WO2019075664A1 - 调光片、调光方法、控制装置、电子装置和存储介质 - Google Patents

调光片、调光方法、控制装置、电子装置和存储介质 Download PDF

Info

Publication number
WO2019075664A1
WO2019075664A1 PCT/CN2017/106703 CN2017106703W WO2019075664A1 WO 2019075664 A1 WO2019075664 A1 WO 2019075664A1 CN 2017106703 W CN2017106703 W CN 2017106703W WO 2019075664 A1 WO2019075664 A1 WO 2019075664A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimming
conductive film
light
track
touch
Prior art date
Application number
PCT/CN2017/106703
Other languages
English (en)
French (fr)
Inventor
包春贵
李贺
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/106703 priority Critical patent/WO2019075664A1/zh
Priority to CN201780092171.3A priority patent/CN110753634A/zh
Priority to TW107136615A priority patent/TW201917473A/zh
Publication of WO2019075664A1 publication Critical patent/WO2019075664A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to the field of electronic devices, and in particular, to a dimming sheet, a dimming method, a control device, an electronic device, and a storage medium.
  • the dimming sheet of the related art comprises two substrates, a liquid crystal/polymer hybrid material filled between the two substrates, and an indium tin oxide (ITO) electrode layer disposed on the substrate.
  • ITO indium tin oxide
  • the light transmittance of the dimmer is changed by applying a voltage on the ITO electrode layer.
  • the dimmer has only two states of switching (ie, the whole film is transparent and the whole film is atomized), and it is difficult to meet the special needs of some special occasions.
  • Embodiments of the present invention provide a dimming sheet, a dimming method, a control device, an electronic device, and a storage medium.
  • the light control sheet of the embodiment of the invention includes a light control layer and a conductive film block.
  • the dimming layer includes at least two dimming regions. At least two pairs of conductive film blocks correspond to the at least two dimming regions. Each pair of the conductive film blocks is disposed on both sides of the corresponding light-adjusting region and is capable of independently adjusting the light transmittance of the corresponding light-modulating region after the application of the operating voltage.
  • the dimming method is used for the dimming sheet of the above embodiment.
  • the dimming method includes the following steps:
  • control device for controlling a dimming piece.
  • the control device includes:
  • a control module configured to control an operating voltage of the corresponding one or more pairs of the conductive film blocks to be applied or disconnected to adjust a light transmittance of the corresponding light control region.
  • One or more processors are One or more processors;
  • One or more programs wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the program including dimming for performing the above-described embodiments Method of instruction.
  • Embodiments of the present invention provide a storage medium storing one or a processor executable Multiple programs:
  • the dimming sheet, the dimming method, the control device, the electronic device and the storage medium of the embodiment of the present invention provide at least two pairs of conductive film blocks on both sides of the dimming area of the light control layer, and each pair of conductive film blocks is applied with an operating voltage.
  • the light transmittance of the corresponding dimming area can then be independently adjusted, so that the dimming piece can achieve local dimming for more applications.
  • FIG. 1 is a schematic cross-sectional view of a light control sheet according to some embodiments of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a light control sheet according to some embodiments of the present invention.
  • FIG. 3 is a schematic view showing the arrangement of conductive film blocks according to some embodiments of the present invention.
  • FIG. 4 is a schematic flow chart of a dimming method according to some embodiments of the present invention.
  • FIG. 5 is a schematic diagram of dimming implementation corresponding to a touch track according to some embodiments of the present invention.
  • FIG. 6 is a schematic flow chart of a dimming method according to some embodiments of the present invention.
  • FIG. 7 is a schematic flow chart of a dimming method according to some embodiments of the present invention.
  • FIG. 8 is a schematic flow chart of a dimming method according to some embodiments of the present invention.
  • FIG. 9 is a schematic flow chart of a dimming method according to some embodiments of the present invention.
  • Figure 10 is a block diagram of a control device of some embodiments of the present invention.
  • FIG. 11 is a block diagram of an electronic device in accordance with some embodiments of the present invention.
  • the dimming sheet 10 The dimming sheet 10, the dimming layer 12, the dimming area 122, the conductive film block 14, the transparent touch sensor 16, the touch area 162, the controller 18, the optical transparent adhesive layer 1a, the flexible circuit board 11, the lead 13, and the frame 15
  • a light control sheet 10 includes a light control layer 12 and a conductive film block 14 .
  • the dimming layer 12 includes at least two dimming regions 122.
  • At least two pairs of conductive film blocks 14 correspond to at least two dimming regions 122.
  • Each pair of conductive film blocks 14 is disposed on both sides of the corresponding dimming region 122 and is capable of independently adjusting the light transmittance of the corresponding dimming region 122 after the application of the operating voltage.
  • each of the dimming regions 122 corresponds to the pair of conductive film blocks 14, and the corresponding conductive film blocks 14 are respectively disposed on both sides of one dimming region 122.
  • the pair of conductive film blocks 14 can apply an operating voltage to the corresponding dimming region 122 to form an electric field that passes through the dimming region 122.
  • the dimming method of the embodiment of the present invention can be used for the dimming sheet 10.
  • the dimming method includes the following steps:
  • the control device provided by the embodiment of the present invention can be used to control the dimming plate 10.
  • the control device includes a control module.
  • the control module is configured to control the operating voltage of the corresponding pair of conductive film blocks 14 to be applied or disconnected to adjust the light transmittance of the corresponding dimming region 122.
  • the light control sheet 10 of the embodiment of the present invention can be used in the electronic device 100 .
  • the electronic device 100 includes one or more processors 20, a memory 30, and one or more programs 32.
  • One or more of the programs 32 are stored in the memory 30 and are configured to be executed by one or more processors 20 that include instructions for performing the dimming method of the above-described embodiments.
  • the storage medium of an embodiment of the present invention stores one or more programs 32 executable by the processor 20.
  • the steps in the dimming method of the above-described embodiments are implemented when one or more programs 32 are executed by the processor 20.
  • the storage medium can be read by a computer.
  • the dimming sheet 10, the dimming method, the control device, the electronic device 100 and the storage medium of the embodiment of the present invention are provided with at least two pairs of conductive film blocks 14 on both sides of the dimming region 122, and each pair of the conductive film blocks 14 can independently
  • the operating voltage of the corresponding dimming region 122 is applied or broken to adjust the light transmittance of the dimming region 122, and does not affect the operating voltage of the adjacent dimming region 122.
  • the dimming sheet 10 can achieve local dimming for more applications.
  • a pair of conductive film blocks 14 at a certain position independently apply an operating voltage to a dimming region 122, and liquid crystal molecules in the dimming layer 12 are arranged neatly under the action of an electric field, and the dimming layer is 12 is converted from low light transmittance to high light transmittance, that is, the light control sheet 10 is in a transparent state.
  • the conductive film block 14 at other positions does not apply an operating voltage to the dimming region 122, the liquid crystal molecules in the dimming layer 12 are disorderly arranged, and the dimming layer 12 maintains a low light transmittance, that is, the dimming sheet 10 exhibits an atomized state.
  • a part of the entire light-adjusting sheet 10 is in a transparent state, a part is in an atomized state, and the transparent region and the atomizing region can be freely combined to form a pattern. So, you can By changing the operating voltage applied to the dimming region 122 corresponding to the conductive film block 14, the light transmittance of the dimmer 10 at different positions is changed, thereby being applied to more occasions.
  • the dimmer 10 and the electronic device 100 can be applied to various windows (such as floor-to-ceiling windows, windows), and can also be used as indoor screens or glass curtain walls of buildings.
  • the dimming sheet 10 can also be applied to a projection display, an optical modulator, a light valve, and the like.
  • the dimming layer 12 includes two substrates and a liquid crystal and a polymer filled between the two substrates. It can be understood that the dimming layer 12 is made of a mixture of liquid crystal and polymer. The liquid crystal is close to the refractive index of the polymer when the operating voltage is applied, and thus the light control layer 12 is in a transparent state. When the liquid crystal is disconnected from the operating voltage, the refractive index of the polymer greatly differs, so that the dimming layer 12 exhibits an atomized state. It can be understood that the atomized state is milky white, and is also referred to as an opaque state with respect to the transparent state.
  • the polymer can be a urethane acrylate (PUA).
  • PVA urethane acrylate
  • the use of urethane acrylate (PUA) can lower the threshold voltage of the dimming layer 12, thereby making the dimmer 10 highly efficient and energy efficient.
  • the light transmittance of the light control layer 12 is related to the operating voltage applied to the light-modulating region 122 by the conductive film block 14.
  • the liquid crystal dimming film has an operating voltage of 18V to 75V.
  • a light transmittance higher than 75% is referred to as a transparent state, and a light transmittance lower than 2% is referred to as an atomized state. That is to say, when the voltage applied by the conductive film block 14 is lower than a certain threshold (18 V), the light transmittance of the light control sheet 10 is less than 2%, and thus the light control sheet 10 is in an atomized state.
  • the voltage applied by the conductive film block 14 is higher than a certain threshold (75 V)
  • the light transmittance of the light control sheet 10 is higher than 75%, and thus the light control sheet 10 is in a transparent state.
  • the voltage applied by the conductive film block 14 is between 18 V and 75 V, the larger the operating voltage, the larger the light transmittance of the dimming plate 10.
  • the substrate can be a glass or a film.
  • the dimming sheet 10 is a dimming glass. Dimming glass can be applied to a variety of windows. In other embodiments, the glass may be a double glazing and the dimming sheet 10 is disposed between the double glazing. Thus, the glass device provided with the dimming plate 10 can also achieve local dimming.
  • the light control sheet 10 is a light-adjusting film having better flexibility. At this time, the dimming sheet 10 can be applied to a plane or to a curved surface.
  • the dimming film can also be used in combination with glass. The dimming film can be attached to one side of the glass.
  • the substrate can also be a PC board (the main component is polycarbonate).
  • the PC board has high light transmittance and high hardness. In this way, the support strength of the dimming sheet 10 can be enhanced.
  • the light-adjusting layer 12 is a continuous structure, that is, the liquid crystal and the polymer in the adjacent dimming region 122 are actually connected, and there is no substantial physical separation.
  • the entire dimming sheet 10 can change the light transmittance when the operating voltage is applied to the conductive film block 14.
  • the dimming region 122 can be produced according to user requirements by adding physical spacing to have the dimming regions 122 have different shapes and sizes. For example, for dimming with special patterns (such as roses)
  • the sheet 10 when a dimming area 122 is correspondingly arranged in the shape of a petal, is spaced apart by the dimming area 122 so that the shape and size of the dimming area 122 can be different.
  • the conductive film blocks 14 on the same side of the light control layer 12 are discontinuously distributed, that is, the adjacent conductive film blocks 14 on the same side of the light control layer 12 are separated from each other. The gaps are separated to avoid conduction.
  • the shape of the conductive film block 14 corresponds to the shape of the corresponding dimming region 122. It will be understood that the corresponding meaning of the embodiments of the present invention means that the shapes are the same or similar. That is to say, the shape of the conductive film block 14 corresponds to the shape of the light control region 122.
  • the orthographic projection of the conductive film block 14 at the corresponding dimming region 122 falls within the corresponding dimming region 122. It can be understood that since the adjacent conductive film blocks 14 on the same side of the light control layer 12 need to avoid conduction, the pair of conductive film blocks 14 are disposed on both sides of the light control region 122 and on the same side of the light control region 122. The conductive film blocks 14 are spaced apart. That is to say, the size of the conductive film block 14 is smaller than the size of the dimming area 122.
  • the size of the conductive film block 14 corresponds to the size of the corresponding dimming area 122. It can be understood that the size of the conductive film block 14 is related to the size of the dimming area 122. In order for the pair of conductive film blocks 14 to substantially cover one of the dimming regions 122 and form an electric field passing through the dimming region 122 when a voltage is applied.
  • the conductive film block 14 of the embodiment of the present invention is slightly smaller than the light control region 122.
  • the material of the conductive film block 14 is a transparent conductive material to meet the requirements of the double-sided light transmission of the dimming sheet 10.
  • Transparent conductive materials that can be used include Indium tin oxide (ITO), nano silver wire, metal mesh, carbon nanotubes, and graphene.
  • the dimmer 10 further includes a transparent touch sensor 16 and a controller 18.
  • the transparent touch sensor 16 corresponds to at least two pairs of conductive film blocks 14.
  • the transparent touch sensor 16 is disposed on the conductive film block 14.
  • the controller 18 is coupled to the transparent touch sensor 16 and the plurality of conductive film blocks 14.
  • the controller 18 is configured to control the application or disconnection of the operating voltage of the corresponding one or more pairs of the conductive film blocks 14 when the transparent touch sensor 16 detects the touch, thus adjusting the light transmittance of the corresponding light control region 122.
  • the touch area 162 is formed on the transparent touch sensor 16 .
  • the touch area 162 can be used to detect a touch trajectory touched on the transparent touch sensor 16.
  • the conductive film block 14 corresponds to the touch region 162.
  • the touch area 162 recognizes the touch action, the touch area 162 converts the touch signal into a coordinate signal and transmits it to the controller 18.
  • the controller 18 receives the coordinate information and determines the position of the conductive film block 14 corresponding to the coordinates.
  • the controller 18 then controls the conductive film block 14 to apply or disconnect the operating voltage of the corresponding dimming region 122, thereby adjusting the light transmittance of the dimming region 122. As such, local dimming of the dimming sheet 10 is achieved by a touch operation.
  • the dimmer 10 further includes an optically clear adhesive layer 1a that bonds the transparent touch sensor 16 and the conductive film block 14.
  • the transparent touch sensor 16 is bonded to the dimming layer 12 by an optically clear adhesive.
  • the optical transparent adhesive may be a liquid non-conductive adhesive such as an epoxy resin.
  • the optical transparency has a high light transmittance and does not affect the light transmittance of the dimming sheet 10.
  • the transparent touch sensor 16 can be a flexible transparent touch sensor. Such a dimming sheet 10 can be applied to a plane as well as to a curved surface.
  • the transparent touch sensor 16 is a flexible transparent touch sensor
  • the transparent touch sensor 16 can be attached to the conductive film block 14 by an optical transparent adhesive, that is, a thin film transparent touch sensor 16 can correspond to a plurality of dimming regions. 122 (such as a thin film transparent touch sensor 16 corresponding to 9 dimming areas 122). As such, the step of cutting the large area transparent touch sensor 16 into a small unit area transparent touch sensor 16 is omitted.
  • the transparent touch sensor 16 of the embodiment of the present invention may be a resistive transparent touch sensor or a capacitive transparent touch sensor, or may be an ultrasonic transparent touch sensor.
  • the corresponding conductive film block 14 and the controller 18 are adjusted accordingly.
  • an ultrasonic transparent touch sensor can employ a piezoelectric element such as a piezoelectric ceramic.
  • the piezoelectric elements are small in volume and can be attached to the light-adjusting layer 12 in a matrix arrangement and are in one-to-one correspondence with the conductive film blocks 14.
  • the dimming sheet 10 includes a flexible circuit board 11, lead wires 13, and a bezel 15.
  • the conductive film blocks 14 are arranged in a matrix on the light control layer 12 and correspond to the light control region 122 and the transparent touch sensor 16.
  • Each of the conductive film blocks 14 is connected to the flexible circuit board 11 through a lead 13.
  • the flexible circuit board 11 is connected to the controller 18.
  • the leads 13 can be crimped into the flexible circuit board 11 to receive the leads 13.
  • the frame 15 can prevent the material on the light-adjusting layer 12 from leaking out and protect the insulation while preventing the peripheral edge of the light-adjusting sheet 10 from being worn.
  • the demodulation light sheet 10 achieves local dimming of the dimming sheet 10 by a touch operation, the following is specifically described in connection with an embodiment of the dimming sheet 10 and the dimming method.
  • the dimming method provided by the embodiment of the present invention can be used for the dimming sheet 10.
  • the dimming method includes the following steps:
  • S10 Controlling the operating voltage of the corresponding one or more pairs of the conductive film blocks to be applied or disconnected to independently adjust the light transmittance of the corresponding light control region.
  • the dimming method of the embodiment of the present invention provides a pair of conductive film blocks 14 on both sides of the dimming region 122, and each pair of conductive film blocks 14 can independently apply or disconnect the operating voltage of the corresponding dimming region 122 to adjust the tone.
  • the light transmittance of the light region 122 does not affect the operating voltage of the adjacent light control region 122.
  • the dimming sheet 10 can be practical Local dimming is now applied to more occasions.
  • the dimmer 10 further includes a transparent touch sensor 16 and a controller 18.
  • the dimming method further includes the following steps:
  • the detection function can be implemented by the transparent touch sensor 16, and the determination and determination functions can be implemented by the controller 18.
  • the touch trajectories detected by the transparent touch sensor 16 can be classified into various types. If it is a continuous trajectory, the touch trajectory can be divided into an open trajectory (the starting point and the ending point do not coincide) and a closed trajectory (the starting point and the ending point coincide and do not contain a break point). Like a specific touch trajectory, the touch trajectory can also be divided into a directional trajectory (a touch trajectory in a specific direction) and a feature trajectory (setting an identifiable touch trajectory such as a length of a digital or touch trajectory). It can be understood that after the transparent touch sensor 16 detects the touch trajectory, the dimmer 10 needs to first determine the kind of the touch trajectory. After determining the type of the touch track, the conductive film block 14 corresponding to the touch track is determined.
  • 5(a), 5(b), 5(c), and 5(d) are four embodiments of the light control sheet 10.
  • the touch track includes an open track. The following steps are included after step S12:
  • S102 Control an operating voltage of one or more pairs of the conductive film blocks corresponding to the open track to be applied or disconnected to adjust a light transmittance of the corresponding light control region.
  • FIG. 5(a) is a schematic diagram of the touch track 10 detecting a touch trajectory.
  • the touch area 162 detects the touch track in real time and determines the coordinates of the touch track.
  • the controller 18 processes the coordinate information and determines a plurality of dimming regions 122 corresponding to the coordinates. Specifically, when the controller 18 controls the conductive film block 14 to apply an operating voltage to the corresponding dimming region 122, the light transmittance of the dimming region 122 becomes large, that is, the dimming plate 10 is in a transparent state.
  • the light transmittance of the dimming area 122 of the corresponding position changes, and the dimming piece 10 becomes transparent following the movement of the finger position, and does not correspond to the coordinates.
  • the light sheet 10 maintains the original atomized state.
  • the dimming sheet 10 of the partial area can follow the touch trajectory to present a transparent state.
  • the controller 18 controls the conductive film block 14 to turn off the operating voltage of the corresponding dimming region 122, the light transmittance of the dimming region 122 becomes small, that is, the dimming plate 10 is in an atomized state. That is to say, when the user touches the touch area 162, the light transmittance of the dimming area 122 of the corresponding position changes, which is represented by the movement of the dimming piece 10 following the position of the finger. The atomization state, and the dimming sheet 10 corresponding to the coordinates, remains in the original transparent state.
  • the dimming sheet 10 of the partial area can follow the touch trajectory to present an atomized state.
  • FIG. 5(a) shows the touch track with a bold line.
  • the touch track includes a closed track.
  • the closed track forms a closed area.
  • S104 Control an operating voltage of one or more pairs of the conductive film blocks corresponding to the closed area to be applied or disconnected to adjust a light transmittance of the corresponding light control area.
  • the touch area 162 detects the touch track in real time and determines the coordinates of the touch track.
  • the controller 18 processes the coordinate information and determines whether the trajectory is continuous and closed. When the controller 18 determines that the trajectory can form a closed area, a plurality of dimming areas 122 corresponding to the closed area are determined. Specifically, when the controller 18 controls the conductive film block 14 to apply the operating voltage of the dimming region 122 corresponding to the enclosed region, the light transmittance of the dimming region 122 becomes large, that is, the dimming plate 10 is in a transparent state.
  • the light transmittance of the light-adjusting area 122 of the corresponding position changes, which means that the light-adjusting sheet 10 becomes transparent in the closed area, and the closed area
  • the outer corresponding dimming area 122 maintains the original atomization state.
  • the dimming sheet 10 can determine the enclosed area according to the touch trajectory such that the closed area assumes a transparent state.
  • the controller 18 controls the conductive film block 14 to open the operating voltage of the dimming region 122 corresponding to the enclosed region, the light transmittance of the dimming region 122 becomes small, that is, the dimming plate 10 is in an atomized state. That is to say, when the user touches and forms a closed track in the touch area 162, the light transmittance of the light-adjusting area 122 of the corresponding position changes, and the light-adjusting sheet 10 is atomized in the closed area, and is closed. The corresponding dimming sheet 10 outside the area maintains the original transparent state.
  • Fig. 5(b) shows the atomized state in the closed area, and the outer side of the closed area is in a transparent state.
  • Fig. 5(b) is a schematic view showing the closed region of the light control sheet 10 in an atomized state.
  • the controller 18 determines that the touch trajectory cannot form a closed area, the dimmer 10 can follow the touch trajectory to present a transparent or fogged state.
  • the touch trajectory includes a directional trajectory.
  • the directional track includes a first direction and a second direction that is perpendicular to the first direction.
  • the directional track includes a first length in the first direction and a second length in the second direction. The first length and the second length form a rectangular region enclosing the directional trajectory.
  • S106 Controlling an operating voltage of one or more pairs of the conductive film blocks corresponding to the rectangular area to be applied or disconnected to adjust a light transmittance of the corresponding light control area.
  • the first direction of the touch area 162 may be the lateral direction of the light control sheet 10 (parallel to the horizontal line) or the longitudinal direction of the light control sheet 10 (perpendicular to the horizontal line). It may be in the diagonal direction (at an angle of 45° to the horizontal line), and the embodiment of the present invention does not limit which direction the first direction is.
  • the second direction is the longitudinal direction of the light adjustment sheet 10.
  • the effective length of the touch track in the first direction is referred to as the first length
  • the effective length in the second direction is referred to as the second length.
  • the first length and the second length may form a rectangular area surrounding the touch track.
  • the direction trajectory determines a rectangular area such as the first length and the second length.
  • the touch area 162 detects the touch track in real time and determines the coordinates of the touch track.
  • the controller 18 processes the coordinate information and determines a first length of the touch track in the first direction and a second length in the second direction.
  • the controller 18 determines a rectangular area based on the first length and the second length, and then the controller 18 determines a plurality of dimming areas 122 corresponding to the rectangular areas.
  • the controller 18 controls the conductive film block 14 to apply the operating voltage of the dimming region 122 corresponding to the rectangular region, the light transmittance of the dimming region 122 becomes large, that is, the dimming plate 10 is in a transparent state. That is to say, when the user touches the touch area 162, the light transmittance of the dimming area 122 corresponding to the rectangular area changes, and the dimming sheet 10 in the rectangular area becomes transparent, and the dimming outside the rectangular area is realized. The sheet 10 remains in its original atomized state.
  • the dimming sheet 10 can determine a rectangular area according to the touch trajectory such that the rectangular area assumes a transparent state.
  • Fig. 5(c) is a schematic view showing the rectangular region on the light-adjusting sheet 10 in an atomized state.
  • the dimming sheet 10 can determine a rectangular area according to the touch trajectory such that the rectangular area exhibits an atomized state.
  • the touch trajectory includes a feature trajectory.
  • the feature track includes a length track and a digital track.
  • the length track includes an effective length.
  • S168 Identify an effective length corresponding to the length track or identify a number corresponding to the digital track;
  • S108 controlling an operating voltage of the corresponding one or more pairs of the conductive film blocks to be applied or disconnected to adjust a light transmittance of the light control region to a corresponding light transmittance corresponding to the effective length or number rate.
  • the dimming sheet 10 can recognize a specific touch trajectory to control the dimming rate of the dimming sheet 10.
  • the light transmittance of the light control sheet 10 is related to the magnitude of the operating voltage applied to the light control region 122.
  • the magnitude of the operating voltage of the dimming region 122 is controlled by the controller 18.
  • a feature trajectory such as a digital trajectory
  • the controller 18 adjusts the operating voltage of the corresponding conductive film block 14 according to the characteristic track, thereby adjusting the light transmittance of the light control sheet 10 to a dimming rate corresponding to the number. For example, when the number "50" is input to the touch area 162 of the dimming sheet 10, the controller 18 adjusts the light transmittance of the dimming sheet 10 to 50%.
  • the dimming sheet 10 can identify the number of the touch area 162 by the associated software.
  • the set feature track can also be a length track.
  • the length track includes the direction and an effective length in that direction.
  • the controller 18 adjusts the operating voltage of the corresponding conductive film block 14 according to the length track, thereby adjusting the light transmittance of the light control sheet 10 to a dimming rate corresponding to the effective length.
  • the direction of the length trajectory may be the lateral direction of the dimming sheet 10, and may also be the longitudinal direction of the dimming sheet 10.
  • the transverse (d) for example, the user 10 laterally slide the dimming locus an effective length of L 1.
  • the ratio of the effective length to the lateral length L 2 of the touch area 162 in the lateral direction is 1:5, and the controller 18 adjusts the light transmittance of the dimming sheet 10 to 20%.
  • the greater the ratio of the effective length to the length of the touch area 162 in the direction the greater the light transmittance of the dimming sheet 10 can be adjusted. That is to say, the greater the distance the user's finger slides in the touch area 162, the greater the light transmittance of the dimming sheet 10.
  • the dimming sheet 10 can also include a polarizer.
  • a polarizer may be attached between the transparent touch sensor 16 and the conductive film block 14.
  • the polarizer can convert natural light that is not polarized into polarized light, that is, only light of a specific direction passes through the light control sheet 10 and absorbs or reflects light in a non-specific direction.
  • the light control sheet 10 can have an anti-glare function while increasing the light transmittance and the viewing angle range of the light control sheet 10.
  • the following uses the projector as an example to illustrate the beneficial effects of providing a polarizer on the dimming plate 10.
  • the projector After the projector emits light from the inner tube through the dimming sheet 10 provided with the polarizing plate, the light having no polarization direction is polarized, so that the light projected onto the wall is more concentrated. In this way, the projector can increase the brightness of the projection.
  • the dimming sheet 10 can also include a filter. Natural light passes through the dimming plate 10 with the filter to filter some wavelengths of light. Taking an infrared filter as an example, the infrared filter only allows the infrared light to pass through the dimming plate 10, and filters out the light outside the wavelength range of the infrared light, so that the dimming plate 10 can be used on an infrared surveillance camera or other infrared device. .
  • the dimmer 10 may also include other devices.
  • Other devices may provide additional functionality to the dimming sheet 10, such as adding a color filter to render the dimming sheet 10 in color.
  • Embodiments of the present invention are not limited to adding a specific function to the dimming sheet 10 by directly adding a device to the dimming sheet 10 or changing the structure of the dimming sheet 10.
  • FIG. 10 is a control device according to an embodiment of the present invention.
  • the control device can be used to control the dimming plate 10.
  • the control device includes a control module.
  • the control module is used to control the application or disconnection of the corresponding pair or pairs of conductive
  • the operating voltage of the membrane block 14 is adjusted to adjust the light transmittance of the corresponding dimming region 122.
  • control module corresponds to the controller 18.
  • control device further includes a detection module and a determination module.
  • the detection module is for detecting a touch trajectory touched on the dimming sheet 10.
  • the judging module is configured to judge the touch trajectory and determine the conductive film block 14 corresponding to the touch trajectory.
  • the detection module corresponds to the transparent touch sensor 16, and the determination module corresponds to the controller 18.
  • the light control sheet 10 of the embodiment of the present invention can be used in the electronic device 100 .
  • the electronic device 100 includes one or more processors 20, a memory 30, and one or more programs 32.
  • One or more of the programs 32 are stored in the memory 30 and are configured to be executed by one or more processors 20, the program 32 including instructions for performing the dimming method of any of the above embodiments.
  • processor 20 can also be used to determine touch trajectories and to determine conductive film blocks 14 corresponding to touch trajectories.
  • the memory 30 can also store parameters related to the touch track (such as touch position, touch pressure size, etc.).
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

公开了一种调光片(10),包括调光层(12)和导电膜块(14)。调光层(12)包括至少两个调光区域(122)。至少两对导电膜块(14)与至少两个调光区域(122)对应。每对导电膜块(14)设置在对应的调光区域(122)的两侧并能够在施加工作电压之后独立调节对应的调光区域(122)的光透过率,如此,调光片(10)能实现局部调光以应用于更多的场合。还公开了一种调光方法、控制装置、电子装置(100)和存储介质。

Description

调光片、调光方法、控制装置、电子装置和存储介质 技术领域
本发明涉及电子装置领域,特别涉及一种调光片、调光方法、控制装置、电子装置和存储介质。
背景技术
相关技术中的调光片包括两片基材、填充在两片基材之间的液晶/聚合物混合材料、设置在基材上的铟锡金属氧化物(Indium tin oxide,ITO)电极层,通过在ITO电极层上施加电压改变调光片的光透过率。但调光片只有开关两种状态(即整片透明和整片雾化两种状态),难以满足某些特殊场合的特殊需求。
发明内容
本发明实施方式提供一种调光片、调光方法、控制装置、电子装置和存储介质。
本发明实施方式的调光片包括调光层和导电膜块。所述调光层包括至少两个调光区域。至少两对导电膜块与所述至少两个调光区域对应。每对所述导电膜块设置在对应的所述调光区域的两侧并能够在施加工作电压之后独立调节对应的所述调光区域的光透过率。
本发明实施方式的调光方法,所述调光方法用于上述实施方式的调光片。所述调光方法包括以下步骤:
控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
本发明实施方式的控制装置,所述控制装置用于控制调光片。所述控制装置包括:
控制模块,用于控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
本发明实施方式的电子装置包括:
一个或多个处理器;
存储器;和
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行上述实施方式的调光方法的指令。
本发明实施方式提供一种存储介质,所述存储介质存储有处理器可执行的一个或 多个程序:
所述一个或多个程序被所述处理器执行时实现上述实施方式的调光方法中的步骤。
本发明实施方式的调光片、调光方法、控制装置、电子装置和存储介质通过在调光层的调光区域的两侧设置至少两对导电膜块,每对导电膜块在施加工作电压之后能独立调节对应的调光区域的光透过率,如此,调光片能实现局部调光以应用于更多的场合。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的调光片的剖面示意图;
图2是本发明某些实施方式的调光片的剖面示意图;
图3为本发明某些实施方式的导电膜块的排布示意图;
图4为本发明某些实施方式的调光方法的流程示意图;
图5是本发明某些实施方式的触摸轨迹对应的调光实施示意图;
图6是本发明某些实施方式的调光方法的流程示意图;
图7是本发明某些实施方式的调光方法的流程示意图;
图8是本发明某些实施方式的调光方法的流程示意图;
图9是本发明某些实施方式的调光方法的流程示意图;
图10是本发明某些实施方式的控制装置的模块示意图;
图11是本发明某些实施方式的电子装置的模块示意图。
主要元件及符号说明:
调光片10、调光层12、调光区域122、导电膜块14、透明触摸传感器16、触控区162、控制器18、光学透明胶层1a、柔性电路板11、引线13、边框15、电子装置100、处理器20、存储器30、程序32。
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过 参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明实施方式的调光片10包括调光层12、导电膜块14。调光层12包括至少两个调光区域122。至少两对导电膜块14与至少两个调光区域122对应。每对导电膜块14设置在对应的调光区域122的两侧并能够在施加工作电压之后独立调节对应的调光区域122的光透过率。
也即是说,每个调光区域122与一对导电膜块14对应,且对应的导电膜块14分别设置在一个调光区域122的两侧。成对导电膜块14可以给对应的调光区域122施加工作电压,从而在形成穿过调光区域122的电场。
本发明实施方式的调光方法可用于调光片10。调光方法包括以下步骤:
控制施加或断开对应的一对所述导电膜块14的工作电压以独立调节对应的所述调光区域122的光透过率。
本发明实施方式提供的控制装置可用于控制调光片10。控制装置包括控制模块。控制模块用于控制施加或断开对应的一对导电膜块14的工作电压以调节对应的调光区域122的光透过率。
请一并图1和参阅图11,本发明实施方式的调光片10可用于电子装置100。电子装置100包括一个或多个处理器20、存储器30和一个或多个程序32。其中一个或多个程序32被存储在存储器30中,并且被配置成由一个或多个处理器20执行,程序32包括用于执行上述实施方式的调光方法的指令。
本发明实施方式的存储介质存储有处理器20可执行的一个或多个程序32。一个或多个程序32被处理器20执行时实现上述实施方式的调光方法中的步骤。存储介质可由计算机读取。
本发明实施方式的调光片10、调光方法、控制装置、电子装置100和存储介质通过在调光区域122的两侧设置至少两对导电膜块14,每对导电膜块14能独立地施加或断开对应的调光区域122的工作电压来调节调光区域122的光透过率,并且不影响相邻的调光区域122的工作电压。如此,调光片10能实现局部调光以应用于更多的场合。
具体地,调光片10在工作时,某一位置的一对导电膜块14对一个调光区域122独立施加工作电压,调光层12中的液晶分子在电场作用下排列整齐,调光层12由低光透过率转变为高光透过率,即调光片10呈现透明状态。其他位置的导电膜块14未对调光区域122施加工作电压,调光层12中的液晶分子排列混乱,调光层12保持低光透过率,即调光片10呈现雾化状态。也即是说,整体上调光片10一部分是透明状态,一部分是雾化状态,并且透明区和雾化区可以自由组合以形成图案。如此,可以 通过改变施加在与导电膜块14对应的调光区域122的工作电压,来改变不同位置的调光片10的光透过率,从而应用于更多的场合。
可以理解,调光片10和电子装置100可以应用于各种窗户(比如落地窗、车窗),也可以用作室内屏风或者建筑物的玻璃幕墙。调光片10还可以应用于投影显示、光学调制器、光阀等。
在某些实施方式中,调光层12包括两片基材和填充在所述两片基材之间的液晶和高分子。可以理解,调光层12由液晶和高分子的混合物制成。液晶在施加工作电压时与高分子的折射率相近,因此调光层12呈现透明状态。液晶在断开工作电压时与高分子的折射率相差很大,因此调光层12呈现雾化状态。可以理解,雾化状态呈乳白色,相对于透明状态也称为不透明状态。
在某些实施方式中,高分子可以为聚氨酯丙烯酸酯(PUA)。采用聚氨酯丙烯酸酯(PUA)可以降低调光层12的阈值电压,从而使调光片10工作效率高且节能。
可以理解,调光层12的光透过率与导电膜块14施加在调光区域122两端的工作电压有关。以某种液晶调光膜的技术指标为例。该种液晶调光膜的工作电压为18V至75V。高于75%的光透过率称为透明状态,低于2%的光透过率称为雾化状态。也即是说,当导电膜块14施加的电压低于一定的阈值(18V)时,调光片10的光透过率低于2%,因此调光片10呈雾化状态。当导电膜块14施加的电压高于一定的阈值(75V)时,调光片10的光透过率高于75%,因此调光片10呈透明状态。当导电膜块14施加的电压介于18V至75V时,工作电压越大,调光片10的光透过率越大。
在某些实施方式中,基材可以为玻璃或者膜片。当基材是玻璃时,调光片10是调光玻璃。调光玻璃可以应用在各种窗户上。在其他实施方式中,玻璃可以为双层玻璃,调光片10设置在双层玻璃之间。如此,设置有调光片10的玻璃装置也能实现局部调光。当基材是膜片时,调光片10是柔韧性较好的调光膜。此时调光片10可应用于平面上,也可以应用在曲面上。此外,调光膜还可以与玻璃结合使用。调光膜可以贴附在玻璃的一侧。
在某些实施方式中,基材还可以为PC板(主要成分为聚碳酸酯)。PC板透光性高,硬度大。如此,能增强调光片10的支撑强度。
本发明实施方式中调光层12为一整层连续的结构,也就是说,相邻调光区域122内的液晶和高分子实际上是连通的,并没有实质的物理区隔。如此,整个调光片10都可以在导电膜块14施加工作电压时改变透光率。
在其他实施方式中,调光区域122可以根据用户需求生产通过添加物理间隔以使调光区域122具有不同的形状和大小。比如,对于有特殊图案(比如玫瑰花)的调光 片10,当一个调光区域122对应设置成一片花瓣的形状时,通过间隔调光区域122以使调光区域122的形状和大小可以不同。
本发明实施方式中位于调光层12同一侧的各导电膜块14呈非连续分布,也就是说,位于调光层12同一侧的相邻的导电膜块14相互分离,二者之间通过间隙隔开,以避免导通。
在某些实施方式中,在调光层12内部通过添加物理间隔以使调光区域122形成特定的形状后,导电膜块14的形状与对应的调光区域122的形状对应。可以理解,本发明实施方式的对应的意思是指形状相同或者相似。也即是说,导电膜块14的形状与调光区域122的形状对应。
在某些实施方式中,导电膜块14在对应的调光区域122的正投影落在对应的调光区域122内。可以理解,由于位于调光层12同一侧的相邻的导电膜块14需要避免导通,因此,成对的导电膜块14设置在调光区域122的两侧且调光区域122的同一侧的导电膜块14间隔。也即是说,导电膜块14的大小小于调光区域122的大小。
进一步地,导电膜块14的大小与对应的调光区域122的大小对应。可以理解,导电膜块14的大小与调光区域122的大小有关。为了让成对的导电膜块14可以基本覆盖住一个调光区域122并在施加电压时形成穿过调光区域122的电场。本发明实施方式的导电膜块14略小于调光区域122。
导电膜块14的材料为透明导电材料以满足调光片10双面透光的要求。可以采用的透明导电材料有氧化铟锡(Indium tin oxide,ITO)、纳米银线、金属网格(metal mesh)、纳米碳管以及石墨烯(Graphene)等。
请参阅图2,在某些实施方式中,调光片10还包括透明触摸传感器16和控制器18。透明触摸传感器16与至少两对导电膜块14对应。透明触摸传感器16设置在导电膜块14上。
控制器18与透明触摸传感器16和多个导电膜块14连接。控制器18用于在透明触摸传感器16检测到触摸时控制施加或断开对应的一对或多对导电膜块14的工作电压,如此调节对应的调光区域122的光透过率。
可以理解,透明触摸传感器16上形成有触控区162。触控区162可以用于检测触摸在透明触摸传感器16上的触摸轨迹。可以理解,导电膜块14与触摸区162对应。当触控区162识别到触摸动作时,触控区162将触摸信号转变为坐标信号并传递给控制器18。控制器18接收坐标信息并确定与坐标对应的导电膜块14的位置。然后控制器18控制导电膜块14施加或者断开对应的调光区域122的工作电压,从而调节调光区域122的光透过率。如此,通过触摸操作来实现对调光片10的局部调光。
请再次参阅图2,在某些实施方中,调光片10还包括粘合透明触摸传感器16和导电膜块14的光学透明胶层1a。
可以理解,透明触摸传感器16通过光学透明胶与调光层12粘合。光学透明胶可以为环氧树脂胶等液态非导电胶。光学透明胶的光透过率高,不影响调光片10的光透过率。
在某些实施方中,透明触摸传感器16可以为柔性透明触摸传感器。如此调光片10可以应用于平面,也可以应用于曲面。当透明触摸传感器16为柔性透明触摸传感器时,透明触摸传感器16可以通过光学透明胶以整面的形式贴附在导电膜块14上,即一张薄膜透明触摸传感器16可以对应多个调光区域122(比如一张薄膜透明触摸传感器16对应9个调光区域122)。如此,省去将大面积的透明触摸传感器16切割成小单元面积的透明触摸传感器16的步骤。
可以理解,本发明实施方式的透明触摸传感器16可以为电阻式透明触摸传感器或电容式透明触摸传感器,也可以是超声波透明触摸传感器。对于不同的透明触摸传感器16,对应的导电膜块14及控制器18作相应的调整。比如,超声波透明触摸传感器可以采用压电元件(比如压电陶瓷)。压电元件体积较小,可以以矩阵的排列形式贴附在调光层12上,并且与导电膜块14一一对应。
请一并参阅图2和图3,现在以ITO为例说明导电膜块14在调光片10的分布。调光片10包括柔性电路板11、引线13和边框15。导电膜块14以矩阵的形式排列在调光层12上,且与调光区域122和透明触摸传感器16对应。每个导电膜块14都通过引线13与柔性电路板11连接。柔性电路板11与控制器18连接。在某些实施方式中,引线13可以压合至柔性电路板11内以收纳引线13。边框15可以在防止调光片10的四周边缘磨损的同时,还可以防止调光层12上的材料漏出并起到绝缘保护的作用。
进一步地,单位面积排列的导电膜块14的数量越多,越能精细地调节调光片10的透光状态。
为了使本领域的技术人员更加清楚地了解调光片10如何通过触摸操作来实现对调光片10的局部调光,下面以结合调光片10和调光方法的实施例来具体说明。
本发明实施方式提供的调光方法可用于调光片10。调光方法包括以下步骤:
S10:控制施加或断开对应的一对或多对所述导电膜块的工作电压以独立调节对应的所述调光区域的光透过率。
本发明实施方式的调光方法通过在调光区域122两侧设置成对的导电膜块14,每对导电膜块14能独立地施加或断开对应的调光区域122的工作电压来调节调光区域122的光透过率,并且不影响相邻的调光区域122的工作电压。如此,调光片10能实 现局部调光以应用于更多的场合。
在某些实施方式中,调光片10还包括透明触摸传感器16和控制器18。
请参阅图4,对应地,在步骤S10之前,调光方法还包括以下步骤:
S12:检测触摸在所述调光片上的触摸轨迹;
S14:判断所述触摸轨迹;和
S16:确定与所述触摸轨迹对应的导电膜块。
可以理解,检测功能可以由透明触摸传感器16实现,判断及确定功能可以由控制器18实现。
透明触摸传感器16检测到的触摸轨迹可以分为多种类型。如是否为连续轨迹,触摸轨迹可以分为开放轨迹(起点和终点不重合)和封闭轨迹(起点和终点重合且不包含断点)。如特定的触摸轨迹,触摸轨迹还可以分为方向轨迹(特定方向上的触摸轨迹)和特征轨迹(设定可识别的触摸轨迹,比如数字或者触摸轨迹的长度)。可以理解,透明触摸传感器16检测到触摸轨迹之后,调光片10需要先判断触摸轨迹的种类。判断出触摸轨迹的种类之后,再确定触摸轨迹对应的导电膜块14。
下面以各种触摸轨迹对应的调光方法为实施例,来进一步说明调光片10的调光方法中各个步骤的具体内容。其中,图5(a)、5(b)、5(c)和5(d)为调光片10的四种实施例。
请参阅图6,在某些实施方式中,触摸轨迹包括开放轨迹。在步骤S12之后包括以下步骤:
S142:判断所述触摸轨迹为所述开放轨迹;
S162:确定与所述开放轨迹对应的导电膜块;
S102:控制施加或断开与所述开放轨迹对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
请参阅图5(a)。图5(a)为调光片10检测到触摸轨迹的示意图。具体地,触控区162实时检测到触摸轨迹,并确定触摸轨迹的坐标。控制器18处理坐标信息并确定与坐标对应的多个调光区122。具体地,当控制器18控制导电膜块14给对应的调光区域122施加工作电压时,调光区域122的光透过率变大,即调光片10呈透明状态。也即是说,用户在触控区162触摸,对应位置的调光区域122的光透过率改变,表现为调光片10跟随手指位置的移动而变得透明,而不与坐标对应的调光片10则保持原来的雾化状态。
如此,部分区域的调光片10可以跟随触摸轨迹呈现透明状态。
当控制器18控制导电膜块14断开对应的调光区域122的工作电压时,调光区域122的光透过率变小,即调光片10呈雾化状态。也即是说,用户在触控区162触摸,对应位置的调光区域122的光透过率改变,表现为调光片10跟随手指位置的移动而呈 雾化状态,而不与坐标对应的调光片10保持原来的透明状态。
如此,部分区域的调光片10可以跟随触摸轨迹呈现雾化状态。为更好地表示触摸轨迹对应的调光片10呈雾化状态,图5(a)用加粗线条表示触摸轨迹。
请参阅图7,在某些实施方式中,触摸轨迹包括封闭轨迹。封闭轨迹形成封闭区域。在步骤S12之后包括以下步骤:
S144:判断所述触摸轨迹为所述封闭轨迹;
S164:确定所述封闭区域并确定与所述封闭区域对应的导电膜块;
S104:控制施加或断开与所述封闭区域对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
请继续参阅图5(b),可以理解,触控区162实时检测到触摸轨迹,并确定触摸轨迹的坐标。控制器18处理坐标信息并判断轨迹是否连续且封闭。当控制器18判断轨迹能形成封闭的区域时,确定与封闭区域对应的多个调光区域122。具体地,当控制器18控制导电膜块14施加与封闭区域对应的调光区域122的工作电压时,调光区域122的光透过率变大,即调光片10呈透明状态。也即是说,当用户在触控区162触摸并形成封闭轨迹时,对应位置的调光区域122的光透过率改变,表现为调光片10在封闭区域内变得透明,而封闭区域外对应的调光区域122保持原来的雾化状态。
如此,调光片10可以根据触摸轨迹来确定封闭区域,使得封闭区域呈现透明状态。
当控制器18控制导电膜块14断开与封闭区域对应的调光区域122的工作电压时,调光区域122的光透过率变小,即调光片10呈雾化状态。也即是说,当用户在触控区162触摸并形成封闭轨迹时,对应位置的调光区域122的光透过率改变,表现为调光片10在封闭区域内呈雾化状态,而封闭区域外对应的调光片10保持原来的透明状态。图5(b)表示封闭区域内呈雾化状态,封闭区域外呈透明状态。
如此,调光片10可以根据触摸轨迹确定封闭区域,使得封闭区域呈现雾化状态。图5(b)为调光片10上封闭区域呈雾化状态的示意图。
当控制器18判断触摸轨迹不能形成封闭的区域时,调光片10可以跟随触摸轨迹呈现透明或者雾化状态。
请参阅图8,在某些实施方式中,触摸轨迹包括方向轨迹。方向轨迹包括第一方向和与第一方向互相垂直的第二方向。方向轨迹在第一方向上包括第一长度,在第二方向上包括第二长度。第一长度和第二长度形成包围方向轨迹的矩形区域。在步骤S12之后包括以下步骤:
S146:判断所述触摸轨迹为所述方向轨迹;
S166:确定所述矩形区域并确定与所述矩形区域对应的导电膜块;和
S106:控制施加或断开与所述矩形区域对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
请继续参阅图5(c),可以理解,触控区162的第一方向可以为调光片10的横向(平行于水平线),也可以为调光片10的纵向(垂直于水平线),还可以为对角线方向(与水平线成45°角),本发明实施方式并不限定第一方向具体为哪种方向。对应地,当第一方向为调光片10的横向时,第二方向为调光片10的纵向。触摸轨迹在第一方向上的有效长度称为第一长度,在第二方向上的有效长度称为第二长度。第一长度和第二长度可以形成包围触摸轨迹的矩形区域。如图5(c)所示,方向轨迹如第一长度和第二长度确定矩形区域。
具体地,触控区162实时检测到触摸轨迹,并确定触摸轨迹的坐标。控制器18处理坐标信息并确定触摸轨迹在第一方向上的第一长度和在第二方向上的第二长度。控制器18根据第一长度和第二长度确定矩形区域,然后控制器18确定与矩形区域对应的多个调光区域122。
当控制器18控制导电膜块14施加与矩形区域对应的调光区域122的工作电压时,调光区域122的光透过率变大,即调光片10呈透明状态。也即是说,用户在触控区162触摸,与矩形区域对应的调光区域122的光透过率改变,表现为矩形区域内的调光片10变得透明,而矩形区域外的调光片10保持原来的雾化状态。
如此,调光片10可以根据触摸轨迹确定矩形区域,使得矩形区域呈现透明状态。
当控制器18断开与封闭区域对应的调光区域122的工作电压时,调光区域122的光透过率变小,即调光片10呈雾化状态。也即是说,当用户在触控区162触摸时,与矩形区域对应的调光区域122的光透过率改变,表现为矩形区域内的调光片10呈雾化状态,而矩形区域外的调光片10保持原来的透明状态。图5(c)为调光片10上矩形区域呈雾化状态的示意图。
如此,调光片10可以根据触摸轨迹确定矩形区域,使得矩形区域呈现雾化状态。
请参阅图9,在某些实施方式中,触摸轨迹包括特征轨迹。特征轨迹包括长度轨迹和数字轨迹。长度轨迹包括有效长度。在步骤S12之后包括以下步骤:
S148:判断所述触摸轨迹为所述特征轨迹;
S168:识别所述长度轨迹对应的有效长度或者识别所述和数字轨迹对应的数字;
S108:控制施加或断开对应的一对或多对所述导电膜块的工作电压以使所述调光区域的光透过率调节至对应的与所述有效长度或者数字对应的光透过率。
请继续参阅图5(d),可以理解,调光片10可以识别特定的触摸轨迹来控制调光片10的调光率。其中,调光片10的光透过率与施加在调光区域122的工作电压大小有关。 施加在调光区域122的工作电压越大,调光片10的光透过率越大。调光区域122的工作电压大小由控制器18控制。
具体地,设定特征轨迹,比如数字轨迹。当触控区162检测到数字时,控制器18根据特征轨迹调节对应的导电膜块14的工作电压,从而使调光片10的光透过率调节至与数字对应的调光率。比如,在调光片10的触控区162输入数字“50”,控制器18将调光片10的光透过率调成50%。调光片10可以通过相关的软件识别触控区162的数字。
设定的特征轨迹还可以为长度轨迹。长度轨迹包括方向和在该方向上的有效长度。当触控区162检测到长度轨迹时,控制器18根据长度轨迹调节对应的导电膜块14的工作电压,从而使调光片10的光透过率调节至与有效长度对应的调光率。长度轨迹的方向可以为调光片10的横向,还可以为调光片10的纵向。以图5(d)所示的横向为例,用户在调光片10横向滑动有效长度为L1的轨迹。该有效长度与触控区162在横向上的横向长度L2比值为1:5,则控制器18将调光片10的光透过率调节至20%。有效长度与触控区162在该方向上的长度比值越大,调光片10的光透过率可以调节地越大。也即是说,用户的手指在触控区162滑动的距离越大,调光片10的光透过率越大。
在某些实施方式中,调光片10还可以包括偏振光片。偏光片可以贴附在透明触摸传感器16与导电膜块14之间。偏振光片可以使不具偏极性的自然光转变成偏振光,即只让特定方向的光穿过调光片10且吸收或者反射非特定方向的光。如此,可以在提高调光片10的光透过率和视角范围的同时,使调光片10具有防眩的功能。下面以投影机为例说明调光片10上设置偏振光片的有益效果。投影机从内部灯管发出的光经过设置有偏振光片的调光片10之后,无偏振方向的光偏振化,从而使得投影到墙上的光更加集中。如此,投影机可以提高投影的亮度。
在某些实施方式中,调光片10还可以包括滤光片。自然光穿过带有滤光片的调光片10可以过滤一些波长的光。以红外滤光片为例,红外滤光片只让红外光穿过调光片10,而过滤掉红外光波长范围以外的光,如此调光片10可用于红外监控摄像头上或者其他红外设备上。
可以理解,在某些实施方式中,调光片10还可以包括其他器件。其他器件可以给调光片10带来附加的功能,比如添加彩色滤光片使调光片10呈现彩色。本发明实施方式并不限定通过直接在调光片10上添加器件或者改变调光片10的结构,而使调光片10添加特定的功能。
请参阅图10,图10为本发明实施方式提供的控制装置。控制装置可用于控制调光片10。控制装置包括控制模块。控制模块用于控制施加或断开对应的一对或多对导电 膜块14的工作电压以调节对应的调光区域122的光透过率。
可以理解,控制模块与控制器18对应。
在某些实施方式中,控制装置还包括检测模块和判断模块。检测模块用于检测触摸在调光片10上的触摸轨迹。判断模块用于判断触摸轨迹和确定与触摸轨迹对应的导电膜块14。
可以理解,检测模块与透明触摸传感器16对应,判断模块与控制器18对应。
请参阅图11,本发明实施方式的调光片10可用于电子装置100。电子装置100包括一个或多个处理器20、存储器30和一个或多个程序32。其中一个或多个程序32被存储在存储器30中,并且被配置成由一个或多个处理器20执行,程序32包括用于执行上述任一实施方式的调光方法的指令。
处理器20除了可以用于处理程序32上的指令,还可以用于判断触摸轨迹和确定与触摸轨迹对应的导电膜块14。
存储器30除了可以存储程序32,还可以存储与触摸轨迹有关的参数(比如触摸位置、触摸压力大小等)。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种调光片,其特征在于,包括:
    调光层,所述调光层包括至少两个调光区域;和
    与所述至少两个调光区域对应的至少两对导电膜块,每对所述导电膜块设置在对应的所述调光区域的两侧并能够在施加工作电压之后独立调节对应的所述调光区域的光透过率。
  2. 如权利要求1所述的调光片,其特征在于,所述至少两个调光区域为连续分布,位于所述调光层同一侧的相邻的所述导电膜块为非连续分布。
  3. 如权利要求1所述的调光片,其特征在于,所述调光层包括两片基材和填充在所述两片基材之间的液晶和高分子。
  4. 如权利要求3所述的调光片,其特征在于,相邻所述调光区域内的所述液晶和所述高分子连通,位于所述调光层同一侧的相邻的所述导电膜块通过间隙隔开。
  5. 如权利要求1所述的调光片,其特征在于,所述导电膜块的形状与对应的所述调光区域的形状对应。
  6. 如权利要求1所述的调光片,其特征在于,所述导电膜块在对应的所述调光区域的正投影落在对应的所述调光区域内。
  7. 如权利要求6所述的调光片,其特征在于,所述导电膜块的大小与对应的所述调光区域的大小对应。
  8. 如权利要求1所述的调光片,其特征在于,所述调光片还包括:
    与所述至少两对导电膜块对应的透明触摸传感器,所述透明触摸传感器设置在所述导电膜块上;和
    与所述透明触摸传感器和所述多个导电膜块连接的控制器,所述控制器用于在所述传感器检测到触摸时施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  9. 如权利要求8所述的调光片,其特征在于,所述调光片还包括:
    粘合所述透明触摸传感器和所述导电膜块的光学透明胶层。
  10. 如权利要求8所述的调光片,其特征在于,所述透明触摸传感器为柔性透明触摸传感器。
  11. 一种调光方法,所述调光方法用于控制如权利要求1-10任意一项所述的调光片,其特征在于,所述调光方法包括以下步骤:
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  12. 如权利要求11所述的调光方法,所述调光片还包括透明触摸传感器和控制器,其特征在于,在所述控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率的步骤之前,所述调光方法还包括以下步骤:
    检测触摸在所述调光片上的触摸轨迹;
    判断所述触摸轨迹;和
    确定与所述触摸轨迹对应的导电膜块。
  13. 如权利要求12所述的调光方法,所述触摸轨迹包括开放轨迹,其特征在于:
    判断所述触摸轨迹,包括:
    判断所述触摸轨迹为所述开放轨迹;
    确定与所述触摸轨迹对应的导电膜块,包括:
    确定与所述开放轨迹对应的导电膜块;
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率,包括:
    控制施加或断开与所述开放轨迹对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  14. 如权利要求12所述的调光方法,所述触摸轨迹包括封闭轨迹,所述封闭轨迹形成封闭区域,其特征在于:
    判断所述触摸轨迹,包括:
    判断所述触摸轨迹为所述封闭轨迹;
    确定与所述触摸轨迹对应的导电膜块,包括:
    确定所述封闭区域并确定与所述封闭区域对应的导电膜块;
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率,包括:
    控制施加或断开与所述封闭区域对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  15. 如权利要求12所述的调光方法,所述触摸轨迹包括方向轨迹,所述方向轨迹包括第一方向和与第一方向互相垂直的第二方向,所述方向轨迹在所述第一方向上包括第一长度,在所述第二方向上包括第二长度,所述第一长度和所述第二长度形成包围所述方向轨迹的矩形区域,其特征在于:
    判断所述触摸轨迹,包括:
    判断所述触摸轨迹为所述方向轨迹;
    确定与所述触摸轨迹对应的导电膜块,包括:
    确定所述矩形区域并确定与所述矩形区域对应的导电膜块;
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率,包括:
    控制施加或断开与所述矩形区域对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  16. 如权利要求12所述的调光方法,所述触摸轨迹包括特征轨迹,所述特征轨迹包括长度轨迹和数字轨迹,所述长度轨迹包括有效长度,其特征在于:
    判断所述触摸轨迹,包括:
    判断所述触摸轨迹为所述特征轨迹;
    确定与所述触摸轨迹对应的导电膜块,包括:
    识别所述长度轨迹对应的有效长度或者识别所述数字轨迹对应的数字;
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率,包括:
    控制施加或断开对应的一对或多对所述导电膜块的工作电压以使所述调光区域的光透过率调节至对应的与所述有效长度或者所述数字对应的光透过率。
  17. 一种控制装置,所述控制装置用于控制如权利要求1-10任意一项所述的调光片,其特征在于,所述控制装置包括:
    控制模块,用于控制施加或断开对应的一对或多对所述导电膜块的工作电压以调节对应的所述调光区域的光透过率。
  18. 如权利要求17所述的控制装置,其特征在于,所述控制装置还包括:
    检测模块,用于检测触摸在所述调光片上的触摸轨迹;和
    判断模块,用于:
    判断所述触摸轨迹;和
    确定与所述触摸轨迹对应的导电膜块。
  19. 一种电子装置,其特征在于,所述电子装置包括:
    一个或多个处理器;
    存储器;和
    一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行权利要求11-16任意一项所述的调光方法的指令。
  20. 一种存储介质,所述存储介质存储有处理器可执行的一个或多个程序,其特征在于:
    所述一个或多个程序被所述处理器执行时实现权利要求11-16任意一项所述的调光方法中的步骤。
PCT/CN2017/106703 2017-10-18 2017-10-18 调光片、调光方法、控制装置、电子装置和存储介质 WO2019075664A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/106703 WO2019075664A1 (zh) 2017-10-18 2017-10-18 调光片、调光方法、控制装置、电子装置和存储介质
CN201780092171.3A CN110753634A (zh) 2017-10-18 2017-10-18 调光片、调光方法、控制装置、电子装置和存储介质
TW107136615A TW201917473A (zh) 2017-10-18 2018-10-17 調光片、調光方法、控制裝置、電子裝置和儲存媒體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106703 WO2019075664A1 (zh) 2017-10-18 2017-10-18 调光片、调光方法、控制装置、电子装置和存储介质

Publications (1)

Publication Number Publication Date
WO2019075664A1 true WO2019075664A1 (zh) 2019-04-25

Family

ID=66173128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106703 WO2019075664A1 (zh) 2017-10-18 2017-10-18 调光片、调光方法、控制装置、电子装置和存储介质

Country Status (3)

Country Link
CN (1) CN110753634A (zh)
TW (1) TW201917473A (zh)
WO (1) WO2019075664A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999926A (zh) * 2020-09-10 2020-11-27 京东方科技集团股份有限公司 一种调光玻璃
CN115980909B (zh) * 2023-03-22 2023-07-18 惠科股份有限公司 发光组件及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644128A (zh) * 2009-08-24 2010-02-10 沈国宝 液晶窗户
CN104199847A (zh) * 2014-08-08 2014-12-10 科世达(上海)管理有限公司 车载信息处理***
CN104512221A (zh) * 2013-10-03 2015-04-15 沃尔沃汽车公司 机动车玻璃的数字化遮阳板
US20150103280A1 (en) * 2013-10-16 2015-04-16 Coremate Technical Co., Ltd. Intelligent electronic sunblind
CN104597636A (zh) * 2014-12-31 2015-05-06 华南师范大学 一种电控调色单元及装置
CN104626937A (zh) * 2013-11-12 2015-05-20 昆达电脑科技(昆山)有限公司 遮阳防眩装置
CN104965338A (zh) * 2015-07-20 2015-10-07 京东方科技集团股份有限公司 一种显示面板和显示装置
CN105183218A (zh) * 2015-08-21 2015-12-23 京东方科技集团股份有限公司 遮阳装置、遮阳方法和交通工具
CN106200187A (zh) * 2016-07-07 2016-12-07 京东方科技集团股份有限公司 可调光玻璃、可控遮光装置、方法和车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132697A (zh) * 2017-07-18 2017-09-05 京东方科技集团股份有限公司 一种背光模组及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644128A (zh) * 2009-08-24 2010-02-10 沈国宝 液晶窗户
CN104512221A (zh) * 2013-10-03 2015-04-15 沃尔沃汽车公司 机动车玻璃的数字化遮阳板
US20150103280A1 (en) * 2013-10-16 2015-04-16 Coremate Technical Co., Ltd. Intelligent electronic sunblind
CN104626937A (zh) * 2013-11-12 2015-05-20 昆达电脑科技(昆山)有限公司 遮阳防眩装置
CN104199847A (zh) * 2014-08-08 2014-12-10 科世达(上海)管理有限公司 车载信息处理***
CN104597636A (zh) * 2014-12-31 2015-05-06 华南师范大学 一种电控调色单元及装置
CN104965338A (zh) * 2015-07-20 2015-10-07 京东方科技集团股份有限公司 一种显示面板和显示装置
CN105183218A (zh) * 2015-08-21 2015-12-23 京东方科技集团股份有限公司 遮阳装置、遮阳方法和交通工具
CN106200187A (zh) * 2016-07-07 2016-12-07 京东方科技集团股份有限公司 可调光玻璃、可控遮光装置、方法和车辆

Also Published As

Publication number Publication date
CN110753634A (zh) 2020-02-04
TW201917473A (zh) 2019-05-01

Similar Documents

Publication Publication Date Title
US9709839B2 (en) Liquid crystal electronic curtain and driving method thereof
WO2019218731A1 (zh) 显示装置及其控制方法
US20210149511A1 (en) Touch display panel and touch display device with switchable viewing angles
TWI476658B (zh) 觸控顯示裝置
US9557594B2 (en) Liquid-crystal display screen with touch-control function and manufacturing method thereof and electronic apparatus
JP2015513755A (ja) 容量型タッチスクリーン
JP2013168172A (ja) 薄型タッチ装置
TW201706796A (zh) 觸控顯示裝置
CN106055159B (zh) 触控显示面板
CN106201036B (zh) 内嵌式触摸显示屏及触摸显示屏模组
CN106547391B (zh) 具有压力感测的显示装置
WO2018061358A1 (ja) 調光装置
TWM517363U (zh) 觸控偏光結構及觸控顯示裝置
WO2019075664A1 (zh) 调光片、调光方法、控制装置、电子装置和存储介质
JP2015055938A (ja) タッチ検出機能付き表示装置、電子機器およびカバー材
CN203117942U (zh) 触摸显示屏及具有该触摸显示屏的电子装置
TW201426103A (zh) 偏光板結構
TW201335819A (zh) 觸控裝置
WO2018000645A1 (zh) 一种电容式触摸屏
CN104635368B (zh) 触控显示面板及使用其的触控显示装置
US10338748B1 (en) Reduction of touch sensor pattern visibility using beamsplitters
JP2015152946A (ja) タッチパネル用電極基板、及びタッチパネル、ならびに表示装置
TW201245832A (en) An electronic paper display apparatus with touch control function
CN109189272B (zh) 触控显示装置及其制造方法
CN206546564U (zh) 一种集成感应触摸屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929213

Country of ref document: EP

Kind code of ref document: A1