WO2019071685A1 - 一种sr4光模块发射功率的监控***和监控方法 - Google Patents

一种sr4光模块发射功率的监控***和监控方法 Download PDF

Info

Publication number
WO2019071685A1
WO2019071685A1 PCT/CN2017/109959 CN2017109959W WO2019071685A1 WO 2019071685 A1 WO2019071685 A1 WO 2019071685A1 CN 2017109959 W CN2017109959 W CN 2017109959W WO 2019071685 A1 WO2019071685 A1 WO 2019071685A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
reflecting
fiber
reflected beam
monitoring system
Prior art date
Application number
PCT/CN2017/109959
Other languages
English (en)
French (fr)
Inventor
雷奖清
林星
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2019071685A1 publication Critical patent/WO2019071685A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention relates to the field of optical transceivers, and in particular, to a monitoring system and a monitoring method for transmitting power of an SR4 optical module.
  • the optical fiber used to connect the server is only a few meters to several kilometers, people More attention is paid to the interconnection of stations by means of high-rate short-distance optical modules.
  • the existing 4-channel parallel-optical-module for short-distance optical links (4-channel short-range optical module) generally adopts a scheme of integrating four transceiver chips on a PCB board, and a single channel. At a rate of 25 Gbps, a total rate of up to 100 Gbps can be achieved.
  • the transmit power of the transmitter is calculated by detecting the operating current of the transmitter.
  • this method will fail with the aging of the SR4 optical module and the temperature change.
  • the technical problem to be solved by the present invention is to provide a monitoring system for transmitting power of an SR4 optical module according to the above-mentioned defects of the prior art, and to achieve a target for controlling the transmission power of the SR4 optical module by directly detecting the power parameter of the reflected beam. .
  • the technical problem to be solved by the present invention is to provide a method for monitoring the transmit power of the SR4 optical module according to the above-mentioned defects of the prior art, and to achieve the target of controlling the transmit power of the SR4 optical module by directly detecting the power parameter of the reflected beam. .
  • the present invention provides a monitoring system for transmitting power of an SR4 optical module, including a transmitting device and a monitoring device, the transmitting device emitting an input beam, and the monitoring device receives the reflected beam.
  • the monitoring system further includes a reflecting device and a main control device, the monitoring system further comprising an inclined fiber end face, wherein the main control device is respectively connected to the transmitting device and the monitoring device;
  • the transmitting device emits an input beam to a reflecting device, and the reflecting device reflects the input beam to the end face of the fiber, and the end face of the fiber reflects the reflected beam to the reflecting device, and the reflecting device reflects the reflected beam to the monitoring device, and the detecting device detects
  • the power parameter of the reflected beam is transmitted, and the power parameter of the reflected beam is sent to the main control device, and the main control device controls the transmitting power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring system comprises: a fiber fixing device, the inclined fiber end face is formed by tilting a pupil on the fiber fixing device and inserting an optical fiber; and the reflecting device reflects the input beam to the optical fiber At the end face, a partially reflected beam is output through the fiber.
  • the monitoring system further comprises: a collimating lens, wherein the transmitting device emits an input beam to the collimating lens, and the collimating lens converts the input beam into a parallel beam and inputs the signal to the reflecting device.
  • the monitoring system further comprises: a focusing lens, the reflecting device reflects the reflected beam to the focusing lens, and the focusing lens focuses the reflected beam and inputs it to the monitoring device.
  • the reflective device is: the reflective device is a concave triangular groove designed by total internal reflection, and the triangular groove is used for reflection and focusing.
  • the present invention further provides a method for monitoring transmit power of an SR4 optical module, where the monitoring method includes the following steps:
  • the transmitting device emits an input beam to the reflecting device
  • the reflecting means reflects the input beam to an end face of the fiber having an oblique angle to the optical axis of the incident beam
  • the end reflecting portion reflects the light beam to the reflecting device
  • the reflecting device reflects the reflected light beam to the monitoring device
  • the monitoring device detects the power parameter of the reflected beam and transmits the power parameter of the reflected beam to the main control device
  • the main control device controls the transmission power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring method specifically includes the following steps:
  • the reflecting device reflects the input beam to the end face ⁇ , and the partially reflected beam is output through the optical fiber.
  • the beneficial effects of the present invention are: Compared with the prior art, the present invention realizes the SR4 light by designing a monitoring system and a monitoring method for the transmitting power of the SR4 optical module, by detecting the reflected light to control the transmitting power of the transmitting device.
  • the direct monitoring of the module's transmit power avoids the accuracy of the transmit power monitoring as the SR4 optical module ages or changes in temperature; the monitoring system is simple in structure, easy to maintain, and can automatically adjust the transmit power of the device simply by setting parameters. operating.
  • FIG. 1 is a schematic diagram of a monitoring system for transmitting power of an SR4 optical module according to the present invention
  • FIG. 2 is a flowchart of a method for monitoring transmission power of an SR4 optical module according to the present invention
  • FIG. 3 is a further flow chart of a method for monitoring the transmit power of the SR4 optical module of the present invention.
  • the present invention provides a preferred embodiment of a monitoring system for transmitting power of an SR4 optical module.
  • a monitoring system for transmitting power of an SR4 optical module comprising a transmitting device 1 and an monitoring device 2, the transmitting device 1 emitting an input beam, the monitoring device 2 receiving a reflected beam, the monitoring system further comprising a reflecting device 3 and a main Control device 4, the monitoring system further comprises a tilted fiber end face 5, the main control device 4 is connected to the transmitting device 1 and the monitoring device 2, respectively, and the transmitting device 1, the monitoring device 2 and the main control device 4 are soldered on the PCB board , to achieve the above functions.
  • the reflecting device 3 is disposed above the transmitting device 1, the fiber end face 5 is disposed adjacent to the right side of the reflecting device 3, and the monitoring device 2 is disposed at the reflection Below the device 3, and the monitoring device 2 is placed at a different location from the transmitting device 1, the transmitting device 1, the monitoring device 2 and the main control device 4 are soldered to the PCB.
  • the transmitting device 1 emits an input beam to the reflecting device 3, the reflecting device 3 reflects the input beam to the fiber end face 5, and the fiber end face 5 reflects a portion of the reflected beam to the reflecting device 3.
  • the position of the reflected end of the fiber end face 5 reflected to the reflecting device 3 is different from the position at which the transmitting device 1 emits an input beam to the reflecting device 3.
  • the reflecting device 3 reflects the reflected beam to the monitoring device 2, and the monitoring device 2 detects the reflected beam.
  • the power parameter is sent to the main control device 4, and the main control device 4 controls the transmission power of the transmitting device 1 according to the power parameter of the reflected beam.
  • the direct monitoring of the transmitting power of the SR4 optical module is realized, and the monitoring is prevented from affecting the aging of the SR4 optical module or the temperature change; the monitoring system is simple in structure, easy to maintain, and only needs to be set.
  • the parameters automatically adjust the transmit power of the device for easy operation.
  • the power parameters of the reflected beam include light intensity (optical power) and luminous flux.
  • the monitoring system includes a fiber fixing device 6, and the inclined fiber end face 5 is formed by tilting the pupil on the fiber fixing device 6 and inserting the optical fiber; the reflecting device 3 The input beam is reflected to the fiber end face 5 ⁇ , and the partially reflected beam is output through the fiber.
  • the monitoring system further includes a collimating lens 7, the emitting device 1 emits a plurality of input beams to the collimating lens 7, and the collimating lens 7 converts the input beam into a parallel beam by collimating action. And input to the reflecting device 3.
  • the collimator lens 7 is disposed on the light path of the input beam emitted from the transmitting device 1, i.e., directly above the transmitting device 1.
  • the monitoring system further includes a focusing lens 8 that reflects the reflected beam to the focusing lens 8.
  • the focusing lens 8 focuses the reflected beam and inputs it to the monitoring device 2 by focusing.
  • the monitoring device 2 receives the reflected beam.
  • the focus lens 8 is disposed on the optical path of the reflected beam, i.e., directly above the monitoring device 2.
  • the reflecting device 3 is a concave triangular groove designed by total internal reflection, which is used for reflection and focusing of an input beam, and for reflecting and reflecting the reflected beam. Focus.
  • the present invention further provides a preferred embodiment of a method for monitoring the transmission power of the SR4 optical module.
  • a method for monitoring transmission power of an SR4 optical module where the monitoring method includes the following steps:
  • Step 10 the transmitting device sends an input beam to the reflecting device
  • Step 20 the reflecting device reflects the input beam to the end face of the fiber having an oblique angle with the optical axis of the incident beam; [0042] Step 30, the end reflecting portion reflects the beam to the reflecting device; [0043] Step 40, the reflecting device reflects the reflected light beam to the monitoring device;
  • Step 50 the monitoring device detects the power parameter of the reflected beam, and sends the power parameter of the reflected beam to the main control device;
  • Step 60 The main control device controls the transmit power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring method specifically includes the following steps:
  • Step 21 tilting the pupil on the fiber fixing device, and inserting the optical fiber into the hole to form the fiber end face
  • the end line normal of the optical fiber is parallel to the fiber axis, and the normal line is at an angle to the optical axis of the reflected incident beam after entering the hole;
  • Step 22 The reflecting device reflects the input beam to the end face ⁇ , and the partially reflected beam passes through the fiber output.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种SR4光模块发射功率的监控***和监控方法,包括发射装置(1)和监测装置(2),发射装置(1)发出输入光束,监测装置(2)接收反射光束,监控***还包括反射装置(3)、主控装置(4)和倾斜的光纤端面(5);发射装置(1)发出输入光束至反射装置(3),反射装置(3)将输入光束反射至光纤端面(5),光纤端面(5)反射部分反射光束至反射装置(3),反射装置(3)将反射光束反射至监测装置(2),监测装置(2)检测反射光束的功率参数,并将反射光束的功率参数发送至主控装置(4),主控装置(4)根据反射光束的功率参数控制发射装置(1)的发射功率。通过检测反射光束控制发射装置(1)的发射功率,实现对SR4光模块发射功率的直接监控,避免随着SR4光模块老化或温度变化影响发射功率监控准确度。

Description

一种 SR4光模块发射功率的监控***和监控方法 技术领域
[0001] 本发明涉及光收发器领域, 具体涉及一种 SR4光模块发射功率的监控***和监 控方法。
背景技术
[0002] 目前, 不同于在长距离网络中人们对频谱效率和距离-比特率乘积的关注, 在 大吞吐量数据中心的内部网络中, 用来连接服务器的光纤仅仅为几米到几公里 , 人们更关注的是借助高速率短距离光模块实现站内互联。
[0003] 而现有的 SR4光模块 (4-channel parallel-optical-module for short reach optical links, 4通道短距离光模块), 通常采用的方案是在 PCB板上集成四路收发芯片, 单通道速率 25Gbps, 即可实现高达 lOOGbps总速率。 在该类器件中, 通过检测发 射器的工作电流计算出发射器的发射功率。 但是, 该种方式会随着 SR4光模块的 老化, 以及温度的变化而失效。
[0004] 因此, 设计一种通过直接检测反射光束的功率参数来控制 SR4光模块发射功率 的监控***和监控方法, 一直是本领域技术人员重点研究的问题之一。
技术问题
[0005] 本发明要解决的技术问题在于, 针对现有技术的上述缺陷, 提供一种 SR4光模 块发射功率的监控***, 实现直接通过检测反射光束的功率参数来控制 SR4光模 块发射功率的目标。
[0006] 本发明要解决的技术问题在于, 针对现有技术的上述缺陷, 提供一种 SR4光模 块发射功率的监控方法, 实现直接通过检测反射光束的功率参数来控制 SR4光模 块发射功率的目标。
问题的解决方案
技术解决方案
[0007] 为解决该技术问题, 本发明提供一种 SR4光模块发射功率的监控***, 包括发 射装置和监测装置, 该发射装置发出输入光束, 该监测装置接收反射光束, 所 述监控***还包括反射装置和主控装置, 该监控***还包括倾斜的光纤端面, 该主控装置分别连接发射装置和监测装置; 其中,
[0008] 该发射装置发出输入光束至反射装置, 该反射装置将输入光束反射至光纤端面 , 该光纤端面反射部分反射光束至反射装置, 该反射装置将反射光束反射至监 测装置, 该监测装置检测反射光束的功率参数, 并将反射光束的功率参数发送 至主控装置, 该主控装置根据反射光束的功率参数控制发射装置的发射功率。 其中, 较佳方案是: 所述监控***包括一光纤固定装置, 通过在该光纤固定装 置上倾斜幵孔, 并且***光纤, 形成所述倾斜的光纤端面; 所述反射装置将输 入光束反射至光纤端面吋, 部分反射光束通过光纤输出。
[0009] 其中, 较佳方案是: 所述监控***还包括准直透镜, 所述发射装置发出输入光 束至准直透镜, 该准直透镜将输入光束转变为平行光束, 并输入至反射装置。
[0010] 其中, 较佳方案是: 所述监控***还包括聚焦透镜, 所述反射装置将反射光束 反射至聚焦透镜, 该聚焦透镜聚焦反射光束并输入至监测装置。
[0011] 其中, 较佳方案是: 所述反射装置为带有凹面的采用全内反射设计的三角槽, 该三角槽用于反射和聚焦。
[0012] 本发明还提供一种 SR4光模块发射功率的监控方法, 所述监控方法包括以下步 骤:
[0013] 发射装置发出输入光束至反射装置;
[0014] 反射装置反射输入光束至与入射光束光轴具有倾斜角的光纤端面;
[0015] 端面反射部分反射光束至反射装置;
[0016] 反射装置将反射光束反射至监测装置;
[0017] 监测装置检测反射光束的功率参数, 并将反射光束的功率参数发送至主控装置
[0018] 主控装置根据反射光束的功率参数控制发射装置的发射功率。
[0019] 其中, 较佳方案是, 所述监控方法具体还包括以下步骤:
[0020] 在光纤固定装置上倾斜幵孔, 并将光纤***孔中, 形成所述光纤端面;
[0021] 所述反射装置将输入光束反射至端面吋, 部分反射光束通过光纤输出。
发明的有益效果 有益效果
[0022] 本发明的有益效果在于, 与现有技术相比, 本发明通过设计一种 SR4光模块发 射功率的监控***和监控方法, 通过检测反射光束控制发射装置的发射功率, 实现对 SR4光模块发射功率的直接监控, 避免随着 SR4光模块的老化或者温度变 化影响发射功率监控准确度; 该监控***结构简单, 易于维修, 而且只需设定 参数就能够自动调整器件的发射功率, 便于操作。
对附图的简要说明
附图说明
[0023] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0024] 图 1是本发明 SR4光模块发射功率的监控***的示意图;
[0025] 图 2是本发明 SR4光模块发射功率的监控方法的流程图;
[0026] 图 3是本发明 SR4光模块发射功率的监控方法的进一步流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0027] t m^
[0028] 现结合附图, 对本发明的较佳实施例作详细说明。
[0029] 如图 1所示, 本发明提供一种 SR4光模块发射功率的监控***的优选实施例。
[0030] 一种 SR4光模块发射功率的监控***, 包括发射装置 1和监测装置 2, 该发射装 置 1发出输入光束, 该监测装置 2接收反射光束, 所述监控***还包括反射装置 3 和主控装置 4, 该监控***还包括倾斜的光纤端面 5, 该主控装置 4分别连接发射 装置 1和监测装置 2, 并且该发射装置 1、 监测装置 2和主控装置 4均焊接在 PCB板 上, 实现上述功能。
[0031] 具体地, 参考图 1, 以发射装置 1作为基点, 该反射装置 3设置在发射装置 1的上 方, 该光纤端面 5设置在邻近反射装置 3的右侧, 该监测装置 2设置在反射装置 3 的下方, 并且该监测装置 2设置在与发射装置 1的不同位置上, 该发射装置 1、 监 测装置 2和主控装置 4均焊接在 PCB板上。
[0032] 在监控***的工作过程中, 该发射装置 1发出输入光束至反射装置 3, 该反射装 置 3将输入光束反射至光纤端面 5, 该光纤端面 5反射部分反射光束至反射装置 3 , 该光纤端面 5反射部分反射光束到反射装置 3的位置与发射装置 1发出输入光束 到反射装置 3的位置不同, 该反射装置 3将反射光束反射至监测装置 2, 该监测装 置 2检测反射光束的功率参数, 并将反射光束的功率参数发送至主控装置 4, 该 主控装置 4根据反射光束的功率参数控制发射装置 1的发射功率。 通过检测反射 光束控制发射装置 1的发射功率, 实现对 SR4光模块发射功率的直接监控, 避免 随着 SR4光模块老化或者温度变化影响监控; 该监控***结构简单, 易于维修, 而且只需设定参数就能够自动调整器件的发射功率, 便于操作。
[0033] 其中, 所述反射光束的功率参数包括光强 (光功率) 、 光通量。
[0034] 在本实施例中, 所述监控***包括一光纤固定装置 6, 通过在该光纤固定装置 6 上倾斜幵孔, 并且***光纤, 形成所述倾斜的光纤端面 5 ; 所述反射装置 3将输 入光束反射至光纤端面 5吋, 部分反射光束通过光纤输出。
[0035] 进一步地, 所述监控***还包括准直透镜 7, 所述发射装置 1发出多束输入光束 至准直透镜 7, 该准直透镜 7通过准直作用将输入光束转变为平行光束, 并输入 至反射装置 3。 其中, 参考图 1, 该准直透镜 7设置在发射装置 1发射的输入光束 的光路径上, 即设置在发射装置 1的正上方。
[0036] 更进一步地, 所述监控***还包括聚焦透镜 8, 所述反射装置 3将反射光束反射 至聚焦透镜 8, 该聚焦透镜 8通过聚焦作用, 聚焦反射光束并输入至监测装置 2, 便于监测装置 2接收反射光束。 其中, 参考图 1, 该聚焦透镜 8设置在反射光束的 光路径上, 即设置在监测装置 2的正上方。
[0037] 在本实施例中, 所述反射装置 3为带有凹面的采用全内反射设计的三角槽, 该 三角槽用于对输入光束的反射和聚焦, 以及用于对反射光束的反射和聚焦。
[0038] 如图 2和图 3所示, 本发明还提供一种 SR4光模块发射功率的监控方法的较佳实 施例。
[0039] 具体地, 并参考图 2, 一种 SR4光模块发射功率的监控方法, 所述监控方法包括 以下步骤:
[0040] 步骤 10、 发射装置发出输入光束至反射装置;
[0041] 步骤 20、 反射装置反射输入光束至与入射光束光轴具有倾斜角的光纤端面; [0042] 步骤 30、 端面反射部分反射光束至反射装置; [0043] 步骤 40、 反射装置将反射光束反射至监测装置;
[0044] 步骤 50、 监测装置检测反射光束的功率参数, 并将反射光束的功率参数发送至 主控装置;
[0045] 步骤 60、 主控装置根据反射光束的功率参数控制发射装置的发射功率。
[0046] 进一步地, 并参考图 3, 所述监控方法具体还包括以下步骤:
[0047] 步骤 21、 在光纤固定装置上倾斜幵孔, 并将光纤***孔中, 形成所述光纤端面
; 其中, 所述光纤其端面法线与光纤轴平行, 入孔后该法线与上述经反射后的 入射光束光轴成一角度;
[0048] 步骤 22、 所述反射装置将输入光束反射至端面吋, 部分反射光束通过光纤输出 综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内所做的任何修改, 等同替换, 改进等, 均应 包含在本发明的保护范围内。

Claims

权利要求书
一种 SR4光模块发射功率的监控***, 包括发射装置和监测装置, 该 发射装置发出输入光束, 该监测装置接收反射光束, 其特征在于: 所 述监控***还包括反射装置、 主控装置和倾斜的光纤端面, 该主控装 置分别连接发射装置和监测装置; 其中,
该发射装置发出输入光束至反射装置, 该反射装置将输入光束反射至 光纤端面, 该光纤端面反射部分反射光束至反射装置, 该反射装置将 反射光束反射至监测装置, 该监测装置检测反射光束的功率参数, 并 将反射光束的功率参数发送至主控装置, 该主控装置根据反射光束的 功率参数控制发射装置的发射功率。
根据权利要求 1所述的监控***, 其特征在于: 所述监控***包括一 光纤固定装置, 通过在该光纤固定装置上倾斜幵孔, 并且***光纤, 形成所述倾斜的光纤端面; 所述反射装置将输入光束反射至光纤端面 吋, 部分反射光束通过光纤输出。
根据权利要求 2所述的监控***, 其特征在于: 所述监控***还包括 准直透镜, 所述发射装置发出输入光束至准直透镜, 该准直透镜将输 入光束转变为平行光束, 并输入至反射装置。
根据权利要求 3所述的监控***, 其特征在于: 所述监控***还包括 聚焦透镜, 所述反射装置将反射光束反射至聚焦透镜, 该聚焦透镜聚 焦反射光束并输入至监测装置。
根据权利要求 1所述的监控***, 其特征在于: 所述反射装置为带有 凹面的采用全内反射设计的三角槽, 该三角槽用于反射和聚焦。 一种 SR4光模块发射功率的监控方法, 其特征在于, 所述监控方法包 括以下步骤:
发射装置发出输入光束至反射装置;
反射装置反射输入光束至与入射光束光轴具有倾斜角的光纤端面; 端面反射部分反射光束至反射装置; 监测装置检测反射光束的功率参数, 并将反射光束的功率参数发送至 主控装置;
主控装置根据反射光束的功率参数控制发射装置的发射功率。
[权利要求 7] 根据权利要求 6所述的监控方法, 其特征在于, 所述监控方法具体还 包括以下步骤:
在光纤固定装置上倾斜幵孔, 并将光纤***孔中, 形成所述光纤端面 所述反射装置将输入光束反射至端面吋, 部分反射光束通过光纤输出
PCT/CN2017/109959 2017-10-10 2017-11-08 一种sr4光模块发射功率的监控***和监控方法 WO2019071685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710935316.3 2017-10-10
CN201710935316.3A CN107566033A (zh) 2017-10-10 2017-10-10 一种sr4光模块发射功率的监控***和监控方法

Publications (1)

Publication Number Publication Date
WO2019071685A1 true WO2019071685A1 (zh) 2019-04-18

Family

ID=60984370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109959 WO2019071685A1 (zh) 2017-10-10 2017-11-08 一种sr4光模块发射功率的监控***和监控方法

Country Status (2)

Country Link
CN (1) CN107566033A (zh)
WO (1) WO2019071685A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494477A (zh) * 2018-03-30 2018-09-04 昂纳信息技术(深圳)有限公司 一种实现监测发射功率的sr4器件和一种监测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367040A (en) * 1979-05-29 1983-01-04 Tokyo Shibaura Denki Kabushiki Kaisha Multi-channel optical sensing system
US20040233531A1 (en) * 2001-12-14 2004-11-25 Terabeam Corporation Pointable optical transceivers for free space optical communication
CN1585306A (zh) * 2004-05-31 2005-02-23 成都网动光电子技术有限公司 一种光发送模块及与之对应的光接收模块
CN101750634A (zh) * 2008-12-19 2010-06-23 上海波汇通信科技有限公司 一种光学探测***
CN102158279A (zh) * 2011-03-18 2011-08-17 北京锐锋钝石科技有限公司 光功率监测***及方法
CN201947270U (zh) * 2011-03-18 2011-08-24 北京锐锋钝石科技有限公司 光功率监测***
CN102970073A (zh) * 2011-09-01 2013-03-13 昂纳信息技术(深圳)有限公司 一种光性能监控装置和***
CN103338068A (zh) * 2013-06-28 2013-10-02 华中科技大学 一种基于多通道并行光信号的分光监测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888988B2 (en) * 2003-03-14 2005-05-03 Agilent Technologies, Inc. Small form factor all-polymer optical device with integrated dual beam path based on total internal reflection optical turn
US8477298B2 (en) * 2009-09-30 2013-07-02 Corning Incorporated Angle-cleaved optical fibers and methods of making and using same
CN102062635A (zh) * 2010-12-02 2011-05-18 北京心润心激光医疗设备技术有限公司 激光功率监测装置
CN207530827U (zh) * 2017-10-10 2018-06-22 昂纳信息技术(深圳)有限公司 一种sr4光模块发射功率的监控***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367040A (en) * 1979-05-29 1983-01-04 Tokyo Shibaura Denki Kabushiki Kaisha Multi-channel optical sensing system
US20040233531A1 (en) * 2001-12-14 2004-11-25 Terabeam Corporation Pointable optical transceivers for free space optical communication
CN1585306A (zh) * 2004-05-31 2005-02-23 成都网动光电子技术有限公司 一种光发送模块及与之对应的光接收模块
CN101750634A (zh) * 2008-12-19 2010-06-23 上海波汇通信科技有限公司 一种光学探测***
CN102158279A (zh) * 2011-03-18 2011-08-17 北京锐锋钝石科技有限公司 光功率监测***及方法
CN201947270U (zh) * 2011-03-18 2011-08-24 北京锐锋钝石科技有限公司 光功率监测***
CN102970073A (zh) * 2011-09-01 2013-03-13 昂纳信息技术(深圳)有限公司 一种光性能监控装置和***
CN103338068A (zh) * 2013-06-28 2013-10-02 华中科技大学 一种基于多通道并行光信号的分光监测装置

Also Published As

Publication number Publication date
CN107566033A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN101833150B (zh) 一种大功率半导体激光器光纤耦合模块
US8000607B2 (en) Optical transceivers with closed-loop digital diagnostics
JP5469213B2 (ja) 屋内無線光リンクの方法及びシステム
US20070292141A1 (en) Optical signal transmitter and optical wireless communications network using it
US11012158B2 (en) Active optical cable
CN107726096A (zh) 远距离led可见光投射***
JP2023500746A (ja) レーザートランシーバーモジュールおよびその光学調整方法、レーザーレーダーおよび自動運転装置
CN113267856A (zh) 一种收发共轴紧凑激光收发装置
WO2018161686A1 (zh) 内置信号校准电路的双速率dml器件、模块及信号校准方法
WO2019071685A1 (zh) 一种sr4光模块发射功率的监控***和监控方法
CN207504867U (zh) 一种sr4光模块发射功率的监控***
CN202794614U (zh) 多路光学组件及带光发射功率监控功能的并行光模块
CN105005146B (zh) 一种分光模块及具有该分光模块的激光投线仪
GB2573637A (en) Underwater laser light source
CN207530827U (zh) 一种sr4光模块发射功率的监控***
CN202693849U (zh) 透镜阵列装置及包含其的并行光模块
CN107566034A (zh) 一种sr4光模块发射功率的监控***和监控方法
CN208112631U (zh) 一种实现监测发射功率的sr4器件
CN208209957U (zh) 一种实现监测发射功率的sr4器件
CN106371177A (zh) 一种光收发组件的组装方法
US9525267B2 (en) Vertical cavity surface emitting laser assembly
CN113595632B (zh) 一种基于多单元拼接阵列的空间激光通信方法和***
WO2019052126A1 (zh) 光源***及投影***
WO2016198018A1 (zh) 一种光模块、光模块控制方法及装置
CN103513342A (zh) 多路光学组件及包含其的带光发射功率监控功能的并行光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928277

Country of ref document: EP

Kind code of ref document: A1