WO2019072175A1 - 一种天线切换方法及设备 - Google Patents

一种天线切换方法及设备 Download PDF

Info

Publication number
WO2019072175A1
WO2019072175A1 PCT/CN2018/109513 CN2018109513W WO2019072175A1 WO 2019072175 A1 WO2019072175 A1 WO 2019072175A1 CN 2018109513 W CN2018109513 W CN 2018109513W WO 2019072175 A1 WO2019072175 A1 WO 2019072175A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal quality
data
retransmissions
better
Prior art date
Application number
PCT/CN2018/109513
Other languages
English (en)
French (fr)
Inventor
王晶晶
江晓军
吴林森
刘宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019072175A1 publication Critical patent/WO2019072175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an antenna switching method and device.
  • multiple antennas may be set, and multiple antennas can work independently, that is, signals can be sent and received to make the mobile phone work better, and the mobile phone generally uses one of the antennas at a time. It is necessary to select one of the antennas to be used in the mobile phone. At present, the mobile phone selects the antenna with better performance by measuring the performance of the antenna.
  • the antenna switching of the mobile phone is performed by comparing and comparing in the traditional measurement time window.
  • the mobile phone performs multiple rounds of measurement on the performance of the two antennas in the traditional measurement time window. Comparing the respective measurement results, and comparing the obtained comparison results of the two antennas, judging whether the performance of the other antenna is better than the performance of the currently used antenna, if the performance of the other antenna is better than the currently used antenna The performance is good enough, then the phone then performs antenna switching.
  • the length of the traditional measurement time window is generally longer, so that some communication channels will attenuate faster, especially for scenes with limited uplink transmission, it is possible that the mobile phone will be traditionally measured. If the time window is long, it is not possible to switch to a better antenna in time to cause a dropped call.
  • the embodiment of the present application provides an antenna switching method and device, which are used to improve communication quality.
  • an antenna switching method which can be performed by an antenna switching device, for example, by an access network device, or by a terminal device, such as a base station.
  • the method includes: transmitting data through a first antenna; measuring signal quality of the first antenna and signal quality of the second antenna; determining signal quality of the second antenna is better than signal quality of the first antenna, and transmitting
  • the number of retransmissions of the data is greater than or equal to a preset threshold N, N being a positive integer; switching from the first antenna to the second antenna to transmit the data through the second antenna.
  • the device in addition to measuring the signal quality of the antenna, it may be determined whether the number of retransmissions of the data is greater than or equal to N. If both conditions are met, it indicates that there is an antenna switching requirement, and the device will By performing antenna switching, it is possible to achieve more accurate switching, and it is not necessary to wait for the length of the traditional measurement time window as in the prior art, which can effectively reduce the delay of antenna switching, help to achieve faster switching of the antenna, and minimize equipment. The possibility of dropped calls increases the quality of communication.
  • the determining that the signal quality of the second antenna is better than the signal quality of the first antenna, and the number of retransmissions of transmitting the data is greater than or equal to a preset threshold N includes: determining the Whether the signal quality of an antenna is better than the signal quality of the second antenna; and if the signal quality of the second antenna is better than the signal quality of the first antenna, further determining the number of retransmissions of transmitting the data Greater than or equal to the preset threshold N.
  • the determining that the signal quality of the second antenna is better than the signal quality of the first antenna, and the number of retransmissions of transmitting the data is greater than or equal to a preset threshold N, including: comparing sending Determining the number of retransmissions of the data and the preset threshold value N; further determining that the signal quality of the second antenna is better than the first antenna if the number of retransmissions of the data is greater than or equal to a preset threshold N Signal quality.
  • the determining that the signal quality of the second antenna is better than the signal quality of the first antenna, and the number of retransmissions of transmitting the data is greater than or equal to a preset threshold N, including: comparing sending the Counting the number of retransmissions of the data with the preset threshold N, and comparing the signal quality of the first antenna with the signal quality of the second antenna; determining that the signal quality of the second antenna is better than the signal quality of the first antenna And the number of retransmissions of transmitting the data is greater than or equal to a preset threshold N.
  • the signal quality of the second antenna may be determined to be better than the signal quality of the first antenna, and then the number of retransmissions of the data is determined to be greater than or equal to a preset threshold N, or the weight of the data may be determined first.
  • the number of transmissions is greater than or equal to the preset threshold N, and then determining that the signal quality of the second antenna is better than the signal quality of the first antenna.
  • the signal quality of the second antenna is better than the signal quality of the first antenna, and the number of retransmissions of transmitting the data is greater than or equal to a preset threshold N, in such a manner that the two processes operate in parallel. It is faster and can further reduce the delay of antenna switching.
  • the measuring the signal quality of the first antenna and the signal quality of the second antenna comprises: performing at least the first antenna and the second antenna respectively in a measurement time window Measuring once to obtain a signal quality of the first antenna and a signal quality of the second antenna, the length of the measurement time window being smaller than a length of a conventional measurement time window, the conventional measurement time window being applied regardless of transmission A conventional antenna switching method for the number of retransmissions of the data.
  • the measuring antenna is measured in the traditional measurement time window, which is equivalent to waiting for the length of the traditional measurement time window to complete the antenna switching.
  • the conventional switching method is a method that does not consider the number of retransmissions of the transmitted data. Therefore, for the more accurate consideration of switching, the length of the conventional measurement time window is generally longer.
  • the number of retransmissions of the data may be considered, that is, the accuracy of the handover is ensured by measuring the signal quality of the antenna and the number of retransmissions of the transmitted data.
  • the embodiment of the present application does not need to wait for a long time after measuring the signal quality of the antenna, and the antenna switching can be performed as long as the number of retransmissions is greater than or equal to the preset threshold N. Therefore, the measurement time in the embodiment of the present application is performed.
  • the length of the window does not need to be too long, and the short measurement window can meet the requirements of the embodiment of the present application.
  • the length of the measurement time window in the embodiment of the present application is smaller than the length of the traditional measurement time window. The method reduces the delay of antenna switching and improves the communication quality.
  • the physical layer entity in the communication device receives the indication information sent by the high-level entity, where the indication information is used to indicate the number of retransmissions of the data.
  • Data retransmission is generally done in a high-level entity, such as RLC or LAPDM. Then, the high-level entity can count the number of retransmissions of the data, and can send the indication information to the physical layer entity, where the indication information is used to indicate the number of retransmissions of the data, and the physical layer entity receives the indication information from the high-layer entity, according to The indication information can be used to know the number of retransmissions of the data.
  • the effective switching between the physical layer entity and the upper layer entity enables the physical layer entity to learn the number of retransmissions of the data, so that the antenna switching method provided by the embodiment of the present application can be implemented.
  • the retransmission is an ARQ or HARQ retransmission.
  • the embodiment of the present application does not limit the type of retransmission.
  • the determining that the signal quality of the second antenna is better than the signal quality of the first antenna comprises: when the signal quality of the second antenna exceeds the signal quality of the first antenna to reach a preset And determining a signal quality of the second antenna that is better than a signal quality of the first antenna.
  • the preset signal quality threshold can be determined according to the difference in performance caused by the difference in signal quality between the antennas. For example, if the difference between the signal quality of the two antennas is less than the preset signal quality threshold, the two can be considered as two The performance of the antenna is similar, there is no need to switch, reducing the power consumption of the device due to switching, and if the difference between the signal quality of the second antenna and the signal quality of the first antenna is greater than or equal to the preset signal quality threshold, This indicates that the performance of the second antenna is superior, and switching to the second antenna results in better communication quality, so that switching can be performed. By setting a preset signal quality threshold, the switching can be made more accurate, and the switching will result in better communication quality.
  • an antenna switching device has the function of implementing a switching device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the antenna switching device can be implemented by using an access network device or by using a terminal device.
  • the specific structure of the antenna switching device may include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the antenna switching methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • an antenna switching device has the function of implementing a switching device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the antenna switching device can be implemented by using an access network device or by using a terminal device.
  • the specific structure of the antenna switching device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions in the antenna switching method provided by any of the above first aspect or any of the possible aspects of the first aspect.
  • a communication device has the function of implementing an antenna switching device in the above method design.
  • the communication device may be an access network device in the above method design, or a chip disposed in the access network device.
  • the communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the antenna switching device of any of the first aspect or the first aspect of the first aspect.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design The antenna switching method.
  • a sixth aspect provides a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the above-described first aspect or any one of the possible aspects of the first aspect The antenna switching method described in the above.
  • the length of the time window can effectively reduce the delay of antenna switching, which helps to achieve faster switching of the antenna and improve communication quality.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an access network device and a terminal device according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an antenna switching method according to an embodiment of the present application.
  • FIG. 4 is a flowchart of an antenna switching method according to an embodiment of the present application.
  • FIG. 5 is a flowchart of an antenna switching method according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an antenna switching method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a user plane protocol stack involved in ARQ/HARQ;
  • FIG. 8 is a schematic diagram of a high-level entity sending indication information to a physical layer entity according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a high-level entity sending notification information to a physical layer entity according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of antenna switching performed by an antenna switching device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an antenna switching device according to an embodiment of the present disclosure.
  • Terminal devices Also referred to as terminals, including devices that provide voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user equipment (user) Device) and so on.
  • AP access point
  • remote terminal access terminal, user terminal, user agent, or user equipment (user) Device
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • Network device the embodiment of the present application mainly includes an access network device, and the access network device includes, for example, a base station (for example, an access point), which may refer to an access network that passes through one or more cells on an air interface.
  • a base station for example, an access point
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the next generation node B (gNB) in the 5G NR system may be included in the embodiment of the present application.
  • the embodiments of the present application refer to "first”, “second”, etc. ordinal numbers for distinguishing multiple objects, and are not used to limit the order, timing, position, priority, or importance of multiple objects. degree.
  • the access network device 20 and the terminal device 30 are included in FIG. 1.
  • the access network device 20 is, for example, an access network device as described in the second clause of the foregoing, for example, a base station, and the terminal device 30 is, for example, the first one as before.
  • the terminal device introduced in the clause, the access network device 20 and the terminal device 30 are communicable.
  • the number of terminal devices 30 in FIG. 1 is only an example.
  • the access network device 20 can provide services for a plurality of terminal devices 30.
  • the access network device 20 in Figure 1 is, for example, a base station.
  • the antenna switching method provided by the embodiment of the present application may be performed by the access network device 20 or by the terminal device 30, which will be described later.
  • the structure of the device provided by the embodiment of the present application that is, the structure of the access network device 20 and the terminal device 30 shown in FIG. 1 is first introduced. It should be understood that the structure described below is only an example, and the embodiment of the present application does not limit the specific structure of the device.
  • FIG. 2 is a schematic structural diagram of hardware structures of an access network device 20 and a terminal device 30 according to an embodiment of the present application.
  • the terminal device 30 includes at least one processor 301, at least one memory 302, and at least one transceiver 303.
  • the terminal device 30 may further include one or more antennas 31, an output device 304, and an input device 305.
  • the processor 301, the memory 302, and the transceiver 303 are coupled through a connector, and the connector may include various types of interfaces, transmission lines, or buses, etc., which are not limited in this embodiment of the present application. In various embodiments of the present application, coupling refers to interconnections in a particular manner, including being directly connected or indirectly connected by other devices.
  • the processor 301 may include at least one type of device: a central processing unit (CPU), a digital signal processor (DSP), a microprocessor, and an application specific integrated circuit ASIC (application- Specific integrated circuit (ASIC), microcontroller (MCU), field programmable gate array (FPGA), or integrated circuit for implementing logic operations.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application- Specific integrated circuit
  • MCU microcontroller
  • FPGA field programmable gate array
  • the processor 301 can be a single-CPU processor or a multi-core processor.
  • the plurality of processors or units included within processor 301 may be integrated in one chip or on multiple different chips.
  • the processor 301 may be a baseband processor, and the processor 301 may form a physical layer entity by executing a physical layer communication protocol, or may form a high-level entity by executing a high-level communication protocol, which will be introduced later in this embodiment of the present application.
  • the measurement of the signal quality of the antenna, the decision whether to perform antenna switching, and the control of antenna switching are all implemented in the physical layer entity.
  • a communication processor 3010 may be included in the processor 301, and the role of the communication processor 3010 will be described later.
  • the chip in question is a system fabricated on the same semiconductor substrate by an integrated circuit process, also called a semiconductor chip, which may be fabricated on the substrate by an integrated circuit process (usually, for example, silicon one).
  • the integrated circuit may include various functional devices, each of which includes a logic gate circuit, a metal-oxide-semiconductor (MOS) transistor, a bipolar transistor or a diode, and may also include a capacitor and a resistor. Or other components such as inductors.
  • MOS metal-oxide-semiconductor
  • bipolar transistor or a diode may also include a capacitor and a resistor. Or other components such as inductors.
  • Each functional device can work independently or with the necessary driver software to implement various functions such as communication, computing, or storage.
  • the memory 302 in FIG. 2 may be a non-power-down volatile memory, such as an EMMC (embedded multi media card), a UFS (universal flash storage), or a read-only memory (read-only memory).
  • EMMC embedded multi media card
  • UFS universal flash storage
  • read-only memory read-only memory
  • ROM read-only memory
  • static storage devices that can store static information and instructions, and can also be volatile memory, such as random access memory (RAM) or storable information
  • RAM random access memory
  • Other types of dynamic storage devices of instructions may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • the memory 302 can be stand-alone and coupled to the processor 301 via a connector.
  • the memory 302 can also be integrated with the processor 301.
  • the memory 302 can store various types of computer program code for executing the program code of the solution of the present application, and is controlled and executed by the processor 301.
  • the various types of computer program code executed can also be regarded as the driver of the processor 301. program.
  • the processor 301 is configured to execute computer program code stored in the memory 302 to implement the antenna switching method in the subsequent embodiments of the present application.
  • the computer program code is large in number and can form computer executable instructions executable by at least one of the processors 301 to drive the associated processor to perform various types of processing, such as communication signals supporting the various types of wireless communication protocols described above. Processing algorithms, operating system runs, or application runs.
  • Transceiver 303 can be any device for effecting communication signal transceiving, such as a radio frequency transceiver, which can be specifically coupled to antenna 31.
  • the transceiver 303 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 31 can receive radio frequency signals
  • the receiver Rx of the transceiver 303 is configured to receive the radio frequency signals from an antenna and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and the digital
  • the baseband signal or digital intermediate frequency signal is provided to a communication processor 3010 included in the processor 301 for the communication processor 3010 to further process the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 303 is further configured to receive the modulated digital baseband signal or digital intermediate frequency signal from the communication processor 3010, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal and pass One or more antennas 31 transmit the radio frequency signals.
  • the receiver Rx may selectively perform one or more stages of downmix processing and analog to digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal, the downmix processing and the analog to digital conversion processing. The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or the digital intermediate frequency signal to obtain a radio frequency signal, the upmixing processing and the digital to analog conversion processing.
  • the order is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • Output device 304 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 304 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • Input device 305 is in communication with processor 301 and can accept user input in a variety of ways.
  • input device 305 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the access network device 20 includes at least one processor 201, at least one memory 202, at least one transceiver 203, one or more antennas 21, and at least one network interface 204.
  • Processor 201, memory 202, transceiver 203, and network interface 204 are coupled by a connector.
  • the network interface 204 is for coupling with the core network device 40 via a communication link, such as an S1 interface.
  • network interface 204 is connected to the network interface of other access network devices via a wired or wireless link, such as an X2 interface.
  • the connection mode is not specifically shown. The embodiment of the present application does not specifically limit the specific connection mode.
  • the processor 201 may include a communication processor for polariating information or data that needs to be transmitted to the terminal device 30 to obtain a polarization code sequence, and modulating the polarization code sequence to generate modulated data for passage.
  • the transmitter Tx in the transceiver 203 is transmitted to the antenna, and details are not described herein again.
  • the structure of the device provided by the embodiment of the present application is as described above. Referring to FIG. 3, an antenna switching method according to an embodiment of the present application is introduced.
  • the device involved in the method is shown in FIG.
  • the device structure implementation in the illustrated embodiment is an example.
  • the device for performing the antenna switching method of the embodiment shown in FIG. 3 is referred to as an antenna switching device, and the antenna switching device may be implemented by the terminal device 30 or may be implemented by the access network device 20.
  • the antenna switching device is implemented by the terminal device 30 as an example.
  • the terminal device 30 has a plurality of antennas 31.
  • the terminal device 30 has two antennas 31 as an example.
  • the two antennas 31 are respectively referred to as the first The antenna 31 and the second antenna 31. That is, the terminal device 30 has two antennas 31.
  • the number of the antennas 31 is not limited in the embodiment of the present application.
  • the antenna switching method provided by the embodiment of the present application can be applied regardless of the number of the antennas 31 of the terminal device 30.
  • the terminal device 30 first transmits data through the first antenna 31.
  • the transceiver 303 of the terminal device 30 may transmit data through the first antenna 31, and the data may be uplink data.
  • the data may be the service data, or may be the control information, etc., which is not limited in the embodiment of the present application.
  • the access network device 20 can also perform the method of the embodiment.
  • the following embodiments continue to introduce the technical solution by taking the terminal device 30 as an example.
  • the terminal device 30 can measure the signal quality of the first antenna 31 and the signal quality of the second antenna 31, for example, the terminal device 30 can measure the first antenna 31 and in the measurement time window.
  • the second antenna 31 performs at least one measurement, respectively, to obtain the signal quality of the first antenna 31 and the signal quality of the second antenna 31. That is, the signal quality of the first antenna 31 may be obtained by performing one measurement on the first antenna 31, which is relatively simple and fast, or may be comprehensively evaluated after performing multiple measurements on the first antenna 31, which may be more accurate.
  • the signal quality of the two antennas 31 is also the same. In practical applications, different methods can be adopted according to different requirements.
  • the terminal device 30 measures the signal quality of the first antenna 31 and the signal quality of the second antenna 31, and may be the processor 301 in the terminal device 30 measures the signal quality of the first antenna 31 and the signal quality of the second antenna 31.
  • the processor 301 can form a physical layer entity by performing a physical layer communication protocol, and then the signal quality of the first antenna 31 and the signal quality of the second antenna 31 can be measured by the physical layer entity.
  • the physical layer entity may be in the form of software and executed by processor 301. Alternatively, the physical layer entity may be formed by a hardware circuit in the processor 301.
  • the measuring antenna is measured in the traditional measurement time window, which is equivalent to waiting for the length of the traditional measurement time window to complete the antenna switching.
  • the conventional switching method does not consider transmitting data.
  • the method of retransmission times so the length of the conventional measurement time window is generally longer for the sake of more accurate switching.
  • the number of retransmissions of the data may be considered, that is, the accuracy of the handover is ensured by measuring the signal quality of the antenna and the number of retransmissions of the transmitted data.
  • the embodiment of the present application does not need to wait for a long time after measuring the signal quality of the antenna, and the antenna switching can be performed as long as the number of retransmissions is greater than or equal to the preset threshold N. Therefore, the measurement time in the embodiment of the present application is performed.
  • the length of the window does not need to be too long, and the short measurement window can meet the requirements of the embodiment of the present application.
  • the length of the measurement time window in the embodiment of the present application is smaller than the length of the traditional measurement time window. The method reduces the delay of antenna switching and improves the communication quality.
  • the conventional antenna switching method only determines whether to switch by measuring the performance of the antenna, and the performance of the measuring antenna is realized by measuring the downlink signal, that is, the conventional antenna switching method only considers the downlink situation, and the present application implements
  • the technical solution provided by the example considers the number of retransmissions in addition to the downlink situation, and the retransmission may be an uplink retransmission, that is, considering both the downlink situation and the uplink situation, thereby considering various aspects. Then comprehensively decide whether to perform antenna switching, so that the result of antenna switching is more accurate.
  • the technical solution of the embodiment of the present application can effectively reduce the possibility of dropped calls of the device and ensure the continuity of the service.
  • the data retransmission may refer to an automatic repeat-request (ARQ) retransmission, or may also refer to a hybrid automatic repeat request (HARQ) retransmission.
  • ARQ automatic repeat-request
  • HARQ hybrid automatic repeat request
  • the terminal device 30 determines that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, and the number of retransmissions of the data is greater than or equal to the preset threshold value N. It is determined that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, and the processor 301 determines that the number of retransmissions for transmitting the data is greater than or equal to the preset threshold N, that is, processed by the processor 301. Further, it may be processed by a physical layer entity formed by the processor 301. The processor 301 determines that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, and the number of retransmissions of transmitting the data is greater than or equal to the preset threshold N, which may be implemented in different manners.
  • FIG. 4 can be understood as a refinement of S313 in the embodiment shown in FIG. 3 , so other steps shown in FIG. 4 can refer to the embodiment shown in FIG. 3 .
  • S42 If it is determined that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, further determine that the number of retransmissions for transmitting the data is greater than or equal to a preset threshold N. If it is determined that the number of retransmissions of the data is less than the preset threshold N, S312 may be performed, which is not shown in FIG.
  • the signal quality is determined first, and then the number of retransmissions is compared.
  • FIG. 5 wherein FIG. 5 can be understood as a refinement of S313 in the embodiment shown in FIG. 3, so other steps shown in FIG. 5 can be referred to FIG. Introduction of the embodiment:
  • S52 If the number of retransmissions of the data is greater than or equal to the preset threshold N, further determine that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31. Wherein, if it is determined that the signal quality of the second antenna 31 is not better than the signal quality of the first antenna 31, S312 may be performed, which is not shown in FIG.
  • the number of retransmissions is compared first, and then the signal quality is determined.
  • the two processes are serialized in the above two ways, and another process is performed after obtaining one result, so that if one result does not satisfy the requirement, there is no need to perform another process, and the implementation shown in FIG. 5 is taken as an example, if S51
  • the comparison result is that the number of retransmissions of the data is less than or equal to the preset threshold N, and the processor 301 does not need to determine whether the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, so that the work of the processor 301 can be reduced. Consumption, the requirements on the processor 301 are lower.
  • FIG. 6 wherein FIG. 6 can be understood as a refinement of S313 in the embodiment shown in FIG. 3 , so other steps shown in FIG. 6 can be referred to FIG. 3 .
  • the terminal device 30 compares the number of retransmissions of the transmitted data with the preset threshold N, which may be performed by the processor 301 in the terminal device 30, and further, may be completed by the physical layer entity formed by the processor 301.
  • the processor 301 can also form a high-level entity by executing a high-level communication protocol, which can be in the form of software and executed by the processor 301.
  • the higher layer entity may be formed by a hardware circuit in the processor 301.
  • high-level entities exist in software.
  • the data retransmission is generally performed in a high-level entity, and the protocol used by the high-level entity is, for example, a radio link control (RLC) or a link access protocol on the dm channel (LAPDM).
  • RLC radio link control
  • LAPDM link access protocol on the dm channel
  • the terminal device communicates with the base station, where the terminal device includes a packet data convergence protocol (PDCP) layer, an RLC layer, a media access control (MAC) layer, and a physical layer (physical layer, PHY), then, the physical layer entity described in the previous section can be understood as PHY.
  • the base station also includes a PDCP layer, an RLC layer, a MAC layer, and a PHY. Any one of the PDCP layer and the RLC layer can be regarded as a high layer, that is, the high-level entity described in FIG. 7 is an RLC entity.
  • each layer interacts with a corresponding layer of the peer device, for example, the PDCP layer of the terminal device interacts with the PDCP layer of the base station, the RLC layer of the terminal device interacts with the RLC layer of the base station, and the like.
  • the PDCP layer of the terminal device interacts with the PDCP layer of the base station
  • the RLC layer of the terminal device interacts with the RLC layer of the base station, and the like.
  • the high-level entity may collect the number of retransmissions of the data, and may send the indication information to the physical layer entity.
  • the indication information is used to indicate the number of retransmissions of the data
  • the physical layer is The entity receives the indication information from the high-level entity, and according to the indication information, the number of retransmissions of the data is known.
  • the high-level entity may continuously retransmit the data, the high-level entity may accumulate the number of retransmissions of the data every time it is retransmitted, and the high-level entity may send an indication message to the physical layer entity every time it is accumulated, the indication
  • the information is used to indicate the number of retransmissions after the accumulation, so that the physical layer entity can know the latest retransmission times in time.
  • the physical layer entity is required to determine the number of retransmissions of the data and the preset threshold N.
  • the size relationship for example, the physical layer entity may make a decision every time the indication information is received, or may also make a decision after receiving the indication information multiple times, or the high-level entity may also send the physical layer entity after the accumulation of M times.
  • the indication information is used to indicate the number of retransmissions after the final accumulation, so that the interaction between the upper layer entity and the physical layer entity can be reduced.
  • the retransmission of the data can be decided by the physical layer entity.
  • the relationship between the number of times and the preset threshold N, or the high-level entity may also decide to transmit the retransmission of the data.
  • the relationship between the number of times and the preset threshold value N may be used to the physical layer entity when the number of retransmissions of the data is greater than or equal to the preset threshold value N, and the physical layer entity only needs to receive the indication information. It can be determined that the number of retransmissions of the data is greater than or equal to the preset threshold N, and the workload of the physical layer entity is reduced without excessive judgment.
  • the high-level entity may indicate other information to the physical layer entity in addition to indicating the number of retransmissions to the physical layer entity. For example, if the previous data retransmission ends, the physical layer entity may not need to decide whether to perform antenna switching, or if there is new data after the previous data retransmission ends, the physical layer entity may restart for the newly transmitted data. It is decided whether to perform antenna switching. Therefore, it is necessary for the physical layer entity to know whether the data retransmission has ended. Then, in the embodiment of the present application, if the data retransmission ends, the high-layer entity may also send notification information to the physical layer entity, where the notification information is used to indicate that the data retransmission is ended, and the physical layer entity receives the notification.
  • the physical layer entity can restart the decision process. Of course, it depends on whether the new data is retransmitted. If the new data is retransmitted, the high-level entity can go to the physical again. If the layer entity sends the indication information, the physical layer entity will start to decide whether to perform the antenna handover again. If the retransmission of the new transmission data does not occur, the high layer entity does not send the indication information to the physical layer entity, and the physical layer entity may not decide whether to perform the handover. Antenna switching. Alternatively, if there is no new data, that is, the data transmission process has ended, the physical layer entity may also save the power consumption of the processor 301 by not deciding whether to perform antenna switching.
  • measurement of the signal quality of the antenna can be achieved by measuring the signal received by the antenna. Specifically, it may be a signal that the antenna receives from a peer device, such as the access network device 20.
  • measuring the signal quality of the antenna can also be understood as measuring the signal strength of the antenna, the signal energy of the antenna, the channel characteristics, or the error rate of the received signal.
  • the received signal strength indication (RSSI)/received signal code power (RSCP)/reference signal receiving power (RSRP) of the signal received by the antenna may be measured, or Ratio of received chip signal strength to noise intensity of the signal received by the antenna (EcIo) / ratio of modulated bit power to noise spectral density (EcNo) / signal-to-noise ratio (SNR) / reference signal reception Reference signal receiving quality (RSRQ), or bit error ratio (BER)/block error rate (BLER)/packet error ratio (PER), etc.
  • EcIo Ratio of received chip signal strength to noise intensity of the signal received by the antenna
  • EcNo modulated bit power to noise spectral density
  • SNR signal-to-noise ratio
  • RSRQ reference signal reception Reference signal receiving quality
  • BER bit error ratio
  • BLER block error rate
  • PER packetet error ratio
  • the signal quality of the second antenna 31 exceeds the signal quality of the first antenna 31, that is, when the signal quality of the second antenna 31 and the signal quality of the first antenna 31 are When the difference is greater than or equal to the preset signal quality threshold, it can be determined that the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, and the signal quality of the second antenna 31 and the signal of the first antenna 31 are When the difference of the quality is less than the preset signal quality threshold, it can be determined that the signal quality of the second antenna 31 is not better than the signal quality of the first antenna 31, which is not superior, including two cases, the signal of the first antenna 31 The quality is similar to the signal quality of the second antenna 31, or the signal quality of the first antenna 31 is better than the signal quality of the second antenna 31.
  • the preset signal quality threshold can be determined according to the difference in performance caused by the difference in signal quality between the antennas. For example, if the difference between the signal quality of the two antennas is less than the preset signal quality threshold, the two can be considered as two The performance of the antenna is similar, and there is no need for switching. If the difference between the signal quality of the second antenna 31 and the signal quality of the first antenna 31 is greater than or equal to the preset signal quality threshold, it indicates that the performance of the second antenna 31 is more Advantageously, switching to the second antenna 31 results in better communication quality and therefore switching is possible.
  • a preset signal quality threshold may be set to 2 dB, then if the RSSI of the signal received by the second antenna 31 is the first The difference between the RSSIs of the signals received by the antenna 31 is greater than or equal to 2 dB, indicating that the signal quality of the second antenna 31 is superior to the signal quality of the first antenna 31.
  • the 2dB here is of course only an example, and there are different settings in practical applications.
  • the terminal device 30 performs the antenna switching
  • the processor 301 controls the transceiver 303 (including the switch) or the switch at the front end of the transceiver 303 to switch between the antennas.
  • the physical layer entity controls the switch of the front end to switch between different antennas.
  • the front end switch is, for example, a double pole double throw (DPDT), or other types of switches.
  • FIG. 10 which is a schematic diagram of the processor 301 controlling antenna switching. 10 includes a processor 301, a transmitter Tx, a receiver Rx, a switch 1001, a first antenna 31, and a second antenna 31.
  • the transmitter Tx and the receiver Rx belong to the transceiver 303, and the processor 301 can execute the embodiment of the present application.
  • the switch 1001 takes a DPDT switch as an example.
  • the processor 301 is controlling the switch 1001 such that the first antenna 31 is turned on with the transmitter Tx and the receiver Rx, and the second antenna 31 is turned off. Then, it is possible that the signal quality of the first antenna 31 is deteriorated, the signal quality of the second antenna 31 is better than the signal quality of the first antenna 31, and the processor 301 decides to switch to the second antenna 31, the processor 301 can control the switch 1001.
  • the first antenna 31 is turned off, and the second antenna 31 is turned on with the transmitter Tx and the receiver Rx, so that the transmitter Tx switches to the second antenna 31 to transmit data, thereby improving communication quality.
  • the corresponding embodiment of FIG. 10 is merely for the sake of example, and the number of antennas 31 in the actual system may be many.
  • the transmitter Tx or the receiver Rx can be switched from the first antenna 31 being used to the second antenna 31 not being used under the action of the switch 1001.
  • the first antenna 31 and the second antenna 31 may be multiple-input multiple-output (MIMO) operations, and the number of transmitters Tx and Rx may be many, or each transmitter Tx or
  • the receiver Rx can include multiple channels.
  • Each of the transmitter Tx or the transmitter Tx can be selectively switched from the first antenna 31 to the second antenna 31.
  • the two transmission channel switching antennas 31 can be implemented by switching.
  • the terminal device 30 transmits data through the second antenna 31.
  • the transceiver 303 of the terminal device 30 can transmit data through the second antenna 31.
  • the data transmitted here may be data that was previously retransmitted through the first antenna 31, or If the previous retransmission process has ended, the data transmitted by the second antenna 31 may also be newly transmitted data.
  • the antenna switching device in addition to measuring the signal quality of the antenna, it may be determined whether the number of retransmissions of the data is greater than or equal to N, and the accuracy of the handover may be ensured by the two conditions, thereby being in the antenna switching process. There is no need to wait for the length of the traditional measurement time window, which can achieve more accurate switching, and can effectively reduce the delay of antenna switching, which helps to achieve faster switching of the antenna. If the antenna switching device is a terminal device, it can be minimized. The possibility of dropped calls on the device improves the communication quality.
  • FIG. 2 has already described a structure of the device provided by the embodiment of the present application.
  • FIG. 11 another structure of the device provided by the embodiment of the present application is further described.
  • FIG. 11 shows a schematic structural diagram of an antenna switching device 1100.
  • the antenna switching device 1100 can implement the functions of the antenna switching device referred to above. If the antenna switching device 1100 is implemented by the terminal device 30 described above, the antenna switching device 1100 may be the terminal device 30 described above, or may be a chip disposed in the terminal device 30 described above. Alternatively, if the antenna switching device 1100 is implemented by the access network device 20 described above, the antenna switching device 1100 may be the access network device 20 described above, or may be configured as described above. The chip in the network device 20.
  • the antenna switching device 1100 can include a processing module 1101 and a transceiver module 1102.
  • the processing module 1101 can be implemented by the processor 301, and the transceiver module 1101 can transmit and receive
  • the processor 303 is implemented by the transceiver 203.
  • the processor module 1101 can be implemented by the processor 201.
  • the transceiver module 1101 can be implemented by the transceiver 203.
  • the processing module 1101 can be used to execute S312, S313, and S314 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the processing module 1101 performs S314, mainly to complete switching from the first antenna 31 to the second antenna 31.
  • the transceiver module 1102 can be used to perform S311 and S312 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver module 1102 performs S314. After the processor 301 switches to the second antenna 31, the transceiver module 1102 transmits the data through the second antenna 31.
  • the transceiver module 1102 is configured to transmit data through the first antenna
  • the processing module 1101 is configured to measure a signal quality of the first antenna and a signal quality of the second antenna, and determine that a signal quality of the second antenna is better than
  • the signal quality of the first antenna and the number of retransmissions of the data are greater than or equal to a preset threshold N, N is a positive integer, and the control transceiver module 1102 switches from the first antenna to the second antenna;
  • the module 1102 is further configured to transmit the data through the second antenna under the control of the processing module 1101.
  • the modules of the corresponding embodiment of Figure 11 may be software, hardware or a combination of both.
  • the antenna switching device 1100 provided by the embodiment of the present application is another implementation form of the terminal device 30 or the access network device 20 shown in FIG. 2, and the antenna switching device 1100 can be used to perform the embodiment provided in FIG.
  • the antenna switching device 1100 can be used to perform the embodiment provided in FIG.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, apparatus (such as antenna switching device 1100 of FIG. 11), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device, such as processor 301 in FIG.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) )) etc., for example, may be the memory 302 in FIG.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种天线切换方法及设备,用于提高通信质量。天线切换方法包括:通过第一天线传输数据;测量所述第一天线的信号质量以及所述第二天线的信号质量;确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数;从所述第一天线切换到所述第二天线以通过所述第二天线传输所述数据。

Description

一种天线切换方法及设备
本申请要求在2017年10月12日提交中国专利局、申请号为201710948710.0、申请名称为“一种天线切换方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线切换方法及设备。
背景技术
现在的手机中可能会设置多个天线,且多个天线都可以单独工作,即,都可以进行信号收发,以使得手机更好的工作,手机在一个时刻一般使用其中的一个天线即可,这就涉及到手机要选择其中的一个天线来使用。目前,手机是通过对天线的性能进行测量来选择性能较好的天线使用。
具体的,手机的天线切换是在传统测量时间窗中进行评估比较来操作的,以手机中有两个天线为例,手机在传统测量时间窗中对这两个天线的性能进行多轮测量后,对各个测量结果进行比较,综合得到的这两个天线测量值的比较结果,判断另一根天线的性能是否比当前使用的天线的性能好,如果另一根天线的性能比当前使用的天线的性能足够好,则手机再进行天线切换。其中,为了使得切换更为准确,设置的传统测量时间窗的长度一般都比较长,这样在某些通信信道会衰减较快,特别是对于上行发送受限的场景,有可能手机会因为传统测量时间窗较长不能及时切换到较优的天线而导致掉话。
发明内容
本申请实施例提供一种天线切换方法及设备,用于提高通信质量。
第一方面,提供一种天线切换方法,该方法可由天线切换设备执行,天线切换设备例如通过接入网设备实现,或者通过终端设备实现,接入网设备例如基站。该方法包括:通过第一天线传输数据;测量所述第一天线的信号质量以及所述第二天线的信号质量;确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数;从所述第一天线切换到所述第二天线以通过所述第二天线传输所述数据。
本申请实施例中,除了可以测量天线的信号质量之外,还可以确定对数据的重传次数是否大于或等于N,如果这两个条件都满足,则表明有天线切换的需求,设备就会进行天线切换,既可以实现较为准确的切换,也无需像现有技术一样等待传统测量时间窗的长度,能够有效减小天线切换的延时,有助于实现天线更快的切换,尽量减少设备出现掉话的可能性,提高通信质量。
在一个可能的设计中,所述确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,包括:确定所述第一天线的信号质量是否优于所述第二天线的信号质量;在所述第二天线的信号质量优于所述第一天线的信号质量的情况下,进一步确定发送所述数据的重传次数大于或等于所述预设阈值N。
在一个可能的设计中,所述确定第二天线的信号质量优于所述第一天线的信号质量, 以及发送所述数据的重传次数大于或等于预设阈值N,包括:比较发送所述数据的重传次数与所述预设阈值N;在发送所述数据的重传次数大于或等于预设阈值N的情况下,进一步确定所述第二天线的信号质量优于所述第一天线的信号质量。
在一个可能的设计中,所述确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,包括:比较发送所述数据的重传次数与所述预设阈值N,以及比较所述第一天线的信号质量和所述第二天线的信号质量;确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N。
即,可以先确定第二天线的信号质量优于所述第一天线的信号质量,再确定发送所述数据的重传次数大于或等于预设阈值N,或者可以先确定发送所述数据的重传次数大于或等于预设阈值N,再确定第二天线的信号质量优于所述第一天线的信号质量,如上两种方式将两个过程串行,在得到一个结果之后再进行另一个过程,这样,如果一个结果不满足要求则无需执行另一个过程,这样可以减小设备的功耗,对设备的要求较低。或者,也可以同时确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,这种方式对两个过程并行操作,较为快捷,可以进一步减小天线切换的时延。
在一个可能的设计中,所述测量所述第一天线的信号质量以及所述第二天线的信号质量,包括:在测量时间窗中对所述第一天线和所述第二天线分别执行至少一次测量,以得到所述第一天线的信号质量和所述第二天线的信号质量,所述测量时间窗的长度小于传统测量时间窗的长度,所述传统测量时间窗被应用于不考虑发送所述数据的重传次数的传统天线切换方法。
在传统的天线切换方法中,测量天线是在传统测量时间窗中测量,相当于,要等待传统测量时间窗的长度才能完成天线切换,传统切换方法是不考虑发送数据的重传次数的方法,因此出于切换更为准确的考虑,传统测量时间窗的长度一般较长。但本申请实施例中,除了测量天线的信号质量之外,还可以考虑数据的重传次数,即,通过测量天线的信号质量和发送数据的重传次数这两个方面尽量保证了切换的准确性,因此,本申请实施例在测量天线的信号质量后无需等待过长的时间,只要重传次数大于或等于预设阈值N,就可以进行天线切换,因此,本申请实施例中的测量时间窗的长度自然无需过长,只需较短的测量时间窗就能够满足本申请实施例的需求,显然,本申请实施例中的测量时间窗的长度会小于传统测量时间窗的长度,通过这种方式减小了天线切换的时延,提高了通信质量。
在一个可能的设计中,还包括:通信设备中的物理层实体接收高层实体发送的指示信息,所述指示信息用于指示发送所述数据的重传次数。
数据重传一般是在高层实体中完成,高层实体所使用的协议例如为RLC或LAPDM。那么,高层实体可以统计数据的重传次数,并可以向物理层实体发送指示信息,该指示信息就用于指示发送该数据的重传次数,则物理层实体从高层实体接收该指示信息,根据该指示信息就可以获知发送该数据的重传次数。通过物理层实体与高层实体之间的有效通信,使得物理层实体能够获知数据的重传次数,从而能够实现本申请实施例提供的天线切换方法。
在一个可能的设计中,所述重传是ARQ或HARQ重传。
本申请实施例对于重传的类型不作限制。
在一个可能的设计中,所述确定第二天线的信号质量优于所述第一天线的信号质量,包括:当所述第二天线的信号质量超过所述第一天线的信号质量达到预设信号质量门限时,确定所述第二天线的信号质量优于所述第一天线的信号质量。
预设信号质量门限值可根据天线之间的信号质量差异所带来的性能差异确定,例如,如果两个天线的信号质量之差小于预设信号质量门限值,则可以认为这两个天线的性能差不多,没有切换的必要,减小设备因切换而带来的功耗,而如果第二天线的信号质量与第一天线的信号质量之差大于或等于预设信号质量门限值,则表明第二天线的性能更为优越,切换到第二天线会得到更好的通信质量,因此就可以进行切换。通过设置预设信号质量门限值,能够使得切换更为准确,切换后会带来更好的通信质量。
第二方面,提供一种天线切换设备。该天线切换设备具有实现上述方法设计中的切换设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。该天线切换设备可通过接入网设备实现,也可通过终端设备实现。
在一个可能的设计中,该天线切换设备的具体结构可包括处理器和收发机。处理器和收发机可执行上述第一方面或第一方面的任意一种可能的设计所提供的天线切换方法中的相应功能。
第三方面,提供一种天线切换设备。该天线切换设备具有实现上述方法设计中的切换设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。该天线切换设备可通过接入网设备实现,也可通过终端设备实现。
在一个可能的设计中,该天线切换设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的天线切换方法中的相应功能。
第四方面,提供一种通信装置。该通信装置具有实现上述方法设计中的天线切换设备的功能。当天线切换设备通过接入网设备实现时,该通信装置可以为上述方法设计中的接入网设备,或者为设置在接入网设备中的芯片。当天线切换设备通过终端设备实现时,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中天线切换设备所执行的方法。
第五方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的天线切换方法。
第六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的天线切换方法。
本申请实施例中,除了可以测量天线的信号质量之外,还可以确定对数据的重传次数是否大于或等于N,从而既可以实现较为准确的切换,也无需像现有技术一样等待传统测量时间窗的长度,能够有效减小天线切换的延时,有助于实现天线更快的切换,提高通信质量。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的接入网设备和终端设备的结构示意图;
图3为本申请实施例提供的一种天线切换方法的流程图;
图4为本申请实施例提供的一种天线切换方法的流程图;
图5为本申请实施例提供的一种天线切换方法的流程图;
图6为本申请实施例提供的一种天线切换方法的流程图;
图7为ARQ/HARQ所涉及的用户面协议栈示意图;
图8为本申请实施例提供的高层实体向物理层实体发送指示信息的示意图;
图9为本申请实施例提供的高层实体向物理层实体发送通知信息的示意图;
图10为本申请实施例提供的天线切换设备进行天线切换的示意图;
图11为本申请实施例提供的天线切换设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备:也可以称之为终端,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,本申请实施例中主要包括接入网设备,接入网设备例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(long term evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR***中的下一代节点B(next generation node  B,gNB),本申请实施例并不限定。
3)本申请实施例中的术语“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、位置、优先级或者重要程度。
请参考图1,介绍本申请实施例的一种应用场景。图1中包括接入网设备20和终端设备30,接入网设备20例如为如前的第2)条中所介绍的接入网设备,例如基站,终端设备30例如为如前的第1)条中所介绍的终端设备,接入网设备20和终端设备30之间可通信。图1中的终端设备30的数量只是举例,在实际应用中,接入网设备20可以为多个终端设备30提供服务。图1中的接入网设备20例如为基站。其中,本申请实施例提供的天线切换方法既可以由接入网设备20执行,也可以由终端设备30执行,在后文中将进行介绍。
为了更便于理解本申请实施例提供的天线切换方法,下面先介绍一下本申请实施例提供的设备的结构,也就是图1中所示的接入网设备20和终端设备30的结构。需理解的是,下面介绍的结构只是示例,本申请实施例不限制设备的具体结构。
请参见图2,为本申请实施例提供的接入网设备20和终端设备30的硬件结构示意图,。终端设备30包括至少一个处理器301、至少一个存储器302、至少一个收发机303。可选的,终端设备30还可以包括一个或多个天线31、输出设备304和输入设备305。
处理器301、存储器302和收发机303通过连接器相耦合,所述连接器可包括各类接口、传输线或总线等,本申请实施例对此不做限定。在本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或通过其他设备间接相连。处理器301可以包括如下至少一种类型的器件:中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、微处理器、特定应用集成电路专用集成电路(application-specific integrated circuit,ASIC)、微控制器(microcontroller unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器301可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。处理器301内包括的多个处理器或单元可以是集成在一个芯片中或位于多个不同的芯片上。本申请实施例中,处理器301可以是基带处理器,则处理器301可以通过执行物理层通信协议形成物理层实体,也可以通过执行高层通信协议形成高层实体,本申请实施例后续将要介绍的对天线的信号质量的测量、判决是否进行天线切换和控制天线切换等操作均在所述物理层实体中实现。示例性地,如图2所示,处理器301中可以包括通信处理器3010,关于通信处理器3010的作用将在后文中介绍。
在本发明实施例中,涉及的芯片是以集成电路工艺制造在同一个半导体衬底上的***,也叫半导体芯片,其可以是利用集成电路工艺制作在所述衬底(通常是例如硅一类的半导体材料)上形成的集成电路的集合,其外层通常被半导体封装材料封装。所述集成电路可以包括各类功能器件,每一类功能器件包括逻辑门电路、金属氧化物半导体(metal-oxide-semiconductor,MOS)晶体管、双极晶体管或二极管等晶体管,也可包括电容、电阻或电感等其他部件。每个功能器件可以独立工作或者在必要的驱动软件的作用下 工作,可以实现通信、运算、或存储等各类功能。
图2中的存储器302可以是非掉电易失性存储器,例如是EMMC(embedded multi media card,嵌入式多媒体卡)、UFS(universal flash storage,通用闪存存储)或只读存储器(read-only memory,ROM),或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质,但不限于此。存储器302可以是独立存在,通过连接器与处理器301相耦合。存储器302也可以和处理器301集成在一起。其中,存储器302能够存储执行本申请方案的程序代码在内的各类计算机程序代码,并由处理器301来控制执行,被执行的各类计算机程序代码也可被视为是处理器301的驱动程序。例如,处理器301用于执行存储器302中存储的计算机程序代码,从而实现本申请后续实施例中的天线切换方法。所述计算机程序代码数量很大,可形成能够被处理器301中的至少一个处理器执行的计算机可执行指令,以驱动相关处理器执行各类处理,如支持上述各类无线通信协议的通信信号处理算法、操作***运行或应用程序运行。
收发机303可以是任何用于实现通信信号收发的装置,例如射频收发机,其具体可以耦合至天线31。收发机303包括发射机Tx和接收机Rx。具体地,一个或多个天线31可以接收射频信号,该收发机303的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器301中包括的通信处理器3010,以便通信处理器3010对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发机303中的发射机Tx还用于从通信处理器3010接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线31发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
请继续参见图2,接入网设备20包括至少一个处理器201、至少一个存储器202、至少一个收发机203、一个或多个天线21、和至少一个网络接口204。处理器201、存储器202、收发机203和网络接口204通过连接器相耦合。其中,网络接口204用于通过通信链路,例如S1接口,与核心网设备40耦合。或者网络接口204通过有线或无线链路,例 如X2接口,与其它接入网设备的网络接口进行连接。图中对连接方式具体如何未示出,本申请实施例对具体连接方式是什么也不作具体限定。另外,天线21、处理器201、存储器202和收发机203的相关描述可参考终端设备30中天线31、处理器301、存储器302和收发机303的描述,以实现类似功能。例如,处理器201可包括通信处理器,用于对需要发送至终端设备30的信息或数据做极化编码得到极化码序列,并对极化码序列做调制以生成调制后的数据以便通过收发器203中的发射机Tx传输至天线,在此不再赘述。
如上介绍了本申请实施例提供的设备的结构,下面请参见图3,介绍本申请实施例提供的一种天线切换方法,在下文的介绍过程中,以该方法中涉及的设备通过图2所示的实施例中的设备结构实现为例。其中,执行图3所示的实施例的天线切换方法的设备称为天线切换设备,该天线切换设备可以通过终端设备30实现,或者可以通过接入网设备20实现,本申请实施例不作限制。在下文的介绍过程中,以天线切换设备通过终端设备30实现为例。
该方法的流程介绍如下。
S311、通过第一天线31传输数据;
S312、测量第一天线31的信号质量以及第二天线31的信号质量;
S313、确定第二天线31的信号质量优于第一天线31的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数;
S314、从第一天线31切换到第二天线31,以通过第二天线31传输所述数据。
图2所示的实施例中,终端设备30具有多个天线31,在图3所示的实施例中,以终端设备30具有两个天线31为例,这两个天线31分别称为第一天线31和第二天线31。即,终端设备30具有两个天线31只是举例,本申请实施例并不限制天线31的数量,无论终端设备30具有多少个天线31,都可以适用本申请实施例所提供的天线切换方法。
终端设备30首先通过第一天线31传输数据,具体的,可以是终端设备30的收发机303通过第一天线31传输数据,该数据可以是上行数据。该数据可以是业务数据,或者也可以是控制信息等,本申请实施例不作限制。可扩展地,所述接入网设备20也可以执行本实施例的方法,当所述接入网设备20通过第一天线31传输数据,该数据是下行数据。后面实施例继续以终端设备30为例对技术方案进行介绍。
在通过第一天线31传输数据的过程中,终端设备30可以测量第一天线31的信号质量以及第二天线31的信号质量,例如,终端设备30可以在测量时间窗中对第一天线31和第二天线31分别执行至少一次测量,以得到第一天线31的信号质量和第二天线31的信号质量。即,第一天线31的信号质量可以是对第一天线31进行一次测量得到的,较为简单快捷,或者也可以是对第一天线31进行多次测量后综合评定的,可以更为准确,第二天线31的信号质量也是同样,在实际应用中,可以根据不同的需求采用不同的方式。具体的,终端设备30测量第一天线31的信号质量以及第二天线31的信号质量,可以是终端设备30中的处理器301测量第一天线31的信号质量以及第二天线31的信号质量,更进一步,处理器301可通过执行物理层通信协议形成物理层实体,那么可以是由物理层实体来测量第一天线31的信号质量以及第二天线31的信号质量。该物理层实体可以是以软件形式存在,由处理器301执行。或者该物理层实体也可以是处理器301中的硬件电路形成。
在前文中介绍了,在传统的天线切换方法中,测量天线是在传统测量时间窗中测量, 相当于,要等待传统测量时间窗的长度才能完成天线切换,传统切换方法是不考虑发送数据的重传次数的方法,因此出于切换更为准确的考虑,传统测量时间窗的长度一般较长。但本申请实施例中,除了测量天线的信号质量之外,还可以考虑数据的重传次数,即,通过测量天线的信号质量和发送数据的重传次数这两个方面尽量保证了切换的准确性,因此,本申请实施例在测量天线的信号质量后无需等待过长的时间,只要重传次数大于或等于预设阈值N,就可以进行天线切换,因此,本申请实施例中的测量时间窗的长度自然无需过长,只需较短的测量时间窗就能够满足本申请实施例的需求,显然,本申请实施例中的测量时间窗的长度会小于传统测量时间窗的长度,通过这种方式减小了天线切换的时延,提高了通信质量。
而且,传统的天线切换方法只是通过测量天线的性能来判决是否切换,测量天线的性能都是通过对下行信号的测量实现的,即传统的天线切换方法只考虑了下行的情况,而本申请实施例提供的技术方案,除了考虑下行的情况之外,还会考虑重传次数,该重传可以是上行重传,即,既考虑下行的情况也考虑上行的情况,从而在考虑多方面的情况之后综合判决是否要进行天线切换,使得天线切换的结果更为准确。特别是对于上行发送受限的场景,采用本申请实施例的技术方案后能够有效减少设备出现掉话的可能性,保障业务的连续性。
在本申请实施例中,数据重传,可以是指自动重传请求(automatic repeat-request,ARQ)重传,或者也可以是指混合自动重传请求(hybrid automatic repeat request,HARQ)重传。
本申请实施例中,终端设备30确定第二天线31的信号质量优于第一天线31的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,具体可以是处理器301确定第二天线31的信号质量优于第一天线31的信号质量,以及处理器301确定发送所述数据的重传次数大于或等于预设阈值N,即由处理器301来进行处理。更进一步的,可以是由处理器301形成的物理层实体来进行处理。处理器301确定第二天线31的信号质量优于第一天线31的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,可以有不同的实现方式,下面介绍几种。
作为一种示例,请参见图4,其中,图4可以理解为对图3所示的实施例中的S313的细化,因此图4中示出的其他步骤可参考图3所示的实施例的介绍:
S41、确定第一天线31的信号质量是否优于第二天线31的信号质量;如果是,则执行S42,如果否,则执行S312;
S42、在确定第二天线31的信号质量优于第一天线31的信号质量的情况下,进一步确定发送该数据的重传次数大于或等于预设阈值N。其中,如果确定发送该数据的重传次数小于预设阈值N,则可以执行S312,图4中未示出。
可以理解为,先确定信号质量,再比较重传次数。
或者,作为另一种示例,请参见图5,其中,图5可以理解为对图3所示的实施例中的S313的细化,因此图5中示出的其他步骤可参考图3所示的实施例的介绍:
S51、比较发送数据的重传次数与预设阈值N的大小;如果发送数据的重传次数大于或等于预设阈值N,则执行S52,否则执行S312;
S52、在发送该数据的重传次数大于或等于预设阈值N的情况下,进一步确定第二天线31的信号质量优于第一天线31的信号质量。其中,如果确定第二天线31的信号质量并不优于第一天线31的信号质量,则可以执行S312,图5中未示出。
可以理解为,先比较重传次数,再确定信号质量。如上两种方式将两个过程串行,在得到一个结果之后再进行另一个过程,这样,如果一个结果不满足要求则无需执行另一个过程,以图5所示的实现方式为例,如果S51的比较结果是数据的重传次数小于等于预设阈值N,则处理器301可以无需确定第二天线31的信号质量是否优于第一天线31的信号质量,这样可以减小处理器301的功耗,对处理器301的要求较低。
或者,作为另一种示例,请参见图6,其中,图6可以理解为对图3所示的实施例中的S313的细化,因此图6中示出的其他步骤可参考图3所示的实施例的介绍:
S61、比较发送数据的重传次数与预设阈值N,以及比较第一天线31的信号质量和第二天线31的信号质量;如果发送数据的重传次数大于或等于预设阈值N,以及第二天线31的信号质量优于第一天线31的信号质量,则执行S62,如果发送数据的重传次数小于预设阈值N,和/或,第二天线31的信号质量并不优于第一天线31的信号质量,则执行S312;在本步骤中,两个比较的操作可以被并行执行,不区分先后顺序,因此不同于图4以及图5所示的两个方案。
S62、确定第二天线31的信号质量优于第一天线31的信号质量,以及发送数据的重传次数大于或等于预设阈值N。
可以理解为,同时确定信号质量和比较重传次数,这种方式对两个过程并行操作,较为快捷,可以进一步减小天线切换的时延。
如上的三种方式可以任意选择使用,较为灵活。
其中,N为正整数,N可以根据业务或通信质量等因素确定,例如对于较为重要的业务,N的值可以设置的较小,或者对于通信质量要求较高的场景,N的值也可以设置的较小,这样可以较快地完成天线切换,尽量避免业务出现不连续的情况,保证通信质量。当然除了这两种因素之外,N的值也可以根据其他可能的因素设置。例如N=2,或者也可以设置为其他值,本申请实施例不作限制。
在如前介绍了,终端设备30比较发送数据的重传次数和预设阈值N,该操作可以由终端设备30中的处理器301完成,更进一步,可以由处理器301形成的物理层实体完成。另外,处理器301还可以通过执行高层通信协议形成高层实体,该高层实体可以是以软件形式存在,由处理器301执行。或者该高层实体也可以是处理器301中的硬件电路形成。不过典型地,高层实体以软件形式存在。数据重传一般是在高层实体中完成,高层实体所使用的协议例如为无线链路控制(radio link control,RLC)或信道链路接入协议(link access protocol on the dm channel,LAPDM)。这就涉及到物理层实体如何获知重传次数的问题,下面介绍一种实现方式。
在介绍该实现方式之前,为了更便于理解,首先介绍一下ARQ/HARQ过程所涉及的用户面协议栈。
请参见图7,终端设备与基站通信,终端设备包括分组数据汇聚协议(packet data convergence protocol,PDCP)层、RLC层、媒体接入控制(media access control,MAC)层以及物理层(physical layer,PHY),则,前文中介绍的物理层实体,就可以理解为PHY。基站同样也包括PDCP层、RLC层、MAC层以及PHY,其中PDCP层和RLC层的任一个都可以看做是高层,即图7以前文介绍的高层实体是RLC实体为例。在通信过程中,是每个层分别与对端设备的相应的层交互,例如终端设备的PDCP层与基站的PDCP层交互,终端设备的RLC层与基站的RLC层交互,等等。在简单了解用户面协议栈后,下面介绍 物理层实体如何获知重传次数。
在本申请实施例中,高层实体可以统计数据的重传次数,并可以向物理层实体发送指示信息,可参考图8,该指示信息就用于指示发送该数据的重传次数,则物理层实体从高层实体接收该指示信息,根据该指示信息就可以获知发送该数据的重传次数。因为高层实体可能在不断地重传该数据,则高层实体每重传一次就可以将该数据的重传次数累加1,高层实体可以每累加一次,就向物理层实体发送一次指示信息,该指示信息用于指示累加后的重传次数,从而物理层实体可以及时获知最新的重传次数,在这种情况下,需要物理层实体来判决发送该数据的重传次数与预设阈值N之间的大小关系,例如物理层实体可以每接收一次指示信息就进行一次判决,或者也可以在接收多次指示信息后进行一次判决,或者,高层实体也可以在累加M次之后再向物理层实体发送指示信息,该指示信息用于指示最终累加后的重传次数,这样可以减少高层实体和物理层实体之间的交互,在这种情况下,可以由物理层实体来判决发送该数据的重传次数与预设阈值N之间的大小关系,或者也可以由高层实体来判决发送该数据的重传次数与预设阈值N之间的大小关系,例如高层实体可以在确定该数据的重传次数大于或等于预设阈值N时再向物理层实体发送指示信息,则物理层实体只要接收指示信息就可以确定该数据的重传次数大于或等于预设阈值N,无需过多地判决,减少物理层实体的工作量。
另外,高层实体除了向物理层实体指示重传次数之外,还可以向物理层实体指示其他信息。例如,如果之前的数据重传结束,则物理层实体可能无需再判决是否进行天线切换,或者,如果之前的数据重传结束之后又有新传数据,则物理层实体可以针对新传数据重新开始判决是否进行天线切换,因此,物理层实体都有必要知晓数据重传是否已结束。那么请参见图9,在本申请实施例中,如果数据重传结束,则高层实体也可以向物理层实体发送通知信息,该通知信息用于指示数据重传结束,则物理层实体接收该通知信息后就可以确定数据重传已结束,无需再根据之前的数据重传次数判决是否进行天线切换。那么,如果还有新传数据,则物理层实体可以重新开始判决过程,当然这取决于新传数据是否又发生了重传,如果新传数据又发生了重传,则高层实体可以再次向物理层实体发送指示信息,则物理层实体会再次开始判决是否进行天线切换,如果新传数据未发生重传,则高层实体不会向物理层实体发送指示信息,则物理层实体可以不用判决是否进行天线切换。或者,如果已经没有新传数据,即数据传输过程已结束,则物理层实体也可以不用判决是否进行天线切换,通过这种方式可以节省处理器301的功耗。
在本申请各个实施例中,可通过测量天线接收的信号来实现对天线的信号质量的测量。具体地,可以是测量该天线从对端设备,如接入网设备20接收的信号。另外,测量天线的信号质量,也可以理解为测量天线的信号强度、天线的信号能量、信道特征、或接收信号的错误率等。例如,可以通过测量天线接收的信号的接收信号强度指示(received signal strength indication,RSSI)/接收信号码功率(received signal code power,RSCP)/参考信号接收功率(reference signal receiving power,RSRP),或天线接收的信号的接收码片信号强度和噪声强度的比例(EcIo)/每调制比特功率和噪声频谱密度的比率(EcNo)/信噪比(signal-to-noise ratio,SNR)/参考信号接收质量(reference signal receiving quality,RSRQ),或天线接收的信号的误码率(bit error ratio,BER)/误块率(block error rate,BLER)/数据包差错率(packet error ratio,PER)等参数中的至少一种参数来实现对天线的信号质量的测量,当然也可以通过测量其他的参数来实现对天线的信号质量的测量。
本申请实施例中,当第二天线31的信号质量超过第一天线31的信号质量达到预设信号质量门限值时,即,当第二天线31的信号质量与第一天线31的信号质量之差大于或等于预设信号质量门限值时,就可以确定第二天线31的信号质量优于第一天线31的信号质量,而当第二天线31的信号质量与第一天线31的信号质量之差小于预设信号质量门限值时,就可以确定第二天线31的信号质量并不优于第一天线31的信号质量,不优于,包括两种情况,第一天线31的信号质量和第二天线31的信号质量差不多,或第一天线31的信号质量优于第二天线31的信号质量。
预设信号质量门限值可根据天线之间的信号质量差异所带来的性能差异确定,例如,如果两个天线的信号质量之差小于预设信号质量门限值,则可以认为这两个天线的性能差不多,没有切换的必要,而如果第二天线31的信号质量与第一天线31的信号质量之差大于或等于预设信号质量门限值,则表明第二天线31的性能更为优越,切换到第二天线31会得到更好的通信质量,因此就可以进行切换。例如,通过测量天线接收的信号的RSSI来完成对天线的信号质量的测量,则一种预设信号质量门限值可以设置为2dB,那么,如果第二天线31接收的信号的RSSI与第一天线31接收的信号的RSSI之间的差值大于或等于2dB,就表明第二天线31的信号质量优于第一天线31的信号质量。这里的2dB当然只是举例,在实际应用中可有不同的设定。
在本申请实施例中,终端设备30进行天线切换,可以是处理器301控制收发机303(此时包括切换开关)或收发机303前端的开关在天线之间切换,具体可以是处理器301形成的物理层实体控制前端的开关在不同的天线之间切换,前端的开关例如为双刀双掷(double pole double throw,DPDT),也可以是其他类型的开关。请参见图10,为处理器301控制天线切换的示意图。图10中包括处理器301、发射机Tx、接收机Rx、开关1001、第一天线31和第二天线31,发射机Tx和接收机Rx属于收发机303,处理器301可以执行本申请实施例所提供的天线切换方法,开关1001以DPDT开关为例。例如发射机Tx在工作,通过第一天线31发送数据,则此时处理器301是控制开关1001,使得第一天线31与发射机Tx和接收机Rx导通,第二天线31关闭。接着,可能第一天线31的信号质量恶化,第二天线31的信号质量优于第一天线31的信号质量,处理器301判决确定要切换到第二天线31,则处理器301可以控制开关1001,使得第一天线31关闭,第二天线31与发射机Tx和接收机Rx导通,从而发射机Tx就会切换到第二天线31发送数据,从而提高通信质量。本图10对应的实施例仅仅是为了举例,实际***中的天线31数量可能很多。例如,发射机Tx或接收机Rx可以在开关1001作用下从正在使用的第一天线31切换到没有被使用的第二天线31。再例如,第一天线31和第二天线31本来可以是多输入多输出(multiple-input multiple-output,MIMO)工作,发射机Tx和接收机Rx的数量可以很多,或者每个发射机Tx或接收机Rx可以包括多个通道。每个发射机Tx或发射机Tx中的每个通道可以选择性地从第一天线31切换到第二天线31。典型地,当两个发射通道使用两个天线31时,可以通过切换实现该两个发射通道交换天线31。
终端设备30通过第二天线31传输数据,具体的,可以是终端设备30的收发机303通过第二天线31传输数据,这里传输的数据,可以是之前通过第一天线31重传的数据,或者,如果之前的重传过程已经结束,则第二天线31传输的数据也可以是新传的数据。
本申请实施例中,除了可以测量天线的信号质量之外,还可以确定对数据的重传次数是否大于或等于N,通过这两个条件可以尽量保证切换的准确性,从而在天线切换过程中 无需等待传统测量时间窗的长度,既可以实现较为准确的切换,也能够有效减小天线切换的延时,有助于实现天线更快的切换,如果天线切换设备为终端设备,则可以尽量减少设备出现掉话的可能性,提高通信质量。
图2已经介绍了本申请实施例提供的设备的一种结构,下面请参见图11,再介绍本申请实施例提供的设备的另一种结构。
图11示出了一种天线切换设备1100的结构示意图。该天线切换设备1100可以实现上文中涉及的天线切换设备的功能。若该天线切换设备1100通过上文中介绍的终端设备30实现,则该天线切换设备1100可以是上文中所述的终端设备30,或者可以是设置在上文中所述的终端设备30中的芯片,或者,若该天线切换设备1100通过上文中介绍的接入网设备20实现,则该天线切换设备1100可以是上文中所述的接入网设备20,或者可以是设置在上文中所述的接入网设备20中的芯片。该天线切换设备1100可以包括处理模块1101和收发模块1102.其中,若该天线切换设备1100通过上文中介绍的终端设备30实现,则处理模块1101可通过处理器301实现,收发模块1101可通过收发机303实现,或者,若该天线切换设备1100通过上文中介绍的接入网设备20实现,则处理模块1101可通过处理器201实现,收发模块1101可通过收发机203实现。
其中,处理模块1101可以用于执行图3所示的实施例中的S312、S313、以及S314,和/或用于支持本文所描述的技术的其它过程。其中,处理模块1101执行S314,主要是完成从第一天线31切换到第二天线31。收发模块1102可以用于执行图3所示的实施例中的S311以及S312,和/或用于支持本文所描述的技术的其它过程。其中,收发模块1102执行S314,主要是处理器301切换到第二天线31后,收发模块1102通过第二天线31传输所述数据。
例如,收发模块1102,用于通过第一天线传输数据;处理模块1101,用于测量所述第一天线的信号质量以及所述第二天线的信号质量,确定第二天线的信号质量优于所述第一天线的信号质量以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数,以及,控制收发模块1102从所述第一天线切换到所述第二天线;收发模块1102还用于在所述处理模块1101的控制下通过所述第二天线传输所述数据。图11对应的实施例的模块可以是软件、硬件或二者结合。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。由于本申请实施例提供的天线切换设备1100是图2所示的终端设备30或接入网设备20的另一种实现形式,且天线切换设备1100可用于执行图3所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述设备实施例以及方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(如图11的天线切换设备1100)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置,如图2中的处理器301。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等,例如可以是图2中的存储器302。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种天线切换方法,其特征在于,包括:
    通过第一天线传输数据;
    测量所述第一天线的信号质量以及所述第二天线的信号质量;
    确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数;
    从所述第一天线切换到所述第二天线以通过所述第二天线传输所述数据。
  2. 如权利要求1所述的方法,其特征在于,所述确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,包括:
    确定所述第一天线的信号质量是否优于所述第二天线的信号质量;
    在所述第二天线的信号质量优于所述第一天线的信号质量的情况下,进一步确定发送所述数据的重传次数大于或等于所述预设阈值N。
  3. 如权利要求1所述的方法,其特征在于,所述确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,包括:
    比较发送所述数据的重传次数与所述预设阈值N;
    在发送所述数据的重传次数大于或等于预设阈值N的情况下,进一步确定所述第二天线的信号质量优于所述第一天线的信号质量。
  4. 如权利要求1所述的方法,其特征在于,所述确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N,包括:
    比较发送所述数据的重传次数与所述预设阈值N,以及比较所述第一天线的信号质量和所述第二天线的信号质量;
    确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述测量所述第一天线的信号质量以及所述第二天线的信号质量,包括:
    在测量时间窗中对所述第一天线和所述第二天线分别执行至少一次测量,以得到所述第一天线的信号质量和所述第二天线的信号质量,所述测量时间窗的长度小于传统测量时间窗的长度,所述传统测量时间窗被应用于不考虑发送所述数据的重传次数的传统天线切换方法。
  6. 如权利要求1-5任一所述的方法,其特征在于,还包括:
    通信设备中的物理层实体接收高层实体发送的指示信息,所述指示信息用于指示发送所述数据的重传次数。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述重传是自动重传请求ARQ或混合自动重传请求HARQ重传。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述确定第二天线的信号质量优于所述第一天线的信号质量,包括:
    当所述第二天线的信号质量超过所述第一天线的信号质量达到预设信号质量门限时,确定所述第二天线的信号质量优于所述第一天线的信号质量。
  9. 一种天线切换设备,其特征在于,包括:
    收发机,用于通过第一天线传输数据;
    处理器,用于测量所述第一天线的信号质量以及所述第二天线的信号质量,
    确定第二天线的信号质量优于所述第一天线的信号质量以及发送所述数据的重传次数大于或等于预设阈值N,N为正整数,以及
    控制所述收发机从所述第一天线切换到所述第二天线;
    所述收发机还用于在所述处理器的控制下通过所述第二天线传输所述数据。
  10. 如权利要求9所述的天线切换设备,其特征在于,所述处理器具体用于:
    确定所述第一天线的信号质量是否优于所述第二天线的信号质量;
    在所述第二天线的信号质量优于所述第一天线的信号质量的情况下,进一步确定发送所述数据的重传次数大于或等于所述预设阈值N。
  11. 如权利要求9所述的天线切换设备,其特征在于,所述处理器具体用于:
    比较发送所述数据的重传次数与所述预设阈值N;
    在发送所述数据的重传次数大于或等于预设阈值N的情况下,进一步确定所述第二天线的信号质量优于所述第一天线的信号质量。
  12. 如权利要求9所述的天线切换设备,其特征在于,所述处理器具体用于:
    比较发送所述数据的重传次数与所述预设阈值N,以及比较所述第一天线的信号质量和所述第二天线的信号质量;
    确定第二天线的信号质量优于所述第一天线的信号质量,以及发送所述数据的重传次数大于或等于预设阈值N。
  13. 如权利要求9-12任一所述的天线切换设备,其特征在于,所述处理器具体用于:
    在测量时间窗中对所述第一天线和所述第二天线分别执行至少一次测量,以得到所述第一天线的信号质量和所述第二天线的信号质量,所述测量时间窗的长度小于传统测量时间窗的长度,所述传统测量时间窗被应用于不考虑发送所述数据的重传次数的传统天线切换方法。
  14. 如权利要求9-13任一所述的天线切换设备,其特征在于,
    所述处理器,还用于通过执行物理层通信协议形成物理层实体,通过执行高层通信协议形成高层实体,所述测量、确定和控制操作均在所述物理层实体中实现。
  15. 如权利要求14所述的天线切换设备,其特征在于,
    所述处理器,还用于在所述高层实体中生成指示信息,将所述指示信息从所述高层实体发送至所述物理层实体,所述指示信息用于指示发送所述数据的重传次数。
  16. 如权利要求9-15任一所述的天线切换设备,其特征在于,所述重传是自动重传请求ARQ或混合自动重传请求HARQ重传。
  17. 如权利要求9-16任一所述的天线切换设备,其特征在于,所述处理器具体用于:
    当所述第二天线的信号质量超过所述第一天线的信号质量达到预设信号质量门限时,确定所述第二天线的信号质量优于所述第一天线的信号质量。
PCT/CN2018/109513 2017-10-12 2018-10-09 一种天线切换方法及设备 WO2019072175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710948710.0 2017-10-12
CN201710948710.0A CN109660276B (zh) 2017-10-12 2017-10-12 一种天线切换方法及设备

Publications (1)

Publication Number Publication Date
WO2019072175A1 true WO2019072175A1 (zh) 2019-04-18

Family

ID=66100384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109513 WO2019072175A1 (zh) 2017-10-12 2018-10-09 一种天线切换方法及设备

Country Status (2)

Country Link
CN (1) CN109660276B (zh)
WO (1) WO2019072175A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278015B (zh) * 2019-05-16 2021-02-09 华为技术有限公司 一种天线选择方法、装置及终端
CN110278010B (zh) * 2019-06-13 2021-04-09 Oppo广东移动通信有限公司 天线切换方法、天线切换装置、存储介质与电子设备
CN114389625B (zh) * 2020-10-19 2023-06-27 华为技术有限公司 发射***、发射信号切换方法、介质及用户设备
CN113852977A (zh) * 2021-09-15 2021-12-28 李其中 一种wifi6信号与5g通信信号共线传输装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062915A1 (en) * 2006-09-13 2008-03-13 Samsung Electronics Co., Ltd. Apparatus and method for automatic repeat request in multi input multi output system
CN104521164A (zh) * 2012-07-31 2015-04-15 日本电气株式会社 无线通信装置和harq应答的发送方法和接收方法
CN105978601A (zh) * 2016-07-04 2016-09-28 华为技术有限公司 天线切换方法及接收装置、终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845318B2 (ja) * 2002-02-18 2006-11-15 日本電信電話株式会社 無線通信システム
US8086272B2 (en) * 2007-08-06 2011-12-27 Mitsubishi Electric Research Laboratories, Inc. Wireless networks incorporating antenna selection based on received sounding reference signals
CN101547080B (zh) * 2008-03-24 2012-06-20 电信科学技术研究院 多进程harq天线模式自适应切换的方法和装置
TWI565140B (zh) * 2014-04-02 2017-01-01 智邦科技股份有限公司 適應性多重天線選擇方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062915A1 (en) * 2006-09-13 2008-03-13 Samsung Electronics Co., Ltd. Apparatus and method for automatic repeat request in multi input multi output system
CN104521164A (zh) * 2012-07-31 2015-04-15 日本电气株式会社 无线通信装置和harq应答的发送方法和接收方法
CN105978601A (zh) * 2016-07-04 2016-09-28 华为技术有限公司 天线切换方法及接收装置、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEON, CHA-EUL ET AL: "Antenna Switching Schemes for Downlink Time Switched Transmit Diversity with ARQ in Rayleigh Fading Channels", IEICE TRANS. COMMUN., vol. E93-B, no. 3, 31 March 2010 (2010-03-31), pages 780 - 783, XP001555341 *

Also Published As

Publication number Publication date
CN109660276A (zh) 2019-04-19
CN109660276B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US11778493B2 (en) Data collection method, device, and system
WO2020164365A1 (zh) 信息传输的方法及装置
US10779303B2 (en) Inter-radio access technology carrier aggregation
US9648549B2 (en) Methods, access point and wireless device for providing neighbor report information from an access point to a wireless device
WO2019072175A1 (zh) 一种天线切换方法及设备
CN111418235A (zh) 节能模式下用户装备的物理层过程
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
WO2018219011A1 (zh) 一种数据传输方法及通信设备
WO2021179184A1 (zh) 一种确定上行传输参数的方法及终端设备
WO2021027413A1 (zh) 波束失败恢复方法、设备及***
US10560979B2 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
EP4027738A1 (en) Communication method and apparatus
US10958329B2 (en) Data transmission method, terminal device, and network device
WO2021077372A1 (en) Method and access network node for beam management
WO2018171679A1 (zh) 传输rrc消息的方法、装置、终端设备和接入网设备
US20230261723A1 (en) Apparatus, Method, and Computer Program
WO2021159398A1 (zh) 波束失败恢复的方法和装置
WO2023216025A1 (en) Methods and systems for conditional pusch skipping and pusch repetitions configuration at a user equipment
TW201818684A (zh) 載波聚合中服務小區的分組方法與使用者設備
US20230308220A1 (en) HANDLING HARQ FEEDBACK IN INTERNET OF THINGS (IoT)
US11569947B2 (en) Method and apparatus for managing a resource in a wireless communication system
WO2021088076A1 (zh) 无线通信方法和装置
CN114503722A (zh) 传输上行控制信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867138

Country of ref document: EP

Kind code of ref document: A1