WO2019069394A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019069394A1
WO2019069394A1 PCT/JP2017/036125 JP2017036125W WO2019069394A1 WO 2019069394 A1 WO2019069394 A1 WO 2019069394A1 JP 2017036125 W JP2017036125 W JP 2017036125W WO 2019069394 A1 WO2019069394 A1 WO 2019069394A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
command
synchronization
circuit
unit
Prior art date
Application number
PCT/JP2017/036125
Other languages
English (en)
French (fr)
Inventor
昌弘 畭尾
倫行 今田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/036125 priority Critical patent/WO2019069394A1/ja
Priority to EP17927853.6A priority patent/EP3694098B1/en
Priority to US16/639,619 priority patent/US11081974B2/en
Priority to JP2018512638A priority patent/JP6336236B1/ja
Publication of WO2019069394A1 publication Critical patent/WO2019069394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present disclosure relates to a power converter that performs power conversion between alternating current and direct current.
  • a modular multilevel converter is known as a self-excited power converter used in a DC power transmission system.
  • the modular multi-level converter has an upper arm connected to the high potential side DC terminal and a lower arm connected to the low potential side DC terminal for each phase of alternating current.
  • Each arm is configured by connecting a plurality of submodules (unit converters) in cascade.
  • Patent Document 1 discloses a power conversion device including a power conversion circuit capable of converting alternating current into direct current or converting direct current into alternating current.
  • the power conversion circuit has an arm configured by connecting a plurality of unit converters in series.
  • the power conversion device is connected to a first control device that integrally controls each unit converter, a plurality of second control devices that are daisy-chained to the first control device, and a second control device. And a third control device for controlling each unit converter.
  • An object in a certain aspect of the present disclosure is to provide a selection function of an operation system and a standby system to a sub module, so that when an abnormality occurs in a control device of the operation system, the operation system and the standby do not stop the sub module. It is providing a power converter capable of performing switching with a system.
  • a power converter that performs power conversion between a DC circuit and an AC circuit.
  • a power conversion device includes a power conversion circuit unit including a plurality of submodules connected in series with one another, a first control device and a second control command each generating a first control command and a second control command for operation control of each submodule. And a second relay device that transmits the first control command and the second control command to each of the sub-modules.
  • the first control device and the second control device operate and control each sub-module in a first system including the first control device and the first relay device, and a second system including the second control device and the second relay device.
  • Instruction information for instructing a system to be selected is received from a predetermined external device.
  • Each of the first control command and the second control command includes a drive command for driving the switching element included in each sub module, abnormality determination information indicating presence or absence of abnormality of the control device, and instruction information.
  • Each sub module selects the first system or the second system based on the PWM control unit that performs PWM control of the switching element, and the abnormality determination information and the instruction information included in each of the first control command and the second control command. And a selection unit. Even when the instruction information indicates the first system, the selection unit detects each sub-module when an abnormality occurrence in the first control device is detected based on the abnormality determination information of the first control command.
  • the second system is selected as the system to control operation.
  • the PWM control unit performs PWM control of the switching element in accordance with a drive command included in the second control command corresponding to the selected second system.
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to a first embodiment.
  • FIG. 10 is a block diagram showing a specific configuration of a command generation unit according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a control device according to the first embodiment.
  • FIG. 7 is a diagram for illustrating feedback control performed by the control device according to the first embodiment. It is a circuit diagram which shows an example of the submodule which comprises each leg circuit of FIG.
  • FIG. 7 is a block diagram for describing a specific configuration of a transmission / reception unit according to the first embodiment.
  • 10 is a timing chart for illustrating switching timings of systems by sub modules according to the first embodiment.
  • FIG. 10 is a timing chart for illustrating switching timings of systems by sub modules according to the first embodiment.
  • FIG. 18 is a diagram showing an example of configuration of a sub module according to a second embodiment.
  • FIG. 17 is a diagram showing an example of a synchronization timing correction method according to the second embodiment. It is a figure which shows the example of correction
  • FIG. 17 is a diagram showing another example of the synchronization timing correction method according to the second embodiment. It is a figure which shows the example of correction
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to the first embodiment.
  • power conversion device 1 is configured by a modular multi-level converter including a plurality of sub modules (corresponding to “SM” in FIG. 1) 7 connected in series with each other. .
  • the “sub-module” is also called “converter cell” or “unit converter”.
  • the power converter 1 performs power conversion between the DC circuit 14 and the AC circuit 12.
  • power conversion device 1 includes a power conversion circuit unit 2 and a command generation unit 3.
  • an instruction device 50 which is an external device for giving various instructions to the power conversion device 1 is provided.
  • Power conversion circuit unit 2 includes a plurality of leg circuits 4 u connected in parallel between positive DC terminal (ie, high potential side DC terminal) Np and negative DC terminal (ie, low potential side DC terminal) Nn. , 4v, 4w (generally or when indicated, they are described as the leg circuit 4).
  • the leg circuit 4 is provided for each of a plurality of phases constituting an alternating current.
  • the leg circuit 4 is connected between the AC circuit 12 and the DC circuit 14 and performs power conversion between the two circuits.
  • FIG. 1 shows the case where the AC circuit 12 is a three-phase AC system, and three leg circuits 4u, 4v, 4w are provided corresponding to the U-phase, V-phase, and W-phase, respectively.
  • the AC input terminals Nu, Nv, Nw provided in the leg circuits 4 u, 4 v, 4 w, respectively, are connected to the AC circuit 12 via the interconnection transformer 13.
  • the AC circuit 12 is, for example, an AC power system including an AC power supply and the like. In FIG. 1, the connection between the AC input terminals Nv and Nw and the interconnection transformer 13 is not shown for ease of illustration.
  • the high potential side DC terminal Np and the low potential side DC terminal Nn commonly connected to the respective leg circuits 4 are connected to the DC circuit 14.
  • the DC circuit 14 is, for example, a DC terminal of a DC power system including a DC power transmission network or the like or other power conversion device.
  • a BTB (Back to Back) system for connecting between AC power systems having different rated frequencies and the like is configured by connecting two power conversion devices.
  • interconnection transformer 13 of FIG. 1 may be connected to the AC circuit 12 via an interconnection reactor.
  • primary windings are provided to leg circuits 4u, 4v, 4w instead of AC input terminals Nu, Nv, Nw, and leg circuits 4u, 4v, 4w are connected via secondary windings magnetically coupled to the primary windings. May be AC connected to the interconnection transformer 13 or the interconnection reactor.
  • the primary windings may be reactors 8A and 8B described below.
  • the leg circuit 4 is electrically (i.e., direct current or alternating current) through the connection portion provided in each of the leg circuits 4 u, 4 v, 4 w, such as the AC input terminals Nu, Nv, Nw or the above-mentioned primary windings. ) Is connected to the AC circuit 12.
  • Leg circuit 4 u includes an upper arm 5 from high potential side DC terminal Np to AC input terminal Nu, and a lower arm 6 from low potential side DC terminal Nn to AC input terminal Nu.
  • An alternating current input terminal Nu which is a connection point between the upper arm 5 and the lower arm 6, is connected to the interconnection transformer 13.
  • the high potential side DC terminal Np and the low potential side DC terminal Nn are connected to the DC circuit 14. Since the leg circuits 4v and 4w also have the same configuration, the leg circuit 4u will be described as a representative.
  • the upper arm 5 includes a plurality of cascaded submodules 7 and a reactor 8A.
  • the plurality of submodules 7 and the reactor 8A are connected in series.
  • lower arm 6 includes a plurality of cascaded submodules 7 and a reactor 8B.
  • the plurality of submodules 7 and the reactor 8B are connected in series with each other.
  • the position where reactor 8A is inserted may be any position of upper arm 5 of leg circuit 4u, and the position where reactor 8B is inserted may be any position of lower arm 6 of leg circuit 4u Good.
  • the inductance values of the reactors may be different from each other. Furthermore, only the reactor 8A of the upper arm 5 or only the reactor 8B of the lower arm 6 may be provided.
  • the reactors 8A and 8B are provided such that the accident current does not increase rapidly in the event of an accident such as the AC circuit 12 or the DC circuit 14. However, if the inductance values of reactors 8A and 8B are made excessive, there arises a problem that the efficiency of the power converter is reduced. Therefore, in the event of an accident, it is preferable to stop (turn off) all switching elements of each submodule 7 in as short a time as possible.
  • the power conversion device 1 further includes an AC voltage detector 10, an AC current detector 16, and DC voltage detectors 11A and 11B as each detector for measuring an electric quantity (current, voltage, etc.) used for control. And arm current detectors 9A and 9B provided in each leg circuit 4.
  • the command generation unit 3 outputs control commands 15 pu, 15 nu, 15 pv, 15 nv, 15 pw, 15 nw for controlling the operating state of each sub module 7 based on these detection signals.
  • the command generation unit 3 receives a signal 17 representing a detected value of the cell capacitor voltage (the voltage of the DC capacitor 24 in FIG. 5) from each sub module 7.
  • control commands 15 pu, 15 nu, 15 pv, 15 nv, 15 pw, 15 nw are U-phase upper arm, U-phase lower arm, V-phase upper arm, V-phase lower arm, W-phase upper arm, and W-phase It is generated corresponding to each lower arm.
  • the control commands 15 pu, 15 nu, 15 pv, 15 nv, 15 pw, 15 nw will be referred to as the control command 15 when they are collectively referred to or arbitrary.
  • signal lines of signals input from each detector to the command generation unit 3 and signal lines of signals input / output between the command generation unit 3 and each sub module 7 Although they are described collectively in part, they are actually provided for each detector and each submodule 7.
  • the signal lines between each submodule 7 and the command generation unit 3 may be provided separately for transmission and reception. Further, in the case of the present embodiment, these signals are transmitted through an optical fiber from the viewpoint of noise resistance.
  • the AC voltage detector 10 detects the U-phase AC voltage value Vacu, the V-phase AC voltage value Vacv, and the W-phase AC voltage value Vacw of the AC circuit 12.
  • the AC current detector 16 detects the U-phase AC current value Iacu, the V-phase AC current value Iacv, and the W-phase AC current value Iacw of the AC circuit 12.
  • the DC voltage detector 11A detects a DC voltage value Vdcp of the high potential side DC terminal Np connected to the DC circuit 14.
  • the DC voltage detector 11B detects a DC voltage value Vdcn of the low potential side DC terminal Nn connected to the DC circuit 14.
  • Arm current detectors 9A and 9B provided in U-phase leg circuit 4u respectively detect upper arm current Ipu flowing to upper arm 5 and lower arm current Inu flowing to lower arm 6.
  • arm current detectors 9A and 9B provided in leg circuit 4v for the V phase respectively detect upper arm current Ipv and lower arm current Inv.
  • the arm current detectors 9A and 9B provided in the W phase leg circuit 4w detect the upper arm current Ipw and the lower arm current Inw, respectively.
  • the pointing device 50 corresponds to, for example, a host device of the control devices 30A and 30B, and is configured to be communicable with the command generation unit 3.
  • the instruction device 50 gives various instructions to the command generation unit 3 in accordance with the information from the command generation unit 3 and the instruction of the system operator.
  • FIG. 2 is a block diagram showing a specific configuration of a command generation unit according to the first embodiment.
  • command generation unit 3 includes control devices 30A and 30B and relay devices 40A and 40B.
  • the command generation unit 3 adopts a duplex configuration in which the A system including the control device 30A and the relay device 40A is combined with the B system including the control device 30B and the relay device 40B.
  • Control device 30A is configured to be communicable with control device 30B, relay device 40A and instruction device 50.
  • Control device 30B is configured to be able to communicate with control device 30A, relay device 40B, and pointing device 50.
  • FIG. 3 only the U-phase leg circuit 4u of the power conversion circuit unit 2 of FIG. 1 is representatively shown, but the same applies to the other leg circuits 4v and 4w.
  • the control apparatuses 30A and 30B when naming generically or showing arbitrary things, it describes as the control apparatus 30.
  • FIG. The relay devices 40A and 40B will be described as the relay device 40 when they are collectively referred to or arbitrary.
  • Control device 30 detects AC voltage values Vacu, Vacv, Vacw (collectively referred to as AC voltage value Vac) and AC current values Iacu, Iacv, Iacw (collectively referred to when It receives inputs of AC current value Iac, DC voltage values Vdcp and Vdcn, upper arm currents Ipu, Ipv and Ipw, lower arm currents Inu, Inv and Inw, and a cell capacitor voltage Vcap.
  • Control device 30 generates a drive command for driving each sub module 7 at the time of normal operation based on each received detection value, and transmits the generated drive command to corresponding relay device 40.
  • the cell capacitor voltage Vcap is obtained by averaging the voltage value of the DC capacitor 24 detected in each submodule 7 for each arm circuit.
  • the drive command synchronizes the operation of each sub module 7 with the voltage command (for example, the output voltage command value of upper arm 5 and the output voltage command value of lower arm 6 in each leg circuit 4 u, 4 v, 4 w). And synchronization instructions.
  • the synchronization command is a synchronization pulse based on the phase of the AC voltage value Vac during normal operation.
  • control device 30 determines the presence or absence of an abnormality in the own device, and generates abnormality determination information indicating the determination result.
  • control device 30 is configured of a digital protection relay device including an auxiliary transformer, an AD (Analog to Digital) conversion unit, an operation unit, a communication interface, etc. as a hardware configuration, and the operation unit and AD Detects an abnormality in the converter etc.
  • the arithmetic unit includes a central processing unit (CPU), a random access memory (RAM), and a read only memory (ROM).
  • the AD conversion unit includes an analog filter, a sample hold circuit, a multiplexer, and the like.
  • the WDT watchdog timer
  • the WDT periodically monitors whether the CPU is operating normally. Typically, when the CPU runs away due to a failure or the like, the CPU does not periodically send a reset signal to the WDT. Therefore, the WDT detects an abnormality of the CPU when the reset signal is not received for a predetermined time.
  • an abnormal content of the AD conversion unit As an abnormal content of the AD conversion unit, a failure of an input circuit (for example, an analog filter, a sample hold circuit, etc.) that receives an input of an electric quantity is assumed.
  • the CPU extracts the monitoring signal superimposed and input to the electric quantity received from the AD conversion unit, and the amplitude value of the extracted monitoring signal and the specified value (for example, output from the harmonic generation circuit) The amplitude value of the monitoring signal is compared.
  • the CPU determines that the input circuit is normal when the difference between the amplitude value of the extracted monitoring signal and the specified value is within a predetermined range, and the difference is within a predetermined range. If it is outside, it is determined that an abnormality has occurred in the input circuit.
  • Control device 30 receives, from instruction device 50, system instruction information for instructing a system (that is, an operating system) for performing operation control of each submodule 7 out of A system and B system.
  • instruction device 50 receives an instruction of a system operated as an active system from the system operator, and transmits system instruction information reflecting the instruction to control device 30.
  • system instruction information including an instruction to operate as an active system to the control device 30A, as a standby system.
  • System instruction information including an instruction to operate is transmitted to control device 30B.
  • Control device 30 generates control command 15 for controlling operation of each submodule 7 every cycle T1 (for example, 100 ⁇ s), and transmits the generated control command 15 to relay device 40.
  • Control command 15 includes the above-described drive command (i.e., voltage command and synchronization command), abnormality determination information indicating presence or absence of occurrence of abnormality of control device 30, and system instruction information received from instruction device 50.
  • the period T1 is appropriately changed by the control device 30 in accordance with the frequency of the AC system (for example, the AC circuit 12) during normal operation.
  • the relay device 40 transmits the control command 15 received from the control device 30 to each of the submodules 7 every cycle T1. More specifically, relay device 40A transmits control command 15 received from control device 30A to each sub module 7, and relay device 40B transmits control command 15 received from control device 30B to each sub module 7. Do. Relay device 40 may transmit control command 15 to each submodule 7 every cycle shorter than cycle T1.
  • the relay device 40 is configured by a dedicated circuit, and a part or all of the relay device 40 may be configured by an FPGA (Field Programmable Gate Array).
  • the relay device 40 is connected to each sub module 7 via a star network.
  • FIG. 3 is a block diagram showing a configuration example of control device 30 according to the first embodiment.
  • control device 30 includes a DC voltage command generation unit 60, an AC voltage command generation unit 61, a circulating current command generation unit 62, a capacitor voltage command generation unit 63, and an arm voltage command generation unit 64. And.
  • the DC voltage command generation unit 60 calculates a DC current value Idc based on the upper arm currents Ipu, Ipv, Ipw and the lower arm currents Inu, Inv, Inw of each phase. Specifically, assuming that the sum of upper arm currents Ipu, Ipv and Ipw is Idc_p and the sum of lower arm currents Inu, Inv and Inw is Idc_n, the DC current value Idc can be calculated by the following equation (1) .
  • the DC voltage command generation unit 60 generates DC voltage values Vdcp and Vdcn detected by the DC voltage detectors 11A and 11B (hereinafter collectively referred to as “DC voltage detector 11") and the calculated DC current value Idc. Based on the DC voltage command value is generated.
  • the DC voltage command generation unit 60 performs feedback control of the DC voltage values Vdcp and Vdcn (hereinafter, also collectively referred to as “DC voltage value Vdc”), and feedback that executes feedback control of the DC current value Idc. It consists of a controller.
  • FIG. 4 is a diagram for illustrating feedback control performed by the control device according to the first embodiment. Here, feedback control of the DC voltage value Vdc will be described.
  • control device 30A has, as a functional configuration of feedback control, an integrator 31A which is a feedback controller, a storage unit 32A configured by a RAM or the like, an OR gate 33A, and a NOT gate 34A. It includes a transmission unit 35A configured by a communication circuit and the like, and a switch 36A.
  • Control device 30B includes, as a functional configuration of feedback control, an integrator 31B, a storage unit 32B, an OR gate 33B, a NOT gate 34B, a transmission unit 35B, and a switch 36B.
  • the integrator, the OR gate, the NOT gate, and the switch are realized by, for example, the CPU of the control device 30.
  • y (s) is the current output value which is the output value of the integrator in the current operation cycle
  • the previous output value which is the output value of the integrator in the immediately preceding operation cycle is y (s-1)
  • X is an input value of the integrator
  • T is a time constant
  • s is a Laplace operator
  • y (s) is expressed as the following equation (2).
  • y (s) y (s-1) + x / (T x s) (2)
  • the deviation between the detection value of the DC voltage detector 11 that is, the DC voltage value Vdc
  • the target value is transmitted from the pointing device 50 to the control devices 30A and 30B.
  • Control devices 30A and 30B execute feedback calculation for reducing the deviation using a feedback controller (here, integrators 31A and 31B).
  • the output value of the integrator 31A is stored in the storage unit 32A and transmitted to the transmission unit 35B via the transmission unit 35A.
  • the output value of the integrator 31B is stored in the storage unit 32B and transmitted to the transmission unit 35A via the transmission unit 35B.
  • the instructing device 50 gives the control devices 30A and 30B instructions to operate in cooperation with the A system and the B system. Therefore, “1” is input to the NOT gates 34A and 34B as an inter-system coordination signal in FIG. 4 and “0” is input to the OR gates 33A and 33B.
  • instruction device 50 provides control devices 30A and 30B with an instruction to set system A as an operation system.
  • "1" is input to the OR gate 33A as the system instruction information Ja in FIG.
  • "1” is output from the OR gate 33A, and the contact Pa of the switch 36A and the contact Pb are connected.
  • "0" is input to the OR gate 33B as the system instruction information Jb in FIG.
  • "0" is output from the OR gate 33B, and the contact Pa of the switch 36B and the contact Pc are connected.
  • integrator 31A when system A is operated as an active system and system B is operated as a standby system, integrator 31A performs calculation using the previous output value of integrator 31A stored in storage unit 32A as the previous value. Do. Further, the integrator 31B performs the calculation using the previous output value of the integrator 31A received via the transmission unit 35B as the previous value.
  • the integrator 31A performs calculation using the previous output value of the integrator 31B received via the transmission unit 35A as the previous value. Do.
  • the integrator 31B performs an operation using the previous output value of the integrator 31B stored in the storage unit 32B as the previous value.
  • the feedback controller may be a PI (Proportional-Integral) controller combining a proportional and an integrator, or a PID (Proportional-Integral-Differential) control combining a proportional and an integrator and a differentiator. Or other controllers.
  • PI Proportional-Integral
  • PID Proportional-Integral-Differential
  • DC voltage command generation unit 60 also executes the same feedback control for the DC current value by the feedback control function described in FIG. 4.
  • the DC voltage command generation unit 60 generates a DC voltage command value based on the calculated DC voltage values Vdcp and Vdcn and the calculated DC current value Idc.
  • AC voltage command generation unit 61 detects U-phase, V-phase, W-phase AC voltage values Vacu, Vacv, Vacw detected by AC voltage detector 10 and U-phase, V-phase detected by AC current detector 16 The AC voltage command value of each phase is generated based on the AC current values Iacu, Iacv, and Iacw of the W phase.
  • the AC voltage command generation unit 61 is configured of a feedback controller such as a PID controller, and performs feedback control as described in FIG. Generate
  • circulating current command generation unit 62 First, based on upper arm currents Ipu, Ipv, Ipw and lower arm currents Inu, Inv, Inw of respective phases, circulating current command generation unit 62 generates circulating currents Iccu, Iccv, Iccw respectively flowing in leg circuits 4u, 4v, 4w. Calculate.
  • the circulating current is a current circulating between the plurality of leg circuits 4.
  • the circulating current Iccu flowing through the U-phase leg circuit 4u can be calculated by the following equation (3).
  • Iccu (Ipu + Inu) / 2-Idc / 3 (3)
  • the first term of the above equation (3) represents the current flowing commonly to the upper arm 5 and the lower arm 6 of the leg circuit 4 u.
  • the second term of Equation (3) represents the share of U-phase leg circuit 4 u when it is assumed that DC current value Idc flows evenly to each leg circuit.
  • the circulating currents Iccv and Iccw can be similarly calculated.
  • Circulating current command generation unit 62 calculates the command value of the circulating current of each phase based on the calculated circulating currents Iccu, Iccv, Iccw of each phase and the cell capacitor voltage Vcap averaged for each arm circuit. .
  • the circulating current command generation unit 62 is configured of a feedback controller such as a PID controller, and performs feedback control as described in FIG. Generate a value
  • the capacitor voltage command generation unit 63 generates the submodules 7 based on the cell capacitor voltage Vcap averaged for each arm circuit, the upper arm currents Ipu, Ipv, Ipw and the lower arm currents Inu, Inv, Inw of each phase. To generate a voltage command value for the DC capacitor.
  • the capacitor voltage command generation unit 63 is configured of a feedback controller such as a PID controller, and performs feedback control as described in FIG. 4 for each electric quantity used for the calculation to obtain the voltage command value of the DC capacitor.
  • the arm voltage command generation unit 64 generates the arm voltage command values Vprefu, Vnrefu, Vprefv, Vnrefv, Vprefw, Pnrefw for the upper arm 5 and the lower arm 6 of each phase by combining the above-described command generation units. .
  • the arm voltage command values Vprefu, Vnrefu, Vprefv, Vnrefv, Vprefw, Pnrefw of each phase are transmitted to the relay device 40 as voltage commands. In the following description, when not specifying which phase it is, the arm voltage command values Vpref and Vnref may be simply described.
  • control device 30 executes feedback calculation to reduce the deviation between the target value and the detected value for each amount of electricity used for power conversion control between DC circuit 14 and AC circuit 12. Do.
  • the feedback calculation by the feedback controller FA is the deviation and the feedback controller FA.
  • the calculation includes calculating the current output value of the feedback controller FA based on the previous output value.
  • the feedback calculation by the feedback controller FB (for example, the integrator 31B) included in the control device 30B calculates the current output value of the feedback controller FB based on the deviation and the previous output value of the feedback controller FA. Includes operations.
  • FIG. 5 is a circuit diagram showing an example of sub-modules constituting each of the leg circuits of FIG.
  • the submodule 7 shown in FIG. 5 includes a half bridge type conversion circuit 20HB, a PWM (pulse width modulation) control unit 21, a DC capacitor 24 as an energy storage, a voltage detection unit 27, and a transmission / reception unit 28.
  • a series of processes of the PWM control unit 21, the voltage detection unit 27, and the transmission / reception unit 28 are executed every cycle T 2 (for example, several microseconds) which is much shorter than the cycle T 1 which is the calculation cycle of the controller 30.
  • the half bridge type conversion circuit 20HB includes switching elements 22A and 22B and diodes 23A and 23B connected in series.
  • the diodes 23A and 23B are connected in anti-parallel (that is, in parallel and in the reverse bias direction) with the switching elements 22A and 22B, respectively.
  • the DC capacitor 24 is connected in parallel to the series connection circuit of the switching elements 22A and 22B, and holds a DC voltage.
  • the connection node of the switching elements 22A and 22B is connected to the high potential side input / output terminal 26P.
  • the connection node between the switching element 22B and the DC capacitor 24 is connected to the low potential side input / output terminal 26N.
  • the input / output terminal 26P is connected to the input / output terminal 26N of the submodule 7 adjacent to the positive electrode side.
  • the input / output terminal 26N is connected to the input / output terminal 26P of the submodule 7 adjacent to the negative electrode side.
  • a self-arc-extinguishing switching element capable of controlling both the on operation and the off operation is used.
  • the switching elements 22A and 22B are, for example, IGBTs (Insulated Gate Bipolar Transistors) or GCTs (Gate Commutated Turn-off thyristors).
  • the bypass switch SW is connected between the input and output terminals 26P and 26N.
  • the bypass switch SW is a switch configured to be able to short-circuit both ends of the switching element 22B by closing the contact, and can pass fault current. That is, the bypass switch SW shorts the submodule 7 to protect each element (the switching elements 22A and 22B, the diodes 23A and 23B, and the DC capacitor 24) included in the submodule 7 from an overcurrent generated in the event of an accident. .
  • the bypass switch SW is also used when shorting the submodule 7 when each element of the submodule 7 fails. Thus, even if any of the plurality of submodules 7 fails, operation of the power conversion device 1 can be continued by using the other submodules 7.
  • the voltage detection unit 27 detects a voltage (that is, a cell capacitor voltage) between both ends 24P and 24N of the DC capacitor 24.
  • the transmission / reception unit 28 transmits the control command 15 received from the command generation unit 3 of FIG. 1 to the PWM control unit 21 and transmits the signal 17 representing the cell capacitor voltage detected by the voltage detection unit 27 to the command generation unit 3 Do.
  • the specific configuration of the transmission / reception unit 28 will be described later.
  • the PWM control unit 21 performs PWM control of the switching elements 22A and 22B in accordance with a drive command (that is, a voltage command and a synchronization command) input from the transmission / reception unit 28. Specifically, the PWM control unit 21 generates a gate control signal which is a PWM signal according to the drive command, and outputs the gate control signal to the switching elements 22A and 22B.
  • a drive command that is, a voltage command and a synchronization command
  • PWM control unit 21 turns on one of switching elements 22A and 22B, Control is performed so that the other is turned off.
  • the switching element 22A is in the on state and the switching element 22B is in the off state, a voltage across the DC capacitor 24 is applied between the input and output terminals 26P, 26N.
  • 0V is applied between the input and output terminals 26P and 26N.
  • the submodule 7 can output a positive voltage depending on the zero voltage or the voltage of the DC capacitor 24 by alternately turning on the switching elements 22A and 22B.
  • the diodes 23A and 23B are provided for protection when reverse voltages are applied to the switching elements 22A and 22B.
  • the PWM control unit 21, the voltage detection unit 27, and the transmission / reception unit 28 described above may be configured by a dedicated circuit, or may be configured using an FPGA or the like.
  • the conversion circuit of the submodule 7 is a half bridge type conversion circuit
  • the present invention is not limited to this configuration.
  • the submodule 7 may be configured using a full bridge type converter circuit or a streak outdoor bridge type converter circuit.
  • FIG. 6 is a block diagram for describing a specific configuration of the transmission / reception unit according to the first embodiment.
  • the transmission / reception unit 28 includes communication circuits 41A and 41B and a selection circuit 42.
  • control command 15A the control command 15 generated by the control device 30A
  • control command 15B the control command 15 generated by the control device 30B
  • the communication circuit 41A receives the control command 15A transmitted from the relay device 40A.
  • the communication circuit 41B receives the control command 15B transmitted from the relay device 40B.
  • Control instruction 15A includes voltage instruction Va, synchronization instruction Sa, abnormality determination information Da, and system instruction information Ja.
  • Control instruction 15B includes a voltage instruction Vb, a synchronization instruction Sb, abnormality determination information Db, and system instruction information Jb.
  • the abnormality determination information Da is information indicating the presence or absence of an occurrence of an abnormality of the control device 30A
  • the abnormality determination information Db is information indicating the presence or absence of an occurrence of an abnormality of the control device 30B.
  • the system instruction information Ja is information indicating whether the A system operates in the active system or the standby system
  • the system instruction information Jb is information indicating whether the B system operates in the active system or the standby system. is there. For example, when the system instruction information Ja indicates an active system, the system instruction information Jb indicates a standby system.
  • Selection circuit 42 selects either system A or system B as a system (that is, an active system) for operation control of each sub module based on abnormality determination information Da, Db and system instruction information Ja, Jb. .
  • Selection circuit 42 outputs signals to switches 43 and 44 such that voltage command Va and synchronization command Sa are input to PWM control unit 21 when system A is selected as the operation system. Specifically, the selection circuit 42 outputs a signal for operating the switch 43 so that the contact Q1 and the contact Q2 are connected, and a signal for operating the switch 44 such that the contact Q4 and the contact Q5 are connected. Output
  • Selection circuit 42 outputs signals to switches 43 and 44 so that voltage command Vb and synchronization command Sb are input to PWM control unit 21 when system B is selected as an operating system. Specifically, the selection circuit 42 outputs a signal for operating the switch 43 so that the contact Q1 and the contact Q3 are connected, and a signal for operating the switch 44 such that the contact Q4 and the contact Q6 are connected. Output
  • selection circuit 42 determines that both control devices 30A and 30B are normal (that is, no abnormality has occurred) based on abnormality determination information Da and Db, system instruction information Ja and Jb are determined. , A system or B system is selected as the operating system.
  • the selection circuit 42 determines that one of the control devices 30A and 30B is abnormal based on the abnormality determination information Da and Db, the abnormality is generated regardless of the contents of the system instruction information Ja and Jb. Select a system with no occurrence as a working system. Specifically, selection circuit 42 determines abnormality even when system instruction information Ja indicates system A as an active system (that is, system instruction information Jb indicates system B as a standby system). When occurrence of abnormality in the control device 30A is detected based on the information Da (that is, when the abnormality determination information Da indicates occurrence of abnormality in the control device 30A), the B system is selected as an operating system.
  • the PWM control unit 21 performs PWM control of each switching element according to a drive command (for example, a voltage command Vb and a synchronization command Sb corresponding to the B system) corresponding to the system selected as the operating system by the selection circuit 42.
  • a drive command for example, a voltage command Vb and a synchronization command Sb corresponding to the B system
  • FIG. 7 is a timing chart for explaining the switching timing of the system by the submodule according to the first embodiment.
  • system A is operated as an active system and system B is operated as a standby system at the start time.
  • the instruction device 50 instructs the control devices 30A and 30B to operate the A system as an operation system and operate the B system as an operation system.
  • Control device 30A operates as an operating system according to the instruction of instruction device 50, and control device 30B operates as a standby system.
  • the submodule 7 selects system A as an operating system, and executes PWM control based on the voltage command Va and the synchronization command Sa.
  • Control device 30A sends control command 15A including abnormality determination information Da indicating that an abnormality has occurred in its own device and system instruction information Ja received at the time of the abnormality occurrence to sub module 7 via relay device 40. Send.
  • the control device 30A also notifies the instructing device 50 that an abnormality has occurred in the own device (for example, transmits the abnormality determination information Da), and urges an instruction to switch the operating system.
  • the system instruction information Ja received by the control device 30A at the time of abnormality occurrence is instruction information for operating the A system as an operation system. This is because the pointing device 50 does not recognize occurrence of an abnormality in the control device 30A at the time of occurrence of an abnormality.
  • the submodule 7 switches the operating system from system A to system B based on the abnormality determination information Da received from control device 30A, and starts PWM control based on voltage command Vb and synchronization command Sb. Since the operation cycle by the submodule 7 is very short, such as several microseconds, immediately after receiving the abnormality determination information Da from the control device 30A, the PWM control based on the voltage command Vb of the healthy B system and the synchronization command Sb is started it can.
  • instruction device 50 transmits system instruction information Jb including an instruction to switch the active system from system A to system B to control device 30B based on abnormality determination information Da received from control device 30A.
  • control device 30B starts operation as an active system in accordance with system instruction information Jb received from instruction device 50.
  • the system instruction information Jb transmitted from the control device 30B to the submodule 7 indicates an active system.
  • control device 30 is temporarily provided with a system switching function and a PWM control function.
  • the timing at which the control device 30B can start the operation as the operation system according to the instruction from the instruction device 50 is time t4.
  • control device 30B can not switch the active system from system A to system B unless time t4 is reached, and can not execute PWM control using a drive command corresponding to a healthy system B.
  • the submodule 7 can not operate normally during a long period from time t1 to time t4 when an abnormality occurs. In this case, since the direct current circuit 14 and the alternating current circuit 12 are greatly affected, the submodule 7 has to be stopped once.
  • the submodule 7 can execute PWM control using a drive command corresponding to a normal system substantially simultaneously with the occurrence of an abnormality. Therefore, since the influence given to direct current circuit 14 and alternating current circuit 12 is small, operation can be continued without stopping submodule 7.
  • the system switching function and the PWM control function are provided in the submodule 7 so that system switching can be performed without waiting for system instruction information from the instructing device 50 when an abnormality occurs in the control device 30. It can be done. Further, the operation cycle of the submodule 7 is much shorter than the operation cycle of the control device 30 and the pointing device 50. Therefore, the submodule 7 can perform system switching immediately upon reception of an abnormality occurrence and start PWM control. Thereby, the operation of the power system can be continued without stopping the submodule 7 at the time of system switching.
  • the operation can be continued even when the transmission path between the relay device 40 and any submodule 7 fails. Furthermore, since the bypass switch SW is provided in the submodule 7, even when each element of any submodule 7 fails, by using the other submodule 7 by shorting the submodule 7. Driving can be continued.
  • control commands 15A and 15B transmitted from the control devices 30A and 30B are simultaneously output every cycle T1, basically, the synchronization timing according to the synchronization instruction Sa and the synchronization timing according to the synchronization instruction Sb coincide with each other. it is conceivable that.
  • the control command 15 is transmitted from the control device 30 through the relay device 40 to each sub module by an optical fiber.
  • synchronization timing according to synchronization instruction Sa and synchronization timing according to synchronization instruction Sb And errors may occur.
  • a correction method of synchronization timing when system switching is performed will be described.
  • FIG. 8 is a diagram showing a configuration example of the submodule 7 according to the second embodiment.
  • submodule 7 according to the second embodiment has a configuration in which timing correction unit 29 is added to the configuration of submodule 7 in FIG. 5.
  • the timing correction unit 29 receives an input of a selection signal indicating a system selected as an operating system by the selection circuit 42, and synchronization instructions Sa and Sb. The timing correction unit 29 corrects the synchronization timing of the synchronization command used in the PWM 21 based on the selection signal and the synchronization commands Sa and Sb. The timing correction unit 29 outputs the corrected synchronization command to the PWM control unit 21.
  • the correction method of the timing correction unit 29 will be described.
  • FIG. 9 is a diagram showing an example of a synchronization timing correction method according to the second embodiment.
  • FIG. 9 shows the synchronization timing of the synchronization command Sa, the synchronization timing of the synchronization command Sb, and the synchronization timing used in the submodule 7.
  • the synchronization timing of the synchronization command Sb at the switching destination here, B system
  • the synchronization timing of the synchronization command Sa at the switching source here, A system
  • the submodule 7 operates in accordance with the synchronization timing of the synchronization command Sa. Thereafter, when an abnormality occurs in the A system, the submodule 7 switches the operating system to the B system. At this time, based on the time difference between the synchronization timing of the synchronization instruction Sa and the synchronization timing of the synchronization instruction Sb, the timing correction unit 29 synchronizes the synchronization timing of the synchronization instruction used by the PWM control unit 21 (hereinafter also referred to as “synchronization timing ST”). ) Is gradually moved to the synchronization timing of the synchronization command Sb.
  • the synchronization timing used by the submodule 7 (specifically, the PWM control unit 21) before occurrence of an abnormality in the A system is time ta. Therefore, assuming that no abnormality occurs in the A system, the next synchronization timing is estimated to be time tb after 360 ° of the electrical angle from time ta.
  • the timing correction unit 29 provided in the submodule 7 is between the time td when the synchronization timing of the synchronization command Sb is at the electrical angle of 180 ° from the time tb and the time tc at the reference time T ⁇ from the time ta.
  • the timing correction unit 29 moves the synchronization timing ST not to coincide with the synchronization timing (that is, time te) of the synchronization instruction Sb, but to move it to time tc which is the reference time T ⁇ from time tb.
  • the timing correction unit 29 determines that the time te which is the synchronization timing of the synchronization command Sb exists between the time tc and the time tb. In this case, the timing correction unit 29 matches the synchronization timing ST with the synchronization timing of the synchronization command Sb (that is, the time te).
  • time difference ⁇ T between time te and time tb corresponds to an error between the synchronization timing of synchronization instruction Sa and the synchronization timing of synchronization instruction Sb. Therefore, when the time difference ⁇ T is larger than the reference time T ⁇ (ie, in the case of FIG. 9A), the timing correction unit 29 moves in the direction approaching the synchronization timing of the synchronization command Sb (ie, in the direction of decreasing the time difference ⁇ T). ), Move the synchronization timing ST by the reference time T ⁇ . On the other hand, when the time difference ⁇ T is equal to or less than the reference time T ⁇ (that is, in the case of FIG. 9B), the timing correction unit 29 moves the synchronization timing ST so as to coincide with the synchronization timing of the synchronization command Sb.
  • FIG. 10 is a diagram showing an example of correction of synchronization timing using the correction method of FIG.
  • the rising timing (that is, synchronization timing) of the first synchronization pulse X1 used in submodule 7 matches the synchronization timing of synchronization command Sa, and submodule 7 follows the synchronization command Sa. It is working. Thereafter, when an abnormality occurs in the A system, the selection circuit 42 switches the operating system to the B system.
  • the position of the second synchronization pulse X2 is a position corrected by the timing correction unit 29 based on the time difference between the synchronization command Sa and the synchronization command Sb.
  • the time difference between the time tx1 after 360 ° of the electrical angle from the rise time of the synchronization pulse X1 and the rise time ts1 of the synchronization command Sb is larger than the reference time T ⁇ . Therefore, the rising time of the synchronization pulse X2 is the time when the reference time T ⁇ is back from the time tx1.
  • the rising time of the third synchronization pulse X3 is a time when the reference time T ⁇ is back from the time tx2.
  • a time tx2 is a time after an electrical angle of 360 ° has elapsed from the rising time of the synchronization pulse X2.
  • the time difference between the time tx3 after an electrical angle of 360 ° has passed from the rise time of the synchronization pulse X3 and the rise time ts3 of the synchronization command Sb is smaller than the reference time T ⁇ . Therefore, the rising time of the fourth synchronization pulse X4 coincides with the rising time ts3 of the synchronization command Sb.
  • FIG. 11 is a diagram showing another example of the synchronization timing correction method according to the second embodiment. Similar to FIG. 9, it is assumed that an abnormality occurs in the A system of the operating system, and the operating system is switched to the B system. In the example of FIG. 11, it is assumed that the synchronization timing of the synchronization command Sb at the switching destination (here, B system) is later than the synchronization timing of the synchronization command Sa of the switching source (here, A system).
  • the submodule 7 operates in accordance with the synchronization timing of the synchronization command Sa. Thereafter, when an abnormality occurs in the A system, the submodule 7 switches the operating system to the B system. At this time, the timing correction unit 29 gradually moves the synchronization timing ST used by the PWM control unit 21 from the synchronization timing of the synchronization instruction Sa to the synchronization timing of the synchronization instruction Sb.
  • the synchronization timing ST before occurrence of an abnormality in the A system is time ta1. Therefore, assuming that no abnormality occurs in the A system, the next synchronization timing ST is estimated to be time tb1 after 360 ° of the electrical angle has elapsed from time ta1.
  • the timing correction unit 29 determines that the time te1, which is the synchronization timing of the synchronization command Sb, exists between the time tc1 after the reference time T ⁇ has elapsed from the time tb1 and the time td1 after the electrical angle 180 ° has elapsed from the time tb1. Do.
  • the timing correction unit 29 moves the synchronization timing ST to time tc1 after the reference time T ⁇ elapses from time tb1 instead of matching the synchronization timing (that is, time te1) of the synchronization command Sb.
  • the timing correction unit 29 determines that the time te1 which is the synchronization timing of the synchronization command Sb is present between the time tb1 and the time tc1. In this case, the timing correction unit 29 matches the synchronization timing ST with the synchronization timing of the synchronization command Sb (that is, time te1).
  • the timing correction unit 29 shifts the synchronization timing ST to the reference time T ⁇ in the direction approaching the synchronization timing of the synchronization command Sb. Move only.
  • the timing correction unit 29 moves the synchronization timing ST so as to coincide with the synchronization timing of the synchronization command Sb.
  • FIG. 12 is a diagram showing an example of correction of synchronization timing using the correction method of FIG. Referring to FIG. 12, the rising timing of the first synchronization pulse Y1 used in submodule 7 coincides with the synchronization timing of synchronization command Sa, and submodule 7 operates in accordance with synchronization command Sa. Thereafter, when an abnormality occurs in the A system, the selection circuit 42 switches the operating system to the B system.
  • the time difference between the time ty1 after the lapse of the electrical angle 360 ° from the rise time of the synchronization pulse Y1 and the rise time ts1 of the synchronization command Sb is larger than the reference time T ⁇ . Therefore, the rising time of the synchronization pulse Y2 is the time after the reference time T ⁇ has elapsed from the time ty1. Similarly, the rising time of the synchronization pulse Y3 is the time after the reference time T ⁇ has elapsed from the time ty2. The time ty2 is a time after an electrical angle of 360 ° has elapsed from the rise time of the synchronization pulse Y2.
  • the time difference between the time ty3 after the lapse of the electrical angle 360 ° from the rise time of the synchronization pulse Y3 and the rise time ts3 of the synchronization command Sb is smaller than the reference time T ⁇ . Therefore, the rising time of the synchronization pulse Y4 coincides with the rising time ts3 of the synchronization command Sb.
  • the PWM control unit 21 uses the voltage command Vb of the switching destination (here, the B system) for the voltage command.
  • Vb the switching destination
  • the PWM control unit 21 does not use the synchronization timing of the synchronization command Sb immediately, but uses the synchronization timing corrected by the timing correction unit 29.
  • the PWM control unit 21 operates according to the synchronization timing of the synchronization command Sb.
  • the present invention is not limited to this.
  • the above-described correction method of synchronization timing may be applied to a scene in which no abnormality occurs in any of the A system and the B system, and the active system is switched according to the system instruction information.
  • each detector for measuring the amount of electricity used for control may be duplicated.
  • control device 30 and the relay device 40 are duplexed
  • the present invention is not limited to this configuration.
  • the control device 30 and the relay device 40 may be configured to be triple or more.
  • the configuration exemplified as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and part of the configuration is omitted without departing from the scope of the present invention, etc. It is also possible to change and configure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(1)は、第1制御指令および第2制御指令をそれぞれ生成する第1制御装置(30A)および第2制御装置(30B)と、各サブモジュール(7)に対して、第1制御指令および第2制御指令をそれぞれ送信する第1中継装置(40A)および第2中継装置(40B)とを備える。第1制御装置(30A)および第2制御装置(30B)は、各サブモジュール(7)を運転制御する系統を指示する指示情報を受信する。第1制御指令および第2制御指令の各々は、駆動指令と制御装置の異常判定情報と指示情報とを含む。各サブモジュール(7)は、指示情報が第1系統を示している場合であっても、第1制御装置での異常発生を検出した場合には、各サブモジュール(7)を運転制御する系統として第2系統を選択し、第2系統に対応する第2制御指令に含まれる駆動指令に従ってスイッチング素子(22A,22B)をPWM制御する。

Description

電力変換装置
 本開示は、交流と直流との間で電力変換を行なう電力変換装置に関する。
 直流送電システムにおいて用いられる自励式の電力変換装置としてモジュラーマルチレベル変換器(MMC:Modular Multilevel Converter)が知られている。モジュラーマルチレベル変換器は、交流の各相について、高電位側直流端子に接続された上アームと低電位側直流端子に接続された下アームとを有する。各アームは、複数のサブモジュール(単位変換器)がカスケードに接続されることによって構成されている。
 例えば、特開2015-130746号公報(特許文献1)は、交流を直流に、または、直流を交流に変換可能な電力変換回路を含む電力変換装置を開示している。電力変換回路は、複数の単位変換器を直列に接続して構成したアームを有する。電力変換装置は、各単位変換器を統括して制御する第1の制御装置と、第1の制御装置にデイジーチェーン接続される複数の第2の制御装置と、第2の制御装置に接続されて、各単位変換器をそれぞれ制御する第3の制御装置とをさらに含む。
特開2015-130746号公報
 高信頼性が要求される電力変換装置では、内部構成の一部または全部が多重化される場合が多い。一例として、各サブモジュールを制御する制御装置を多重化(例えば、二重化)する構成が想定される。自励式変換器においては、各サブモジュールに設けられた半導体素子がゲートパルスによって瞬時にスイッチングがオンオフする。そのため、稼働系の制御装置と待機系の制御装置との系切り替えが適切に行なわれない場合、電力変換装置に接続された交流系統および直流系統に対して大きな影響を及ぼしてしまう。特許文献1では、電力変換装置の通信伝送遅延を減らし制御応答を向上させることを検討しているが、系切り替えを適切に行なうための構成については何ら教示および示唆されていない。
 本開示のある局面における目的は、稼働系および待機系の選択機能をサブモジュールに持たせることにより、稼働系の制御装置に異常が発生した場合に、サブモジュールを停止することなく稼働系と待機系との切り替えを行なうことが可能な電力変換装置を提供することである。
 ある実施の形態に従うと、直流回路と交流回路との間で電力変換を行なう電力変換装置が提供される。電力変換装置は、互いに直列接続された複数のサブモジュールを含む電力変換回路部と、各サブモジュールを運転制御するための第1制御指令および第2制御指令をそれぞれ生成する第1制御装置および第2制御装置と、各サブモジュールに対して、第1制御指令および第2制御指令をそれぞれ送信する第1中継装置および第2中継装置とを備える。第1制御装置および第2制御装置は、第1制御装置ならびに第1中継装置を含む第1系統、および第2制御装置ならびに第2中継装置を含む第2系統のうち、各サブモジュールを運転制御する系統を指示する指示情報を、予め定められた外部装置から受信する。第1制御指令および第2制御指令の各々は、各サブモジュールに含まれるスイッチング素子を駆動するための駆動指令と、制御装置の異常の有無を示す異常判定情報と、指示情報とを含む。各サブモジュールは、スイッチング素子をPWM制御するPWM制御部と、第1制御指令および第2制御指令の各々に含まれる異常判定情報および指示情報に基づいて、第1系統または第2系統を選択する選択部とを含む。選択部は、指示情報が第1系統を示している場合であっても、第1制御指令の異常判定情報に基づいて第1制御装置での異常発生を検出した場合には、各サブモジュールを運転制御する系統として第2系統を選択する。PWM制御部は、選択された第2系統に対応する第2制御指令に含まれる駆動指令に従ってスイッチング素子をPWM制御する。
 本開示によると、稼働系の制御装置に異常が発生した場合に、サブモジュールを停止することなく稼働系と待機系との切り替えを行なうことが可能となる。
実施の形態1に従う電力変換装置の概略構成図である。 実施の形態1に従う指令生成部の具体的な構成を示すブロック図である。 実施の形態1に従う制御装置の構成例を示すブロック図である。 実施の形態1に従う制御装置で行なわれるフィードバック制御を説明するための図である。 図1の各レグ回路を構成するサブモジュールの一例を示す回路図である。 実施の形態1に従う送受信部の具体的な構成を説明するためのブロック図である。 実施の形態1に従うサブモジュールによる系統の切り替えタイミングを説明するためのタイミングチャートである。 実施の形態2に従うサブモジュールの構成例を示す図である。 実施の形態2に従う同期タイミングの補正方式の一例を示す図である。 図9の補正方式を用いた同期タイミングの補正例を示す図である。 実施の形態2に従う同期タイミングの補正方式の他の例を示す図である。 図11の補正方式を用いた同期タイミングの補正例を示す図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 実施の形態1.
 [電力変換装置の構成]
 図1は、実施の形態1に従う電力変換装置の概略構成図である。図1を参照して、電力変換装置1は、互いに直列接続された複数のサブモジュール(sub module)(図1中の「SM」に対応)7を含むモジュラーマルチレベル変換器によって構成されている。なお、「サブモジュール」は、「変換器セル」あるいは「単位変換器」とも呼ばれる。電力変換装置1は、直流回路14と交流回路12との間で電力変換を行なう。具体的には、電力変換装置1は、電力変換回路部2と、指令生成部3とを含む。なお、電力変換装置1を含む電力変換システムにおいては、電力変換装置1に対して各種指示を与える外部装置である指示装置50が設けられている。
 電力変換回路部2は、正極直流端子(すなわち、高電位側直流端子)Npと、負極直流端子(すなわち、低電位側直流端子)Nnとの間に互いに並列に接続された複数のレグ回路4u,4v,4w(総称する場合または任意のものを示す場合、レグ回路4と記載する)を含む。
 レグ回路4は、交流を構成する複数相の各々に設けられる。レグ回路4は、交流回路12と直流回路14との間に接続され、両回路間で電力変換を行なう。図1には、交流回路12が3相交流系統の場合が示され、U相、V相、W相にそれぞれ対応して3個のレグ回路4u,4v,4wが設けられている。
 レグ回路4u,4v,4wにそれぞれ設けられた交流入力端子Nu,Nv,Nwは、連系変圧器13を介して交流回路12に接続される。交流回路12は、例えば、交流電源などを含む交流電力系統である。図1では、図解を容易にするために、交流入力端子Nv,Nwと連系変圧器13との接続は図示していない。
 各レグ回路4に共通に接続された高電位側直流端子Npおよび低電位側直流端子Nnは、直流回路14に接続される。直流回路14は、例えば、直流送電網などを含む直流電力系統または他の電力変換装置の直流端子である。後者の場合、2台の電力変換装置を連結することによって定格周波数などが異なる交流電力系統間を接続するためのBTB(Back To Back)システムが構成される。
 図1の連系変圧器13を用いる代わりに、連系リアクトルを介して交流回路12に接続した構成としてもよい。さらに、交流入力端子Nu,Nv,Nwに代えてレグ回路4u,4v,4wにそれぞれ一次巻線を設け、この一次巻線と磁気結合する二次巻線を介してレグ回路4u,4v,4wが連系変圧器13または連系リアクトルに交流的に接続するようにしてもよい。この場合、一次巻線を下記のリアクトル8A,8Bとしてもよい。すなわち、レグ回路4は、交流入力端子Nu,Nv,Nwまたは上記の一次巻線など、各レグ回路4u,4v,4wに設けられた接続部を介して電気的に(すなわち直流的または交流的に)交流回路12と接続される。
 レグ回路4uは、高電位側直流端子Npから交流入力端子Nuまでの上アーム5と、低電位側直流端子Nnから交流入力端子Nuまでの下アーム6とを含む。上アーム5と下アーム6との接続点である交流入力端子Nuが連系変圧器13と接続される。高電位側直流端子Npおよび低電位側直流端子Nnが直流回路14に接続される。レグ回路4v,4wについても同様の構成を有しているので、以下、レグ回路4uを代表として説明する。
 上アーム5は、カスケード接続された複数のサブモジュール7と、リアクトル8Aとを含む。当該複数のサブモジュール7およびリアクトル8Aは互いに直列接続されている。
 同様に、下アーム6は、カスケード接続された複数のサブモジュール7と、リアクトル8Bとを含む。当該複数のサブモジュール7およびリアクトル8Bは互いに直列接続されている。
 リアクトル8Aが挿入される位置は、レグ回路4uの上アーム5のいずれの位置であってもよく、リアクトル8Bが挿入される位置は、レグ回路4uの下アーム6のいずれの位置であってもよい。リアクトル8A,8Bはそれぞれ複数個あってもよい。各リアクトルのインダクタンス値は互いに異なっていてもよい。さらに、上アーム5のリアクトル8Aのみ、もしくは、下アーム6のリアクトル8Bのみを設けてもよい。
 リアクトル8A,8Bは、交流回路12または直流回路14などの事故時に事故電流が急激に増大しないように設けられている。しかし、リアクトル8A,8Bのインダクタンス値を過大なものにすると電力変換器の効率が低下するという問題が生じる。したがって、事故時においては、各サブモジュール7の全てのスイッチング素子をできるだけ短時間で停止(オフ)することが好ましい。
 電力変換装置1は、さらに、制御に使用される電気量(電流、電圧など)を計測する各検出器として、交流電圧検出器10と、交流電流検出器16と、直流電圧検出器11A,11Bと、各レグ回路4に設けられたアーム電流検出器9A,9Bとを含む。
 これらの検出器によって検出された信号は、指令生成部3に入力される。指令生成部3はこれらの検出信号に基づいて各サブモジュール7の運転状態を制御するための制御指令15pu,15nu,15pv,15nv,15pw,15nwを出力する。また、指令生成部3は、各サブモジュール7からセルキャパシタ電圧(図5中の直流コンデンサ24の電圧)の検出値を表す信号17を受信する。
 本実施の形態の場合、制御指令15pu,15nu,15pv,15nv,15pw,15nwは、U相上アーム、U相下アーム、V相上アーム、V相下アーム、W相上アーム、およびW相下アームにそれぞれ対応して生成されている。以下の説明では、制御指令15pu,15nu,15pv,15nv,15pw,15nwについて、総称する場合または任意のものを示す場合、制御指令15と記載する。
 なお、図1では図解を容易にするために、各検出器から指令生成部3に入力される信号の信号線と、指令生成部3および各サブモジュール7間で入出力される信号の信号線とは、一部まとめて記載されているが、実際には検出器ごとおよびサブモジュール7ごとに設けられている。各サブモジュール7と指令生成部3との間の信号線は、送信用と受信用とが別個に設けられていてもよい。また、本実施の形態の場合、これらの信号は耐ノイズ性の観点から光ファイバを介して伝送される。
 以下、各検出器について具体的に説明する。交流電圧検出器10は、交流回路12のU相の交流電圧値Vacu、V相の交流電圧値Vacv、およびW相の交流電圧値Vacwを検出する。交流電流検出器16は、交流回路12のU相の交流電流値Iacu、V相の交流電流値Iacv、およびW相の交流電流値Iacwを検出する。直流電圧検出器11Aは、直流回路14に接続された高電位側直流端子Npの直流電圧値Vdcpを検出する。直流電圧検出器11Bは、直流回路14に接続された低電位側直流端子Nnの直流電圧値Vdcnを検出する。
 U相用のレグ回路4uに設けられたアーム電流検出器9Aおよび9Bは、上アーム5に流れる上アーム電流Ipuおよび下アーム6に流れる下アーム電流Inuをそれぞれ検出する。同様に、V相用のレグ回路4vに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipvおよび下アーム電流Invをそれぞれ検出する。W相用のレグ回路4wに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipwおよび下アーム電流Inwをそれぞれ検出する。
 指示装置50は、例えば、制御装置30Aおよび30Bの上位装置に相当し、指令生成部3と通信可能に構成される。指示装置50は、指令生成部3からの情報および系統運用者の指示に従って、各種指示を指令生成部3に与える。
 [指令生成部の構成]
 図2は、実施の形態1に従う指令生成部の具体的な構成を示すブロック図である。図2を参照して、指令生成部3は、制御装置30A,30Bと、中継装置40A,40Bとを含む。このように、指令生成部3は、制御装置30Aおよび中継装置40Aを含むA系統と、制御装置30Bおよび中継装置40Bを含むB系統とを組み合わせた二重化構成を採用している。制御装置30Aは、制御装置30B、中継装置40Aおよび指示装置50と通信可能に構成される。制御装置30Bは、制御装置30A、中継装置40Bおよび指示装置50と通信可能に構成される。
 図3では、図1の電力変換回路部2のうちU相用のレグ回路4uのみが代表的に示されているが、他のレグ回路4v,4wについても同様である。なお、制御装置30A,30Bについて、総称する場合または任意のものを示す場合、制御装置30と記載する。中継装置40A,40Bについて、総称する場合または任意のものを示す場合、中継装置40と記載する。
 制御装置30は、図1の各検出器で検出された交流電圧値Vacu,Vacv,Vacw(総称する場合、交流電圧値Vacと記載する)、交流電流値Iacu,Iacv,Iacw(総称する場合、交流電流値Iacと記載する)、直流電圧値Vdcp,Vdcn、上アーム電流Ipu,Ipv,Ipw、下アーム電流Inu,Inv,Inw、およびセルキャパシタ電圧Vcapの入力を受け付ける。
 制御装置30は、当該受け付けた各検出値に基づいて、通常動作時に各サブモジュール7を駆動するための駆動指令を生成し、当該生成した駆動指令を対応する中継装置40に送信する。セルキャパシタ電圧Vcapは、各サブモジュール7において検出された直流コンデンサ24の電圧値がアーム回路ごとに平均化されたものである。
 駆動指令は、電圧指令(例えば、各レグ回路4u,4v,4wにおける上アーム5の出力電圧指令値および下アーム6の出力電圧指令値)と、各サブモジュール7の動作の同期をとるための同期指令とを含む。なお、同期指令は、通常運転時の交流電圧値Vacの位相を基準とした同期パルスである。
 制御装置30は、自装置における異常の発生の有無を判定し、当該判定結果を示す異常判定情報を生成する。典型的には、制御装置30は、ハードウェア構成として、補助変成器、AD(Analog to Digital)変換部、演算部、通信インターフェイス等を含むディジタル保護リレー装置で構成されており、演算部およびAD変換部等の異常を検出する。演算部は、CPU(Central Processing Unit)、RAM(Random Access Memory)およびROM(Read Only Memory)を含む。AD変換部は、アナログフィルタ、サンプルホールド回路、マルチプレクサ等を含む。
 演算部の異常内容としては、CPUの故障が想定される。CPUの健全性は、ウォッチドックタイマ(WDT)により確認できる。WDTは、CPUが正常に稼働しているか否かを定期的に監視する。典型的には、CPUが故障等により暴走すると,CPUはWDTに対して定期的にリセット信号を送信しなくなる。そのため、WDTは,リセット信号が一定時間受信されなかった時点で,CPUの異常を検出する。
 AD変換部の異常内容としては、電気量の入力を受ける入力回路(例えば、アナログフィルタおよびサンプルホールド回路等)の故障が想定される。例えば、CPUは、AD変換部から受信した電気量に重畳入力された監視用信号を抽出し、当該抽出された監視用信号の振幅値と、規定値(例えば、高調波発生回路から出力された監視用信号の振幅値)とを比較する。CPUは、当該抽出された監視用信号の振幅値と規定値との差分が予め定められた範囲内である場合には、入力回路は正常であると判断し、当該差分が予め定められた範囲外である場合には入力回路に異常が発生していると判断する。
 制御装置30は、A系統およびB系統のうち、各サブモジュール7を運転制御する系統(すなわち、稼働系)を指示する系指示情報を指示装置50から受信する。典型的には、指示装置50は、系統運用者から稼働系として動作させる系統の指示を受け付け、当該指示を反映した系指示情報を制御装置30に送信する。例えば、指示装置50は、A系統を稼働系とする旨の指示を系統運用者から受け付けた場合には、稼働系として動作させる指示を含む系指示情報を制御装置30Aに送信し、待機系として動作させる指示を含む系指示情報を制御装置30Bに送信する。
 制御装置30は、周期T1(例えば、100μs)ごとに、各サブモジュール7を運転制御するための制御指令15を生成し、当該生成した制御指令15を中継装置40に送信する。制御指令15は、上述した駆動指令(すなわち、電圧指令および同期指令)と、制御装置30の異常の発生の有無を示す異常判定情報と、指示装置50から受信した系指示情報とを含む。なお、周期T1は、通常運転時、交流系統(例えば、交流回路12)の周波数に合わせて、制御装置30により適宜変更される。
 中継装置40は、周期T1ごとに制御装置30から受信した制御指令15を各サブモジュール7に送信する。より具体的には、中継装置40Aは、制御装置30Aから受信した制御指令15を各サブモジュール7に送信し、中継装置40Bは、制御装置30Bから受信した制御指令15を各サブモジュール7に送信する。なお、中継装置40は、周期T1よりも短い周期ごとに制御指令15を各サブモジュール7に送信してもよい。
 典型的には、中継装置40は、専用回路によって構成され、その一部または全部をFPGA(Field Programmable Gate Array)によって構成してもよい。中継装置40は、スター型のネットワークを介して、各サブモジュール7と接続されている。
 [制御装置の構成例]
 図3は、実施の形態1に従う制御装置30の構成例を示すブロック図である。図3を参照して、制御装置30は、直流電圧指令生成部60と、交流電圧指令生成部61と、循環電流指令生成部62と、コンデンサ電圧指令生成部63と、アーム電圧指令生成部64とを含む。
 直流電圧指令生成部60は、各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて直流電流値Idcを演算する。具体的には、上アーム電流Ipu,Ipv,Ipwの和をIdc_pとし、下アーム電流Inu,Inv,Inwの和をIdc_nとすれば、直流電流値Idcは、以下の式(1)によって計算できる。
 Idc=(Idc_p+Idc_n)/2  ・・・(1)
 直流電圧指令生成部60は、直流電圧検出器11A,11B(以下、「直流電圧検出器11」とも総称する。)で検出された直流電圧値Vdcp,Vdcnと、算出した直流電流値Idcとに基づいて、直流電圧指令値を生成する。直流電圧指令生成部60は、直流電圧値Vdcp,Vdcn(以下、「直流電圧値Vdc」とも総称する。)のフィードバック制御を実行するフィードバック制御器と、直流電流値Idcのフィードバック制御を実行するフィードバック制御器とから構成される。
 図4は、実施の形態1に従う制御装置で行なわれるフィードバック制御を説明するための図である。ここでは、直流電圧値Vdcのフィードバック制御について説明する。
 図4を参照して、制御装置30Aは、フィードバック制御の機能構成として、フィードバック制御器である積分器31Aと、RAM等により構成される記憶部32Aと、ORゲート33Aと、NOTゲート34Aと、通信回路等により構成される伝送部35Aと、スイッチ36Aとを含む。制御装置30Bは、フィードバック制御の機能構成として、積分器31Bと、記憶部32Bと、ORゲート33Bと、NOTゲート34Bと、伝送部35Bと、スイッチ36Bとを含む。積分器、ORゲート、NOTゲートおよびスイッチは、例えば、制御装置30のCPUにより実現される。
 ここで、現在の演算周期での積分器の出力値である今回出力値をy(s)、1つ前の演算周期での積分器の出力値である前回出力値をy(s-1)、xを積分器の入力値、Tを時定数、sをラプラス演算子とすると、y(s)は以下の式(2)のように表わされる。
 y(s)=y(s-1)+x/(T×s)・・・(2)
 積分器31A,31Bの入力としては、直流電圧検出器11の検出値(すなわち、直流電圧値Vdc)と、直流電圧値の目標値との偏差が用いられる。当該目標値は、指示装置50から制御装置30A,30Bに対して送信される。制御装置30Aおよび30Bは、当該偏差を減少させるためのフィードバック演算をフィードバック制御器(ここでは、積分器31Aおよび31B)を用いて実行する。
 積分器31Aの出力値は、記憶部32Aに格納されるとともに伝送部35Aを介して伝送部35Bに送信される。積分器31Bの出力値は、記憶部32Bに格納されるとともに伝送部35Bを介して伝送部35Aに送信される。
 指示装置50は、A系統およびB系統とが協調して動作する指示を制御装置30A,30Bに与えている。そのため、図4中の系間協調信号として“1”がNOTゲート34A,34Bに入力され、“0”がORゲート33A,33Bに入力される。
 また、指示装置50は、A系統を稼働系とする旨の指示を制御装置30A,30Bに与えているとする。この場合、図4中の系指示情報Jaとして“1”がORゲート33Aに入力される。その結果、ORゲート33Aからは“1”が出力され、スイッチ36Aの接点Paと接点Pbとが接続される。また、図4中の系指示情報Jbとして“0”がORゲート33Bに入力される。その結果、ORゲート33Bからは“0”が出力され、スイッチ36Bの接点Paと接点Pcとが接続される。
 これにより、A系統を稼働系として運用しB系統を待機系として運用する場合には、積分器31Aは、前回値として、記憶部32Aに格納された積分器31Aの前回出力値を用いて演算を行なう。また、積分器31Bは、前回値として、伝送部35Bを介して受信した積分器31Aの前回出力値を用いて演算を行なう。
 また、A系統を待機系として運用しB系統を稼働系として運用する場合には、積分器31Aは、前回値として、伝送部35Aを介して受信した積分器31Bの前回出力値を用いて演算を行なう。積分器31Bは、前回値として、記憶部32Bに格納された積分器31Bの前回出力値を用いて演算を行なう。
 図4の例では、フィードバック制御器として積分器を用いる例について説明したが、当該構成に限られない。フィードバック制御器は、比例器と積分器とを組み合わせたPI(Proportional-Integral)制御器であってもよいし、比例器と積分器と微分器とを組み合わせたPID(Proportional-Integral-Differential)制御器であってもよいし、他の制御器であってもよい。
 再び、図3を参照して、直流電圧指令生成部60は、直流電流値についても図4で説明したフィードバック制御機能により同様のフィードバック制御を実行する。直流電圧指令生成部60は、算出した直流電圧値Vdcp,Vdcnと、算出した直流電流値Idcとに基づいて、直流電圧指令値を生成する。
 交流電圧指令生成部61は、交流電圧検出器10によって検出されたU相、V相、W相の交流電圧値Vacu,Vacv,Vacwと、交流電流検出器16によって検出されたU相、V相、W相の交流電流値Iacu,Iacv,Iacwとに基づいて、各相の交流電圧指令値を生成する。交流電圧指令生成部61は、PID制御器などのフィードバック制御器によって構成されており、演算に用いる各電気量について図4で説明したようなフィードバック制御を行なうことにより各相の交流電圧指令値を生成する。
 循環電流指令生成部62は、まず、レグ回路4u,4v,4wにそれぞれ流れる循環電流Iccu,Iccv,Iccwを各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて計算する。循環電流は、複数のレグ回路4の間を循環する電流である。例えば、U相レグ回路4uを流れる循環電流Iccuは、以下の式(3)によって計算できる。
 Iccu=(Ipu+Inu)/2-Idc/3  ・・・(3)
 上式(3)の第1項はレグ回路4uの上アーム5および下アーム6に共通に流れる電流を表す。式(3)の第2項は、直流電流値Idcが各レグ回路に均等に流れると仮定したときのU相レグ回路4uの分担分を表す。循環電流Iccv,Iccwについても同様に計算することができる。
 循環電流指令生成部62は、算出された各相の循環電流Iccu,Iccv,Iccwと、アーム回路ごとに平均化されたセルキャパシタ電圧Vcapとに基づいて各相の循環電流の指令値を算出する。循環電流指令生成部62は、PID制御器などのフィードバック制御器によって構成されており、演算に用いる各電気量について図4で説明したようなフィードバック制御を行なうことにより、各相の循環電流の指令値を生成する。
 コンデンサ電圧指令生成部63は、アーム回路ごとに平均化されたセルキャパシタ電圧Vcapと、各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて、各サブモジュール7の直流コンデンサの電圧指令値を生成する。コンデンサ電圧指令生成部63は、PID制御器などのフィードバック制御器によって構成されており、演算に用いる各電気量について図4で説明したようなフィードバック制御を行なうことにより、直流コンデンサの電圧指令値を生成する。
 アーム電圧指令生成部64は、上記の各指令生成部を合成することによって、各相の上アーム5および下アーム6用のアーム電圧指令値Vprefu,Vnrefu,Vprefv,Vnrefv,Vprefw,Pnrefwを生成する。各相のアーム電圧指令値Vprefu,Vnrefu,Vprefv,Vnrefv,Vprefw,Pnrefwは、電圧指令として中継装置40に伝送される。以下の説明において、いずれの相であるかを特定しない場合には、単にアーム電圧指令値Vpref,Vnrefと記載する場合がある。
 上記のように、制御装置30は、直流回路14と交流回路12との間での電力変換制御に用いられる各電気量について、目標値と検出値との偏差を減少させるためのフィードバック演算を実行する。
 具体的には、各サブモジュールを運転制御する系統がA系統である場合、制御装置30Aに含まれるフィードバック制御器FA(例えば、積分器31A)によるフィードバック演算は、当該偏差およびフィードバック制御器FAの前回出力値に基づいて、フィードバック制御器FAの今回出力値を算出する演算を含む。また、制御装置30Bに含まれるフィードバック制御器FB(例えば、積分器31B)によるフィードバック演算は、当該偏差およびフィードバック制御器FAの前回出力値に基づいて、フィードバック制御器FBの今回出力値を算出する演算を含む。
 このようなフィードバック演算により、各サブモジュールに送信されるA系統およびB系統からの出力電圧指令値の誤差を小さくすることができる。
 [サブモジュールの構成例]
 (全体構成)
 図5は、図1の各レグ回路を構成するサブモジュールの一例を示す回路図である。図5に示すサブモジュール7は、ハーフブリッジ型の変換回路20HBと、PWM(pulse width modulation)制御部21と、エネルギー蓄積器としての直流コンデンサ24と、電圧検出部27と、送受信部28とを含む。PWM制御部21、電圧検出部27、送受信部28の一連の処理は、制御装置30の演算周期である周期T1よりも非常に短い周期T2(例えば、数μs)ごとに実行される。
 ハーフブリッジ型の変換回路20HBは、互いに直列接続されたスイッチング素子22A,22Bと、ダイオード23A,23Bとを含む。ダイオード23A,23Bは、スイッチング素子22A,22Bとそれぞれ逆並列(すなわち、並列かつ逆バイアス方向)に接続される。直流コンデンサ24は、スイッチング素子22A,22Bの直列接続回路と並列に接続され、直流電圧を保持する。スイッチング素子22A,22Bの接続ノードは高電位側の入出力端子26Pと接続される。スイッチング素子22Bと直流コンデンサ24の接続ノードは低電位側の入出力端子26Nと接続される。
 典型的には、入出力端子26Pは、正極側に隣接するサブモジュール7の入出力端子26Nと接続される。入出力端子26Nは、負極側に隣接するサブモジュール7の入出力端子26Pと接続される。
 各スイッチング素子22A,22Bには、オン動作とオフ動作の両方を制御可能な自己消弧型のスイッチング素子が用いられる。スイッチング素子22A,22Bは、例えば、IGBT(Insulated Gate Bipolar Transistor)またはGCT(Gate Commutated Turn-off thyristor)である。
 バイパススイッチSWは、入出力端子26P,26N間に接続される。バイパススイッチSWは、接点を閉じることによりスイッチング素子22Bの両端を短絡可能に構成されるスイッチであり、事故電流の通電が可能である。すなわち、バイパススイッチSWは、サブモジュール7を短絡することにより、サブモジュール7に含まれる各素子(スイッチング素子22A,22B、ダイオード23A,23Bおよび直流コンデンサ24)を事故時に発生する過電流から保護する。
 また、バイパススイッチSWは、サブモジュール7の各素子が故障した場合に、当該サブモジュール7を短絡させる際にも利用される。これにより、複数のサブモジュール7のうちの任意のサブモジュール7が故障しても、他のサブモジュール7を利用することにより電力変換装置1の運転継続が可能となる。
 電圧検出部27は、直流コンデンサ24の両端24P,24Nの間の電圧(すなわち、セルキャパシタ電圧)を検出する。送受信部28は、図1の指令生成部3から受信した制御指令15をPWM制御部21に伝達するとともに、電圧検出部27によって検出されたセルキャパシタ電圧を表す信号17を指令生成部3に送信する。送受信部28の具体的な構成については後述する。
 PWM制御部21は、送受信部28から入力される駆動指令(すなわち、電圧指令および同期指令)に従って各スイッチング素子22A,22BをPWM制御する。具体的には、PWM制御部21は、駆動指令に従ってPWM信号であるゲート制御信号を生成し、当該ゲート制御信号を各スイッチング素子22A,22Bに出力する。
 典型的には、PWM制御部21は、通常動作時(すなわち、入出力端子26P,26N間に零電圧または正電圧を出力する場合)には、スイッチング素子22A,22Bの一方をオン状態とし、他方をオフ状態となるように制御を行なう。スイッチング素子22Aがオン状態であり、スイッチング素子22Bがオフ状態のとき、入出力端子26P,26N間には直流コンデンサ24の両端間の電圧が印加される。逆に、スイッチング素子22Aがオフ状態であり、スイッチング素子22Bがオン状態のとき、入出力端子26P,26N間は0Vとなる。
 サブモジュール7は、スイッチング素子22A,22Bを交互にオン状態とすることによって、零電圧または直流コンデンサ24の電圧に依存した正電圧を出力することができる。ダイオード23A,23Bは、スイッチング素子22A,22Bに逆方向電圧が印加されたときの保護のために設けられている。
 上記のPWM制御部21、電圧検出部27、および送受信部28は、専用回路によって構成してもよいし、FPGAなどを利用して構成してもよい。
 上記では、サブモジュール7の変換回路がハーフブリッジ型の変換回路である構成について説明したが、当該構成に限られない。例えば、サブモジュール7は、フルブリッジ型の変換回路、またはスリークオーターブリッジ型の変換回路を用いて構成されていてもよい。
 (送受信部の構成)
 図6は、実施の形態1に従う送受信部の具体的な構成を説明するためのブロック図である。送受信部28は、通信回路41A,41Bと、選択回路42とを含む。以下の説明では、便宜上、制御装置30Aにより生成された制御指令15を「制御指令15A」と称し、制御装置30Bにより生成された制御指令15を「制御指令15B」と称する。
 通信回路41Aは、中継装置40Aから送信される制御指令15Aを受信する。通信回路41Bは、中継装置40Bから送信される制御指令15Bを受信する。制御指令15Aは、電圧指令Vaと、同期指令Saと、異常判定情報Daと、系指示情報Jaとを含む。制御指令15Bは、電圧指令Vbと、同期指令Sbと、異常判定情報Dbと、系指示情報Jbとを含む。
 異常判定情報Daは制御装置30Aの異常の発生の有無を示す情報であり、異常判定情報Dbは制御装置30Bの異常の発生の有無を示す情報である。系指示情報Jaは、A系統が稼働系および待機系のいずれで動作するのかを示す情報であり、系指示情報Jbは、B系統が稼働系および待機系のいずれで動作するのかを示す情報である。例えば、系指示情報Jaが稼働系を示している場合には、系指示情報Jbは待機系を示している。
 選択回路42は、異常判定情報Da,Dbと系指示情報Ja,Jbとに基づいて、各サブモジュールを運転制御する系統(すなわち、稼働系)として、A系統またはB系統のいずれかを選択する。
 選択回路42は、A系統を稼働系として選択した場合には、電圧指令Vaおよび同期指令SaがPWM制御部21に入力されるようにスイッチ43および44に信号を出力する。具体的には、選択回路42は、接点Q1と接点Q2とが接続されるようにスイッチ43を動作させる信号を出力し、接点Q4と接点Q5とが接続されるようにスイッチ44を動作させる信号を出力する。
 選択回路42は、B系統を稼働系として選択した場合には、電圧指令Vbおよび同期指令SbがPWM制御部21に入力されるようにスイッチ43および44に信号を出力する。具体的には、選択回路42は、接点Q1と接点Q3とが接続されるようにスイッチ43を動作させる信号を出力し、接点Q4と接点Q6とが接続されるようにスイッチ44を動作させる信号を出力する。
 次に、選択回路42による選択方式について説明する。選択回路42は、異常判定情報Da,Dbに基づいて、制御装置30Aおよび30Bの両方が正常である(すなわち、異常が発生していない)と判断した場合には、系指示情報Ja,Jbに従って、A系統またはB系統を稼働系として選択する。
 一方、選択回路42は、異常判定情報Da,Dbに基づいて、制御装置30Aおよび30Bのいずれか一方が異常であると判断した場合には、系指示情報Ja,Jbの内容に関わらず、異常が発生していない系統を稼働系として選択する。具体的には、選択回路42は、系指示情報Jaが稼働系としてA系統を示している(すなわち、系指示情報Jbが待機系としてB系統を示している)場合であっても、異常判定情報Daに基づいて制御装置30Aでの異常発生を検出した場合(すなわち、異常判定情報Daが制御装置30Aでの異常発生を示している場合)には、稼働系としてB系統を選択する。
 PWM制御部21は、選択回路42により稼働系として選択された系統に対応する駆動指令(例えば、B系統に対応する電圧指令Vbおよび同期指令Sb)に従って各スイッチング素子をPWM制御する。
 図7は、実施の形態1に従うサブモジュールによる系統の切り替えタイミングを説明するためのタイミングチャートである。
 図7を参照して、スタート時点では、A系統が稼働系として運用され、B系統が待機系として運用されている。具体的には、指示装置50は、A系統を稼働系として動作させ、B系統を稼働系として動作させるように制御装置30A,30Bに指示を与えている。制御装置30Aは指示装置50の指示に従って稼働系として動作し、制御装置30Bは待機系として動作している。また、サブモジュール7は、稼働系としてA系統を選択しており、電圧指令Vaおよび同期指令Saに基づいてPWM制御を実行している。
 ここで、時刻t1において制御装置30Aに異常が発生したとする。制御装置30Aは、自装置に異常が発生したことを示す異常判定情報Daと、異常発生時点で受信している系指示情報Jaとを含む制御指令15Aを中継装置40を介してサブモジュール7に送信する。また、制御装置30Aは、自装置に異常が発生したことを指示装置50にも通知して(例えば、当該異常判定情報Daを送信して)、稼働系の切り替えの指示を促す。なお、異常発生時点で制御装置30Aが受信している系指示情報Jaは、A系統を稼働系として動作させる指示情報である。なぜなら、指示装置50は、異常発生時点では制御装置30Aでの異常発生を認識していないためである。
 時刻t2において、サブモジュール7は、制御装置30Aから受信した異常判定情報Daに基づいて稼働系をA系統からB系統に切り替え、電圧指令Vbおよび同期指令Sbに基づくPWM制御を開始する。サブモジュール7による演算周期は数μ秒と非常に短いため、制御装置30Aからの異常判定情報Daを受信してすぐに、健全なB系統の電圧指令Vbおよび同期指令Sbに基づくPWM制御を開始できる。
 時刻t3において、指示装置50は、制御装置30Aから受信した異常判定情報Daに基づいて、稼働系をA系統からB系統に切り替える指示を含む系指示情報Jbを制御装置30Bに送信する。時刻t4において、制御装置30Bは、指示装置50から受信した系指示情報Jbに従って稼働系としての動作を開始する。このとき、制御装置30Bからサブモジュール7に送信される系指示情報Jbは稼働系を示している。
 本実施の形態では、サブモジュール7に、系選択機能およびPWM制御機能を設けていることから、異常系から健全系への即時の切り替えが可能であるとともに、健全系の制御指令を用いたPWM制御を即時に開始することが可能である。
 ここで、比較例として、仮に制御装置30に系切り替え機能およびPWM制御機能を設けた場合を想定する。制御装置30Bが、指示装置50からの指示に従って稼働系としての動作を開始できるタイミングは、時刻t4である。換言すると、制御装置30Bは、時刻t4に到達しないと、稼働系をA系統からB系統に切り替えることができないし、健全なB系統に対応する駆動指令を用いたPWM制御を実行することもできない。これは、異常発生時の時刻t1から時刻t4までの長い間、サブモジュール7が正常に動作できないことを意味する。この場合、直流回路14および交流回路12に与える影響が大きいことから、一旦サブモジュール7を停止せざるを得ない。
 一方、本実施の形態では、サブモジュール7は、異常発生とほぼ同時に健全系に対応する駆動指令を用いたPWM制御を実行できる。そのため、直流回路14および交流回路12に与える影響が小さいことから、サブモジュール7を停止することなく運転を継続することができる。
 [利点]
 実施の形態1によると、サブモジュール7内に系切り替え機能およびPWM制御機能を持たせることにより、制御装置30に異常が発生した場合に指示装置50からの系指示情報を待つことなく系切り替えを行なうことができる。また、サブモジュール7の演算周期は、制御装置30および指示装置50の演算周期よりも非常に短い。そのため、サブモジュール7は、異常発生の受信したら即時に系切り替えを行ない、PWM制御を開始することができる。これにより、系切り替えの際にサブモジュール7を停止することなく、電力系統の運用を継続することができる。
 また、中継装置40と各サブモジュール7とがスター接続されているため、中継装置40と任意のサブモジュール7との間の伝送路が故障した場合でも、運転を継続することができる。さらに、サブモジュール7にバイパススイッチSWが設けられているため、任意のサブモジュール7の各素子が故障した場合でも、当該サブモジュール7を短絡させることにより、他のサブモジュール7を利用することにより運転を継続することができる。
 さらに、サブモジュール7内に系切り替え機能を持たせることにより、同一のハードウェア内での系切り替えが可能となる。これにより、一つのハードウェアクロック信号を基準として切り替え処理を行なうことができるため、スムーズに系切り替えを行なうことができる。
 実施の形態2.
 制御装置30A,30Bから送信される制御指令15A,15Bは、周期T1ごとに同時に出力されるため、基本的には同期指令Saに従う同期タイミングと、同期指令Sbに従う同期タイミングとは一致していると考えられる。
 制御指令15は、制御装置30から中継装置40を介して、光ファイバで各サブモジュールに送信される。このとき、制御装置30Aおよび各サブモジュール7間の伝送時間と、制御装置30Bおよび各サブモジュール7間の伝送時間とが異なる場合には、同期指令Saに従う同期タイミングと、同期指令Sbに従う同期タイミングとに誤差が生じる可能性がある。実施の形態2では、系切り替えを行なう際の同期タイミングの補正方式について説明する。
 図8は、実施の形態2に従うサブモジュール7の構成例を示す図である。図8を参照して、実施の形態2に従うサブモジュール7は、図5中のサブモジュール7の構成にタイミング補正部29を追加した構成である。
 タイミング補正部29は、選択回路42により稼働系として選択された系統を示す選択信号と、同期指令SaおよびSbとの入力を受け付ける。タイミング補正部29は、選択信号と、同期指令SaおよびSbとに基づいて、PWM21で用いられる同期指令の同期タイミングを補正する。タイミング補正部29は、補正後の同期指令をPWM制御部21に出力する。以下、タイミング補正部29の補正方式について説明する。
 図9は、実施の形態2に従う同期タイミングの補正方式の一例を示す図である。ここでは、稼働系としてのA系統に異常が発生し、B系統に稼働系を切り替える場面を想定する。図9には、同期指令Saの同期タイミング、同期指令Sbの同期タイミングおよびサブモジュール7で用いられる同期タイミングが示されている。図9の例では、切替先(ここでは、B系統)の同期指令Sbの同期タイミングの方が、切替元(ここでは、A系統)の同期指令Saの同期タイミングよりも早い場合を想定している。
 時刻taにおいては、A系統が稼働系であるため、サブモジュール7は同期指令Saの同期タイミングに従って動作する。その後、A系統に異常が発生すると、サブモジュール7は、稼働系をB系統に切り替える。このとき、タイミング補正部29は、同期指令Saの同期タイミングと同期指令Sbの同期タイミングとの時間差に基づいて、PWM制御部21で用いられる同期指令の同期タイミング(以下、「同期タイミングST」とも称する。)を同期指令Sbの同期タイミングへ徐々に移動させる。
 具体的には、図9(a)を参照して、A系統での異常発生前にサブモジュール7(具体的には、PWM制御部21)で用いられている同期タイミングは時刻taである。そのため、仮にA系統に異常が発生していないとすると、次の同期タイミングは時刻taから電気角360°経過後の時刻tbと推定される。サブモジュール7に設けられるタイミング補正部29は、同期指令Sbの同期タイミングである時刻teが、時刻tbから電気角180°遡った時刻tdと、時刻taから基準時間Tα遡った時刻tcとの間に存在すると判断する。この場合、タイミング補正部29は、同期タイミングSTを、同期指令Sbの同期タイミング(すなわち、時刻te)に一致させるのではなく、時刻tbから基準時間Tα遡った時刻tcに移動させる。
 一方、図9(b)の場合には、タイミング補正部29は、同期指令Sbの同期タイミングである時刻teが、時刻tcと時刻tbとの間に存在すると判断する。この場合、タイミング補正部29は、同期タイミングSTを同期指令Sbの同期タイミング(すなわち、時刻te)に一致させる。
 ここで、時刻teと時刻tbとの時間差ΔTは、同期指令Saの同期タイミングと同期指令Sbの同期タイミングとの誤差に相当する。したがって、時間差ΔTが基準時間Tαよりも大きい場合(すなわち、図9(a)の場合)、タイミング補正部29は、同期指令Sbの同期タイミングに近づく方向へ(すなわち、時間差ΔTが小さくなる方向へ)、同期タイミングSTを基準時間Tαだけ移動させる。一方、時間差ΔTが基準時間Tα以下である場合(すなわち、図9(b)の場合)、タイミング補正部29は、同期指令Sbの同期タイミングに一致するように、同期タイミングSTを移動させる。
 図10は、図9の補正方式を用いた同期タイミングの補正例を示す図である。図10を参照して、サブモジュール7で用いられる1回目の同期パルスX1の立ち上がりタイミング(すなわち、同期タイミング)は、同期指令Saの同期タイミングと一致しており、サブモジュール7は同期指令Saに従って動作している。その後、A系統に異常が発生すると、選択回路42が稼働系をB系統に切り替える。
 2回目の同期パルスX2の位置は、同期指令Saと同期指令Sbとの時間差に基づいてタイミング補正部29により補正された位置となる。具体的には、同期パルスX1の立ち上がり時刻から電気角360°経過後の時刻tx1と、同期指令Sbの立ち上がり時刻ts1との時間差は基準時間Tαよりも大きい。そのため、同期パルスX2の立ち上がり時刻は、時刻tx1から基準時間Tα遡った時刻となる。同様に、3回目の同期パルスX3の立ち上がり時刻は、時刻tx2から基準時間Tα遡った時刻となる。時刻tx2は、同期パルスX2の立ち上がり時刻から電気角360°経過後の時刻である。
 次に、同期パルスX3の立ち上がり時刻から電気角360°経過後の時刻tx3と、同期指令Sbの立ち上がり時刻ts3との時間差は基準時間Tαよりも小さい。そのため、4回目の同期パルスX4の立ち上がり時刻は、同期指令Sbの立ち上がり時刻ts3と一致する。
 図11は、実施の形態2に従う同期タイミングの補正方式の他の例を示す図である。図9と同様に、稼働系のA系統に異常が発生し、B系統に稼働系を切り替える場面を想定する。図11の例では、切替先(ここでは、B系統)の同期指令Sbの同期タイミングが、切替元(ここでは、A系統)の同期指令Saの同期タイミングよりも遅い場合を想定している。
 時刻ta1においては、A系統が稼働系であるため、サブモジュール7は同期指令Saの同期タイミングに従って動作する。その後、A系統に異常が発生すると、サブモジュール7は、稼働系をB系統に切り替える。このとき、タイミング補正部29は、PWM制御部21で用いられる同期タイミングSTを、同期指令Saの同期タイミングから同期指令Sbの同期タイミングへ徐々に移動させる。
 具体的には、図11(a)を参照して、A系統での異常発生前における同期タイミングSTは時刻ta1である。そのため、仮にA系統に異常が発生していないとすると、次の同期タイミングSTは時刻ta1から電気角360°経過後の時刻tb1と推定される。タイミング補正部29は、同期指令Sbの同期タイミングである時刻te1が、時刻tb1から基準時間Tα経過後の時刻tc1と、時刻tb1から電気角180°経過後の時刻td1との間に存在すると判断する。この場合、タイミング補正部29は、同期タイミングSTを、同期指令Sbの同期タイミング(すなわち、時刻te1)に一致させるのではなく、時刻tb1から基準時間Tα経過後の時刻tc1に移動させる。
 一方、図11(b)の場合には、タイミング補正部29は、同期指令Sbの同期タイミングである時刻te1が、時刻tb1と時刻tc1との間に存在すると判断する。この場合、タイミング補正部29は、同期タイミングSTを、同期指令Sbの同期タイミング(すなわち、時刻te1)に一致させる。
 このように、時間差ΔTが基準時間Tαよりも大きい場合(すなわち、図11(a)の場合)、タイミング補正部29は、同期指令Sbの同期タイミングに近づく方向へ、同期タイミングSTを基準時間Tαだけ移動させる。一方、時間差ΔTが基準時間Tα以下である場合(すなわち、図11(b)の場合)、タイミング補正部29は、同期指令Sbの同期タイミングに一致するように、同期タイミングSTを移動させる。
 図12は、図11の補正方式を用いた同期タイミングの補正例を示す図である。図12を参照して、サブモジュール7で用いられる1回目の同期パルスY1の立ち上がりタイミングは、同期指令Saの同期タイミングと一致しており、サブモジュール7は同期指令Saに従って動作している。その後、A系統に異常が発生すると、選択回路42が稼働系をB系統に切り替える。
 ここで、同期パルスY1の立ち上がり時刻から電気角360°経過後の時刻ty1と、同期指令Sbの立ち上がり時刻ts1との時間差は基準時間Tαよりも大きい。そのため、同期パルスY2の立ち上がり時刻は、時刻ty1から基準時間Tα経過後の時刻となる。同様に、同期パルスY3の立ち上がり時刻は、時刻ty2から基準時間Tα経過後の時刻となる。時刻ty2は、同期パルスY2の立ち上がり時刻から電気角360°経過後の時刻である。
 次に、同期パルスY3の立ち上がり時刻から電気角360°経過後の時刻ty3と、同期指令Sbの立ち上がり時刻ts3との時間差は基準時間Tαよりも小さい。そのため、同期パルスY4の立ち上がり時刻は、同期指令Sbの立ち上がり時刻ts3と一致する。
 このように、稼働系がA系統からB系統へ切り替えられた場合、PWM制御部21は、電圧指令に関しては、切替先(ここでは、B系統)の電圧指令Vbを用いる。一方、同期タイミングに関しては、PWM制御部21は、同期指令Sbの同期タイミングを即時に用いるのではなく、タイミング補正部29により補正された同期タイミングを用いる。タイミング補正部29による補正が終了すると、PWM制御部21は同期指令Sbの同期タイミングに従って動作する。
 なお、図9~図12では、A系統およびB系統のいずれかの系統に異常が発生し、稼働系が切り替えられる場面を想定したが、これに限られない。例えば、A系統およびB系統のいずれの系統にも異常が発生しておらず、系指示情報に従って稼働系が切り替えられる場面に、上記の同期タイミングの補正方式を適用してもよい。
 <利点>
 実施の形態2によると、稼働系の切り替え時において、切替元の同期指令に従う同期タイミングと切替先の同期指令に従う同期タイミングとに誤差が発生している場合、サブモジュール7で用いられる同期タイミングを緩やかに移動させる。そのため、系切り替え時におけるサブモジュール7の動作を安定させることができる。
 その他の実施の形態.
 上述した実施の形態において、制御に使用される電気量を計測する各検出器を二重化する構成であってもよい。
 上述した実施の形態では、制御装置30および中継装置40を二重化する構成について説明したが、当該構成に限られない。例えば、制御装置30および中継装置40を三重化以上の構成とする場合であってもよい。
 上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。
 また、上述した実施の形態において、その他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電力変換装置、2 電力変換回路部、3 指令生成部、4u,4v,4w レグ回路、5 上アーム、6 下アーム、7 サブモジュール、8A,8B リアクトル、9A,9B アーム電流検出器、10 交流電圧検出器、11A,11B 直流電圧検出器、12 交流回路、13 連系変圧器、14 直流回路、15 制御指令、16 交流電流検出器、17 信号、20HB 変換回路、21 PWM制御部、22A,22B スイッチング素子、23A,23B ダイオード、24 直流コンデンサ、26N,26P 入出力端子、27 電圧検出部、28 送受信部、29 タイミング補正部、30A,30B 制御装置、31A,31B 積分器、32A,32B 記憶部、35A,35B 伝送部、36A,36B,43,44 スイッチ、40A,40B 中継装置、41A,41B 通信回路、42 選択回路、50 指示装置、60 直流電圧指令生成部、61 交流電圧指令生成部、62 循環電流指令生成部、63 コンデンサ電圧指令生成部、64 アーム電圧指令生成部。

Claims (8)

  1.  直流回路と交流回路との間で電力変換を行なう電力変換装置であって、
     互いに直列接続された複数のサブモジュールを含む電力変換回路部と、
     各前記サブモジュールを運転制御するための第1制御指令および第2制御指令をそれぞれ生成する第1制御装置および第2制御装置と、
     各前記サブモジュールに対して、前記第1制御指令および前記第2制御指令をそれぞれ送信する第1中継装置および第2中継装置とを備え、
     前記第1制御装置および前記第2制御装置は、前記第1制御装置ならびに前記第1中継装置を含む第1系統、および前記第2制御装置ならびに前記第2中継装置を含む第2系統のうち、各前記サブモジュールを運転制御する系統を指示する指示情報を、予め定められた外部装置から受信し、
     前記第1制御指令および前記第2制御指令の各々は、各前記サブモジュールに含まれるスイッチング素子を駆動するための駆動指令と、制御装置の異常の有無を示す異常判定情報と、前記指示情報とを含み、
     各前記サブモジュールは、
      前記スイッチング素子をPWM制御するPWM制御部と、
      前記第1制御指令および前記第2制御指令の各々に含まれる前記異常判定情報および前記指示情報に基づいて、前記第1系統または前記第2系統を選択する選択部とを含み、
     前記選択部は、前記指示情報が前記第1系統を示している場合であっても、前記第1制御指令の異常判定情報に基づいて前記第1制御装置での異常発生を検出した場合には、各前記サブモジュールを運転制御する系統として前記第2系統を選択し、
     前記PWM制御部は、選択された前記第2系統に対応する前記第2制御指令に含まれる駆動指令に従って前記スイッチング素子をPWM制御する、電力変換装置。
  2.  前記第1制御指令および前記第2制御指令は、第1周期ごとに各前記サブモジュールに送信され、
     各前記サブモジュールの前記選択部および前記PWM制御部により実行される一連の処理は、前記第1周期よりも短い第2周期ごとに実行される、請求項1に記載の電力変換装置。
  3.  前記選択部は、前記第1制御装置および前記第2制御装置において異常が発生していない場合には、前記指示情報に従って前記第1系統または前記第2系統を選択する、請求項1または請求項2に記載の電力変換装置。
  4.  前記第1制御装置および前記第2制御装置は、
      前記直流回路と前記交流回路との間での電力変換制御に用いられる電気量の検出値の入力を受け付け、
      前記電気量の目標値と前記検出値との偏差を減少させるためのフィードバック演算をフィードバック制御器を用いて実行し、
     各前記サブモジュールを運転制御する系統が前記第1系統である場合、
     前記第1制御装置の第1フィードバック制御器によるフィードバック演算は、前記偏差および前記第1フィードバック制御器の前回出力値に基づいて、前記第1フィードバック制御器の今回出力値を算出する演算を含み、
     前記第2制御装置の第2フィードバック制御器によるフィードバック演算は、前記偏差および前記第1フィードバック制御器の前回出力値に基づいて、前記第2フィードバック制御器の今回出力値を算出する演算を含む、請求項1~請求項3のいずれか1項に記載の電力変換装置。
  5.  前記駆動指令は、各前記サブモジュールの動作の同期をとるための同期指令を含み、
     各前記サブモジュールは、前記PWM制御部で用いられる同期タイミングを補正するタイミング補正部をさらに含み、
     前記選択部によって各前記サブモジュールを運転制御する系統が前記第1系統から前記第2系統に切り替えられる場合、前記タイミング補正部は、前記第1制御指令に含まれる第1同期指令の同期タイミングと前記第2制御指令に含まれる第2同期指令の同期タイミングとの時間差に基づいて、前記PWM制御部で用いられる同期タイミングを、前記第2同期指令の同期タイミングへ徐々に移動させる、請求項1~請求項4のいずれか1項に記載の電力変換装置。
  6.  前記タイミング補正部は、前記時間差が基準閾値以上である場合には、前記PWM制御部で用いられる同期タイミングを、前記第2同期指令の同期タイミングに近づく方向へ前記基準閾値だけ移動させる、請求項5に記載の電力変換装置。
  7.  前記電力変換回路部は、
     前記直流回路と接続された高電位側直流端子および低電位側直流端子と、
     前記交流回路の相にそれぞれ対応し、前記高電位側直流端子と前記低電位側直流端子との間に互いに並列に接続された複数のレグ回路とを含み、
     各前記レグ回路は、
     前記交流回路の対応する相と電気的に接続された接続部と、
     前記接続部と前記高電位側直流端子との間に直列に接続された複数の前記サブモジュールを含む上アームと、
     前記接続部と前記低電位側直流端子との間に直列に接続された複数の前記サブモジュールを含む下アームとを含み、
     前記駆動指令は、前記上アームの出力電圧指令値および前記下アームの出力電圧指令値をさらに含む、請求項1~請求項6のいずれか1項に記載の電力変換装置。
  8.  前記第1中継装置および前記第2中継装置は、スター型のネットワークを介して、各前記サブモジュールと接続されている、請求項1~請求項7のいずれか1項に記載の電力変換装置。
PCT/JP2017/036125 2017-10-04 2017-10-04 電力変換装置 WO2019069394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/036125 WO2019069394A1 (ja) 2017-10-04 2017-10-04 電力変換装置
EP17927853.6A EP3694098B1 (en) 2017-10-04 2017-10-04 Power conversion apparatus
US16/639,619 US11081974B2 (en) 2017-10-04 2017-10-04 Fault tolerant multilevel modular power conversion device
JP2018512638A JP6336236B1 (ja) 2017-10-04 2017-10-04 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036125 WO2019069394A1 (ja) 2017-10-04 2017-10-04 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019069394A1 true WO2019069394A1 (ja) 2019-04-11

Family

ID=62487224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036125 WO2019069394A1 (ja) 2017-10-04 2017-10-04 電力変換装置

Country Status (4)

Country Link
US (1) US11081974B2 (ja)
EP (1) EP3694098B1 (ja)
JP (1) JP6336236B1 (ja)
WO (1) WO2019069394A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676229B1 (ja) * 2019-09-09 2020-04-08 三菱電機株式会社 電力変換装置
JP6792097B1 (ja) * 2019-10-10 2020-11-25 東芝三菱電機産業システム株式会社 電力変換装置
JP2021100301A (ja) * 2019-12-20 2021-07-01 東芝三菱電機産業システム株式会社 電力変換システム及び制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11695318B2 (en) 2018-09-03 2023-07-04 Hitachi Energy Switzerland Ag Current feedback control for a power converter with multiple feedback loops
JP6541922B1 (ja) * 2018-11-27 2019-07-10 三菱電機株式会社 電力変換装置
JP6559387B1 (ja) * 2018-12-25 2019-08-14 三菱電機株式会社 電力変換装置
US11336169B2 (en) * 2018-12-25 2022-05-17 Mitsubishi Electric Corporation Power conversion device
JP7136046B2 (ja) * 2019-08-15 2022-09-13 株式会社デンソー 制御装置
JP6755436B1 (ja) * 2019-12-17 2020-09-16 三菱電機株式会社 電力変換システム
EP4120543A4 (en) * 2020-03-11 2023-04-19 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
EP4117155A1 (en) * 2021-07-07 2023-01-11 GE Energy Power Conversion Technology Ltd Power converter systems
WO2023070224A1 (en) * 2021-10-29 2023-05-04 The Governors Of The University Of Alberta Modular multi-level ac-ac converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231697A (ja) * 1994-02-15 1995-08-29 Toshiba Corp 制御部を二重化したインバータ装置
JP2011019344A (ja) * 2009-07-09 2011-01-27 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013232823A (ja) * 2012-05-01 2013-11-14 Hitachi Ltd 制御システム、および、電力変換装置
JP2015130746A (ja) 2014-01-07 2015-07-16 株式会社日立製作所 電力変換装置およびその制御方法
JP2015226387A (ja) * 2014-05-28 2015-12-14 東芝三菱電機産業システム株式会社 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449893B2 (ja) 2009-07-21 2014-03-19 株式会社日立製作所 電力変換装置
CN102201670A (zh) * 2011-03-16 2011-09-28 中国电力科学研究院 基于极控***与阀基控制设备的冗余***及其实现方法
EP2700164A4 (en) * 2011-04-21 2015-03-04 Ge Energy Power Conversion Technology Ltd GATE CONTROL CIRCUIT AND ASSOCIATED METHOD
KR101251166B1 (ko) 2011-12-12 2013-04-04 주식회사 효성 전력 변환 시스템의 모듈 스위칭 제어 장치 및 방법
KR101702935B1 (ko) * 2014-12-29 2017-02-06 주식회사 효성 이중화 제어기의 운전방법
KR101704787B1 (ko) * 2014-12-31 2017-02-22 주식회사 효성 제어기의 이중화 시스템
EP3151413B1 (de) * 2015-10-02 2018-04-18 GE Energy Power Conversion Technology Ltd Steuervorrichtung und steuerverfahren für grosse stromrichter
US10734914B2 (en) * 2018-03-23 2020-08-04 North Carolina State University Fault-tolerant controller for modular multi-level converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231697A (ja) * 1994-02-15 1995-08-29 Toshiba Corp 制御部を二重化したインバータ装置
JP2011019344A (ja) * 2009-07-09 2011-01-27 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013232823A (ja) * 2012-05-01 2013-11-14 Hitachi Ltd 制御システム、および、電力変換装置
JP2015130746A (ja) 2014-01-07 2015-07-16 株式会社日立製作所 電力変換装置およびその制御方法
JP2015226387A (ja) * 2014-05-28 2015-12-14 東芝三菱電機産業システム株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3694098A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676229B1 (ja) * 2019-09-09 2020-04-08 三菱電機株式会社 電力変換装置
WO2021048906A1 (ja) * 2019-09-09 2021-03-18 三菱電機株式会社 電力変換装置
JP6792097B1 (ja) * 2019-10-10 2020-11-25 東芝三菱電機産業システム株式会社 電力変換装置
WO2021070323A1 (ja) * 2019-10-10 2021-04-15 東芝三菱電機産業システム株式会社 電力変換装置
JP2021100301A (ja) * 2019-12-20 2021-07-01 東芝三菱電機産業システム株式会社 電力変換システム及び制御装置
JP7189653B2 (ja) 2019-12-20 2022-12-14 東芝三菱電機産業システム株式会社 電力変換システム及び制御装置

Also Published As

Publication number Publication date
US11081974B2 (en) 2021-08-03
US20210135597A1 (en) 2021-05-06
JPWO2019069394A1 (ja) 2019-11-14
EP3694098B1 (en) 2021-06-09
JP6336236B1 (ja) 2018-06-06
EP3694098A4 (en) 2020-09-02
EP3694098A1 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6336236B1 (ja) 電力変換装置
US11070124B2 (en) Power conversion device
KR102600766B1 (ko) 모듈형 멀티레벨 컨버터
JP6448882B1 (ja) 電力変換装置
JP6437164B1 (ja) 電力変換装置、および通信方法
US10536030B2 (en) UPS circuit
JP6425855B1 (ja) 電力変換装置
JP6599071B1 (ja) 電力変換装置
JP5887501B2 (ja) 系統連系装置
JP2015156740A (ja) 電力変換装置
JP2015015782A (ja) 系統連系インバータ装置
JP6371254B2 (ja) 電力変換装置
WO2020136698A1 (ja) 電力変換装置
WO2020110203A1 (ja) 電力変換装置
US9325273B2 (en) Method and system for driving electric machines
JP6690880B2 (ja) 電力変換装置
WO2023053173A1 (ja) 電力変換装置、および電力変換システム
JPH11252992A (ja) 電力変換装置
JP7134306B2 (ja) 電力変換システムおよびその制御装置
JP7204067B1 (ja) 電力変換装置およびその制御方法
JP6910579B1 (ja) 電力変換システムおよびその制御装置
Gierschner et al. Back-to-back configuration of multilevel converters providing redundant operation mode
JP2003219662A (ja) 半導体電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512638

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927853

Country of ref document: EP

Effective date: 20200504