WO2018219011A1 - 一种数据传输方法及通信设备 - Google Patents

一种数据传输方法及通信设备 Download PDF

Info

Publication number
WO2018219011A1
WO2018219011A1 PCT/CN2018/078966 CN2018078966W WO2018219011A1 WO 2018219011 A1 WO2018219011 A1 WO 2018219011A1 CN 2018078966 W CN2018078966 W CN 2018078966W WO 2018219011 A1 WO2018219011 A1 WO 2018219011A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
communication device
mode
data
transmission
Prior art date
Application number
PCT/CN2018/078966
Other languages
English (en)
French (fr)
Inventor
夏欣
刘云
陈卫民
罗晓宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197035863A priority Critical patent/KR20200004356A/ko
Priority to EP18809858.6A priority patent/EP3614782A4/en
Publication of WO2018219011A1 publication Critical patent/WO2018219011A1/zh
Priority to US16/696,559 priority patent/US11277222B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and a communication device.
  • 5G NR 5th generation new radio
  • higher frequency bands such as 15GHz and 28GHz, will be used.
  • the high-frequency signal has a small distortion rate, and has the advantages of strong recoverability and strong anti-interference rate, but the high-frequency signal is different from the low-frequency, and the path loss of the high-frequency signal is very large, so the coverage distance is limited.
  • LTE Long-term evolution
  • PUSCH physical uplink shared channels
  • TTI Bundling Transmission time interval
  • BLER Block rate
  • TTI Bundling needs to repeatedly transmit data in multiple subframes, it will lengthen the time of correct demodulation, increase the delay, and have poor applicability. For example, many scenes with high real-time requirements (such as automatic driving) cannot be applied, and 5G is not met. The need for low latency in NR.
  • Embodiments of the present invention provide a data transmission method and a communication device, which are used for improving coverage, and in particular, can increase coverage of high frequency signals.
  • the data transmission method is applied to a communication device.
  • the communication device is a base station.
  • the communication device may also be a user equipment.
  • the embodiment of the present invention provides a data transmission method, where a first communication device acquires a transmission mode instruction, and a transmission mode instruction is used to indicate that data is transmitted in a frequency domain repetition mode, where the first communication device may be a base station or For the user equipment, the frequency domain repeat mode is to repeatedly transmit the same data on different frequency domain resources; the first communication device determines the frequency domain repetition mode according to the transmission mode instruction; the first communication device follows the frequency domain repetition mode and the second communication device. Data transfer.
  • the present invention improves demodulation performance and enhances signal coverage by repeatedly transmitting the same transport block in the frequency domain.
  • the first communication device performing data transmission with the second communication device according to the frequency domain repetition mode may include: the first communication device transmitting data to the second communication device according to the frequency domain repetition mode, or first The communication device receives the data that is sent by the second communication device according to the frequency domain repeating mode.
  • the data generating method may be applied to the sending of the uplink data.
  • the uplink data refers to the data sent by the user equipment to the base station. It can be applied to the transmission of downlink data, which refers to data sent by the base station to the user equipment.
  • the specific implementation manner of the first communication device acquiring the transmission mode instruction may be: receiving a transmission mode instruction sent by the second communication device, eg, the second communication device determines that the first communication device should be instructed to follow the The frequency domain repeat mode transmits data, and then the second communication device generates the transmission mode instruction, and the second communication device transmits the transmission mode instruction to the first communication device, and the first communication device acquires the transmission mode instruction.
  • the specific manner in which the first communications device obtains the transmission mode command is generated by the first communications device itself.
  • the first communications device determines whether to use the frequency domain repeating mode to send data.
  • the communication device determines to transmit data in the frequency domain repeat mode, and generates a transmission mode command.
  • the second communications device may instruct the first communications device to send data according to the frequency domain repeating mode, or the first communications device itself may determine to send data according to the frequency domain repeating mode, and the applicable scenario of the solution is added.
  • the communication device transmits data in a frequency domain repeating mode, which can improve the demodulation performance of the channel and increase the system coverage distance.
  • the first communications device after the first communications device generates the transport mode command, the first communications device sends the transport mode command to the second communications device, where the transport mode command is used to indicate that the data is transmitted in the frequency domain repeating mode, where 1.
  • the first communication device sends a transmission mode instruction to the second communication device, the transmission mode instruction instructing the first communication device to transmit data to the second communication device in the frequency domain repetition mode to notify the second communication device to adopt the corresponding Way to receive data.
  • the transmission mode instruction is used to instruct the second communication device to send data to the first communication device by using the frequency domain repetition mode, and the first communication device can dynamically send the transmission mode instruction to the second communication device, that is, when the first When the communication device detects that the current channel quality is poor, the communication device can notify the second communication device to use the frequency domain repeat mode to transmit data, which enhances real-time performance; the first communication device can also send the transmission mode command by semi-static signaling, that is, After the first communication device sends the transmission mode command to the second communication device, the second communication device is configured to periodically instruct the second communication device to transmit data in the frequency domain repetition mode, which is reduced. Signaling overhead.
  • the specific manner in which the first communications device determines whether to use the frequency domain repeating mode to transmit data includes: the first communications device according to the reference signal And measuring the CQI information according to the channel quality, and/or determining whether to transmit the data according to the frequency domain repetition mode according to at least one of the modulation and coding policy MCS information.
  • the transmission mode instruction includes an indication identifier, where the frequency domain repetition mode includes at least two repetition manners, the indication identifier has a mapping relationship with the repetition manner, and the first communication device determines the frequency domain repetition according to the transmission mode instruction.
  • the mode may include: determining, by the first communications device, a repetition manner of the frequency domain repeating mode according to the indication identifier and the mapping relationship in the transmission mode; repeating multiples (eg, 2x repetition, 4x repetition, etc.); and each repeated data block
  • the continuous mapping of intra-resource scheduling such as continuous resource mapping or non-contiguous resource mapping
  • the repeating mode of the frequency domain repeating mode may exist in the form of a resource mapping pattern of repeated data blocks.
  • the first communication device and the second communication device may specifically stipulate a repetition mode of the frequency domain repetition mode, and the first communication device determines the repetition mode of the frequency domain repetition mode according to the indication identifier and the mapping relationship in the transmission mode.
  • a communication device can determine a specific repetition pattern according to current channel conditions to optimize demodulation performance.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the communication device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a communication device, which has the functions performed by the first communication device in actual implementation. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the communication device includes a memory, a transceiver, and a processor.
  • the memory is for storing computer executable program code and is coupled to the transceiver.
  • the program code includes instructions that, when executed by the processor, cause the registration server to perform the information or instructions involved in the above method.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a resource grid in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of steps of an embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of continuous resource mapping of a frequency domain repeated data block according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a discontinuous resource mapping of a frequency domain repeated data block according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of steps of another embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a communication device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present invention.
  • Embodiments of the present invention provide a data transmission method and a communication device, which are used for improving coverage, and in particular, can increase coverage of high frequency signals.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention, where the data transmission system includes
  • the first communication device 110 and the second communication device 120 may be a macro base station, a base station to which the cell belongs, or a transmission node to which the cell belongs, a micro base station, a small base station, a pico base station, a base station in the future 5G, and the like.
  • the second communication device 120 can be a user equipment (UE), a customer premise equipment (CPE) client terminal device, an access user device, a subscriber unit, a subscriber station, a mobile station, and a mobile device. Station, remote station, remote user equipment, mobile equipment, wireless communication equipment, user agent or user equipment.
  • the access user equipment may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a personal digital assistant (PDA), a handheld device with wireless communication capabilities, a computing device or Other processing devices connected to the wireless modem, in-vehicle devices, wearable devices, user devices in future 5G networks, and the like.
  • the first communication device 110 may be a user equipment or a client terminal device
  • the second communication device 120 is a macro base station, a base station to which the cell belongs, or a transmission node to which the cell belongs, a micro base station, a small base station, and a pico base station, in the future 5G. Base station, etc.
  • the first communication device is used as the user equipment, and the second communication device is used as the base station as an example.
  • the schematic diagram shown in FIG. 1 is only for convenience of description.
  • the examples given in the embodiments of the present invention are not intended to limit the invention.
  • the embodiment of the present invention can be exemplified by a single cell of a high frequency in a wireless communication system.
  • FIG. 1 is an example of a scenario of a single cell of a high frequency.
  • the first communication device obtains a transmission mode command, where the first communication device may be a base station or a user equipment, and the transmission mode command is used to instruct the first communication device to transmit data in a frequency domain repetition mode, and the frequency domain repetition mode is at different frequencies.
  • the same data is repeatedly transmitted on the domain resource; the first communication device determines the frequency domain repetition mode according to the transmission mode instruction; and the first communication device performs data transmission with the second communication device according to the frequency domain repetition mode.
  • the present invention directly improves the demodulation performance and enhances coverage by repeatedly transmitting the same transport block in the frequency domain.
  • the method can be applied to the transmission of the uplink data, which is the data that the user equipment sends to the base station, and can also be applied to the transmission of the downlink data, where the downlink data refers to the data that the base station sends to the user equipment.
  • FIG. 2 is a schematic diagram of a resource grid.
  • the distribution and arrangement of transmission signals in the time domain and the frequency domain are expressed in the form of a time-frequency resource grid.
  • the resource element (Resource Element, abbreviated as RE) is The basic constituent elements in the frequency resource grid. It is the smallest resource unit used for uplink and downlink transmission data.
  • the unit describing the resource mapping is a resource block (Resource Block, abbreviation: RB), and one RB is Consists of resource elements. among them, Representing the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols in each time slot; Represents the number of subcarriers in each resource block.
  • resource Block abbreviation: RB
  • OFDM Orthogonal Frequency Division Multiplexing
  • a resource block group (abbreviation: RBG) is a basic unit of traffic channel resource allocation. It consists of a group of RBs. The number of RBs included in the RBG is related to the system bandwidth.
  • the same data is repeatedly transmitted on different frequency domain resources, for example, on the different RBGs, the same transport block (abbreviation: TB) is transmitted.
  • TB transport block
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • Reference signal receiving power is the average of the signal power received on all REs of the reference signal carried in a certain symbol, which is a parameter that can represent the strength of the wireless signal in the LTE network.
  • the channel quality indicator is used to reflect the channel quality of the downlink downlink shared channel (PDSCH).
  • the channel quality of the PDSCH can be represented by 0-15, with 0 indicating the worst channel quality and 15 indicating the best channel quality.
  • the user equipment sends a CQI to the base station on a Physical Uplink Control Channel (PUCCH) PUCCH or a physical uplink shared channel (PUSCH).
  • the base station obtains CQI information and can determine the current wireless channel quality.
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • an embodiment of a data transmission method according to an embodiment of the present invention includes:
  • the first communication device is a user equipment
  • the second communication device is described by using a base station as an example.
  • a high-frequency single-cell application scenario is taken as an example, and the user equipment is in a frequency domain in a high-frequency cell.
  • the repeat mode transmits uplink data to the base station.
  • Step 301 The user equipment acquires a transmission mode instruction, where the transmission mode instruction is used to indicate that the user equipment sends data in a frequency domain repetition mode, and the frequency domain repetition mode is to repeatedly send the same data on different frequency domain resources.
  • the user equipment There are two ways for the user equipment to obtain the transmission mode command: 1. The receiving base station sends the message; 2. The user equipment generates.
  • the transmission mode command is generated by a base station, and then the base station sends the transmission mode to the user equipment, where the base station passes a physical downlink control channel (abbreviation: PDCCH) or semi-static
  • PDCCH physical downlink control channel
  • the transmission mode command is sent to indicate that the user equipment uses the frequency domain repetition mode to transmit data.
  • the determining method that the base station decides to adopt the frequency domain repeating mode includes at least one of the following methods:
  • the base station may determine whether the user equipment is triggered to transmit data according to a frequency domain repeated mode according to a measurement value such as a Sounding Reference Signal (SRS) or an RSRP measured by an uplink DMRS. For example, when the RSRP measurement value of the uplink DMRS measurement exceeds the preset range, it is determined that the user equipment needs to transmit data according to the frequency domain repetition mode.
  • SRS Sounding Reference Signal
  • RSRP Sounding Reference Signal
  • the transmission mode command is generated, and the transmission mode instruction is sent to the user equipment, and the user equipment needs to be triggered to send data according to the domain repeated mode to improve coverage.
  • the base station determines, according to the channel quality indication CQI information, whether the user equipment is instructed to transmit data according to a frequency domain repeated mode. For example, if the value of the CQI is greater than the preset value, the base station generates a transmission mode command, and sends the transmission mode command to the user equipment to trigger the user equipment to send data according to the frequency domain repeated mode.
  • the modulation and coding strategy mainly implements the configuration of the radio frequency rate. Since the physical rate depends on various factors such as the modulation method, the coding rate, and the number of spatial streams, the MCS can be understood as a complete combination of these influencing rate factors, and each combination is uniquely indicated by an integer. Each MCS index actually corresponds to the physical transmission rate under a set of parameters.
  • the base station may determine, according to the MCS information of the uplink PUSCH, whether the user equipment is triggered to transmit data according to a frequency domain repeated mode. For example, if the MCS information exceeds the preset range, indicating that the physical transmission rate is low, the base station determines to trigger the user equipment to transmit data according to the frequency domain repeated mode.
  • the base station dynamically sends a transmission mode command to the user equipment. That is, when the base station detects that the current channel quality is poor, the base station can notify the user equipment to use the frequency domain repetition mode to transmit data, which enhances real-time performance.
  • the base station sends the transmission mode command by using the semi-static signaling. That is, after the base station sends the transmission mode command to the user equipment, the user equipment is configured, and the base station can periodically instruct the user equipment to send data in the frequency domain repetition mode. Small signaling overhead.
  • the specific manner in which the base station sends the transmission mode command to the user equipment in the embodiment of the present invention is not limited.
  • the transmission mode command is generated by the user equipment, that is, the user equipment may determine whether to send data to the base station according to the frequency domain repetition mode.
  • the method for determining, by the user equipment, whether to adopt the frequency domain repetition mode includes at least one of the following methods:
  • CSI-RS channel state information reference signal
  • the user equipment may determine, according to the MCS information of the uplink PUSCH, whether the user equipment is triggered to send data according to a frequency domain repeated mode.
  • the user equipment needs to send a message to the base station dynamically or semi-statically, the message is used to notify the base station, and the user equipment is prepared to repeat the frequency domain mode. Send data to the base station.
  • Step 302 The user equipment determines a frequency domain repetition mode according to the transmission mode instruction.
  • the user equipment determines, according to the transmission mode command, that the data needs to be sent to the base station according to the frequency domain repetition mode.
  • the transmission mode command includes an indication identifier
  • the frequency domain repetition mode includes at least two repetition modes
  • the indication identifier has a mapping relationship with the repetition mode
  • the user equipment determines the frequency domain repetition according to the indication identifier and the mapping relationship in the transmission mode. The way the pattern is repeated.
  • the repetition manner of the frequency domain repetition mode may specifically include: a repetition multiple (such as a 2-fold repetition, a 4-fold repetition, etc.); and a continuous mapping situation of resource scheduling in each repeated data block, such as a continuous resource mapping or a non-contiguous resource. Mapping, etc. Please refer to FIG. 4 and FIG. 5 for understanding.
  • FIG. 4 is a schematic diagram of continuous resource mapping of frequency domain repeated data blocks
  • FIG. 5 is a schematic diagram of discontinuous resource mapping of frequency domain repeated data blocks.
  • the cells of the sequence are different frequency domain resources, and the labels of different shapes are used to identify the data blocks.
  • the description of the double repetition is taken as an example. As can be seen from FIG.
  • the same data block is repeatedly transmitted on different frequency domain resources, but the same data block is continuously mapped on the frequency domain resource.
  • the same data block is repeatedly transmitted on different frequency domain resources, but the same data block is not continuously mapped on the frequency domain resources.
  • the repetition manner of the frequency domain repetition mode may exist in the form of a resource mapping pattern of a repeated data block.
  • the indication identifier may include: “1”, “2”, “3”, for example, the “1” indicates: 2 times repetition, and continuous mapping manner; and “2” indicates: 4 times Duplicate, non-continuous mapping, and so on.
  • the indication identifier may include two types, one for indicating the first identifier of the repetition multiple (such as "1", "2"), and the other for indicating the mapping manner (such as "a", "b").
  • the second identifier, the combination of the value included in the first identifier and the value included in the second identifier represents a different repeating manner.
  • the repeating manner may also be indicated by a type of identifier.
  • flag includes “1” and "a”, it means: 2 times repetition, continuous mapping, and the like.
  • the user equipment and the base station are pre-agreed by a protocol.
  • the above description of the indicator is for illustrative purposes only and does not constitute a limiting description of the invention.
  • the first communication device and the second communication device may specifically stipulate a repetition mode of the frequency domain repetition mode, and the first communication device determines the frequency domain repetition according to the indication identifier in the transmission mode and the mapping relationship. In a repeating manner of the mode, the first communication device can determine a specific repetition manner according to the current channel condition, so that the demodulation performance is optimal.
  • Step 303 The user equipment sends a first indication message to the base station, where the first indication message is used to indicate that the user equipment is to transmit data according to the frequency domain repetition mode.
  • the user equipment may perform step 304 directly without performing step 303.
  • Step 304 The user equipment sends data to the base station according to the frequency domain repetition mode.
  • the user equipment sends uplink data to the base station according to the frequency domain repetition mode.
  • the user equipment may send uplink data to the base station according to the indication identifier to determine a specific repetition manner.
  • the user equipment may use different dynamic precoding or PMI codebook weighted transmission for different frequency domain repeated block data to better match channels of different frequency bands. Improve demodulation performance.
  • Step 305 The base station performs joint demodulation data on the data according to the frequency domain repetition mode to obtain demodulated data.
  • the base station extracts multiple repeated data blocks according to the frequency domain repetition mode, or according to the specific repetition manner of the frequency domain resource mode, and combines the repeated resource blocks to perform multiple-input multiple-output.
  • the base station may indicate that the user equipment sends the uplink data according to the frequency domain repetition mode, or the user equipment itself may determine to send the uplink data according to the frequency domain repetition mode. Then, the user equipment sends data in a frequency domain repeating mode, which can improve the demodulation performance of the PUSCH channel and improve the system coverage distance. Specifically, a 2x repeat transmission can achieve a coverage improvement of 2 to 4 dB, and a 4x repetition transmission can achieve a coverage improvement of 5 to 8 dB.
  • FIG. 6 another embodiment of a data transmission method according to an embodiment of the present invention includes:
  • Step 601 The base station acquires a transmission mode command, where the transmission mode command is used to indicate that the base station is to transmit data in a frequency domain repetition mode, and the frequency domain repetition mode is to repeatedly transmit the same data on different frequency domain resources.
  • the manner in which the base station obtains the transmission mode command includes two types: 1. base station generation; 2. the user equipment sends.
  • the transmission mode command is generated by a base station, and the base station sends the downlink data to the user equipment according to the frequency domain repetition mode.
  • the determining method that the base station decides to adopt the frequency domain repeating mode includes at least one of the following methods:
  • MCS Modulation and Coding Scheme
  • the base station may determine, according to the MCS information of the downlink PUSCH, whether the user equipment is triggered to transmit data according to a frequency domain repeated mode.
  • the transmission mode command is sent by the user equipment, that is, the user equipment may determine to indicate that the base station sends data to the base station according to the frequency domain repetition mode.
  • the method for determining, by the user equipment, whether to adopt the frequency domain repetition mode includes at least one of the following methods:
  • the user equipment determines whether to trigger the base station to send data according to the frequency domain repeated mode according to the measured value such as the RSSI measured by the CSI-RS or the downlink DMRS.
  • the user equipment may determine, according to the MCS information of the downlink PDSCH, whether the user equipment is triggered to send data according to a frequency domain repeated mode.
  • the user equipment determines that the data needs to be transmitted in the frequency domain repetition mode, and then the user equipment sends a message to the base station, the user equipment needs to send a message to the base station dynamically or semi-statically, the message is used to notify the base station, the base station The downlink data needs to be sent to the user equipment according to the frequency domain repetition mode.
  • Step 602 The base station determines a frequency domain repetition mode according to the transmission mode command.
  • the base station determines, according to the transmission mode command, that the downlink data needs to be sent to the user equipment according to the frequency domain repetition mode.
  • the transmission mode command includes an indication identifier
  • the frequency domain repetition mode includes at least two repetition modes
  • the indication identifier has a mapping relationship with the repetition mode
  • the base station determines the frequency domain repetition mode according to the indication identifier and the mapping relationship in the transmission mode. The way to repeat.
  • the repetition manner of the frequency domain repetition mode may specifically include: a repetition multiple (such as a 2-fold repetition, a 4-fold repetition, etc.); and a continuous mapping situation of resource scheduling in each repeated data block, such as a continuous resource mapping or a non-contiguous resource. Mapping, etc. Please refer to FIG. 4 and FIG. 5 for continuous resource mapping and discontinuous resource mapping.
  • Step 603 The base station sends a second indication message to the user equipment, where the second indication message is used to indicate that the base station is to transmit data according to the frequency domain repetition mode.
  • the base station may perform step 604 without performing step 603.
  • Step 604 The base station performs data transmission with the user equipment according to the frequency domain repetition mode.
  • the base station sends downlink data to the user equipment according to the frequency domain repetition mode.
  • the base station may send downlink data to the user equipment according to the indication identifier to determine a specific repetition manner.
  • the base station may use different dynamic precoding or PMI codebook weighted transmission for different frequency domain repeated block data to better match channels of different frequency bands and improve Demodulation performance.
  • Step 605 The user equipment performs joint demodulation data according to the frequency domain repetition mode, and obtains demodulated data sent by the base station.
  • the user equipment extracts multiple repeated data blocks according to the frequency domain repetition mode, or according to the specific repetition manner of the frequency domain resource mode, and combines the repeated resource blocks to perform multiple input and multiple output (multiple-input multiple- Output, abbreviation: MIMO) equalization, followed by demodulation and channel decoding, and jointly demodulating the data to obtain demodulated data transmitted by the base station.
  • MIMO multiple-input multiple- Output
  • the base station may determine that the downlink data is to be sent according to the frequency domain repetition mode, or the base station may also receive the transmission mode command sent by the user equipment, and the base station determines, according to the received transmission mode command, that the frequency domain repeat mode is to be used. Send downlink data. Then, the base station transmits data in a frequency domain repeating mode, which can improve the demodulation performance of the downlink channel and improve the system coverage distance.
  • FIG. 7 is a communication device according to an embodiment of the present invention.
  • One embodiment of 700 includes:
  • the instruction obtaining module 701 is configured to acquire a transmission mode instruction, where the transmission mode instruction is used to indicate that the data is transmitted in a frequency domain repetition mode, and the frequency domain repetition mode is to repeatedly transmit the same data on different frequency domain resources;
  • the mode determining module 702 is configured to determine a frequency domain repeating mode according to the instruction acquiring module 701, the transmission mode instruction;
  • the data transmission module 703 is configured to determine, according to the mode determining module 702, the frequency domain repetition mode and the second communication device to perform data transmission.
  • the data transmission module 703 further includes a sending unit 7031 and a receiving unit 7032;
  • the sending unit 7031 is configured to send data to the second communications device according to the frequency domain repeating mode.
  • the receiving unit 7032 is configured to receive data that is sent by the second communications device according to the frequency domain repeating mode.
  • the instruction obtaining module 701 is further configured to receive an indication instruction sent by the second communication device.
  • FIG. 8 another embodiment of the present invention provides a communication device 800, including:
  • the instruction acquisition module 701 includes a determination unit 7011 and a generation unit 7012;
  • the determining unit 7011 is configured to determine whether to use the frequency domain repeating mode to send data.
  • the generating unit 7012 is configured to generate a transmission mode instruction when the determining unit 7011 determines to transmit data in the frequency domain repeating mode.
  • FIG. 9 another embodiment of the communication device 900 is provided by the embodiment of the present invention, including:
  • the sending module 704 sends the transmission mode instruction generated by the generating unit 7012 to the second communication, where the transmission mode instruction is used to instruct the second communication device to transmit data in the frequency domain repeating mode.
  • the determining unit 7011 is further configured to: according to the measured value of the reference signal; and/or, according to the channel quality indication CQI information, and/or, according to at least one of the modulation and coding policy MCS information, determine whether The data is transmitted in the frequency domain repeat mode.
  • the transmission mode instruction includes an indication identifier, where the frequency domain repetition mode includes at least two repetition modes, and the indication identifier has a mapping relationship with the repetition mode, and the mode determination module is further configured to use the indication identifier and the mapping relationship according to the transmission mode. Determine how the frequency domain repeat mode repeats.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • the embodiment of the present invention further provides another communication device.
  • the communication device is a user device
  • the user device may include any terminal device such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a vehicle-mounted computer, and the like.
  • FIG. 10 is a block diagram showing a partial structure of a mobile phone related to a terminal provided by an embodiment of the present invention.
  • the mobile phone includes components such as a radio frequency (RF) circuit 1010, a memory 1020, an input unit 1030, a display unit 1040, a processor 1080, and a power source 1090.
  • RF radio frequency
  • FIG. 10 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the transceiver 1010 can be used for receiving and transmitting signals during the transmission or reception of information or during a call.
  • the processor 1080 processes the data.
  • the uplink data is designed to be sent to the base station.
  • transceiver 1010 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • RF circuit 1010 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wide
  • the memory 1020 can be used to store software programs and modules, and the processor 1080 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1020.
  • the memory 1020 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1020 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1030 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1030 may include a touch panel 1031 and other input devices 1032.
  • the touch panel 1031 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1031 or near the touch panel 1031. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1031 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1080 is provided and can receive commands from the processor 1080 and execute them.
  • the touch panel 1031 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1030 may also include other input devices 1032.
  • other input devices 1032 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1040 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1040 may include a display panel 1041.
  • the display panel 1041 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1031 may cover the display panel 1041, and when the touch panel 1031 detects a touch operation thereon or nearby, the touch panel 1031 transmits to the processor 1080 to determine the type of the touch event, and then the processor 1080 according to the touch event. The type provides a corresponding visual output on display panel 1041.
  • touch panel 1031 and the display panel 1041 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1031 may be integrated with the display panel 1041. Realize the input and output functions of the phone.
  • the processor 1080 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1020, and invoking data stored in the memory 1020, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1080 may include one or more processing units; preferably, the processor 1080 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1080.
  • the mobile phone also includes a power source 1090 (such as a battery) that supplies power to various components.
  • a power source 1090 such as a battery
  • the power source can be logically coupled to the processor 1080 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 1080 and the transceiver 1010 also have the following functions:
  • the processor 1080 is configured to acquire a transmission mode instruction, where the transmission mode instruction is used to instruct the first communications device to transmit data in a frequency domain repetition mode, where the frequency domain repetition mode is repeated on different frequency domain resources. Transfer the same data;
  • the processor 1080 is configured to determine, by the first communications device, the frequency domain repeating mode according to the transmission mode instruction;
  • the transceiver 1010 is configured to perform data transmission with the second communications device according to the frequency domain repeating mode.
  • the transceiver 1010 is further configured to send data to the second communications device according to the frequency domain repeating mode, or receive data sent by the second communications device according to the frequency domain repeating mode.
  • the transceiver 1010 is configured to receive the indication instruction sent by the second communications device.
  • the processor 1080 is configured to determine whether to transmit data in a frequency domain repetition mode, and if it is determined to transmit data in a frequency domain repetition mode, generate the transmission mode instruction.
  • the transceiver 1010 is further configured to send the transmission mode instruction to the second communication, where the transmission mode instruction is used to instruct the second communication device to transmit data in a frequency domain repetition mode.
  • the processor 1080 is further configured to: according to the measured value of the reference signal by the first communications device; and/or, according to the channel quality, the CQI information, and/or according to the modulation and encoding policy in the MCS information. At least one piece of information to determine whether to trigger the first communication device to transmit data in a frequency domain repeat mode.
  • the transmission mode instruction includes an indication identifier, where the frequency domain repetition mode includes at least two repetition manners, and the indication identifier has a mapping relationship with the repetition manner,
  • the processor 1080 is further configured to determine, according to the indication identifier in the transmission mode and the mapping relationship, a repetition manner of the frequency domain repetition mode.
  • the communication device includes a processor 1101, a memory 1102, and a transceiver 1103.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 1100 may generate a large difference due to different configurations or performances, and may include one or more processors (central 1101 and memory 1102.
  • the memory 1132 may be Transient storage or persistent storage.
  • the program stored in memory 1102 can include one or more modules (not shown), each of which can include a series of instruction operations in the base station.
  • the processor 1101 is configured to enable the base station to perform the method in the foregoing method embodiment.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above method embodiments.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据传输方法及通信设备。本发明实施例方法包括:第一通信设备获取传输模式指令,传输模式指令用于指示采用频域重复模式传输数据,频域重复模式为在不同的频域资源上重复传输相同的数据;第一通信设备根据传输模式指令确定频域重复模式;第一通信设备按照频域重复模式与第二通信设备进行数据传输。本发明实施例还提供了一种通信设备,用于提高通信***覆盖距离。

Description

一种数据传输方法及通信设备
本申请要求于2017年05月31日提交中国专利局,申请号为201710402011.6,发明名称为“一种信号的发射方法及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种数据传输方法及通信设备。
背景技术
随着无线通信数据流量的日益增加,传统的sub6G频谱日趋紧张,因此在第5代通信***新空口(5th generation new radio,缩写:5G NR)中,会使用较高的频段,如15GHz、28GHz、38GHz、60GHz、70GHz等。高频信号失真率小,既有较强的可恢复性,且抗干扰率强的优点,但是高频信号与低频不同,高频信号的路径损耗非常大,因此覆盖距离受限。
为了增加高频信号的覆盖,降低正确解调需要的(Signal Noise Ratio)SNR,长期演进(long term evolution,缩写:LTE)***中针对物理上行共享信道(physical uplink shared channel,缩写:PUSCH)提出了传输时间间隔绑定(transmission time interval,缩写:TTI Bundling)技术。LTE中物理层调度的基本单位是1ms,然而在某些小区边缘,覆盖受限的情况下,用户设备由于受到其本身发射功率的限制,在1ms的时间间隔内,可能无法满足数据发送的误块率(BLER)要求。所以TTI Bundling将一个数据包在连续多个传输时间间隔(TTI)资源上重复进行传输,接收端将多个TTI资源上的数据合并以达到提高传输质量的目的,从而可以克服边缘覆盖受限的情况。
但是由于TTI Bundling需要在多个子帧重复发射数据,会拉长正确解调的时间,增加了时延,应用性差,例如,很多实时性要求高的场景(如自动驾驶)无法适用,不符合5G NR中低时延的需求。
发明内容
本发明实施例提供了一种数据传输方法及通信设备,用于提高覆盖,尤其是可以增加高频信号的覆盖。该数据传输方法应用于通信设备,在一种实现方式中,通信设备为基站,在另一种实现方式中,该通信设备也可以为用户设备。
第一方面,本发明实施例中提供了一种数据传输方法,第一通信设备获取传输模式指令,传输模式指令用于指示采用频域重复模式传输数据,该第一通信设备可以为基站也可以为用户设备,频域重复模式为在不同的频域资源上重复传输相同的数据;第一通信设备根据传输模式指令确定频域重复模式;第一通信设备按照频域重复模式与第二通信设备进行数据传输。本实施例中,本发明通过在频域上重复发射相同的传输块,提高解调性能,增强信号覆盖。
在一种可能的实现方式中,第一通信设备按照频域重复模式与第二通信设备进行数据传输可以包括:第一通信设备按照频域重复模式向第二通信设备发送数据,或者,第一通 信设备接收第二通信设备按照频域重复模式发送的数据;本发明实施例中,该数据产生方法可以应用于上行数据的发送,例如,该上行数据是指用户设备向基站发送的数据,也可以应用于下行数据的发送,该下行数据是指基站向用户设备发送的数据。
在一种可能的实现方式中,第一通信设备获取传输模式指令的具体实现方式可以为:接收第二通信设备发送的传输模式指令,如,第二通信设备确定应该指示第一通信设备按照该频域重复模式传输数据,然后,第二通信设备生成该传输模式指令,该第二通信设备将该传输模式指令发送给第一通信设备,第一通信设备获取该传输模式指令。
在一种可能的实现方式中,第一通信设备获取传输模式指令的具体方式是,第一通信设备自身生成的,首先,该第一通信设备判断是否采用频域重复模式发送数据;当第一通信设备确定采用频域重复模式发送数据,则生成传输模式指令。本发明实施例中,第二通信设备可以指示第一通信设备按照频域重复模式发送数据,或者,第一通信设备自身也可以确定按照频域重复模式来发送数据,增加了该方案的适用场景,通信设备以频域重复的模式发送数据,可以提高信道的解调性能,提升***覆盖距离。
在一种可能的实现方式中,第一通信设备生成传输模式指令之后,第一通信设备将传输模式指令向第二通信设备发送,传输模式指令用于指示采用频域重复模式传输数据,具体的,1、第一通信设备向第二通信设备发送传输模式指令,该传输模式指令指示该第一通信设备将采用频域重复模式向第二通信设备发送数据,以通知第二通信设备采用对应的方式接收数据。2、该传输模式指令用于指示第二通信设备采用频域重复模式向第一通信设备发送数据,第一通信设备可以动态的向第二通信设备发送传输模式指令,也就是说,当第一通信设备检测到当前信道质量较差时,就可以通知第二通信设备采用频域重复模式发送数据,增强了实时性;第一通信设备还可以通过半静态信令发送该传输模式指令,也就是说,当第一通信设备向第二通信设备发送传输模式指令后,对第二通信设备进行配置,第一通信设备可以周期性的指示第二通信设备采用频域重复模式发送数据,减小了信令开销。
在一种可能的实现方式中,当第一通信设备需要向第二通信设备发送数据时,第一通信设备判断是否采用频域重复模式发送数据的具体方式包括:第一通信设备根据参考信号的测量值;和/或,根据信道质量指示CQI信息,和/或,根据调制与编码策略MCS信息中的至少一种信息来判定是否按照频域重复模式传输数据。
在一种可能的实现方式中,传输模式指令包括指示标识,频域重复模式包括至少两种重复方式,指示标识与重复方式具有对应的映射关系,第一通信设备根据传输模式指令确定频域重复模式具体可以包括:第一通信设备根据传输模式中的指示标识及映射关系确定频域重复模式的重复方式;重复倍数(如2倍重复,4倍重复等);以及每一份重复的数据块内资源调度的连续映射情况,如连续资源映射或非连续资源映射等;该频域重复模式的重复方式可以采用重复数据块的资源映射图样的形式存在。本发明实施例中,第一通信设备和第二通信设备可以具体约定频域重复模式的重复方式,第一通信设备根据传输模式中的指示标识及映射关系确定频域重复模式的重复方式,第一通信设备可以根据当前的信道情况来确定具体的重复方式,以使得解调性能最优。
第二方面,本发明实施例提供了一种计算机存储介质,用于储存上述通信设备所用的 计算机软件指令,其包含用于执行上述方面所设计的程序。
第三方面,本发明实施例提供了一种通信设备,具有实现上述方法中实际中第一通信设备所执行的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,通信设备的结构中包括存储器,收发器和处理器。其中存储器用于存储计算机可执行程序代码,并与收发器耦合。该程序代码包括指令,当该处理器执行该指令时,该指令使该注册服务器执行上述方法中所涉及的信息或者指令。
附图说明
图1为本发明实施例中数据传输***的架构示意图;
图2为本发明实施例中资源栅格示意图;
图3为本发明实施例中一种数据传输方法的一个实施例的步骤示意图;
图4为本发明实施例中频域重复数据块的连续资源映射示意图;
图5为本发明实施例中频域重复数据块的非连续资源映射示意图;
图6为本发明实施例中一种数据传输方法的另一个实施例的步骤示意图;
图7为本发明实施例中一种通信设备的一个实施例的结构示意图;
图8为本发明实施例中一种通信设备的另一个实施例的结构示意图;
图9为本发明实施例中一种通信设备的另一个实施例的结构示意图;
图10为本发明实施例中一种通信设备的另一个实施例的结构示意图;
图11为本发明实施例中一种通信设备的另一个实施例的结构示意图。
具体实施方式
本发明实施例提供了一种数据传输方法及通信设备,用于提高覆盖,尤其是可以增加高频信号的覆盖。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供的一种数据传输方法,该方法应用于一种数据传输***,请参阅图1所示,图1为本发明实施例中数据传输***的架构示意图,该数据传输***中包括第一通信设备110和第二通信设备120,该第一通信设备110可以是宏基站、小区所属的基站或者小区所属的传输节点,微基站,小基站、皮基站,未来5G中的基站等。
该第二通信设备120可以为用户设备可以指(user equipment,UE)、客户终端设备(customer premise equipment,缩写:CPE)客户终端设备、接入用户设备、用户单元、 用户站、移动站、移动台、远方站、远程用户设备、移动设备、无线通信设备、用户代理或用户装置。接入用户设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,缩写:SIP)电话、个人数字处理(personal digital assistant,缩写:PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备等。
或者,第一通信设备110可以为用户设备或者客户终端设备等,而第二通信设备120为宏基站、小区所属的基站或者小区所属的传输节点,微基站,小基站、皮基站,未来5G中的基站等。
在图1中所示的架构示意图中,以第一通信设备为用户设备,第二通信设备为基站为例进行说明,需要说明的是,在图1中所示的架构示意图只是为了方便说明而对本发明实施例中所举的例子,并不对本发明造成限定性说明。本发明实施例可以以无线通信***中高频的单个小区为例,图1为高频的单小区的应用场景为例进行说明。第一通信设备获取传输模式指令,该第一通信设备可以为基站也可以为用户设备,传输模式指令用于指示第一通信设备采用频域重复模式传输数据,频域重复模式为在不同的频域资源上重复传输相同的数据;第一通信设备根据传输模式指令确定频域重复模式;第一通信设备按照频域重复模式与第二通信设备进行数据传输。本实施例中,本发明通过在频域上重复发射相同的传输块,直接提高解调性能,增强覆盖。
该方法可以应用于上行数据的发送,该上行数据是指用户设备向基站发送的数据,也可以应用于下行数据的发送,该下行数据是指基站向用户设备发送的数据。
为了方便理解,本实施例中涉及的词语进行简单解释说明。
请结合图2进行理解,图2为资源栅格示意图,传输信号在时域和频域上的分布和排列表现为时频资源栅格的形式,资源元素(Resource Element,缩写:RE)为时频资源栅格中的基本组成元素。是上行和下行传输数据使用的最小资源单位。
通信***中,描述资源映射的单位为资源块(Resource Block,缩写:RB),一个RB由
Figure PCTCN2018078966-appb-000001
个资源元素组成。其中,
Figure PCTCN2018078966-appb-000002
表示每个时隙中的正交频分复用(Orthogonal Frequency Division Multiplexing,缩写:OFDM)符号数;
Figure PCTCN2018078966-appb-000003
表示每个资源块中的子载波数。
资源块组(Resource Block group,缩写:RBG),是业务信道资源分配的基本单位,由一组RB组成,RBG包含的RB数量与***带宽有关。
频域重复模式,在不同的频域资源上重复传输相同的数据,例如,在不同的RBG上,传输相同的传输块(transport block,缩写:TB)。
信道探测参考信号(Sounding Reference Signal,缩写:SRS):上行的参考信号,由UE上报给基站,用于基站对上行信道质量测量,估计上行信道频域信息,做频域选择性调度。
解调参考信号(Demodulation Reference Signal,缩写:DMRS):用于上行控制信道和上行数据信道的相关解调。
参考信号接收功率(reference signal receiving power,缩写:RSRP):是在某个符号内 承载的参考信号的所有RE上接收到的信号功率的平均值,是LTE网络中可以代表无线信号强度的参数。
信道质量指示(Channel Quality Indicator,缩写:CQI):用来反映下行物理下行共享信道(Physical downlink shared channel,缩写:PDSCH)的信道质量。例如,可以用0-15来表示PDSCH的信道质量,0表示信道质量最差,15表示信道质量最好。用户设备在物理上行控制信道(Physical Uplink Control Channel,缩写:PUCCH)PUCCH或者物理上行共享信道(physical uplink shared channel,缩写:PUSCH)上发送CQI给基站。基站得到了CQI信息,可以确定当前无线信道质量。
请参阅图3所示,本发明实施例中提供了一种数据传输方法的一个实施例包括:
在本实施例中,第一通信设备以用户设备,第二通信设备以基站为例进行说明,本实施例中以高频的单小区的应用场景为例,用户设备在高频小区以频域重复模式向基站发送上行数据。
步骤301、用户设备获取传输模式指令,传输模式指令用于指示用户设备采用频域重复模式发送数据,频域重复模式为在不同的频域资源上重复发送相同的数据。
用户设备获取传输模式指令的方式包括两种:1、接收基站发送;2、用户设备生成。
在第一种可能实现方式中,该传输模式指令是由基站生成的,然后基站将该传输模式发送给该用户设备,基站通过物理下行控制信道(physical downlink control channel,缩写:PDCCH)或半静态信令发送该传输模式指令,该传输模式指用于指示用户设备采用频域重复模式来发送数据。基站决定采用频域重复模式的判断方法至少包含以下方式中的一种:
1、根据参考信号的测量值判定是否指示用户设备按照频域重复的模式发送数据。例如,基站可以根据信道探测参考信号(Sounding Reference Signal,缩写:SRS)或上行DMRS测量的RSRP等测量值判定是否触发用户设备按照频域重复的模式发送数据。如当上行DMRS测量的RSRP测量值超过预设范围时,则判定需要出发用户设备按照频域重复模式发送数据,可以理解的是,当通过参考信号的测量值可以确定当前信道质量较差,则生成传输模式指令,将该传输模式指令发送给用户设备,需要触发用户设备按照域重复的模式发送数据,以提高覆盖。
2、根据信道质量指示CQI信息判定是否指示用户设备按照频域重复的模式发送数据。如,CQI的值大于预置值,则基站生成传输模式指令,将该传输模式指令发送给用户设备触发用户设备按照频域重复的模式发送数据。
3、根据调制与编码策略(Modulation and Coding Scheme,缩写:MCS)信息判定是否指示用户设备按照频域重复的模式发送数据。调制与编码策略主要实现射频速率的配置,由于物理速率依赖于调制方法、编码率和空间流数量等多个因素,MCS可以理解为这些影响速率因素的完整组合,每种组合用整数来唯一标示,每一个MCS索引其实对应了一组参数下的物理传输速率。
基站可以根据上行PUSCH的MCS信息判定是否触发用户设备按照频域重复的模式发送数据。如,若该MCS信息超过预置范围,则表明该物理传输速率较低,则基站判定触发用户设 备按照频域重复的模式发送数据。
需要说明的是,对于上述基站判断是否指示用户设备采用频域重复模式发送上行数据的具体方式指示举例说明,并不造成对本发明的限定说明。
基站动态的向用户设备发送传输模式指令,也就是说,当基站检测到当前信道质量较差时,就可以通知用户设备采用频域重复模式发送数据,增强了实时性。
基站通过半静态信令发送该传输模式指令,也就是说,当基站向用户设备发送传输模式指令后,对用户设备进行配置,基站可以周期性的指示用户设备采用频域重复模式发送数据,减小了信令开销。本发明实施例中对于基站向用户设备发送传输模式指令的具体方式并不限定。
在第二种可能实现方式中,该传输模式指令是由用户设备生成的,也就是说,该用户设备可以确定是否按照频域重复模式向基站发送数据。
具体的,用户设备决定是否采用频域重复模式的判断方法至少包括如下一种方式:
1、根据信道状态信息参考信号(CSI-RS)或下行DMRS测量的RSRP等测量值判定是否触发用户设备按照频域重复的模式发送数据。
2、根据用户设备反馈的CQI/RI等信息判定是否触发用户设备按照频域重复的模式发送数据。
3、用户设备可以根据上行PUSCH的MCS信息判定是否触发用户设备按照频域重复的模式发送数据。
在此种方式中,当用户设备确定了需要按照频域重复模式向基站发送数据后,用户设备需要动态或半静态向基站发送消息,该消息用于通知基站,用户设备准备按照频域重复模式向基站发送数据。
步骤302、用户设备根据传输模式指令确定频域重复模式。
用户设备根据该传输模式指令确定需要按照频域重复模式向基站发送数据。
进一步的,该传输模式指令包括指示标识,频域重复模式包括至少两种重复方式,指示标识与重复方式具有对应的映射关系,该用户设备根据传输模式中的指示标识及映射关系确定频域重复模式的重复方式。
该频域重复模式的重复方式具体可以包括:重复倍数(如2倍重复,4倍重复等);以及每一份重复的数据块内资源调度的连续映射情况,如连续资源映射或非连续资源映射等。请参阅图4和图5进行理解,图4为频域重复数据块的连续资源映射示意图,图5为频域重复数据块的非连续资源映射示意图。在图4和图5中,数列的单元格为不同的频域资源,不同形状的标记用于标识数据块,本实施例中以2倍重复为例进行说明,从图4中可以看出,相同的数据块在不同的频域资源上重复发送,但是相同的数据块在频域资源上是连续映射。在图5中可以看出,相同的数据块在不同的频域资源上重复发送,但是相同的数据块在频域资源上并不是连续映射。需要说明的是,例如,该频域重复模式的重复方式可以采用重复数据块的资源映射图样的形式存在。
本发明实施例中,例如,指示标识可以包括:“1”、“2”、“3”,例如,该“1”表示:2倍重复,且连续映射方式;而“2”表示:4倍重复,且非连续映射方式等等。再 如,指示标识可以包括两类,一类用于表示重复倍数(如“1”、“2”)的第一标识,另一类用于表示映射方式(如“a”、“b”)的第二标识,该第一标识包括的数值与第二标识包括的数值的组合共同表示不同的重复方式,当然,也可以通过一类标识来表示重复方式。
例如,若该指示标识为“1”则表示:2倍重复。
若该标识包括“1”和“a”表示:2倍重复,且连续映射等等。
需要说明的是,对于频域重复模式,及该频域重复模式包括的重复方式用户设备和基站通过协议预先约定。上述对于指示标识只是为了方便说明而举的例子,并不造成对本发明的限定性说明。
本发明实施例中,第一通信设备和第二通信设备可以具体约定频域重复模式的重复方式,第一通信设备根据所述传输模式中的指示标识及所述映射关系确定所述频域重复模式的重复方式,第一通信设备可以根据当前的信道情况来确定具体的重复方式,以使得解调性能最优。
步骤303、用户设备向基站发送第一指示消息,该第一指示消息用于指示用户设备将要按照频域重复模式发射数据。
可选的,在一种实现方式中,若步骤301中的传输模式指令是由基站发送给用户设备的,用户设备也可以不执行步骤303,而直接执行步骤304。
步骤304、用户设备按照频域重复模式向基站发送数据。
用户设备按照频域重复模式向基站发送上行数据。
进一步的,用户设备可以按照指示标识确定具体的重复方式向基站发送上行数据。
需要说明的是,对于用户设备侧有多天线发射的***,用户设备可以对不同频域重复块的数据,采用不同的动态预编码或PMI码本加权发射,以更好的匹配不同频带的信道,提高解调性能。
步骤305、基站按照频域重复模式,对数据进行联合解调数据,得到解调后的数据。
基站按照频域重复模式,或,按照频域资源模式的具体的重复方式,抽取多个重复的数据块合并接收,合并各个重复的资源块做联合的多进多出(multiple-input multiple-output,缩写:MIMO)均衡,之后进行解调和信道译码等,联合解调该数据,得到解调后的数据。
本发明实施例中,基站可以指示用户设备按照频域重复模式发送上行数据,或者,用户设备自身也可以确定按照频域重复模式来发送上行数据。然后,用户设备以频域重复的模式发送数据,可以提高PUSCH信道的解调性能,提升***覆盖距离。具体地,2倍重复发射可以获得2~4dB的覆盖提升,4倍重复发射可以获得5~8dB的覆盖提升。
上面以第一通信设备为用户设备,第二通信设备为基站为例,用户设备向基站发送上行数据为例进行了说明,下面以第一通信设备为基站,第二通信设备为用户设备为例,基站向用户设备发送下行数据为例进行说明。请参阅图6所示,本发明实施例提供了数据传输方法的另一个实施例包括:
步骤601、基站获取传输模式指令,传输模式指令用于指示基站将要采用频域重复模 式传输数据,频域重复模式为在不同的频域资源上重复传输相同的数据。
基站获取传输模式指令的方式包括两种:1、基站生成;2、用户设备发送的。
在第一种可能实现方式中,该传输模式指令是由基站生成的,基站将按照频域重复模式来向用户设备发送下行数据。基站决定采用频域重复模式的判断方法至少包含以下方式中的一种:
1、根据参考信号的测量值判定是否指示用户设备按照频域重复的模式发送数据。
2、根据信道质量指示CQI信息判定是否指示用户设备按照频域重复的模式发送数据。
3、根据调制与编码策略(Modulation and Coding Scheme,缩写:MCS)信息判定是否指示用户设备按照频域重复的模式发送数据。
基站可以根据下行PUSCH的MCS信息判定是否触发用户设备按照频域重复的模式发送数据。
需要说明的是,对于上述基站判断是否指示用户设备采用频域重复模式发送上行数据的具体方式指示举例说明,并不造成对本发明的限定说明。
在第二种可能实现方式中,该传输模式指令是由用户设备发送的,也就是说,该用户设备可以确定指示基站按照频域重复模式向基站发送数据。
具体的,用户设备决定是否采用频域重复模式的判断方法至少包括如下一种方式:
1、用户设备根据CSI-RS或下行DMRS测量的RSRP等测量值判定是否触发基站按照频域重复的模式发送数据。
2、用户设备可以根据下行PDSCH的MCS信息判定是否触发用户设备按照频域重复的模式发送数据。
在此种方式中,当用户设备确定了需要按照频域重复模式传输数据,然后,该用户设备向基站发送消息,用户设备需要动态或半静态向基站发送消息,该消息用于通知基站,基站需要按照频域重复模式向用户设备发送下行数据。
步骤602、基站根据传输模式指令确定频域重复模式。
基站根据该传输模式指令确定需要按照频域重复模式向用户设备发送下行数据。
进一步的,该传输模式指令包括指示标识,频域重复模式包括至少两种重复方式,指示标识与重复方式具有对应的映射关系,该基站根据传输模式中的指示标识及映射关系确定频域重复模式的重复方式。
该频域重复模式的重复方式具体可以包括:重复倍数(如2倍重复,4倍重复等);以及每一份重复的数据块内资源调度的连续映射情况,如连续资源映射或非连续资源映射等。请参阅图4和图5进行理解,连续资源映射和非连续资源映射。
步骤603、基站向用户设备发送第二指示消息,该第二指示消息用于指示基站将要按照频域重复模式发射数据。
可选的,在一种实现方式中,若步骤601中的传输模式指令是由用户设备发送给基站的,基站也可以不执行步骤603,而直接执行步骤604。
步骤604、基站按照频域重复模式与用户设备进行数据传输。
基站按照频域重复模式向用户设备发送下行数据。
进一步的,基站可以按照指示标识确定具体的重复方式向用户设备发送下行数据。
需要说明的是,对于基站侧有多天线发射的***,基站可以对不同频域重复块的数据,采用不同的动态预编码或PMI码本加权发射,以更好的匹配不同频带的信道,提高解调性能。
步骤605、用户设备按照频域重复模式,进行联合解调数据,得到基站发送的解调后的数据。
用户设备按照频域重复模式,或,按照频域资源模式的具体的重复方式,抽取多个重复的数据块合并接收,合并各个重复的资源块做联合的多进多出(multiple-input multiple-output,缩写:MIMO)均衡,之后进行解调和信道译码等,联合解调该数据,得到基站发送的解调后的数据。
本发明实施例中,基站可以自身确定将按照频域重复模式发送下行数据,或者,基站也可以接收用户设备发送的传输模式指令,基站根据接收到的传输模式指令确定将按照频域重复模式来发送下行数据。然后,基站以频域重复的模式发送数据,可以提高下行信道的解调性能,提升***覆盖距离。
上面对本发明实施例中提供的一种数据传输方法进行了描述,下面对该数据传输方法应用的通信设备进行描述,请参阅图7所示,图7为本发明实施例中一种通信设备700的一个实施例包括:
指令获取模块701,用于获取传输模式指令,传输模式指令用于指示采用频域重复模式传输数据,频域重复模式为在不同的频域资源上重复传输相同的数据;
模式确定模块702,用于根据指令获取模块701传输模式指令确定频域重复模式;
数据传输模块703,用于按照模式确定模块702确定频域重复模式与第二通信设备进行数据传输。
进一步的,数据传输模块703还包括发送单元7031和接收单元7032;
发送单元7031,用于按照频域重复模式向第二通信设备发送数据。
接收单元7032,用于接收第二通信设备按照频域重复模式发送的数据。
可选的,指令获取模块701,还用于接收第二通信设备发送的指示指令。
在图7对应的实施例的基础上,请参阅图8所示,本发明实施例提供了一种通信设备800的另一个实施例包括:
指令获取模块701包括判断单元7011和生成单元7012;
判断单元7011,用于判断是否采用频域重复模式发送数据;
生成单元7012,用于当判断单元7011确定采用频域重复模式发送数据时,生成传输模式指令。
图8对应的实施例的基础上,请参阅图9所示,本发明实施例提供了一种通信设备900的另一个实施例包括:
还包括发送模块704;
发送模块704,将生成单元7012生成的传输模式指令向第二通信发送,传输模式指令用于指示第二通信设备采用频域重复模式传输数据。
可选的,判断单元7011,还具体用于根据参考信号的测量值;和/或,根据信道质量指示CQI信息,和/或,根据调制与编码策略MCS信息中的至少一种信息来判定是否按照频域重复模式传输数据。
可选的,传输模式指令包括指示标识,频域重复模式包括至少两种重复方式,指示标识与重复方式具有对应的映射关系,模式确定模块,还用于根据传输模式中的指示标识及映射关系确定频域重复模式的重复方式。进一步的,图7至图9中的装置是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想图7至图9中的装置可以采用图10所示的形式。
本发明实施例还提供了另一种通信设备,如图10所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。当该通信设备为用户设备时,该用户设备可以包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、车载电脑等任意终端设备,以用户设备为手机为例:
图10示出的是与本发明实施例提供的终端相关的手机的部分结构的框图。参考图10,手机包括:射频(Radio Frequency,RF)电路1010、存储器1020、输入单元1030、显示单元1040、处理器1080、以及电源1090等部件。本领域技术人员可以理解,图10中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图10对手机的各个构成部件进行具体的介绍:
收发器1010可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1080处理;另外,将设计上行的数据发送给基站。通常,收发器1010包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1010还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1020可用于存储软件程序以及模块,处理器1080通过运行存储在存储器1020的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1020可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1020可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1030可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1030可包括触控面板1031以及其他输入设备1032。触控面板1031,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1031上或在触控面板1031附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1080,并能接收处理器1080发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1031。除了触控面板1031,输入单元1030还可以包括其他输入设备1032。具体地,其他输入设备1032可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1040可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1040可包括显示面板1041,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1041。进一步的,触控面板1031可覆盖显示面板1041,当触控面板1031检测到在其上或附近的触摸操作后,传送给处理器1080以确定触摸事件的类型,随后处理器1080根据触摸事件的类型在显示面板1041上提供相应的视觉输出。虽然在图10中,触控面板1031与显示面板1041是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1031与显示面板1041集成而实现手机的输入和输出功能。
处理器1080是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1020内的软件程序和/或模块,以及调用存储在存储器1020内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1080可包括一个或多个处理单元;优选的,处理器1080可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1080中。
手机还包括给各个部件供电的电源1090(比如电池),优选的,电源可以通过电源管理***与处理器1080逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,处理器1080和收发器1010还具有以下功能:
所述处理器1080,用于获取传输模式指令,所述传输模式指令用于指示所述第一通信设备采用频域重复模式传输数据,所述频域重复模式为在不同的频域资源上重复传输相同的数据;
所述处理器1080,用于所述第一通信设备根据所述传输模式指令确定所述频域重复模式;
所述收发器1010,用于按照所述频域重复模式与所述第二通信设备进行数据传输。
可选的,所述收发器1010,还用于按照所述频域重复模式向所述第二通信设备发送数据,或者,接收所述第二通信设备按照所述频域重复模式发送的数据。
可选的,所述收发器1010,用于接收第二通信设备发送的所述指示指令。
可选的,所述处理器1080,用于判断是否采用频域重复模式发送数据;若确定采用频域重复模式发送数据,则生成所述传输模式指令。
所述收发器1010,还用于将所述传输模式指令向所述第二通信发送,所述传输模式指令用于指示所述第二通信设备采用频域重复模式传输数据。
可选的,所述处理器1080,还用于所述第一通信设备根据参考信号的测量值;和/或,根据信道质量指示CQI信息,和/或,根据调制与编码策略MCS信息中的至少一种信息来判定是否触发所述第一通信设备按照频域重复模式传输数据。
可选的,所述传输模式指令包括指示标识,所述频域重复模式包括至少两种重复方式,所述指示标识与所述重复方式具有对应的映射关系,
所述处理器1080,还用于根据所述传输模式中的指示标识及所述映射关系确定所述频域重复模式的重复方式。
本发明实施例还提供了另一种通信设备,该通信设备可以以基站为例,请参阅图11所示,该通信设备包括处理器1101、存储器1102和收发器1103。
图11是本发明实施例提供的一种基站结构示意图,该基站1100可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central 1101和存储器1102,存储器1132可以是短暂存储或持久存储。存储在存储器1102的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对基站中的一系列指令操作。
处理器1101用于使基站执行上述方法实施例中的方法。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例中所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例中所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

  1. 一种数据传输方法,其特征在于,包括:
    第一通信设备获取传输模式指令,所述传输模式指令用于指示采用频域重复模式传输数据,所述频域重复模式为在不同的频域资源上重复传输相同的数据;
    所述第一通信设备根据所述传输模式指令确定所述频域重复模式;
    所述第一通信设备按照所述频域重复模式与所述第二通信设备进行数据传输。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述第一通信设备按照所述频域重复模式与所述第二通信设备进行数据传输,包括:
    所述第一通信设备按照所述频域重复模式向所述第二通信设备发送数据,或者,所述第一通信设备接收所述第二通信设备按照所述频域重复模式发送的数据。
  3. 根据权利要求1所述的数据传输方法,其特征在于,所述第一通信设备获取传输模式指令,包括:
    所述第一通信设备接收第二通信设备发送的所述传输模式指令。
  4. 根据权利要求1所述的数据传输方法,其特征在于,所述第一通信设备获取传输模式指令,包括:所述第一通信设备判断是否采用频域重复模式发送数据;
    若所述第一通信设备确定采用频域重复模式发送数据,则生成所述传输模式指令。
  5. 根据权利要求4所述的数据传输方法,其特征在于,所述生成所述传输模式指令之后,所述方法还包括:
    所述第一通信设备将所述传输模式指令向所述第二通信发送,所述传输模式指令用于指示所述第二通信设备采用频域重复模式传输数据。
  6. 根据权利要求4所述的数据传输方法,其特征在于,所述生成所述传输模式指令之后,所述方法还包括:
    所述第一通信设备将所述传输模式指令向所述第二通信发送,所述传输模式指令用于指示所述第一通信设备采用频域重复模式传输数据。
  7. 根据权利要求4所述的数据传输方法,其特征在于,当第一通信设备需要向第二通信设备发送数据时,所述第一通信设备判断是否采用频域重复模式发送数据,包括:
    所述第一通信设备根据参考信号的测量值;和/或,根据信道质量指示CQI信息,和/或,根据调制与编码策略MCS信息中的至少一种信息来判定是否按照频域重复模式传输数据。
  8. 根据权利要求4所述的数据传输方法,其特征在于,所述传输模式指令包括指示标识,所述频域重复模式包括至少两种重复方式,所述指示标识与所述重复方式具有对应的映射关系,所述第一通信设备根据所述传输模式指令确定所述频域重复模式,包括:
    所述第一通信设备根据所述传输模式中的指示标识及所述映射关系确定所述频域重复模式的重复方式。
  9. 一种通信设备,其特征在于,包括:
    指令获取模块,用于获取传输模式指令,所述传输模式指令用于指示采用频域重复模式传输数据,所述频域重复模式为在不同的频域资源上重复传输相同的数据;
    模式确定模块,用于根据所述指令获取模块所述传输模式指令确定所述频域重复模式;
    数据传输模块,用于按照所述模式确定模块确定所述频域重复模式与所述第二通信设备进行数据传输。
  10. 根据权利要求9所述的通信设备,其特征在于,所述数据传输模块包括:
    发送单元,用于按照所述频域重复模式向所述第二通信设备发送数据,
    接收单元,用于接收所述第二通信设备按照所述频域重复模式发送的数据。
  11. 根据权利要求9所述的通信设备,其特征在于,
    所述指令获取模块,还用于接收第二通信设备发送的所述传输模式指令。
  12. 根据权利要求9所述的通信设备,其特征在于,所述指令获取模块包括判断单元和生成单元;
    所述判断单元,用于判断是否采用频域重复模式发送数据;
    所述生成单元,用于当所述判断单元确定采用频域重复模式发送数据时,生成所述传输模式指令。
  13. 根据权利要求12所述的通信设备,其特征在于,还包括发送模块;
    所述发送模块,将所述指令获取模块获取的所述传输模式指令向所述第二通信发送,所述传输模式指令用于指示所述第二通信设备采用频域重复模式传输数据。
  14. 根据权利要求12所述的通信设备,其特征在于,还包括发送模块;
    所述发送模块,将所述指令获取模块获取的所述传输模式指令向所述第二通信发送,所述传输模式指令用于指示所述第一通信设备采用频域重复模式传输数据。
  15. 根据权利要求12所述的通信设备,其特征在于,
    所述判断单元,还具体用于根据参考信号的测量值;和/或,根据信道质量指示CQI信息,和/或,根据调制与编码策略MCS信息中的至少一种信息来判定是否按照频域重复模式传输数据。
  16. 根据权利要求12所述的通信设备,其特征在于,所述传输模式指令包括指示标识,所述频域重复模式包括至少两种重复方式,所述指示标识与所述重复方式具有对应的映射关系;
    所述模式确定模块,还用于根据所述传输模式中的指示标识及所述映射关系确定所述频域重复模式的重复方式。
  17. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机可执行程序代码;
    收发器,以及
    处理器,与所述存储器和所述收发器耦合;
    其中所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述通信设备执行如权利要求1至8任一项所述的方法。
PCT/CN2018/078966 2017-05-31 2018-03-14 一种数据传输方法及通信设备 WO2018219011A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035863A KR20200004356A (ko) 2017-05-31 2018-03-14 데이터 송신 방법 및 통신 디바이스
EP18809858.6A EP3614782A4 (en) 2017-05-31 2018-03-14 DATA TRANSMISSION METHOD AND COMMUNICATION DEVICE
US16/696,559 US11277222B2 (en) 2017-05-31 2019-11-26 Data transmission method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710402011.6A CN107359966B (zh) 2017-05-31 2017-05-31 一种信号的发射方法及通信设备
CN201710402011.6 2017-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/696,559 Continuation US11277222B2 (en) 2017-05-31 2019-11-26 Data transmission method and communications device

Publications (1)

Publication Number Publication Date
WO2018219011A1 true WO2018219011A1 (zh) 2018-12-06

Family

ID=60272197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078966 WO2018219011A1 (zh) 2017-05-31 2018-03-14 一种数据传输方法及通信设备

Country Status (5)

Country Link
US (1) US11277222B2 (zh)
EP (1) EP3614782A4 (zh)
KR (1) KR20200004356A (zh)
CN (1) CN107359966B (zh)
WO (1) WO2018219011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792749A (zh) * 2018-12-19 2019-05-21 北京小米移动软件有限公司 数据调度方法和装置、数据传输方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359966B (zh) * 2017-05-31 2021-01-29 上海华为技术有限公司 一种信号的发射方法及通信设备
JP7060815B2 (ja) 2018-02-15 2022-04-27 富士通株式会社 基地局装置、端末装置、無線通信システム、及び無線通信方法
WO2019201442A1 (en) * 2018-04-19 2019-10-24 Huawei Technologies Co., Ltd. Transmitting device and receiving device for wireless communications
WO2019227404A1 (zh) * 2018-05-31 2019-12-05 富士通株式会社 控制信息的传输方法及装置
US11050525B2 (en) * 2018-09-27 2021-06-29 Huawei Technologies Co., Ltd. System and method for control and data channel reliability enhancement using multiple diversity domains
CN111182634B (zh) * 2018-11-22 2021-09-14 维沃移动通信有限公司 数据传输方法、终端及网络设备
CN113381839B (zh) * 2020-03-09 2023-03-14 维沃移动通信有限公司 信号传输方法、信息发送方法和通信节点
CN114679790A (zh) * 2022-04-19 2022-06-28 中国电信股份有限公司 信息传输方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639300A (zh) * 2013-11-12 2015-05-20 普天信息技术研究院有限公司 一种上行数据传输方法
WO2016033989A1 (zh) * 2014-09-04 2016-03-10 华为技术有限公司 信息传输方法、用户侧设备及网络侧设备
WO2017078603A1 (en) * 2015-11-06 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Csi reference resource and cqi report for mtc operation
CN107359966A (zh) * 2017-05-31 2017-11-17 上海华为技术有限公司 一种信号的发射方法及通信设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107709B8 (en) * 2008-04-01 2014-08-20 Innovative Sonic Limited Method and apparatus of transmission time interval bundling management
KR101719996B1 (ko) 2009-11-06 2017-03-27 엘지전자 주식회사 자원블록 번들링 방법
US9253784B2 (en) 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
US8917677B2 (en) 2010-04-14 2014-12-23 Samsung Electronics Co., Ltd. Systems and methods for bundling resource blocks in a wireless communication system
KR20130142932A (ko) * 2012-06-19 2013-12-30 한국전자통신연구원 무선랜 시스템의 오에프디엠 전송 방법 및 장치
CN103841643B (zh) * 2012-11-27 2017-12-05 华为技术有限公司 数据传输方法及装置、***
CN103929266B (zh) * 2013-01-15 2019-08-09 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端
US11122520B2 (en) 2013-09-18 2021-09-14 Qualcomm Incorporated Coverage enhancements for physical broadcast channel (PBCH)
US9667386B2 (en) 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
CN110266433B (zh) * 2014-01-10 2022-06-24 夏普株式会社 物理信道配置方法以及基站和用户设备
EP3282591A4 (en) * 2015-04-09 2018-12-26 NTT DoCoMo, Inc. Radio base station, user terminal and radio communication method
AU2015390318B2 (en) * 2015-04-10 2020-01-16 Panasonic Intellectual Property Corporation Of America Wireless communication method, eNodB and user equipment
US10149198B2 (en) * 2015-04-28 2018-12-04 Qualcomm Incorporated Techniques for transmitting and/or receiving high efficiency wireless local area network information
WO2017172983A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. System and method for advanced spatial modulation in 5g systems
CN107371273B (zh) * 2016-05-13 2023-05-30 中兴通讯股份有限公司 随机接入方法、装置及用户设备
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
US20190288811A1 (en) * 2016-11-16 2019-09-19 Intel IP Corporation Coverage enhancement for unlicensed internet of things (u-iot)
EP3577971B1 (en) * 2017-02-06 2023-07-05 Sony Group Corporation Method and device for resource allocation in radio systems with frequency domain repetition
EP3593477A1 (en) * 2017-03-07 2020-01-15 Intel IP Corporation Design of downlink control information for wideband coverage enhancement
US11050525B2 (en) * 2018-09-27 2021-06-29 Huawei Technologies Co., Ltd. System and method for control and data channel reliability enhancement using multiple diversity domains

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639300A (zh) * 2013-11-12 2015-05-20 普天信息技术研究院有限公司 一种上行数据传输方法
WO2016033989A1 (zh) * 2014-09-04 2016-03-10 华为技术有限公司 信息传输方法、用户侧设备及网络侧设备
WO2017078603A1 (en) * 2015-11-06 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Csi reference resource and cqi report for mtc operation
CN107359966A (zh) * 2017-05-31 2017-11-17 上海华为技术有限公司 一种信号的发射方法及通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "HARQ and TTI bundling for Rel-13 low complexity and coverage enhanced UEs", 3GPP TSG-RAN WG2 #91, no. R2-153721, 28 August 2015 (2015-08-28), XP051004372 *
See also references of EP3614782A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792749A (zh) * 2018-12-19 2019-05-21 北京小米移动软件有限公司 数据调度方法和装置、数据传输方法和装置
CN109792749B (zh) * 2018-12-19 2023-11-28 北京小米移动软件有限公司 数据调度方法和装置、数据传输方法和装置

Also Published As

Publication number Publication date
US20200099468A1 (en) 2020-03-26
CN107359966B (zh) 2021-01-29
US11277222B2 (en) 2022-03-15
CN107359966A (zh) 2017-11-17
EP3614782A1 (en) 2020-02-26
KR20200004356A (ko) 2020-01-13
EP3614782A4 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2018219011A1 (zh) 一种数据传输方法及通信设备
US11856516B2 (en) Operation with power saving in connected mode discontinuous reception (C-DRX)
US11336348B2 (en) Reference signal for receive beam refinement in cellular systems
EP3952419A1 (en) Secondary cell activation method and apparatus
CN111278120A (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
US11088778B2 (en) Information transmission method and apparatus
CN111418235A (zh) 节能模式下用户装备的物理层过程
WO2019192385A1 (zh) 信道和信号的传输方法及通信设备
US20140226582A1 (en) Method and Apparatus for Providing Channel State Information (CSI) Measurement and Reporting for a Segment Carrier
KR20200040879A (ko) 5g 또는 다른 차세대 네트워크를 위한 피드백 데이터를 송신하기 위한 반복 인수들의 구성
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
JP2020515194A (ja) 無線通信方法および無線通信装置
WO2018202180A1 (zh) 一种信息传输的方法及装置
CN110351854A (zh) 配置信息指示方法及通信装置
US20220015085A1 (en) Communication method and apparatus
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
WO2018059387A1 (zh) 一种数据传输的方法、相关装置以及***
WO2019079936A1 (zh) 一种选择波形的方法及设备
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US20190305902A1 (en) Reference signal transmission method and apparatus
US11784746B2 (en) Bandwidth puncture and response rules
WO2018171742A1 (zh) 无线通信的方法和装置
WO2021207959A1 (zh) 重复传输方法、装置及可读存储介质
WO2023046053A1 (zh) 参考信号的传输方法、装置及相关设备
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018809858

Country of ref document: EP

Effective date: 20191120

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035863

Country of ref document: KR

Kind code of ref document: A