. However, it is difficult to manufacture a true circular cylinder. In addition, since the cylindrical body is provided with an internal space to the extent that the plate-like scraper rotates, the sherbet ice manufacturing apparatus becomes larger.
  • An object of the present invention is to provide a flake ice manufacturing apparatus and a flake ice manufacturing method that can be miniaturized and can be easily manufactured.
  • the flake ice manufacturing apparatus is With the rotation axis, One or more metal plates internally having a refrigerant flow path, A nozzle for injecting brine toward one or both surfaces of the metal plate; A scraper fixed to the rotating shaft and rotating; Equipped with Brine sprayed from the nozzle toward the surface of the metal plate freezes on the surface of the metal plate and scrapes off the generated ice by the scraper rotating to produce flaked ice.
  • the metal plate may be made of copper or copper alloy.
  • rotation axis may be in a horizontal position, and the metal plate may be in a standing position.
  • the flake ice manufacturing apparatus may further include a pipe in which a plurality of the nozzles are formed and which is disposed in proximity to the metal plate.
  • a plurality of areas divided in the rotation direction of the scraper are set in the metal plate, and the nozzle is a brine on the metal plate in the area where ice is scraped off by the scraper among the plurality of areas. Is controlled to inject
  • the flake ice manufacturing apparatus further includes a rod-like blade for fixing the scraper to the rotation shaft, the blade including the scraper on the surface on the rotation direction side, and the opposite side to the rotation direction side
  • the nozzle may be provided on the surface of the nozzle.
  • a plurality of the blades may be arranged at equal intervals.
  • the flake ice manufacturing apparatus may include a positioner that brings the scraper close to the metal plate with a predetermined clearance.
  • the metal plate may be in the form of a disk having a groove on the outer peripheral surface, and the positioner may be a hook that is bridged between the groove of the metal plate and the tip of the scraper.
  • the positioner holds a tip end portion of the scraper and is a block body sliding on the metal plate, or a block fixed on the metal plate and having a groove portion for loosely fitting the tip end portion of the scraper It may be the body.
  • the surface of the metal plate opposite to the movement path of the scraper may be plated with wear resistant metal.
  • the method for producing flake ice is Spraying brine towards the surface of the metal plate being cooled; Freezing the brine attached to the surface of the metal plate to form ice; Scraping ice attached to the metal plate with a rotating scraper; including.
  • FIG. 1 It is a section front view showing a flake ice manufacturing device concerning one embodiment of the present invention.
  • the flake ice manufacturing apparatus which concerns on one Embodiment of this invention is shown, and it is the II-II sectional view taken on the line of FIG.
  • the flake ice manufacturing apparatus which concerns on one Embodiment of this invention is shown, and it is the III-III sectional view taken on the line of FIG.
  • FIG. 8 is a cross-sectional view corresponding to a line VIII-VIII in FIG. 4 of an embodiment of a blade provided in a flake ice manufacturing apparatus according to another embodiment of the present invention.
  • Ice Ice produced by the flake ice producing apparatus of the present invention is a liquid ice containing an aqueous solution containing a solute, which satisfies the following conditions (a) and (b).
  • “flake ice” means the ice processed into flake shape.
  • the temperature at the completion of melting is 0 ° C. or less
  • the change rate of the solute concentration of the aqueous solution generated from the ice in the melting process is within 30%
  • the cooling capacity of the object to be cooled should be higher than the ice made of pure water.
  • the inventors have found that the ice produced by the prior art does not have a sufficient ability to cool the object to be cooled, such as the temperature of the ice rising rapidly with time during cooling.
  • the present inventors examined the reason for this. Even if ice was produced from an aqueous solution containing a solute such as sodium chloride in the prior art, in fact, ice containing no solute is first produced before the aqueous solution is frozen. As a result, a mixture of solute-free ice and solute is produced, or ice with a reduced freezing point is generated only in a very small amount, so ice with high cooling capacity is not produced. I found out.
  • the ice produced by the flake ice producing apparatus of the present invention is a liquid ice containing an aqueous solution containing a solute, the temperature of the freezing point is lower than that of fresh water (water containing no solute) ing. Therefore, it has a feature that the temperature at the completion of melting is 0 ° C. or less.
  • the “temperature at the time of completion of melting” means that melting of ice is started by placing the ice produced by the flake ice producing apparatus of the present invention in an environment above the melting point (eg room temperature, atmospheric pressure). It refers to the temperature of the water when the ice melts and becomes water.
  • the temperature at the completion of melting is not particularly limited as long as it is 0 ° C. or less, and can be appropriately changed by adjusting the type and concentration of the solute.
  • the temperature at the completion of melting is preferably lower in view of higher cooling ability, and specifically, it is -1 ° C or less (-2 ° C or less, -3 ° C or less, -4 ° C or less, -5 ° C) ° C or less, -6 ° C or less, -7 ° C or less, -8 ° C or less, -9 ° C or less, -10 ° C or less, -11 ° C or less, -12 ° C or less, -13 ° C or less, -14 ° C or less, -15 ° C Or lower, -16 ° C or lower, -17 ° C or lower, -18 ° C or lower, -19 ° C or lower, -20 ° C or lower).
  • the freezing point close to the freezing point of the object to be cooled (for example, to prevent damage to fresh animals and plants, etc.).
  • -21 ° C or higher (-20 ° C or higher, -19 ° C or higher, -18 ° C or higher, -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher,- 12 ° C or more, -11 ° C or more, -10 ° C or more, -9 ° C or more, -8 ° C or more, -7 ° C or more, -6 ° C or more, -5 ° C or more, -4 ° C or more, -3 ° C or more,-
  • the temperature is preferably 2 ° C. or more, ⁇ 1 ° C. or more, ⁇ 0.5 ° C. or more, and the like.
  • the ice produced by the flake ice producing apparatus of the present invention is a rate of change of solute concentration of an aqueous solution generated from ice during melting (hereinafter referred to as “rate of change of solute concentration” May be within 30%).
  • rate of change of solute concentration May be within 30%.
  • the prior art may also produce ice with a slightly reduced freezing point, but most of it is a mixture of water ice without crystals and crystals of solute, so the cooling capacity is not sufficient.
  • the dissolution rate of the solute accompanying the melting is unstable when the ice is placed under melting conditions, and the time point near the start of melting
  • the solute elutes the less the solute elutes with the progress of melting, and the closer the melting is to completion, the less the solute elutes.
  • the ice produced by the flake ice producing apparatus of the present invention is composed of liquid ice containing an aqueous solution containing a solute, it has a feature that the change in elution rate of the solute in the melting process is small.
  • the change rate of the solute concentration of the aqueous solution generated from ice in the melting process is 30%.
  • the term "the rate of change of the solute concentration of the aqueous solution generated from ice in the melting process” means the ratio of the concentration of the aqueous solution at the completion of the melting to the solute concentration in the aqueous solution generated at any time of the melting process.
  • the "solute concentration” means the concentration of mass of the solute in the aqueous solution.
  • the rate of change of the solute concentration in the ice produced by the flake ice producing apparatus of the present invention is not particularly limited as long as it is within 30%, but the smaller the rate of change, the higher the ice purity of the aqueous solution whose freezing point is lowered. That is, it means that the cooling capacity is high.
  • the change rate of solute concentration is within 25% (within 24%, within 23%, within 22%, within 21%, within 20%, within 19%, within 18%, within 17%, 16%) , 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3 %, 2%, 1%, 0.5%, etc.) is preferable.
  • the change rate of solute concentration is 0.1% or more (0.5% or more, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8 %, 9% or more, 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more Etc.).
  • solute The type of solute contained in ice produced by the flake ice producing apparatus of the present invention is not particularly limited as long as it is a solute when water is used as a solvent, and depending on the desired freezing point, use of ice used, etc. It can be selected appropriately.
  • the solute include solid solutes and liquid solutes, and representative solid solutes include salts (inorganic salts, organic salts and the like).
  • sodium chloride NaCl
  • examples of liquid solutes include ethylene glycol and the like. The solute may be contained singly or in combination of two or more.
  • the concentration of the solute contained in the ice produced by the flake ice producing apparatus of the present invention is not particularly limited, and can be appropriately selected depending on the type of solute, the desired freezing point, the use of the ice used, and the like.
  • the concentration of sodium chloride is 0.5% (w / v) or more (1% (w / v) in that the freezing point of the aqueous solution can be lowered to obtain high cooling capacity.
  • the ice produced by the flake ice producing apparatus of the present invention is used for cooling fresh animals and plants or parts thereof, it is preferable not to excessively lower the freezing point temperature, and in this respect w / v) or less (20% (w / v) or less, 19% (w / v) or less, 18% (w / v) or less, 17% (w / v) or less, 16% (w / v) or less 15% (w / v) or less, 14% (w / v) or less, 13% (w / v) or less, 12% (w / v) or less, 11% (w / v) or less, 10% (w) / V) 9% (w / v) or less, 8% (w / v) or less, 7% (w / v) or less, 6% (w / v) or less, 5% (w / v) or less It is preferably 4% (w / v) or
  • the ice produced by the apparatus for producing flaked ice according to the present invention is excellent in the cooling ability, and thus is suitable for use as a refrigerant for cooling a material to be stored.
  • a refrigerant for cooling a substance to be stored in addition to ice, an organic solvent used as an antifreeze liquid such as ethanol may be mentioned. Ice has higher heat conductivity and higher specific heat than these antifreeze liquids. Therefore, the ice whose melting point is lowered by dissolving the solute such as ice generated by the flake ice producing apparatus of the present invention has a cooling ability superior to that of other refrigerants of 0 ° C. or less such as antifreeze liquid. Are also useful.
  • the ice produced by the flake ice producing apparatus of the present invention may or may not contain components other than the above-mentioned solutes.
  • ice refers to a frozen liquid containing an aqueous solution.
  • the ice produced by the flake ice producing apparatus of the present invention is in a stable state at a temperature below the freezing point of fresh water, that is, the state in which it does not separate can be maintained for a long time. Therefore, for example, as described later, when the liquid constituting the ice produced by the flake ice producing apparatus of the present invention is a liquid further containing an oil, in addition to the aqueous solution containing the above-mentioned solute, the oil is The uniform state lasts, that is, the non-separation state can last for a long time.
  • the liquid constituting the ice produced by the flake ice producing apparatus of the present invention may be an oil-containing liquid in addition to the aqueous solution containing the above-mentioned solute.
  • Such liquids include raw milk, industrial wastes including water and oil (waste milk etc).
  • the functionality when eating the ice is improved.
  • the reason why the functionality improves is presumed to be because the oil (fat) contained in the raw milk is trapped in ice.
  • generated by the flake ice manufacturing apparatus of this invention may be comprised only from what frozen the aqueous solution containing said solute.
  • the ratio of water to oil in the liquid is not particularly limited, and, for example, 1:99 to 99: 1 (10 : 90 to 90: 10, 20: 80 to 80: 20, 30: 80 to 80:30, 40 to 60: 40 to 60, etc.).
  • the ice produced by the flake ice producing apparatus of the present invention may be ice of an aqueous solution containing two or more kinds of solutes having different degrees of freezing point depression.
  • the ice produced by the flake ice producing apparatus of the present invention may be a mixture of ice of an aqueous solution containing one solute and ice of an aqueous solution containing the other solute.
  • the ice of an aqueous solution containing ethylene glycol is delayed by adding ice of an aqueous solution containing ethylene glycol and sodium chloride as a solute having a freezing point depression degree to the ice of an aqueous solution containing ethylene glycol as a solute. it can.
  • the ice produced by the flake ice producing apparatus of the present invention may be ice of an aqueous solution in which two or more kinds of solutes are dissolved in the same aqueous solution.
  • the melting point of ice in saline can be lowered by using together a solute (ethylene glycol, calcium chloride, etc.) capable of lowering the melting point more than sodium chloride.
  • a solute ethylene glycol, calcium chloride, etc.
  • the ratio of two or more kinds of solutes having different degrees of freezing point depression can be appropriately changed according to the purpose.
  • the ice produced by the flake ice producing apparatus of the present invention can be used as a refrigerant for cooling a material to be stored.
  • the ice produced by the flake ice producing apparatus of the present invention is excellent in cooling ability, it is suitable as a refrigerant for cooling a material to be cooled.
  • the refrigerant for cooling the object to be stored is referred to as “ice slurry” below. Call it An ice slurry is a mixture of ice produced by the flake ice production apparatus of the present invention and a liquid containing an aqueous solution.
  • the ice-containing ice slurry produced by the flake ice producing apparatus of the present invention may contain other components of the above-mentioned ice, for example, by containing water in addition to the above-mentioned ice, a mixture of ice and water It may be configured by For example, in the case of further including water containing the same solute as the solute contained in ice, the concentration of the solute in ice and the concentration of the solute in water are preferably close to each other. The reason is as follows.
  • the solute concentration of ice When the solute concentration of ice is higher than the solute concentration of water, the temperature of the ice is lower than the saturation freezing point of water, so that the water freezes immediately after mixing the water of low solute concentration.
  • the solute concentration of ice when the solute concentration of ice is lower than the solute concentration of water, the ice is melted because the saturated freezing point of water is lower than the saturated freezing point of ice, and the temperature of the ice slurry composed of ice and water mixture decreases Do. That is, in order not to change the state of the mixture of ice and water (the state of ice slurry), it is preferable to make the solute concentration of the mixed ice and water approximately the same as described above.
  • the water when it is in the state of a mixture of ice and water, the water may be one formed by melting the above ice, or may be separately prepared, but one formed by melting the above ice. Is preferred.
  • the ratio of the concentration of solute in ice to the concentration of solute in water is 75: 25 to 20: 80 is more preferable, 70:30 to 30: 70 is more preferable, 60: 40 to 40: 60 is still more preferable, 55: 45 to 45: Even more preferably 55, 52:48 to 48:52 are particularly preferred, and 50:50 is most preferred.
  • the ratio of the concentration of the solute in ice to the concentration of the solute in water be in the above range.
  • Water used as a raw material of ice produced by the flake ice producing apparatus of the present invention is not particularly limited, but when salt is used as a solute, it is seawater, water obtained by adding salt to seawater, or diluted water of seawater Is preferred. Sea water, water obtained by adding salt to sea water, or dilution water of sea water is easy to procure, which also enables cost reduction.
  • the ice-containing ice slurry produced by the flake ice production apparatus of the present invention may further contain a solid having a thermal conductivity higher than that of the ice produced by the above-described flake ice production apparatus of the present invention, although it does not need to contain, it is preferable to contain.
  • a solid having a thermal conductivity higher than that of the ice produced by the above-described flake ice production apparatus of the present invention Although it does not need to contain, it is preferable to contain.
  • it In the case of trying to cool the object to be cooled in a short time, it can be achieved by using a solid with high thermal conductivity, but in this case the solid itself loses cold energy in a short time and the temperature tends to rise. It is unsuitable for long-term cooling.
  • it is suitable for cooling for a long time not to use a solid having high thermal conductivity, but it is not suitable to cool an object to be cooled in a short time.
  • the ice produced by the flake ice producing apparatus of the present invention has a high cooling capacity as described above, it is possible to cool for a long time while obtaining a short cooling capacity by a solid having a high thermal conductivity. It is useful in point.
  • solids having a thermal conductivity higher than that of ice produced by the flake ice producing apparatus of the present invention include metals (aluminum, silver, copper, gold, duralumin, antimony, cadmium, zinc, tin, bismuth, tungsten, titanium, etc.
  • a solid having a thermal conductivity higher than that of ice produced by the flake ice producing apparatus of the present invention has a thermal conductivity of 2.3 W / m K or more (3 W / m K or more, 5 W / m K or more, 8 W / m K It is preferable that it is a solid of m K or more, and it is more preferable that its thermal conductivity is a solid of 10 W / m K or more (20 W / m K or more, 30 W / m K or more, 40 W / m K or more) It is further preferable that the thermal conductivity is a solid of 50 W / m K or more (60 W / m K or more, 75 W / m K or more, 90 W / m K or more, etc.), and the thermal conductivity is 100 W / m K or more (125 W It is still more preferable that the solid is at least 100 m / m K, at least 150 W / m K, at
  • the ice slurry containing ice produced by the flake ice production apparatus of the present invention contains a solid having a thermal conductivity higher than that of the above-described ice of the present invention, as described above, even if it contains many solids, it may last a long time Of ice produced by the flake ice producing apparatus of the present invention included in a solid mass / ice slurry having a thermal conductivity higher than that of ice produced by the flake ice producing apparatus of the present invention.
  • the mass (or the total mass of the ice of the present invention contained in the ice slurry and the liquid containing the aqueous solution) is 1 / 10,000 or more (1/50000 or more, 1 / 10,000 or more, 1/5000 or more, 1/5000 or more, 1/1000 or more, 1 / 500 or more, 1/100 or more, 1/50 or more, 1/10 or more, 1/5 or more, 1/4 or more, 1/3 or more, 1/2 or more, etc.).
  • the solid contained in the ice-containing ice slurry produced by the flake ice producing apparatus of the present invention may be in any shape, but is preferably in the form of particles. Also, the solid may be contained in the form of the inside of the ice produced by the flake ice producing apparatus of the present invention, or may be contained in the form of the outside of the ice, The ability to be in direct contact with the object to be cooled makes it easier to contact the object to be cooled, so that the ability to cool is higher. From this, it is preferable to be contained in the form contained outside the ice.
  • generated by the flake ice manufacturing apparatus of this invention contains the said solid, you may mix with the said solid, after producing
  • ice may be produced by the flake ice producing apparatus of the present invention in a state of being mixed in advance with water as a raw material.
  • FIG. 1 is a cross-sectional front view showing a flake ice manufacturing apparatus 101 according to an embodiment of the present invention.
  • FIG. 2 is a flake ice manufacturing apparatus 101 according to an embodiment of the present invention, and is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is a flake ice manufacturing apparatus 101 according to an embodiment of the present invention, and is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a front view showing an embodiment including a scraper provided in a flake ice manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional front view showing a flake ice manufacturing apparatus 101 according to an embodiment of the present invention.
  • FIG. 2 is a flake ice manufacturing apparatus 101 according to an embodiment of the present invention, and is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is a flake ice manufacturing apparatus 101 according to an embodiment of the present invention, and
  • FIG. 5 is an embodiment of a positioner provided in a flake ice manufacturing apparatus according to an embodiment of the present invention, and is a VV sectional view of FIG.
  • FIG. 6 is a sectional view of an essential part showing another embodiment of the positioner provided in the flake ice manufacturing apparatus according to one embodiment of the present invention.
  • FIG. 7 is a sectional view of an essential part showing an embodiment in a state where ice is scraped by a scraper provided in a flake ice manufacturing apparatus according to an embodiment of the present invention.
  • the flake ice manufacturing apparatus 101 includes a rotating shaft 110, a metal plate 120, a nozzle 130, and a scraper 141.
  • the flake ice manufacturing apparatus 101 further includes a positioner 150, a cover 160, and a cooler 170 for a refrigerant.
  • the rotation shaft 110 includes a drive shaft 111 in a horizontal posture, and a motor (for example, an inverter motor) 112 fixed to one end of the drive shaft 111, and rotates at an arbitrary rotation speed.
  • a drive shaft 111 excluding one end of a drive shaft 111 to which the motor 112 and the motor 112 are fixed, a metal plate 120, a nozzle 130, and a scraper 141 are covered by a cover 160.
  • the lower surface side of the cover 160 is open and serves as a flake ice outlet 161.
  • the cover 160 is made of heat insulating FRP so that the inside of the cover 160 is not affected by the outside air. Below the flake ice outlet 161, a flake ice storage tank (not shown) is placed below the flake ice outlet 161.
  • the metal plate 120 is a flat plate whose both surfaces are ice-making surfaces. As shown in FIG. 2, a coolant channel 121 (having an inner diameter of, for example, 10 mm) is provided inside the metal plate 120. At a central portion of the metal plate 120, a through hole 122 through which a drive shaft 111 (hereinafter, described as a rotating shaft 110) passes is formed. A plurality of metal plates 120 (two in FIG. 1) are arranged in parallel to face each other in a standing posture. The metal plate 120 is fixed so as not to rotate even when the rotating shaft 110 rotates.
  • Y f (x1) (1)
  • the metal plate 120 As a member which comprises the metal plate 120, copper and a copper alloy with high heat conductivity are employ
  • the surface of the metal plate 120 is plated with a wear resistant metal, such as chromium.
  • the metal plate 120 may be a polygon, such as a square, as long as it is not limited to the disk shape (diameter is, for example, 40 cm) as described later.
  • the metal plate 120 is a plate-like body whose front and back surfaces are parallel (plate thickness is 25 mm, for example), and can be formed simply by cutting from a large metal plate, so it is easy to process.
  • the coolant channel 121 is provided so as to meander independently on the upper side and the lower side of the through hole 122, for example.
  • the refrigerant flowing in the refrigerant channel 121 slightly rises in temperature as it flows from the upstream side to the downstream side.
  • the refrigerant flows in independent refrigerant channels 121 on the upper side and the lower side, so that the flow distance is made shorter than in the case where the flow distances are not independent.
  • the refrigerant uniformly cools the metal plate 120 without raising the temperature above the allowable range.
  • Each of the refrigerant channels 121 is connected to the cooler 170 by pipes 171 and 172.
  • the refrigerant cooled by the cooler 170 flows so as to circulate in one pipe 171 ⁇ the refrigerant channel 121 ⁇ the other pipe 172.
  • the refrigerant for example, fluorocarbon (HCFC 22) or hydrofluorocarbon (HFC) having a boiling temperature of -60.degree. C. is used.
  • the nozzle 130 jets brine towards the surface of both of the metal plates 120 (left and right in the figure). As described in detail later, since the metal plate 120 is cooled by the flow of the refrigerant into the refrigerant flow path 121, the brine attached to the metal plate 120 is rapidly frozen and becomes ice (hybrid ice).
  • the nozzles 130 are formed in large numbers in the pipes 131 spaced a short distance from the metal plate 120. In the pipe 131 disposed between the two metal plates 120, nozzles 130 are formed in two directions so that brine can be injected toward the two metal plates 120.
  • the scraper 141 is formed with a blade for scraping off the ice attached to the metal plate 120.
  • the scraper 141 is provided on the surface of the rod-like blade 140 fixed to the rotation shaft 110 in the rotation direction.
  • the blade 140 rotates between the surface of the metal plate 120 and the pipe 131.
  • two blades 140 are linearly arranged in opposite directions.
  • the scraper 141 is shaped so as not to be bent by an annular ring 142 whose diameter is the length of the linearly arranged blade 140.
  • the scraper 141 and the ring 142 are collectively referred to as a wiper (not numbered).
  • FIG. 4 is a front view showing a modified example of the blade 140. As shown in FIG. Three blades 140 shown in FIG. 4 are arranged at equal intervals of 120 ° from the center. Although not shown, a plurality of blades 140 may be arranged at equal intervals, such as four arranged at equal intervals of 90 °.
  • the scraper 141 is in the shape of a corrugated rod in which the pointed portions 141a and the concaved portions 141b are alternately formed. It is made easy to scrape ice by making point 141a interrupt ice and flow ice to concave part 141b.
  • the scraper 141 shown in FIG. 1 is not drawn in a wave shape, it is of course preferable that the scraper 141 is formed in a wave shape.
  • the scraper 141 should not come in contact with the metal plate 120.
  • the scraper 141 is separated from the metal plate 120 with, for example, a clearance of about 0.2 mm.
  • the flake ice manufacturing apparatus 101 is provided with a positioner 150 so as to maintain this clearance.
  • FIG. 5 is an embodiment of the positioner 150 and is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a sectional view of an essential part showing another embodiment of the positioner 150.
  • the positioner 150 shown in FIGS. 4 and 5 is configured by a block body 151. A plurality of block bodies 151 (four in the drawing) are provided. Each block 151 holds the ring 142 and slides on the metal plate 120. The positioner 150 circularly moves on the metal plate 120 integrally with the ring 142. Although not shown, it is preferable that the positioner 150 be provided with a ball or the like on the lower surface that hits the metal plate 120 to reduce the frictional force.
  • the block body 151 may be fixed to the metal plate 120 instead of sliding on the metal plate 120.
  • the groove 151a is formed in the block 151, and the outer peripheral edge of the ring 142 is loosely fitted in the groove 151a.
  • the positioner 150 shown in FIG. 6 is constituted by a hook 152 which is, for example, U-shaped.
  • the metal plate 120 is disc-shaped, and a groove 123 is formed on the outer peripheral surface.
  • One end of the hook 152 is fixed to the wiper.
  • the middle part of the hook 152 is folded back.
  • the other end of the hook 152 is loosely fitted in the groove 123 of the metal plate 120.
  • the metal plate 120 in the standing posture is cooled.
  • the metal plate 120 is also made of copper or a copper alloy having a high thermal conductivity, so that the metal plate 120 is also cooled to -60.degree. Since the metal plate 120 is covered by the cover 160, it maintains ⁇ 60 ° C. without being affected by the outside air.
  • brine is supplied into the pipe 131 and jetted from the nozzle 130 toward the ice making surface which is the surface of the metal plate 120.
  • the freezing point of saline solution (saturated state) is -21 ° C
  • the freezing point of magnesium chloride aqueous solution (saturated state) is -26.7 ° C. Therefore, when saline or aqueous magnesium solution is used as the brine, when the brine adheres to the metal plate 120, it is flash frozen and a film of ice (hybrid ice) is formed on the surface of the metal plate 120.
  • the metal plate 120 is covered by the cover 160, and is not affected by the outside air, so it remains cooled.
  • the scraper 141 When the scraper 141 is of two types shown in FIGS. 2 and 3, as shown in FIG. 3, when the metal plate 120 is regarded as a coordinate plane, the first quadrant is a first area A, a second The quadrant is referred to as a second region B, the third quadrant is referred to as a third region C, and the fourth quadrant is referred to as a fourth region D.
  • brine is instantaneously jetted from the nozzle 130 toward the metal plate 120 in the first area A and the third area C immediately before the scraper 141 assumes the vertical posture as shown in FIGS. 2 and 3.
  • the scraper 141 rotates in one direction (clockwise in the drawing) to enter the first area A and the third area C, and the ice Scrape
  • brine is instantaneously jetted from the nozzle 130 toward the metal plate 120 in the second area B and the fourth area D. Be done.
  • the scraper 141 rotates in one direction (clockwise in the drawing) and enters the second area B and the fourth area D to Scrape.
  • the scraper 141 rotates continuously in one direction, and brine is jetted from the nozzle 130 in the regions A, B, C, and D from which the ice generated on the metal plate 120 is scraped off, and instantaneously frozen and generated.
  • the operation of scraping off the collected ice by the scraper 141 is repeated.
  • the scraper 141 may be stopped each time it rotates 90 degrees.
  • the scraper 141 When the scraper 141 is of the three type shown in FIG. 4, six unassigned areas are provided. Even with the three scrapers 141, the stop and rotation are repeated similarly to the two scrapers 141, and the scrapers 141 scrape off the ice formed on the metal plate.
  • FIG. 7 is a cross-sectional view of an essential part showing an embodiment in which the scraper 141 scrapes ice.
  • the scraper 141 scrapes off the ice generated on the surface of the metal plate 120 in the standing posture to produce flake ice.
  • the scraper 141 is spaced apart from the surface of the metal plate 120 with uniform clearance by the positioner 150 so that uniform flake ice is produced.
  • the scraper 141 does not rub the surface of the metal plate 120, the surface of the metal plate 120 is not damaged. Even if the scraper 141 scrapes the ice too much, the surface of the metal plate 120 is plated with wear resistant metal, so the surface of the metal plate 120 is not damaged.
  • flake ice generated by scraping off the metal plate 120 by the scraper 141 falls downward from the flake ice outlet 161 on the lower surface side of the cover 160 and is stored in the flake ice storage tank.
  • brine is jetted from the nozzle 130 onto the metal plate 120 in the standing posture in a cooled posture, and an ice film is formed on the surface of the metal plate 120 with a uniform thickness.
  • the scraper 141 rotates and repeats the action of scraping the ice, whereby flake ice is accumulated in the flake ice storage tank one after another.
  • the pipe 131 is provided with the nozzle 130 for injecting brine onto the surface of the metal plate 120, but a blade 140 as shown in FIG. 8 may be provided.
  • FIG. 8 is a cross-sectional view corresponding to line VIII-VIII in FIG.
  • the blade 140 has the scraper 141 on the front side (the side not visible in FIG. 8) in the traveling direction, and the nozzle 130 on the rear side (the side visible in FIG. 8) in the opposite direction.
  • brine is jetted from the nozzle 130 toward the surface of the metal plate 120, and the brine is flash-frozen on the surface of the metal plate 120 to generate ice, and then the scraper 141 rotates. The ice frozen by the scraper 141 is scraped off.
  • the nozzle 130 is provided to track the scraper 141. After the scraper 141 scrapes the ice, brine is instantaneously jetted from the nozzle 130. It is instantaneously frozen until the next scraper 141 rotates, and an ice film is generated. However, instead of tracking the scraper 141, the nozzle 130 may be rotated prior to the scraper 141 so that the brine is jetted rearward of the scraper 141.
  • the number of scrapers 141 is two or three, but may be one.
  • the second area B and the third area C may be respectively divided in the lateral direction.
  • brine is jetted from the nozzle 130 in each area every 90 ° rotation of the scraper 141, and after the brine is flash-frozen to generate ice, the scraper 141 scrapes the ice.
  • the positioner 150 is the block body 151 or the hooking tool 152.
  • an annular ridge (not shown) may be provided on the metal plate 120 so that the tip of the scraper 141 contacts. .
  • the positioner 150 is not necessary.
  • the through holes 122 are formed in the metal plate 120.
  • the through holes 122 may be not the through holes 122, but the through holes 122 may be cut.
  • a plurality of metal plates 120 are provided, it may be one.
  • One metal plate 120 may be in a horizontal posture, and brine may be jetted from the nozzle 130 to the lower surface of the metal plate 120 facing the inside of the flake ice storage tank so that the scraper 141 rotates to drop ice under its own weight.
  • the metal plate 120 is plated with wear-resistant metal, it may be plated within the range in which the scraper 141 rotates.
  • the layout of the refrigerant flow path 121 and the pipe 131 in the above-described embodiment is merely an example, and the layout can be arbitrarily changed.
  • salt water sodium chloride aqueous solution
  • it is not specifically limited.
  • an aqueous solution of calcium chloride, an aqueous solution of magnesium chloride, ethylene glycol and the like can be employed. This makes it possible to prepare multiple types of brine having different freezing points depending on the difference in solute or concentration.
  • the object to be cooled In the step of cooling, cooling is performed such that a solid having a thermal conductivity higher than that of the ice generated by the flake ice manufacturing apparatus 101 of the present invention is interposed between the ice contained in the ice slurry and the object to be cooled. Is preferred. As a result, it is possible to cool the object to be cooled for a long time while obtaining a short-time cooling capacity by a solid having a high thermal conductivity.
  • ice a solid having a thermal conductivity higher than ice, or another one may be interposed between the object to be cooled and the object to be cooled.
  • the ice slurry be in direct contact with the object to be cooled (for example, solid in which the thermal conductivity is higher than that of ice (a metal such as copper, etc.).
  • the bag may contain either the ice slurry or the object to be cooled, and the ice slurry may be cooled without direct contact with the object to be cooled.
  • the ice produced by the flake ice producing apparatus 101 can be used, for example, in the following applications as well as cooling the object to be cooled. That is, it can be used also for freezing industrial waste liquid, freezing manure and liquefying gas, and the like.
  • the metal plate 120 is not particularly limited as long as it can be maintained at a temperature below the freezing point of the aqueous solution, for example.
  • the temperature of the metal plate 120 is not particularly limited as long as it is maintained at a temperature below the freezing point of the aqueous solution, but it is an aqueous solution in that ice having high purity of ice satisfying the above conditions (a) and (b) can be produced.
  • the members constituting the metal plate 120 have different thermal conductivities. Therefore, the ice making speed differs depending on which member is used for the ice making surface. Specifically, for example, the thermal conductivity (W / m ⁇ K) of stainless steel is 16 when the temperature is 20 ° C. The thermal conductivity (W / m ⁇ K) of pure iron is 67 at a temperature of 20 ° C., which is higher than that of stainless steel. In addition, the thermal conductivity (W / m ⁇ K) of copper (normal product) is 372 at a temperature of 20 ° C., which is higher than that of pure iron.
  • the thermal conductivity (W / m ⁇ K) of silver is 418 when the temperature is 20 ° C., which is further higher than copper (ordinary goods). That is, the thermal conductivity of the member of the ice-making surface illustrated in FIG. 2 is high in the order of silver> copper (normal product)> pure iron> stainless steel under the same temperature condition. For this reason, the ice making speed also increases in the order of silver> copper (normal product)> pure iron> stainless steel.
  • the ice making speed can be increased by changing the metal plate 120 from copper to silver.
  • the ice making speed can be reduced by changing the metal plate 120 from copper to pure iron or stainless steel.
  • the flake ice producing apparatus 101 can adjust the ice making speed by arbitrarily changing the members constituting the metal plate 120.
  • a member having a high thermal conductivity such as silver or copper
  • a very low temperature refrigerant may be selected as a refrigerant for cooling the metal plate 120.
  • the enormous amount of cold energy supplied from the ultra low temperature refrigerant is efficiently transmitted to the brine by the member having a high thermal conductivity, so that more efficient ice can be realized.
  • the method of injection is not particularly limited, for example, injection can be performed by injection from an injection means provided with injection holes 13a like a nozzle 130 described later.
  • the water pressure at the time of injection is, for example, 0.001 MPa or more (0.002 MPa or more, 0.005 MPa or more, 0.01 MPa or more, 0.05 MPa or more, 0.1 MPa or more, 0.1 MPa or more, 0.2 MPa or more, etc.) 1 MPa or less (0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.5 MPa or less, 0.3 MPa or less, 0.1 MPa or less, 0.05 MPa or less, 0.05 MPa or less, etc.) It may be.
  • the melting completion temperature is considered to be affected not only by the type and concentration of solute but also by the heat of ice making. Therefore, the actual melting completion temperature can be adjusted by adjusting the amount of heat of ice making heat remaining on ice.
  • the heat of ice making can be adjusted by adjusting the holding time of the ice on the wall in the process of collecting the ice.
  • a member having a thermal conductivity higher than that of stainless steel or iron is employed as a member constituting the metal plate 120, and more specifically, a member having a thermal conductivity of 70 W / mK or more at 20 ° C.
  • the flake ice manufacturing apparatus 101 can generate a large amount of ice in a short time as compared with the case where stainless steel or iron is adopted as a member constituting the metal plate 120.
  • the metal plate 120 is constituted by a member having high thermal conductivity. Since the production speed of ice is increased, it is not necessary to widen the metal plate 120, and as a result, it is possible to produce ice in a relatively narrow space.
  • a member having high thermal conductivity and more specifically, a member having a thermal conductivity of 100 W / mK or more at 20 ° C., more preferably 20 ° C.
  • Members with a thermal conductivity of 150 W / mK or more are more preferable, members with a thermal conductivity of 200 W / mK or more at 20 ° C are more preferable, and members with a thermal conductivity of 250 W / mK or more at 20 ° C are even more preferable
  • a member having a thermal conductivity of 300 W / mK or more at 20 ° C. is particularly preferable.
  • the upper limit of the thermal conductivity is not particularly limited, but for example, the thermal conductivity at 20 ° C.
  • the metal plate 120 is 1000 W / mK or less (900 W / mK or less, 800 W / mK or less, 700 W / mK or less, 600 W / mK or less, 500 W / mK or less, It may be 400 W / mK or less.
  • Specific examples of the members constituting the metal plate 120 include zinc, aluminum, germalmin, gold, silver, tungsten, copper, aluminum bronze, hepta brass, naval brass, nickel (99.9%), molybdenum, palladium, silicon Etc.
  • the flake ice producing apparatus of the present invention is suitable for production in a relatively narrow space, as described above, for example, a limited space such as the inside of a transport device (for example, a vehicle (truck, etc.), ship) It is suitable for manufacturing in places where there is only one.
  • a transport device for example, a vehicle (truck, etc.), ship
  • LNG Liquefied Natural Gas / Liquefied Natural Gas
  • HCFC 22 Freon
  • HFC hydrofluorocarbon
  • the exhaust cold heat of LNG When the exhaust cold heat of LNG is used for the above-mentioned application, it has the following merits compared with the conventional cooling method by electric power or an engine drive. That is, (1) the required power can be reduced, (2) the cold energy of underutilized LNG can be effectively used, (3) a large generator becomes unnecessary, and (4) the pollution factor is low. And (5) it has merits such as cost reduction.
  • the above-described disadvantages disappear. That is, by using LNG as a refrigerant of the flake ice producing apparatus 101, ultra-low temperature flake ice can be produced. For this reason, if the manufactured flake ice is transported to a remote place, it is possible to utilize the exhaust cold heat of LNG batchwise without transporting the LNG itself to a remote place.
  • the flake ice manufacturing apparatus 101 does not have to be fixed at a specific place, and can be mounted on a moving object such as a vehicle, a ship, or an aircraft, and therefore has mobility. Furthermore, due to the presence of the intermediate refrigerant flake ice, there is no risk of direct heat exchange between the LNG and the object to be cooled.
  • flake ice in which brine having a freezing point up to about -150 ° C is instantaneously frozen. That is, flake ice can be produced at -21.2 ° C. in the saturated state when the brine is brine (aqueous sodium chloride solution), and at -26.27 ° C. in the saturated state if the aqueous solution is magnesium chloride.
  • the freezing point is lower than that of glycol salt water and magnesium chloride aqueous solution, and substances which can not be used as brine as "antifreeze" can be used as flake ice by quick freezing. Specifically, for example, flake ice in which ethylene glycol is a brine can also be produced.
  • the flake ice manufacturing apparatus 101 can not only supply cold energy as a substitute for a conventional refrigerator, but also can utilize the cold energy of LNG to enhance energy efficiency. That is, it is also possible to construct a cogeneration system.
  • the flake ice producing apparatus 101 can produce a large amount of ice up to about -150 ° C. in a short time.
  • the solute concentration of the salt water which is the raw material of the ice slurry, is set much higher than before.
  • the theoretical saturation freezing point of the brine having a solute concentration of 13.6% is -9.8 ° C
  • the theoretical saturation freezing point of the brine having a solute concentration of 23.1% is -21.2 ° C.
  • the solute concentration of the salt water is less than 13.6%
  • the freezing rate of fresh seafood by the manufactured ice slurry is slow.
  • the solute concentration of the brine exceeds 23.1%, the salt content precipitates as crystals, and the saturated freezing point of the brine rises.
  • the surface of the fresh seafood is instantly frozen and frozen even if the solute concentration of the ice slurry is high, and therefore salt does not penetrate into the fresh seafood.
  • the solute concentrations of flake ice and brine mixed to produce an ice slurry be approximately the same (difference in concentration within a few percent). If the concentration of solute in flake ice is higher than the concentration of solute in brine, the temperature of flake ice is lower than the saturation freezing point of the brine, so water freezes immediately after mixing brine with a low solute concentration. On the other hand, when the concentration of solute in flake ice is lower than the concentration of solute in brine, flake ice melts and the temperature of the ice slurry decreases because the saturation freezing point of brine is lower than the saturation freezing point of flake ice. Therefore, in order to keep the state of the ice slurry from fluctuating, it is desirable to make the solute concentrations of the mixed flake ice and the salt water the same.
  • a clearance gap will generate
  • the mass ratio of ice is less than 20% by mass, it becomes difficult to instantaneously freeze fresh seafood by the manufactured ice slurry.
  • An ice slurry is prepared by mixing with -23.1% brine.
  • the temperature of the manufactured ice slurry is ⁇ 9.8 ° C. to ⁇ 21.2 ° C.
  • the temperature of the brine mixed with the flake ice produced is at normal temperature or below. The lower the temperature of the salt water, the higher the ice making efficiency.
  • the concentration of brine and the mass ratio of flake ice to brine to be mixed are adjusted so that the temperature of the ice slurry to be produced becomes the required temperature.
  • concentration of brine and the mass ratio of flake ice to brine to be mixed it is possible to produce ice slurries of different temperatures.
  • the flake ice manufacturing apparatus 101 to which the present invention is applied is sufficient as long as it has the following configuration, and various various embodiments can be taken.
  • the flake ice manufacturing apparatus 101 to which the present invention is applied is A rotating shaft 110, One or a plurality of metal plates 120 having a coolant channel 121 therein; A nozzle 130 for injecting brine toward one or both surfaces of the metal plate 120; A scraper 141 fixed to the rotating shaft 110 and rotating; Equipped with The brine jetted from the nozzle 130 toward the surface of the metal plate 120 is frozen on the surface of the metal plate 120 and scraped off by the scraper 141 rotating the generated ice to produce flaked ice.
  • the metal plate 120 can be easily manufactured, and scraped off by the scraper 141 the ice generated by freezing the brine jetted from the nozzle 130 on the metal plate 120. And flake ice can be easily manufactured.
  • the metal plate is made of copper or copper alloy. According to this flake ice manufacturing apparatus 101, the metal plate 120 which satisfy
  • the rotation shaft 110 is in a horizontal position, and the metal plate 120 is in a standing position.
  • the flake ice scraped off the metal plate 120 can be dropped by its own weight.
  • a plurality of the nozzles 130 are further provided, and the nozzle 130 further includes a pipe 131 disposed in proximity to the metal plate 120. According to this flake ice manufacturing apparatus 101, brine can be instantaneously sprayed from the large number of nozzles 130 formed in the pipe 131 onto the surface of the metal plate 120 to produce thin ice.
  • a plurality of areas A, B, C, and D divided in the rotational direction of the scraper 141 are set in the metal plate 120, and the nozzle 130 is configured of the plurality of areas A, B, C, and D.
  • the scraper 141 is controlled to spray brine on the metal plate 120 in the area where the ice is scraped off.
  • brine is jetted from the nozzle 130 to the metal plate 120 for each of the divided areas A, B, C, D, and the ice generated on the metal plate 120 is scraped by the scraper 141. Can be taken.
  • a rod-like blade 140 for fixing the scraper 141 to the rotation shaft The blade 140 has the scraper 141 on the surface in the rotational direction, and the nozzle 130 on the surface on the opposite side to the rotational direction.
  • the rod-like blade 140 is provided with the scraper 141 on the front surface and the nozzle 130 on the rear surface, whereby the brine jetted from the nozzle 130 freezes on the surface of the metal plate 120, and the ice Once generated, the ice can be scraped off by the scraper 141.
  • a plurality of the blades 140 are arranged at equal intervals. According to this flake ice manufacturing apparatus 101, uniform flake ice can be manufactured by arranging a plurality of blades 140 at equal intervals.
  • the positioner 150 brings the scraper 141 into close proximity to the metal plate 120 with a predetermined clearance.
  • the scraper 141 maintains a predetermined clearance on the surface of the metal plate 120, whereby the thickness of the generated ice can be made uniform, and uniform flake ice can be manufactured.
  • the metal plate 120 has a disk shape having a groove 123 on the outer peripheral surface
  • the positioner 150 is a hook 152 which is bridged between the groove 123 of the metal plate 120 and the tip of the scraper 141. According to this flake ice manufacturing apparatus 101, one end of the hook 152 moves within the groove 123 of the metal plate 120, and the scraper 141 held by the other end of the hook 152 contacts the metal plate 120. Move with the specified clearance.
  • the positioner 150 holds the tip of the scraper 141 and is fixed on the block 151 sliding on the metal plate 120 or on the metal plate 120, and loosely fits the tip of the scraper 141.
  • It is a block body 151 having a groove 151a.
  • the block body 151 can be like a spacer, and the scraper 141 can maintain a predetermined clearance with respect to the metal plate 120.
  • the surface of the metal plate 120 opposite to the movement locus of the scraper 141 is plated with wear resistant metal. According to this flake ice manufacturing apparatus 101, the wear resistant metal protects the surface of the metal plate 120, and the life of the metal plate 120 can be extended.
  • the method for producing flaked ice according to the present invention is Injecting brine towards the surface of the metal plate 120 being cooled; Freezing the brine attached to the surface of the metal plate 120 to generate ice; Scraping off the ice attached to the metal plate 120 by a rotating scraper 141; Including.
  • flake ice can be efficiently produced by a miniaturized flake ice producing apparatus which can be easily produced.
  • 101 flake ice manufacturing apparatus, 110: rotating shaft, 120: metal plate, 121: refrigerant channel, 130: nozzle, 131: pipe, 140: wiper, 141: scraper, 150: positioner, 151a: groove, A: first 1 area, B: second area, C: third area, D: fourth area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Confectionery (AREA)

Abstract

熱伝導率が優れた製氷面を有するフレークアイス製造装置及び熱伝導率が優れた製氷面から生成された氷からフレークアイスを製造するフレークアイス製造方法を提供する。 フレークアイス製造装置101は、回転軸110と、冷媒流路121を内部に有する1枚又は複数枚の金属プレート120と、金属プレート120の一方又は両方の表面に向けてブラインを噴射するノズル130と、回転軸110に固定されて回転するスクレーパ141と、を備え、ノズル130から金属プレート120の表面に向けて噴射されたブラインが金属プレート120の表面で凍結して生成された氷をスクレーパ141によって掻き取ってフレークアイスを製造する。金属プレート120は、銅製又は銅合金製である。

Description

フレークアイス製造装置、フレークアイス製造方法
 本発明は、フレークアイス製造装置、フレークアイス製造方法に関する。
 食品等の鮮度を保持したり、蓄冷剤を冷却したりするために、氷を薄片状に加工したフレークアイスが使用されている。従来より、フレークアイスを製造するための装置が種々提案されている。
 例えば、特許文献1には、内面に冷媒流路を設ける円筒体と、この円筒体の中心軸に配置されて回転するシャフトと、このシャフトに軸方向に間隔を空けて取り付けられた複数枚の板状のスクレーパとを備えたシャーベット氷製造装置が記載されている。このシャーベット氷製造装置は、冷媒流路に供給された原水から氷を生成し、この氷が回転するシャフトに掻き取られることで、フレークアイスを製造する。
登録実用新案第3208296号公報
 特許文献1に開示されたシャーベット氷製造装置は、円筒体と板状のスクレーパとの間のクリアランスが一定間隔とされることで、均一なフレークアイスを製造することができる。そのためには、円筒体は真円に加工されていなければならない。しかし、真円の円筒体を製造することは、困難である。しかも、円筒体は、板状のスクレーパが回転するほどの内部空間を設けていることから、シャーベット氷製造装置が大型化する。
 本発明は、小型化が可能であり、容易に製造することができる構造のフレークアイス製造装置及びフレークアイス製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の一態様のフレークアイス製造装置は、
 回転軸と、
 冷媒流路を内部に有する1枚又は複数枚の金属プレートと、
 前記金属プレートの一方又は両方の表面に向けてブラインを噴射するノズルと、
 前記回転軸に固定されて回転するスクレーパと、
 を備え、
 前記ノズルから前記金属プレートの表面に向けて噴射されたブラインが前記金属プレートの表面で凍結して生成された氷を回転する前記スクレーパによって掻き取ってフレークアイスを製造する。
 また、前記金属プレートは、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記金属プレートの熱伝導率をx1としたときに、次式(1)が成り立つように設計されている。
 Y=f(x1) ・・・(1)
 また、前記金属プレートは、銅製又は銅合金製であってよい。
 また、前記回転軸は、水平姿勢であり、前記金属プレートは、起立姿勢であってよい。
 また、本発明の一態様のフレークアイス製造装置は、前記ノズルが複数形成され、前記金属プレートに近接して配置されたパイプをさらに備えてよい。
 また、前記金属プレートには、前記スクレーパの回転方向に分割された複数の領域が設定され、前記ノズルは、前記複数の領域のうち、前記スクレーパによって氷が掻き取られた領域の金属プレートにブラインを噴射するように制御される。
 また、本発明の一態様のフレークアイス製造装置は、前記スクレーパを前記回転軸に固定する棒状のブレードを備え、前記ブレードは、回転方向側の面に前記スクレーパを備え、回転方向側と反対側の面に前記ノズルを備えてよい。
 また、前記ブレードは、等間隔に複数配置されていてよい。
 また、本発明の一態様のフレークアイス製造装置は、所定のクリアランスをもって前記スクレーパを前記金属プレートに近接させるポジショナを備えていてよい。
 また、前記金属プレートは、外周面に溝部を有する円盤状であり、前記ポジショナは、前記金属プレートの溝部と前記スクレーパの先端部とに架け渡される掛止具であってよい。
 また、前記ポジショナは、前記スクレーパの先端部を保持し、かつ、前記金属プレート上を摺動するブロック体、又は前記金属プレート上に固定され、前記スクレーパの先端部を遊嵌する溝部を有するブロック体であってよい。
 フレークアイス製造装置は、前記スクレーパの移動軌跡に相対する前記金属プレートの表面は、耐摩耗性の金属によってメッキされていてよい。
 上記目的を達成するため、本発明の一態様のフレークアイス製造方法は、
 冷却されている金属プレートの表面に向けてブラインを噴射する工程と、
 前記金属プレートの表面に付着したブラインを凍結させて氷を生成する工程と、
 前記金属プレートに付着した氷を回転するスクレーパによって掻き取る工程と、
 を含む。
 本発明によれば、型化が可能であり、容易に製造することができる構造のフレークアイス製造装置及びフレークアイス製造方法を提供することができる。
本発明の一実施形態に係るフレークアイス製造装置を示す断面正面図である。 本発明の一実施形態に係るフレークアイス製造装置を示し、図1のII-II線断面図である。 本発明の一実施形態に係るフレークアイス製造装置を示し、図1のIII-III線断面図である。 本発明の一実施形態に係るフレークアイス製造装置に備えられたスクレーパを含む一実施形態を示す正面図である。 本発明の一実施形態に係るフレークアイス製造装置に備えられたポジショナの一実施形態であって、図4のV-V断面図である。 本発明の一実施形態に係るフレークアイス製造装置に備えられたポジショナの他実施形態を示す要部断面図である。 本発明の一実施形態に係るフレークアイス製造装置に備えられたスクレーパによって氷を掻き取っている状態の一実施形態を示す要部断面図である。 本発明の他実施形態に係るフレークアイス製造装置に備えられたブレードの一実施形態であって、図4のVIII-VIII線に相当する断面図である。
 <氷>
 本発明のフレークアイス製造装置により生成された氷は、以下の(a)及び(b)の条件を満たす、溶質を含有する水溶液を含む液体の氷である。なお、「フレークアイス」とは、薄片状に加工された氷のことをいう。
 (a)融解完了時の温度が0℃以下である
 (b)融解過程で前記氷から発生する水溶液の溶質濃度の変化率が30%以内である
 水に溶質を融解した場合、その水溶液の凝固点が低下するという凝固点降下が生じることが知られている。凝固点降下の作用により、食塩等の溶質が融解した水溶液は、その凝固点が低下している。つまり、そのような水溶液からなる氷は、真水からなる氷より低い温度で凝固した氷である。
 ここで、氷が水に変化するときに必要な熱を「潜熱」というが、この潜熱は温度変化を伴わない。このような潜熱の効果により、上記のような凝固点が低下した氷は、融解時に真水の凝固点以下の温度で安定な状態が続くため、冷熱エネルギーを蓄えた状態が持続することになる。
 よって、本来であれば、被冷却物の冷却能が真水からなる氷より高くなるはずである。しかし、従来の技術によって生成された氷は、冷却の際に自身の温度が経時的に早く上がる等、被冷却物を冷却する能力が十分なものではないことを本発明者らは発見した。その理由について本発明者らは検討したところ、従来の技術では食塩等の溶質を含有する水溶液から氷を製造したとしても、実際は、水溶液が凍る前に溶質を含まない氷が先に製造されてしまい、結果として製造されるのは溶質を含まない氷と溶質との混合物となってしまうか、あるいは、凝固点の低下した氷はほんの僅かしか生成されないため、冷却能の高い氷が製造されていなかったことがわかった。
 容器に溜められた状態の水溶液を含む液体を外部から冷却しても、フレークアイス製造装置により生成される氷と同様の氷を生成することはできない。これは、冷却速度が十分でないことに起因すると考えられる。しかしながら、フレークアイス製造装置によれば、溶質を含有する水溶液を含む液体(以下「ブライン」と呼ぶ)を噴射することで霧状となった水溶液が凝固点以下の温度に保持された金属プレートに直接接することにより、従来なかった急速な冷却を可能としている。これにより、上記(a)及び(b)の条件を満たす、冷却能の高い氷を生成することができると考えられる。
 しかしながら、本発明者らは、所定の方法により(詳細は後述する)、凝固点が低下した水溶液を含む液体の氷を生成することができるフレークアイス製造装置の発明に成功した。このような本発明のフレークアイス製造装置により生成された氷は、上述の(a)及び(b)の条件を満たすものである。以下、上述の(a)及び(b)の条件について説明する。
 (融解完了時の温度)
 上記(a)に関して、本発明のフレークアイス製造装置により生成された氷は、溶質を含む水溶液を含む液体の氷であるため、真水(溶質を含まない水)の凝固点より凝固点の温度が低下している。そのため、融解完了時の温度が0℃以下であるという特徴を有する。「融解完了時の温度」とは、本発明のフレークアイス製造装置により生成された氷を融点以上の環境下(例えば、室温、大気圧下)に置くことで氷の融解を開始させ、全ての氷が融解して水になった時点におけるその水の温度のことを指す。
 融解完了時の温度は0℃以下であれば特に限定されず、溶質の種類、濃度を調整することで適宜変更することができる。融解完了時の温度は、より冷却能が高いという点で、温度が低い方が好ましく、具体的には、-1℃以下(-2℃以下、-3℃以下、-4℃以下、-5℃以下、-6℃以下、-7℃以下、-8℃以下、-9℃以下、-10℃以下、-11℃以下、-12℃以下、-13℃以下、-14℃以下、-15℃以下、-16℃以下、-17℃以下、-18℃以下、-19℃以下、-20℃以下等)であることが好ましい。他方、凝固点を、被冷却物の凍結点に近づけた方が好ましい場合もあり(例えば、生鮮動植物の損傷を防ぐため等)、このような場合は、融解完了時の温度が高すぎない方が好ましく、例えば、-21℃以上(-20℃以上、-19℃以上、-18℃以上、-17℃以上、-16℃以上、-15℃以上、-14℃以上、-13℃以上、-12℃以上、-11℃以上、-10℃以上、-9℃以上、-8℃以上、-7℃以上、-6℃以上、-5℃以上、-4℃以上、-3℃以上、-2℃以上、-1℃以上、-0.5℃以上等)であることが好ましい。
 (溶質濃度の変化率)
 上記(b)に関して、本発明のフレークアイス製造装置により生成された氷は、融解過程で氷から発生する水溶液の溶質濃度の変化率(以下、本明細書において「溶質濃度の変化率」と略称する場合がある。)が30%以内であるという特徴を有する。従来の技術によっても、わずかに凝固点の低下した氷が生じる場合もあるが、そのほとんどは溶質を含まない水の氷と溶質の結晶との混合物であるため、冷却能が十分なものでない。このように溶質を含まない水の氷と溶質の結晶との混合物が多く含まれる場合、氷を融解条件下においた場合、融解に伴う溶質の溶出速度が不安定であり、融解開始時に近い時点である程、溶質が多く溶出し、融解が進むとともに溶質の溶出する量が少なくなり、融解が完了時に近い時点程、溶質の溶出量が少なくなる。これに対し、本発明のフレークアイス製造装置により生成された氷は、溶質を含む水溶液を含む液体の氷からなるものであるため、融解過程における溶質の溶出速度の変化が少ないという特徴を有する。具体的には、融解過程で氷から発生する水溶液の溶質濃度の変化率が30%である。なお、「融解過程で氷から発生する水溶液の溶質濃度の変化率」とは、融解過程の任意の時点での発生する水溶液における溶質濃度に対する、融解完了時における水溶液の濃度の割合を意味する。なお、「溶質濃度」とは、水溶液中の溶質の質量の濃度を意味する。
 本発明のフレークアイス製造装置により生成された氷における溶質濃度の変化率は30%以内であれば特に限定されないが、その変化率が少ない方が、凝固点の低下した水溶液の氷の純度が高いこと、つまり、冷却能が高いことを意味する。この観点から、溶質濃度の変化率は、25%以内(24%以内、23%以内、22%以内、21%以内、20%以内、19%以内、18%以内、17%以内、16%以内、15%以内、14%以内、13%以内、12%以内、11%以内、10%以内、9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内、1%以内、0.5%以内等)であることが好ましい。他方、溶質濃度の変化率は、0.1%以上(0.5%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上等)であってもよい。
 (溶質)
 本発明のフレークアイス製造装置により生成された氷に含まれる溶質の種類は、水を溶媒としたときの溶質であれば特に限定されず、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。溶質としては、固体状の溶質、液状の溶質等が挙げられるが、代表的な固体状の溶質としては、塩類(無機塩、有機塩等)が挙げられる。特に、塩類のうち、食塩(NaCl)は、凝固点の温度を過度に下げすぎず、生鮮動植物又はその一部の冷却に適してことから好ましい。また、食塩は海水に含まれるものであるため、調達が容易であるという点でも好ましい。また、液状の溶質としては、エチレングリコール等が挙げられる。なお、溶質は1種単独で含まれてもよく、2種以上含まれてもよい。
 本発明のフレークアイス製造装置により生成された氷に含まれる溶質の濃度は特に限定されず、溶質の種類、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。例えば、溶質として食塩を用いた場合は、水溶液の凝固点をより下げて、高い冷却能を得ることができる点で、食塩の濃度は0.5%(w/v)以上(1%(w/v)以上、2%(w/v)以上、3%(w/v)以上、4%(w/v)以上、5%(w/v)以上、6%(w/v)以上、7%(w/v)以上、8%(w/v)以上、9%(w/v)以上、10%(w/v)以上、11%(w/v)以上、12%(w/v)以上、13%(w/v)以上、14%(w/v)以上、15%(w/v)以上、16%(w/v)以上、17%(w/v)以上、18%(w/v)以上、19%(w/v)以上、20%(w/v)以上等)であることが好ましい。他方、本発明のフレークアイス製造装置により生成された氷を生鮮動植物又はその一部の冷却に用いる場合等においては、凝固点の温度を過度に下げすぎない方が好ましく、この観点で、23%(w/v)以下(20%(w/v)以下、19%(w/v)以下、18%(w/v)以下、17%(w/v)以下、16%(w/v)以下、15%(w/v)以下、14%(w/v)以下、13%(w/v)以下、12%(w/v)以下、11%(w/v)以下、10%(w/v)以下、9%(w/v)以下、8%(w/v)以下、7%(w/v)以下、6%(w/v)以下、5%(w/v)以下、4%(w/v)以下、3%(w/v)以下、2%(w/v)以下、1%(w/v)以下等)であることが好ましい。
 本発明のフレークアイス製造装置により生成された氷は冷却能に優れるため、被保冷物を冷却させる冷媒としての使用に適している。被保冷物を冷却させる低温の冷媒としては、氷以外に、エタノール等の不凍液として使用される有機溶媒が挙げられるが、これらの不凍液より氷の方が熱伝導率が高く、比熱が高い。そのため、本発明のフレークアイス製造装置により生成された氷のような溶質を溶解させて凝固点が低くなった氷は、不凍液のような他の0℃以下の冷媒より、冷却能が優れている点においても有用である。
 本発明のフレークアイス製造装置により生成された氷は、上記の溶質以外の成分を含んでもよく、含まなくてもよい。
 本発明において、「氷」とは、水溶液を含む液体が凍ったものを指す。
 また、本発明のフレークアイス製造装置により生成された氷は、真水の凝固点以下の温度で安定な状態が続くため、すなわち、分離しない状態を長く持続させることができる。そのため、例えば、後述のとおり、本発明のフレークアイス製造装置により生成された氷を構成する液体が、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であった場合、該油が均一な状態が長持ちし、つまり、分離しない状態を長く持続させることができる。
 上述のとおり、本発明のフレークアイス製造装置により生成された氷を構成する液体は、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であってもよい。そのような液体としては、生乳、水と油を含む産業廃棄物(廃棄乳等)が挙げられる。液体が生乳であった場合、その氷を食したときの官能性が向上する点で好ましい。このように、官能性が向上する理由は、生乳に含まれる油(脂肪)が氷の中に閉じ込められた状態であるからと推測される。なお、本発明のフレークアイス製造装置により生成された氷は、上記の溶質を含有する水溶液を凍結させたもののみから構成してもよい。
 本発明のフレークアイス製造装置により生成された氷を構成する液体がさらに油を含む場合、液体中の水と油との比率は、特に限定されず、例えば、1:99~99:1(10:90~90:10、20:80~80:20、30:80~80:30、40~60:40~60等)の範囲で適宜選択してもよい。
 また、本発明のフレークアイス製造装置により生成された氷は、凝固点降下度の異なる2種以上の溶質を含む水溶液の氷であってもよい。この場合、本発明のフレークアイス製造装置により生成された氷は、一方の溶質を含む水溶液の氷と、他方の溶質を含む水溶液の氷との混合物であってもよい。かかる場合、例えば、溶質としてエチレングリコールを含む水溶液の氷に、エチレングリコールと凝固点降下度の異なる溶質として食塩を含む水溶液の氷を加えることで、エチレングリコールを含む水溶液の氷の融解を遅らせることができる。あるいは、本発明のフレークアイス製造装置により生成された氷は、2種以上の溶質を同一の水溶液に溶解した水溶液の氷であってもよい。また、凝固点降下度の異なる2種以上の溶質を併用する場合、対象となる溶質を含む水溶液の氷の融点を下げる場合においても有用である。例えば、溶質として食塩を用いる場合に、食塩よりさらに融点を下げることができる溶質(エチレングリコール、塩化カルシウム等)を併用することで、食塩水の氷の融点を下げることができ、例えば、食塩水の氷のみではなしえない-30℃近辺での温度を実現できる。凝固点降下度の異なる2種以上の溶質の比率は、目的に応じて適宜変更することができる。
 (被保冷物を冷却させる冷媒)
 本発明のフレークアイス製造装置により生成された氷は、被保冷物を冷却させる冷媒とすることができる。上記のとおり、本発明のフレークアイス製造装置により生成された氷は冷却能に優れるため、被保冷物を冷却させる冷媒に好適である。
 なお、被保冷物を冷却させるための冷媒と、金属プレート120(図1参照)を冷却させるための冷媒との混同を防ぐため、被保冷物を冷却させるための冷媒を、以下「氷スラリー」と呼ぶ。氷スラリーは、本発明のフレークアイス製造装置により生成された氷と、水溶液を含む液体との混合物である。
 本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーは、上記の氷の他の成分を含んでもよく、例えば、上記の氷以外に水を含むことで、氷と水との混合物により構成してもよい。例えば、氷に含まれる溶質と同一の溶質を含有する水をさらに含む場合、氷における溶質の濃度と、水における溶質の濃度は近い方が好ましい。その理由は、以下のとおりである。
 氷の溶質濃度が水の溶質濃度より高い場合、氷の温度が水の飽和凍結点より低いため、溶質濃度が低い水を混合した直後に水分が凍結する。一方、氷の溶質濃度が水の溶質濃度より低い場合、氷の飽和凍結点よりも水の飽和凍結点のほうが低いため氷が融解し、氷と水との混合物からなる氷スラリーの温度が低下する。つまり、氷と水との混合物の状態(氷スラリーの状態)を変動させないようにするためには、上述のとおり、混合する氷と水の溶質濃度を同程度とすることが好ましい。また、氷と水との混合物の状態である場合、水は、上記氷が融解してなるものであってもよく、別途調製したものであってもよいが、上記氷が融解してなるものであることが好ましい。
 具体的には、本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーを氷と水との混合物により構成する場合、氷における溶質の濃度と、水における溶質の濃度との比が、75:25~20:80であることがより好ましく、70:30~30:70であることがさらに好ましく、60:40~40:60であることがより一層好ましく、55:45~45:55であることがさらに一層好ましく、52:48~48:52であることが特に好ましく、50:50であることが最も好ましい。特に、溶質として食塩を用いる場合、氷における溶質の濃度と、水における溶質の濃度との比が上記範囲内にあることが好ましい。
 本発明のフレークアイス製造装置により生成される氷の原料となる水は、特に限定されないが、溶質として食塩を使用する場合、海水、海水に塩を追加した水、又は海水の希釈水、の氷であることが好ましい。海水、海水に塩を追加した水、又は海水の希釈水は、調達が容易であり、これによりコストの削減も可能となる。
 本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーは、さらに、上記の本発明のフレークアイス製造装置により生成された氷より高い熱伝導率を有する固体を含有してもよく、含有さなくてもよいが、含有することが好ましい。短時間で冷却対象物を冷却しようとした場合、熱伝導率の高い固体を利用することにより達成可能であるが、この場合、その固体自身も短時間で冷熱エネルギーを失い温度が上がりやすいため、長時間の冷却には不適である。他方、熱伝導率の高い固体を利用しない方が長時間の冷却に適しているが、短時間で冷却対象物を冷却するのには不適である。しかしながら、本発明のフレークアイス製造装置により生成された氷は、上記のように冷却能が高いため、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能としている点で有用である。本発明のフレークアイス製造装置により生成された氷より高い熱伝導率を有する固体としては、例えば、金属(アルミニウム、銀、銅、金、ジュラルミン、アンチモン、カドミウム、亜鉛、すず、ビスマス、タングステン、チタン、鉄、鉛、ニッケル、白金、マグネシウム、モリブデン、ジルコニウム、ベリリウム、インジウム、ニオブ、クロム、コバルト、イリジウム、パラジウム)、合金(鋼(炭素鋼、クロム鋼、ニッケル鋼、クロムニッケル鋼、ケイ素鋼、タングステン鋼、マンガン鋼等)、ニッケルクロム合金、アルミ青銅、砲金、黄銅、マンガニン、洋銀、コンスタンタン、はんだ、アルメル、クロメル、モネルメタル、白金イリジウム等)、ケイ素、炭素、セラミックス(アルミナセラミックス、フォルステライトセラミックス、ステアタイトセラミックス等)、大理石、レンガ(マグネシアレンガ、コルハルトレンガ等)等であって、本発明のフレークアイス製造装置により生成された氷より高い熱伝導率を有するものが挙げられる。また、本発明のフレークアイス製造装置により生成された氷より高い熱伝導率を有する固体は、熱伝導率が2.3W/m K以上(3W/m K以上、5W/m K以上、8W/m K以上等)の固体であることが好ましく、熱伝導率が10W/m K以上(20W/m K以上、30W/m K以上、40W/m K以上等)の固体であることがより好ましく、熱伝導率が50W/m K以上(60W/m K以上、75W/m K以上、90W/m K以上等)の固体であることがさらに好ましく、熱伝導率が100W/m K以上(125W/m K以上、150W/m K以上、175W/m K以上等)の固体であることがより一層好ましく、熱伝導率が200W/m K以上(250W/m K以上、300W/m K以上、350W/m K以上等)の固体であることがなお好ましく、熱伝導率が200W/m K以上の固体であることがなお好ましく、熱伝導率が400W/m K以上(410W/m K以上等)の固体であることが特に好ましい。
 本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーが、上記の本発明の氷より高い熱伝導率を有する固体を含有する場合、上記のとおり、多くの固体を含んでも長時間の冷却に適しており、例えば、本発明のフレークアイス製造装置により生成された氷より高い熱伝導率を有する固体の質量/氷スラリーに含まれる本発明のフレークアイス製造装置により生成された氷の質量(又は氷スラリーに含まれる本発明の氷と水溶液を含む液体との合計質量)は、1/100000以上(1/50000以上、1/10000以上、1/5000以上、1/1000以上、1/500以上、1/100以上、1/50以上、1/10以上、1/5以上、1/4以上、1/3以上、1/2以上等)であってもよい。
 本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーに含有される上記固体は、どのような形状であってもよいが、粒子状であることが好ましい。また、上記固体は、本発明のフレークアイス製造装置により生成された氷の内部に含まれた形態で含まれていてもよく、氷の外部に含まれた形態で含まれていてもよいが、氷の外部に含まれた形態で含まれていた方が冷却対象物に直接接しやすくなるため、冷却能が高くなる。このことから、氷の外部に含まれた形態で含まれていた方が好ましい。また、本発明のフレークアイス製造装置により生成された氷を含有する氷スラリーが上記固体を含有する場合、後述の本発明のフレークアイス製造装置により氷を生成した後に上記固体と混合してもよく、あるいは、あらかじめ原料となる水に混合した状態で、本発明のフレークアイス製造装置によって氷を生成してもよい。
[フレークアイス製造装置]
 図1は、本発明の一実施形態に係るフレークアイス製造装置101を示す断面正面図である。図2は、本発明の一実施形態に係るフレークアイス製造装置101であって、図1のII-II線断面図である。図3は、本発明の一実施形態に係るフレークアイス製造装置101であって、図1のIII-III線断面図である。図4は、本発明の一実施形態に係るフレークアイス製造装置に備えられたスクレーパを含む一実施形態を示す正面図である。図5は、本発明の一実施形態に係るフレークアイス製造装置に備えられたポジショナの一実施形態であって、図4のV-V断面図である。図6は、本発明の一実施形態に係るフレークアイス製造装置に備えられたポジショナの他実施形態を示す要部断面図である。図7は、本発明の一実施形態に係るフレークアイス製造装置に備えられたスクレーパによって氷を掻き取っている状態の一実施形態を示す要部断面図である。
 図1に示すように、フレークアイス製造装置101は、回転軸110と、金属プレート120と、ノズル130と、スクレーパ141とを備える。フレークアイス製造装置101は、さらに、ポジショナ150とカバー160と、冷媒の冷却機170を備える。
 回転軸110は、水平姿勢とされた駆動シャフト111と、この駆動シャフト111の一端部に固定されたモータ(例えばインバータモータ)112とを備え、任意の回転速度で回転する。モータ112及びモータ112を固定した駆動シャフト111の一端部を除いた駆動シャフト111と、金属プレート120と、ノズル130と、スクレーパ141がカバー160によって覆われている。カバー160の下面側は開口し、フレークアイス排出口161とされている。カバー160は、断熱性を有するFRP製とされ、カバー160内が外気の影響を受けないようにされている。フレークアイス排出口161の下方には、フレークアイス貯留タンク(図示せず)が置かれている。
 金属プレート120は、両表面を製氷面とした平板である。図2に示すように、金属プレート120の内部には、冷媒流路121(内径は例えば10mm)が設けられている。金属プレート120の中心部には、駆動シャフト111(以下、回転軸110として説明する)が貫通する貫通穴122が形成されている。金属プレート120は、起立姿勢で複数枚(図1では2枚)、平行に向き合って並べられている。金属プレート120は、回転軸110が回転しても、回転しないように固定されている。
 このような金属プレート120は、単位時間当たりの氷の生成量を示す製氷速度をYとし、金属プレートの熱伝導率をx1としたときに、次式(1)が成り立つように設計されている(fは関数(function)を意味する)。
 Y=f(x1) ・・・(1)
 金属プレート120を構成する部材を熱伝導率の高い部材とすることにより、製氷速度を上げることができる。また、反対に、金属プレート120を構成する部材を熱伝導率の低い部材とすることにより、製氷速度を下げることができる。
 なお、要求される製氷速度によっては、式(1)が成り立たなくてもよい場合もあり得る。この場合、要求される製氷速度を満たす精度の熱伝導率を有する金属プレート120が使用される。
 金属プレート120を構成する部材としては、熱伝導率が高い銅や銅合金が採用される。金属プレート120の表面は、耐摩耗性の金属、例えばクロムによってメッキされている。金属プレート120は、後述するような円盤形状(直径は例えば40cm)に限定されない限り、正方形等の多角形であってもよい。いずれにしても、金属プレート120は、表面と裏面が平行な板状体で(板厚は例えば25mm)、大きな金属板から切断するだけで成形できるため、加工しやすいものとなっている。
 冷媒流路121は、例えば、貫通穴122の上側と下側とで独立して蛇行するように設けられている。冷媒流路121内を流れる冷媒は、上流側から下流側へ流れるにつれて若干、昇温する。しかし、冷媒は、上側と下側とで独立した冷媒流路121内を流れることで、流れる距離が独立していないときよりも短くされている。冷媒は、許容範囲以上に昇温することなく、金属プレート120を均等に冷却する。
 各冷媒流路121は、配管171,172によって冷却機170に接続されている。冷却機170によって冷却された冷媒は、一方の配管171→冷媒流路121→他方の配管172というように循環するように流れる。冷媒としては、沸騰温度が例えば-60℃のフロン(HCFC22)やハイドロフルオロカーボン(HFC)等が使用される。
 図1に示すように、ノズル130は、ブラインを金属プレート120の両方(図面において左面と右面)の表面に向けて噴射する。詳しくは後述するが、金属プレート120は、冷媒流路121内に冷媒が流れて冷却されているため、金属プレート120に付着したブラインは急速冷凍されて氷(ハイブリッドアイス)となる。
 ノズル130は、金属プレート120から少しの間隔をあけて配置されたパイプ131に多数形成される。2枚の金属プレート120の間に配置されたパイプ131には、両金属プレート120に向けてブラインを噴射できるようにノズル130が二方向に形成されている。
 スクレーパ141には、金属プレート120に付着した氷を掻き取るための刃部が形成されている。スクレーパ141は、回転軸110に固定された棒状のブレード140の回転方向側の面に備えられる。ブレード140は、金属プレート120の表面とパイプ131との間で回転する。ブレード140は、図2に示すように2本が反対方向に向けて直線状に配置されている。直線状に配置されたブレード140の長さを直径とする円環状のリング142によって、スクレーパ141が撓むことがないように保形される。スクレーパ141とリング142とを合わせてワイパー(採番せず)と呼ぶ。
 図4は、ブレード140の変形例を示す正面図である。図4に示すブレード140は、中心から120°の等間隔で3本配置されている。ブレード140は、図示しないが、90°の等間隔で4本配置されている等、等間隔で複数本配置されてもよい。
 いずれにしても、スクレーパ141は、尖端部141aと凹曲部141bとを交互に形成した波形状の棒状とされる。尖端部141aが氷に割り込み、氷を凹曲部141bへ流すようにすることで、氷を掻き取りやすくされている。なお、図1に示したスクレーパ141は、波形状に描かれていないが、当然ながら、波形状に形成されていることが好ましい。
 スクレーパ141は、金属プレート120に接触しない方がよい。スクレーパ141は、例えば、0.2mm程度のクリアランスをもって金属プレート120から離れている。フレークアイス製造装置101は、このクリアランスを維持するように、ポジショナ150を備えている。
 図5は、ポジショナ150の一実施形態であって、図4のV-V線断面図である。図6は、ポジショナ150の他実施形態を示す要部断面図である。図4、図5に示すポジショナ150は、ブロック体151によって構成されている。ブロック体151は、複数個(図面では4個)備えられている。各ブロック体151は、リング142を保持し、かつ、金属プレート120上を摺動する。このポジショナ150は、リング142と一体となって金属プレート120上を円運動する。図示しないが、ポジショナ150は、金属プレート120に当たる下面にボールなどを備え、摩擦力を軽減することが好ましい。
 ブロック体151は、金属プレート120上を摺動するのではなく、金属プレート120に固定されてもよい。この場合は、ブロック体151に溝部151aが形成され、この溝部151aにリング142の外周縁が遊嵌される。
 図6に示すポジショナ150は、例えばコ字形に成形された掛止具152によって構成されている。この掛止具152を採用する場合は、金属プレート120は、円盤状とされ、外周面に溝部123が形成されている。掛止具152の一端部は、ワイパーに固定されている。掛止具152の中間部は折り返されている。掛止具152の他端部は、金属プレート120の溝部123に遊嵌される。金属プレート120が円盤状とされることで、ブレード140が回転すると、掛止具152も金属プレート120の溝部123に規制されながら回転する。
 ここで、このフレークアイス製造装置101によってフレークアイスを製造する方法について説明する。
 冷媒を冷媒流路121内に流すことで、起立姿勢の金属プレート120が冷却される。冷媒が-60℃であると、金属プレート120が熱伝導率が高い銅製又は銅合金とされていることで、金属プレート120も-60℃に冷却される。金属プレート120は、カバー160で覆われていることから、外気の影響を受けることなく、-60℃を維持する。
 そして、ブラインがパイプ131内に供給され、ノズル130から金属プレート120の表面である製氷面に向けて噴射される。食塩水(飽和状態)の凝固点は-21℃であり、塩化マグネシウム水溶液(飽和状態)の凝固点は-26.7℃である。したがって、食塩水やマグネシウム水溶液をブラインとして使用した場合は、ブラインが金属プレート120に付着すると、急速冷凍され、氷(ハイブリッドアイス)の膜が金属プレート120の表面に生成される。しかも、金属プレート120は、カバー160によって覆われ、外気の影響を受けないため、冷却された状態を維持する。
 ここで、スクレーパ141を備えたブレード140(以下、「スクレーパ141」として説明する)の動作について説明する。スクレーパ141が図2及び図3に示した2本のタイプである場合は、図3に示すように、金属プレート120を座標面に見立てたときに、第1象限を第1領域A、第2象限を第2領域B、第3象限を第3の領域C、第4象限を第4領域Dと呼ぶ。
 スクレーパ141は、図2及び図3に示すような縦向きの姿勢になる直前に、第1領域Aと第3領域Cにノズル130から金属プレート120に向けてブラインが瞬間的に噴射される。このブラインが瞬間冷凍され、均一な厚さの氷が生成された状態で、スクレーパ141が一方向(図面では時計方向)に回転して第1領域Aと第3の領域Cに進入し、氷を掻き取る。このようにスクレーパ141が第1領域Aと第3の領域C内を回転している間に、第2領域Bと第4領域Dにノズル130から金属プレート120に向けてブラインが瞬間的に噴射される。このブラインが瞬間冷凍され、均一な厚さの氷が生成された状態で、スクレーパ141が一方向(図面では時計方向)に回転し、第2領域Bと第4領域Dに進入し、氷を掻き取る。
 このようにスクレーパ141が一方向に連続して回転し、金属プレート120に生成された氷を掻き取られた領域A,B,C,Dにノズル130からブラインが噴射され、瞬間冷凍されて生成された氷がスクレーパ141によって掻き取られる動作が繰り返される。ただし、スクレーパ141は、90°回転するたびに停止するようにしてもよい。
 スクレーパ141が図4に示した3本のタイプである場合は、採番しない領域が6つ設けられる。3本のスクレーパ141であっても、2本のスクレーパ141と同様に停止と回転を繰り返し、スクレーパ141が金属プレートに生成された氷を掻き取る。
 図7は、スクレーパ141によって氷を掻き取っている状態の一実施形態を示す要部断面図である。スクレーパ141が、起立姿勢の金属プレート120の表面に生成された氷を掻き取ることで、フレークアイスが製造される。スクレーパ141は、ポジショナ150によって全長が均等なクリアランスをもって金属プレート120の表面から離間しているため、均一なフレークアイスが製造される。
 しかも、スクレーパ141は、金属プレート120の表面を擦らないため、金属プレート120の表面を損傷させることがない。スクレーパ141が氷を掻き取りすぎることがあったとしても、金属プレート120の表面は、耐摩耗性の金属によってメッキされていることから、金属プレート120の表面を損傷させることがない。
 このようにしてスクレーパ141によって金属プレート120から掻き取られることで生成されたフレークアイスは、カバー160の下面側のフレークアイス排出口161から下方に落下し、フレークアイス貯留タンク内に溜められる。まとめると、スクレーパ141が停止している状態において、冷却されている起立姿勢の金属プレート120にノズル130からブラインが噴射され、金属プレート120の表面に氷の膜が均一な厚さで成形された後、スクレーパ141が回転し、氷を掻き取るという動作を繰り返すことで、フレークアイスが次々とフレークアイス貯留タンク内に溜められる。
[フレークアイス製造装置の他の実施形態]
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。
 上述した実施形態のフレークアイス製造装置101では、ブラインを金属プレート120の表面に噴射するためのノズル130をパイプ131に備えたが、図8に示すようなブレード140を備えてもよい。
 図8は、図4のVIII-VIII線に相当する断面図である。このブレード140は、進行方向の前面(図8において見えいていない側)に前記スクレーパ141を備え、反対方向の後面(図8において見えている側)に前記ノズル130を備えている。この場合は、ノズル130から金属プレート120の表面に向けてブラインが噴射され、このブラインが金属プレート120の表面で瞬間冷凍されることで氷が生成された後、スクレーパ141が回転してくる。スクレーパ141によって瞬間冷凍された氷が掻き取られる。
 したがって、この場合は、ノズル130がスクレーパ141に追尾するように設けられる。スクレーパ141が氷を掻き取った後にノズル130からブラインが瞬間的に噴射される。次のスクレーパ141が回転してくるまでの間に瞬間冷凍され、氷の膜が生成される。ただし、ノズル130は、スクレーパ141に追尾するのではなく、スクレーパ141に先行して回転し、ブラインがスクレーパ141の後方に向けて噴射されるようにしてもよい。
 上述した実施形態では、スクレーパ141は、2本又は3本としたが、1本でもよい。1本のスクレーパ141の場合は、第2の領域Bと第3の領域Cもそれぞれ横方向に分割された領域としてもよい。この場合は、スクレーパ141が90°回転するごとに各領域にノズル130からブラインが噴射され、ブラインが瞬間冷凍されて氷が生成された後にスクレーパ141がこの氷を削り取る。
 上述した実施形態では、ポジショナ150は、ブロック体151や掛止具152としたが、スクレーパ141の先端部が当たるような円環状の凸条(図示せず)を金属プレート120に設けてもよい。あるいは、スクレーパ141が金属プレート120に対して所定のクリアランスを維持するように保持されるときは、ポジショナ150は不要である。
 上述した実施形態では、金属プレート120は、貫通穴122を形成したが、貫通穴122でなく、切込みであってもよく、さらに、上下2枚に分離したものであってもよい。金属プレート120は、複数枚備えられるとしたが、1枚でもよい。1枚の金属プレート120は、水平姿勢とし、フレークアイス貯留タンク内と向き合う金属プレート120の下面にノズル130からブラインを噴射し、スクレーパ141が回転して氷が自重で落下するようにしてもよい。金属プレート120には、耐摩耗性の金属でメッキするとしたが、スクレーパ141が回転する範囲でメッキしてもよい。
 上述した実施形態における冷媒流路121やパイプ131のレイアウトは、一例を図示しただけであり、そのレイアウトは、任意に変更できる。
 また、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)としたが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じた凍結点の異なる複数種類のブラインを用意することができる。
 また、本発明のフレークアイス製造装置101により生成された氷を含む氷スラリーが、本発明のフレークアイス製造装置101により生成された氷より高い熱伝導率を有する固体を含有する場合、被冷却物を冷却する工程において、氷スラリーに含まれる氷と被冷却物との間に、本発明のフレークアイス製造装置101により生成された氷より高い熱伝導率を有する固体が介在するように冷却を行うことが好ましい。これにより、熱伝導率の高い固体による短時間の冷却能力を得つつ、被冷却物の長時間の冷却も可能となる。かかる場合、目的に応じて、氷、氷より高い熱伝導率を有する固体、被冷却物とのぞれぞれの間に、別のものが介在していてもよい。例えば、氷スラリーの中に被冷却物と直接接するのが好ましくないもの(例えば、安全性の観点で被冷却物と接するのが好ましくない、氷より熱伝導率が高い固体(銅などの金属等)等)が含まれる場合、袋に氷スラリー又は被冷却物のいずれか一方を収容して、氷スラリーと被冷却物とが直接接しないようにして冷却してもよい。
 このように、フレークアイス製造装置101により生成される氷は、被冷却物を冷却させる他に、例えば以下のような用途にも利用することができる。即ち、産業廃棄液の凍結、糞尿の凍結、気体の液体化等にも利用することができる。
 金属プレート120は、例えば、水溶液の凝固点以下の温度に保持できれば特に限定されない。金属プレート120の温度は、水溶液の凝固点以下の温度に保持されていれば特に限定されないが、上記(a)及び(b)の条件を満たす氷の純度が高い氷を製造できる点で、水溶液の凝固点より1℃以上低い温度(2℃以上低い温度、3℃以上低い温度、4℃以上低い温度、5℃以上低い温度、6℃以上低い温度、7℃以上低い温度、8℃以上低い温度、9℃以上低い温度、10℃以上低い温度、11℃以上低い温度、12℃以上低い温度、13℃以上低い温度、14℃以上低い温度、15℃以上低い温度、16℃以上低い温度、17℃以上低い温度、18℃以上低い温度、19℃以上低い温度、20℃以上低い温度、21℃以上低い温度、22℃以上低い温度、23℃以上低い温度、24℃以上低い温度、25℃以上低い温度等)に保持されることが好ましい。
 金属プレート120を構成する部材は、夫々熱伝導率が異なる。このため、製氷面にどの部材を採用するかにより製氷速度が異なってくる。具体的には例えば、ステンレスの熱伝導率(W/m・K)は、温度が20℃のときに16である。また、純鉄の熱伝導率(W/m・K)は、温度が20℃のときに67であり、ステンレスよりも高い。また、銅(普通品)の熱伝導率(W/m・K)は、温度が20℃のときが372であり、純鉄よりもさらに高い。また、銀の熱伝導率(W/m・K)は、温度が20℃のときが418であり、銅(普通品)よりもさらに高い。即ち、図2に例示した製氷面の部材の熱伝導率は、同一の温度条件の下、銀>銅(普通品)>純鉄>ステンレスの順で高くなっている。このため、製氷速度も、銀>銅(普通品)>純鉄>ステンレスの順に高くなる。
 具体的には例えば、金属プレート120が銅で構成されている場合、金属プレート120を銅から銀に変更することにより、製氷速度を速くすることができる。一方、金属プレート120を銅から純鉄やステンレスに変更することにより、製氷速度を遅くすることができる。
 このように、フレークアイス製造装置101は、金属プレート120を構成する部材を任意に変更することにより、製氷速度を調節することができる。
 このとき、金属プレート120を構成する部材として銀や銅等の熱伝導率が高い部材が選択され、かつ、金属プレート120を冷却するための冷媒として超低温の冷媒が選択される場合がある。このような場合には、超低温の冷媒から供給される膨大な冷熱エネルギーが、熱伝導率が高い部材によって効率良くブラインに伝わるため、より効率の良い氷の生成を実現させることができる。
 噴射の方法は、特に限定されないが、例えば、後述するノズル130のように、噴射孔13aを備える噴射手段から、噴射することにより、噴射をすることができる。この場合において、噴射する際の水圧は、例えば、0.001MPa以上(0.002MPa以上、0.005MPa以上、0.01MPa以上、0.05MPa以上、0.1MPa以上、0.2MPa以上等)であってもよく、1MPa以下(0.8MPa以下、0.7MPa以下、0.6MPa以下、0.5MPa以下、0.3MPa以下、0.1MPa以下、0.05MPa以下、0.01MPa以下等)であってもよい。
 また、氷が生成される際に、製氷熱が発生するが、この製氷熱を帯びることで、実際の融解完了温度に影響を与える可能性がある。このように、融解完了温度は、溶質の種類、濃度のみでなく、製氷熱の影響を受けると考えられる。そのため、氷に残存する製氷熱の熱量を調整することで、実際の融解完了温度を調整することができる。製氷熱を調整するためには、氷を回収する工程において、氷を壁面上の保持時間を調整することで行うことができる。
 ブラインが付着する金属プレート120は、熱伝導率が高い程、金属プレート120を冷却する冷媒の温度が速くブラインに伝わるため、短時間で多くの氷が生成される。
 このため、金属プレート120を構成する部材を熱伝導率の高い部材とすることにより、製氷速度を上げることができる。また、反対に、金属プレート120を構成する部材を熱伝導率の低い部材とすることにより、製氷速度を下げることができる。
 本実施形態では、金属プレート120を構成する部材として、ステンレスや鉄よりも熱伝導率が高い部材が採用されており、より具体的には、20℃における熱伝導率が70W/mK以上の部材(例えば、銅)が採用されている。このため、フレークアイス製造装置101は、金属プレート120を構成する部材にステンレスや鉄を採用した場合に比べて、短時間で多くの氷を生成することができる。一般に大量に氷を製造しようとした場合、短時間で効率的に氷を製造するためには金属プレート120の表面積を広くする必要があるが、金属プレート120を熱伝導理が高い部材により構成することで氷の製造速度が上がるため、金属プレート120を広くする必要がなくなり、結果として比較的狭いスペースでの氷の製造も可能となる。この観点で、金属プレート120を構成する部材は、熱伝導率が高い部材を採用することが好ましく、より具体的には20℃における熱伝導率が100W/mK以上の部材がより好ましく、20℃における熱伝導率が150W/mK以上の部材がより一層好ましく、20℃における熱伝導率が200W/mK以上の部材がさらに好ましく、20℃における熱伝導率が250W/mK以上の部材がさらに一層好ましく、20℃における熱伝導率が300W/mK以上の部材が特に好ましい。熱伝導率の上限は特に制限されないが、例えば、20℃における熱伝導率が1000W/mK以下(900W/mK以下、800W/mK以下、700W/mK以下、600W/mK以下、500W/mK以下、400W/mK以下等)であってもよい。金属プレート120を構成する部材の具体例としては、亜鉛、アルミニウム、ジェラルミン、金、銀、タングステン、銅、アルミ青銅、七三黄銅、ネーバル黄銅、ニッケル(99.9%)、モリブデン、パラジウム、ケイ素等が挙げられる。また、本発明のフレークアイス製造装置は、上述のとおり、比較的狭いスペースでの製造に適しており、例えば、輸送機器(例えば、車両(トラック等)、船)内部のような限られたスペースしかないような場所における製造に適している。
 また、フレークアイス製造装置101は、製氷速度をYとし、金属プレート120のうちブラインが付着される可能性がある部分の面積をx2としたときに、次式(2)が成り立つように設計されている。
 Y=f(x2) ・・・(2)
 即ち、金属プレート120のうちブラインを付着させることができる部分の面積を大きくすれば、それだけ金属プレート120に付着することができるブラインの量が増える。このため、結果的に金属プレート120に生成される氷の量も増える。反対に、金属プレート120うちブラインを付着させることができる部分の面積を小さくければ、それだけ金属プレート120に付着することができるブラインの量が減る。このため、結果的に金属プレート120に生成される氷の量も減る。
 このように、金属プレート120のうちブラインを付着させることができる部分の面積が調節されることにより製氷速度が調節される。
 金属プレート120を冷却させる冷媒は、フロン(HCFC22)やハイドロフルオロカーボン(HFC)以外に、例えば、冷媒として、LNG(Liquefied Natural Gas/液化天然ガス)を採用することができる。
 従来より、輸入されたLNGは、-160℃の液体の状態でLNG貯蔵タンクに格納されており、この-160℃のLNGは、常温になるまで気化させられ、熱量調整、付臭が施されて、都市ガスまたはGT発電用に供給される。例えば、LNGの排冷熱を有効活用する手法として、LNG基地では、-160℃のLNGが常温になるまでの排冷熱を、液体酸素や液体窒素の製造、冷凍倉庫、冷熱発電、海水を熱源としたLNGの気化(ORV式)に利用する手法がとられている。
 上述した用途にLNGの排冷熱を利用した場合、電力又はエンジン駆動による従来の冷却方法と比較して以下のようなメリットを有する。即ち、(1)所要動力が少なくて済む、(2)活用されていないLNGの冷熱エネルギーを有効利用することができる、(3)大型の発電機が不要となる、(4)公害要因が低くなる、(5)コストが安くなる、等のメリットを有する。
 その一方で、LNGの排冷熱を利用しようとする場合には、以下のようなデメリットもあった。即ち、LNGの排冷熱の利用は、通常、LNG基地周辺の場所での連続的な利用に限定されていた。これは、LNGは輸送時に燃焼の危険性が伴うためである。つまり、LNGの排冷熱を利用する場合、LNGの排冷熱の供給を受ける側は、LNG基地から配管によってLNGの供給を受け、LNGの排冷熱を利用した後にガスを返送する必要があった。このため、LNG自体を遠隔地に輸送し、そこでバッチ的にLNGの排冷熱を利用できるようにすることは困難であった。
 また、LNG基地周辺の場所で連続的にLNGの排冷熱を利用するためには固定化された設備が必要となるため、長期安定的なプロジェクトでないと対応できないというデメリットもあった。さらに、LNGと被冷却物との間における直接の熱交換は危険性を伴うというデメリットもあった。
 しかしながら、上述したフレークアイス製造装置101の冷媒としてLNGを利用した場合、上述したデメリットはなくなる。即ち、LNGをフレークアイス製造装置101の冷媒として利用することにより、超低温のフレークアイスを製造することができる。このため、製造されたフレークアイスを遠隔地に輸送すれば、LNG自体を遠隔地に輸送することなく、そこでバッチ的にLNGの排冷熱を利用することができる。
 また、フレークアイス製造装置101は、特定の場所に固定させる必要はなく、車両、船舶、航空機等の移動体に搭載させることもできるため機動性を有する。さらに、フレークアイスという中間冷媒が存在するため、危険性を伴う、LNGと被冷却物との間における直接の熱交換は行われない。
 また、-160℃のLNGをフレークアイス製造装置101の冷媒として利用することにより、凍結点が-150℃程度までのブラインを瞬間凍結させた超低温のフレークアイスを製造することできる。即ち、ブラインが塩水(塩化ナトリウム水溶液)の場合には飽和状態で-21.2℃、塩化マグネシウム水溶液の場合には飽和状態で-26.27℃のフレークアイスを製造することができるが、エチレングリコール塩水や塩化マグネシウム水溶液よりも凍結点が低く、従来より「不凍液」としてブラインに利用することができなかった物質についても瞬間凍結させることによりフレークアイスとして利用することができる。具体的には例えば、エチレングリコールをブラインとするフレークアイスを製造することもできる。
 即ち、-160℃のLNGという超低温の冷媒をフレークアイス製造装置101の冷媒として利用することにより、-150℃程度の超低温のフレークアイスを製造することが可能となる。換言すると、要求される保冷温度は、被保冷物の種類に応じて個別に異なるものであり、例えば-1℃が適するものもあれば-150℃が適するものもある。つまり、金属プレート120を冷却させる際に、-160℃のLNGという超低温の冷媒を利用することにより、幅広く要求される保冷温度にマッチさせたフレークアイスを容易に製造することができる。
 このように、フレークアイス製造装置101は、従来の冷凍機の代替として冷熱を供給することができるだけでなく、LNGの排冷熱を利用してエネルギー効率を高めることもできる。即ち、コージェネレーション(cogeneration)システムを構築することも可能となる。
 また、フレークアイス製造装置101は、製氷速度をYとし、冷媒クリアランス24に対し供給される冷媒の温度をx3としたときに、次式(3)が成り立つように設計されている。
 Y=f(x3) ・・・(3)
 即ち、フレークアイス製造装置101は、冷媒供給部29により冷媒クリアランス24に対し供給される冷媒の温度に応じて製氷速度が変化するように設計されている。
 即ち、フレークアイス製造装置101は、金属プレート120の温度が低い程、金属プレート120に付着させたブラインをより速く凍結させることができる。つまり、フレークアイス製造装置101は、冷媒クリアランス24に供給される冷媒の温度が低い程、短時間で多くの氷を生成することができる。
 具体的には例えば、冷媒クリアランス24に対し-160℃のLNGが供給された場合、金属プレート120の壁面の温度は急激に低下する。このため、フレークアイス製造装置101は、-150℃程度までの氷を短時間で大量に生成することができる。
[氷スラリー製造手法]
 次に、上述したブラインとフレークアイスとを材料とする氷スラリーを製造する手法の一例を説明する。氷スラリーについては、予め用意された複数種類のブラインを材料とすることにより、要求される保冷温度と保冷時間とに対応させたもの製造することができる。
 なお、ブラインは塩水であり、被保冷物は生鮮海産物であることとし、また、氷スラリーの中に直接被保冷物である生鮮海産物を入れることにより瞬間凍結することを想定して説明する。
 生鮮海産物を瞬間凍結させるためには、氷スラリーの原料である塩水の溶質濃度を従来に比べて大幅に高く設定する。なお、溶質濃度が13.6%である塩水の理論飽和凍結点は-9.8℃となり、溶質濃度が23.1%である塩水の理論飽和凍結点は-21.2℃となる。
 塩水の溶質濃度が13.6%未満の場合、製造した氷スラリーによる生鮮海産物の凍結速度は遅くなる。一方、塩水の溶質濃度が23.1%を超える場合、塩分が結晶として析出するため、塩水の飽和凍結点が上昇する。
 なお、生鮮海産物を直接氷スラリーに入れた場合、氷スラリーの溶質濃度が高くても、生鮮海産物の表面が瞬間凍結して氷結するため、生鮮海産物中に塩分が侵入することはない。
 氷スラリーを製造するために混合するフレークアイスと塩水との溶質濃度は、同程度(数%以内の濃度差)であることを好適とする。フレークアイスの溶質濃度が塩水の溶質濃度より高い場合、フレークアイスの温度が塩水の飽和凍結点より低いため、溶質濃度が低い塩水を混合した直後に水分が凍結する。一方、フレークアイスの溶質濃度が塩水の溶質濃度より低い場合、フレークアイスの飽和凍結点よりも塩水の飽和凍結点のほうが低いため、フレークアイスが融解し、氷スラリーの温度が低下する。
 従って、氷スラリーの状態を変動させないようにするためには、混合するフレークアイスと塩水の溶質濃度を同程度とすることが望ましい。
 混合するフレークアイスと塩水の質量比は、フレークアイス:塩水=75:25~20:80、好ましくはフレークアイス:塩水=60:40~50:50とする。なお、フレークアイスの質量比が75質量%を超えると、固形分の比率が高くなるため、生鮮海産物と氷スラリーとの間に隙間が発生し、生鮮海産物に氷スラリーが密着しなくなる。一方、氷の質量比が20質量%未満であると、製造した氷スラリーによって生鮮海産物を瞬間凍結し難くなるからである。
 即ち、ブラインが塩水の場合、溶質濃度(ブラインの濃度)を13.6%~23.1%とした塩水を用いてフレークアイス製造装置101により生成したフレークアイスと、溶質濃度が13.6%~23.1%である塩水とを混合して氷スラリーを製造する。
 本実施形態では、製造された氷スラリーの温度は-9.8℃~-21.2℃となる。製造されたフレークアイスと混合する塩水の温度は、常温もしくはそれを下回る温度とする。なお、塩水の温度が低い程、製氷効率は高くなる。
 なお、ブラインが塩水以外の場合は、製造される氷スラリーの温度が、必要とされる温度となるように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整する。
 このように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整することにより、複数種類の温度の氷スラリーを製造することができる。
[まとめ]
 以上まとめると、本発明が適用されるフレークアイス製造装置101は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
 即ち、本発明が適用されるフレークアイス製造装置101は、
 回転軸110と、
 冷媒流路121を内部に有する1枚又は複数枚の金属プレート120と、
 前記金属プレート120の一方又は両方の表面に向けてブラインを噴射するノズル130と、
 前記回転軸110に固定されて回転するスクレーパ141と、
 を備え、
 前記ノズル130から前記金属プレート120の表面に向けて噴射されたブラインが前記金属プレート120の表面で凍結して生成された氷を回転する前記スクレーパ141によって掻き取ってフレークアイスを製造する。
 このフレークアイス製造装置101によれば、金属プレート120を容易に製造することができ、金属プレート120にノズル130から噴射されたブラインが凍結することで生成された氷をスクレーパ141によって掻き取ることで、フレークアイスを容易に製造することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記金属プレート120は、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記金属プレート120の熱伝導率をx1としたときに、次式(1)が成り立つように設計されている。
 Y=f(x1) ・・・(1)
 このフレークアイス製造装置101によれば、金属プレート120が式(1)により設計されることで、より効率良く氷を生成し、フレークアイスを製造することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記金属プレートは、銅製又は銅合金製である。
 このフレークアイス製造装置101によれば、式(1)を満たす金属プレート120を廉価に製造することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記回転軸110は、水平姿勢であり、前記金属プレート120は、起立姿勢である。
 金属プレート120から掻き取られるフレークアイスを自重で落下させることができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記ノズル130が複数形成され、前記金属プレート120に近接して配置されたパイプ131をさらに備える。
 このフレークアイス製造装置101によれば、パイプ131に形成された多数のノズル130から金属プレート120の表面にブラインを瞬間に噴射し、薄い氷を生成することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記金属プレート120には、前記スクレーパ141の回転方向に分割された複数の領域A,B,C,Dが設定され、前記ノズル130は、前記複数の領域A,B,C,Dのうち、前記スクレーパ141によって氷が掻き取られた領域の金属プレート120にブラインを噴射するように制御される。
 このフレークアイス製造装置101によれば、金属プレート120には、分割された領域A,B,C,Dごとにノズル130からブラインが噴射され、金属プレート120に生成された氷をスクレーパ141によって掻き取ることができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記スクレーパ141を前記回転軸に固定する棒状のブレード140を備え、
 前記ブレード140は、回転方向の面に前記スクレーパ141を備え、回転方向側と反対側の面に前記ノズル130を備えている。
 このフレークアイス製造装置101によれば、棒状のブレード140が前面にスクレーパ141を備え、後面にノズル130を備えることにより、ノズル130から噴射されたブラインが金属プレート120の表面で凍結し、氷が生成された状態で、その氷をスクレーパ141が掻き取るようにすることができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記ブレード140は、等間隔に複数配置されている。
 このフレークアイス製造装置101によれば、ブレード140が等間隔に複数配置されていることにより、均一なフレークアイスを製造することができる。
 本発明が適用されるフレークアイス製造装置101において、
 所定のクリアランスをもって前記スクレーパ141を前記金属プレート120に近接させるポジショナ150を備えている。
 このフレークアイス製造装置101によれば、スクレーパ141が金属プレート120の表面に所定のクリアランスを維持することで、生成される氷の厚さを均一にし、均一なフレークアイスを製造することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記金属プレート120は、外周面に溝部123を有する円盤状であり、
 前記ポジショナ150は、前記金属プレート120の溝部123と前記スクレーパ141の先端部とに架け渡される掛止具152である。
 このフレークアイス製造装置101によれば、掛止具152の一端部が金属プレート120の溝部123内で移動し、掛止具152の他端部に保持されたスクレーパ141が金属プレート120に対して所定のクリアランスをもって移動する。
 本発明が適用されるフレークアイス製造装置101において、
 前記ポジショナ150は、前記スクレーパ141の先端部を保持し、かつ、前記金属プレート120上を摺動するブロック体151、又は前記金属プレート120上に固定され、前記スクレーパ141の先端部を遊嵌する溝部151aを有するブロック体151である。
 このフレークアイス製造装置101によれば、ブロック体151がスペーサのようになってスクレーパ141が金属プレート120に対して所定のクリアランスを維持することができる。
 本発明が適用されるフレークアイス製造装置101において、
 前記スクレーパ141の移動軌跡に相対する前記金属プレート120の表面は、耐摩耗性の金属によってメッキされている。
 このフレークアイス製造装置101によれば、耐摩耗性の金属が金属プレート120の表面を保護し、金属プレート120の長寿命化を図ることができる。
 本発明に係るフレークアイスの製造方法は、
 冷却されている金属プレート120の表面に向けてブラインを噴射する工程と、
 前記金属プレート120の表面に付着したブラインを凍結させて氷を生成する工程と、
 前記金属プレート120に付着した氷を回転するスクレーパ141によって掻き取る工程と、
 含む。
 このフレークアイス製造方法によれば、容易に製造することができ、小型化されたフレークアイス製造装置によってフレークアイスを効率よく生成することができる。
101:フレークアイス製造装置、110:回転軸、120:金属プレート、121:冷媒流路、130:ノズル、131:パイプ、140:ワイパー、141:スクレーパ、150:ポジショナ、151a:溝部、A:第1の領域、B:第2の領域、C:第3の領域、D:第4の領域
 
 

Claims (13)

  1.  回転軸と、
     冷媒流路を内部に有する1枚又は複数枚の金属プレートと、
     前記金属プレートの一方又は両方の表面に向けてブラインを噴射するノズルと、
     前記回転軸に固定されて回転するスクレーパと、
     を備え、
     前記ノズルから前記金属プレートの表面に向けて噴射されたブラインが前記金属プレートの表面で凍結して生成された氷を回転する前記スクレーパによって掻き取ってフレークアイスを製造する、
     フレークアイス製造装置。
  2.  前記金属プレートは、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記金属プレートの熱伝導率をx1としたときに、次式(1)が成り立つように設計されている、
     請求項1に記載のフレークアイス製造装置。
     Y=f(x1) ・・・(1)
  3.  前記金属プレートは、銅製又は銅合金製である、
     請求項1又は2に記載のフレークアイス製造装置。
  4.  前記回転軸は、水平姿勢であり、前記金属プレートは、起立姿勢である、
     請求項1乃至3のうちいずれか1項に記載のフレークアイス製造装置。
  5.  前記ノズルが複数形成され、前記金属プレートに近接して配置されたパイプをさらに備える、
     請求項1乃至4のうちいずれか1項に記載のフレークアイス製造装置。
  6.  前記金属プレートには、前記スクレーパの回転方向に分割された複数の領域が設定され、前記ノズルは、前記複数の領域のうち、前記スクレーパによって氷が掻き取られた領域の金属プレートにブラインを噴射するように制御される、
     請求項1乃至5のうちいずれか1項に記載のフレークアイス製造装置。
  7.  前記スクレーパを前記回転軸に固定する棒状のブレードを備え、
     前記ブレードは、回転方向側の面に前記スクレーパを備え、回転方向側と反対側の面に前記ノズルを備えている、
     請求項1乃至6のうちいずれか1項に記載のフレークアイス製造装置。
  8.  前記ブレードは、等間隔に複数配置されている、
     請求項7に記載のフレークアイス製造装置。
  9.  所定のクリアランスをもって前記スクレーパを前記金属プレートに近接させるポジショナを備えている、
     請求項1乃至8のうちいずれか1項に記載のフレークアイス製造装置。
  10.  前記金属プレートは、外周面に溝部を有する円盤状であり、
     前記ポジショナは、前記金属プレートの溝部と前記スクレーパの先端部とに架け渡される掛止具である、
     請求項9に記載のフレークアイス製造装置。
  11.  前記ポジショナは、前記スクレーパの先端部を保持し、かつ、前記金属プレート上を摺動するブロック体、又は前記金属プレート上に固定され、前記スクレーパの先端部を遊嵌する溝部を有するブロック体である、
     請求項9に記載のフレークアイス製造装置。
  12.  前記スクレーパの移動軌跡に相対する前記金属プレートの表面は、耐摩耗性の金属によってメッキされている、
     請求項1乃至11のうちいずれか1項に記載のフレークアイス製造装置。
  13.  冷却されている金属プレートの表面に向けてブラインを噴射する工程と、
     前記金属プレートの表面に付着したブラインを凍結させて氷を生成する工程と、
     前記金属プレートに付着した氷を回転するスクレーパによって掻き取る工程と、
     を含む、
     フレークアイス製造方法。
     
     
PCT/JP2017/038088 2017-10-20 2017-10-20 フレークアイス製造装置、フレークアイス製造方法 WO2019077756A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038088 WO2019077756A1 (ja) 2017-10-20 2017-10-20 フレークアイス製造装置、フレークアイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038088 WO2019077756A1 (ja) 2017-10-20 2017-10-20 フレークアイス製造装置、フレークアイス製造方法

Publications (1)

Publication Number Publication Date
WO2019077756A1 true WO2019077756A1 (ja) 2019-04-25

Family

ID=66173240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038088 WO2019077756A1 (ja) 2017-10-20 2017-10-20 フレークアイス製造装置、フレークアイス製造方法

Country Status (1)

Country Link
WO (1) WO2019077756A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234770A (ja) * 1988-03-15 1989-09-20 Tetsuo Yotsuda 人工雪の製造装置
JP2007057205A (ja) * 2005-08-26 2007-03-08 Hoshizaki Electric Co Ltd オーガ式製氷機
JP2007322079A (ja) * 2006-06-01 2007-12-13 Hiroshi Matsuda 機能性脱氷刃による剥離型製氷機
JP2008503706A (ja) * 2004-06-23 2008-02-07 ガーバー, ライオネル 液体冷却における使用のための熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234770A (ja) * 1988-03-15 1989-09-20 Tetsuo Yotsuda 人工雪の製造装置
JP2008503706A (ja) * 2004-06-23 2008-02-07 ガーバー, ライオネル 液体冷却における使用のための熱交換器
JP2007057205A (ja) * 2005-08-26 2007-03-08 Hoshizaki Electric Co Ltd オーガ式製氷機
JP2007322079A (ja) * 2006-06-01 2007-12-13 Hiroshi Matsuda 機能性脱氷刃による剥離型製氷機

Similar Documents

Publication Publication Date Title
JP6243092B2 (ja) 製氷装置、移動体、フレークアイス製造装置、フレークアイス製造方法
WO2017086462A1 (ja) 製氷装置、移動体、フレークアイス製造装置、フレークアイス製造方法
JP2018017490A (ja) フレークアイス製造装置、氷、冷媒、氷の製造方法、被冷却物の製造方法、動植物又はその部分の被冷蔵物の製造方法、動植物又はその部分の冷蔵剤、被冷凍生鮮動植物又はその部分の製造方法、被解凍物又はその加工物、及び生鮮動植物又はその部分の凍結剤
Ma et al. A review of thermo-fluidic performance and application of shellless phase change slurry: Part 1–Preparations, properties and applications
CN110637203B (zh) 状态变化控制装置及状态变化控制方法
WO2019077756A1 (ja) フレークアイス製造装置、フレークアイス製造方法
JP7056901B2 (ja) 氷および氷の製造方法
JP2018059694A (ja) 製氷装置
WO2018110506A1 (ja) フレークアイス製造装置及び製造方法
JP7153302B2 (ja) フレークアイス製造装置
JP6998577B2 (ja) 解凍装置及び解凍方法
JP6905739B2 (ja) 冷却装置及び冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP