WO2019071955A1 - 一种五相永磁同步电机开路故障下的容错控制***及方法 - Google Patents

一种五相永磁同步电机开路故障下的容错控制***及方法 Download PDF

Info

Publication number
WO2019071955A1
WO2019071955A1 PCT/CN2018/088052 CN2018088052W WO2019071955A1 WO 2019071955 A1 WO2019071955 A1 WO 2019071955A1 CN 2018088052 W CN2018088052 W CN 2018088052W WO 2019071955 A1 WO2019071955 A1 WO 2019071955A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
space
voltage vector
harmonic
Prior art date
Application number
PCT/CN2018/088052
Other languages
English (en)
French (fr)
Inventor
花为
黄文涛
陈富扬
殷芳博
丁石川
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019071955A1 publication Critical patent/WO2019071955A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the invention relates to a fault-tolerant control system and method for a single-phase open-circuit fault of a five-phase permanent magnet synchronous motor, belonging to the field of motor drive and control.
  • the multi-phase AC speed control system has the following advantages: 1) Increase the frequency of electromagnetic torque ripple, reduce the amplitude of torque ripple; 2) Increase the number of phases of the stator winding, reduce The capacity of the power device avoids the problems of voltage equalization and current sharing caused by the string and parallel connection of the power device; 3) the fault-tolerant operation capability of the system is improved, and the fault-free fault-tolerant operation under the fault state can be realized.
  • permanent magnet synchronous motors have higher efficiency and greater power density than asynchronous motors. Therefore, the multi-phase permanent magnet synchronous motor speed control system has broad application prospects in high power output and high reliability applications.
  • the finite control set model predictive control can solve the optimization problem online according to the constraints and discrete characteristics of the controlled object. Its structure is simple, the algorithm is easy to implement, and it has good dynamic performance. In recent years, it has been in the field of power electronics and motor drive. Extensive research and application.
  • the invention provides a five-phase permanent magnet synchronous motor drive system for single-phase open-circuit faults, and provides a model predictive fault-tolerant control system and method based on simplified voltage set and duty cycle optimization, which can ensure five-phase permanent magnet synchronous motor drive
  • the system still has better running performance after an open circuit failure, which improves the system's ability to operate with faults.
  • a fault-tolerant control system for an open-circuit fault of a five-phase permanent magnet synchronous motor comprising a speed PI controller, a current reconstruction module, a value function optimization module, a duty cycle control module, an inverter, Current sensor, five-phase permanent magnet synchronous motor with single-phase open circuit fault, encoder, basic voltage vector action time calculation module and current prediction module;
  • the speed reference value is compared with the actual speed obtained by the encoder feedback, and the speed difference is input to the speed PI controller; the speed PI controller outputs the fundamental wave space axis current reference value, and is input to the current reconstruction module, and reconstructed.
  • the post-phase current is extended by Clark transform to obtain the two-phase quiescent current reference value of the fundamental wave space; the output of the current reconstruction module and the output of the current prediction module (the input is the output of the basic voltage vector action time calculation module and the current sensor)
  • it is sent to the value function optimization module;
  • the value function optimization module outputs the optimal basic voltage vector and its action time to the duty cycle control module;
  • the duty cycle control module outputs the duty cycle signal to the inverter; the inverter output is optimal.
  • Five-phase permanent magnet synchronous motor with voltage to single-phase open circuit fault; four-phase current collected by current sensor is supplied to basic voltage vector action time calculation module; output of both basic voltage vector action time calculation module and current sensor is sent to current Forecast module.
  • a fault-tolerant control method for an open-circuit fault of a five-phase permanent magnet synchronous motor includes the following steps:
  • Step 1 After the open-circuit fault of the single-phase winding occurs, the speed controller obtains the reference value of the cross-axis current in the fundamental space, and the current reconstruction module converts the reconstructed phase current by expanding the Clark transform to obtain the two-phase stationary of the fundamental space. Current reference value;
  • K P and K I are the proportional gain and integral gain of the speed PI controller, respectively;
  • i d1 * can be obtained by the maximum torque current method ratio
  • P r is the pole logarithm
  • Step 2 establish a value function by using the current reference value and the current predicted value
  • T s represents the sampling time
  • R s is the resistance of each phase of the stator winding
  • L s is the synchronous inductance of the stator winding
  • e ⁇ (k-1)/e ⁇ (k-1) is the fundamental space of time (k-1)
  • the ⁇ component of the hollow-backed counter electromotive force, e y (k-1) is the y-axis component of the hollow- loaded back electromotive force in the third harmonic space at time (k-1)
  • u i ⁇ (k)/u i ⁇ (k) is The ⁇ component of the non-zero basic voltage vector u i in the fundamental space at time k
  • the simplified voltage set is generated by the following 10 sets of switch states: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, and 1111.
  • switch states 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, and 1111.
  • “1" indicates that the upper arm is opened and the lower arm is turned off
  • "0” indicates that the lower arm is opened, and the upper arm is turned off
  • 0000 and 1111 generate zero voltage vectors
  • the other eight groups generate non-zero voltage vectors
  • the basic voltage vector and harmonic voltage vector generated by the switching state in the fundamental space and the third harmonic space are shown in Table 1 and Table 2, respectively, where U dc is the bus voltage;
  • Step 3 Obtain the optimal basic voltage vector and its action time by optimizing the value function, and output the optimal voltage to the single-phase open-circuit fault five-phase permanent magnet synchronous motor through the duty cycle control and the inverter function.
  • Optimal selection voltage vector and its time of action sequentially substituting the basic voltage vector value function g i u i and its role in time t i and harmonic voltage vectors v i, when obtaining the minimum value function g i, which corresponds to group
  • the basic voltage vector in the wave space is determined as the optimal voltage vector u opt
  • the action time of the voltage vector is the optimal time t opt .
  • the remaining time T s -t opt
  • Duty cycle control When the optimal basic voltage vector and its time are determined, the duty cycle control module designs a symmetric duty cycle signal and delivers it to the inverter. The inverter outputs the optimal voltage to the single-phase open circuit fault. Five-phase permanent magnet synchronous motor.
  • the speed reference value is compared with the actual speed obtained by the encoder, and the speed difference is input to the speed PI controller; the speed PI controller outputs the fundamental wave space axis current reference value and is input to the current reconstruction module.
  • the reconstructed phase current is extended by Clark transform to obtain the two-phase quiescent current reference value of the fundamental wave space; the output of the current reconstruction module and the output of the current prediction module (the input is the basic voltage vector action time calculation module and the current sensor) Output) is sent to the value function optimization module; the value function optimization module outputs the optimal basic voltage vector and its action time to the duty cycle control module; the duty cycle control module outputs the duty cycle signal to the inverter; the inverter output is the most The excellent voltage is given to the five-phase permanent magnet synchronous motor under the single-phase open circuit fault; the four-phase current collected by the current sensor is supplied to the basic voltage vector action time calculation module; the output of the basic voltage vector action time calculation module and the current sensor is sent to Current prediction module.
  • the invention selects part of the basic voltage vector in the fundamental space as the alternative voltage vector, which simplifies the voltage set of the system and reduces the number of times.
  • the invention can ensure that the five-phase permanent magnet synchronous motor drive system still has better running performance after an open circuit failure, and improves the system with fault operation capability.
  • FIG. 1 is a schematic diagram of a fault-tolerant control system for an open-circuit fault of a five-phase permanent magnet synchronous motor provided by the present invention
  • FIG. 2 is a flow chart of a fault-tolerant control method for an open-circuit fault of a five-phase permanent magnet synchronous motor provided by the present invention
  • 3a and 3b are diagrams showing the distribution of the simplified voltage set in the fundamental space and the harmonic space used in the open-circuit fault-tolerant control method of the five-phase permanent magnet synchronous motor provided by the present invention.
  • a five-phase permanent magnet synchronous motor fault-tolerant control system under open circuit fault including speed PI controller 1, current reconstruction module 2, value function optimization module 3, duty cycle control module 4, inverter 5, current sensor 6, single-phase open-circuit fault five-phase permanent magnet synchronous motor 7, encoder 8, basic voltage vector action time calculation module 9 and current prediction module 10;
  • the speed reference value is compared with the actual speed obtained by the encoder 8 feedback, and the speed difference is input to the speed PI controller 1; the speed PI controller 1 outputs the fundamental wave space axis current reference value, and is input to the current reconstruction module.
  • the reconstructed phase current is amplified by Clark transform to obtain a two-phase static current reference value of the fundamental wave space; the output of the current reconstruction module 2 and the output of the current prediction module 10 are input to the value function optimization module 3; the value function optimization module 3 output the optimal basic voltage vector and its action time to the duty cycle control module 4; the duty cycle control module 4 outputs the duty cycle signal to the inverter 5; the inverter 5 outputs the optimal voltage to the single phase open circuit fault
  • the five-phase permanent magnet synchronous motor 7; the four-phase current collected by the current sensor 6 is supplied to the basic voltage vector action time calculation module 9; the output of the basic voltage vector action time calculation module 9 and the current sensor 6 is obtained by the current prediction module 10 ( k+1) Current predicted value at the moment.
  • a fault-tolerant control method for an open-circuit fault of a five-phase permanent magnet synchronous motor includes the following steps:
  • K P and K I are the proportional gain and integral gain of the speed PI controller, respectively;
  • i d1 * can be obtained by the maximum torque current method ratio
  • P r is the pole logarithm
  • T s represents the sampling time
  • R s is the resistance of each phase of the stator winding
  • L s is the synchronous inductance of the stator winding
  • e ⁇ (k-1)/e ⁇ (k-1) is the fundamental space of time (k-1)
  • the ⁇ component of the hollow-backed counter electromotive force, e y (k-1) is the y-axis component of the hollow- loaded back electromotive force in the third harmonic space at time (k-1)
  • u i ⁇ (k)/u i ⁇ (k) is The ⁇ component of the non-zero basic voltage vector u i in the fundamental space at time k
  • Duty cycle control When the optimal basic voltage vector and its time are determined, the duty cycle control module designs a symmetric duty cycle signal and delivers it to the inverter. The inverter outputs the optimal voltage to the single-phase open circuit. Faulty five-phase permanent magnet synchronous motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种五相永磁同步电机开路故障下的容错控制***及方法,首先,利用转速控制器获得基波空间交轴电流参考值;基于磁动势不变原则,对故障后的相电流进行重构,并通过拓展Clark变换得到基波空间两相静止电流参考值;然后,利用采集到的相电流和转子位置角计算非零电压矢量作用时间;采用两相静止电流参考值和预测值建立价值函数;最后,通过优化价值函数获得最优电压矢量及其作用时间,采用占空比控制设计占空比并输送至逆变器,逆变器输出最优电压给带故障运行的永磁同步电机。本发明简化了五相永磁同步电机单相开路故障后的电压矢量集,减少了运算量;而且运用了非零矢量与零矢量相结合的方法,改善了模型预测控制稳态性能。

Description

一种五相永磁同步电机开路故障下的容错控制***及方法 技术领域
本发明涉及一种五相永磁同步电机单相开路故障下的容错控制***及方法,属于电机驱动及控制领域。
背景技术
相比与传统三相交流调速***,多相交流调速***具有以下优势:1)提高了电磁转矩脉动的频率,降低了转矩脉动的幅值;2)增加定子绕组相数,降低了功率器件的容量,避免了由功率器件串、并联所带来的均压、均流等问题;3)提高了***的容错运行能力,能实现故障状态下的无扰容错运行。此外,与异步电机相比,永磁同步电机具有更高的效率和更大的功率密度等。因此,多相永磁同步电机调速***在大功率输出和高可靠性场合,具有广泛的应用前景。
多相永磁同步电机调速***中常见电气故障分为逆变器故障和电机本体故障,每种电气故障又可分为开路和短路两种形式。上述两种故障都会造成***不对称,产生周期性转矩脉动,影响***运行性能。容错控制的目的是保证电机调速***在故障情况下仍具有一定的输出能力,维持***的持续可靠运行。
另一方面,有限控制集模型预测控制能够根据被控对象的约束和离散特性在线解决优化问题,其结构简单,算法容易实现,而且具有良好的动态性能,近年来在电力电子和电机驱动领域被广泛研究与应用。
针对电压型逆变器供电的五相永磁同步电机驱动***,中国发明专利《一种五相永磁同步电机有限集模型预测电流控制方法》(专利号为CN201611214528.4,公开日期为2017.03.15)公开了基于大矢量和中矢量合成的虚拟矢量的模型预测电流控制方法。中国发明专利《一种五相永磁同步电机模型预测转矩控制方法》(专利号为CN201710022345.0,公开日期为2017.06.06)公开了基于相邻4矢量的五相永磁同步电机模型预测转矩控制方法。上述专利所公开的模型预测控制方法能提高五相永磁同步电机驱动***在正常运行时的性能,然而对故障状态下的五相永磁同步电机驱动***模型预测控制研究较少。
发明内容
本发明针对单相开路故障的五相永磁同步电机驱动***,提供了一种基于简化电压集和占空比优化的模型预测容错控制***及方法,该方法能保证五相永磁同步电机驱动***在发生开路故障后仍然具有较好的运行性能,提高了***带故障运行能力。
本发明采用的技术方案为:一种五相永磁同步电机开路故障下的容错控制***,包括转速PI控制器、电流重构模块、价值函数优化模块、占空比控制模块、逆变器、电流传感器、单相开路故障的五相永磁同步电机、编码器、基本电压矢量作用时间计算模块和电流预测模块;
转速参考值和经编码器反馈得到的实际转速相比较,其转速差值输入至转速PI控制器;转速PI控制器输出基波空间交轴电流参考值,并输入给电流重构模块,重构后的相电 流经过拓展Clark变换得到基波空间两相静止电流参考值;电流重构模块的输出和电流预测模块的输出(其输入为基本电压矢量作用时间计算模块和电流传感器二者的输出)同时输送至价值函数优化模块;价值函数优化模块输出最优基本电压矢量及其作用时间至占空比控制模块;占空比控制模块输出占空比信号至逆变器;逆变器输出最优电压至单相开路故障下的五相永磁同步电机;电流传感器采集到的四相电流输送给基本电压矢量作用时间计算模块;基本电压矢量作用时间计算模块和电流传感器二者的输出送至电流预测模块。
一种五相永磁同步电机开路故障下的容错控制方法,包括以下步骤:
步骤一:当单相绕组发生开路故障后,转速控制器获得基波空间中的交轴电流参考值,电流重构模块将重构后的相电流通过拓展Clark变换,得到基波空间两相静止电流参考值;
计算基波空间交轴电流参考值i q1*:检测电机实际转速n,将转速参考值n*与实际转速n的差值e n输入转速PI控制器,根据公式(1)获得基波空间交轴电流参考值i q1*;
Figure PCTCN2018088052-appb-000001
其中,K P和K I分别为转速PI控制器的比例增益和积分增益;
计算重构相电流i B’、i C’、i D’和i E’:采集实时转子位置θ r,为能够保证五相永磁同步电机发生单相开路故障后合成磁动势不变,将基波空间中的交、直轴电流参考i q1*和i d1*根据公式(2)进行电流重构;
Figure PCTCN2018088052-appb-000002
其中,
Figure PCTCN2018088052-appb-000003
i d1 *可以利用最大转矩电流方法比获得,P r为极对数。
计算基波空间两相静止电流参考值i α *和i β *:将重构后的相电流通过拓展Clark变换公式(3),得到基波空间中的两相静止电流参考值i α *和i β *
Figure PCTCN2018088052-appb-000004
其中,δ=2π/5。
步骤二:利用电流参考值和电流预测值建立价值函数;
计算k时刻基波空间和3次谐波空间的两相静止电流i α(k)/i β(k)和i x(k)/i y(k):根据公式(4),由四相非故障电流i B(k)、i C(k)、i D(k)和i E(k),得到k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间中的两相静止电流i x(k)/i y(k);
Figure PCTCN2018088052-appb-000005
计算基本电压矢量作用时间t i:根据公式(5),由简化电压集中的非零基本电压矢量u i、非零谐波电压矢量v i、k时刻基波空间和3次谐波空间中的两相静止电流i α(k)/i β(k)和i x(k)/i y(k),可得到基本电压矢量的作用时间t i,而一个采样周期T s中的剩余时间(T s-t i)则由零矢量作用;;
Figure PCTCN2018088052-appb-000006
其中,T s表示采样时间,R s为定子绕组每相电阻,L s为定子绕组同步电感,e α(k-1)/e β(k-1)为(k-1)时刻基波空间中空载反电动势的αβ分量,e y(k-1)为(k-1)时刻3次谐波空间中空载反电动势的y轴分量,u (k)/u (k)为k时刻基波空间中非零基本电压矢量u i的αβ分量,v iy(k)为k时刻3次谐波空间中非零谐波电压矢量v i的y轴分量,i={1,…,8};
若以A相绕组发生开路故障为例,其中的简化电压集,由以下10组开关状态产生:0000、0001、0011、0110、0111、1000、1001、1100、1110和1111。其中,“1”表示上桥臂开通下桥臂关断,“0”表示下桥臂开通上桥臂关断,0000和1111两组产生零电压矢量,其他8组产生非零电压矢量;上述开关状态在基波空间和3次谐波空间产生的基本电压矢量和谐波电压矢量分别如表1和表2所示,表中U dc为母线电压;
表1基波空间基本电压矢量表
Figure PCTCN2018088052-appb-000007
表2 3次谐波空间谐波电压矢量表
Figure PCTCN2018088052-appb-000008
计算(k+1)刻基波空间两相静止电流预测值i α(k+1)/i β(k+1)和3次谐波空间中电流矢量y轴分量预测值i y(k+1):将k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间的电流矢量y轴分量i y(k)、基本电压矢量u i及其作用时间t i、谐波电压矢量v i,输入电流预测模块,根据公式(6)和公式(7)分别计算(k+1)刻基波空间两相静止电流预测值和谐波空间中的电流矢量y轴分量预测值
Figure PCTCN2018088052-appb-000009
Figure PCTCN2018088052-appb-000010
建立价值函数:根据公式(8)可得到基波空间中电流矢量参考值β轴分量i β*与3次谐波空间中电流矢量参考值y轴分量i y*之间的关系。将(k+1)时刻基波空间和3次谐波空间中的电流参考值及其预测值输入价值函数优化模块,根据公式(9)计算价值函数g i
Figure PCTCN2018088052-appb-000011
Figure PCTCN2018088052-appb-000012
步骤三:通过优化价值函数获得最优基本电压矢量及其作用时间,并经占空比控制和逆变器作用,输出最优电压给单相开路故障的五相永磁同步电机。
最优电压矢量及其作用时间选择:在价值函数g i中依次代入基本电压矢量u i及其作用时间t i和谐波电压矢量v i,当价值函数g i取得最小值时,其对应基波空间中基本电压矢量确定为最优电压矢量u opt,该电压矢量的作用时间即为最优时间t opt。每个周期内,剩余的时间(T s-t opt)则由零矢量作用。
占空比控制:当最优基本电压矢量及其时间确定后,占空比控制模块设计对称式占空比信号并输送至逆变器,逆变器输出最优电压给单相开路故障下的五相永磁同步电机。
工作原理:转速参考值和经编码器得到的实际转速相比较,其转速差值输入至转速PI控制器;转速PI控制器输出基波空间交轴电流参考值,并输入给电流重构模块,重构后的相电流经过拓展Clark变换得到基波空间两相静止电流参考值;电流重构模块的输出和电流预测模块的输出(其输入为基本电压矢量作用时间计算模块和电流传感器二者的输出)送给价值函数优化模块;价值函数优化模块输出最优基本电压矢量及其作用时间给占空比控制模块;占空比控制模块输出占空比信号给逆变器;逆变器输出最优电压给单相开路故障下的五相永磁同步电机;电流传感器采集到的四相电流输送给基本电压矢量作用时间计算模块;基本电压矢量作用时间计算模块和电流传感器二者的输出送至电流预测模块。
有益效果:对于单相开路故障下的五相永磁同步电机驱动***,本发明选用基波空间中的部分基本电压矢量为备选电压矢量,简化了该***的电压集,并减少了3次谐波电压对***输出性能的影响。本发明可保证五相永磁同步电机驱动***在发生开路故障后仍然具有较好的运行性能,提高了***带故障运行能力。
附图说明
图1是本发明提供的五相永磁同步电机开路故障下的容错控制***示意图;
图2是本发明提供的五相永磁同步电机开路故障下的容错控制方法流程图;
图3a、图3b是本发明提供的五相永磁同步电机开路故障容错控制方法中所采用的简化电压集在基波空间和谐波空间分布图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步说明。
如图1所示,一种五相永磁同步电机开路故障下的容错控制***,包括转速PI控制器1、电流重构模块2、价值函数优化模块3、占空比控制模块4、逆变器5、电流传感器6、单相开路故障的五相永磁同步电机7、编码器8、基本电压矢量作用时间计算模块9和电流预测模块10;
转速参考值和经编码器8反馈得到的实际转速相比较,其转速差值输入至转速PI控制器1;转速PI控制器1输出基波空间交轴电流参考值,并输入给电流重构模块2,重构后的相电流经过拓展Clark变换得到基波空间两相静止电流参考值;电流重构模块2的输出和电流预测模块10的输出,输入至价值函数优化模块3;价值函数优化模块3输出最优基本电压矢量及其作用时间给占空比控制模块4;占空比控制模块4输出占空比信号给逆变器5;逆变器5输出最优电压给单相开路故障下的五相永磁同步电机7;电流传感器6采集到的四相电流输送给基本电压矢量作用时间计算模块9;基本电压矢量作用时间计算模块9和电流传感器6的输出给电流预测模块10得到(k+1)时刻的电流预测值。
如图2和图3所示,一种五相永磁同步电机开路故障下的容错控制方法,包括以下步骤:
(1)计算基波空间交轴电流参考值i q1*:检测电机实际转速n,将转速参考值n*与实际转速n的差值e n输入PI控制器,根据公式(1)获得基波空间交轴电流参考值i q1*;
Figure PCTCN2018088052-appb-000013
其中,K P和K I分别为转速PI控制器的比例增益和积分增益;
(2)计算重构相电流i B’、i C’、i D’和i E’:采集实时转子位置θ r,为能够保证五相永磁同步电机发生单相开路故障后合成磁动势不变,将基波空间中的交、直轴电流参考i q1*和i d1*根据公式(2)进行电流重构;
Figure PCTCN2018088052-appb-000014
其中,
Figure PCTCN2018088052-appb-000015
i d1*可以利用最大转矩电流方法比获得,P r为极对数。
(3)计算基波空间两相静止电流参考值i α*和i β*:将重构后的相电流通过拓展Clark变换公式(3)得到两相静止坐标系的电流参考值i α*和i β*;
Figure PCTCN2018088052-appb-000016
其中,δ=2π/5。
(4)计算k时刻基波空间和3次谐波空间的两相静止电流i α(k)/i β(k)和i x(k)/i y(k):根据公式(4),由四相非故障电流i B(k)、i C(k)、i D(k)和i E(k),得到k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间中的两相静止电流i x(k)/i y(k);
Figure PCTCN2018088052-appb-000017
(5)计算基本电压矢量作用时间t i:根据公式(5),由简化电压集中的非零基本电压矢量u i、非零谐波电压矢量v i、k时刻基波和3次谐波空间中的两相静止电流i α(k)/i β(k)和i x(k)/i y(k),可得到基本电压矢量的作用时间t i,而一个采样周期T s中的剩余时间(T s-t i)则由零矢量作用;
Figure PCTCN2018088052-appb-000018
其中,T s表示采样时间,R s为定子绕组每相电阻,L s为定子绕组同步电感,e α(k-1)/e β(k-1)为(k-1)时刻基波空间中空载反电动势的αβ分量,e y(k-1)为(k-1)时刻3次谐波空间中空载反电动势的y轴分量,u (k)/u (k)为k时刻基波空间中非零基本电压矢量u i的αβ分量,v iy(k)为k时刻3次谐波空间中非零谐波电压矢量v i的y分量,i={1,…,8}。
(6)计算(k+1)刻基波空间两相静止电流预测值i α(k+1)/i β(k+1)和3次谐波空间中 电流矢量y轴分量预测值i y(k+1):将k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间中电流矢量y轴分量i y(k)、基本电压矢量u i及其作用时间t i、谐波电压矢量v i输入电流预测模块,根据公式(6)和公式(7)分别计算(k+1)刻基波空间两相静止电流预测值和谐波空间中电流矢量y轴分量预测值
Figure PCTCN2018088052-appb-000019
Figure PCTCN2018088052-appb-000020
(7)建立价值函数:根据公式(8)可得到基波空间中电流矢量参考值β轴分量i β*与3次谐波空间内电流矢量参考值y轴分量i y*之间的关系。将(k+1)时刻基波空间和3次谐波空间中的电流矢量参考值及其预测值输入价值函数优化模块,根据公式(9)计算价值函数g i
Figure PCTCN2018088052-appb-000021
Figure PCTCN2018088052-appb-000022
(8)在最优电压矢量及其作用时间选择:在价值函数g i中依次代入基本电压矢量u i及其作用时间t i和谐波电压矢量v i,当价值函数g i取得最小值时,其对应基波空间中基本电压矢量确定为最优电压矢量u opt,该电压矢量的作用时间即为最优时间t opt。每个采样周期内,剩余的时间(T s-t opt)则由零矢量作用。
(9)占空比控制:当最优基本电压矢量及其时间确定后,占空比控制模块设计对称式占空比信号并输送至逆变器,逆变器输出最优电压给单相开路故障的五相永磁同步电机。
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。

Claims (6)

  1. 一种五相永磁同步电机开路故障下的容错控制***,其特征在于:包括转速PI控制器、电流重构模块、价值函数优化模块、占空比控制模块、逆变器、电流传感器、单相开路故障的五相永磁同步电机、编码器、基本电压矢量作用时间计算模块和电流预测模块;
    转速参考值和经编码器反馈得到的实际转速相比较,其转速差值输入至转速PI控制器;转速PI控制器输出基波空间交轴电流参考值,并输入给电流重构模块,重构后的相电流经过拓展Clark变换得到基波空间两相静止电流参考值;电流重构模块的输出和电流预测模块的输出同时输送至价值函数优化模块;价值函数优化模块输出最优基本电压矢量及其作用时间至占空比控制模块;占空比控制模块输出占空比信号至逆变器;逆变器输出最优电压至单相开路故障下的五相永磁同步电机;电流传感器采集到的四相电流输送给基本电压矢量作用时间计算模块;基本电压矢量作用时间计算模块和电流传感器二者的输出送至电流预测模块。
  2. 根据权利要求1所述控制***的的五相永磁同步电机开路故障下的容错控制方法,其特征在于:包括以下步骤:
    步骤一:当单相绕组发生开路故障后,转速控制器获得基波空间中的交轴电流参考值,电流重构模块将重构后的相电流通过拓展Clark变换,得到基波空间两相静止电流参考值;
    步骤二:利用电流参考值和电流预测值建立价值函数;
    步骤三:通过优化价值函数获得最优基本电压矢量及其作用时间,并经占空比控制和逆变器作用,输出最优电压给单相开路故障的五相永磁同步电机。
  3. 根据权利要求2所述的五相永磁同步电机开路故障下的容错控制方法,其特征在于:所述步骤一中:
    计算基波空间交轴电流参考值i q1*:检测电机实际转速n,将转速参考值n*与实际转速n的差值e n输入转速PI控制器,根据公式(1)获得基波空间交轴电流参考值i q1*;
    Figure PCTCN2018088052-appb-100001
    其中,K P和K I分别为转速PI控制器的比例增益和积分增益;
    计算重构相电流i B’、i C’、i D’和i E’:采集实时转子位置θ r,为能够保证五相永磁同步电机发生单相开路故障后合成磁动势不变,将基波空间中的交、直轴电流参考i q1*和i d1*根据公式(2)进行电流重构;
    Figure PCTCN2018088052-appb-100002
    其中,
    Figure PCTCN2018088052-appb-100003
    i d1*利用最大转矩电流方法比获得,P r为极对数;
    计算基波空间两相静止电流参考值i α*和i β*:将重构后的相电流通过拓展Clark变换公式(3),得到基波空间中的两相静止电流参考值i α*和i β*;
    Figure PCTCN2018088052-appb-100004
    其中,δ=2π/5。
  4. 根据权利要求3所述的五相永磁同步电机开路故障下的容错控制方法,其特征在于:所述步骤二中:
    计算k时刻基波空间和3次谐波空间的两相静止电流i α(k)/i β(k)和i x(k)/i y(k):根据公式(4),由四相非故障电流i B(k)、i C(k)、i D(k)和i E(k),得到k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间中的两相静止电流i x(k)/i y(k);
    Figure PCTCN2018088052-appb-100005
    计算基本电压矢量作用时间t i:根据公式(5),由简化电压集中的非零基本电压矢量u i、非零谐波电压矢量v i、k时刻基波空间和3次谐波空间中的两相静止电流i α(k)/i β(k)和i x(k)/i y(k),得到基本电压矢量的作用时间t i,而一个采样周期T s中的剩余时间(T s-t i)则由零矢量作用;
    Figure PCTCN2018088052-appb-100006
    其中,T s表示采样时间,R s为定子绕组每相电阻,L s为定子绕组同步电感,e α(k-1)/e β(k-1)为(k-1)时刻基波空间中空载反电动势的αβ分量,e y(k-1)为(k-1)时刻3次谐波空间中空载反电动势的y轴分量,u (k)/u (k)为k时刻基波空间中非零基本电压矢量u i的αβ分量,v iy(k)为k时刻3次谐波空间中非零谐波电压矢量v i的y轴分量,i={1,…,8};
    计算(k+1)刻基波空间两相静止电流预测值i α(k+1)/i β(k+1)和3次谐波空间中电流矢量y轴分量预测值i y(k+1):将k时刻基波空间中的两相静止电流i α(k)/i β(k)和3次谐波空间的电流矢量y轴分量i y(k)、基本电压矢量u i及其作用时间t i、谐波电压矢量v i,输入电流预测模块,根据公式(6)和公式(7)分别计算(k+1)刻基波空间两相静止电流预测值和谐波空间中的电流矢量y轴分量预测值
    Figure PCTCN2018088052-appb-100007
    Figure PCTCN2018088052-appb-100008
    建立价值函数:根据公式(8)得到基波空间中电流矢量参考值β轴分量i β*与3次谐波空间中电流矢量参考值y轴分量i y*之间的关系;将(k+1)时刻基波空间和3次谐波空间中的电流参考值及其预测值输入价值函数优化模块,根据公式(9)计算价值函数g i
    Figure PCTCN2018088052-appb-100009
    Figure PCTCN2018088052-appb-100010
  5. 根据权利要求4所述的五相永磁同步电机开路故障下的容错控制方法,其特征在于:所述步骤三中:
    最优电压矢量及其作用时间选择:在价值函数g i中依次代入基本电压矢量u i及其作用时间t i和谐波电压矢量v i,当价值函数g i取得最小值时,其对应基波空间中基本电压矢量确定为最优电压矢量u opt,该电压矢量的作用时间即为最优时间t opt。每个周期内,剩余的时间(T s-t opt)则由零矢量作用;
    占空比控制:当最优基本电压矢量及其时间确定后,占空比控制模块设计对称式占空比信号并输送至逆变器,逆变器输出最优电压给单相开路故障下的五相永磁同步电机。
  6. 根据权利要求4所述的五相永磁同步电机开路故障下的容错控制方法,其特征在于:所述步骤二中:
    若以A相绕组发生开路故障为例,其中的简化电压集,由以下10组开关状态产生:0000、0001、0011、0110、0111、1000、1001、1100、1110和1111;其中,“1”表示上桥臂开通下桥臂关断,“0”表示下桥臂开通上桥臂关断,0000和1111两组产生零电压矢量,其他8组产生非零电压矢量;上述开关状态在基波空间和3次谐波空间产生的基本电压矢量和谐波电压矢量分别如表1和表2所示,表中U dc为母线电压;
    表1基波空间基本电压矢量表
    Figure PCTCN2018088052-appb-100011
    表2 3次谐波空间谐波电压矢量表
    Figure PCTCN2018088052-appb-100012
PCT/CN2018/088052 2017-10-10 2018-05-23 一种五相永磁同步电机开路故障下的容错控制***及方法 WO2019071955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710933989.5 2017-10-10
CN201710933989.5A CN107565868B (zh) 2017-10-10 2017-10-10 一种五相永磁同步电机开路故障下的容错控制***及方法

Publications (1)

Publication Number Publication Date
WO2019071955A1 true WO2019071955A1 (zh) 2019-04-18

Family

ID=60984351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088052 WO2019071955A1 (zh) 2017-10-10 2018-05-23 一种五相永磁同步电机开路故障下的容错控制***及方法

Country Status (2)

Country Link
CN (1) CN107565868B (zh)
WO (1) WO2019071955A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703607A (zh) * 2019-11-07 2020-01-17 辽宁石油化工大学 具有执行器故障的区间时变时滞***的随机鲁棒预测容错控制方法
CN114531085A (zh) * 2022-03-03 2022-05-24 哈尔滨工业大学 一种五相永磁电机短路故障下的转矩特性改善方法
CN114531088A (zh) * 2022-03-03 2022-05-24 哈尔滨工业大学 考虑转子磁场谐波的五相永磁电机短路故障容错控制方法
CN114679093A (zh) * 2022-04-21 2022-06-28 湖南工业大学 一种直驱永磁风力发电机的低电流脉动占空比优化方法
CN114759854A (zh) * 2022-04-24 2022-07-15 北京理工大学 一种隔离母线型开绕组永磁同步电机的电压调制方法
CN116931431A (zh) * 2023-07-26 2023-10-24 江南大学 一种永磁同步电机模型预测控制权重系数设计方法和***

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565868B (zh) * 2017-10-10 2024-03-01 东南大学盐城新能源汽车研究院 一种五相永磁同步电机开路故障下的容错控制***及方法
CN108631673B (zh) * 2018-05-08 2020-04-21 长安大学 一种永磁同步电机容错***矢量控制方法
CN109495055B (zh) * 2018-09-17 2022-03-22 沈阳工业大学 一种五相永磁同步电机一相开路预测电流控制方法
WO2020092522A1 (en) 2018-10-31 2020-05-07 Optiphase Drive Systems, Inc. Electric machine with permanent magnet rotor
CN111800047A (zh) * 2019-03-19 2020-10-20 广东威灵电机制造有限公司 永磁同步电机的永磁磁链的测量方法、装置和电机控制***
CN111162707B (zh) * 2020-01-10 2023-06-13 湖南工业大学 一种永磁同步电机有限集无模型容错预测控制方法及***
CN111600524B (zh) * 2020-05-26 2023-09-05 成都运达轨道交通技术服务有限公司 一种基于占空比优化的五相逆变器模型预测电流控制方法
CN111740684B (zh) * 2020-05-26 2023-09-01 东南大学深圳研究院 一种两单元同相位永磁同步电机容错控制***及方法
CN111856275B (zh) * 2020-07-06 2021-05-28 南京航空航天大学 适用于多相电机驱动器的多重开路故障诊断方法
CN111953253B (zh) * 2020-08-11 2023-09-22 贵州航天林泉电机有限公司 一种电机极对数辨识***和矢量控制电机极对数辨识方法
CN111969900B (zh) * 2020-09-01 2022-02-11 南通大学 一种占空比调制的npc三电平bldc转矩脉动最小化控制方法
CN112087177B (zh) * 2020-09-07 2021-11-16 东南大学 一种永磁同步电机单电流传感器控制方法
CN112260605B (zh) * 2020-09-21 2022-05-17 西安理工大学 五相永磁同步电机缺一相故障直接转矩控制方法
CN112290859B (zh) * 2020-10-27 2022-05-20 江苏大学 采用无差拍电流跟踪的五相永磁电机短路容错控制方法
CN112436776B (zh) * 2020-11-19 2022-05-17 江苏大学 用于五相分数槽集中绕组容错电机的开路容错直接转矩控制方法
CN112564467B (zh) * 2020-12-25 2021-11-09 南京理工大学 一种两电平pwm变流器开路故障自愈型容错控制方法
CN113271048B (zh) 2021-03-02 2022-05-20 江苏大学 五相永磁容错电机控制驱动***的开路统一容错控制方法
CN113315436B (zh) * 2021-06-05 2023-01-13 青岛大学 一种基于虚拟矢量的九相开绕组永磁同步电机模型预测控制方法
CN113659893A (zh) * 2021-07-21 2021-11-16 江苏大学 一种考虑全参数变化的鲁棒模型预测电流容错控制方法
CN113794407B (zh) * 2021-08-24 2023-06-30 西北工业大学 三相两电平pmsm驱动逆变器单管开路故障的控制方法
CN113777485B (zh) * 2021-09-07 2022-05-17 江南大学 基于价值函数误差的永磁同步电机开路故障诊断方法
CN114123916B (zh) * 2021-11-17 2023-10-27 华中科技大学 一种双三相永磁同步电机缺相故障容错控制方法和***
CN114531081B (zh) * 2022-02-28 2024-06-04 华中科技大学 基于mras的三相vsi非线性在线补偿和永磁电机控制***
CN114665764A (zh) * 2022-04-21 2022-06-24 湖南工业大学 一种高鲁棒性永磁同步风力发电机无模型预测控制方法
CN114665763A (zh) * 2022-04-21 2022-06-24 湖南工业大学 一种永磁同步风力发电机最优电压矢量确定方法
CN115173774B (zh) * 2022-06-27 2024-06-21 湖南大学 一种永磁同步电机无位置传感器控制方法及***
CN117544037B (zh) * 2024-01-09 2024-03-26 南京理工大学 一种五相永磁同步电机驱动***多工况容错控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492060B2 (en) * 2006-09-01 2009-02-17 Atomic Energy Council - Institute Of Nuclear Energy Research Fault-tolerant circuit device in fuel cell AC inverter
CN105743398A (zh) * 2016-05-04 2016-07-06 哈尔滨工业大学 用于五相永磁同步电机绕组开路故障容错控制的电流设定方法
CN106330046A (zh) * 2016-09-13 2017-01-11 江苏大学 基于特定负载的新型五相容错永磁电机无位置传感器控制方法
CN106787662A (zh) * 2017-03-15 2017-05-31 郑州轻工业学院 一种双向ac/dc变换器故障容错模型及其控制方法
CN107565868A (zh) * 2017-10-10 2018-01-09 东南大学盐城新能源汽车研究院 一种五相永磁同步电机开路故障下的容错控制***及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106351B (zh) * 2007-08-03 2010-12-08 西北工业大学 多相永磁容错电机解耦控制方法
CN102130559A (zh) * 2011-03-18 2011-07-20 江苏大学 一种具有聚磁效应的电动汽车用五相永磁容错电机
US9787237B2 (en) * 2014-07-11 2017-10-10 The University Of Akron Fault tolerant control system for multi-phase permanent magnet assisted synchronous reluctance motors
CN106505927B (zh) * 2016-12-26 2018-10-30 西南交通大学 一种五相永磁同步电机有限集模型预测电流控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492060B2 (en) * 2006-09-01 2009-02-17 Atomic Energy Council - Institute Of Nuclear Energy Research Fault-tolerant circuit device in fuel cell AC inverter
CN105743398A (zh) * 2016-05-04 2016-07-06 哈尔滨工业大学 用于五相永磁同步电机绕组开路故障容错控制的电流设定方法
CN106330046A (zh) * 2016-09-13 2017-01-11 江苏大学 基于特定负载的新型五相容错永磁电机无位置传感器控制方法
CN106787662A (zh) * 2017-03-15 2017-05-31 郑州轻工业学院 一种双向ac/dc变换器故障容错模型及其控制方法
CN107565868A (zh) * 2017-10-10 2018-01-09 东南大学盐城新能源汽车研究院 一种五相永磁同步电机开路故障下的容错控制***及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703607A (zh) * 2019-11-07 2020-01-17 辽宁石油化工大学 具有执行器故障的区间时变时滞***的随机鲁棒预测容错控制方法
CN114531085A (zh) * 2022-03-03 2022-05-24 哈尔滨工业大学 一种五相永磁电机短路故障下的转矩特性改善方法
CN114531088A (zh) * 2022-03-03 2022-05-24 哈尔滨工业大学 考虑转子磁场谐波的五相永磁电机短路故障容错控制方法
CN114679093A (zh) * 2022-04-21 2022-06-28 湖南工业大学 一种直驱永磁风力发电机的低电流脉动占空比优化方法
CN114759854A (zh) * 2022-04-24 2022-07-15 北京理工大学 一种隔离母线型开绕组永磁同步电机的电压调制方法
CN116931431A (zh) * 2023-07-26 2023-10-24 江南大学 一种永磁同步电机模型预测控制权重系数设计方法和***
CN116931431B (zh) * 2023-07-26 2024-06-07 江南大学 一种永磁同步电机模型预测控制权重系数设计方法和***

Also Published As

Publication number Publication date
CN107565868B (zh) 2024-03-01
CN107565868A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2019071955A1 (zh) 一种五相永磁同步电机开路故障下的容错控制***及方法
CN108418502B (zh) 一种基于改进式svpwm的永磁同步电机开绕组容错直接转矩控制方法
Zhao et al. Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM
Echenique et al. Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks
WO2022110277A1 (zh) 一种用于开绕组五相永磁同步电机的模型预测分解控制方法及装置
Trivedi et al. Evaluation of predictive current control techniques for PM BLDC motor in stationary plane
CN113271048B (zh) 五相永磁容错电机控制驱动***的开路统一容错控制方法
CN110299882B (zh) 混合供电型开绕组永磁同步电机三矢量模型预测控制方法
Gan et al. A position sensorless torque control strategy for switched reluctance machines with fewer current sensors
CN110504889B (zh) 一种五相永磁同步电机容错直接转矩控制方法
Poddar et al. Direct torque and frequency control of double-inverter-fed slip-ring induction motor drive
Saady et al. Optimization and control of photovoltaic water pumping system using kalman filter based MPPT and multilevel inverter fed DTC-IM
Masoumkhani et al. PI regulator-based duty cycle control to reduce torque and flux ripples in DTC of six-phase induction motor
WO2023045555A1 (zh) 三相电流重构方法、装置、设备和存储介质
CN115021636A (zh) 一种基于无差拍的五相永磁同步电机模型预测容错控制方法
Jabbarnejad et al. Virtual-flux-based DPC of grid connected converters with fast dynamic and high power quality
CN109981017B (zh) 一种开路故障下的两单元同相位永磁同步电机容错控制***及方法
CN113098348A (zh) 一种双三相永磁同步电机预测转矩控制方法
CN116667732A (zh) 一种三电平逆变器永磁同步电机的模型预测电流控制方法
Siami et al. Predictive torque control of three phase axial flux permanent magnet synchronous machines
CN113992095B (zh) 一种低复杂度的双三相永磁同步发电机pmsg模型预测直接功率控制方法
Zhang et al. Evaluation of a class of improved DTC method applied in DFIG for wind energy applications
Zhu et al. Simplified model predictive current control strategy for open-winding permanent magnet synchronous motor drives
Taïb et al. An improved fixed switching frequency direct torque control of induction motor drives fed by direct matrix converter
Guo et al. Multi-voltage vector of duty cycle model predictive current control for permanent magnet synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866800

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18866800

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18866800

Country of ref document: EP

Kind code of ref document: A1