WO2019065624A1 - Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus - Google Patents

Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus Download PDF

Info

Publication number
WO2019065624A1
WO2019065624A1 PCT/JP2018/035439 JP2018035439W WO2019065624A1 WO 2019065624 A1 WO2019065624 A1 WO 2019065624A1 JP 2018035439 W JP2018035439 W JP 2018035439W WO 2019065624 A1 WO2019065624 A1 WO 2019065624A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
residue
polyimide film
diamine
Prior art date
Application number
PCT/JP2018/035439
Other languages
French (fr)
Japanese (ja)
Inventor
勝哉 坂寄
太田 貴之
滉大 岡田
奈保美 金澤
小林 義弘
綾 勝又
綾子 古瀬
前田 高徳
敬輔 脇田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018176585A external-priority patent/JP7363019B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019065624A1 publication Critical patent/WO2019065624A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a film, a polyimide film, a laminate, a member for display, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device.
  • Thin sheet glass is excellent in hardness, heat resistance and the like, but is difficult to bend, is easily broken when dropped, has a problem in workability, and is heavy as compared with a plastic product. For this reason, in recent years, resin products such as resin base materials and resin films are being replaced with glass products in view of processability and weight reduction, and research on resin products to be glass substitute products has been conducted.
  • a polyimide is a highly heat-resistant resin obtained by subjecting a polyamide acid obtained by the condensation reaction of an aromatic tetracarboxylic acid anhydride and an aromatic diamine to a dehydration ring closure reaction.
  • polyimide generally has a yellow or brown color, it has been difficult to use in fields requiring transparency, such as display applications and optical applications. Therefore, application of a polyimide having improved transparency to a display member has been studied.
  • Patent Document 1 as a polyimide resin having high heat resistance, high transparency, and low water absorption, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid At least one acyl-containing compound selected from the group consisting of anhydrides and reactive derivatives thereof and at least one compound selected from compounds having at least one phenylene group and isopropylidene group represented by a specific formula Polyimides are disclosed which are made to react with imino forming compounds and are described as being suitable for substrate materials such as flat panel displays and cellular telephone equipment.
  • Patent Document 2 includes a unit structure derived from an aromatic dianhydride and an aromatic diamine, and a functional group selected from the group consisting of an additive for improving tear strength, or a hexafluoro group, a sulfone group and an oxy group.
  • a transparent polyimide film is disclosed, which further comprises a unit structure derived from the monomer having the monomer.
  • Patent Document 3 discloses, as a polyimide film excellent in transparency and heat resistance, a polyimide film in which the top of the peak in the tan ⁇ curve, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, is within a specific range. ing.
  • Patent Document 4 as a polyimide film used for a substrate of a flexible device, a colorless and transparent polyimide film having low residual stress generated with an inorganic film and excellent in mechanical physical properties and thermal physical properties is obtained.
  • Patent Document 4 when a polyimide film with an inorganic film (SiN film) is formed using the above-mentioned polyimide precursor, neither cracks nor peeling is observed after a bending test in which bending is repeated 10 times (o), cracks It is described as observed ( ⁇ ).
  • Patent Document 5 describes that as a polyimide having a low refractive index and high bending resistance, silicone diamine having 2 to 21 silicon atoms is contained in an amount of 10% by weight or more based on the weight of the diamine raw material.
  • the mobile device that can fold the screen is in the folded state when carrying it, and in the folded state when it is used. Therefore, it is required that a flexible display mounted on a mobile device does not have a display defect even if it is repeatedly bent, and a base material and a surface material for a flexible display have bending resistance when repeated bending (hereinafter referred to as , Sometimes called dynamic bending resistance).
  • the flexible display mounted on the mobile device can be restored to its original state when it is returned to a flat state even if the bent state continues for a long time
  • the base material and the surface material for a flexible display are also required to have restorability after being bent for a long time (hereinafter sometimes referred to as static bending resistance).
  • base materials and surface materials for flexible displays are not only resistant to repeated bending but also function to prevent scratching of the surface, and to prevent damage to the touch sensor and display panel located below it. Is also required.
  • the bending resistance and the surface hardness of the resin film are considered to be opposite properties as described in detail later, but a resin film having both the bending resistance and a surface hardness sufficient as a protective film is required.
  • the present invention has been made in view of the above problems, and its main object is to provide a film or a resin film which is excellent in transparency and in which a decrease in surface hardness is suppressed while improving bending resistance. Further, the present invention provides a laminate having the film or resin film, a member for display which is the film or resin film or the laminate, a touch panel member including the film or resin film or the laminate, liquid crystal An object of the present invention is to provide a display device and an organic electroluminescent display device.
  • the film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm ⁇ 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a chuck distance of 20 mm according to JIS K7127.
  • the strain is 8% or more
  • the tensile modulus of elasticity in the tensile test is 1.8 GPa or more
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
  • the polyimide film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm ⁇ 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127. Strain at 8% or more, The tensile modulus of elasticity in the tensile test is 1.8 GPa or more, The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
  • the polyimide film of the present invention preferably has a Young's modulus on the film surface of 2.3 GPa or more measured at 25 ° C. according to ISO 14577 and using a nanoindentation method, from the viewpoint of excellent surface hardness. .
  • the polyimide film of the present invention preferably contains a polyimide having a structure represented by the following general formula (1) from the viewpoint of light transmittance, bending resistance and surface hardness.
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be identical to or different from each other
  • R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a portion of the plurality of R 2 is an aromatic ring or an aliphatic ring Containing diamine residues, n represents the number of repeating units
  • R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom. Or a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or R 2 represents a divalent group which is a diamine residue, and is 2.5 mol% or more and 50 mol% of the total amount of R 2
  • the following are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% of the total amount of R 2 is a diamine having no silicon atom and having an aromatic ring or an aliphatic ring Residues are preferred from the viewpoint of bending resistance and surface hardness.
  • R 1 in the above general formula (1) is a cyclohexanetetracarboxylic acid dianhydride residue, cyclopentane tetracarbonide Acid dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, pyromellitic acid dianhydride residue 3, 3 ', 4,4'-biphenyltetracarboxylic acid dianhydride residue, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride residue, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Acid anhydride residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-
  • R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom. Or a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or R 2 is a diamine residue having no silicon atom, and a diamine residue having one or two silicon atoms in the main chain And at least one divalent group selected from the group consisting of 2.5 to 50 mol% of the total amount of R 2 is a diamine residue having one or two silicon atoms in the main chain, Flexibility and surface hardness are improved when 50 mol% or more and 97.5 mol% or less of the total amount of R 2 is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring. Or Preferred.
  • the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is Trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4 -Aminophenyl) propane residue, 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluorop Pan residue, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or a perfluoroalkyl group.
  • the laminate of the present invention is a laminate having the film or polyimide film of the present invention, and a hard coat layer containing a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound.
  • the member for a display of the present invention includes the film or the polyimide film of the present invention, or the laminate of the present invention.
  • the display member of the present invention can be used for a flexible display.
  • the present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention, A transparent electrode comprising a plurality of conductive parts disposed on one side of the film or the polyimide film or the laminate; A touch panel member is provided having a plurality of lead lines electrically connected on at least one side of an end of the conductive portion.
  • the present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention,
  • a liquid crystal display device comprising: a liquid crystal display unit having a liquid crystal layer between opposing substrates disposed on one side of the film, the polyimide film, or the laminate.
  • the present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention,
  • An organic electroluminescent display device comprising: the film, the polyimide film, or the organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates disposed on one side of the laminate.
  • or the resin film which were excellent in transparency, and in which the fall of surface hardness was suppressed can be provided, improving a bending resistance.
  • the present invention provides a laminate having the film or the resin film, a display member which is the film or the resin film or the laminate, a touch panel member including the film or the resin film or the laminate, and a liquid crystal display And an organic electroluminescent display can be provided.
  • FIG. 7 is an A-A ′ cross-sectional view of the touch panel member shown in FIGS. 5 and 6. It is a schematic plan view which shows an example of the electroconductive member provided with the laminated body of this invention.
  • the film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm ⁇ 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127. Strain at 8% or more, The tensile modulus of elasticity in the tensile test is 1.8 GPa or more, The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
  • the strain at the yield point is 8% or more
  • the specific tensile modulus in the tensile test the specific total light transmission
  • the film means a thin film or flat material having a thickness of about 1 ⁇ m to 200 ⁇ m, includes a material called a sheet, and may be long.
  • the film of the present invention includes a resin film.
  • the material of the resin film include polyimide, polyamide, triacetyl cellulose, polyethylene, polypropylene, polyacetal, polyester (polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate), polyvinyl chloride, AS resin, ABS resin, polystyrene, poly Methyl methacrylate, polyacetal, polycarbonate, polyphenylene sulfide, polyarylate, polysulfone, polyether sulfone, polyether ether ketone, liquid crystal polymer, polytetrafluoroethylene, cellulose acylate, cycloolefin polymer, MBS resin, and at least one of these And the like.
  • the material type is not particularly limited as long as it satisfies the physical property values within the scope of the present invention, but organic materials, silicone materials, copolymers thereof, and mixtures thereof are preferable, among which the glass transition temperature of the film is 150 ° C. Those above are suitably used.
  • a polyimide film or a polyamide film using polyimide or polyamide as a film material is particularly preferably used.
  • the action, characteristics and the like of the film of the present invention will be described in detail below by taking a polyimide film as an example.
  • the action, characteristics and the like of the film of the present invention may be the same as those of the polyimide film of the present invention described later.
  • the polyimide film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm ⁇ 40 mm is measured at 25 ° C. as a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127.
  • the strain at the yield point is 8% or more
  • the tensile modulus of elasticity in the tensile test is 1.8 GPa or more
  • the total light transmittance measured in accordance with JIS K7361-1 is 85% or more
  • the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
  • the strain at the yield point is 8% or more
  • the specific tensile modulus in the tensile test the specific total light transmission
  • polyimide among resins.
  • Polyimide is known to be derived from its chemical structure and to be excellent in durability such as heat resistance.
  • polyimide films are known to form an ordered structure in which the arrangement of molecular chains in the interior form a constant structure, which makes it possible to recover the stability when repeating a flat state and a bent state at a constant cycle at room temperature. It is considered to show good results in
  • conventional resin films using transparent polyimide tend to break easily in a test in which the flat state and bending state are repeated at a constant cycle, or have a crease, and are difficult to return to flat, and have poor bending resistance. .
  • the film is bent by applying tension to the outer periphery of the film and compressive force to the inner periphery of the film, and the maximum stress ( ⁇ at the maximum stressed portion) at which the stress is maximum in the bending of the film as shown in FIG. Is represented by the following formula (1).
  • E Elastic modulus y: Maximum value of the distance from the neutral axis (axis centered at bending) (in the case of FIG. 1, half of the film thickness d) ⁇ : Curvature (test width) d: Film thickness
  • the maximum stress ( ⁇ ) is proportional to the modulus of elasticity and film thickness of the film and inversely proportional to the value obtained by subtracting the film thickness from the curvature, as shown in the equation (1). Therefore, when the elastic modulus of the film is increased, the stress applied to the film at the time of bending also increases, which causes deformation. Also in the resin film, when the elastic modulus is increased, the restorability after the bending state is deteriorated, and the bending resistance tends to be insufficient. On the other hand, the surface hardness tends to be improved by increasing the elastic modulus of the resin film.
  • the polyimide film having a large elastic modulus is deteriorated in bending resistance although the surface hardness is good.
  • the bending resistance of the resin film and the surface hardness are considered to be contradictory characteristics.
  • Substrates and surface materials for flexible displays are required not only to withstand repeated bending but also to prevent scratching of the surface and to prevent damage to the touch sensor and display panel located below it.
  • the surface material is, for example, a material having a high elastic modulus such as glass, the impact can be diffused in the surface direction to the impact from the surface of the display, and the local impact can be alleviated. As the display panel can be prevented from breakage.
  • the surface material has a high elastic modulus.
  • the elastic modulus when the elastic modulus is low, the surface material itself may be deformed to reduce the impact, but a depression or the like caused by the deformation may be fixed, and the smoothness of the display surface is greatly reduced, and the appearance is improved. It is easy to lose.
  • the stress-strain curve is a relationship curve between tensile stress and strain obtained in a tensile test, and the horizontal axis represents strain (%) and the vertical axis represents tensile stress (MPa).
  • the area up to the yield point in the stress-strain curve can be regarded as an elastic deformation area, and the area after the yield point in the stress-strain curve can be regarded as a plastic deformation area.
  • the strain (%) at the yield point is larger than a predetermined value, it is estimated that the elastic deformation area becomes wider than a predetermined value and has a property of being easily restored even if it is bent. That is, the strain amount at the yield point obtained by the stress-strain curve can be expressed as an elastically deformable deformation amount, which can be considered as a deformation amount capable of being restored to the shape before the stress is applied.
  • the film has improved recoverability after repeated bending of the film. It is estimated that it is not.
  • the stress-strain curve is It has been shown that the values of strain (%) at the yield point are different, and the bending resistance is greatly different accordingly.
  • the polyimide film according to the present invention contains polyimide and has the above-mentioned specific characteristics. As long as the effects of the present invention are not impaired, it may further contain other components, or may have other configurations.
  • the polyimide film of the present invention has a strain at a yield point of 8% or more in a stress-strain curve obtained by a tensile test measured at 25 ° C.
  • the strain at the yield point is preferably 8.5% or more, more preferably 9.3% or more, and still more preferably 9.5% or more, from the viewpoint of improving bending resistance. .
  • the upper limit of the strain at the yield point is not limited, but the strain at the yield point may usually be 90% or less.
  • the larger the tensile modulus of elasticity the larger the force required to deform, so the material that is easily deformed to a large extent is the material with a small tensile modulus of elasticity.
  • the lower limit of the tensile elastic modulus in the present invention is 1.8 Gpa, while the tensile strength of the resin film having a large tensile strength is approximately 200 N / mm 2 .
  • the amount of strain reaching tensile strength 200 N / mm 2 is calculated for films with different tensile modulus, and the relationship between the tensile modulus and strain at 200 N / mm 2 is determined, and the strain amount of the film with a tensile modulus of 1.8 GPa
  • the strain amount can be estimated to be approximately 90%. From this, about 90% is considered to be the upper limit.
  • the tensile test is carried out using a tensile tester (for example, Shimadzu Corp. autograph AG-X 1N, load cell: SBL-1KN), 15 mm wide ⁇ 40 mm long (tensile direction 40 mm ⁇ direction orthogonal to tensile direction 15 mm)
  • a test piece is cut out of a polyimide film, and the test piece is measured at 25 ° C. as a tensile speed of 10 mm / minute and a distance between chucks of 20 mm according to JIS K7127.
  • the test piece is cut out of the film, it is preferable to cut out a portion having a uniform film thickness, for example, it is preferable to cut out from the vicinity of the central portion of the film.
  • the film thickness of the film is uniform, for example, the film thickness of a total of 5 points at the four corners and the center of the cut out film is measured using a digital linear gauge (Model PDN12 digital gauge manufactured by Ozaki Mfg. Co., Ltd.) The difference between the average film thickness of the five points and the film thickness of each point is within 6% of the average film thickness.
  • the stress-strain curve is the strain obtained by dividing the amount of elongation by the test length when the tensile test is performed at a distance of 10 mm / min with respect to the distance between chucks, that is, the test length of 20 mm. %) On the horizontal axis and tensile stress (MPa) on the vertical axis.
  • the strain (%) at the yield point of the stress-strain curve of the polyimide film of the present invention can be specifically determined as follows.
  • sampling is started from a point at which strain is 0.16% and thereafter sampled every 0.21% increase (this is defined as dx). That is, dx is the difference (change amount) from the value sampled immediately before that, and only the initial value is 0.16%, and then 0.21%.
  • dy is the difference (amount of change) from the value sampled one before in the value of the tensile stress according to the strain.
  • the graph of strain% and dy / dx (average change rate) is basically a downward slope graph as shown in FIG. 3, but the maximum value of dy / dx (average change rate) is obtained Beyond the point, the inflection point of dy / dx appearing first is defined as the yield point. In the case where the inflection point is not observed, the point at which dy / dx becomes 0 for the first time is taken as the yield point.
  • the strain (%) at the yield point is a value rounded to the first decimal place according to rule B of JIS Z8401: 1999.
  • the polyimide film of the present invention has a tensile modulus of at least 1.8 GPa at 25 ° C. measured at a tensile speed of 10 mm / minute and a distance between chucks of 20 mm according to JIS K7127 for a 15 mm ⁇ 40 mm test piece.
  • the tensile modulus is preferably 2.0 GPa or more, more preferably 2.1 GPa or more, and still more preferably 2.3 GPa or more.
  • the tensile modulus is preferably 5.2 GPa or less from the viewpoint of improving bending resistance. From the viewpoint of improving the bending resistance, the tensile modulus may be 4.0 GPa or less, 3.5 GPa or less, or 2.9 GPa or less. The tensile modulus can be measured in the same manner as a tensile test at the yield point of the stress-strain curve.
  • the polyimide film of the present invention has a total light transmittance of 85% or more as measured in accordance with the aforementioned JIS K7361-1. Such high transmittance allows for good transparency and can be a glass substitute material.
  • the total light transmittance of the polyimide film of the present invention measured according to JIS K7361-1 is preferably 88% or more, more preferably 89% or more, and particularly 90% or more. Is preferred.
  • the total light transmittance measured according to JIS K7361-1 can be measured, for example, by a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory). From the measured value of the total light transmittance of a certain thickness, the converted total light transmittance of different thicknesses can be determined according to the Lambert-Beer's law, which can be used.
  • a haze meter for example, HM150 manufactured by Murakami Color Research Laboratory
  • the polyimide film of the present invention has a yellowness (YI value) of 5 or less calculated in accordance with the above-mentioned JIS K7373-2006.
  • a low degree of yellowness suppresses yellowish coloring, improves light transmission, and can be a glass substitute material.
  • the yellowness (YI value) calculated in accordance with JIS K 737-2006 is preferably 4.5 or less, more preferably 4 or less, and still more preferably 3.5 or less.
  • the degree of yellowness (YI value) can be determined by the spectrophotometric method using an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006.
  • tristimulus values X, Y, Z in the XYZ color system are determined, and the X, Y , Z can be calculated by the following equation.
  • YI 100 (1.2769X-1.0592Z) / Y
  • the degree of yellowness of a different thickness is the total of each transmittance at each wavelength measured at intervals of 1 nm in the range of 250 nm or more and 800 nm or less of a sample with a certain thickness.
  • a converted value of each transmittance at each wavelength of different thickness can be obtained according to the Lambert-Beer's law, and it can be calculated and used based on it.
  • the polyimide film of the present invention has a yellowish color suppressed, improves light transmittance, and can be suitably used as a glass substitute material, so that the yellow color is calculated according to the aforementioned JIS K7373-2006.
  • the value (YI value / film thickness ( ⁇ m)) obtained by dividing the degree (YI value) by the film thickness ( ⁇ m) is preferably 0.10 or less, more preferably 0.05 or less, and 0.03 It is even more preferable that In the present invention, the value (YI value / film thickness ( ⁇ m)) obtained by dividing the yellowness (YI value) by the film thickness ( ⁇ m) follows the rule B of JIS Z8401: 1999, and the second place after the decimal point It is a rounded value.
  • polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to imidize the precursor after obtaining a polyamic acid which is a precursor by polymerization of a tetracarboxylic acid component and a diamine component. Accordingly, the polyimide used in the present invention is one containing a tetracarboxylic acid residue and a diamine residue in the main chain.
  • tetracarboxylic acid residue refers to a residue obtained by removing four carboxy groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing an acid dianhydride structure from tetracarboxylic acid dianhydride.
  • a diamine residue means the residue remove
  • the film formation is in the state of a polyimide precursor And then heat treated to form a polyimide by heat treatment, or by forming a polyimide precursor into a polyimide by chemical imidization and then molding in a polyimide solution to remove the solvent. Also, it can be produced by a method combining the thermal imidization and the chemical imidization.
  • tetracarboxylic acid component to be a tetracarboxylic acid residue for example, a tetracarboxylic acid component having an aromatic ring is preferable from the viewpoint of improving the surface hardness of the polyimide film.
  • tetracarboxylic acid dianhydride having an aromatic ring for example, pyromellitic acid dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic acid Acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-di Carboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxypheny
  • the tetracarboxylic acid component which has an aliphatic ring is also preferable from the point of the light transmittance of a polyimide film.
  • tetracarboxylic acid dianhydrides having an aliphatic ring include cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid Anhydride, cyclobutane tetracarboxylic acid dianhydride, etc. are mentioned.
  • the tetracarboxylic acid component mentioned above can also be used individually or in mixture of 2 or more types.
  • the diamine which has an aromatic ring for example is preferable from the point of durability of a polyimide film, and surface hardness.
  • the diamine which has an aliphatic ring is also preferable from the point of the light transmittance of a polyimide film.
  • the polyimide film which concerns on this invention contains the polyimide which contains the diamine residue which has an aromatic ring or an aliphatic ring, and the diamine residue which has a silicon atom in a principal chain especially.
  • polyimide By introducing a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component, polyimide can easily achieve both bending resistance and surface hardness. In addition, orientation is likely to be suppressed, and birefringence is likely to be reduced.
  • diamine having an aromatic ring for example, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-bis (4-aminophenyl) propane) Aminophenyl) hexafluoropropane, p-phenylenediamine, o-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide 4,4'-Diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzanilide, 4,4'-diaminodiphenylmethane, 3,4'-diamino
  • diamine having an aliphatic ring examples include trans-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 2,5- Bis (aminomethyl) bicyclo [2,2,1] heptane and the like can be mentioned.
  • diamine which has a silicon atom in a principal chain
  • diamine represented by the following general formula (A) is mentioned, for example.
  • each L independently represents a direct bond or an -O- bond
  • each R 10 independently represents a substituent, and may contain an oxygen atom or a nitrogen atom
  • R 11 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R 11 may independently have a substituent, and may contain an oxygen atom or a nitrogen atom
  • k is a number of 0 to 200.
  • a plurality of L, R 10 and R 11 may be the same or different from each other)
  • the alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group and hexyl group.
  • the cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group and a naphthyl group.
  • the monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group and a phenylpropyl group.
  • hydrocarbon group which may contain an oxygen atom or a nitrogen atom
  • examples of the hydrocarbon group which may contain an oxygen atom or a nitrogen atom include, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. Included is a group bonded via at least one of the bonds (—NH—).
  • the substituent which the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present invention are not impaired, and, for example, a halogen atom such as a fluorine atom or a chlorine atom And hydroxyl groups.
  • the monovalent hydrocarbon group represented by R 10 is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms from the viewpoint of improving bending resistance and compatibility with surface hardness. Is preferred.
  • the alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
  • the alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
  • the alkylene group having 1 or more and 20 or less carbon atoms is preferably an alkylene group having 1 or more and 10 or less carbon atoms, and for example, a straight chain such as methylene group, ethylene group, various propylene groups, various butylene groups and cyclohexylene groups Examples include groups in combination of linear or branched alkylene groups and cyclic alkylene groups.
  • the arylene group is preferably an arylene group having a carbon number of 6 to 12, and examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for the aromatic ring described later.
  • the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond (-NH-) between the above-mentioned divalent hydrocarbon groups. At least one bonded group is mentioned.
  • the substituent which the divalent hydrocarbon group represented by R 11 may have is the same as the substituent which the monovalent hydrocarbon group represented by R 10 may have. It is good.
  • the divalent hydrocarbon group represented by R 11 is an alkylene group having 1 to 6 carbon atoms, or an arylene group having 6 to 10 carbon atoms, from the viewpoint of improving bending resistance and compatibility with surface hardness. It is more preferable that it is an alkylene group having 2 to 4 carbon atoms.
  • a diamine residue having a silicon atom in the main chain has one or two silicon atoms in the main chain, from the viewpoint of achieving an improved resistance to bending while maintaining a sufficient surface hardness as a protective film. It is preferably a diamine residue, and more preferably a diamine residue having two silicon atoms in the main chain.
  • a polyimide in which a specific amount of a short flexible molecular skeleton having one or two silicon atoms in the main chain is introduced between a rigid molecular skeleton containing an aromatic ring or an aliphatic ring is an aromatic ring or an aliphatic ring. It is considered that a polyimide film having a relatively large elastic deformation area can be easily obtained while maintaining the elastic modulus derived from the molecular skeleton containing the above, and the surface hardness and the bending resistance can be easily reconciled.
  • diamines having one silicon atom in the main chain examples include diamines represented by the following general formula (A-1). Further, examples of the diamine having two silicon atoms in the main chain include diamines represented by the following general formula (A-2).
  • L is each independently a direct bond or -O- bond, and each R 10 independently has a substituent Or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain an oxygen atom or a nitrogen atom, and each R 11 may independently have a substituent, and an oxygen atom Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom, and a plurality of L, R 10 and R 11 may be identical to or different from each other)
  • the molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1000 or less, and more preferably 800 or less, from the viewpoint of improving the bending resistance and compatibility with the surface hardness. More preferably, it is 500 or less, and particularly preferably 300 or less.
  • the diamine residue having one or two silicon atoms in the main chain may be used alone or in combination of two or more.
  • the diamine having one or two silicon atoms in the main chain is a diamine having two silicon atoms from the viewpoint of light transmittance of the resulting polyimide, and in terms of bending resistance and surface hardness, Furthermore, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, etc. However, it is preferable from the viewpoints of the availability of these compounds and the light transmittance and surface hardness of the resulting polyimide.
  • the ratio of the diamine having a silicon atom in the main chain to the total amount of diamine is not particularly limited, but from the viewpoint of improving the bending resistance of the obtained polyimide film, 1 It is preferable that it is mol% or more, It is more preferable that it is 2.5 mol% or more, It is still more preferable that it is 5 mol% or more. Moreover, it is preferable that it is 50 mol% or less, it is preferable that it is 45 mol% or less, and it is more preferable that it is 30 mol% or less from the point of the bending resistance of the polyimide film obtained, and surface hardness.
  • the total amount of the tetracarboxylic acid component and the diamine component is 100 mol%
  • the total of the tetracarboxylic acid having an aromatic ring and the diamine having an aromatic ring is It is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 75 mol% or more.
  • the polyimide may contain an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic ring may be substituted with a sulfonyl group or fluorine. It is preferable to include at least one selected from the group consisting of an alkylene group-linked structure, and further to include, in addition to these structures, a diamine residue having a silicon atom in the main chain.
  • the polyimide when the polyimide contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring, the molecular skeleton becomes rigid and the durability is enhanced, and the surface hardness is increased.
  • the rigid aromatic ring skeleton tends to extend the absorption wavelength to a long wavelength, and the transmittance in the visible light range tends to decrease.
  • the polyimide contains (i) a fluorine atom, the light transmission is improved because the charge transfer of the electronic state in the polyimide skeleton can be made difficult.
  • the polyimide contains (i) a fluorine atom, the hygroscopicity is suppressed, so that the tendency of the plastic deformation region to expand when the hygroscopicity is high can be suppressed, and the bending resistance in a high humidity environment can be made favorable. .
  • the light transmission is improved from the point of being able to inhibit the movement of charges in the skeleton by breaking the conjugation of ⁇ electrons in the polyimide skeleton.
  • the polyimide has a structure in which (iii) aromatic rings are linked by an alkylene group which may be substituted with a sulfonyl group or a fluorine group, the charge transfer in the skeleton is broken by breaking the conjugation of ⁇ electrons in the polyimide skeleton. The light transmission is improved because it can be inhibited.
  • a polyimide containing a fluorine atom is preferably used from the viewpoint of improving the light transmittance and improving the surface hardness and the bending resistance.
  • the content ratio of fluorine atoms is preferably such that the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) when the polyimide surface is measured by X-ray photoelectron spectroscopy is 0.01 or more Furthermore, it is preferable that it is 0.05 or more.
  • the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less Is preferably, and further preferably 0.8 or less.
  • the above ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Theta Probe, manufactured by Thermo Scientific) .
  • a tetracarboxylic acid and a diamine not having a silicon atom contains an aromatic ring and a fluorine atom. Furthermore, it is preferred that both the tetracarboxylic acid and the diamine not having a silicon atom contain an aromatic ring and a fluorine atom.
  • a tetracarboxylic acid having an aromatic ring and a fluorine atom when the total amount of the tetracarboxylic acid component and the diamine component is 100 mol%, from the viewpoint of surface hardness and light transmittance of the obtained polyimide and the point of bending resistance.
  • the total amount of the diamine having an aromatic ring and a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 75 mol% or more.
  • the light transmittance of the resulting polyimide is improved in that at least 50% of the hydrogen atoms bonded to carbon atoms contained in the tetracarboxylic acid component and the diamine component are hydrogen atoms directly bonded to the aromatic ring. And from the viewpoint of improving surface hardness and bending resistance.
  • the percentage of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) bonded to carbon atoms is preferably 60% or more, more preferably 70% or more .
  • the ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) in carbon atoms contained in the polyimide is high-performance liquid chromatography, gas chromatography mass of polyimide decomposition product It can be determined using an analyzer and NMR.
  • the sample is decomposed by an aqueous alkaline solution or supercritical methanol, and the resulting decomposition product is separated by high performance liquid chromatography, and the qualitative analysis of each separated peak is performed by gas chromatography mass spectrometry, NMR, etc.
  • the ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) in the polyimide can be determined by performing measurement using high performance liquid chromatography.
  • the polyimide film which concerns on this invention contains the polyimide which has a structure represented by following General formula (1).
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be identical to or different from each other
  • R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a portion of the plurality of R 2 is an aromatic ring or an aliphatic ring Containing diamine residues, n represents the number of repeating units
  • R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be the same or different.
  • the tetracarboxylic dianhydride having an aromatic ring in R 1 and the tetracarboxylic dianhydride having an aliphatic ring those similar to the above can be used. These may be used alone or in combination of two or more.
  • R 1 in the general formula (1) is a residue of cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid, from the viewpoint of light transmittance in the polyimide to be obtained, and bending resistance and surface hardness.
  • Anhydride residue Dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, pyromellitic acid dianhydride residue, 3,3 ′ 1,4,4'-biphenyltetracarboxylic acid dianhydride residue, 2,2 ', 3,3'-biphenyltetracarboxylic acid dianhydride residue, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride Residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic acid Anhydride residue, and is preferably at least one tetravalent group selected from the group consisting of 3,4'-oxydiphthalic anhydride residue.
  • the tetracarboxylic acid component is particularly preferably 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride, and 3,3 from the viewpoint of good light transmittance. More preferably, it is at least one selected from the group consisting of '-(hexafluoroisopropylidene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, and 3,4'-oxydiphthalic anhydride.
  • Tetracarboxylic acid group (group A) suitable for improving the rigidity of the resulting polyimide such as at least one member selected from the group consisting of: cyclohexane tetracarboxylic acid dianhydride, cyclopentane tetracarbon Acid dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride, cyclobutanetetracarboxylic acid dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid anhydride, 3 4,4 '-(hexafluoroisopropylidene) diphthalic
  • the content ratio of the tetracarboxylic acid group (group A) suitable for improving the rigidity and the tetracarboxylic acid group (group B) suitable for improving the light transmittance is the light transmittance.
  • At least one of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride and 3,4'-(hexafluoroisopropylidene) diphthalic anhydride containing a fluorine atom is used as the group B. It is preferable from the point of the improvement of the light transmittance in the polyimide obtained.
  • R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a part of the plurality of R 2 is aromatic There is no particular limitation as long as it contains a diamine residue having a group ring or an aliphatic ring.
  • a bivalent diamine residue the thing similar to the above can be used. These may be used alone or in combination of two or more.
  • diamine residue having an aromatic ring or an aliphatic ring contained in R 2 may each, using the same as those described above. These may be used alone or in combination of two or more.
  • the diamine residue having an aromatic ring or an aliphatic ring in R 2 in the general formula (1) is trans-, from the viewpoint of light transmittance, bending resistance, surface hardness and low hygroscopicity.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or a perfluoroalkyl group.
  • the diamine residue which has a silicon atom in a principal chain as some R ⁇ 2 > is contained. Since the diamine residue which has a silicon atom in the principal chain which can be preferably used as R 2 is as described above, the description is omitted here.
  • R 2 in the general formula (1) When containing a diamine residue having a silicon atom in the main chain as R 2 in the general formula (1), in R 2 in the general formula (1), 2.5 mol% to 50 mol of the total amount of R 2 % Or less is a diamine residue having a silicon atom in the main chain, and 50 to 97.5 mol% of the total amount of R 2 has no silicon atom and has an aromatic ring or an aliphatic ring It is preferable that it is a diamine residue from the point of making bending resistance and surface hardness make compatible.
  • R 2 in the general formula (1) is preferably a diamine residue having a silicon atom in the main chain is 3.5 mol% or more of the total amount of R 2 , and more preferably 5 It is preferable that it is mol% or more. Further, from the viewpoint of reducing optical distortion, the diamine residue having a silicon atom in the main chain may exceed 10 mol% of the total amount of R 2 , or may be 15 mol% or more. On the other hand, R 2 in the general formula (1) is that the diamine residue having a silicon atom in the main chain is 45 mol% or less of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. Preferably, it is more preferably 40 mol% or less.
  • a diamine residue having a silicon atom in the main chain or less 97.5 mol% 50 mol% or more of the total amount of R 2, silicon If it is satisfied that the diamine residue has no atom and has an aromatic ring or an aliphatic ring, a diamine residue having a silicon atom in the main chain and a silicon atom in R 2 of the general formula (1) are satisfied. It does not prevent including other diamine residue different from the diamine residue which does not have an aromatic ring or an aliphatic ring.
  • the other diamine residue is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, and particularly preferably 1 mol% or less of the total amount of R 2 It is preferable that it is the following.
  • the diamine residue etc. which do not have a silicon atom and do not have an aromatic ring or an aliphatic ring are mentioned, for example.
  • a diamine residue having a silicon atom in the main chain of the total amount of R 2 (100 mol%), silicon atoms in the main chain
  • the remaining (100% -x%) of the remaining (100% -x%) of the mole% (x mole%) of the diamine residue having 50 has no silicon atom and has an aromatic ring or an aliphatic ring It is preferable that it is a diamine residue.
  • the R 2 in the general formula (1) 50 mol% 2.5 mol% or more of the total amount of R 2 or less, a diamine residue having one or two silicon atoms in the main chain, R 2 It is preferable from the point of being compatible with bending resistance and surface hardness that 50 mol% or more and 97.5 mol% or less of the total amount of is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring .
  • R 2 represents a divalent group which is at least one selected from a diamine residue having no silicon atom, and a diamine residue having one or two silicon atoms in the main chain, R 50 mol% 2.5 mol% or more of 2 total less is a diamine residue having one or two silicon atoms in the main chain, the following is 97.5 mol% 50 mol% or more of the total amount of R 2 It is preferable that it is a diamine residue which does not have a silicon atom and has an aromatic ring or an aliphatic ring from the point of making a bending tolerance and surface hardness compatible.
  • R 2 in the general formula (1) is that the diamine residue having one or two silicon atoms in the main chain is 3.5 mol% or more of the total amount of R 2 Is more preferable, and more preferably 5 mol% or more. Further, from the viewpoint of reducing optical distortion, the diamine residue having one or two silicon atoms in the main chain may be more than 10% by mole of the total amount of R 2 and is 15% by mole or more. Also good. On the other hand, R 2 in the general formula (1) is 45 mol% of the total amount of R 2 in the diamine residue having one or two silicon atoms in the main chain from the viewpoint of improving surface hardness and light transmittance.
  • 50 mole% 2.5 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, of the total amount of R 2 (100 mol%), the 50 mol% or more and 97.5 mol% or less, which is the remainder (100% -x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in the main chain have a silicon atom
  • it is a diamine residue having an aromatic ring or an aliphatic ring.
  • the content ratio (mass%) of silicon atoms in the polyimide is 0.7 mass% or more and 6.5 mass% or less, from the viewpoint of bending resistance and surface hardness, in the polyimide used in the present invention. It is more preferable that it is 0.7 mass% or more and 5.5 mass% or less, and still more preferable that it is 0.7 mass% or more and 4.2 mass% or less.
  • the content ratio (mass%) of silicon atoms in the polyimide means the content ratio (mass%) of silicon atoms in two or more types of all the polyimides in the case of two or more types of polyimides. It can be determined from molecular weight.
  • the content rate (mass%) of the silicon atom in a polyimide is a high performance liquid chromatography, a gas chromatograph mass spectrometer, NMR, an elemental analysis, XPS / ESCA and TOF about the decomposition product of the polyimide obtained similarly to the above.
  • -It can be determined using SIMS.
  • R 2 is a diamine residue having no silicon atom. It represents a divalent group which is at least one selected, and includes a diamine residue having a hexafluoroisopropylidene skeleton in the main chain. As the diamine residue having a hexafluoroisopropylidene skeleton in the main chain, it is preferable to include a structure in which aromatic rings are linked by a hexafluoroisopropylidene group.
  • R 2 in the general formula (1) if not containing the diamine residue having a silicon atom in the main chain, R 2 in the general formula (1) is at least selected from a diamine residue having no silicon atom 1 Among these, the diamine residue which does not have a silicon atom is represented by hexafluoroisopropyl chloride as the main chain from the viewpoints of light transmittance, bending resistance, surface hardness and low hygroscopicity.
  • R 2 in the general formula (1) represents a divalent group which is at least one selected from diamine residues having no silicon atom, as a diamine residue having a hexafluoroisopropylidene skeleton in the main chain Is 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoro) in terms of light transmittance and flex resistance and surface hardness.
  • the diamine residue having a hexafluoroisopropylidene skeleton in the main chain is 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane -2,2-Diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3- One kind selected from the group consisting of hexafluoropropane residue and 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue
  • the above diamine residues are more preferable, and 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane-2,2 -Diyl) bis (4,1-phenyleneoxy)] diani It
  • R 2 in the general formula (1) represents a divalent group which is at least one selected from diamine residues having no silicon atom, from the viewpoints of light transmittance and bending resistance and surface hardness
  • the diamine residue having a hexafluoroisopropylidene skeleton in the main chain is preferably 70 mol% or more, preferably 80 mol% or more, in 100 mol% in total of diamine residues having no silicon atom Is more preferable, and 90 mol% or more is more preferable.
  • the content ratio of each repeating unit in the polyimide, and the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue can be determined from the molecular weight of the feed at the time of polyimide production.
  • the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide is the decomposition product of the polyimide obtained by decomposition with an alkaline aqueous solution or supercritical methanol as described above.
  • n represents the number of repeating units, which is 1 or more, and usually 2 or more.
  • the number n of repeating units in the polyimide may be appropriately selected, and is not particularly limited.
  • the average number of repeating units is usually 10 to 2,000, preferably 15 to 1,000.
  • the polyimide used in the present invention can be contained singly or in combination of two or more. Moreover, the polyimide used in the present invention may have a structure different from the polyimide in a part thereof, such as a polyamide structure, as long as the effects of the present invention are not impaired.
  • the structure represented by the general formula (1) is preferably 95% or more, more preferably 98% or more, and more preferably 100% of the total number of repeating units of the polyimide. Even more preferred is As a structure different from the structure represented by the said General formula (1), the case where the tetracarboxylic-acid residue etc. which do not have an aromatic ring or an aliphatic ring etc.
  • polyamide structure examples include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride, and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
  • the polyimide used in the present invention preferably has a number average molecular weight or weight average molecular weight of at least 10000, more preferably at least 20000, from the viewpoint of strength when formed into a film.
  • the polyimide preferably has a weight average molecular weight of 70000 or more, more preferably 80000 or more, still more preferably 85000 or more, and particularly preferably 95000 or more. Is preferred.
  • the average molecular weight is too large, the viscosity will be high, and there is a possibility that the workability such as filtration may be reduced, so it is preferably 10,000,000 or less, more preferably 500,000 or less.
  • the number average molecular weight of the polyimide used for this invention can be measured like the number average molecular weight of the polyimide precursor mentioned later.
  • the weight average molecular weight of the polyimide used for this invention can use the measuring method of the weight average molecular weight of the polyimide described in the Example mentioned later.
  • the polyimide used in the present invention preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less.
  • the glass transition temperature is 150 ° C. or more
  • the heat resistance is excellent, and preferably 200 ° C. or more.
  • the bake temperature can be reduced, and it is more preferable that the temperature is 380 ° C. or less.
  • the polyimide used in the present invention preferably has no tan ⁇ curve peak in a temperature range of -150 ° C. or more and 0 ° C. or less, whereby the surface hardness of the polyimide film at room temperature can be improved.
  • the polyimide used in the present invention may further have a tan ⁇ curve peak in a temperature range of more than 0 ° C. and less than 150 ° C.
  • the glass transition temperature of the polyimide used in the present invention can be measured in the same manner as the glass transition temperature of the polyimide film described later.
  • the polyimide film of the present invention may further contain an additive, if necessary, in addition to the above-mentioned polyimide.
  • the additive include inorganic particles for reducing optical distortion of a polyimide film, silica fillers for facilitating winding, and surfactants for improving film forming properties and defoaming properties.
  • the polyimide film of the present invention has a strain (%) at the yield point of the specific stress-strain curve, tensile modulus, total light transmittance, and yellowness.
  • the polyimide film of the present invention preferably has the characteristics described below.
  • the polyimide film of the present invention preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less.
  • the temperature range having the glass transition temperature is preferably 200 ° C. or more from the viewpoint of excellent heat resistance, and is preferably 380 ° C. or less from the viewpoint of being able to reduce the baking temperature.
  • the glass transition temperature of a polyimide film refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of peaks of the tan ⁇ curve.
  • a measurement range is set to -150 ° C to 400 ° C by a dynamic viscoelasticity measurement device RSA III (TA Instruments Japan Ltd.), a frequency of 1 Hz, temperature rise It can be performed at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
  • the peak of the tan ⁇ curve refers to a peak having an inflection point which is a maximum value and having a peak width of 3 ° C. or more between valleys of the peak and noise or the like Fine vertical fluctuation is not interpreted as the above peak.
  • the polyimide film of the present invention preferably has no tan ⁇ curve peak in a temperature range of -150 ° C or more and 0 ° C or less.
  • a polyimide film with a diamine residue having a long siloxane bond in the main chain that has a tan ⁇ curve peak in a temperature range of -150 ° C to 0 ° C a temperature range of -150 ° C to 0 ° C
  • the polyimide film having no tan ⁇ curve peak can suppress the decrease in tensile modulus at room temperature, and can maintain a sufficient surface hardness as a protective film.
  • the Young's modulus measured by the following measuring method is 2.3 Gpa or more, and it is more preferable that it is 2.4 Gpa or more from the point which is excellent in surface hardness.
  • Young's modulus is measured at a temperature of 25 ° C. in accordance with ISO 14577 using a nanoindentation method.
  • a measuring apparatus uses PICODENTOR HM500 manufactured by Fisher Instruments Co., Ltd., and a Vickers indenter is used as a measuring indenter.
  • a value obtained by measuring eight arbitrary points on the surface of the polyimide film and calculating the number average is taken as a Young's modulus.
  • the measurement conditions are: maximum indentation depth: 1000 nm, weighted time: 20 seconds, creep time: 5 seconds.
  • the pencil hardness is preferably 2 B or more, more preferably B or more, and even more preferably HB or more.
  • the pencil hardness of the polyimide film is adjusted according to JIS K 5600-5-4 using a test pencil specified in JIS-S-6006 after conditioning the measurement sample under the conditions of temperature 25 ° C. and relative humidity 60% for 2 hours. It can carry out by performing the pencil hardness test (0. 98N load) prescribed in (1999) on the film surface and evaluating the highest pencil hardness which does not get damaged.
  • a pencil scratching film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • the strain (%) at the yield point of the specific stress-strain curve, the elongation rate measured in the test in the tensile test for determining the tensile modulus (tensile The elongation) is preferably 5% or more, more preferably 7% or more, and still more preferably 8% or more.
  • the internal angle of the test piece is preferably 140 ° or more, preferably 145 ° or more, when the dynamic bending test is performed according to the following dynamic bending test method, from the viewpoint of excellent bending resistance. Is more preferable, and 150 ° or more is even more preferable.
  • a test piece of polyimide film cut into a size of 20 mm ⁇ 100 mm is taped to the endurance test system in a constant temperature and humidity chamber (made by Yuasa System Co., Ltd., sheet-shaped body no-load U-shaped expansion and contraction test jig DMX-FS) .
  • test piece is folded at half of the long side, and the distance between both ends of the long side of the test piece in the folded state is 6 mm, and the curvature radius of the bent portion of the test piece is 3 mm.
  • RH relative humidity
  • the internal angle measured in the test is preferably 155 ° or more when the static bending test is performed according to the following static bending test method, from the viewpoint of excellent bending resistance.
  • the angle is more preferably 160 ° or more, and still more preferably 170 ° or more.
  • FIG. 4 is a figure for demonstrating the method of a static bending
  • Test piece 1 of polyimide film cut out to 15 mm x 40 mm is bent at half of the long side, and both ends of the long side of the test piece are metal pieces 2 (100 mm x 30 mm x 6 mm) with a thickness of 6 mm from the upper and lower surfaces
  • the glass plates 3a and 3b (100 mm ⁇ 100 mm) are placed from above and below in a state in which they are arranged so as to be sandwiched and fixed with tape so that overlapping margins on both ends of the test piece 1 and the metal piece 2 are 10 mm each.
  • the test piece is held in a state of bending at an inner diameter of 6 mm.
  • test piece 4a and 4b are held between the metal piece and the glass plate in the portion where the test piece is not present, and fixed with a tape so that the glass plates become parallel.
  • the test piece thus fixed in a bent state is allowed to stand for 24 hours under an environment of room temperature 23 ⁇ 2 ° C. and 50 ⁇ 5% relative humidity (RH), and then the glass plate and the fixing tape are removed. , Release the force applied to the test piece. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece is measured 30 minutes after releasing the force applied to the test piece.
  • the haze value of the polyimide film of the present invention is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less from the viewpoint of light transmittance.
  • the haze value can preferably be achieved when the thickness of the polyimide film is 5 ⁇ m or more and 100 ⁇ m or less.
  • the haze value can be measured by a method in accordance with JIS K-7136, and can be measured, for example, by a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the birefringence in the thickness direction at the wavelength of 590 nm is preferably 0.040 or less, more preferably 0.020 or less.
  • the polyimide film of the present invention has a reduced optical distortion. Therefore, when the polyimide film of this invention is used as a member for displays, the fall of the display quality of a display can be suppressed.
  • the birefringence in the thickness direction at the wavelength of 590 nm is preferably smaller, preferably 0.015 or less, more preferably 0.010 or less, and still more preferably less than 0.008. .
  • the birefringence in the thickness direction at the wavelength of 590 nm of the polyimide film of the present invention can be determined as follows. First, using a retardation measurement device (for example, product made by Oji Scientific Instruments, product name "KOBRA-WR"), measure the thickness direction retardation value (Rth) of polyimide film with light of wavelength 590 nm at 25 ° C. Do. The thickness direction retardation value (Rth) measures the retardation value at 0 degree incidence and the retardation value at 40 degree oblique incidence, and calculates the thickness direction retardation value Rth from these retardation values.
  • a retardation measurement device for example, product made by Oji Scientific Instruments, product name "KOBRA-WR”
  • the retardation value of the oblique 40-degree incidence is measured by causing light of wavelength 590 nm to be incident on the retardation film from a direction inclined 40 degrees from the normal of the retardation film.
  • the birefringence in the thickness direction of the polyimide film can be determined by substituting it into the equation: Rth / d. Said d represents the film thickness (nm) of a polyimide film.
  • the retardation value in the thickness direction is the refractive index nx in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction (film surface in the film plane)
  • nx refractive index in the direction in which the refractive index in the inward direction is the smallest
  • nz refractive index in the thickness direction of the film
  • the atomic percentage of silicon atoms (Si) on the surface of the film measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 10 or less, and more preferably 0.2 or more and 5 or less.
  • the above ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Theta Probe, manufactured by Thermo Scientific) .
  • the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) on the film surface is 0.01 or more and 1 or less, which is measured by X-ray photoelectron spectroscopy of the polyimide film. Is preferable, and more preferably 0.05 or more and 0.8 or less.
  • the ratio (F / N) of the number of fluorine atoms (F) to the number of nitrogen atoms (N) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 20 or less Furthermore, it is preferable that they are 0.5 or more and 15 or less.
  • the ratio (F / Si) of the number of fluorine atoms (F) to the number of silicon atoms (Si) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
  • the adhesion test when the adhesion test is conducted according to the following adhesion test method, peeling of the coating does not occur, the adhesion between the polyimide film and the hard coat layer, and the polyimide It is preferable from the point of surface hardness of a layered product which laminated a hard court layer adjacent to a film.
  • a resin composition for adhesive evaluation prepared by adding 10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone to a solution of pentaerythritol triacrylate in 40% by mass methyl isobutyl ketone and 100 parts by mass of pentaerythritol triacrylate Is applied onto a test piece of a polyimide film cut out to 10 cm ⁇ 10 cm, and ultraviolet light is irradiated with an exposure amount of 200 mJ / cm 2 in a nitrogen stream to cure, thereby forming a 10 ⁇ m-thick cured film.
  • the cured film is subjected to a cross cut test in accordance with JIS K 5600-5-6, and the peeling operation with a tape is repeated five times, and then the presence or absence of peeling of the coating film is observed.
  • the thickness of the polyimide film of the present invention may be appropriately selected depending on the application, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more . On the other hand, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and still more preferably 90 ⁇ m or less. If the thickness is small, the strength decreases, and if the thickness is large, the difference between the inner diameter and the outer diameter at the time of bending increases, and the load on the film increases, so that the bending resistance may decrease.
  • the polyimide film of the present invention may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet light treatment, flame treatment and the like.
  • the method for producing the polyimide film of the present invention is not particularly limited as long as the method can produce the polyimide film of the present invention.
  • a method for producing the polyimide film of the present invention for example, as the first production method, Preparing a polyimide precursor resin composition containing a polyamic acid which is a polyimide precursor and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step); Applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming step); And the step of imidizing the polyimide precursor by heating (hereinafter referred to as an imidization step).
  • a step of stretching at least one of the polyimide precursor resin coating film and the post-imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as a stretching step) ) May be included. Each step will be described in detail below.
  • the polyimide precursor resin composition prepared in the first production method contains a polyimide precursor and an organic solvent, and optionally contains additives and the like. It may be As said polyimide precursor, the polyamic acid obtained by superposition
  • the polyimide precursor represented by the general formula (1 ′) is a tetracarboxylic acid component to be a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and R 2 of the general formula (1 ′) Is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue.
  • R 1 , R 2 and n in the general formula (1 ′) those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
  • the polyimide precursor represented by the general formula (1 ′) preferably has a number average molecular weight or weight average molecular weight of at least 10000 in terms of strength when formed into a film, and more preferably 20000. It is preferable that it is more than.
  • the polyimide precursor represented by the general formula (1 ′) preferably has a weight average molecular weight of 70,000 or more, more preferably 80,000 or more, from the viewpoint of improving the bending resistance. It is preferably 85,000 or more, and particularly preferably 95,000 or more.
  • the average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER). For example, after applying a polyimide precursor solution to a glass plate and drying at 100 ° C. for 5 minutes, 10 mg of solid content is dissolved in 7.5 ml of dimethylsulfoxide-d6 solvent, NMR measurement is performed, and it is bonded to an aromatic ring The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
  • the weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
  • a polyimide precursor is N-methyl pyrrolidone (NMP) solution with a concentration of 0.5% by weight, and a developing solvent is a Tosoh GPC apparatus (HLC-8120, using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less)
  • NMP N-methyl pyrrolidone
  • HHC-8120 Tosoh GPC apparatus
  • Measurement is carried out using a sample injection amount of 50 ⁇ L, solvent flow rate of 0.5 mL / min, and 40 ° C. using GPC LF-804 manufactured by SHODEX.
  • the weight average molecular weight is determined based on a polystyrene standard sample at the same concentration as the sample.
  • the polyimide precursor solution can be obtained by reacting the above-described tetracarboxylic acid dianhydride and the above-described diamine in a solvent.
  • the solvent used for synthesis of the polyimide precursor is not particularly limited as long as it can dissolve the above-described tetracarboxylic acid dianhydride and diamine, and, for example, an aprotic polar solvent or a water-soluble alcohol solvent etc. It can be used.
  • N-methyl-2-pyrrolidone N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like.
  • organic solvent containing a nitrogen atom of: ⁇ -butyrolactone or the like it is preferable to use an organic solvent containing a nitrogen atom of: ⁇ -butyrolactone or the like.
  • the polyimide precursor solution polyamic acid solution
  • the dissolution of inorganic particles is suppressed when the polyimide precursor resin composition contains inorganic particles described later.
  • an organic solvent containing a nitrogen atom it is preferable to use an organic solvent containing a nitrogen atom, and it is preferable to use N, N-dimethylacetamide, N-methyl-2-pyrrolidone or a combination thereof.
  • an organic solvent is a solvent containing a carbon atom.
  • acid dianhydride may be added to a mixed solution of at least two diamines to synthesize a polyamic acid, or at least The two diamine components may be added to the reaction solution in stages at appropriate molar ratios to control the sequence in which each source is incorporated into the polymer chain.
  • an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged with a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and then reacted.
  • An amic acid in which a diamine having a silicon atom at the main chain at both ends of the anhydride is reacted is synthesized, into which the remaining diamine is fully or partially introduced, and an acid dianhydride is added to polymerize the polyamic acid. Also good.
  • diamines having a silicon atom in the main chain are introduced into the polyamic acid in a linked form via one acid dianhydride. It is preferable to polymerize the polyamic acid by such a method because it is specified to a certain extent by the positional relationship of the amic acid having a silicon atom in the main chain, and a film excellent in bending resistance can be easily obtained while maintaining the surface hardness.
  • b / a may be 0.9 or more and 1.1 or less. Preferably, it is more preferably 0.95 or more and 1.05 or less, still more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less.
  • the molecular weight (polymerization degree) of the polyamic acid obtained by setting it as such a range can be adjusted moderately.
  • the procedure of the polymerization reaction can be selected appropriately from known methods, and is not particularly limited. Alternatively, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and if necessary, other components may be mixed, or the solvent of the polyimide precursor solution may be dried and dissolved in another solvent. You may use.
  • the viscosity at 25 ° C. of the polyimide precursor solution is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and polyimide film.
  • the viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the said polyimide precursor resin composition may contain the additive as needed.
  • the additive include inorganic particles for reducing optical distortion of a polyimide film, silica fillers for facilitating winding, and surfactants for improving film forming properties and defoaming properties. And may be the same as those described above for the polyimide film.
  • the organic solvent used for the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved.
  • it contains a nitrogen atom such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like
  • Organic solvents; ⁇ -butyrolactone etc. can be used, but among them, it is preferable to use an organic solvent containing a nitrogen atom for the reason described above.
  • the content of the polyimide precursor in the polyimide precursor resin composition is 50% by mass or more in the solid content of the resin composition from the viewpoint of forming a uniform coating film and a polyimide film having a handleable strength.
  • the content is preferably 60% by mass or more, and the upper limit may be appropriately adjusted depending on the ingredients.
  • the organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more, and more preferably 50% by mass or more in the resin composition, from the viewpoint of forming a uniform coating film and polyimide film. It is preferably 99% by mass or less.
  • the storage stability of a polyimide precursor resin composition becomes favorable that the said polyimide precursor resin composition is 1000 ppm or less from the point which can improve productivity.
  • the polyimide precursor resin composition contains a large amount of water, the polyimide precursor may be easily decomposed.
  • the water content of the polyimide precursor resin composition can be determined using a Karl-Fisher moisture meter (for example, a trace water content measuring device CA-200 type manufactured by Mitsubishi Chemical Co., Ltd.).
  • a Karl-Fisher moisture meter for example, a trace water content measuring device CA-200 type manufactured by Mitsubishi Chemical Co., Ltd.
  • the viscosity at 25 ° C. of a solid content of 15 wt% concentration of the polyimide precursor resin composition is preferably 500 cps or more and 100,000 cps or less from the viewpoint of forming a uniform coating film and polyimide film.
  • the viscosity of the polyimide precursor resin composition can be measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the surface is smooth and heat resistant as a support to be used.
  • the material is not particularly limited as long as it is a material having resistance and solvent resistance.
  • an inorganic material such as a glass plate, a metal plate whose surface is mirror-finished, and the like can be mentioned.
  • the shape of the support is selected depending on the coating method, and may be, for example, a plate, a drum, a belt, a sheet which can be wound on a roll, or the like.
  • the application means is not particularly limited as long as it can be applied with a target film thickness, and for example, known means such as die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater can be used .
  • the application may be performed by a sheet-fed application apparatus or a roll-to-roll application apparatus.
  • the solvent in the coating is dried at a temperature of 150 ° C. or less, preferably 30 ° C. or more and 120 ° C. or less until the coating becomes tack-free.
  • the drying temperature of the solvent is set to 150 ° C. or less, imidization of the polyamic acid can be suppressed.
  • the drying time may be properly adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, etc., but it is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. Is preferred. When it exceeds the upper limit value, it is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, if the lower limit value is exceeded, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
  • the method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature, and it is possible to use, for example, an oven, a drying oven, a hot plate, infrared heating, and the like.
  • the atmosphere for drying the solvent is preferably under an inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less. Heat treatment in the atmosphere can cause the film to oxidize, color, and degrade performance.
  • the polyimide precursor is imidized by heating.
  • an imidation process may be performed with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process, or the said polyimide precursor resin after an extending process It may be applied to a polyimide precursor in a coating, or to both the polyimide precursor in the polyimide precursor resin coating before the stretching step and the polyimide precursor present in the film after the stretching step You may go.
  • the temperature for imidization may be appropriately selected in accordance with the structure of the polyimide precursor.
  • the temperature rise start temperature is preferably 30 ° C. or more, and more preferably 100 ° C. or more.
  • the temperature rising rate is preferably selected appropriately depending on the film thickness of the polyimide film to be obtained, and when the film thickness of the polyimide film is thick, the temperature rising rate is preferably decreased.
  • the temperature is preferably 5 ° C./min or more, and more preferably 10 ° C./min or more.
  • the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, and more preferably 30 ° C./min or less. It is preferable to use the above-mentioned temperature rising rate from the viewpoint of suppressing the appearance defect of the film and the strength decrease, controlling whitening accompanying the imidization reaction, and improving the light transmittance.
  • the temperature elevation may be continuous or stepwise, but it is preferable to make it continuous from the viewpoint of suppressing the appearance defect and the strength reduction of the film and controlling the whitening accompanying the imidization reaction. Moreover, in the above-mentioned whole temperature range, a temperature rising rate may be constant or may be changed halfway.
  • the atmosphere at the time of temperature rise of imidation is under inert gas atmosphere.
  • the inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less.
  • Heat treatment in the atmosphere can cause the film to oxidize, color, and degrade performance.
  • 50% or more of the hydrogen atoms bonded to carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the influence of oxygen on the optical properties is small, and an inert gas atmosphere is not used. Also, a highly light transmitting polyimide can be obtained.
  • the heating method for imidation is not particularly limited as long as the temperature can be raised at the above temperature, and it is possible to use, for example, an oven, a heating furnace, infrared heating, electromagnetic induction heating and the like.
  • the imidation ratio of the polyimide precursor it is more preferable to set the imidation ratio of the polyimide precursor to 50% or more before the stretching step.
  • the imidization ratio By setting the imidization ratio to 50% or more before the stretching step, the film is stretched after that step, and then heated for a certain period of time at a higher temperature to perform imidization, the appearance defect of the film or Whitening is suppressed.
  • the imidation ratio can be measured by analyzing the spectrum by infrared measurement (IR) or the like.
  • the reaction In order to obtain a final polyimide film, it is preferable to advance the reaction to 90% or more, further 95% or more, and further 100% of imidization.
  • the imidization In order to advance the reaction to 90% or more, and further to 100%, the imidization is preferably maintained at a temperature rising end temperature for a certain time, and the retention time is usually 1 minute to 180 minutes, further 5 minutes to 150 minutes. It is preferable to use a minute.
  • the first production method has a stretching step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film. It may be When it has the said extending
  • the heating temperature at the time of stretching is preferably in the range of the glass transition temperature ⁇ 50 ° C. of the polyimide or polyimide precursor, and preferably in the range of the glass transition temperature ⁇ 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by the stretching may be relaxed at the temperature, and a sufficient orientation may not be obtained.
  • the stretching step may be performed simultaneously with the imidization step.
  • the surface hardness of the polyimide film is improved by stretching the film after imidization after the imidization rate is 80% or more, further 90% or more, further 95% or more, particularly substantially 100%. It is preferable from the point of view.
  • the draw ratio of the polyimide film is preferably 101% or more and 10000% or less, and more preferably 101% or more and 500% or less. By stretching in the above range, the surface hardness of the obtained polyimide film can be further improved.
  • the fixing method of the polyimide film at the time of stretching is not particularly limited, and is selected in accordance with the type of the stretching apparatus and the like. Moreover, there is no restriction
  • the polyimide film may be stretched in only one direction (longitudinal stretching or transverse stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
  • a manufacturing method of the polyimide film of this invention as a 2nd manufacturing method, A step of preparing a polyimide resin composition containing a polyimide and an organic solvent (hereinafter referred to as a polyimide resin composition preparation step); And the step of applying the polyimide resin composition to a support and drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming step).
  • the polyimide dissolves well in an organic solvent, not the polyimide precursor resin composition but a polyimide resin composition in which the polyimide is dissolved in an organic solvent and an additive is contained as needed be able to.
  • the said polyimide has solvent solubility which melt
  • the above-mentioned polyimide having solvent solubility can be selected and used from the same polyimide as that described for the polyimide film.
  • a method of imidization it is preferable to use chemical imidization performed using a chemical imidization agent instead of thermal dehydration for the dehydration ring closure reaction of the polyimide precursor.
  • chemical imidization known compounds such as amines such as pyridine and ⁇ -picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as a dehydration catalyst.
  • the acid anhydride is not limited to acetic anhydride, and includes, but is not particularly limited to, propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, trifluoroacetic acid anhydride and the like.
  • tertiary amines such as pyridine and ⁇ -picolinic acid may be used in combination.
  • the reaction liquid obtained by reacting the precursor to the polyimide is not cast as it is, It is preferable to form a film after purification by reprecipitation or the like to remove components other than the polyimide to 100 ppm or less of the total weight of the polyimide.
  • organic solvent used for the reaction liquid which performs chemical imidization of a polyimide precursor in the polyimide resin composition preparation step for example, those described in the polyimide precursor resin composition preparation step in the first production method Similar ones can be used.
  • organic solvent used to re-dissolve the polyimide purified from the reaction liquid in the polyimide resin composition preparation step include ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, Ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone,
  • the said polyimide resin composition may contain the additive as needed.
  • the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in the said 1st manufacturing method can be used.
  • the method for setting the moisture content of the polyimide resin composition to 1,000 ppm or less is the same as the method described in the polyimide precursor resin composition preparation step in the first production method. Methods can be used.
  • the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first production method. be able to.
  • the drying temperature is preferably 80 ° C. or more and 150 ° C. or less under normal pressure. It is preferable to set it as the range of 10 degreeC or more and 100 degrees C or less under pressure reduction.
  • the second production method may further include the step of further heating the polyimide resin coating film from the viewpoint of volatilizing the remaining solvent after the polyimide resin coating film forming step. Having such a heating step is preferable from the viewpoint of improving the film strength and the chemical resistance.
  • the said heating process can be made to be the same as that of the imidation process by the heating in said 1st manufacturing method.
  • the said 2nd manufacturing method may have the extending process which extends a polyimide resin coating film after the said polyimide resin coating film formation process.
  • stretching process can be made to be the same as that of the extending
  • the second production method is preferable from the viewpoint of easily reducing the degree of yellowness (YI value) of the polyimide film.
  • the second manufacturing method it is possible to preferably form a polyimide film having a value of 0.05 or less obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness ( ⁇ m) is there.
  • the application of the polyimide film of the present invention is not particularly limited, and it can be used as a member such as a substrate, a surface material, etc. in which a glass product such as a thin sheet glass has been used conventionally.
  • the polyimide film of the present invention is improved in bending resistance, has a sufficient surface hardness as a protective film, and has reduced optical distortion, so that it can be suitably used as a display member capable of coping with a curved surface. it can.
  • the polyimide film of the present invention is, for example, a flexible and flexible organic EL display which can be thin and bent, a portable terminal such as a smartphone or a watch type terminal, a display device inside an automobile, a flexible panel used for a watch etc. It can be suitably used as a substrate or surface material for a flexible display.
  • the polyimide film of the present invention is a member for an image display device such as a liquid crystal display device or an organic EL display device, a member for a touch panel, a flexible printed substrate, a member for a solar cell panel such as a surface protective film or a substrate material, an optical waveguide
  • the present invention can also be applied to other components such as semiconductor components.
  • the laminate of the present invention is a laminate having the above-described film or polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the laminate of the present invention uses the above-described film or polyimide film of the present invention, is excellent in transparency and has improved bending resistance, and further has a hard coat layer, so that the surface hardness is more improved Improved films or resin films.
  • the laminate of the present invention when the polyimide contained in the polyimide film contains a diamine residue having a silicon atom in the main chain, it is preferable from the viewpoint of excellent adhesion between the polyimide film and the hard coat layer. This is presumed to be due to the excellent mixing of the specific polyimide film with the hard coat layer. Moreover, in the laminated body of this invention, when the polyimide which a polyimide film contains contains the diamine residue which has a silicon atom in a principal chain, it is preferable from a point to which an optical distortion reduces. In this case, when the laminate of the present invention is used as a display member such as a surface material or a base material for a display, it is possible to suppress a decrease in display quality of the display.
  • film or Polyimide film of the present invention described above can be used as the film or polyimide film used for the laminate of the present invention, the description thereof is omitted here.
  • the hard coat layer used in the laminate of the present invention contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the radically polymerizable compound is a compound having a radically polymerizable group.
  • the radically polymerizable group of the radically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, Specifically, a vinyl group, a (meth) acryloyl group, etc. are mentioned.
  • these radically polymerizable groups may be respectively the same, and may differ.
  • the number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • these radically polymerizable compounds compounds having a (meth) acryloyl group are preferable among them from the viewpoint of high reactivity, and a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule is preferable.
  • (meth) acryloyl refers to each of acryloyl and methacryloyl
  • (meth) acrylate refers to each of acrylate and methacrylate.
  • the radically polymerizable compound examples include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, 9,9-bis [4- (2- ( (Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide modified bisphenol A di (meth) acrylate (eg, ethoxylated (ethylene oxide modified) bisphenol A di (meth) acrylate etc.), trimethylolpropane tri (meth) acrylate, tri Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaeriol Polyol polyacrylates such as lytol tetra (meth) acrylate, dipentaerythri
  • the cationically polymerizable compound is a compound having a cationically polymerizable group.
  • the cationically polymerizable group of the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationically polymerizable groups may be identical to or different from each other.
  • the number of cationically polymerizable groups that the cationically polymerizable compound has in one molecule is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • the compound which has at least 1 sort (s) of an epoxy group and oxetanyl group as a cationically polymerizable group is preferable, and it is an epoxy group and the point of adhesiveness, and light transparency and surface hardness.
  • Compounds having two or more of at least one oxetanyl group in one molecule are more preferable.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint of small shrinkage associated with the polymerization reaction.
  • compounds having an epoxy group are easy to obtain compounds of various structures, do not adversely affect the durability of the obtained hard coat layer, and it is easy to control the compatibility with radically polymerizable compounds
  • oxetanyl groups have a high degree of polymerization as compared to epoxy groups and are low in toxicity, and when the obtained hard coat layer is combined with a compound having an epoxy group, a cation in the coating film
  • the network formation speed obtained from the polymerizable compound is increased, and even in the region mixed with the radical polymerizable compound, an independent network is formed without leaving unreacted monomers in the film.
  • a cationically polymerizable compound having an epoxy group for example, polyglycidyl ether of polyhydric alcohol having an alicyclic ring or a cyclohexene ring or cyclopentene ring-containing compound with a suitable oxidizing agent such as hydrogen peroxide or a peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or their derivatives such as alkylene oxide adducts, caprolactone adducts and the like; glycidyl produced by reaction with epichlorohydrin Ether, and novolac epoxy resins such as a suitable
  • UVR-6105 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate
  • UVR-6110 bis-3,4-epoxycyclohexylmethyl adipate
  • UVR-6128 bis-3,4-epoxycyclohexylmethyl adipate
  • sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), polyglycerol polyglycidyl ether (Denacol EX) -512 (denacol EX-521), pentaerythyl little polyglycidyl ether (denacol EX-411), diglycerol polyglycidyl ether (denacol EX-421), glycerol polyglycidyl ether (denacol EX-313, denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), neopenty Glycol diglycidyl ether (Denacol EX-211), 1,
  • epoxy resins include Epi coat 825, Epi coat 827, Epi coat 828, Epi coat 828 EL, Epi coat 828 XA, Epi coat 834, Epi coat 801, Epi coat 801 P, Epi coat 802, Epi coat 815, Epi coat 815 XA, Epi coat 816 A, Epi coat 819, Epi coat 834X90, Epi coat 1001 B80, Epi coat 1001 X 70, Epi coat 1001 X 75, Epi coat 1001 T75, Epi coat 806 P, Epi coat 806 P, Epi coat 807, Epi coat 152, Epi coat 154, Epi coat 871, Epi coat 191 P, Epi coat YX310, Epi coat DX255, Epi coat YX8000, Epi coat YX8034 Etc (more than product name, Turbocharger bread epoxy resin) and the like.
  • a cationically polymerizable compound having an oxetanyl group for example, 3-ethyl-3-hydroxymethyl oxetane (OXT-101), 1,4-bis-3-ethyl oxetan-3-ylmethoxymethylbenzene (OXT-121) , Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3-2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT- 211) (The above parenthesis is a trade name, manufactured by Toa Gosei.), Trade names Etanacor EHO, Etanacall OXBP, Etanacall OXTP, Etanacall OXMA (trade names, manufactured by Ube Industries, Ltd.).
  • the polymer of at least one of the radically polymerizable compound and the cationically polymerizable compound contained in the hard coat layer used in the present invention is, for example, the radically polymerizable compound and the cationically polymerizable compound. It can be obtained by adding a polymerization initiator to at least one type, if necessary, and causing a polymerization reaction by a known method.
  • a radical polymerization initiator a cationic polymerization initiator, a radical, a cationic polymerization initiator and the like can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cation polymerization.
  • the radical polymerization initiator may be capable of releasing a substance that initiates radical polymerization by light irradiation and / or heating.
  • a radical photopolymerization initiator imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxy pyridinium salts, thioxanthone derivatives, etc. may be mentioned.
  • the cationic polymerization initiator may be capable of releasing a substance that initiates cationic polymerization by at least one of light irradiation and heating.
  • a cationic polymerization initiator sulfonic acid ester, imidosulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, ( ⁇ 6 -benzene) ( ⁇ 5 -cyclopentadi Enyl) iron (II) and the like are exemplified, and more specifically, benzoin tosylate, 2, 5-dinitrobenzyl tosylate, N-tosulculimide and the like can be mentioned, however, it is not limited thereto.
  • radical polymerization initiators and cation polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, etc. More specifically, chlorides, bromides, borofluorides, hexafluorophosphates, hexafluorophosphates of iodoniums such as diphenyliodonium, ditollyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, etc.
  • Iodonium salts such as antimonate salts, triphenylsulfonium, 4-tert-butyltriphenylsulfonium, chlorides of sulfoniums such as tris (4-methylphenyl) sulfonium, bromides, borofluoride salts, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, Examples include 2,4,6-substituted-1,3,5 triazine compounds such as 3,5-triazine and 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine. It is not limited to these.
  • the hard coat layer used in the present invention may contain, in addition to the polymer, an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, as needed. You may contain additives, such as a leveling agent and various sensitizers.
  • a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound contained in the hard coat layer used in the present disclosure is a Fourier transform infrared spectrophotometer (FTIR), a pyrolysis gas chromatograph apparatus (GC).
  • FTIR Fourier transform infrared spectrophotometer
  • GC pyrolysis gas chromatograph apparatus
  • the decomposition product of the polymer can be analyzed using a combination of high performance liquid chromatography, gas chromatography mass spectrometer, NMR, elemental analysis, XPS / ESCA, TOF-SIMS and the like.
  • the laminated body of the present invention is not particularly limited as long as it has the film or polyimide film and the hard coat layer, and the hard coat layer is formed on one side of the film or polyimide film. May be laminated, or the hard coat layer may be laminated on both sides of the film or the polyimide film.
  • the laminate of the present invention is, for example, an adhesive property between the film or the polyimide film and the hard coat layer as long as the effects of the present invention are not impaired. It may have another layer such as a primer layer for improving, or even if the film or the polyimide film and the hard coat layer are laminated via another layer such as a primer layer. good.
  • the film or the polyimide film may be positioned adjacent to the hard coat layer.
  • the laminate of the present invention may further have an impact resistant layer, an anti-fingerprint layer, an adhesive or adhesive layer, and the like.
  • the total thickness of the laminate of the present invention may be appropriately selected depending on the application, but from the viewpoint of strength, it is preferably 10 ⁇ m or more, and more preferably 40 ⁇ m or more. On the other hand, from the viewpoint of bending resistance, the thickness is preferably 300 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the thickness of each hard coat layer may be appropriately selected depending on the application, but is preferably 2 ⁇ m or more and 80 ⁇ m or less, and more preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • a hard coat layer may be formed on both sides of the polyimide film.
  • the laminated body of the present invention preferably has a pencil hardness of H or more, more preferably 2H or more, and even more preferably 3H or more on the hard coat layer side surface.
  • the pencil hardness of the laminate of the present invention can be measured in the same manner as in the method of measuring the pencil hardness of the polyimide film except that the load is 9.8N.
  • the laminate of the present invention preferably has a total light transmittance of 85% or more, preferably 88% or more, and more preferably 90% or more according to JIS K7361-1. Is preferred. Such high transmittance allows for good transparency and can be a glass substitute material.
  • the total light transmittance of the laminate of the present invention can be measured in the same manner as the total light transmittance measured in accordance with JIS K7361-1 of the polyimide film.
  • the layered product of the present invention preferably has a yellowness (YI value) calculated according to JIS K7373-2006 of 20 or less, more preferably 15 or less, and more preferably 10 or less More preferably, it is particularly preferably 5 or less.
  • the laminate of the present invention has a yellowish color suppressed, improves light transmittance, and can be suitably used as a glass substitute material, so that the yellow color calculated according to the above-mentioned JIS K7373-2006.
  • the value (YI value / film thickness ( ⁇ m)) obtained by dividing the degree (YI value) by the film thickness ( ⁇ m) is preferably 0.10 or less, more preferably 0.05 or less, and 0.03 It is even more preferable that The yellowness (YI value) of the laminate of the present invention can be measured in the same manner as the yellowness (YI value) calculated according to JIS K7373-2006 of the polyimide film.
  • the haze value of the laminate of the present invention is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less from the viewpoint of light transmittance.
  • the haze value of the laminate of the present invention can be measured in the same manner as the haze value of the polyimide film.
  • the birefringence in the thickness direction at a wavelength of 590 nm of the laminate of the present invention is preferably 0.040 or less, preferably 0.020 or less, more preferably 0.015 or less, and further preferably 0. It is preferably 010 or less, and more preferably less than 0.008.
  • the birefringence of the laminate of the present invention can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
  • the application of the laminate of the present invention is not particularly limited, and can be used, for example, in the same application as the application of the polyimide film of the present invention described above.
  • Method of Producing Laminate As a method of producing a laminate of the present invention, for example, Forming a coating of a composition for forming a hard coat layer containing at least one of a radically polymerizable compound and a cationically polymerizable compound on at least one surface of the film or the polyimide film of the present invention; And curing the coating film.
  • the composition for forming a hard coat layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like as necessary.
  • a polymerization initiator e.g., a polymerization initiator, a solvent, an additive, and the like.
  • the radically polymerizable compound, the cationically polymerizable compound, the polymerization initiator and the additive contained in the composition for forming a hard coat layer the same ones as those described for the hard coat layer can be used.
  • the solvent can be appropriately selected from known solvents and used.
  • the composition for forming a hard coat layer on at least one surface of a film or a polyimide film May be applied by a known application method.
  • the application means is not particularly limited as long as it can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
  • the coating film of the curable resin composition for a hard coat layer is dried as necessary to remove the solvent.
  • the drying method for example, a method of drying under reduced pressure or drying by heating, and further a method of combining these drying and the like can be mentioned.
  • UV light emitted from light rays such as ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc and metal halide lamp is used.
  • the irradiation dose of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure dose at an ultraviolet wavelength of 365 nm.
  • heating it is usually treated at a temperature of 40 ° C. or more and 120 ° C. or less.
  • the reaction may be carried out by leaving at room temperature (25 ° C.) for 24 hours or more.
  • the display member of the present invention includes the film or polyimide film of the present invention described above, or the laminate of the present invention.
  • a member for displays of the present invention a surface material for displays, a substrate for displays, etc. are mentioned, for example.
  • the display member of the present invention may be the above-described film or polyimide film of the present invention, or the laminate of the present invention.
  • the display member of the present invention is used, for example, as a surface material for display, disposed so as to be located on the surface of various displays.
  • the member for a display of the present invention is flexible because it has excellent transparency, improved bending resistance, and sufficient surface hardness as a protective film, similarly to the film or polyimide film of the present invention and the laminate of the present invention described above. It can be particularly suitably used for displays.
  • the member for display of the present invention can be used for various known displays, and is not particularly limited. For example, it can be used for the display described in the application of the polyimide film of the present invention.
  • the surface used as the outermost surface may be the surface by the side of a polyimide film, or hard It may be the surface on the coat layer side.
  • the display member of the present invention may have a fingerprint adhesion preventing layer on the outermost surface.
  • the method for arranging the display member of the present invention on the surface of the display is not particularly limited.
  • a method of using an adhesive layer may be mentioned.
  • the adhesive layer a conventionally known adhesive layer that can be used for adhering a display member can be used.
  • the touch panel member of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, or the laminate of the present invention described above; A transparent electrode comprising a plurality of conductive parts disposed on one side of the film, the polyimide film, or the laminate; And a plurality of lead lines electrically connected on at least one side of the end of the conductive portion.
  • the touch panel member of the present invention is provided with the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention. Since the reduction in hardness is suppressed, it can be particularly suitably used for a flexible display, and has excellent optical properties.
  • the laminate of the present invention used in the touch panel member of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. Is preferred.
  • the touch panel member of the present invention is not particularly limited, but it is preferable that the transparent electrode be laminated in contact with one surface side of the laminate.
  • the touch panel member of the present invention can be used, for example, by being disposed on the surface of various displays.
  • the touch panel member of the present invention and the polyimide film or laminate of the present invention as a surface material can be disposed on the surface of various displays in this order.
  • FIG. 5 is a schematic plan view of one side of an example of the touch panel member of the present invention
  • FIG. 6 is a schematic plan view of the other side of the touch panel member shown in FIG.
  • FIG. 7 is a cross-sectional view of the touch panel member shown in FIG.
  • first transparent electrode 4 disposed in contact with one surface of the laminate 10, and the other of the laminate 10 And a second transparent electrode 5 disposed in contact with the surface of the substrate.
  • first transparent electrode 4 a plurality of first conductive portions 41 which are strip-like electrode pieces extending so as to extend in the x-axis direction are arranged at predetermined intervals.
  • the first lead-out wire 7 electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at any one of the end portions in the longitudinal direction.
  • a first terminal 71 for electrically connecting to an external circuit may be provided.
  • the first conductive portion 41 and the first lead-out line 7 are generally connected in a non-active area 23 located outside the active area 22 visible to the user of the touch panel.
  • the connection between the first conductive portion 41 and the first lead-out wire 7 can adopt a connection structure in which a connection portion 24 is interposed as shown in FIG. 5, for example.
  • the connection portion 24 can be formed by extending a layer of conductive material from a longitudinal end of the first conductive portion 41 to a predetermined position in the non-active area 23.
  • a connection structure between the first conductive portion 41 and the first lead-out wire 7 can be formed.
  • connection between the first conductive portion 41 and the first lead-out wire 7 is not limited to the structure forming the connection portion 24 as shown in FIG.
  • the first conductive portion 41 which extends the longitudinal end of the first conductive portion 41 to the non-active area 23 and extends to the non-active area 23 in the non-active area 23 The two may be electrically connected by running the first lead-out wire 7 on the end of
  • the 1st 1st electroconductivity is one
  • the first lead wire 7 may be electrically connected to both ends in the longitudinal direction of the portion 41, respectively.
  • the touch panel member 20 includes a second transparent electrode 5 disposed in contact with the other surface of the laminate 10.
  • second conductive portions 51 which are a plurality of strip-like electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction.
  • a second lead-out wire 8 electrically connected to the second conductive portion 51 is connected to the second conductive portion 51 at one longitudinal end thereof.
  • the second lead-out line 8 is extended to a position not overlapping with the first terminal 71 at the end 21 of the end of the laminate 10 where the aforementioned first lead-out line 7 extends. .
  • a second terminal 81 may be provided for electrical connection with an external circuit.
  • the electrical connection between the second conductive portion 51 and the second lead-out wire 8 can apply the same form as the electrical connection between the first lead-out wire 7 and the first conductive portion 41 .
  • the pattern in which the first lead-out wire 7 is a long wire and the second lead-out wire 8 is a short wire as shown in FIGS. 5 and 6 is only an embodiment of the touch panel member of the present invention. It is also possible to use a pattern in which the first lead-out wire 7 is a short wire and the second lead-out wire 8 is a long wire. Further, the extension direction of the first lead-out line 7 and the extension direction of the second lead-out line 8 are not limited to the directions shown in FIGS. 5 and 6, and can be designed arbitrarily.
  • the electroconductive part with which the touch panel member of this invention is equipped can select suitably what comprises a transparent electrode in a touch panel member, and can apply it, and the pattern of an electroconductive part is not limited to what is shown in FIG.5 and FIG.6.
  • the material of the conductive portion is preferably a light transmitting material, and, for example, an indium oxide based transparent electrode material mainly composed of indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), etc.
  • the first conductive portion 41 and the second conductive portion 51 may be formed using conductive materials of the same type as each other, or may be formed using different materials. In particular, forming the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material is preferable from the viewpoint of more effectively suppressing the occurrence of warpage or distortion of the touch panel member.
  • the thickness of the conductive portion is not particularly limited, but in the case of forming the conductive portion by, for example, a photolithography method, the thickness can generally be formed to about 10 nm to 500 nm.
  • the electrically conductive material which comprises the extraction line with which the touch panel member of this invention is equipped does not ask
  • the lead-out lines can be formed using a metal material such as silver or copper having high conductivity.
  • a metal material such as silver or copper having high conductivity.
  • simple metals, composites of metals, composites of metals and metal compounds, and metal alloys can be mentioned.
  • the metal alone include silver, copper, gold, chromium, platinum, and aluminum alone.
  • MAM trilayer structure of molybdenum, aluminum, and molybdenum
  • As a composite of a metal and a metal compound a laminate of chromium oxide and chromium can be exemplified.
  • Silver alloys and copper alloys are generally used as metal alloys. Moreover, APC (alloy of silver, palladium, and copper) etc. can be illustrated as a metal alloy.
  • a resin component may be mixed with the above-described metal material as appropriate.
  • the terminal provided at the end of the lead-out wire can be formed, for example, using the same material as the lead-out wire.
  • the thickness and width of the extraction line are not particularly limited. For example, when forming the extraction line by photolithography, the thickness is generally 10 nm to 1000 nm and the width is 5 ⁇ m to 500 nm. It is formed to about 200 ⁇ m. On the other hand, when forming a lead-out line by printing such as screen printing, generally, the thickness is about 5 ⁇ m to 20 ⁇ m and the width dimension is about 20 ⁇ m to 300 ⁇ m.
  • the touch panel member of the present invention is not limited to the form shown in FIG. 5 to FIG. 7, and for example, the first transparent electrode and the second transparent electrode may be laminated on separate laminates. It may be 8 and 9 are each a schematic plan view showing an example of a conductive member provided with the laminate of the present invention.
  • the first conductive member 201 shown in FIG. 8 has the laminate 10 of the present invention and the first transparent electrode 4 disposed in contact with one surface of the laminate 10, and
  • the transparent electrode 4 has a plurality of first conductive portions 41.
  • the second conductive member 202 shown in FIG. 9 has a laminate 10 ′ of the present invention and a second transparent electrode 5 disposed in contact with one surface of the laminate 10 ′.
  • the second transparent electrode 5 has a plurality of second conductive parts 51.
  • FIG. 10 is a schematic cross-sectional view showing another example of the touch panel member of the present invention
  • the touch panel member 20 ′ shown in FIG. 10 is a first conductive member 201 shown in FIG. And the conductive member 202.
  • the surface of the first conductive member 201 which does not have the first transparent electrode 4 and the surface of the second conductive member 202 which has the transparent electrode 5 intervene through the adhesive layer 6. It is stuck.
  • an adhesive layer for bonding the laminate of the present invention and the touch panel member of the present invention for example, an adhesive layer for bonding the touch panel members of the present invention, the touch panel member and the display device of the present invention
  • a conventionally known bonding layer used for an optical member can be appropriately selected and used.
  • the configuration and materials of the transparent electrode, the lead wire and the terminal may be the same as the transparent electrode, the lead wire and the terminal used for the touch panel member of the present invention described above. it can.
  • the liquid crystal display device of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, the laminate of the present invention described above, the film or the polyimide film or one surface side of the laminate. And a liquid crystal display unit having a liquid crystal layer between opposing substrates.
  • the liquid crystal display device of the present invention comprises the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention, so it is excellent in transparency and improves bending resistance. Since a reduction in surface hardness is suppressed, it can be particularly suitably used for a flexible display, and is excellent in optical characteristics.
  • the laminate of the present invention used in the liquid crystal display device of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film Is preferred.
  • the liquid crystal display device of the present invention may be provided with the touch panel member of the present invention described above.
  • the counter substrate included in the liquid crystal display device of the present invention may be provided with the film or the polyimide film or the laminate of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing an example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 100 shown in FIG. 11 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 5 on the other surface. And a liquid crystal display unit 30.
  • the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
  • the liquid crystal display portion used in the liquid crystal display device of the present invention has a liquid crystal layer formed between the substrates disposed opposite to each other, and adopting the configuration used in the conventionally known liquid crystal display device. it can.
  • the drive method of the liquid crystal display device of the present invention is not particularly limited, and a drive method generally used for a liquid crystal display device can be adopted. For example, a TN method, an IPS method, an OCB method, and an MVA method Etc. can be mentioned.
  • the opposite substrate used in the liquid crystal display device of the present invention can be appropriately selected and used according to the driving method of the liquid crystal display device and the like, and a substrate provided with the polyimide film or laminate of the present invention may be used.
  • liquid crystal constituting the liquid crystal layer various liquid crystals having different dielectric anisotropy, and a mixture thereof can be used according to the driving method of the liquid crystal display device of the present invention and the like.
  • a method of forming a liquid crystal layer a method generally used as a method of manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method. After forming the liquid crystal layer by the above method, the liquid crystal cell can be gradually cooled to room temperature to orient the enclosed liquid crystal.
  • a plurality of colored layers and a light shielding portion for defining a pixel may be further provided between the opposed substrates.
  • the liquid crystal display unit may have a backlight unit having a light emitting element or a phosphor at a position opposite to the side where the touch panel member is located, on the outside of the oppositely disposed substrate.
  • you may have a polarizing plate in the outer surface of the board
  • FIG. 12 is a schematic cross-sectional view showing another example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 200 shown in FIG. 12 includes the laminate 10 of the present invention, the first conductive member 201 provided with the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, A touch panel member 20 ′ having a second conductive member 202 provided with a second transparent electrode 5 on one surface of the laminate 10 ′ ′, and a liquid crystal display unit 30.
  • the laminate 10 , The first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6.
  • the configuration of the touch panel member 20 ' is, for example, 10 can be the same as the configuration of the touch panel member 20 ',
  • the conductive member used in the liquid crystal display device of the present invention is the same as the conductive member used in the touch panel member of the present invention. Use Can.
  • the organic electroluminescent display device of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, the laminate of the present invention described above, the film or the polyimide film or the laminate And an organic electroluminescent display unit having an organic electroluminescent layer between opposing substrates disposed on one side.
  • the organic electroluminescent display device of the present invention is excellent in transparency and improves bending resistance since it comprises the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention. While the decrease in surface hardness is suppressed. It can be particularly suitably used for a flexible display, and has excellent optical characteristics.
  • the laminate of the present invention used in the organic electroluminescent display device of the present invention comprises a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. It is preferable to have.
  • the organic electroluminescent display apparatus of this invention may be equipped with the touch-panel member of this invention mentioned above.
  • the opposing substrate included in the organic electroluminescent display device of the present invention may be provided with the film or the polyimide film or the laminate of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing an example of the organic electroluminescent display device of the present invention.
  • the organic electroluminescent display device 300 shown in FIG. 13 comprises the laminate 10 of the present invention and the first transparent electrode 4 on one side of the laminate 10 'of the present invention, and the second transparent on the other side.
  • a touch panel member 20 including an electrode 5 and an organic electroluminescence display unit 40 are provided.
  • the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
  • the organic electroluminescent display part (organic EL display part) used for the organic electroluminescent display apparatus (organic EL display apparatus) of this invention is an organic electroluminescent layer (organic EL layer) formed between the board
  • the organic EL display portion further includes an organic EL element including a support substrate, an organic EL layer, and an anode layer and a cathode layer sandwiching the organic EL layer, and a sealing base for sealing the organic EL element. It may be As the organic EL layer, any one having at least an organic EL light emitting layer may be used.
  • a hole injection layer, a hole transport layer, an organic EL light emitting layer, an electron transporting layer and an electron injection from the anode layer side It is possible to use one having a structure in which the layers are stacked in this order.
  • the organic EL display device of the present invention can be applied to, for example, a passive drive organic EL display and an active drive organic EL display.
  • substrate used for the organic electroluminescence display of this invention it can select suitably according to the drive system of an organic electroluminescence display etc., and can be used, and you may use what is provided with the laminated body of this invention.
  • FIG. 14 is a schematic cross-sectional view showing another example of the organic electroluminescent display device of the present invention.
  • the organic electroluminescent display device 400 shown in FIG. 14 includes the laminate 10 of the present invention, the first conductive member 201 having the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and It has a touch panel member 20 ′ having a second conductive member 202 having the second transparent electrode 5 on one surface of the laminate 10 ′ ′ of the invention, and an organic electroluminescence display unit 40.
  • Organic electroluminescence display device In 400 the laminate 10 and the first conductive member 201 and the first conductive member 201 and the second conductive member 202 are bonded to each other through the adhesive layer 6.
  • the constitution of the invention can be the same as the constitution of the touch panel member 20 'shown in Fig. 10.
  • the organic electroluminescent display device of the present invention can be used.
  • the that the conductive member may be the same as the conductive member for use in a touch panel member of the present invention.
  • the weight average molecular weight of the polyimide precursor is determined by using the polyimide precursor as a 0.5 wt% N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore diameter: 0.45 ⁇ m), As a solvent, using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less, using a GPC apparatus (HLC-8120 manufactured by Tosoh Corporation, column: GPC LF-804 manufactured by SHODEX), the sample loading amount 50 ⁇ L, solvent flow 0.4 mL The measurement was performed under the conditions of 40 ° C./min.
  • NMP N-methylpyrrolidone
  • the weight average molecular weight of the polyimide precursor is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364, 700, 204,000, 103, 500, 44, 360, 27, 500, 13, 030, 6, 300, It is a converted value to standard polystyrene measured based on 3, 070).
  • the elution time was compared with a calibration curve to determine the weight average molecular weight.
  • ⁇ Viscosity of Polyimide Precursor Solution The viscosity of the polyimide precursor solution was measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
  • NMP N-methylpyrrolidone
  • the solution is filtered through a syringe filter (pore diameter: 0.45 ⁇ m), and a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent, and a GPC device (HLC-8120, detector: differential) Refractive index (RID) detector, using column: Two GPC LF-804 (manufactured by SHODEX) connected in series, sample loading amount 50 ⁇ L, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions.
  • the weight average molecular weight of the polyimide is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364, 700, 204,000, 103, 500, 44, 360, 27, 500, 13, 030, 6, 300, 3, It is a converted value to standard polystyrene measured based on 070).
  • the elution time was compared with a calibration curve to determine the weight average molecular weight.
  • ⁇ Viscosity of Polyimide Solution The viscosity of the polyimide solution was measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
  • the silicon atom content rate (mass%) of polyimide was computed from the molecular weight of preparation.
  • 2,2'-bis as a diamine component relative to 1 mol of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as an acid dianhydride component 6FDA
  • 6FDA 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride
  • TFMB trifluoromethyl
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • both terminal amine-modified diphenyl silicone oil in Synthesis Example 10 (Shin-Etsu Chemical Co., Ltd.: X22-1660B-3, the side chain phenyl type, number average molecular weight 4400) for, - (CH 2) 3 - amino group via an Is calculated to have an average number of repeating units of diphenyl siloxane of 19.7 based on a number average molecular weight of 4400 assuming that it is bonded to silicone, and an average of 21.7 silicon atoms are contained in one molecule.
  • YI value (yellowness)> YI value is based on JIS K7373-2006 using an ultraviolet visible near infrared spectrophotometer (JASCO Ltd. V-7100) and using an auxiliary illuminant C and a 2 degree visual field by a spectral colorimetry method Based on the transmittance measured at intervals of 1 nm from the range of 250 nm to 800 nm, tristimulus values X, Y, Z in the XYZ color system are determined, and from the values of X, Y, Z, the following equation Calculated.
  • YI 100 (1.2769X-1.0592Z) / Y
  • the YI value at a thickness of 100 ⁇ m is the same as the total light transmittance for each transmittance at each wavelength measured at intervals of 1 nm in the range of 250 nm to 800 nm of a sample of a specific thickness
  • the converted value of each transmittance at each wavelength of different thickness can be determined according to Baire's law, and it can be calculated and used based on it.
  • ⁇ Thickness measurement method> The film thickness of a total of 5 points of the four corners and the center of the polyimide film test piece cut out in a size of 10 cm ⁇ 10 cm was measured using a digital linear gauge (Model PDN12 digital gauge manufactured by Ozaki Mfg. Co., Ltd.) Of the film thickness of the polyimide film.
  • ⁇ Tension test> The test piece of polyimide film cut out to 15 mm ⁇ 40 mm is conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and in accordance with JIS K7127, the tensile speed is 10 mm / min and the distance between chucks is 20 mm.
  • the tensile test was conducted at 25 ° C., and the strain (%) at the yield point, the tensile modulus, and the elongation were measured in the stress-strain curve obtained by the tensile test.
  • a tensile tester manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN was used.
  • the test piece was cut out from near the center of the film.
  • the film thickness of a total of five points at the four corners and the center of the cut out film is measured by the method of measuring the film thickness, and the difference between the average film thickness of five points and the film thickness of each point is within 6% of the average film thickness
  • One test piece was used.
  • ⁇ Dynamic bending test> A test piece of polyimide film cut out to a size of 20 mm ⁇ 100 mm was taped to the endurance test system in a constant temperature and humidity chamber (made by Yuasa System Co., Ltd., sheet-shaped body unloaded U-shaped expansion and contraction test jig DMX-FS) . In addition, the test piece is folded at half of the long side, and the distance between both ends of the long side of the test piece in the folded state is 6 mm, and the curvature radius of the bent portion of the test piece is 3 mm. Set the status.
  • a test piece 1 of a polyimide film cut out to 15 mm ⁇ 40 mm is bent at half of the long side, and both ends of the long side of the test piece are metal pieces 2 (100 mm ⁇ 30 mm with a thickness of 6 mm) Glass plates from above and below with x 6 mm) sandwiched between the upper and lower surfaces and fixed with tape so that the overlapping margin on the upper and lower surfaces of both ends of the test piece 1 and the metal piece 2 is 10 mm each It pinched with (100 mm x 100 mm x 0.7 mm) 3a and 3b, and fixed the test piece concerned in the state where it was bent by internal diameter 6 mm.
  • test piece 4a and 4b were sandwiched between the metal piece 2 and the glass plate in a portion where there is no test piece, and fixed with a tape so that the glass plates become parallel.
  • the test piece thus fixed in a bent state is allowed to stand for 24 hours under an environment of room temperature 23 ⁇ 2 ° C. and 50 ⁇ 5% relative humidity (RH), and then the glass plate and the fixing tape are removed. , Released the force applied to the test piece. Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after releasing the force applied to the test piece. In the case where the film is completely returned without being affected by the static bending test, the inner angle is 180 °.
  • ⁇ Pencil hardness> For pencil hardness, after conditioning the measurement sample under the conditions of temperature 25 ° C. and relative humidity 60% for 2 hours, using pencil for test specified in JIS-S-6006, pencil scratching film hardness manufactured by Toyo Seiki Co., Ltd. A pencil hardness test (0.98N load) specified in JIS K5600-5-4 (1999) was performed on the film surface using a hardness tester to evaluate the highest pencil hardness without scratch.
  • the Young's modulus of the surface of a test piece of a polyimide film cut out to 15 mm ⁇ 15 mm was measured at a temperature of 25 ° C. in accordance with ISO 14577 using a nanoindentation method. Specifically, a measuring apparatus used was PICODENTOR HM500 manufactured by Fisher Instruments Inc., and a Vickers indenter was used as a measuring indenter. With respect to the surface of the test piece, a value obtained by measuring eight arbitrary points and performing number averaging is defined as a Young's modulus. The measurement conditions were: maximum indentation depth: 1000 nm, weighted time: 20 seconds, creep time: 5 seconds.
  • AA The yellowness is 5 or less, and it is not broken in the dynamic bending test, the inner angle of the test piece is 140 ° or more, and the inner angle of the test piece in the static bending test is 180 °.
  • B The yellowness is 5 or less, does not break in the dynamic bending test, the inner angle of the test piece is 140 ° or more, and the inner angle of the test piece is 155 ° or more and less than 170 ° in the static bending test.
  • C falls under at least one of the following (c1) and the following (c2): (c1) Yellowness exceeds 5 (c2) Breaking in dynamic bending test or internal angle of test specimen is less than 140 °, static In the bending test, the internal angle of the test piece is less than 155 °.
  • Synthesis Example 1 A solution of 2903 g of dehydrated dimethylacetamide and 16.0 g (0.07 mol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) dissolved in a 500 ml separable flask 14.6 g (0.03 mol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) to a temperature controlled at 30 ° C., gradually increasing the temperature to 2 ° C. or less The mixture was charged and stirred for 30 minutes with a mechanical stirrer.
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • 6FDA 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride
  • composition example 2 A solution of 302.0 g of dehydrated dimethylacetamide and 2.49 g (10 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) in a 500 ml separable flask At a controlled temperature of 30 ° C, 2.22 g (5 mmol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) is gradually added so that the temperature rise is 2 ° C or less. The mixture was stirred with a mechanical stirrer for 4 hours.
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • 6FDA 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride
  • composition example 3 In the procedure of the synthesis example 2, the reaction was carried out so that the concentrations of the raw materials and solid contents shown in Table 1 were obtained, and polyimide precursor solution 3 was obtained.
  • composition example 4 In a 500 ml separable flask, 267.9 g of dehydrated dimethylacetamide and 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexa) 40.1 g (61.3 mmol) of fluoropropane-2,2-diyl) bis (4,1-phenylene oxy)] dianiline (HFFAPP) was added, and the liquid temperature of the solution in which HFFAPP was dissolved was controlled at 30 ° C.
  • composition example 5 A solution of dehydrated dimethylacetamide (200 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (1.27 g, 5.11 mmol) dissolved in a 500 mL separable flask So that the solution temperature is controlled to 30 ° C., 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (1.14 g, 2.56 mmol), so that the temperature rise is 2 ° C. or less The mixture was gradually charged and stirred with a mechanical stirrer for 1 hour.
  • AprTMOS 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • a catalyst pyridine (32.1 g, 405 mmol) and acetic anhydride (41.4 g, 405 mmol) were added, and the mixture was stirred at room temperature for 24 hours to synthesize a polyimide solution.
  • the obtained polyimide solution was transferred to a 5 L separable flask, butyl acetate (313 g) was added, and the solution was stirred until it became uniform.
  • methanol (696 g) was gradually added to obtain a slightly hazy solution.
  • Methanol (1620 g) was added at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed five times with methanol to obtain polyimide 5 (69.6 g).
  • the weight average molecular weight of the polyimide measured by GPC was 192,000.
  • a catalyst pyridine (32.2 g, 407 mmol) and acetic anhydride (41.5 g, 407 mmol) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution.
  • the obtained polyimide solution was transferred to a 5 L separable flask, butyl acetate (314 g) was added, and the solution was stirred until it became uniform.
  • methanol (698 g) was gradually added to obtain a slightly hazy solution.
  • Methanol (1630 g) was added at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed five times with methanol to obtain polyimide 6 (69.8 g).
  • the weight average molecular weight of the polyimide measured by GPC was 237,000.
  • Synthesis Example 9 A solution of 169.5 g of dehydrated dimethylacetamide and 32.0 g (100 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) in a 500 ml separable flask is heated to a liquid temperature of 30 ° C. At a controlled point, 21.7 g (99.5 mmol) of pyromellitic dianhydride (PMDA) is gradually added in several portions so that the temperature rise is 2 ° C. or less, and a polyimide precursor solution 9 (20 wt% solids) was synthesized. The viscosity at 25 ° C. of the polyimide precursor solution 9 was 23,400 cps, and the weight average molecular weight of the polyimide precursor 9 measured by GPC was 83,000.
  • PMDA pyromellitic dianhydride
  • Synthesis Example 10 12.25 g of an amine-modified diphenyl silicone oil at both ends (Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (number average molecular weight 4400)) while introducing nitrogen gas into a 3 L separable flask equipped with an oil bath and a stirring rod, 3432 g of N-methyl-2-pyrrolidone (NMP) was added, followed by 222.12 g (0.5 mol) of 6FDA and stirred at room temperature for 30 minutes.
  • NMP N-methyl-2-pyrrolidone
  • modified silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Silicone, molecular weight 860) was added and stirred for 4 hours to obtain a polyamic acid solution.
  • ⁇ picoline (8.4 g, 90 mmol) as a catalyst and acetic anhydride (55.2 g, 540 mmol) as a catalyst are added to the above polyamic acid solution, and the solution is stirred for 1 hour in an oil bath at 100 ° C. I got The obtained polyimide solution was dropped into a large amount of isopropyl alcohol (IPA) to precipitate out the polyimide.
  • IPA isopropyl alcohol
  • the polyimide obtained by filtration extraction was washed by stirring in IPA. After filtration again, the polyimide was sufficiently dried at 80 ° C. under reduced pressure to obtain polyimide 11.
  • the weight average molecular weight of the polyimide 11 measured by GPC was 199000.
  • the solid content concentration in Table 1 represents the solid content concentration of the polyimide precursor solution also for polyimides 5 to 7.
  • the molecular weight represents the molecular weight of the polyimide precursor for the polyimide precursors 1 to 4 and 8 to 10, and the molecular weight of the polyimide for the polyimides 5 to 7 and 11.
  • the viscosity is the viscosity of the polyimide precursor solution for the polyimide precursors 1 to 4 and 8 to 10, the viscosity when preparing the polyimide solution in the same manner as in Example 11 for the polyimides 5 to 7, the polyimide 11 is the same as in Comparative Example 6. It represents the viscosity when preparing the polyimide solution.
  • Examples 1 to 10, Comparative Examples 1 and 3 to 5 By performing the following procedures (1) to (3) using the polyimide precursor solutions 1 to 4 and 9 to 11, polyimide films having the thicknesses shown in Table 2 were respectively produced.
  • Each polyimide precursor solution was apply
  • the temperature is raised to the curing temperature described in Table 2 at a heating rate of 10 ° C./min, and held at the curing temperature described in Table 2 for 1 hour, then cooled to room temperature did.
  • Example 11 The polyimide 5 was dissolved in a mixed solvent of butyl acetate and PGMEA (8: 2, volume ratio) to prepare a polyimide solution 5 having a solid content of 25% by mass.
  • the viscosity at 25 ° C. of the polyimide solution 5 (solid content: 25% by weight) was 16612 cps.
  • a polyimide film having a thickness described in Table 2 was produced.
  • the polyimide solution 5 was applied on glass and dried in a circulating oven at 120 ° C. for 10 minutes.
  • Example 12 Comparative Example 2
  • a polyimide film was obtained in the same manner as in Example 11, except that the polyimide 5 of Synthesis Example 5 was changed to the polyimides 6 to 7 of Synthesis Examples 6 to 7 in Example 11.
  • the polyimide films of Examples 1 to 12 corresponding to the polyimide film of the present invention are resin films excellent in transparency, and in which the decrease in surface hardness is suppressed while improving the bending resistance.
  • the polyimide films of Comparative Examples 1 to 5 had a strain at the yield point of the stress-strain curve of less than 8%, and had inferior dynamic bending resistance.
  • the polyimide films of Comparative Examples 4 to 5 were also inferior in yellowness, and the polyimide film of Comparative Example 5 was further inferior in pencil hardness, and the surface was easily scratched.
  • the polyimide film of Comparative Example 6 had a strain at a yield point of 8% or more and a tensile modulus of less than 1.8 GPa, and although the bending resistance was good, the pencil hardness was inferior and the surface was easily damaged.
  • the polyimide film of Comparative Example 6 was further inferior in yellowness.
  • the commercially available polyimide film of Comparative Example 7 was significantly inferior in light transmittance and yellowness, and was inferior in bending resistance as compared with the examples. Since the polyimide film of Comparative Example 7 does not contain a fluorine atom and has a molecular structure with high hygroscopicity, it is presumed that the bending resistance is inferior even if the yield point is large.
  • a catalyst pyridine (41.4 g) and acetic anhydride (53.4 g) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution.
  • butyl acetate (406 g) was added and stirred until uniform, then methanol (902 g) was gradually added to obtain a slightly hazy solution.
  • Methanol (2105 g) was added in one portion to the solution in which turbidity was observed, to obtain a white slurry.
  • the slurry was filtered and washed 5 times with methanol to obtain polyimide 12 (91 g).
  • the weight average molecular weight of the polyimide measured by GPC was 201269.
  • the solid concentration in Table 3 represents the solid concentration when the polyimide solution was prepared in the same manner as in Examples 13 to 18.
  • Molecular weight represents the molecular weight of polyimide.
  • the viscosity represents the viscosity when preparing a polyimide solution in the same manner as in Examples 13-18.
  • Example 13 The polyimide 12 was dissolved in a solvent (dichloromethane) to prepare a polyimide solution 12 with a solid content of 14% by mass.
  • the viscosity at 25 ° C. of the polyimide solution 12 (solid content: 14% by mass) was 4290 cps.
  • a polyimide film having a thickness of 50 ⁇ m ⁇ 5 ⁇ m was produced.
  • the polyimide solution 12 was applied onto a glass plate and dried in a circulating oven at 120 ° C. for 10 minutes.
  • Example 14 In Example 13, as shown in Table 4, the polyimide 12 of Synthesis Example 12 is changed to the polyimide 13 or 14 of Synthesis Example 13 or 14, and the temperature rise temperature in the step (ii) and the temperature maintained for one hour A polyimide film was obtained in the same manner as in Example 13, except that (Curing temperature) was changed as shown in Table 4.
  • Examples 19 to 36 Production of Laminates 10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, Irgacure 184) per 40 parts by mass of pentaerythritol triacrylate is added to a solution of pentaerythritol triacrylate in 40% by mass methyl isobutyl ketone, The resin composition for coat layers was prepared. The resin composition for a hard coat layer is coated on each polyimide film of Examples 1 to 18, and ultraviolet rays are irradiated and cured at a dose of 200 mJ / cm 2 under a nitrogen stream to form a 10 ⁇ m thick cured film. , Produced a laminate. In particular, when the polyimide film contains a silicon atom, the adhesion to the hard coat layer is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a film which has a strain at the yield point of at least 8% and a tensile modulus of at least 1.8 Gpa in a stress-strain curve obtained by a tensile test according to JIS/K7127 is, which has a total light transmittance of at least 85% as measured according to JIS/K7361-1, and which has a yellowness of 5 or less as calculated according to JIS/K7373-2006.

Description

フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置Film, polyimide film, laminate, display member, touch panel member, liquid crystal display device, and organic electroluminescence display device
 本発明は、フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置に関するものである。 The present invention relates to a film, a polyimide film, a laminate, a member for display, a touch panel member, a liquid crystal display device, and an organic electroluminescence display device.
 薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすく、加工性に問題があり、また、プラスチック製品と比較して重いといった欠点があった。このため、近年、樹脂基材や樹脂フィルム等の樹脂製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあり、ガラス代替製品となる樹脂製品の研究が行われてきている。 Thin sheet glass is excellent in hardness, heat resistance and the like, but is difficult to bend, is easily broken when dropped, has a problem in workability, and is heavy as compared with a plastic product. For this reason, in recent years, resin products such as resin base materials and resin films are being replaced with glass products in view of processability and weight reduction, and research on resin products to be glass substitute products has been conducted.
 例えば、液晶や有機EL等のディスプレイや、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスには従来、薄い板ガラス上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、この薄い板ガラスを樹脂フィルムに変えることにより、パネル自体の耐衝撃性の強化、フレキシブル化、薄型化や軽量化が図れる。 For example, with the rapid progress of electronics such as displays such as liquid crystal and organic EL, and touch panels, thinner and lighter devices and more flexible devices have been required. In these devices, various electronic elements such as thin transistors and transparent electrodes are conventionally formed on a thin sheet glass. By converting the thin sheet glass into a resin film, the impact resistance of the panel itself is strengthened. Can be made flexible, thinner and lighter.
 一般にポリイミドは、芳香族テトラカルボン酸無水物と芳香族ジアミンとの縮合反応により得られたポリアミド酸を脱水閉環反応させて得られる高耐熱性の樹脂である。しかしながら、一般にポリイミドは黄色或いは褐色に着色を示すことから、ディスプレイ用途や光学用途など透明性が要求される分野に用いることは困難であった。そこで、透明性を向上したポリイミドを、ディスプレイ部材へ適用することが検討されている。例えば、特許文献1には、高耐熱性、高透明性、低吸水性のポリイミド樹脂として、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、特定の式で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させてなるポリイミドが開示されており、フラットパネルディスプレイや携帯電話機器等の基板材料に好適であると記載されている。 In general, a polyimide is a highly heat-resistant resin obtained by subjecting a polyamide acid obtained by the condensation reaction of an aromatic tetracarboxylic acid anhydride and an aromatic diamine to a dehydration ring closure reaction. However, since polyimide generally has a yellow or brown color, it has been difficult to use in fields requiring transparency, such as display applications and optical applications. Therefore, application of a polyimide having improved transparency to a display member has been studied. For example, in Patent Document 1, as a polyimide resin having high heat resistance, high transparency, and low water absorption, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid At least one acyl-containing compound selected from the group consisting of anhydrides and reactive derivatives thereof and at least one compound selected from compounds having at least one phenylene group and isopropylidene group represented by a specific formula Polyimides are disclosed which are made to react with imino forming compounds and are described as being suitable for substrate materials such as flat panel displays and cellular telephone equipment.
 さらに、特許文献2には、芳香族ジアンヒドリドおよび芳香族ジアミンに由来する単位構造を含み、引裂強度改善用添加剤、またはヘキサフルオロ基、スルホン基およびオキシ基よりなる群から選ばれる官能基を有するモノマーに由来する単位構造をさらに含む、透明ポリイミドフィルムが開示されている。特許文献3には、透明性及び耐熱性が優れたポリイミドフィルムとして、損失弾性率を保存弾性率で分けた値であるtanδ曲線におけるピークの最頂点が特定の範囲内にあるポリイミドフィルムが開示されている。 Furthermore, Patent Document 2 includes a unit structure derived from an aromatic dianhydride and an aromatic diamine, and a functional group selected from the group consisting of an additive for improving tear strength, or a hexafluoro group, a sulfone group and an oxy group. A transparent polyimide film is disclosed, which further comprises a unit structure derived from the monomer having the monomer. Patent Document 3 discloses, as a polyimide film excellent in transparency and heat resistance, a polyimide film in which the top of the peak in the tan δ curve, which is a value obtained by dividing the loss elastic modulus by the storage elastic modulus, is within a specific range. ing.
 また、特許文献4には、フレキシブルデバイスの基板に用いられるポリイミドフィルムとして、無色透明であり、無機膜との間に発生する残留応力が低く、機械的物性及び熱物性に優れたポリイミドフィルムを得ることを目的として、特定のフッ素系芳香族ジアミンと、ケイ素原子数が3~200個のシロキサン骨格を有するシリコーン化合物とをモノマー成分として用いたポリイミド前駆体をイミド化したポリイミドフィルムが開示されている。特許文献4には、前記ポリイミド前駆体を用いて無機膜(SiN膜)付きポリイミドフィルムを形成したところ、折り曲げを10回繰り返し行った折り曲げ試験後にクラックも剥離も観察されないか(○)、クラックが観察された(△)と記載されている。 Further, in Patent Document 4, as a polyimide film used for a substrate of a flexible device, a colorless and transparent polyimide film having low residual stress generated with an inorganic film and excellent in mechanical physical properties and thermal physical properties is obtained. Disclosed is a polyimide film imidized by using, as a monomer component, a specific fluorine-based aromatic diamine and a silicone compound having a siloxane skeleton having 3 to 200 silicon atoms for the purpose. . In Patent Document 4, when a polyimide film with an inorganic film (SiN film) is formed using the above-mentioned polyimide precursor, neither cracks nor peeling is observed after a bending test in which bending is repeated 10 times (o), cracks It is described as observed (Δ).
 また、特許文献5には、低屈折率でかつ耐折性が高いポリイミドとして、ケイ素原子数が2~21個のシリコーンジアミンをジアミン原料重量の10重量%以上含むことが記載されている。 In addition, Patent Document 5 describes that as a polyimide having a low refractive index and high bending resistance, silicone diamine having 2 to 21 silicon atoms is contained in an amount of 10% by weight or more based on the weight of the diamine raw material.
特開2006-199945号公報JP, 2006-199945, A 特表2014-501301号公報JP-A-2014-501301 特表2012-503701号公報JP 2012-503701 gazette 国際公開2014/098235号公報International Publication 2014/098235 特開2008-64905号公報JP, 2008-64905, A
 ガラス代替製品となる樹脂製品には、そもそも優れた透明性が求められる。
 画面が折り畳めるモバイル機器は、持ち運ぶ際には折り畳んだ状態とし、使用する際には折り畳みを開いた状態とする。そのため、モバイル機器に搭載されるフレキシブルディスプレイには、繰り返し屈曲させても表示不良が発生しないことが求められ、フレキシブルディスプレイ用の基材や表面材には、繰り返し屈曲させたときの屈曲耐性(以下、動的屈曲耐性という場合がある)が求められる。更に、画面が折り畳めるモバイル機器は、折り畳んだ状態で持ち運ばれることが多いため、モバイル機器に搭載されるフレキシブルディスプレイには、長時間折り曲げられた状態が続いても、平坦に戻した時に元通りになることが求められ、フレキシブルディスプレイ用の基材や表面材にも、長時間折り曲げられた状態が続いた後の復元性(以下、静的屈曲耐性という場合がある)が求められる。
 一方で、フレキシブルディスプレイ用の基材や表面材には、繰り返しの屈曲に耐えることだけでなく、表面の傷付防止の機能、また、その下部に位置するタッチセンサーやディスプレイパネルの破損を防ぐことも求められる。
 樹脂フィルムの屈曲耐性と表面硬度とは、後に詳述するように相反する特性であると考えられるが、屈曲耐性と保護フィルムとして十分な表面硬度とを両立した樹脂フィルムが求められている。
Excellent transparency is required in the first place for resin products to be glass substitute products.
The mobile device that can fold the screen is in the folded state when carrying it, and in the folded state when it is used. Therefore, it is required that a flexible display mounted on a mobile device does not have a display defect even if it is repeatedly bent, and a base material and a surface material for a flexible display have bending resistance when repeated bending (hereinafter referred to as , Sometimes called dynamic bending resistance). Furthermore, since the mobile device that can fold the screen is often carried in a folded state, the flexible display mounted on the mobile device can be restored to its original state when it is returned to a flat state even if the bent state continues for a long time The base material and the surface material for a flexible display are also required to have restorability after being bent for a long time (hereinafter sometimes referred to as static bending resistance).
On the other hand, base materials and surface materials for flexible displays are not only resistant to repeated bending but also function to prevent scratching of the surface, and to prevent damage to the touch sensor and display panel located below it. Is also required.
The bending resistance and the surface hardness of the resin film are considered to be opposite properties as described in detail later, but a resin film having both the bending resistance and a surface hardness sufficient as a protective film is required.
 本発明は、上記問題点に鑑みてなされたものであり、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたフィルム乃至樹脂フィルムを提供することを主目的とする。
 また、本発明は、前記フィルム乃至樹脂フィルムを有する積層体、及び、前記フィルム乃至樹脂フィルム又は前記積層体であるディスプレイ用部材、並びに、前記フィルム乃至樹脂フィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することを目的とする。
The present invention has been made in view of the above problems, and its main object is to provide a film or a resin film which is excellent in transparency and in which a decrease in surface hardness is suppressed while improving bending resistance.
Further, the present invention provides a laminate having the film or resin film, a member for display which is the film or resin film or the laminate, a touch panel member including the film or resin film or the laminate, liquid crystal An object of the present invention is to provide a display device and an organic electroluminescent display device.
 本発明のフィルムは、15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
 前記引張試験における引張弾性率が1.8GPa以上であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である。
The film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm × 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a chuck distance of 20 mm according to JIS K7127. The strain is 8% or more,
The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
 本発明のポリイミドフィルムは、15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
 前記引張試験における引張弾性率が1.8GPa以上であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である。
The polyimide film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm × 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127. Strain at 8% or more,
The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
 本発明のポリイミドフィルムは、温度25℃で、ISO14577に準拠し、ナノインデンテーション法を用いて測定した、フィルム表面のヤング率が、2.3GPa以上であることが、表面硬度に優れる点から好ましい。 The polyimide film of the present invention preferably has a Young's modulus on the film surface of 2.3 GPa or more measured at 25 ° C. according to ISO 14577 and using a nanoindentation method, from the viewpoint of excellent surface hardness. .
 本発明のポリイミドフィルムにおいては、下記一般式(1)で表される構造を有するポリイミドを含有することが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。 The polyimide film of the present invention preferably contains a polyimide having a structure represented by the following general formula (1) from the viewpoint of light transmittance, bending resistance and surface hardness.
Figure JPOXMLDOC01-appb-C000003
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、複数のRは各々同一であっても異なっていても良く、Rはジアミン残基である2価の基を表し、複数のRは各々同一であっても異なっていても良く、複数のRの少なくとも一部が芳香族環又は脂肪族環を有するジアミン残基を含む。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be identical to or different from each other) And R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a portion of the plurality of R 2 is an aromatic ring or an aliphatic ring Containing diamine residues, n represents the number of repeating units)
 本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、Rは、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を含むか、或いは、Rは、ジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性と表面硬度の点から好ましい。 In the polyimide film of the present invention, in the polyimide having the structure represented by the general formula (1), R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom. Or a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or R 2 represents a divalent group which is a diamine residue, and is 2.5 mol% or more and 50 mol% of the total amount of R 2 The following are diamine residues having a silicon atom in the main chain, and 50 to 97.5 mol% of the total amount of R 2 is a diamine having no silicon atom and having an aromatic ring or an aliphatic ring Residues are preferred from the viewpoint of bending resistance and surface hardness.
 本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。 In the polyimide film of the present invention, in the polyimide having a structure represented by the above general formula (1), R 1 in the above general formula (1) is a cyclohexanetetracarboxylic acid dianhydride residue, cyclopentane tetracarbonide Acid dianhydride residue, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, pyromellitic acid dianhydride residue 3, 3 ', 4,4'-biphenyltetracarboxylic acid dianhydride residue, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride residue, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Acid anhydride residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'- At least one tetravalent group selected from the group consisting of xydiphthalic anhydride residue and 3,4'-oxydiphthalic anhydride residue, light transmittance, bending resistance and surface hardness; It is preferable from the point of
 本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、Rは、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を含むか、或いは、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性及び表面硬度を向上する点から好ましい。 In the polyimide film of the present invention, in the polyimide having the structure represented by the general formula (1), R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom. Or a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or R 2 is a diamine residue having no silicon atom, and a diamine residue having one or two silicon atoms in the main chain And at least one divalent group selected from the group consisting of 2.5 to 50 mol% of the total amount of R 2 is a diamine residue having one or two silicon atoms in the main chain, Flexibility and surface hardness are improved when 50 mol% or more and 97.5 mol% or less of the total amount of R 2 is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring. Or Preferred.
 本発明のポリイミドフィルムにおいては、前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが、光透過性と、屈曲耐性及び表面硬度との点から好ましい。 In the polyimide film of the present invention, in the polyimide having the structure represented by the general formula (1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is Trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4 -Aminophenyl) propane residue, 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluorop Pan residue, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, and represented by the following general formula (2) At least one divalent group selected from the group consisting of divalent groups is preferable in terms of light transmittance, bending resistance, and surface hardness.
Figure JPOXMLDOC01-appb-C000004
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or a perfluoroalkyl group.)
 本発明の積層体は、前記本発明のフィルム又はポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体である。 The laminate of the present invention is a laminate having the film or polyimide film of the present invention, and a hard coat layer containing a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound.
 本発明のディスプレイ用部材は、前記本発明のフィルム又はポリイミドフィルム、或いは、前記本発明の積層体を含む。 The member for a display of the present invention includes the film or the polyimide film of the present invention, or the laminate of the present invention.
 本発明のディスプレイ用部材は、フレキシブルディスプレイ用とすることができる。 The display member of the present invention can be used for a flexible display.
 また、本発明は、前記本発明のフィルム若しくはポリイミドフィルム又は前記本発明の積層体と、
 前記フィルム若しくはポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材を提供する。
The present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention,
A transparent electrode comprising a plurality of conductive parts disposed on one side of the film or the polyimide film or the laminate;
A touch panel member is provided having a plurality of lead lines electrically connected on at least one side of an end of the conductive portion.
 また、本発明は、前記本発明のフィルム若しくはポリイミドフィルム又は前記本発明の積層体と、
前記フィルム若しくはポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置を提供する。
The present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention,
A liquid crystal display device comprising: a liquid crystal display unit having a liquid crystal layer between opposing substrates disposed on one side of the film, the polyimide film, or the laminate.
 また、本発明は、前記本発明のフィルム若しくはポリイミドフィルム又は前記本発明の積層体と、
前記フィルム若しくはポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置を提供する。
The present invention also relates to the film or polyimide film of the present invention or the laminate of the present invention,
An organic electroluminescent display device comprising: the film, the polyimide film, or the organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates disposed on one side of the laminate.
 本発明によれば、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたフィルム乃至樹脂フィルムを提供することができる。
 また、本発明は、前記フィルム乃至樹脂フィルムを有する積層体、及び前記フィルム乃至樹脂フィルム又は前記積層体であるディスプレイ部材、並びに、前記フィルム乃至樹脂フィルム又は前記積層体を備えるタッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the film thru | or the resin film which were excellent in transparency, and in which the fall of surface hardness was suppressed can be provided, improving a bending resistance.
Further, the present invention provides a laminate having the film or the resin film, a display member which is the film or the resin film or the laminate, a touch panel member including the film or the resin film or the laminate, and a liquid crystal display And an organic electroluminescent display can be provided.
フィルムの屈曲における最大応力を説明するための図である。It is a figure for demonstrating the largest stress in bending of a film. ポリイミドフィルムの応力-ひずみ曲線の一例である。It is an example of the stress-strain curve of a polyimide film. 図2のポリイミドフィルムの応力-ひずみ曲線のひずみとdy/dx(平均変化率)のグラフである。It is a graph of the distortion of the stress-strain curve of the polyimide film of FIG. 2, and dy / dx (average change rate). 静的屈曲試験の方法を説明するための図である。It is a figure for demonstrating the method of a static bending test. 本発明のタッチパネル部材の一例の一方の面の概略平面図である。It is an outline top view of one side of an example of the touch panel member of the present invention. 図5に示すタッチパネル部材のもう一方の面の概略平面図である。It is a schematic plan view of the other surface of the touch panel member shown in FIG. 図5及び図6に示すタッチパネル部材のA-A’断面図である。FIG. 7 is an A-A ′ cross-sectional view of the touch panel member shown in FIGS. 5 and 6. 本発明の積層体を備える導電性部材の一例を示す概略平面図である。It is a schematic plan view which shows an example of the electroconductive member provided with the laminated body of this invention. 本発明の積層体を備える導電性部材の別の一例を示す概略平面図である。It is a schematic plan view which shows another example of the electroconductive member provided with the laminated body of this invention. 本発明のタッチパネル部材の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the touch panel member of this invention. 本発明の液晶表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the liquid crystal display device of this invention. 本発明の液晶表示装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the liquid crystal display device of this invention. 本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic electroluminescent display apparatus of this invention. 本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the organic electroluminescent display apparatus of this invention.
I.フィルム
 本発明のフィルムは、15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
 前記引張試験における引張弾性率が1.8GPa以上であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である。
I. Film The film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm × 40 mm is measured at 25 ° C. at a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127. Strain at 8% or more,
The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
 本発明によれば、25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、前記引張試験における前記特定の引張弾性率、前記特定の全光線透過率、及び前記特定の黄色度を有するフィルムとしたことにより、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたフィルムを提供することができる。 According to the present invention, in the stress-strain curve obtained by the tensile test measured at 25 ° C., the strain at the yield point is 8% or more, and the specific tensile modulus in the tensile test, the specific total light transmission By setting it as a film which has a rate and the said specific yellowness, the film which was excellent in transparency and was able to suppress the fall of surface hardness can be provided, improving a bending | flexion tolerance.
 なお、本発明においてフィルムとは、厚みが1μm~200μm程度の薄膜状乃至平板状の材料をいい、シートと呼ばれる物を含み、また、長尺状であっても良い。
 本発明のフィルムとしては、樹脂フィルムが挙げられる。
 樹脂フィルムの材料としては、例えば、ポリイミド、ポリアミド、トリアセチルセルロース、ポリエチレン、ポリプロピレン、ポリアセタール、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート)、ポリ塩化ビニル、AS樹脂、ABS樹脂、ポリスチレン、ポリメチルメタクリレート、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフルオロエチレン、セルロースアシレート、シクロオレフィンポリマー、MBS樹脂、及びこれらの少なくとも1種を含む共重合体等が挙げられる。本発明の範囲の物性値を満たせば、材料種は特に限定されるものではないが、有機系材料、シリコーン系材料、それらの共重合体、混合物が好ましく、中でもフィルムのガラス転移温度が150℃以上であるものが好適に用いられる。さらに、本発明において、フィルム材料としてポリイミドやポリアミドを用いたポリイミドフィルムやポリアミドフィルムが、特に好適に用いられる。
 以下、ポリイミドフィルムを例にとって、本発明のフィルムの作用、特性等について詳細に説明する。本発明のフィルムの作用、特性等は、後述する本発明のポリイミドフィルムと同様であって良い。
In the present invention, the film means a thin film or flat material having a thickness of about 1 μm to 200 μm, includes a material called a sheet, and may be long.
The film of the present invention includes a resin film.
Examples of the material of the resin film include polyimide, polyamide, triacetyl cellulose, polyethylene, polypropylene, polyacetal, polyester (polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate), polyvinyl chloride, AS resin, ABS resin, polystyrene, poly Methyl methacrylate, polyacetal, polycarbonate, polyphenylene sulfide, polyarylate, polysulfone, polyether sulfone, polyether ether ketone, liquid crystal polymer, polytetrafluoroethylene, cellulose acylate, cycloolefin polymer, MBS resin, and at least one of these And the like. The material type is not particularly limited as long as it satisfies the physical property values within the scope of the present invention, but organic materials, silicone materials, copolymers thereof, and mixtures thereof are preferable, among which the glass transition temperature of the film is 150 ° C. Those above are suitably used. Furthermore, in the present invention, a polyimide film or a polyamide film using polyimide or polyamide as a film material is particularly preferably used.
The action, characteristics and the like of the film of the present invention will be described in detail below by taking a polyimide film as an example. The action, characteristics and the like of the film of the present invention may be the same as those of the polyimide film of the present invention described later.
II.ポリイミドフィルム
 本発明のポリイミドフィルムは、15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
 前記引張試験における引張弾性率が1.8GPa以上であり、
 JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である。
II. Polyimide film The polyimide film of the present invention is a stress-strain curve obtained by a tensile test in which a test piece of 15 mm × 40 mm is measured at 25 ° C. as a tensile speed of 10 mm / min and a distance between chucks of 20 mm according to JIS K7127. The strain at the yield point is 8% or more,
The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
The total light transmittance measured in accordance with JIS K7361-1 is 85% or more, and the yellowness calculated in accordance with JIS K7373-2006 is 5 or less.
 本発明によれば、25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、前記引張試験における前記特定の引張弾性率、前記特定の全光線透過率、及び前記特定の黄色度を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制された樹脂フィルムを提供することができる。 According to the present invention, in the stress-strain curve obtained by the tensile test measured at 25 ° C., the strain at the yield point is 8% or more, and the specific tensile modulus in the tensile test, the specific total light transmission By setting it as the polyimide film which has a rate and the said specific yellowness, it is excellent in transparency and can improve the bending resistance, and can provide the resin film by which the fall of surface hardness was suppressed.
 本発明者らは、樹脂の中でもポリイミドに着目した。ポリイミドは、その化学構造に由来し耐熱性などの耐久性に優れることが知られている。また、ポリイミドフィルムは、内部の分子鎖の配置が一定の秩序構造を形成することが知られており、そのおかげで、室温において、平坦状態、折り曲げ状態を一定の周期で繰り返した場合の復元性において良好な結果を示すと考えられる。
 しかしながら、従来の透明ポリイミドを用いた樹脂フィルムでは、平坦状態、折り曲げ状態を一定の周期で繰り返す試験で破断しやすかったり、折り癖がつき、平坦に戻り難く、屈曲耐性に劣るという問題があった。屈曲状態が長時間維持されることで屈曲部外周に引張りの応力が継続的に印加されることによるフィルムの塑性変形がおきており、それにより、屈曲の力を外しても復元しにくくなっていると推察される。
 折り曲げた際にフィルム屈曲部外周にかかる引張り応力は、フィルムが厚ければ厚いほど、屈曲部の屈曲半径が小さいほど大きくなると考えられている。
 そのため塑性変形しやすいフィルムは、屈曲試験の過程で変形しやすく、その変形はフレキシブルディスプレイパネルの部材として本発明の材料を用いた時に視認性を悪化させる。
 より詳細には、以下のように推察される。
 フィルムの屈曲は、屈曲外周部には張力、屈曲内周部には圧縮力がかかり、図1に示すようなフィルムの屈曲において、応力最大となる部位(応力最大部)での最大応力(σ)は下記式(1)で示される。
The present inventors focused on polyimide among resins. Polyimide is known to be derived from its chemical structure and to be excellent in durability such as heat resistance. In addition, polyimide films are known to form an ordered structure in which the arrangement of molecular chains in the interior form a constant structure, which makes it possible to recover the stability when repeating a flat state and a bent state at a constant cycle at room temperature. It is considered to show good results in
However, conventional resin films using transparent polyimide tend to break easily in a test in which the flat state and bending state are repeated at a constant cycle, or have a crease, and are difficult to return to flat, and have poor bending resistance. . By maintaining the bending state for a long time, plastic deformation of the film occurs due to the continuous application of tensile stress to the outer periphery of the bending portion, which makes it difficult to recover even if the bending force is removed. It is guessed that
It is believed that the tensile stress applied to the outer periphery of the bent portion of the film when bent is larger as the film is thicker and as the bending radius of the bent portion is smaller.
Therefore, a film which is easily plastically deformed is easily deformed in the process of a bending test, and the deformation deteriorates visibility when the material of the present invention is used as a member of a flexible display panel.
In more detail, it is guessed as follows.
The film is bent by applying tension to the outer periphery of the film and compressive force to the inner periphery of the film, and the maximum stress (σ at the maximum stressed portion) at which the stress is maximum in the bending of the film as shown in FIG. Is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000005
 E :弾性率
 y :中立軸(曲がる時の中心となる軸)からの距離の最大値(図1の場合、膜厚dの半分)
 φ:曲率(試験幅)
 d:フィルムの膜厚
Figure JPOXMLDOC01-appb-M000005
E: Elastic modulus y: Maximum value of the distance from the neutral axis (axis centered at bending) (in the case of FIG. 1, half of the film thickness d)
φ: Curvature (test width)
d: Film thickness
 前記最大応力(σ)は、前記式(1)に示されるように、フィルムの弾性率と膜厚に比例し、曲率から膜厚を引いた値に反比例する。従って、フィルムの弾性率を大きくすると屈曲時にフィルムにかかる応力も大きくなり、変形の原因となる。樹脂フィルムにおいても、弾性率を大きくすると、屈曲状態後の復元性が悪化し、屈曲耐性が不十分になる傾向がある。一方で、樹脂フィルムの弾性率を大きくすることにより、表面硬度を向上する傾向がある。実際、後述する比較例4で示されるように、弾性率が大きいポリイミドフィルムは、表面硬度は良好なものの、屈曲耐性が悪化している。このように、樹脂フィルムの屈曲耐性と表面硬度とは、相反する特性であると考えられる。
 フレキシブルディスプレイ用の基材や表面材には、繰り返しの屈曲に耐えることだけでなく、表面の傷付防止の機能、また、その下部に位置するタッチセンサーやディスプレイパネルの破損を防ぐことも求められる。表面材が、例えばガラスなどの様に弾性率が高い材質であるほど、ディスプレイの表面からの衝撃に対して、その衝撃を面方向に拡散させ、局所的な衝撃を緩和することができ、結果としてディスプレイパネルの破損を防ぐことができる。これと同様のことがフレキシブルディスプレイにも言え、ディスプレイパネルを保護する機能としては、表面材の弾性率が高い方が有利に働く。一方、弾性率が低い場合は、表面材自体が変形をすることによって、衝撃を緩和できる場合もあるが、変形によって生じたくぼみなどが固定化され、ディスプレイ表面の平滑性が大きく低下し外観が損なわれやすい。
The maximum stress (σ) is proportional to the modulus of elasticity and film thickness of the film and inversely proportional to the value obtained by subtracting the film thickness from the curvature, as shown in the equation (1). Therefore, when the elastic modulus of the film is increased, the stress applied to the film at the time of bending also increases, which causes deformation. Also in the resin film, when the elastic modulus is increased, the restorability after the bending state is deteriorated, and the bending resistance tends to be insufficient. On the other hand, the surface hardness tends to be improved by increasing the elastic modulus of the resin film. In fact, as shown in Comparative Example 4 to be described later, the polyimide film having a large elastic modulus is deteriorated in bending resistance although the surface hardness is good. Thus, the bending resistance of the resin film and the surface hardness are considered to be contradictory characteristics.
Substrates and surface materials for flexible displays are required not only to withstand repeated bending but also to prevent scratching of the surface and to prevent damage to the touch sensor and display panel located below it. . As the surface material is, for example, a material having a high elastic modulus such as glass, the impact can be diffused in the surface direction to the impact from the surface of the display, and the local impact can be alleviated. As the display panel can be prevented from breakage. The same thing can be said for a flexible display, but as the function of protecting the display panel, it is advantageous if the surface material has a high elastic modulus. On the other hand, when the elastic modulus is low, the surface material itself may be deformed to reduce the impact, but a depression or the like caused by the deformation may be fixed, and the smoothness of the display surface is greatly reduced, and the appearance is improved. It is easy to lose.
 例えば、特許文献4に記載されたポリイミドフィルムでは、ケイ素原子を3つ以上含むシリコーン成分を導入することで、氷点下以下にガラス転移温度を有し、無機膜との間に発生する残留応力が低減したと記載されている。しかし、後述する比較例5で示されるように、ケイ素原子を3つ以上含むシリコーン成分を導入したポリイミドフィルムは、低いガラス転移温度を有するため、室温では弾性率が不足し、表面硬度が低く、傷付きやすかったり、発光パネルや回路へ衝撃を伝えてしまい、保護フィルムとしての機能が不足するという問題があった。
 また、特許文献5に記載されたポリイミドフィルムでは、耐折性が高いと記載されている。しかし、後述する比較例6で示されるように、特許文献5の実施例に相当するシリコーンジアミン(ケイ素原子を9~10個程度含有)を導入したポリイミドフィルムは、室温では弾性率が不足し、表面硬度が低く、傷付きやすく、保護フィルムとしての機能が不足し、更に透明性に劣るという問題があった。
 以上のことから、透明性に優れながら、屈曲耐性と保護フィルムとして十分な表面硬度とを両立した樹脂フィルムが求められていた。しかし、上述したように、樹脂フィルムの屈曲耐性と表面硬度とは相反する特性であると考えられ、屈曲耐性を向上しながら、表面硬度を維持することは困難であった。
For example, in the polyimide film described in Patent Document 4, by introducing a silicone component containing three or more silicon atoms, it has a glass transition temperature below the freezing point and the residual stress generated with the inorganic film is reduced. It is stated that However, as shown in Comparative Example 5 to be described later, a polyimide film introduced with a silicone component containing three or more silicon atoms has a low glass transition temperature, so the elastic modulus is insufficient at room temperature and the surface hardness is low. There is a problem that it is easily scratched, and an impact is transmitted to the light emitting panel and the circuit, so that the function as a protective film is insufficient.
Further, in the polyimide film described in Patent Document 5, it is described that the folding resistance is high. However, as shown in Comparative Example 6 to be described later, the polyimide film into which silicone diamine (containing about 9 to 10 silicon atoms) corresponding to the example of Patent Document 5 is introduced is insufficient in elastic modulus at room temperature, There is a problem that the surface hardness is low, it is easily scratched, the function as a protective film is insufficient, and the transparency is further inferior.
From the above, there has been a demand for a resin film that has both bending resistance and sufficient surface hardness as a protective film while having excellent transparency. However, as described above, the bending resistance and the surface hardness of the resin film are considered to be contradictory characteristics, and it was difficult to maintain the surface hardness while improving the bending resistance.
 それに対して、本発明者らは、前記引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみ(%)の値に着目し、応力-ひずみ曲線の降伏点におけるひずみが8%以上であるポリイミドフィルムは、屈曲耐性が向上したものになる傾向を見出した。この理由は定かではないが、以下のように推測している。
 前記応力-ひずみ曲線は、引張試験において得られる引張応力とひずみの関係曲線であり、ひずみ(%)を横軸に、引張応力(MPa)を縦軸にとって描かれる。応力-ひずみ曲線における降伏点までの領域は、弾性変形領域とみなせ、応力-ひずみ曲線における降伏点以降の領域は、塑性変形領域とみなせる。降伏点におけるひずみ(%)が所定値よりも大きいと、弾性変形領域が所定よりも広くなって、曲がっても元に戻り易い性質を有すると推定される。すなわち、応力-ひずみ曲線で得られる降伏点のひずみ量は言いかえるならば、弾性変形可能な変形量とも表現でき、応力が印加される前の形状に復元可能な変形量と考えることができる。そのため、降伏点におけるひずみ(%)が所定値よりも大きいと、後述する実施例での屈曲試験の結果により示されるように、フィルムの折り曲げを繰り返し行った後の復元性が向上したフィルムになるのではないかと推定される。
 なお、後述の実施例と比較例で、同じ分子構造を有するポリイミド前駆体を用いてポリイミドフィルムを製造した場合であっても、製造方法が異なりフィルムの状態が異なると、応力-ひずみ曲線において、降伏点におけるひずみ(%)の値は異なり、それに伴って屈曲耐性が大きく異なることが示されている。このことは、ポリイミドフィルムの屈曲耐性は、ポリイミドの組成のみに依存するわけではないこと、また、降伏点におけるひずみ(%)の値は、屈曲耐性に関連したポリイミドフィルムの状態を表すことを示していると考えられる。
 前記引張試験により得られる応力-ひずみ曲線の降伏点におけるひずみ(%)に加えて、更に、前記引張試験において、前記特定の引張弾性率を有することを組み合わせてポリイミドフィルムを選択することから、屈曲耐性と保護フィルムとして十分な表面硬度とを両立したフィルムとすることができると推定される。
 また、更に、前記特定の全光線透過率、及び前記特定の黄色度を有するポリイミドフィルムとしたことにより、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制された樹脂フィルムを提供することができると推定される。
On the other hand, in the stress-strain curve obtained by the tensile test, the present inventors pay attention to the value of strain (%) at the yield point, and the strain at the yield point of the stress-strain curve is 8% or more The polyimide film was found to tend to have improved bending resistance. The reason for this is not clear, but is presumed as follows.
The stress-strain curve is a relationship curve between tensile stress and strain obtained in a tensile test, and the horizontal axis represents strain (%) and the vertical axis represents tensile stress (MPa). The area up to the yield point in the stress-strain curve can be regarded as an elastic deformation area, and the area after the yield point in the stress-strain curve can be regarded as a plastic deformation area. When the strain (%) at the yield point is larger than a predetermined value, it is estimated that the elastic deformation area becomes wider than a predetermined value and has a property of being easily restored even if it is bent. That is, the strain amount at the yield point obtained by the stress-strain curve can be expressed as an elastically deformable deformation amount, which can be considered as a deformation amount capable of being restored to the shape before the stress is applied. Therefore, when the strain (%) at the yield point is larger than a predetermined value, as shown by the result of the bending test in the examples described later, the film has improved recoverability after repeated bending of the film. It is estimated that it is not.
In addition, even in the case where a polyimide film is produced using a polyimide precursor having the same molecular structure in Examples and Comparative Examples described later, if the production method is different and the state of the film is different, the stress-strain curve is It has been shown that the values of strain (%) at the yield point are different, and the bending resistance is greatly different accordingly. This indicates that the bending resistance of the polyimide film is not dependent only on the composition of the polyimide, and that the value of strain (%) at the yield point indicates the state of the polyimide film related to the bending resistance. It is thought that
In addition to the strain (%) at the yield point of the stress-strain curve obtained by the tensile test, in addition, in the tensile test, a combination of having the specific tensile elastic modulus is selected to select a polyimide film. It is presumed that a film having both of the resistance and a sufficient surface hardness as a protective film can be obtained.
Furthermore, by forming a polyimide film having the specific total light transmittance and the specific yellowness, it is possible to obtain a resin film which is excellent in transparency and in which the decrease in surface hardness is suppressed while improving the bending resistance. It is estimated that it can be provided.
 以下、本発明に係るポリイミドフィルムについて詳細に説明する。
 本発明に係るポリイミドフィルムは、ポリイミドを含有し、前記特定の特性を有するものである。本発明の効果が損なわれない限り、更にその他の成分を含有していても良いし、他の構成を有していてもよい。
Hereinafter, the polyimide film according to the present invention will be described in detail.
The polyimide film according to the present invention contains polyimide and has the above-mentioned specific characteristics. As long as the effects of the present invention are not impaired, it may further contain other components, or may have other configurations.
1.応力-ひずみ曲線の降伏点
 本発明のポリイミドフィルムは、25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上である。当該降伏点におけるひずみは、屈曲耐性を向上する点から、8.5%以上であることが好ましく、9.3%以上であることがより好ましく、9.5%以上であることがより更に好ましい。
 降伏点におけるひずみの上限値は限定されるものではないが、降伏点におけるひずみは通常、90%以下であって良い。
 引張弾性率が大きいほど変形させるために必要な力が大きくなることから、大きく変形しやすいのは引張弾性率が小さい材料となる。本発明における引張弾性率の下限は1.8Gpaであり、一方で、引張強度が大きい樹脂フィルムの引張強度は概ね200N/mm程度である。引張弾性率の異なるフィルムについて、引張強度200N/mmに達するひずみ量を算出し、引張弾性率と200N/mmでの歪み量の関係を求め、引張弾性率1.8GPaのフィルムのひずみ量を算出すると、本発明の引張弾性率の下限1.8Gpaのフィルムはひずみ量が概ね90%と見積もることができる。このことから、おおよそ90%が上限と考えられる。
 前記引張試験は、引張り試験機(例えば島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用い、幅15mm×長さ40mm(引張方向40mm×引張方向と直交する方向15mm)の試験片をポリイミドフィルムから切り出して、当該試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する。試験片をフィルムから切り出す際には、フィルムの膜厚が均一な部分を切り出すようにすることが好ましく、例えばフィルムの中央部付近から切り出すことが好ましい。フィルムの膜厚が均一である目安としては、例えば、切り出したフィルムの四隅と中央の計5点の膜厚を、デジタルリニアゲージ(株式会社尾崎製作所製、型式PDN12 デジタルゲージ)を用いて測定し、5点の平均膜厚と各点の膜厚の差が、平均膜厚の6%以内であることが挙げられる。
 応力-ひずみ曲線は、引張試験において得られる引張応力とひずみの関係を、チャック間距離、すなわち試験長20mmに対し、10mm/分で引張試験を行う際、伸び量を試験長で除したひずみ(%)を横軸に、引張応力(MPa)を縦軸にとって描く。ポリイミドフィルムの応力-ひずみ曲線の降伏点は、例えば図2に示されるように、明瞭に分かり難い場合がある。そのため、本発明のポリイミドフィルムの応力-ひずみ曲線の降伏点におけるひずみ(%)は、具体的には以下のように求めることができる。
 応力-ひずみ曲線において、ひずみが0.16%の地点からサンプリングを開始し、その後は0.21%増加する毎にサンプリングする(これをdxと定義)。つまりdxは、その一つ前にサンプリングされた値との差分(変化量)であり、初期値のみ0.16%、その後は0.21%となる。一方、dyはひずみに応じた引張応力の値において、その一つ前にサンプリングされた値との差分(変化量)である。dx、dyをそれぞれ算出したのち、横軸をひずみ%、縦軸をdy/dx(平均変化率)としてグラフ化する(例えば、図2の応力-ひずみ曲線の場合、図3に示されるグラフとなる)。ひずみ%とdy/dx(平均変化率)のグラフは、図3に示されるように、基本的には右肩下がりのグラフとなるが、dy/dx(平均変化率)の最大値が得られる点を超えて、最初に現れるdy/dxの変曲点を降伏点と定義する。なお、前記変曲点が見られないものについては、dy/dxが初めて0となる点を降伏点とする。
 降伏点におけるひずみ(%)は、JIS Z8401:1999の規則Bに従い、小数点以下第1位に丸めた値とする。
1. Yield Point of Stress-Strain Curve The polyimide film of the present invention has a strain at a yield point of 8% or more in a stress-strain curve obtained by a tensile test measured at 25 ° C. The strain at the yield point is preferably 8.5% or more, more preferably 9.3% or more, and still more preferably 9.5% or more, from the viewpoint of improving bending resistance. .
The upper limit of the strain at the yield point is not limited, but the strain at the yield point may usually be 90% or less.
The larger the tensile modulus of elasticity, the larger the force required to deform, so the material that is easily deformed to a large extent is the material with a small tensile modulus of elasticity. The lower limit of the tensile elastic modulus in the present invention is 1.8 Gpa, while the tensile strength of the resin film having a large tensile strength is approximately 200 N / mm 2 . The amount of strain reaching tensile strength 200 N / mm 2 is calculated for films with different tensile modulus, and the relationship between the tensile modulus and strain at 200 N / mm 2 is determined, and the strain amount of the film with a tensile modulus of 1.8 GPa In the film of the lower limit 1.8 Gpa of the tensile elastic modulus of the present invention, the strain amount can be estimated to be approximately 90%. From this, about 90% is considered to be the upper limit.
The tensile test is carried out using a tensile tester (for example, Shimadzu Corp. autograph AG-X 1N, load cell: SBL-1KN), 15 mm wide × 40 mm long (tensile direction 40 mm × direction orthogonal to tensile direction 15 mm) A test piece is cut out of a polyimide film, and the test piece is measured at 25 ° C. as a tensile speed of 10 mm / minute and a distance between chucks of 20 mm according to JIS K7127. When the test piece is cut out of the film, it is preferable to cut out a portion having a uniform film thickness, for example, it is preferable to cut out from the vicinity of the central portion of the film. As an indication that the film thickness of the film is uniform, for example, the film thickness of a total of 5 points at the four corners and the center of the cut out film is measured using a digital linear gauge (Model PDN12 digital gauge manufactured by Ozaki Mfg. Co., Ltd.) The difference between the average film thickness of the five points and the film thickness of each point is within 6% of the average film thickness.
The stress-strain curve is the strain obtained by dividing the amount of elongation by the test length when the tensile test is performed at a distance of 10 mm / min with respect to the distance between chucks, that is, the test length of 20 mm. %) On the horizontal axis and tensile stress (MPa) on the vertical axis. The yield point of the stress-strain curve of a polyimide film may be confusing, for example as shown in FIG. Therefore, the strain (%) at the yield point of the stress-strain curve of the polyimide film of the present invention can be specifically determined as follows.
In the stress-strain curve, sampling is started from a point at which strain is 0.16% and thereafter sampled every 0.21% increase (this is defined as dx). That is, dx is the difference (change amount) from the value sampled immediately before that, and only the initial value is 0.16%, and then 0.21%. On the other hand, dy is the difference (amount of change) from the value sampled one before in the value of the tensile stress according to the strain. After calculating dx and dy, graph the horizontal axis as strain% and the vertical axis as dy / dx (average change rate) (for example, in the case of the stress-strain curve in FIG. 2, the graph shown in FIG. Become). The graph of strain% and dy / dx (average change rate) is basically a downward slope graph as shown in FIG. 3, but the maximum value of dy / dx (average change rate) is obtained Beyond the point, the inflection point of dy / dx appearing first is defined as the yield point. In the case where the inflection point is not observed, the point at which dy / dx becomes 0 for the first time is taken as the yield point.
The strain (%) at the yield point is a value rounded to the first decimal place according to rule B of JIS Z8401: 1999.
2.引張弾性率 
 本発明のポリイミドフィルムは、15mm×40mmの試験片をJIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして測定する25℃における引張弾性率が、1.8GPa以上である。このように、25℃(室温)での引張弾性率が高いことから、保護フィルムとして十分な表面硬度を室温でも維持することができ、表面材乃至基材として用いることができる。前記引張弾性率は、2.0GPa以上であることが好ましく、2.1GPa以上であることがより好ましく、2.3GPa以上であることが更に好ましい。一方で、前記引張弾性率は、屈曲耐性を向上させる点から、5.2GPa以下であることが好ましい。屈曲耐性を向上させる点から、前記引張弾性率は4.0GPa以下であっても良く、3.5GPa以下であっても良く、2.9GPa以下であっても良い。
 前記引張弾性率は、前記応力-ひずみ曲線の降伏点における引張試験と同様にして測定することができる。
2. Tensile modulus
The polyimide film of the present invention has a tensile modulus of at least 1.8 GPa at 25 ° C. measured at a tensile speed of 10 mm / minute and a distance between chucks of 20 mm according to JIS K7127 for a 15 mm × 40 mm test piece. Thus, since the tensile elastic modulus at 25 ° C. (room temperature) is high, the surface hardness sufficient as a protective film can be maintained even at room temperature, and can be used as a surface material or a substrate. The tensile modulus is preferably 2.0 GPa or more, more preferably 2.1 GPa or more, and still more preferably 2.3 GPa or more. On the other hand, the tensile modulus is preferably 5.2 GPa or less from the viewpoint of improving bending resistance. From the viewpoint of improving the bending resistance, the tensile modulus may be 4.0 GPa or less, 3.5 GPa or less, or 2.9 GPa or less.
The tensile modulus can be measured in the same manner as a tensile test at the yield point of the stress-strain curve.
3.全光線透過率 
 本発明のポリイミドフィルムは、前記JIS K7361-1に準拠して測定する全光線透過率が、85%以上である。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。本発明のポリイミドフィルムの前記JIS K7361-1に準拠して測定する全光線透過率は、更に88%以上であることが好ましく、より更に89%以上であることが好ましく、特に90%以上であることが好ましい。
3. Total light transmittance
The polyimide film of the present invention has a total light transmittance of 85% or more as measured in accordance with the aforementioned JIS K7361-1. Such high transmittance allows for good transparency and can be a glass substitute material. The total light transmittance of the polyimide film of the present invention measured according to JIS K7361-1 is preferably 88% or more, more preferably 89% or more, and particularly 90% or more. Is preferred.
 JIS K7361-1に準拠して測定する全光線透過率は、例えば、ヘイズメーター(例えば村上色彩技術研究所製 HM150)により測定することができる。なお、ある厚みの全光線透過率の測定値から、異なる厚みの全光線透過率は、ランベルトベールの法則により換算値を求めることができ、それを利用することができる。
 具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
 フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
The total light transmittance measured according to JIS K7361-1 can be measured, for example, by a haze meter (for example, HM150 manufactured by Murakami Color Research Laboratory). From the measured value of the total light transmittance of a certain thickness, the converted total light transmittance of different thicknesses can be determined according to the Lambert-Beer's law, which can be used.
Specifically, according to Lambert-Beer's law, the transmittance T is
Log 10 (1 / T) = kcb
(K = material-specific constant, c = concentration, b = optical path length)
In the case of the transmittance of a film, c is also a constant assuming that the density is constant even if the film thickness changes, so the above equation can be calculated using Log 10 (1 / T) = fb
It can be expressed as (f = kc). Here, if the transmittance at a certain film thickness is known, the unique constant f of each substance can be determined. Therefore, the transmittance at the desired film thickness can be determined by substituting the specific constant for f and the target film thickness for b using the equation T = 1/10 fb .
4.黄色度
 また、本発明のポリイミドフィルムは、前記JIS K7373-2006に準拠して算出される黄色度(YI値)が、5以下である。このように黄色度が低いことから、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料となり得る。前記JIS K7373-2006に準拠して算出される黄色度(YI値)は、4.5以下であることが好ましく、4以下であることが更に好ましく、3.5以下であることがより更に好ましい。
 なお、黄色度(YI値)は、前記JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出することができる。
  YI=100(1.2769X-1.0592Z)/Y
 なお、ある厚みの黄色度の測定値から、異なる厚みの黄色度は、ある特定の膜厚のサンプルの250nm以上800nm以下の範囲を1nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
4. Yellowness Also, the polyimide film of the present invention has a yellowness (YI value) of 5 or less calculated in accordance with the above-mentioned JIS K7373-2006. Such a low degree of yellowness suppresses yellowish coloring, improves light transmission, and can be a glass substitute material. The yellowness (YI value) calculated in accordance with JIS K 737-2006 is preferably 4.5 or less, more preferably 4 or less, and still more preferably 3.5 or less. .
The degree of yellowness (YI value) can be determined by the spectrophotometric method using an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100) in accordance with JIS K7373-2006. Based on the transmittance measured at 1 nm intervals in the range of 250 nm or more and 800 nm or less using an illuminant C, 2 ° field of view, tristimulus values X, Y, Z in the XYZ color system are determined, and the X, Y , Z can be calculated by the following equation.
YI = 100 (1.2769X-1.0592Z) / Y
In addition, from the measured value of the degree of yellowness of a certain thickness, the degree of yellowness of a different thickness is the total of each transmittance at each wavelength measured at intervals of 1 nm in the range of 250 nm or more and 800 nm or less of a sample with a certain thickness. Similar to the light transmittance, a converted value of each transmittance at each wavelength of different thickness can be obtained according to the Lambert-Beer's law, and it can be calculated and used based on it.
 また、本発明のポリイミドフィルムは、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることがより更に好ましい。
 なお、本発明において、前記黄色度(YI値)を膜厚(μm)で除した値(YI値/膜厚(μm))は、JIS Z8401:1999の規則Bに従い、小数点以下第2位に丸めた値とする。
In addition, the polyimide film of the present invention has a yellowish color suppressed, improves light transmittance, and can be suitably used as a glass substitute material, so that the yellow color is calculated according to the aforementioned JIS K7373-2006. The value (YI value / film thickness (μm)) obtained by dividing the degree (YI value) by the film thickness (μm) is preferably 0.10 or less, more preferably 0.05 or less, and 0.03 It is even more preferable that
In the present invention, the value (YI value / film thickness (μm)) obtained by dividing the yellowness (YI value) by the film thickness (μm) follows the rule B of JIS Z8401: 1999, and the second place after the decimal point It is a rounded value.
5.ポリイミド
 本発明において、ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によって前駆体であるポリアミド酸を得た後、この前駆体をイミド化することが好ましい。従って、本発明で用いられるポリイミドは、主鎖にテトラカルボン酸残基とジアミン残基とを含むものである。なお、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシ基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
5. Polyimide In the present invention, polyimide is obtained by reacting a tetracarboxylic acid component and a diamine component. It is preferable to imidize the precursor after obtaining a polyamic acid which is a precursor by polymerization of a tetracarboxylic acid component and a diamine component. Accordingly, the polyimide used in the present invention is one containing a tetracarboxylic acid residue and a diamine residue in the main chain. The term "tetracarboxylic acid residue" refers to a residue obtained by removing four carboxy groups from tetracarboxylic acid, and represents the same structure as a residue obtained by removing an acid dianhydride structure from tetracarboxylic acid dianhydride. Moreover, a diamine residue means the residue remove | excluding two amino groups from diamine.
 本発明で特定される、前記応力-ひずみ曲線の降伏点におけるひずみ(%)、前記引張弾性率、前記全光線透過率、及び前記黄色度が得られる限り、製膜は、ポリイミド前駆体の状態で成形しそのあと、熱処理によってポリイミドとする熱イミド化法で行っても良いし、ポリイミド前駆体を化学イミド化によってポリイミドとした後、ポリイミド溶液の状態で成形し溶媒を除去することで行っても良いし、また、それら熱イミド化と化学イミド化とを併用した方法で製造することもできる。 As long as the strain (%) at the yield point of the stress-strain curve, the tensile modulus, the total light transmittance, and the yellowness specified in the present invention can be obtained, the film formation is in the state of a polyimide precursor And then heat treated to form a polyimide by heat treatment, or by forming a polyimide precursor into a polyimide by chemical imidization and then molding in a polyimide solution to remove the solvent. Also, it can be produced by a method combining the thermal imidization and the chemical imidization.
 本発明で用いられるポリイミドにおいて、テトラカルボン酸残基になる、テトラカルボン酸成分としては、例えば、芳香族環を有するテトラカルボン酸成分が、ポリイミドフィルムの表面硬度を向上する点から好ましい。
 芳香族環を有するテトラカルボン酸成分としては、芳香族環を有するテトラカルボン酸二無水物、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4-ビス〔(3,4-ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ぺリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
In the polyimide used in the present invention, as the tetracarboxylic acid component to be a tetracarboxylic acid residue, for example, a tetracarboxylic acid component having an aromatic ring is preferable from the viewpoint of improving the surface hardness of the polyimide film.
As the tetracarboxylic acid component having an aromatic ring, tetracarboxylic acid dianhydride having an aromatic ring, for example, pyromellitic acid dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic acid Acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-di Carboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy) Fen ) Methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoro Propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis [(3,4- Dicarboxy) benzoyl] benzene dianhydride, 1,4-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy)] Phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- (1,2-di] Carboxy) phenoxy] phenyl} ketone dianhydride, bi {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, 4,4'-bis [4- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, 4, 4'-bis [3- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [3 -(1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, bis {4- [3- ( 1,2-dicarboxy) Noxy] phenyl} sulfide dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 '-(hexafluoroisopropyl) (Redidene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,4,5,8 -Naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,4,9,10-methane Rylene tetracarboxylic acid dianhydride, 2,3,6,7-anthracene tetracarboxylic acid dianhydride, 1,2,7,8-phenanthrene tetracarboxylic acid dianhydride etc. are mentioned.
 また、本発明に用いるテトラカルボン酸成分としては、ポリイミドフィルムの光透過性の点から、脂肪族環を有するテトラカルボン酸成分も好ましい。
 脂肪族環を有するテトラカルボン酸二無水物としては、例えば、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物等が挙げられる。
 なお、上述したテトラカルボン酸成分は、単独でも、2種以上を混合して用いることもできる。
Moreover, as a tetracarboxylic acid component used for this invention, the tetracarboxylic acid component which has an aliphatic ring is also preferable from the point of the light transmittance of a polyimide film.
Examples of tetracarboxylic acid dianhydrides having an aliphatic ring include cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid Anhydride, cyclobutane tetracarboxylic acid dianhydride, etc. are mentioned.
In addition, the tetracarboxylic acid component mentioned above can also be used individually or in mixture of 2 or more types.
 ジアミン成分としては、例えば、芳香族環を有するジアミンが、ポリイミドフィルムの耐久性と、表面硬度の点から好ましい。
 また、本発明に用いるジアミン成分としては、ポリイミドフィルムの光透過性の点から、脂肪族環を有するジアミンも好ましい。
 また、本発明に係るポリイミドフィルムは、中でも、芳香族環又は脂肪族環を有するジアミン残基と、主鎖にケイ素原子を有するジアミン残基とを含むポリイミドを含有することが好ましい。主成分として芳香族環又は脂肪族環を含んだ分子骨格の間に、主鎖にケイ素原子を有する柔軟な分子骨格を導入することによって、ポリイミドは、屈曲耐性と表面硬度とを両立しやすくなる上、配向性が抑制され易く、複屈折率が低減されたものとなりやすい。
As a diamine component, the diamine which has an aromatic ring, for example is preferable from the point of durability of a polyimide film, and surface hardness.
Moreover, as a diamine component used for this invention, the diamine which has an aliphatic ring is also preferable from the point of the light transmittance of a polyimide film.
Moreover, it is preferable that the polyimide film which concerns on this invention contains the polyimide which contains the diamine residue which has an aromatic ring or an aliphatic ring, and the diamine residue which has a silicon atom in a principal chain especially. By introducing a flexible molecular skeleton having a silicon atom in the main chain between molecular skeletons containing an aromatic ring or an aliphatic ring as a main component, polyimide can easily achieve both bending resistance and surface hardness. In addition, orientation is likely to be suppressed, and birefringence is likely to be reduced.
 芳香族環を有するジアミンとしては、例えば、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、p-フェニレンジアミン、o-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等、及び、前記ジアミンの芳香族環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンを使用することができる。 As the diamine having an aromatic ring, for example, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-bis (4-aminophenyl) propane) Aminophenyl) hexafluoropropane, p-phenylenediamine, o-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide 4,4'-Diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzanilide, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2 (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (4-aminophenyl) -1-phenylethane, 1 -(3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1, 3-Bis (4-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4 -Amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethyl) Ben B) benzene, N, N'-bis (4-aminophenyl) terephthalamide, 9,9-bis (4-aminophenyl) fluorene, 3,3'-dichloro-4,4'-diaminobiphenyl, 3,3 '-Dimethoxy-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy] ) Phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (4- (4-amino) Minophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1 , 4-Bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4'-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4 -(4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, 4,4'-bis [4 4- (4-Aminophenoxy) phenoxy] diphenyl sulfone, 3,3'-diamino-4,4'-diphenoxybenzophenone, 3,3'-diamino 4,4'-Dibiphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 6,6'-bis (4-aminophenoxy) -3,3 And 3 ', 3'-tetramethyl-1,1'-spirobiindane and the like, and part or all of hydrogen atoms on the aromatic ring of the diamine described above as fluoro, methyl, methoxy, trifluoromethyl or Diamines substituted with substituents selected from trifluoromethoxy groups can be used.
 脂肪族環を有するジアミンとしては、例えば、trans-シクロヘキサンジアミン、trans-1,4-ビスメチレンシクロヘキサンジアミン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン等が挙げられる。 Examples of the diamine having an aliphatic ring include trans-cyclohexanediamine, trans-1,4-bismethylenecyclohexanediamine, 2,6-bis (aminomethyl) bicyclo [2,2,1] heptane, 2,5- Bis (aminomethyl) bicyclo [2,2,1] heptane and the like can be mentioned.
 主鎖にケイ素原子を有するジアミンとしては、例えば、下記一般式(A)で表されるジアミンが挙げられる。 As a diamine which has a silicon atom in a principal chain, the diamine represented by the following general formula (A) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000006
(一般式(A)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。kは0~200の数である。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (A), each L independently represents a direct bond or an -O- bond, and each R 10 independently represents a substituent, and may contain an oxygen atom or a nitrogen atom. R 11 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R 11 may independently have a substituent, and may contain an oxygen atom or a nitrogen atom And represents a divalent hydrocarbon group having a number of 1 or more and 20 or less, k is a number of 0 to 200. A plurality of L, R 10 and R 11 may be the same or different from each other)
 R10で表される1価の炭化水素基としては、炭素数1以上20以下のアルキル基、アリール基、及びこれらの組み合わせが挙げられる。アルキル基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキル基としては、炭素数1以上10以下のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。前記環状のアルキル基としては、炭素数3以上10以下のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アリール基としては、炭素数6以上12以下のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。また、R10で表される1価の炭化水素基としては、アラルキル基であっても良く、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
 酸素原子又は窒素原子を含んでいても良い炭化水素基としては、例えば後述する2価の炭化水素基と前記1価の炭化水素基とをエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R10で表される1価の炭化水素基が有していても良い置換基としては、本発明の効果が損なわれない範囲で特に限定されず、例えば、フッ素原子、塩素原子等のハロゲン原子、水酸基等が挙げられる。
The monovalent hydrocarbon groups represented by R 10, the number 1 to 20 alkyl group carbon atoms, an aryl group, and combinations thereof. The alkyl group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Examples thereof include t-butyl group, pentyl group and hexyl group. The cyclic alkyl group is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopentyl group and a cyclohexyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group and a naphthyl group. The monovalent hydrocarbon group represented by R 10 may be an aralkyl group, and examples thereof include a benzyl group, a phenylethyl group and a phenylpropyl group.
Examples of the hydrocarbon group which may contain an oxygen atom or a nitrogen atom include, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond between a divalent hydrocarbon group described later and the monovalent hydrocarbon group. Included is a group bonded via at least one of the bonds (—NH—).
The substituent which the monovalent hydrocarbon group represented by R 10 may have is not particularly limited as long as the effects of the present invention are not impaired, and, for example, a halogen atom such as a fluorine atom or a chlorine atom And hydroxyl groups.
 R10で表される1価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上3以下のアルキル基、又は炭素数6以上10以下のアリール基であることが好ましい。炭素数1以上3以下のアルキル基としては、メチル基であることがより好ましく、前記炭素数6以上10以下のアリール基としては、フェニル基であることがより好ましい。 The monovalent hydrocarbon group represented by R 10 is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms from the viewpoint of improving bending resistance and compatibility with surface hardness. Is preferred. The alkyl group having 1 to 3 carbon atoms is more preferably a methyl group, and the aryl group having 6 to 10 carbon atoms is more preferably a phenyl group.
 R11で表される2価の炭化水素基としては、炭素数1以上20以下のアルキレン基、アリーレン基、及びこれらの組み合わせの基が挙げられる。アルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状と環状の組合せであっても良い。
 炭素数1以上20以下のアルキレン基としては、炭素数1以上10以下のアルキレン基であることが好ましく、例えば、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、シクロヘキシレン基等の直鎖状又は分岐状アルキレン基と環状アルキレン基との組合せの基などを挙げることができる。
 前記アリーレン基としては、炭素数6~12のアリーレン基であることが好ましく、アリーレン基としては、フェニレン基、ビフェニレン基、ナフチレン基等が挙げられ、更に後述する芳香族環に対する置換基を有していても良い。
 酸素原子又は窒素原子を含んでいても良い2価の炭化水素基としては、前記2価の炭化水素基同士をエーテル結合、カルボニル結合、エステル結合、アミド結合、及びイミノ結合(-NH-)の少なくとも1つで結合した基が挙げられる。
 R11で表される2価の炭化水素基が有していても良い置換基としては、前記R10で表される1価の炭化水素基が有していても良い置換基と同様であって良い。
Examples of the divalent hydrocarbon group represented by R 11, an alkylene group having 1 to 20 carbon atoms, an arylene group, and a group of combinations thereof. The alkylene group may be linear, branched or cyclic, and may be linear or a combination of branched and cyclic.
The alkylene group having 1 or more and 20 or less carbon atoms is preferably an alkylene group having 1 or more and 10 or less carbon atoms, and for example, a straight chain such as methylene group, ethylene group, various propylene groups, various butylene groups and cyclohexylene groups Examples include groups in combination of linear or branched alkylene groups and cyclic alkylene groups.
The arylene group is preferably an arylene group having a carbon number of 6 to 12, and examples of the arylene group include a phenylene group, a biphenylene group, and a naphthylene group, and further have a substituent for the aromatic ring described later. May be
Examples of the divalent hydrocarbon group which may contain an oxygen atom or a nitrogen atom include an ether bond, a carbonyl bond, an ester bond, an amide bond, and an imino bond (-NH-) between the above-mentioned divalent hydrocarbon groups. At least one bonded group is mentioned.
The substituent which the divalent hydrocarbon group represented by R 11 may have is the same as the substituent which the monovalent hydrocarbon group represented by R 10 may have. It is good.
 R11で表される2価の炭化水素基としては、屈曲耐性の向上と表面硬度の両立性の点から、炭素数1以上6以下のアルキレン基、又は炭素数6以上10以下のアリーレン基であることが好ましく、更に、炭素数2以上4以下のアルキレン基であることがより好ましい。 The divalent hydrocarbon group represented by R 11 is an alkylene group having 1 to 6 carbon atoms, or an arylene group having 6 to 10 carbon atoms, from the viewpoint of improving bending resistance and compatibility with surface hardness. It is more preferable that it is an alkylene group having 2 to 4 carbon atoms.
 中でも、保護フィルムとして十分な表面硬度を維持しつつ、屈曲耐性を向上したものを実現する観点から、主鎖にケイ素原子を有するジアミン残基は、主鎖にケイ素原子を1個又は2個有するジアミン残基であることが好ましく、中でも主鎖にケイ素原子を2個有するジアミン残基であることが好ましい。芳香族環又は脂肪族環を含んだ剛直な分子骨格の間に、主鎖にケイ素原子を1個又は2個有する短い柔軟な分子骨格を特定量導入したポリイミドは、芳香族環又は脂肪族環を含んだ分子骨格由来の弾性率を維持しつつ、前記弾性変形領域が比較的大きいポリイミドフィルムが得られやすく、表面硬度と屈曲耐性を両立させやすいと考えられる。 Among them, a diamine residue having a silicon atom in the main chain has one or two silicon atoms in the main chain, from the viewpoint of achieving an improved resistance to bending while maintaining a sufficient surface hardness as a protective film. It is preferably a diamine residue, and more preferably a diamine residue having two silicon atoms in the main chain. A polyimide in which a specific amount of a short flexible molecular skeleton having one or two silicon atoms in the main chain is introduced between a rigid molecular skeleton containing an aromatic ring or an aliphatic ring is an aromatic ring or an aliphatic ring. It is considered that a polyimide film having a relatively large elastic deformation area can be easily obtained while maintaining the elastic modulus derived from the molecular skeleton containing the above, and the surface hardness and the bending resistance can be easily reconciled.
 主鎖にケイ素原子を1個有するジアミンとしては、例えば、下記一般式(A-1)で表されるジアミンが挙げられる。また、主鎖にケイ素原子を2個有するジアミンとしては、例えば、下記一般式(A-2)で表されるジアミンが挙げられる。 Examples of diamines having one silicon atom in the main chain include diamines represented by the following general formula (A-1). Further, examples of the diamine having two silicon atoms in the main chain include diamines represented by the following general formula (A-2).
Figure JPOXMLDOC01-appb-C000007
(一般式(A-1)及び一般式(A-2)において、Lはそれぞれ独立して、直接結合又は-O-結合であり、R10はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の1価の炭化水素基を表す。R11はそれぞれ独立して、置換基を有していても良く、酸素原子又は窒素原子を含んでいても良い炭素数1以上20以下の2価の炭化水素基を表す。複数あるL、R10及びR11は、それぞれ同一であっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (A-1) and the general formula (A-2), L is each independently a direct bond or -O- bond, and each R 10 independently has a substituent Or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may contain an oxygen atom or a nitrogen atom, and each R 11 may independently have a substituent, and an oxygen atom Or a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a nitrogen atom, and a plurality of L, R 10 and R 11 may be identical to or different from each other)
 屈曲耐性の向上と表面硬度の両立性の点から、主鎖にケイ素原子を1個又は2個有するジアミン残基の分子量は、1000以下であることが好ましく、800以下であることがより好ましく、500以下であることがより更に好ましく、300以下であることが特に好ましい。
 主鎖にケイ素原子を1個又は2個有するジアミン残基は単独でも、2種以上を混合して用いることもできる。
The molecular weight of the diamine residue having one or two silicon atoms in the main chain is preferably 1000 or less, and more preferably 800 or less, from the viewpoint of improving the bending resistance and compatibility with the surface hardness. More preferably, it is 500 or less, and particularly preferably 300 or less.
The diamine residue having one or two silicon atoms in the main chain may be used alone or in combination of two or more.
 また、主鎖にケイ素原子を1個又は2個有するジアミンが、ケイ素原子を2個有するジアミンであることが、得られるポリイミドの光透過性の点、及び屈曲耐性及び表面硬度の点から好ましく、更に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、1,3-ビス(5-アミノペンチル)テトラメチルジシロキサン等が、これら化合物の入手容易性や得られるポリイミドの光透過性と表面硬度の両立の観点から好ましい。 In addition, it is preferable that the diamine having one or two silicon atoms in the main chain is a diamine having two silicon atoms from the viewpoint of light transmittance of the resulting polyimide, and in terms of bending resistance and surface hardness, Furthermore, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,3-bis (5-aminopentyl) tetramethyldisiloxane, etc. However, it is preferable from the viewpoints of the availability of these compounds and the light transmittance and surface hardness of the resulting polyimide.
 主鎖にケイ素原子を有するジアミンを用いる場合、ジアミンの総量のうち、主鎖にケイ素原子を有するジアミンの割合は、特に限定はされないが、得られるポリイミドフィルムの屈曲耐性を向上する点から、1モル%以上であることが好ましく、2.5モル%以上であることがより好ましく、5モル%以上であることがより更に好ましい。また、得られるポリイミドフィルムの屈曲耐性及び表面硬度の点から、50モル%以下であることが好ましく、45モル%以下であることが好ましく、30モル%以下であることがより好ましい。 When using a diamine having a silicon atom in the main chain, the ratio of the diamine having a silicon atom in the main chain to the total amount of diamine is not particularly limited, but from the viewpoint of improving the bending resistance of the obtained polyimide film, 1 It is preferable that it is mol% or more, It is more preferable that it is 2.5 mol% or more, It is still more preferable that it is 5 mol% or more. Moreover, it is preferable that it is 50 mol% or less, it is preferable that it is 45 mol% or less, and it is more preferable that it is 30 mol% or less from the point of the bending resistance of the polyimide film obtained, and surface hardness.
 また、得られるポリイミドの表面硬度が向上する点から、テトラカルボン酸成分とジアミン成分の総量を100モル%としたときに、芳香族環を有するテトラカルボン酸及び芳香族環を有するジアミンの合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。 Also, from the viewpoint of improving the surface hardness of the obtained polyimide, when the total amount of the tetracarboxylic acid component and the diamine component is 100 mol%, the total of the tetracarboxylic acid having an aromatic ring and the diamine having an aromatic ring is It is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 75 mol% or more.
 本発明においては、前記ポリイミドが、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むことが好ましく、更に、これらの構造に加えて、主鎖にケイ素原子を有するジアミン残基を含むことが好ましい。
 本発明においては、前記ポリイミドが、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり耐久性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。
 ポリイミドに(i)フッ素原子を含むと、ポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。更に、ポリイミドに(i)フッ素原子を含むと、吸湿性が抑制されるため、吸湿性が高い場合に塑性変形領域が広がるという傾向を抑制でき、高湿度環境下での屈曲耐性を良好にできる。
 ポリイミドに(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
 ポリイミドに(iii)芳香族環同士をスルホニル基又はフッ素で置換されていても良いアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
In the present invention, the polyimide may contain an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic ring may be substituted with a sulfonyl group or fluorine. It is preferable to include at least one selected from the group consisting of an alkylene group-linked structure, and further to include, in addition to these structures, a diamine residue having a silicon atom in the main chain.
In the present invention, when the polyimide contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring, the molecular skeleton becomes rigid and the durability is enhanced, and the surface hardness is increased. However, the rigid aromatic ring skeleton tends to extend the absorption wavelength to a long wavelength, and the transmittance in the visible light range tends to decrease.
When the polyimide contains (i) a fluorine atom, the light transmission is improved because the charge transfer of the electronic state in the polyimide skeleton can be made difficult. Furthermore, if the polyimide contains (i) a fluorine atom, the hygroscopicity is suppressed, so that the tendency of the plastic deformation region to expand when the hygroscopicity is high can be suppressed, and the bending resistance in a high humidity environment can be made favorable. .
When the polyimide contains (ii) an aliphatic ring, the light transmission is improved from the point of being able to inhibit the movement of charges in the skeleton by breaking the conjugation of π electrons in the polyimide skeleton.
When the polyimide has a structure in which (iii) aromatic rings are linked by an alkylene group which may be substituted with a sulfonyl group or a fluorine group, the charge transfer in the skeleton is broken by breaking the conjugation of π electrons in the polyimide skeleton. The light transmission is improved because it can be inhibited.
 中でも、フッ素原子を含むポリイミドであることが、光透過性を向上し、且つ、表面硬度、及び屈曲耐性を向上する点から好ましく用いられる。
 フッ素原子の含有割合は、ポリイミド表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1以下であることが好ましく、更に0.8以下であることが好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
Among them, a polyimide containing a fluorine atom is preferably used from the viewpoint of improving the light transmittance and improving the surface hardness and the bending resistance.
The content ratio of fluorine atoms is preferably such that the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) when the polyimide surface is measured by X-ray photoelectron spectroscopy is 0.01 or more Furthermore, it is preferable that it is 0.05 or more. On the other hand, if the content ratio of fluorine atoms is too high, the heat resistance and the like inherent to the polyimide may be lowered, so the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) is 1 or less Is preferably, and further preferably 0.8 or less.
Here, the above ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Theta Probe, manufactured by Thermo Scientific) .
 また、得られるポリイミドの表面硬度と光透過性の点、及び屈曲耐性の点から、テトラカルボン酸、及びケイ素原子を有しないジアミンの少なくとも1つが、芳香族環とフッ素原子とを含むことが好ましく、更に、テトラカルボン酸、及びケイ素原子を有しないジアミンの両方が、芳香族環とフッ素原子とを含むことが好ましい。
 得られるポリイミドの表面硬度と光透過性の点、及び屈曲耐性の点から、テトラカルボン酸成分とジアミン成分の総量を100モル%としたときに、芳香族環及びフッ素原子を有するテトラカルボン酸及び芳香族環及びフッ素原子を有するジアミンの総量が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、75モル%以上であることがより更に好ましい。
Further, in view of surface hardness and light transmittance of the obtained polyimide and bending resistance, it is preferable that at least one of a tetracarboxylic acid and a diamine not having a silicon atom contains an aromatic ring and a fluorine atom. Furthermore, it is preferred that both the tetracarboxylic acid and the diamine not having a silicon atom contain an aromatic ring and a fluorine atom.
A tetracarboxylic acid having an aromatic ring and a fluorine atom, when the total amount of the tetracarboxylic acid component and the diamine component is 100 mol%, from the viewpoint of surface hardness and light transmittance of the obtained polyimide and the point of bending resistance. The total amount of the diamine having an aromatic ring and a fluorine atom is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 75 mol% or more.
 また、テトラカルボン酸成分及びジアミン成分にそれぞれ含まれる、炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子であることが、得られるポリイミドの光透過性を向上し、且つ、表面硬度を向上する点、及び屈曲耐性の点から好ましく用いられる。炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、60%以上であることが好ましく、70%以上であることがより好ましい。
 テトラカルボン酸成分及びジアミン成分にそれぞれ含まれる、炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率や黄色度YI値の変化が少ない点、及び屈曲耐性の低下を抑制する点から好ましい。炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合には、酸素との反応性が低いため、得られるポリイミドの化学構造が変化し難く、酸化によるポリイミドフィルムの劣化が抑制されることが推定される。ポリイミドフィルムはその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、テトラカルボン酸成分及びジアミン成分にそれぞれ含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。
 ここで、ポリイミドに含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、又は、超臨界メタノールにより分解し、得られた分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計及びNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
In addition, the light transmittance of the resulting polyimide is improved in that at least 50% of the hydrogen atoms bonded to carbon atoms contained in the tetracarboxylic acid component and the diamine component are hydrogen atoms directly bonded to the aromatic ring. And from the viewpoint of improving surface hardness and bending resistance. The percentage of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) bonded to carbon atoms is preferably 60% or more, more preferably 70% or more .
When 50% or more of the hydrogen atoms bonded to carbon atoms contained in each of the tetracarboxylic acid component and the diamine component are hydrogen atoms directly bonded to the aromatic ring, even after the heating step in the air, for example, Even if stretching is performed at 200 ° C. or higher, it is preferable from the viewpoint of little change in optical characteristics, particularly total light transmittance and yellowness YI value, and in view of suppressing a decrease in bending resistance. If 50% or more of the hydrogen atoms bonded to carbon atoms are hydrogen atoms directly bonded to the aromatic ring, the reactivity with oxygen is low, so the chemical structure of the resulting polyimide is unlikely to change, and oxidation It is estimated that the deterioration of the polyimide film is suppressed. Polyimide films make use of their high heat resistance and are often used for devices that require processing steps involving heating, but 50% of hydrogen atoms bonded to carbon atoms contained in the tetracarboxylic acid component and diamine component, respectively. If the above is a hydrogen atom directly bonded to the aromatic ring, there is no need to carry out these subsequent steps under an inert atmosphere to maintain transparency, so equipment costs and atmosphere control costs can be reduced. There is a merit that it can control.
Here, the ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) in carbon atoms contained in the polyimide is high-performance liquid chromatography, gas chromatography mass of polyimide decomposition product It can be determined using an analyzer and NMR. For example, the sample is decomposed by an aqueous alkaline solution or supercritical methanol, and the resulting decomposition product is separated by high performance liquid chromatography, and the qualitative analysis of each separated peak is performed by gas chromatography mass spectrometry, NMR, etc. The ratio of hydrogen atoms (number) directly bonded to the aromatic ring in all hydrogen atoms (number) in the polyimide can be determined by performing measurement using high performance liquid chromatography.
 本発明に係るポリイミドフィルムは、下記一般式(1)で表される構造を有するポリイミドを含有することが好ましい。 It is preferable that the polyimide film which concerns on this invention contains the polyimide which has a structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000008
(一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、複数のRは各々同一であっても異なっていても良く、Rはジアミン残基である2価の基を表し、複数のRは各々同一であっても異なっていても良く、複数のRの少なくとも一部が芳香族環又は脂肪族環を有するジアミン残基を含む。nは繰り返し単位数を表す。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be identical to or different from each other) And R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a portion of the plurality of R 2 is an aromatic ring or an aliphatic ring Containing diamine residues, n represents the number of repeating units)
 Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、複数のRは各々同一であっても異なっていても良い。
 Rにおける芳香族環を有するテトラカルボン酸二無水物、及び、脂肪族環を有するテトラカルボン酸二無水物としては、前記と同様のものを用いることができる。
 これらは単独でも、2種以上を混合して用いることもできる。
R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be the same or different.
As the tetracarboxylic dianhydride having an aromatic ring in R 1 and the tetracarboxylic dianhydride having an aliphatic ring, those similar to the above can be used.
These may be used alone or in combination of two or more.
 中でも、得られるポリイミドにおける光透過性の点、及び屈曲耐性及び表面硬度の点から、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であることが好ましい。 Among them, R 1 in the general formula (1) is a residue of cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid, from the viewpoint of light transmittance in the polyimide to be obtained, and bending resistance and surface hardness. Anhydride residue, Dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, pyromellitic acid dianhydride residue, 3,3 ′ 1,4,4'-biphenyltetracarboxylic acid dianhydride residue, 2,2 ', 3,3'-biphenyltetracarboxylic acid dianhydride residue, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride Residue, 3,4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic acid Anhydride residue, and is preferably at least one tetravalent group selected from the group consisting of 3,4'-oxydiphthalic anhydride residue.
 特に光透過性が良い点から、テトラカルボン酸成分は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、及び、3,4’-オキシジフタル酸無水物からなる群から選ばれる少なくとも1種であることがより好ましい。 The tetracarboxylic acid component is particularly preferably 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 3,4'-(hexafluoroisopropylidene) diphthalic anhydride, and 3,3 from the viewpoint of good light transmittance. More preferably, it is at least one selected from the group consisting of '-(hexafluoroisopropylidene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, and 3,4'-oxydiphthalic anhydride.
 テトラカルボン酸成分としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物からなる群から選択される少なくとも一種のような、得られるポリイミドに対し剛直性を向上するのに適したテトラカルボン酸群(グループA)と、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-オキシジフタル酸無水物、及び、3,4’-オキシジフタル酸無水物からなる群から選択される少なくとも一種のような光透過性を向上するのに適したテトラカルボン酸群(グループB)とを混合して用いることも好ましい。この場合、前記剛直性を向上するのに適したテトラカルボン酸群(グループA)と、光透過性を向上するのに適したテトラカルボン酸群(グループB)との含有比率は、光透過性を向上するのに適したテトラカルボン酸群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
 中でも、前記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物の少なくとも一種を用いることが、得られるポリイミドにおける光透過性の向上の点から好ましい。
As a tetracarboxylic acid component, pyromellitic acid dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride, and 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride Tetracarboxylic acid group (group A) suitable for improving the rigidity of the resulting polyimide, such as at least one member selected from the group consisting of: cyclohexane tetracarboxylic acid dianhydride, cyclopentane tetracarbon Acid dianhydride, dicyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride, cyclobutanetetracarboxylic acid dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid anhydride, 3 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride, 4,4 ' A mixture of a tetracarboxylic acid group (group B) suitable for improving light transmittance such as at least one selected from the group consisting of -oxydiphthalic anhydride and 3,4'-oxydiphthalic anhydride It is also preferable to use as it is. In this case, the content ratio of the tetracarboxylic acid group (group A) suitable for improving the rigidity and the tetracarboxylic acid group (group B) suitable for improving the light transmittance is the light transmittance. 0.05 mol or more and 9 mol or less of tetracarboxylic acid group (group A) suitable for improving the rigidity with respect to 1 mol of tetracarboxylic acid group (group B) suitable for improving Is more preferably 0.1 to 5 moles, and still more preferably 0.3 to 4 moles.
Among them, at least one of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride and 3,4'-(hexafluoroisopropylidene) diphthalic anhydride containing a fluorine atom is used as the group B. It is preferable from the point of the improvement of the light transmittance in the polyimide obtained.
 前記一般式(1)においてRは、ジアミン残基である2価の基を表し、複数のRは各々同一であっても異なっていても良く、複数のRの少なくとも一部が芳香族環又は脂肪族環を有するジアミン残基を含むものであれば特に制限はない。2価のジアミン残基としては、前記と同様のものを用いることができる。
 これらは単独でも、2種以上を混合して用いることもできる。
In the general formula (1), R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a part of the plurality of R 2 is aromatic There is no particular limitation as long as it contains a diamine residue having a group ring or an aliphatic ring. As a bivalent diamine residue, the thing similar to the above can be used.
These may be used alone or in combination of two or more.
 Rに含まれる芳香族環又は脂肪族環を有するジアミン残基としても、それぞれ、前記と同様のものを用いることができる。
 これらは単独でも、2種以上を混合して用いることもできる。
Even diamine residue having an aromatic ring or an aliphatic ring contained in R 2, may each, using the same as those described above.
These may be used alone or in combination of two or more.
 中でも、光透過性と屈曲耐性の点及び表面硬度の点、低吸湿性の観点から、前記一般式(1)中のRにおける芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。下記一般式(2)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましい。 Among them, the diamine residue having an aromatic ring or an aliphatic ring in R 2 in the general formula (1) is trans-, from the viewpoint of light transmittance, bending resistance, surface hardness and low hygroscopicity. Cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) Propane residue, 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4, 1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, 2,2-bis [4- (4 At least one member selected from the group consisting of aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residues, and divalent groups represented by the following general formula (2) It is preferable that it is a valent group. As a divalent group represented by the following general formula (2), it is more preferable that R 3 and R 4 be a perfluoroalkyl group.
Figure JPOXMLDOC01-appb-C000009
(一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
 これらは単独でも、2種以上を混合して用いることもできる。
Figure JPOXMLDOC01-appb-C000009
(In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or a perfluoroalkyl group.)
These may be used alone or in combination of two or more.
 また、屈曲耐性を向上する好ましい1つの実施態様としては、複数のRの一部として主鎖にケイ素原子を有するジアミン残基が含まれることが挙げられる。Rとして好ましく使用することができる主鎖にケイ素原子を有するジアミン残基は、上述のとおりであるため、ここでは説明を省略する。 Moreover, as one preferable embodiment which improves a bending | flexion tolerance, it is mentioned that the diamine residue which has a silicon atom in a principal chain as some R < 2 > is contained. Since the diamine residue which has a silicon atom in the principal chain which can be preferably used as R 2 is as described above, the description is omitted here.
 前記一般式(1)のRとして主鎖にケイ素原子を有するジアミン残基を含む場合には、前記一般式(1)のRにおいて、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性と表面硬度を両立させる点から好ましい。前記一般式(1)のRは、屈曲耐性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の3.5モル%以上であることが好ましく、更に5モル%以上であることが好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を有するジアミン残基が、Rの総量の10モル%超過であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましい。
 なお、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることを満たせば、前記一般式(1)のRに、主鎖にケイ素原子を有するジアミン残基及びケイ素原子を有さず芳香族環又は脂肪族環を有するジアミン残基とは異なる他のジアミン残基を含むことを妨げるものではない。当該他のジアミン残基は、Rの総量の10モル%以下であることが好ましく、更に5モル%以下であることが好ましく、より更に3モル%以下であることが好ましく、特に1モル%以下であることが好ましい。当該他のジアミン残基としては、例えば、ケイ素原子を有さず、且つ芳香族環又は脂肪族環を有しないジアミン残基等が挙げられる。
 中でも、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を有するジアミン残基のモル%(xモル%)の残り(100%-x%)である50モル%以上99モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
When containing a diamine residue having a silicon atom in the main chain as R 2 in the general formula (1), in R 2 in the general formula (1), 2.5 mol% to 50 mol of the total amount of R 2 % Or less is a diamine residue having a silicon atom in the main chain, and 50 to 97.5 mol% of the total amount of R 2 has no silicon atom and has an aromatic ring or an aliphatic ring It is preferable that it is a diamine residue from the point of making bending resistance and surface hardness make compatible. From the viewpoint of improving bending resistance, R 2 in the general formula (1) is preferably a diamine residue having a silicon atom in the main chain is 3.5 mol% or more of the total amount of R 2 , and more preferably 5 It is preferable that it is mol% or more. Further, from the viewpoint of reducing optical distortion, the diamine residue having a silicon atom in the main chain may exceed 10 mol% of the total amount of R 2 , or may be 15 mol% or more. On the other hand, R 2 in the general formula (1) is that the diamine residue having a silicon atom in the main chain is 45 mol% or less of the total amount of R 2 from the viewpoint of improving surface hardness and light transmittance. Preferably, it is more preferably 40 mol% or less.
Incidentally, 50 mol% 2.5 mol% or more of the total amount of R 2 or less, a diamine residue having a silicon atom in the main chain, or less 97.5 mol% 50 mol% or more of the total amount of R 2, silicon If it is satisfied that the diamine residue has no atom and has an aromatic ring or an aliphatic ring, a diamine residue having a silicon atom in the main chain and a silicon atom in R 2 of the general formula (1) are satisfied. It does not prevent including other diamine residue different from the diamine residue which does not have an aromatic ring or an aliphatic ring. The other diamine residue is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, and particularly preferably 1 mol% or less of the total amount of R 2 It is preferable that it is the following. As the said other diamine residue, the diamine residue etc. which do not have a silicon atom and do not have an aromatic ring or an aliphatic ring are mentioned, for example.
Among them, more than 2.5 mol% of the total amount of R 2 50 mol% or less, a diamine residue having a silicon atom in the main chain, of the total amount of R 2 (100 mol%), silicon atoms in the main chain The remaining (100% -x%) of the remaining (100% -x%) of the mole% (x mole%) of the diamine residue having 50 has no silicon atom and has an aromatic ring or an aliphatic ring It is preferable that it is a diamine residue.
 中でも、前記一般式(1)のRにおいて、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性と表面硬度を両立させる点から好ましい。
 また、中でも、Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが、屈曲耐性と表面硬度を両立させる点から好ましい。
 前記一般式(1)のRは、屈曲耐性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の3.5モル%以上であることが好ましく、更に5モル%以上であることがより好ましい。また、光学歪みを低減する点からは、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の10モル%超過であっても良く、15モル%以上であっても良い。一方、前記一般式(1)のRは、表面硬度と光透過性を向上する点から、主鎖にケイ素原子を1個又は2個有するジアミン残基が、Rの総量の45モル%以下であることが好ましく、更に40モル%以下であることが好ましい。
 中でも、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量(100モル%)のうち、前記主鎖にケイ素原子を1個又は2個有するジアミン残基のモル%(xモル%)の残り(100%-x%)である50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基であることが好ましい。
Among them, the R 2 in the general formula (1), 50 mol% 2.5 mol% or more of the total amount of R 2 or less, a diamine residue having one or two silicon atoms in the main chain, R 2 It is preferable from the point of being compatible with bending resistance and surface hardness that 50 mol% or more and 97.5 mol% or less of the total amount of is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring .
Further, among them, R 2 represents a divalent group which is at least one selected from a diamine residue having no silicon atom, and a diamine residue having one or two silicon atoms in the main chain, R 50 mol% 2.5 mol% or more of 2 total less is a diamine residue having one or two silicon atoms in the main chain, the following is 97.5 mol% 50 mol% or more of the total amount of R 2 It is preferable that it is a diamine residue which does not have a silicon atom and has an aromatic ring or an aliphatic ring from the point of making a bending tolerance and surface hardness compatible.
From the viewpoint of improving bending resistance, R 2 in the general formula (1) is that the diamine residue having one or two silicon atoms in the main chain is 3.5 mol% or more of the total amount of R 2 Is more preferable, and more preferably 5 mol% or more. Further, from the viewpoint of reducing optical distortion, the diamine residue having one or two silicon atoms in the main chain may be more than 10% by mole of the total amount of R 2 and is 15% by mole or more. Also good. On the other hand, R 2 in the general formula (1) is 45 mol% of the total amount of R 2 in the diamine residue having one or two silicon atoms in the main chain from the viewpoint of improving surface hardness and light transmittance. It is preferable that it is the following and it is further more preferable that it is 40 mol% or less.
Among them, 50 mole% 2.5 mol% or more of the total amount of R 2 or less is a main one silicon atom in a chain or two with diamine residue, of the total amount of R 2 (100 mol%), the 50 mol% or more and 97.5 mol% or less, which is the remainder (100% -x%) of the mol% (x mol%) of the diamine residue having one or two silicon atoms in the main chain have a silicon atom Preferably, it is a diamine residue having an aromatic ring or an aliphatic ring.
 また、本発明で用いられるポリイミドは、屈曲耐性及び表面硬度の点から、ポリイミド中のケイ素原子の含有割合(質量%)が0.7質量%以上6.5質量%以下であることが好ましく、0.7質量%以上5.5質量%以下であることがより好ましく、0.7質量%以上4.2質量%以下であることがより更に好ましい。
 ここで、ポリイミド中のケイ素原子の含有割合(質量%)は、ポリイミドが2種以上の場合は2種以上の全ポリイミド中のケイ素原子の含有割合(質量%)をいい、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中のケイ素原子の含有割合(質量%)は、上記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
In addition, it is preferable that the content ratio (mass%) of silicon atoms in the polyimide is 0.7 mass% or more and 6.5 mass% or less, from the viewpoint of bending resistance and surface hardness, in the polyimide used in the present invention. It is more preferable that it is 0.7 mass% or more and 5.5 mass% or less, and still more preferable that it is 0.7 mass% or more and 4.2 mass% or less.
Here, the content ratio (mass%) of silicon atoms in the polyimide means the content ratio (mass%) of silicon atoms in two or more types of all the polyimides in the case of two or more types of polyimides. It can be determined from molecular weight. Moreover, the content rate (mass%) of the silicon atom in a polyimide is a high performance liquid chromatography, a gas chromatograph mass spectrometer, NMR, an elemental analysis, XPS / ESCA and TOF about the decomposition product of the polyimide obtained similarly to the above. -It can be determined using SIMS.
 また、屈曲耐性と表面硬度を両立する点及び光透過性の点から、別の好ましい1つの実施態様としては、前記一般式(1)において、Rは、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を含む場合が挙げられる。主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基としては、芳香族環同士をヘキサフルオロイソプロピリデン基で連結した構造を含むことが好ましい。 In addition, as another preferable embodiment from the viewpoint of achieving both bending resistance and surface hardness and light transmittance, in the general formula (1), R 2 is a diamine residue having no silicon atom. It represents a divalent group which is at least one selected, and includes a diamine residue having a hexafluoroisopropylidene skeleton in the main chain. As the diamine residue having a hexafluoroisopropylidene skeleton in the main chain, it is preferable to include a structure in which aromatic rings are linked by a hexafluoroisopropylidene group.
 前記一般式(1)のRに、主鎖にケイ素原子を有するジアミン残基を含有しない場合、前記一般式(1)のRが、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、当該ケイ素原子を有しないジアミン残基は、中でも、光透過性と屈曲耐性の点及び表面硬度の点、低吸湿性の観点から、主鎖にヘキサフルオロイソプロピリデン骨格を有し、且つ、炭素原子に対するフッ素原子の割合(個数%)が30%以上であるジアミン残基を含むことがより好ましく、芳香族環同士をヘキサフルオロイソプロピリデン基で連結した構造、及び、芳香族環同士をオキシ基で連結した構造を含み、且つ、炭素原子に対するフッ素原子の割合(個数%)が30%以上であるジアミン残基を含むことがより更に好ましい。 To R 2 in the general formula (1), if not containing the diamine residue having a silicon atom in the main chain, R 2 in the general formula (1) is at least selected from a diamine residue having no silicon atom 1 Among these, the diamine residue which does not have a silicon atom is represented by hexafluoroisopropyl chloride as the main chain from the viewpoints of light transmittance, bending resistance, surface hardness and low hygroscopicity. It is more preferable to include a diamine residue having a redene skeleton and having a ratio of fluorine atoms to carbon atoms (number%) of 30% or more, a structure in which aromatic rings are linked by a hexafluoroisopropylidene group, And it is even more preferable to include a diamine residue having a structure in which aromatic rings are linked by an oxy group, and the ratio of fluorine atoms to carbon atoms (number%) is 30% or more
 前記一般式(1)のRが、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表す場合に、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基としては、光透過性と屈曲耐性の点及び表面硬度の点から、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、及び2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパンからなる群から選択される1種以上が好ましい。前記主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基は、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基からなる群から選択される1種以上のジアミン残基であることがより好ましく、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基であることが、光透過性と屈曲耐性の点及び表面硬度の点、低吸湿性の観点からより更に好ましい。 When R 2 in the general formula (1) represents a divalent group which is at least one selected from diamine residues having no silicon atom, as a diamine residue having a hexafluoroisopropylidene skeleton in the main chain Is 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoro) in terms of light transmittance and flex resistance and surface hardness. Propane-2,2-diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3 -Hexafluoropropane residue, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1 3,3,3 hexafluoropropane, and 2,2-bis (4-aminophenyl) one or more selected from the group consisting of hexafluoropropane is preferred. The diamine residue having a hexafluoroisopropylidene skeleton in the main chain is 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane -2,2-Diyl) bis (4,1-phenyleneoxy)] dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3- One kind selected from the group consisting of hexafluoropropane residue and 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue The above diamine residues are more preferable, and 3,3′-bis (trifluoromethyl) -4,4 ′-[(1,1,1,3,3,3-hexafluoropropane-2,2 -Diyl) bis (4,1-phenyleneoxy)] diani It is down residues, the point of the point and the surface hardness of the light transmitting the bending resistance, more preferred more from the viewpoint of low hygroscopicity.
 前記一般式(1)のRが、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表す場合、光透過性と屈曲耐性の点及び表面硬度の点から、前記Rにおいて、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を、ケイ素原子を有しないジアミン残基の合計100モル%中、70モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがより更に好ましい。 When R 2 in the general formula (1) represents a divalent group which is at least one selected from diamine residues having no silicon atom, from the viewpoints of light transmittance and bending resistance and surface hardness, In R 2 , the diamine residue having a hexafluoroisopropylidene skeleton in the main chain is preferably 70 mol% or more, preferably 80 mol% or more, in 100 mol% in total of diamine residues having no silicon atom Is more preferable, and 90 mol% or more is more preferable.
 ポリイミド中の各繰り返し単位の含有割合、各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中の各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、上記と同様に、アルカリ水溶液、又は、超臨界メタノールにより分解して得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。 The content ratio of each repeating unit in the polyimide, and the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue can be determined from the molecular weight of the feed at the time of polyimide production. In addition, the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide is the decomposition product of the polyimide obtained by decomposition with an alkaline aqueous solution or supercritical methanol as described above. High performance liquid chromatography, gas chromatograph mass spectrometer, NMR, elemental analysis, XPS / ESCA and TOF-SIMS.
 前記一般式(1)で表される構造において、nは繰り返し単位数を表し、1以上であり、通常2以上である。
 ポリイミドにおける繰り返し単位数nは、適宜選択されれば良く、特に限定されない。
 平均繰り返し単位数は、通常10~2000であり、更に15~1000であることが好ましい。
In the structure represented by the general formula (1), n represents the number of repeating units, which is 1 or more, and usually 2 or more.
The number n of repeating units in the polyimide may be appropriately selected, and is not particularly limited.
The average number of repeating units is usually 10 to 2,000, preferably 15 to 1,000.
 本発明に用いられるポリイミドは、1種又は2種以上含有することができる。
 また、本発明に用いられるポリイミドは、本発明の効果が損なわれない限り、ポリアミド構造など、その一部にポリイミドとは異なる構造を有していても良い。
 本発明に用いられるポリイミドは、前記一般式(1)で表される構造が、ポリイミドの全繰り返し単位数の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
 前記一般式(1)で表される構造とは異なる構造としては、例えば、芳香族環又は脂肪族環を有しないテトラカルボン酸残基等が含まれる場合や、ポリアミド構造が挙げられる。
 含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
The polyimide used in the present invention can be contained singly or in combination of two or more.
Moreover, the polyimide used in the present invention may have a structure different from the polyimide in a part thereof, such as a polyamide structure, as long as the effects of the present invention are not impaired.
In the polyimide used in the present invention, the structure represented by the general formula (1) is preferably 95% or more, more preferably 98% or more, and more preferably 100% of the total number of repeating units of the polyimide. Even more preferred is
As a structure different from the structure represented by the said General formula (1), the case where the tetracarboxylic-acid residue etc. which do not have an aromatic ring or an aliphatic ring etc. are contained, for example, and a polyamide structure are mentioned.
Examples of the polyamide structure which may be contained include a polyamideimide structure containing a tricarboxylic acid residue such as trimellitic anhydride, and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
 本発明に用いられるポリイミドは、数平均分子量、または重量平均分子量の少なくともいずれかが、フィルムとした際の強度の点から、10000以上であることが好ましく、更に20000以上であることが好ましい。また、ポリイミドは、屈曲耐性を向上する点から、重量平均分子量が、70000以上であることが好ましく、更に80000以上であることが好ましく、より更に85000以上であることが好ましく、特に95000以上であることが好ましい。一方、平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 なお、本発明に用いられるポリイミドの数平均分子量は、後述するポリイミド前駆体の数平均分子量と同様にして測定することができる。また、本発明に用いられるポリイミドの重量平均分子量は、後述する実施例に記載したポリイミドの重量平均分子量の測定方法を用いることができる。
The polyimide used in the present invention preferably has a number average molecular weight or weight average molecular weight of at least 10000, more preferably at least 20000, from the viewpoint of strength when formed into a film. In addition, from the viewpoint of improving the bending resistance, the polyimide preferably has a weight average molecular weight of 70000 or more, more preferably 80000 or more, still more preferably 85000 or more, and particularly preferably 95000 or more. Is preferred. On the other hand, if the average molecular weight is too large, the viscosity will be high, and there is a possibility that the workability such as filtration may be reduced, so it is preferably 10,000,000 or less, more preferably 500,000 or less.
In addition, the number average molecular weight of the polyimide used for this invention can be measured like the number average molecular weight of the polyimide precursor mentioned later. Moreover, the weight average molecular weight of the polyimide used for this invention can use the measuring method of the weight average molecular weight of the polyimide described in the Example mentioned later.
 本発明に用いられるポリイミドは、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましい。前記ガラス転移温度が150℃以上であることにより、耐熱性に優れ、更に、200℃以上であることが好ましい。また、ガラス転移温度が400℃以下であることにより、ベーク温度を低減することができ、更に、380℃以下であることが好ましい。
 また、本発明に用いられるポリイミドは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましく、これにより、ポリイミドフィルムの室温での表面硬度を向上することができる。また、本発明に用いられるポリイミドは、0℃超過150℃未満の温度領域に更にtanδ曲線のピークを有していても良い。
 本発明に用いられるポリイミドのガラス転移温度は、後述するポリイミドフィルムのガラス転移温度と同様にして測定することができる。
The polyimide used in the present invention preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less. When the glass transition temperature is 150 ° C. or more, the heat resistance is excellent, and preferably 200 ° C. or more. In addition, when the glass transition temperature is 400 ° C. or less, the bake temperature can be reduced, and it is more preferable that the temperature is 380 ° C. or less.
Further, the polyimide used in the present invention preferably has no tan δ curve peak in a temperature range of -150 ° C. or more and 0 ° C. or less, whereby the surface hardness of the polyimide film at room temperature can be improved. The polyimide used in the present invention may further have a tan δ curve peak in a temperature range of more than 0 ° C. and less than 150 ° C.
The glass transition temperature of the polyimide used in the present invention can be measured in the same manner as the glass transition temperature of the polyimide film described later.
6.ポリイミドフィルムの添加剤
 本発明のポリイミドフィルムは、前記ポリイミドの他に、必要に応じて更に添加剤を含有していてもよい。前記添加剤としては、例えば、ポリイミドフィルムの光学的歪みを低減するための無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられる。
6. Additive of Polyimide Film The polyimide film of the present invention may further contain an additive, if necessary, in addition to the above-mentioned polyimide. Examples of the additive include inorganic particles for reducing optical distortion of a polyimide film, silica fillers for facilitating winding, and surfactants for improving film forming properties and defoaming properties. Be
7.ポリイミドフィルムの特性
 本発明のポリイミドフィルムは、前記特定の応力-ひずみ曲線の降伏点におけるひずみ(%)、引張弾性率、全光線透過率、及び黄色度を有する。本発明のポリイミドフィルムは、更に後述する特性を有することが好ましい。
7. Properties of Polyimide Film The polyimide film of the present invention has a strain (%) at the yield point of the specific stress-strain curve, tensile modulus, total light transmittance, and yellowness. The polyimide film of the present invention preferably has the characteristics described below.
 本発明のポリイミドフィルムは、150℃以上400℃以下の温度領域にガラス転移温度を有することが好ましい。前記ガラス転移温度を有する温度領域は、耐熱性に優れる点から、200℃以上であることが好ましく、ベーク温度を低減することができる点から、380℃以下であることが好ましい。
 なお、前記ガラス転移温度は、動的粘弾性測定によって得られる温度-tanδ(tanδ=損失弾性率(E’’)/貯蔵弾性率(E’))曲線のピーク温度から求められるものである。ポリイミドフィルムのガラス転移温度は、tanδ曲線のピークが複数存在する場合、ピークの極大値が最大であるピークの温度をいう。
動的粘弾性測定としては、例えば、動的粘弾性測定装置 RSA III(ティー・エイ・インスツルメント・ジャパン(株))によって、測定範囲を-150℃~400℃として、周波数1Hz、昇温速度5℃/minにより行うことができる。また、サンプル幅を5mm、チャック間距離を20mmとして測定することができる。
 本発明において、tanδ曲線のピークとは、極大値である変曲点を有し、且つ、ピークの谷と谷の間であるピーク幅が3℃以上であるものをいい、ノイズ等測定由来の細かい上下変動については、前記ピークと解釈しない。
 また、本発明のポリイミドフィルムは、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないことが好ましい。主鎖に長いシロキサン結合を有するジアミン残基を有する場合にはこのように低い温度領域にtanδ曲線のピークを有する傾向があり、主鎖にケイ素原子を1個又は2個と短い結合を有するジアミン残基を有する場合、このように低い温度領域に通常、tanδ曲線のピークを有しない。-150℃以上0℃以下の温度領域にtanδ曲線のピークを有するような、主鎖に長いシロキサン結合を有するジアミン残基を有するポリイミドフィルムに比べて、-150℃以上0℃以下の温度領域にtanδ曲線のピークを有しないポリイミドフィルムは、室温での引張弾性率の低下が抑制され、保護フィルムとして十分な表面硬度を維持することができる。
The polyimide film of the present invention preferably has a glass transition temperature in a temperature range of 150 ° C. or more and 400 ° C. or less. The temperature range having the glass transition temperature is preferably 200 ° C. or more from the viewpoint of excellent heat resistance, and is preferably 380 ° C. or less from the viewpoint of being able to reduce the baking temperature.
The glass transition temperature is determined from the peak temperature of a temperature-tan δ (tan δ = loss modulus (E ′ ′) / storage modulus (E ′)) curve obtained by dynamic viscoelasticity measurement. The glass transition temperature of a polyimide film refers to the temperature of a peak at which the maximum value of the peak is maximum when there are a plurality of peaks of the tan δ curve.
As the dynamic viscoelasticity measurement, for example, a measurement range is set to -150 ° C to 400 ° C by a dynamic viscoelasticity measurement device RSA III (TA Instruments Japan Ltd.), a frequency of 1 Hz, temperature rise It can be performed at a rate of 5 ° C./min. Further, the measurement can be performed with a sample width of 5 mm and a distance between chucks of 20 mm.
In the present invention, the peak of the tan δ curve refers to a peak having an inflection point which is a maximum value and having a peak width of 3 ° C. or more between valleys of the peak and noise or the like Fine vertical fluctuation is not interpreted as the above peak.
The polyimide film of the present invention preferably has no tan δ curve peak in a temperature range of -150 ° C or more and 0 ° C or less. In the case of having a diamine residue having a long siloxane bond in the main chain, it tends to have a tan δ curve peak in such a low temperature region, and a diamine having a short bond with one or two silicon atoms in the main chain In the case of having a residue, there is usually no peak of the tan δ curve in such a low temperature region. Compared to a polyimide film with a diamine residue having a long siloxane bond in the main chain that has a tan δ curve peak in a temperature range of -150 ° C to 0 ° C, a temperature range of -150 ° C to 0 ° C The polyimide film having no tan δ curve peak can suppress the decrease in tensile modulus at room temperature, and can maintain a sufficient surface hardness as a protective film.
 また、本発明のポリイミドフィルムにおいては、表面硬度に優れる点から、下記測定法で測定されるヤング率が2.3Gpa以上であることが好ましく、2.4Gpa以上であることがより好ましい。
 ヤング率は、温度25℃で、ISO14577に準拠し、ナノインデンテーション法を用いて測定する。具体的には、測定装置は(株)フィッシャー・インストルメンツ社製、PICODENTOR HM500を用い、測定圧子としてビッカース圧子を用いる。ポリイミドフィルム表面の任意の点を8ヶ所測定して数平均して求めた値をヤング率とする。なお、測定条件は、最大押込み深さ:1000nm、加重時間:20秒、クリープ時間:5秒とする。
Moreover, in the polyimide film of this invention, it is preferable that the Young's modulus measured by the following measuring method is 2.3 Gpa or more, and it is more preferable that it is 2.4 Gpa or more from the point which is excellent in surface hardness.
Young's modulus is measured at a temperature of 25 ° C. in accordance with ISO 14577 using a nanoindentation method. Specifically, a measuring apparatus uses PICODENTOR HM500 manufactured by Fisher Instruments Co., Ltd., and a Vickers indenter is used as a measuring indenter. A value obtained by measuring eight arbitrary points on the surface of the polyimide film and calculating the number average is taken as a Young's modulus. The measurement conditions are: maximum indentation depth: 1000 nm, weighted time: 20 seconds, creep time: 5 seconds.
 本発明のポリイミドフィルムにおいて、鉛筆硬度は2B以上であることが好ましく、B以上であることがより好ましく、HB以上であることがより更に好ましい。
 前記ポリイミドフィルムの鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行うことができる。例えば東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
In the polyimide film of the present invention, the pencil hardness is preferably 2 B or more, more preferably B or more, and even more preferably HB or more.
The pencil hardness of the polyimide film is adjusted according to JIS K 5600-5-4 using a test pencil specified in JIS-S-6006 after conditioning the measurement sample under the conditions of temperature 25 ° C. and relative humidity 60% for 2 hours. It can carry out by performing the pencil hardness test (0. 98N load) prescribed in (1999) on the film surface and evaluating the highest pencil hardness which does not get damaged. For example, a pencil scratching film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
 本発明のポリイミドフィルムにおいては、屈曲耐性の点から、前記特定の応力-ひずみ曲線の降伏点におけるひずみ(%)、前記引張弾性率を求める引張試験において、当該試験で測定される伸び率(引張伸度)が5%以上であることが好ましく、7%以上であることが更に好ましく、8%以上であることがより更に好ましい。一方で、塑性変形の点からは、前記伸び率(引張伸度)が120%以下であることが好ましく、70%以下であることが更に好ましい。
 前記伸び率(%)=100×(L-Lo)/Lo
Lo:試験長20mm、L:破断時の試験長 
In the polyimide film of the present invention, from the point of bending resistance, the strain (%) at the yield point of the specific stress-strain curve, the elongation rate measured in the test in the tensile test for determining the tensile modulus (tensile The elongation) is preferably 5% or more, more preferably 7% or more, and still more preferably 8% or more. On the other hand, in terms of plastic deformation, the elongation (tensile elongation) is preferably 120% or less, and more preferably 70% or less.
Said elongation percentage (%) = 100 × (L-Lo) / Lo
Lo: Test length 20 mm, L: Test length at break
 本発明のポリイミドフィルムにおいては、屈曲耐性に優れる点から、下記動的屈曲試験方法に従って、動的屈曲試験を行った場合に、試験片の内角が140°以上であることが好ましく、145°以上であることがより好ましく、150°以上であることがより更に好ましい。
[動的屈曲試験方法]
 20mm×100mmの大きさに切り出したポリイミドフィルムの試験片を、恒温恒湿器内耐久試験システム(ユアサシステム機器製、面状体無負荷U字伸縮試験治具 DMX-FS)にテープで固定する。また、試験片を長辺の半分の位置で折り曲げ、折り畳まれた状態の試験片の長辺の両端部間の距離が6mmとなり、試験片の折り曲げ部分の曲率半径が3mmとなるように折り畳まれた状態を設定する。その後、60±2℃で93±2%相対湿度(RH)の環境下で、平坦に開いた状態から前記折り畳まれた状態にすることを1回の屈曲として、1分間に90回の屈曲回数で、20万回屈曲を繰り返す。
 その後、試験片を取り外し、得られた試験片の一方の端部を固定し、20万回屈曲を繰り返してから30分後の試験片の内角を測定する。
In the polyimide film of the present invention, the internal angle of the test piece is preferably 140 ° or more, preferably 145 ° or more, when the dynamic bending test is performed according to the following dynamic bending test method, from the viewpoint of excellent bending resistance. Is more preferable, and 150 ° or more is even more preferable.
[Dynamic bending test method]
A test piece of polyimide film cut into a size of 20 mm × 100 mm is taped to the endurance test system in a constant temperature and humidity chamber (made by Yuasa System Co., Ltd., sheet-shaped body no-load U-shaped expansion and contraction test jig DMX-FS) . In addition, the test piece is folded at half of the long side, and the distance between both ends of the long side of the test piece in the folded state is 6 mm, and the curvature radius of the bent portion of the test piece is 3 mm. Set the Thereafter, under the environment of 93 ± 2% relative humidity (RH) at 60 ± 2 ° C., changing from the flat open state to the folded state is regarded as one flexing, 90 flexings per minute. And repeat the bending 200,000 times.
Thereafter, the test piece is removed, one end of the obtained test piece is fixed, and the internal angle of the test piece is measured 30 minutes after repeating the bending of 200,000 times.
 本発明のポリイミドフィルムにおいては、屈曲耐性に優れる点から、下記静的屈曲試験方法に従って、静的屈曲試験を行った場合に、当該試験で測定される内角が155°以上であることが好ましく、160°以上であることがより好ましく、170°以上であることがより更に好ましい。なお図4は、静的屈曲試験の方法を説明するための図である。
[静的屈曲試験方法]
 15mm×40mmに切り出したポリイミドフィルムの試験片1を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片2(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片1の両端部と金属片2との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板3a及び3b(100mm×100mm×0.7mm)で挟み、当該試験片を内径6mmで屈曲した状態で固定する。その際に、金属片とガラス板の間で当該試験片がない部分には、ダミーの試験片4a及び4bを挟み込み、ガラス板が平行になるようにテープで固定する。このようにして屈曲した状態で固定した当該試験片を、室温23±2℃、50±5%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放する。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定する。
In the polyimide film of the present invention, the internal angle measured in the test is preferably 155 ° or more when the static bending test is performed according to the following static bending test method, from the viewpoint of excellent bending resistance. The angle is more preferably 160 ° or more, and still more preferably 170 ° or more. In addition, FIG. 4 is a figure for demonstrating the method of a static bending | flexion test.
[Static bending test method]
Test piece 1 of polyimide film cut out to 15 mm x 40 mm is bent at half of the long side, and both ends of the long side of the test piece are metal pieces 2 (100 mm x 30 mm x 6 mm) with a thickness of 6 mm from the upper and lower surfaces The glass plates 3a and 3b (100 mm × 100 mm) are placed from above and below in a state in which they are arranged so as to be sandwiched and fixed with tape so that overlapping margins on both ends of the test piece 1 and the metal piece 2 are 10 mm each. The test piece is held in a state of bending at an inner diameter of 6 mm. At this time, dummy test pieces 4a and 4b are held between the metal piece and the glass plate in the portion where the test piece is not present, and fixed with a tape so that the glass plates become parallel. The test piece thus fixed in a bent state is allowed to stand for 24 hours under an environment of room temperature 23 ± 2 ° C. and 50 ± 5% relative humidity (RH), and then the glass plate and the fixing tape are removed. , Release the force applied to the test piece. Thereafter, one end of the test piece is fixed, and the internal angle of the test piece is measured 30 minutes after releasing the force applied to the test piece.
 本発明のポリイミドフィルムのヘイズ値は、光透過性の点から、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。当該ヘイズ値は、ポリイミドフィルムの厚みが5μm以上100μm以下において達成できることが好ましい。
 前記ヘイズ値は、JIS K-7136に準拠した方法で測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
The haze value of the polyimide film of the present invention is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less from the viewpoint of light transmittance. The haze value can preferably be achieved when the thickness of the polyimide film is 5 μm or more and 100 μm or less.
The haze value can be measured by a method in accordance with JIS K-7136, and can be measured, for example, by a haze meter HM150 manufactured by Murakami Color Research Laboratory.
 また、本発明のポリイミドフィルムは、前記波長590nmにおける厚み方向の複屈折率は0.040以下であることが好ましく、更に0.020以下であることが好ましい。このような複屈折率を有する場合、本発明のポリイミドフィルムは光学的歪みが低減したものである。そのため、本発明のポリイミドフィルムをディスプレイ用部材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。前記波長590nmにおける厚み方向の複屈折率は、より小さい方が好ましく、0.015以下であることが好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。
 なお、本発明のポリイミドフィルムの前記波長590nmにおける厚み方向の複屈折率は、以下のように求めることができる。
 まず、位相差測定装置(例えば、王子計測機器株式会社製、製品名「KOBRA-WR」)を用いて、25℃、波長590nmの光で、ポリイミドフィルムの厚み方向位相差値(Rth)を測定する。厚み方向位相差値(Rth)は、0度入射の位相差値と、斜め40度入射の位相差値を測定し、これらの位相差値から厚み方向位相差値Rthを算出する。前記斜め40度入射の位相差値は、位相差フィルムの法線から40度傾けた方向から、波長590nmの光を位相差フィルムに入射させて測定する。
 ポリイミドフィルムの厚み方向の複屈折率は、式:Rth/dに代入して求めることができる。前記dは、ポリイミドフィルムの膜厚(nm)を表す。
 なお、厚み方向位相差値は、フィルムの面内方向における遅相軸方向(フィルム面内方向における屈折率が最大となる方向)の屈折率をnx、フィルム面内における進相軸方向(フィルム面内方向における屈折率が最小となる方向)の屈折率をny、及びフィルムの厚み方向の屈折率をnzとしたときに、Rth[nm]={(nx+ny)/2-nz}×dと表すことができる。
In the polyimide film of the present invention, the birefringence in the thickness direction at the wavelength of 590 nm is preferably 0.040 or less, more preferably 0.020 or less. When it has such a birefringence, the polyimide film of the present invention has a reduced optical distortion. Therefore, when the polyimide film of this invention is used as a member for displays, the fall of the display quality of a display can be suppressed. The birefringence in the thickness direction at the wavelength of 590 nm is preferably smaller, preferably 0.015 or less, more preferably 0.010 or less, and still more preferably less than 0.008. .
The birefringence in the thickness direction at the wavelength of 590 nm of the polyimide film of the present invention can be determined as follows.
First, using a retardation measurement device (for example, product made by Oji Scientific Instruments, product name "KOBRA-WR"), measure the thickness direction retardation value (Rth) of polyimide film with light of wavelength 590 nm at 25 ° C. Do. The thickness direction retardation value (Rth) measures the retardation value at 0 degree incidence and the retardation value at 40 degree oblique incidence, and calculates the thickness direction retardation value Rth from these retardation values. The retardation value of the oblique 40-degree incidence is measured by causing light of wavelength 590 nm to be incident on the retardation film from a direction inclined 40 degrees from the normal of the retardation film.
The birefringence in the thickness direction of the polyimide film can be determined by substituting it into the equation: Rth / d. Said d represents the film thickness (nm) of a polyimide film.
The retardation value in the thickness direction is the refractive index nx in the slow axis direction in the in-plane direction of the film (the direction in which the refractive index in the film in-plane direction is maximum), and the fast axis direction (film surface in the film plane) When the refractive index in the direction in which the refractive index in the inward direction is the smallest is ny, and the refractive index in the thickness direction of the film is nz, Rth [nm] = {(nx + ny) / 2-nz} × d be able to.
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のケイ素原子(Si)の原子%は0.1以上10以下が好ましく、0.2以上5以下がさらに好ましい。
 ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
Further, the atomic percentage of silicon atoms (Si) on the surface of the film measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 10 or less, and more preferably 0.2 or more and 5 or less.
Here, the above ratio by the measurement of X-ray photoelectron spectroscopy (XPS) can be determined from the value of atomic% of each atom measured using an X-ray photoelectron spectrometer (for example, Theta Probe, manufactured by Thermo Scientific) .
 また好ましい一形態としては、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上1以下であることが好ましく、更に0.05以上0.8以下であることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)と窒素原子数(N)の比率(F/N)が、0.1以上20以下であることが好ましく、更に0.5以上15以下であることが好ましい。
 また、ポリイミドフィルムのX線光電子分光法により測定した、フィルム表面のフッ素原子数(F)とケイ素原子数(Si)の比率(F/Si)が、1以上50以下であることが好ましく、更に3以上30以下であることが好ましい。
In a preferred embodiment, the ratio (F / C) of the number of fluorine atoms (F) to the number of carbon atoms (C) on the film surface is 0.01 or more and 1 or less, which is measured by X-ray photoelectron spectroscopy of the polyimide film. Is preferable, and more preferably 0.05 or more and 0.8 or less.
In addition, the ratio (F / N) of the number of fluorine atoms (F) to the number of nitrogen atoms (N) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 0.1 or more and 20 or less Furthermore, it is preferable that they are 0.5 or more and 15 or less.
In addition, the ratio (F / Si) of the number of fluorine atoms (F) to the number of silicon atoms (Si) on the film surface measured by X-ray photoelectron spectroscopy of the polyimide film is preferably 1 or more and 50 or less. It is preferably 3 or more and 30 or less.
 また、本発明のポリイミドフィルムにおいては、下記密着性試験方法に従って、密着性試験を行った場合に、塗膜の剥がれが生じないことが、ポリイミドフィルムとハードコート層との密着性の点及びポリイミドフィルムに隣接してハードコート層を積層した積層体の表面硬度の点から好ましい。
[密着性試験方法]
 ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを添加して調製した密着性評価用樹脂組成物を、10cm×10cmに切り出したポリイミドフィルムの試験片上に塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させることにより、10μm膜厚の硬化膜を形成する。当該硬化膜について、JIS K 5600-5-6に準拠したクロスカット試験を行い、テープによる剥離操作を繰り返し5回実施した後、塗膜の剥がれの有無を観察する。
In addition, in the polyimide film of the present invention, when the adhesion test is conducted according to the following adhesion test method, peeling of the coating does not occur, the adhesion between the polyimide film and the hard coat layer, and the polyimide It is preferable from the point of surface hardness of a layered product which laminated a hard court layer adjacent to a film.
[Adhesiveness test method]
A resin composition for adhesive evaluation prepared by adding 10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone to a solution of pentaerythritol triacrylate in 40% by mass methyl isobutyl ketone and 100 parts by mass of pentaerythritol triacrylate Is applied onto a test piece of a polyimide film cut out to 10 cm × 10 cm, and ultraviolet light is irradiated with an exposure amount of 200 mJ / cm 2 in a nitrogen stream to cure, thereby forming a 10 μm-thick cured film. The cured film is subjected to a cross cut test in accordance with JIS K 5600-5-6, and the peeling operation with a tape is repeated five times, and then the presence or absence of peeling of the coating film is observed.
8.ポリイミドフィルムの構成
 本発明のポリイミドフィルムの厚さは、用途により適宜選択されれば良いが、1μm以上であることが好ましく、更に5μm以上であることが好ましく、より更に10μm以上であることが好ましい。一方、200μm以下であることが好ましく、更に150μm以下であることが好ましく、より更に100μm以下であることが好ましく、より更に90μm以下であることが好ましい。
 厚みが薄いと強度が低下し、厚みが厚いと屈曲時の内径と外径の差が大きくなり、フィルムへの負荷が大きくなることから屈曲耐性が低下する恐れがある。
8. Configuration of Polyimide Film The thickness of the polyimide film of the present invention may be appropriately selected depending on the application, but is preferably 1 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more . On the other hand, it is preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and still more preferably 90 μm or less.
If the thickness is small, the strength decreases, and if the thickness is large, the difference between the inner diameter and the outer diameter at the time of bending increases, and the load on the film increases, so that the bending resistance may decrease.
 また、本発明のポリイミドフィルムには、例えば、けん化処理、グロー放電処理、コロナ放電処理、紫外線処理、火炎処理等の表面処理が施されていてもよい。 In addition, the polyimide film of the present invention may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet light treatment, flame treatment and the like.
9.ポリイミドフィルムの製造方法
 本発明のポリイミドフィルムの製造方法としては、前記本発明のポリイミドフィルムを製造できる方法であれば特に制限はない。
<第1の製造方法>
 本発明のポリイミドフィルムの製造方法としては、例えば、第1の製造方法として、
 ポリイミド前駆体であるポリアミド酸と、有機溶剤とを含むポリイミド前駆体樹脂組成物を調製する工程(以下、ポリイミド前駆体樹脂組成物調製工程という)と、
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程(以下、ポリイミド前駆体樹脂塗膜形成工程という)と、
 加熱をすることにより、前記ポリイミド前駆体をイミド化する工程(以下、イミド化工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
9. Method for Producing Polyimide Film The method for producing the polyimide film of the present invention is not particularly limited as long as the method can produce the polyimide film of the present invention.
<First manufacturing method>
As a method for producing the polyimide film of the present invention, for example, as the first production method,
Preparing a polyimide precursor resin composition containing a polyamic acid which is a polyimide precursor and an organic solvent (hereinafter referred to as a polyimide precursor resin composition preparation step);
Applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film (hereinafter referred to as a polyimide precursor resin coating film forming step);
And the step of imidizing the polyimide precursor by heating (hereinafter referred to as an imidization step).
 前記第1の製造方法においては、更に、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する工程(以下、延伸工程という)を有していてもよい。
 以下、各工程について詳細に説明する。
In the first production method, a step of stretching at least one of the polyimide precursor resin coating film and the post-imidized coating film obtained by imidizing the polyimide precursor resin coating film (hereinafter referred to as a stretching step) ) May be included.
Each step will be described in detail below.
(1)ポリイミド前駆体樹脂組成物調製工程
 前記第1の製造方法において調製するポリイミド前駆体樹脂組成物は、ポリイミド前駆体と、有機溶剤とを含有し、必要に応じて添加剤等を含有していてもよい。前記ポリイミド前駆体としては、前述のテトラカルボン酸成分と、前述のジアミン成分との重合によって得られるポリアミド酸が挙げられ、例えば、下記一般式(1’)で表されるポリイミド前駆体が挙げられる。前記一般式(1’)で表されるポリイミド前駆体は、前記一般式(1’)のRにおけるテトラカルボン酸残基となるテトラカルボン酸成分と、前記一般式(1’)のRにおけるジアミン残基となるジアミン成分との重合によって得られるポリアミド酸である。
(1) Polyimide Precursor Resin Composition Preparation Step The polyimide precursor resin composition prepared in the first production method contains a polyimide precursor and an organic solvent, and optionally contains additives and the like. It may be As said polyimide precursor, the polyamic acid obtained by superposition | polymerization with the above-mentioned tetracarboxylic acid component and the above-mentioned diamine component is mentioned, For example, the polyimide precursor represented by following General formula (1 ') is mentioned . The polyimide precursor represented by the general formula (1 ′) is a tetracarboxylic acid component to be a tetracarboxylic acid residue in R 1 of the general formula (1 ′), and R 2 of the general formula (1 ′) Is a polyamic acid obtained by polymerization with a diamine component to be a diamine residue.
Figure JPOXMLDOC01-appb-C000010
(一般式(1’)において、R、R及びnは、前記一般式(1)と同様である。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (1 ′), R 1 , R 2 and n are the same as those in the general formula (1).)
 ここで、前記一般式(1’)のR、R及びnは、前記ポリイミドにおいて説明した前記一般式(1)のR、R及びnと同様のものを用いることができる。 Here, as R 1 , R 2 and n in the general formula (1 ′), those similar to R 1 , R 2 and n in the general formula (1) described in the polyimide can be used.
 前記一般式(1’)で表されるポリイミド前駆体は、数平均分子量、または重量平均分子量の少なくともいずれかが、フィルムとした際の強度の点から、10000以上であることが好ましく、更に20000以上であることが好ましい。また、前記一般式(1’)で表されるポリイミド前駆体は、屈曲耐性を向上する点から、重量平均分子量が、70000以上であることが好ましく、更に80000以上であることが好ましく、より更に85000以上であることが好ましく、特に95000以上であることが好ましい。一方、平均分子量が大きすぎると、高粘度となり、ろ過などの作業性が低下の恐れがある点から、10000000以下であることが好ましく、更に500000以下であることが好ましい。
 ポリイミド前駆体の数平均分子量は、NMR(例えば、BRUKER製、AVANCEIII)により求めることができる。例えば、ポリイミド前駆体溶液をガラス板に塗布して100℃で5分乾燥後、固形分10mgをジメチルスルホキシド-d6溶媒7.5mlに溶解し、NMR測定を行い、芳香族環に結合している水素原子のピーク強度比から数平均分子量を算出することができる。
 ポリイミド前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。
 ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.5mL/分、40℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
The polyimide precursor represented by the general formula (1 ′) preferably has a number average molecular weight or weight average molecular weight of at least 10000 in terms of strength when formed into a film, and more preferably 20000. It is preferable that it is more than. The polyimide precursor represented by the general formula (1 ′) preferably has a weight average molecular weight of 70,000 or more, more preferably 80,000 or more, from the viewpoint of improving the bending resistance. It is preferably 85,000 or more, and particularly preferably 95,000 or more. On the other hand, if the average molecular weight is too large, the viscosity will be high, and there is a possibility that the workability such as filtration may be reduced, so it is preferably 10,000,000 or less, more preferably 500,000 or less.
The number average molecular weight of the polyimide precursor can be determined by NMR (for example, AVANCE III manufactured by BRUKER). For example, after applying a polyimide precursor solution to a glass plate and drying at 100 ° C. for 5 minutes, 10 mg of solid content is dissolved in 7.5 ml of dimethylsulfoxide-d6 solvent, NMR measurement is performed, and it is bonded to an aromatic ring The number average molecular weight can be calculated from the peak intensity ratio of hydrogen atoms.
The weight average molecular weight of the polyimide precursor can be measured by gel permeation chromatography (GPC).
A polyimide precursor is N-methyl pyrrolidone (NMP) solution with a concentration of 0.5% by weight, and a developing solvent is a Tosoh GPC apparatus (HLC-8120, using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less) Column: Measurement is carried out using a sample injection amount of 50 μL, solvent flow rate of 0.5 mL / min, and 40 ° C. using GPC LF-804 manufactured by SHODEX. The weight average molecular weight is determined based on a polystyrene standard sample at the same concentration as the sample.
 前記ポリイミド前駆体溶液は、上述のテトラカルボン酸二無水物と、上述のジアミンとを、溶剤中で反応させて得られる。ポリイミド前駆体(ポリアミド酸)の合成に用いる溶剤としては、上述のテトラカルボン酸二無水物及びジアミンを溶解可能であれば特に制限はなく、例えば非プロトン性極性溶剤または水溶性アルコール系溶剤等を用い得る。本発明においては、中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。中でも、前記ポリイミド前駆体溶液(ポリアミド酸溶液)をそのままポリイミド前駆体樹脂組成物の調製に用いる場合に、ポリイミド前駆体樹脂組成物が後述する無機粒子を含有する場合は、無機粒子の溶解を抑制する点から、窒素原子を含む有機溶剤を用いることが好ましく、中でも、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンもしくはこれらの組み合わせを用いることが好ましい。なお、有機溶剤とは、炭素原子を含む溶剤である。 The polyimide precursor solution can be obtained by reacting the above-described tetracarboxylic acid dianhydride and the above-described diamine in a solvent. The solvent used for synthesis of the polyimide precursor (polyamic acid) is not particularly limited as long as it can dissolve the above-described tetracarboxylic acid dianhydride and diamine, and, for example, an aprotic polar solvent or a water-soluble alcohol solvent etc. It can be used. In the present invention, among others, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like. It is preferable to use an organic solvent containing a nitrogen atom of: γ-butyrolactone or the like. In particular, when the polyimide precursor solution (polyamic acid solution) is used as it is for preparation of a polyimide precursor resin composition, the dissolution of inorganic particles is suppressed when the polyimide precursor resin composition contains inorganic particles described later. From the point of view, it is preferable to use an organic solvent containing a nitrogen atom, and it is preferable to use N, N-dimethylacetamide, N-methyl-2-pyrrolidone or a combination thereof. In addition, an organic solvent is a solvent containing a carbon atom.
 また、前記ポリイミド前駆体溶液が、少なくとも2種のジアミンを組み合わせて調製される場合、少なくとも2種のジアミンの混合溶液に酸二無水物を添加し、ポリアミド酸を合成してもよいし、少なくとも2種のジアミン成分を適切なモル比で段階を踏んで反応液に添加し、ある程度、各原料が高分子鎖へ組み込まれるシーケンスをコントロールしてもよい。
 たとえば、主鎖にケイ素原子を有するジアミンが溶解された反応液に、主鎖にケイ素原子を有するジアミンの0.5等量のモル比の酸二無水物を投入し反応させることで、酸二無水物の両端に主鎖にケイ素原子を有するジアミンが反応したアミド酸を合成し、そこへ、残りのジアミンを全部、又は一部投入し、酸二無水物を加えてポリアミド酸を重合しても良い。この方法で重合すると、主鎖にケイ素原子を有するジアミンが1つの酸二無水物を介して、連結した形でポリアミド酸の中に導入される。
 このような方法でポリアミド酸を重合することは、主鎖にケイ素原子を有するアミド酸の位置関係がある程度特定され、表面硬度を維持しつつ屈曲耐性の優れた膜を得易い点から好ましい。
In addition, when the polyimide precursor solution is prepared by combining at least two diamines, acid dianhydride may be added to a mixed solution of at least two diamines to synthesize a polyamic acid, or at least The two diamine components may be added to the reaction solution in stages at appropriate molar ratios to control the sequence in which each source is incorporated into the polymer chain.
For example, an acid dianhydride having a molar ratio of 0.5 equivalent of a diamine having a silicon atom in the main chain is charged with a reaction solution in which a diamine having a silicon atom in the main chain is dissolved, and then reacted. An amic acid in which a diamine having a silicon atom at the main chain at both ends of the anhydride is reacted is synthesized, into which the remaining diamine is fully or partially introduced, and an acid dianhydride is added to polymerize the polyamic acid. Also good. When polymerized in this manner, diamines having a silicon atom in the main chain are introduced into the polyamic acid in a linked form via one acid dianhydride.
It is preferable to polymerize the polyamic acid by such a method because it is specified to a certain extent by the positional relationship of the amic acid having a silicon atom in the main chain, and a film excellent in bending resistance can be easily obtained while maintaining the surface hardness.
 前記ポリイミド前駆体溶液(ポリアミド酸溶液)中のジアミンのモル数をa、テトラカルボン酸二無水物のモル数をbとしたとき、b/aを0.9以上1.1以下とすることが好ましく、0.95以上1.05以下とすることがより好ましく、0.97以上1.03以下とすることがさらに好ましく、0.99以上1.01以下とすることが特に好ましい。このような範囲とすることにより得られるポリアミド酸の分子量(重合度)を適度に調整することができる。
 重合反応の手順は、公知の方法を適宜選択して用いることができ、特に限定されない。
 また、合成反応により得られたポリイミド前駆体溶液をそのまま用い、そこに必要に応じて他の成分を混合しても良いし、ポリイミド前駆体溶液の溶剤を乾燥させ、別の溶剤に溶解して用いても良い。
When the number of moles of diamine in the polyimide precursor solution (polyamic acid solution) is a, and the number of moles of tetracarboxylic dianhydride is b, b / a may be 0.9 or more and 1.1 or less. Preferably, it is more preferably 0.95 or more and 1.05 or less, still more preferably 0.97 or more and 1.03 or less, and particularly preferably 0.99 or more and 1.01 or less. The molecular weight (polymerization degree) of the polyamic acid obtained by setting it as such a range can be adjusted moderately.
The procedure of the polymerization reaction can be selected appropriately from known methods, and is not particularly limited.
Alternatively, the polyimide precursor solution obtained by the synthesis reaction may be used as it is, and if necessary, other components may be mixed, or the solvent of the polyimide precursor solution may be dried and dissolved in another solvent. You may use.
 前記ポリイミド前駆体溶液の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上200000cps以下であることが好ましい。
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で測定することができる。
The viscosity at 25 ° C. of the polyimide precursor solution is preferably 500 cps or more and 200,000 cps or less from the viewpoint of forming a uniform coating film and polyimide film.
The viscosity of the polyimide precursor solution can be measured at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
 前記ポリイミド前駆体樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、例えば、ポリイミドフィルムの光学的歪みを低減するための無機粒子、巻き取りを円滑にするためのシリカフィラーや、製膜性や脱泡性を向上させる界面活性剤等が挙げられ、前述のポリイミドフィルムにおいて説明したものと同様のものを用いることができる。 The said polyimide precursor resin composition may contain the additive as needed. Examples of the additive include inorganic particles for reducing optical distortion of a polyimide film, silica fillers for facilitating winding, and surfactants for improving film forming properties and defoaming properties. And may be the same as those described above for the polyimide film.
 前記ポリイミド前駆体樹脂組成物に用いられる有機溶剤は、前記ポリイミド前駆体が溶解可能であれば特に制限はない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることができるが、中でも、前述した理由により窒素原子を含む有機溶剤を用いることが好ましい。 The organic solvent used for the polyimide precursor resin composition is not particularly limited as long as the polyimide precursor can be dissolved. For example, it contains a nitrogen atom such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, 1,3-dimethyl-2-imidazolidinone and the like Organic solvents; γ-butyrolactone etc. can be used, but among them, it is preferable to use an organic solvent containing a nitrogen atom for the reason described above.
 前記ポリイミド前駆体樹脂組成物中の前記ポリイミド前駆体の含有量は、均一な塗膜及びハンドリング可能な強度を有するポリイミドフィルムを形成する点から、樹脂組成物の固形分中に50質量%以上であることが好ましく、更に60質量%以上であることが好ましく、上限は含有成分により適宜調整されればよい。
 前記ポリイミド前駆体樹脂組成物中の有機溶剤は、均一な塗膜及びポリイミドフィルムを形成する点から、樹脂組成物中に40質量%以上であることが好ましく、更に50質量%以上であることが好ましく、また99質量%以下であることが好ましい。
The content of the polyimide precursor in the polyimide precursor resin composition is 50% by mass or more in the solid content of the resin composition from the viewpoint of forming a uniform coating film and a polyimide film having a handleable strength. The content is preferably 60% by mass or more, and the upper limit may be appropriately adjusted depending on the ingredients.
The organic solvent in the polyimide precursor resin composition is preferably 40% by mass or more, and more preferably 50% by mass or more in the resin composition, from the viewpoint of forming a uniform coating film and polyimide film. It is preferably 99% by mass or less.
 また、前記ポリイミド前駆体樹脂組成物は、含有水分量が1000ppm以下であることが、ポリイミド前駆体樹脂組成物の保存安定性が良好になり、生産性を向上することができる点から好ましい。ポリイミド前駆体樹脂組成物中に水分を多く含むと、ポリイミド前駆体が分解しやすくなる恐れがある。
 なお、ポリイミド前駆体樹脂組成物の含有水分量は、カールフィッシャー水分計(例えば、三菱化学株式会社製、微量水分測定装置CA-200型)を用いて求めることができる。
 前述のように含有水分量1000ppm以下とするには、使用する有機溶剤を脱水したり、水分量が管理されたものを用いた上で、湿度5%以下の環境下で取り扱うことが好ましい。
Moreover, it is preferable that the storage stability of a polyimide precursor resin composition becomes favorable that the said polyimide precursor resin composition is 1000 ppm or less from the point which can improve productivity. When the polyimide precursor resin composition contains a large amount of water, the polyimide precursor may be easily decomposed.
The water content of the polyimide precursor resin composition can be determined using a Karl-Fisher moisture meter (for example, a trace water content measuring device CA-200 type manufactured by Mitsubishi Chemical Co., Ltd.).
As described above, in order to reduce the water content to 1000 ppm or less, it is preferable to dehydrate the organic solvent to be used or to use one in which the water content is controlled, and handle in an environment of 5% or less of humidity.
 前記ポリイミド前駆体樹脂組成物の固形分15重量%濃度の25℃での粘度は、均一な塗膜及びポリイミドフィルムを形成する点から、500cps以上100000cps以下であることが好ましい。
 ポリイミド前駆体樹脂組成物の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定することができる。
The viscosity at 25 ° C. of a solid content of 15 wt% concentration of the polyimide precursor resin composition is preferably 500 cps or more and 100,000 cps or less from the viewpoint of forming a uniform coating film and polyimide film.
The viscosity of the polyimide precursor resin composition can be measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
(2)ポリイミド前駆体樹脂塗膜形成工程
 前記ポリイミド前駆体樹脂組成物を支持体に塗布して、ポリイミド前駆体樹脂塗膜を形成する工程において、用いられる支持体としては、表面が平滑で耐熱性および耐溶剤性のある材料であれば特に制限はない。例えばガラス板などの無機材料、表面を鏡面処理した金属板等が挙げられる。また支持体の形状は塗布方式によって選択され、例えば板状であってもよく、またドラム状やベルト状、ロールに巻き取り可能なシート状等であってもよい。
(2) Polyimide Precursor Resin Coating Film Forming Step In the step of applying the polyimide precursor resin composition to a support to form a polyimide precursor resin coating film, the surface is smooth and heat resistant as a support to be used. The material is not particularly limited as long as it is a material having resistance and solvent resistance. For example, an inorganic material such as a glass plate, a metal plate whose surface is mirror-finished, and the like can be mentioned. The shape of the support is selected depending on the coating method, and may be, for example, a plate, a drum, a belt, a sheet which can be wound on a roll, or the like.
 前記塗布手段は目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えばダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、リップコータ等の公知のものを用いることができる。
 塗布は、枚葉式の塗布装置により行ってもよく、ロールtoロール方式の塗布装置により行ってもよい。
The application means is not particularly limited as long as it can be applied with a target film thickness, and for example, known means such as die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, lip coater can be used .
The application may be performed by a sheet-fed application apparatus or a roll-to-roll application apparatus.
 ポリイミド前駆体樹脂組成物を支持体に塗布した後は、塗膜がタックフリーとなるまで、150℃以下の温度、好ましくは30℃以上120℃以下で前記塗膜中の溶剤を乾燥する。溶剤の乾燥温度を150℃以下とすることにより、ポリアミド酸のイミド化を抑制することができる。 After the polyimide precursor resin composition is applied to a support, the solvent in the coating is dried at a temperature of 150 ° C. or less, preferably 30 ° C. or more and 120 ° C. or less until the coating becomes tack-free. By setting the drying temperature of the solvent to 150 ° C. or less, imidization of the polyamic acid can be suppressed.
 乾燥時間は、ポリイミド前駆体樹脂塗膜の膜厚や、溶剤の種類、乾燥温度等に応じて適宜調整されれば良いが、通常1分~60分、好ましくは2分~30分とすることが好ましい。上限値を超える場合には、ポリイミドフィルムの作製効率の面から好ましくない。一方、下限値を下回る場合には、急激な溶剤の乾燥によって、得られるポリイミドフィルムの外観等に影響を与える恐れがある。 The drying time may be properly adjusted according to the film thickness of the polyimide precursor resin coating film, the type of solvent, the drying temperature, etc., but it is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. Is preferred. When it exceeds the upper limit value, it is not preferable from the viewpoint of the production efficiency of the polyimide film. On the other hand, if the lower limit value is exceeded, rapid drying of the solvent may affect the appearance and the like of the obtained polyimide film.
 溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
 光学特性の高度な管理が必要な場合、溶剤の乾燥時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
The method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature, and it is possible to use, for example, an oven, a drying oven, a hot plate, infrared heating, and the like.
When a high degree of management of optical properties is required, the atmosphere for drying the solvent is preferably under an inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 100 ppm or less, and more preferably 50 ppm or less. Heat treatment in the atmosphere can cause the film to oxidize, color, and degrade performance.
(3)イミド化工程
 前記第1の製造方法においては、加熱をすることにより、前記ポリイミド前駆体をイミド化する。
 当該製造方法において、延伸工程を有する場合、イミド化工程は、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程後の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体に対して行っても良いし、延伸工程前の前記ポリイミド前駆体樹脂塗膜中のポリイミド前駆体及び延伸工程後の膜中に存在するポリイミド前駆体の両方に対して行っても良い。
(3) Imidation Step In the first production method, the polyimide precursor is imidized by heating.
In the said manufacturing method, when it has an extending process, an imidation process may be performed with respect to the polyimide precursor in the said polyimide precursor resin coating film before an extending process, or the said polyimide precursor resin after an extending process It may be applied to a polyimide precursor in a coating, or to both the polyimide precursor in the polyimide precursor resin coating before the stretching step and the polyimide precursor present in the film after the stretching step You may go.
 イミド化の温度は、ポリイミド前駆体の構造に合わせて適宜選択されれば良い。
 通常、昇温開始温度を30℃以上とすることが好ましく、100℃以上とすることがより好ましい。一方、昇温終了温度は250℃以上とすることが好ましい。
The temperature for imidization may be appropriately selected in accordance with the structure of the polyimide precursor.
In general, the temperature rise start temperature is preferably 30 ° C. or more, and more preferably 100 ° C. or more. On the other hand, it is preferable to make temperature rising completion temperature into 250 degreeC or more.
 昇温速度は、得られるポリイミドフィルムの膜厚によって適宜選択することが好ましく、ポリイミドフィルムの膜厚が厚い場合には、昇温速度を遅くすることが好ましい。
 ポリイミドフィルムの製造効率の点から、5℃/分以上とすることが好ましく、10℃/分以上とすることが更に好ましい。一方、昇温速度の上限は、通常50℃/分とされ、好ましくは40℃/分以下、さらに好ましくは30℃/分以下である。上記昇温速度とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化をコントロールでき、光透過性が向上する点から好ましい。
The temperature rising rate is preferably selected appropriately depending on the film thickness of the polyimide film to be obtained, and when the film thickness of the polyimide film is thick, the temperature rising rate is preferably decreased.
From the viewpoint of the production efficiency of the polyimide film, the temperature is preferably 5 ° C./min or more, and more preferably 10 ° C./min or more. On the other hand, the upper limit of the heating rate is usually 50 ° C./min, preferably 40 ° C./min or less, and more preferably 30 ° C./min or less. It is preferable to use the above-mentioned temperature rising rate from the viewpoint of suppressing the appearance defect of the film and the strength decrease, controlling whitening accompanying the imidization reaction, and improving the light transmittance.
 昇温は、連続的でも段階的でもよいが、連続的とすることが、フィルムの外観不良や強度低下の抑制、イミド化反応に伴う白化のコントロールの面から好ましい。また、上述の全温度範囲において、昇温速度を一定としてもよく、また途中で変化させてもよい。 The temperature elevation may be continuous or stepwise, but it is preferable to make it continuous from the viewpoint of suppressing the appearance defect and the strength reduction of the film and controlling the whitening accompanying the imidization reaction. Moreover, in the above-mentioned whole temperature range, a temperature rising rate may be constant or may be changed halfway.
 イミド化の昇温時の雰囲気は、不活性ガス雰囲気下であることが好ましい。不活性ガス雰囲気下としては、窒素雰囲気下であることが好ましく、酸素濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることがさらに好ましい。大気下で熱処理を行うと、フィルムが酸化され、着色したり、性能が低下する可能性がある。
 ただし、ポリイミドに含まれる炭素原子に結合する水素原子の50%以上が、芳香族環に直接結合する水素原子である場合は、光学特性に対する酸素の影響が少なく、不活性ガス雰囲気を用いなくても光透過性の高いポリイミドが得られる。
It is preferable that the atmosphere at the time of temperature rise of imidation is under inert gas atmosphere. The inert gas atmosphere is preferably a nitrogen atmosphere, the oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less. Heat treatment in the atmosphere can cause the film to oxidize, color, and degrade performance.
However, when 50% or more of the hydrogen atoms bonded to carbon atoms contained in the polyimide are hydrogen atoms directly bonded to the aromatic ring, the influence of oxygen on the optical properties is small, and an inert gas atmosphere is not used. Also, a highly light transmitting polyimide can be obtained.
 イミド化のための加熱方法は、上記温度で昇温が可能であれば特に制限はなく、例えばオーブンや、加熱炉、赤外線加熱、電磁誘導加熱等を用いることが可能である。 The heating method for imidation is not particularly limited as long as the temperature can be raised at the above temperature, and it is possible to use, for example, an oven, a heating furnace, infrared heating, electromagnetic induction heating and the like.
 中でも、延伸工程前に、ポリイミド前駆体のイミド化率を50%以上とすることがより好ましい。延伸工程前にイミド化率を50%以上とすることにより、当該工程後に延伸を行い、その後さらに高い温度で一定時間加熱を行い、イミド化を行った場合であっても、フィルムの外観不良や白化が抑制される。中でもポリイミドフィルムの表面硬度が向上する点から、延伸工程前に、当該イミド化工程において、イミド化率を80%以上とすることが好ましく、90%以上、さらには100%まで反応を進行させることが好ましい。イミド化後に延伸することにより、剛直な高分子鎖が配向しやすいことから表面硬度が向上すると推定される。
 なお、イミド化率の測定は、赤外測定(IR)によるスペクトルの分析等により行うことができる。
Among them, it is more preferable to set the imidation ratio of the polyimide precursor to 50% or more before the stretching step. By setting the imidization ratio to 50% or more before the stretching step, the film is stretched after that step, and then heated for a certain period of time at a higher temperature to perform imidization, the appearance defect of the film or Whitening is suppressed. Above all, from the point that the surface hardness of the polyimide film is improved, it is preferable to set the imidization ratio to 80% or more in the imidization step before the stretching step, to advance the reaction to 90% or more, further 100%. Is preferred. By stretching after imidization, it is presumed that the surface hardness is improved because rigid polymer chains are easily oriented.
The imidation ratio can be measured by analyzing the spectrum by infrared measurement (IR) or the like.
 最終的なポリイミドフィルムを得るには、イミド化を90%以上、さらには95%以上、さらには100%まで反応を進行させることが好ましい。
 イミド化を90%以上、さらには100%まで反応を進行させるには、昇温終了温度で一定時間保持することが好ましく、当該保持時間は、通常1分~180分、更に、5分~150分とすることが好ましい。
In order to obtain a final polyimide film, it is preferable to advance the reaction to 90% or more, further 95% or more, and further 100% of imidization.
In order to advance the reaction to 90% or more, and further to 100%, the imidization is preferably maintained at a temperature rising end temperature for a certain time, and the retention time is usually 1 minute to 180 minutes, further 5 minutes to 150 minutes. It is preferable to use a minute.
(4)延伸工程
 前記第1の製造方法は、前記ポリイミド前駆体樹脂塗膜、及び、前記ポリイミド前駆体樹脂塗膜をイミド化したイミド化後塗膜の少なくとも一方を延伸する延伸工程を有していてもよい。当該延伸工程を有する場合は、中でも、イミド化後塗膜を延伸する工程を含むことが、ポリイミドフィルムの表面硬度が向上する点から好ましい。
(4) Stretching Step The first production method has a stretching step of stretching at least one of the polyimide precursor resin coating film and the imidized coating film obtained by imidizing the polyimide precursor resin coating film. It may be When it has the said extending | stretching process, it is preferable to include the process of extending | stretching a coating film after imidation especially from the point which the surface hardness of a polyimide film improves.
 前記第1の製造方法では、延伸を実施する前の初期の寸法を100%とした時に101%以上10000%以下延伸する工程を、80℃以上で加熱しながら行うことが好ましい。
 延伸時の加熱温度は、ポリイミド乃至ポリイミド前駆体のガラス転移温度±50℃の範囲内であることが好ましく、ガラス転移温度±40℃の範囲内であることが好ましい。延伸温度が低すぎるとフィルムが変形せず充分に配向を誘起できない恐れがある。一方で、延伸温度が高すぎると延伸によって得られた配向が温度で緩和し、充分な配向が得られない恐れがある。
 延伸工程は、イミド化工程と同時に行っても良い。イミド化率80%以上、更に90%以上、より更に95%以上、特に実質的に100%イミド化を行った後のイミド化後塗膜を延伸することが、ポリイミドフィルムの表面硬度を向上する点から好ましい。
In the first production method, it is preferable to carry out the step of stretching by 101% or more and 10000% or less when the initial dimension before performing stretching is 100% while heating at 80 ° C. or more.
The heating temperature at the time of stretching is preferably in the range of the glass transition temperature ± 50 ° C. of the polyimide or polyimide precursor, and preferably in the range of the glass transition temperature ± 40 ° C. If the stretching temperature is too low, the film may not be deformed and the orientation may not be sufficiently induced. On the other hand, if the stretching temperature is too high, the orientation obtained by the stretching may be relaxed at the temperature, and a sufficient orientation may not be obtained.
The stretching step may be performed simultaneously with the imidization step. The surface hardness of the polyimide film is improved by stretching the film after imidization after the imidization rate is 80% or more, further 90% or more, further 95% or more, particularly substantially 100%. It is preferable from the point of view.
 ポリイミドフィルムの延伸倍率は、好ましくは101%以上10000%以下であり、さらに好ましくは101%以上500%以下である。上記範囲で延伸を行うことにより、得られるポリイミドフィルムの表面硬度をより向上することができる。 The draw ratio of the polyimide film is preferably 101% or more and 10000% or less, and more preferably 101% or more and 500% or less. By stretching in the above range, the surface hardness of the obtained polyimide film can be further improved.
 延伸時におけるポリイミドフィルムの固定方法は、特に制限はなく、延伸装置の種類等に合わせて選択される。また、延伸方法は特に制限はなく、例えばテンター等の搬送装置を有する延伸装置を用い、加熱炉を通しながら延伸することが可能である。ポリイミドフィルムは、一方向のみに延伸(縦延伸または横延伸)してもよく、また同時2軸延伸、もしくは逐次2軸延伸、斜め延伸等によって、二方向に延伸処理を行ってもよい。 The fixing method of the polyimide film at the time of stretching is not particularly limited, and is selected in accordance with the type of the stretching apparatus and the like. Moreover, there is no restriction | limiting in particular in the extending | stretching method, It is possible to extend | stretch, for example, through a heating furnace using the extending | stretching apparatus which has conveyance apparatuses, such as a tenter. The polyimide film may be stretched in only one direction (longitudinal stretching or transverse stretching), or may be stretched in two directions by simultaneous biaxial stretching, sequential biaxial stretching, oblique stretching, or the like.
<第2の製造方法>
 また、本発明のポリイミドフィルムの製造方法としては、第2の製造方法として、
 ポリイミドと、有機溶剤とを含むポリイミド樹脂組成物を調製する工程(以下、ポリイミド樹脂組成物調製工程という)と、
 前記ポリイミド樹脂組成物を支持体に塗布して、溶剤を乾燥させてポリイミド樹脂塗膜を形成する工程(以下、ポリイミド樹脂塗膜形成工程という)と、を含むポリイミドフィルムの製造方法が挙げられる。
<Second manufacturing method>
Moreover, as a manufacturing method of the polyimide film of this invention, as a 2nd manufacturing method,
A step of preparing a polyimide resin composition containing a polyimide and an organic solvent (hereinafter referred to as a polyimide resin composition preparation step);
And the step of applying the polyimide resin composition to a support and drying the solvent to form a polyimide resin coating film (hereinafter referred to as a polyimide resin coating film forming step).
 前記ポリイミドが有機溶剤に良好に溶解する場合には、ポリイミド前駆体樹脂組成物ではなく、前記ポリイミドを有機溶剤に溶解させ、必要に応じて添加剤を含有させたポリイミド樹脂組成物も好適に用いることができる。
 前記ポリイミドが25℃で有機溶剤に5質量%以上溶解するような溶剤溶解性を有する場合には、当該製造方法を好適に用いることができる。
When the polyimide dissolves well in an organic solvent, not the polyimide precursor resin composition but a polyimide resin composition in which the polyimide is dissolved in an organic solvent and an additive is contained as needed be able to.
When the said polyimide has solvent solubility which melt | dissolves 5 mass% or more in an organic solvent at 25 degreeC, the said manufacturing method can be used suitably.
 ポリイミド樹脂組成物調製工程において、前記ポリイミドは、前記ポリイミドフィルムにおいて説明したものと同様のポリイミドの中から、前述した溶剤溶解性を有するポリイミドを選択して用いることができる。イミド化する方法としては、ポリイミド前駆体の脱水閉環反応について、加熱脱水の代わりに、化学イミド化剤を用いて行う化学イミド化を用いることが好ましい。化学イミド化を行う場合は、脱水触媒としてピリジンやβ―ピコリン酸等のアミン、ジシクロヘキシルカルボジイミドなどのカルボジイミド、無水酢酸等の酸無水物等、公知の化合物を用いても良い。酸無水物としては無水酢酸に限らず、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられるが特に限定されない。また、その際にピリジンやβ―ピコリン酸等の3級アミンを併用してもよい。ただし、これらアミン類は、フィルム中に残存すると光学特性、特に黄色度(YI値)を低下させるため、前駆体からポリイミドへと反応させた反応液をそのままキャストして製膜するのではなく、再沈殿などにより精製し、ポリイミド以外の成分をそれぞれ、ポリイミド全重量の100ppm以下まで除去してから製膜することが好ましい。 In the polyimide resin composition preparation step, the above-mentioned polyimide having solvent solubility can be selected and used from the same polyimide as that described for the polyimide film. As a method of imidization, it is preferable to use chemical imidization performed using a chemical imidization agent instead of thermal dehydration for the dehydration ring closure reaction of the polyimide precursor. When chemical imidization is performed, known compounds such as amines such as pyridine and β-picolinic acid, carbodiimides such as dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride may be used as a dehydration catalyst. The acid anhydride is not limited to acetic anhydride, and includes, but is not particularly limited to, propionic acid anhydride, n-butyric acid anhydride, benzoic acid anhydride, trifluoroacetic acid anhydride and the like. At this time, tertiary amines such as pyridine and β-picolinic acid may be used in combination. However, since these amines, when remaining in the film, lower the optical properties, particularly the yellowness (YI value), the reaction liquid obtained by reacting the precursor to the polyimide is not cast as it is, It is preferable to form a film after purification by reprecipitation or the like to remove components other than the polyimide to 100 ppm or less of the total weight of the polyimide.
 ポリイミド樹脂組成物調製工程において、ポリイミド前駆体の化学イミド化を行う反応液に用いられる有機溶剤としては、例えば、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。ポリイミド樹脂組成物調製工程において、反応液から精製したポリイミドを再溶解させる際に用いられる有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、オルト-ジクロルベンゼン、キシレン、クレゾール、クロルベンゼン、酢酸イソブチル、酢酸イソペンチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、シクロヘキサノール、シクロヘキサノン、1.4-ジオキサン、テトラクロルエチレン、トルエン、メチルイソブチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン、ジクロロメタン、ジクロロエタン及びこれらの混合溶剤等が挙げられ、中でも、ジクロロメタン、酢酸ノルマル-ブチル、プロピレングリコールモノメチルエーテルアセテート及びこれらの混合溶剤からなる群から選ばれる少なくとも1種を好ましく用いることができる。 As the organic solvent used for the reaction liquid which performs chemical imidization of a polyimide precursor in the polyimide resin composition preparation step, for example, those described in the polyimide precursor resin composition preparation step in the first production method Similar ones can be used. Examples of the organic solvent used to re-dissolve the polyimide purified from the reaction liquid in the polyimide resin composition preparation step include ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, Ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ortho-dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopentyl acetate, normal-butyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone, 1.4-dioxane, tetrachloroethylene, toluene, methyl isobutyl ketone, methylcyclohexanol, methyl cyclohexene Sanone, methyl-normal-butyl ketone, dichloromethane, dichloroethane and mixed solvents thereof and the like are mentioned, and among them, at least one selected from the group consisting of dichloromethane, normal-butyl acetate, propylene glycol monomethyl ether acetate and mixed solvents thereof It can be used preferably.
 前記ポリイミド樹脂組成物は、必要に応じて添加剤を含有していてもよい。前記添加剤としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明したものと同様のものを用いることができる。
 また、前記第2の製造方法において、前記ポリイミド樹脂組成物の含有水分量1000ppm以下とする方法としては、前記第1の製造方法における前記ポリイミド前駆体樹脂組成物調製工程において説明した方法と同様の方法を用いることができる。
The said polyimide resin composition may contain the additive as needed. As said additive, the thing similar to what was demonstrated in the said polyimide precursor resin composition preparation process in the said 1st manufacturing method can be used.
In the second production method, the method for setting the moisture content of the polyimide resin composition to 1,000 ppm or less is the same as the method described in the polyimide precursor resin composition preparation step in the first production method. Methods can be used.
 また、前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、支持体や、塗布方法は、前記第1の製造方法のポリイミド前駆体樹脂塗膜形成工程において説明したものと同様のものを用いることができる。
 前記第2の製造方法におけるポリイミド樹脂塗膜形成工程において、乾燥温度としては、常圧下では80℃以上150℃以下とすることが好ましい。減圧下では10℃以上100℃以下の範囲とすることが好ましい。
In the polyimide resin coating film forming step in the second production method, the support and the coating method are the same as those described in the polyimide precursor resin coating film forming step in the first production method. be able to.
In the polyimide resin coating film formation step in the second production method, the drying temperature is preferably 80 ° C. or more and 150 ° C. or less under normal pressure. It is preferable to set it as the range of 10 degreeC or more and 100 degrees C or less under pressure reduction.
 また、前記第2の製造方法は、前記ポリイミド樹脂塗膜形成工程の後、残留する溶媒を揮発させる点から、ポリイミド樹脂塗膜を更に加熱する工程を有していてもよい。このような加熱工程を有すると、膜強度や、耐薬品性が向上する点から好ましい。
 当該加熱工程は、前記第1の製造方法における加熱によるイミド化工程と同様にすることができる。
The second production method may further include the step of further heating the polyimide resin coating film from the viewpoint of volatilizing the remaining solvent after the polyimide resin coating film forming step. Having such a heating step is preferable from the viewpoint of improving the film strength and the chemical resistance.
The said heating process can be made to be the same as that of the imidation process by the heating in said 1st manufacturing method.
 また、前記第2の製造方法は、前記ポリイミド樹脂塗膜形成工程の後、ポリイミド樹脂塗膜を延伸する延伸工程を有していてもよい。当該延伸工程は、前記第1の製造方法における延伸工程と同様にすることができる。 Moreover, the said 2nd manufacturing method may have the extending process which extends a polyimide resin coating film after the said polyimide resin coating film formation process. The said extending | stretching process can be made to be the same as that of the extending | stretching process in a said 1st manufacturing method.
 前記第2の製造方法は、ポリイミドフィルムの黄色度(YI値)を低減しやすい点から好ましい。前記第2の製造方法によれば、JIS K7373-2006に準拠して算出される黄色度を、膜厚(μm)で除した値が、0.05以下であるポリイミドフィルムを好適に形成可能である。 The second production method is preferable from the viewpoint of easily reducing the degree of yellowness (YI value) of the polyimide film. According to the second manufacturing method, it is possible to preferably form a polyimide film having a value of 0.05 or less obtained by dividing the yellowness calculated according to JIS K7373-2006 by the film thickness (μm) is there.
10.ポリイミドフィルムの用途
 本発明のポリイミドフィルムの用途は特に限定されるものではなく、従来薄い板ガラス等ガラス製品が用いられていた基材や表面材等の部材として用いることができる。本発明のポリイミドフィルムは、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有し、光学的歪みが低減したものであるため、中でも、曲面に対応できるディスプレイ用部材として好適に用いることができる。
 本発明のポリイミドフィルムは、具体的には例えば、薄くて曲げられるフレキシブルタイプの有機ELディスプレイや、スマートフォンや腕時計型端末などの携帯端末、自動車内部の表示装置、腕時計などに使用するフレキシブルパネル等、フレキシブルディスプレイ用の基材や表面材に好適に用いることができる。また、本発明のポリイミドフィルムは、液晶表示装置、有機EL表示装置等の画像表示装置用部材や、タッチパネル用部材、フレキシブルプリント基板、表面保護膜や基板材料等の太陽電池パネル用部材、光導波路用部材、その他半導体関連部材等に適用することもできる。
10. Application of Polyimide Film The application of the polyimide film of the present invention is not particularly limited, and it can be used as a member such as a substrate, a surface material, etc. in which a glass product such as a thin sheet glass has been used conventionally. The polyimide film of the present invention is improved in bending resistance, has a sufficient surface hardness as a protective film, and has reduced optical distortion, so that it can be suitably used as a display member capable of coping with a curved surface. it can.
Specifically, the polyimide film of the present invention is, for example, a flexible and flexible organic EL display which can be thin and bent, a portable terminal such as a smartphone or a watch type terminal, a display device inside an automobile, a flexible panel used for a watch etc. It can be suitably used as a substrate or surface material for a flexible display. Further, the polyimide film of the present invention is a member for an image display device such as a liquid crystal display device or an organic EL display device, a member for a touch panel, a flexible printed substrate, a member for a solar cell panel such as a surface protective film or a substrate material, an optical waveguide The present invention can also be applied to other components such as semiconductor components.
III.積層体
 本発明の積層体は、前述した本発明のフィルム又はポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体である。
 本発明の積層体は、前述した本発明のフィルム又はポリイミドフィルムを用いたものであるため、透明性に優れ、屈曲耐性が向上したものであり、更にハードコート層を有するため、表面硬度がより向上したフィルム乃至樹脂フィルムである。
III. Laminate The laminate of the present invention is a laminate having the above-described film or polyimide film of the present invention and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
The laminate of the present invention uses the above-described film or polyimide film of the present invention, is excellent in transparency and has improved bending resistance, and further has a hard coat layer, so that the surface hardness is more improved Improved films or resin films.
 本発明の積層体において、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有する場合、ポリイミドフィルムとハードコート層との密着性が優れる点から好ましい。これは、前記特定のポリイミドフィルムとハードコート層とのミキシングに優れるためと推定される。
 また、本発明の積層体において、ポリイミドフィルムが含有するポリイミドが、主鎖にケイ素原子を有するジアミン残基を含有する場合、光学的歪みが低減する点から好ましい。この場合、本発明の積層体をディスプレイ用表面材乃至基材等のディスプレイ用部材として用いた場合には、ディスプレイの表示品質の低下を抑制することができる。
In the laminate of the present invention, when the polyimide contained in the polyimide film contains a diamine residue having a silicon atom in the main chain, it is preferable from the viewpoint of excellent adhesion between the polyimide film and the hard coat layer. This is presumed to be due to the excellent mixing of the specific polyimide film with the hard coat layer.
Moreover, in the laminated body of this invention, when the polyimide which a polyimide film contains contains the diamine residue which has a silicon atom in a principal chain, it is preferable from a point to which an optical distortion reduces. In this case, when the laminate of the present invention is used as a display member such as a surface material or a base material for a display, it is possible to suppress a decrease in display quality of the display.
1.フィルム又はポリイミドフィルム
 本発明の積層体に用いられるフィルム又はポリイミドフィルムとしては、前述した本発明のフィルム又はポリイミドフィルムを用いることができるので、ここでの説明を省略する。
1. Film or Polyimide Film Since the film or polyimide film of the present invention described above can be used as the film or polyimide film used for the laminate of the present invention, the description thereof is omitted here.
2.ハードコート層
 本発明の積層体に用いられるハードコート層は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
2. Hard Coat Layer The hard coat layer used in the laminate of the present invention contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
(1)ラジカル重合性化合物
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(1) Radically Polymerizable Compound The radically polymerizable compound is a compound having a radically polymerizable group. The radically polymerizable group of the radically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, Specifically, a vinyl group, a (meth) acryloyl group, etc. are mentioned. In addition, when the said radically polymerizable compound has 2 or more radically polymerizable groups, these radically polymerizable groups may be respectively the same, and may differ.
 前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 前記ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーを好ましく使用できる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
The number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
Among these radically polymerizable compounds, compounds having a (meth) acryloyl group are preferable among them from the viewpoint of high reactivity, and a polyfunctional acrylate monomer having 2 to 6 (meth) acryloyl groups in one molecule is preferable. And oligomers having a molecular weight of several hundred to several thousand having several (meth) acryloyl groups in a molecule called urethane (meth) acrylate, polyester (meth) acrylate or epoxy (meth) acrylate. It can be used.
In the present specification, (meth) acryloyl refers to each of acryloyl and methacryloyl, and (meth) acrylate refers to each of acrylate and methacrylate.
 前記ラジカル重合性化合物としては、具体的には、例えば、ジビニルベンゼンなどのビニル化合物;エチレングリコールジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、アルキレンオキサイド変性ビスフェノールAジ(メタ)アクリレート(例えば、エトキシ化(エチレンオキサイド変性)ビスフェノールAジ(メタ)アクリレートなど)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート類、ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類、ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を挙げることができる。 Specific examples of the radically polymerizable compound include vinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, 9,9-bis [4- (2- ( (Meth) acryloyloxyethoxy) phenyl] fluorene, alkylene oxide modified bisphenol A di (meth) acrylate (eg, ethoxylated (ethylene oxide modified) bisphenol A di (meth) acrylate etc.), trimethylolpropane tri (meth) acrylate, tri Methylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaeriol Polyol polyacrylates such as lytol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, di penta erythritol hexa (meth) acrylate, diacrylate of bisphenol A diglycidyl ether, epoxy acrylate such as diacrylate of hexanediol diglycidyl ether Examples thereof include acrylates, urethane acrylates obtained by the reaction of polyisocyanates and hydroxyl group-containing acrylates such as hydroxyethyl acrylate.
(2)カチオン重合性化合物
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。前記カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、前記カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
(2) Cationicly Polymerizable Compound The cationically polymerizable compound is a compound having a cationically polymerizable group. The cationically polymerizable group of the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group. When the cationically polymerizable compound has two or more cationically polymerizable groups, these cationically polymerizable groups may be identical to or different from each other.
 前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、2つ以上であることが好ましく、更に3つ以上であることが好ましい。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、密着性の点及び光透過性と表面硬度の点から、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2つ以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層をエポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
The number of cationically polymerizable groups that the cationically polymerizable compound has in one molecule is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
Moreover, as said cationically polymerizable compound, the compound which has at least 1 sort (s) of an epoxy group and oxetanyl group as a cationically polymerizable group is preferable, and it is an epoxy group and the point of adhesiveness, and light transparency and surface hardness. Compounds having two or more of at least one oxetanyl group in one molecule are more preferable. A cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint of small shrinkage associated with the polymerization reaction. Further, among cyclic ether groups, compounds having an epoxy group are easy to obtain compounds of various structures, do not adversely affect the durability of the obtained hard coat layer, and it is easy to control the compatibility with radically polymerizable compounds It has the advantage of Further, among the cyclic ether groups, oxetanyl groups have a high degree of polymerization as compared to epoxy groups and are low in toxicity, and when the obtained hard coat layer is combined with a compound having an epoxy group, a cation in the coating film There is an advantage that the network formation speed obtained from the polymerizable compound is increased, and even in the region mixed with the radical polymerizable compound, an independent network is formed without leaving unreacted monomers in the film.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 As a cationically polymerizable compound having an epoxy group, for example, polyglycidyl ether of polyhydric alcohol having an alicyclic ring or a cyclohexene ring or cyclopentene ring-containing compound with a suitable oxidizing agent such as hydrogen peroxide or a peracid Alicyclic epoxy resin obtained by epoxidation; polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, Aliphatic epoxy resins such as copolymers; bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or their derivatives such as alkylene oxide adducts, caprolactone adducts and the like; glycidyl produced by reaction with epichlorohydrin Ether, and novolac epoxy resins such as a and glycidyl ether type epoxy resins derived from bisphenols are exemplified.
 上記脂環族エポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(UVR-6105、UVR-6107、UVR-6110)、ビス-3,4-エポキシシクロヘキシルメチルアディペート(UVR-6128)(以上、カッコ内は商品名で、ダウ・ケミカル製である。)が挙げられる。 As the above-mentioned alicyclic epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (UVR-6105, UVR-6107, UVR-6110), bis-3,4-epoxycyclohexylmethyl adipate (UVR-6128) (as mentioned above, the name in parentheses is a trade name, manufactured by Dow Chemical).
 また、上記グリシジルエーテル型エポキシ樹脂としては、ソルビトールポリグリシジルエーテル(デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-614B、デナコールEX-622)、ポリグリセロールポリグリシジルエーテル(デナコールEX-512、デナコールEX-521)、ペンタエリスリトルポリグリシジルエーテル(デナコールEX-411)、ジグリセロールポリグリシジルエーテル(デナコールEX-421)、グリセロールポリグリシジルエーテル(デナコールEX-313、デナコールEX-314)、トリメチロールプロパンポリグリシジルエーテル(デナコールEX-321)、レソルチノールジグリシジルエーテル(デナコールEX-201)、ネオペンチルグリコールジグリシジルエーテル(デナコールEX-211)、1,6ヘキサンジオールジグリシジルエーテル(デナコールEX-212)、ヒドロジビスフェノールAジグリシジルエーテル(デナコールEX-252)、エチレングリコールジグリシジルエーテル(デナコールEX-810、デナコールEX-811)、ポリエチレングリコールジグリシジルエーテル(デナコールEX―850、デナコールEX―851、デナコールEX―821)、プロピレングリコールグリシジルエーテル(デナコールEX-911)、ポリプロピレングリコールグリシジルエーテル(デナコールEX―941、デナコールEX-920)、アリルグリシジルエーテル(デナコールEX-111)、2-エチルヘキシルグリシジルエーテル(デナコールEX-121)、フェニルグリシジルエーテル(デナコールEX-141)、フェノールグリシジルエーテル(デナコールEX-145)、ブチルフェニルグリシジルエーテル(デナコールEX-146)、ジグリシジルフタレート(デナコールEX-721)、ヒドロキノンジグリシジルエーテル(デナコールEX-203)、ジグリシジルテレフタレート(デナコールEX-711)、グリシジルフタルイミド(デナコールEX-731)、ジブロモフェニルグリシジルエーテル(デナコールEX-147)、ジブロモネオペンチルグリコールジグリシジルエーテル(デナコールEX-221) (以上、カッコ内は商品名で、ナガセケムテックス製である。)が挙げられる。 Further, as the above glycidyl ether type epoxy resin, sorbitol polyglycidyl ether (Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-614B, Denacol EX-622), polyglycerol polyglycidyl ether (Denacol EX) -512 (denacol EX-521), pentaerythyl little polyglycidyl ether (denacol EX-411), diglycerol polyglycidyl ether (denacol EX-421), glycerol polyglycidyl ether (denacol EX-313, denacol EX-314), Trimethylolpropane polyglycidyl ether (Denacol EX-321), resortinol diglycidyl ether (Denacol EX-201), neopenty Glycol diglycidyl ether (Denacol EX-211), 1,6 hexanediol diglycidyl ether (Denacol EX-212), hydrodibisphenol A diglycidyl ether (Denacol EX-252), ethylene glycol diglycidyl ether (Denacol EX-810) , Denacol EX-811), polyethylene glycol diglycidyl ether (Denacol EX-850, Denacol EX-851, Denacol EX-821), propylene glycol glycidyl ether (Denacol EX-911), polypropylene glycol glycidyl ether (Denacol EX-941, Denacol EX-920), allyl glycidyl ether (Denacol EX-111), 2-ethylhexyl glycidyl ether (Denaco (Ex EX-121), phenyl glycidyl ether (Denacol EX-141), phenol glycidyl ether (Denacol EX-145), butyl phenyl glycidyl ether (Denacol EX-146), diglycidyl phthalate (Denacol EX-721), hydroquinone diglycidyl Ether (Denacol EX-203), diglycidyl terephthalate (Denacol EX-711), glycidyl phthalimide (Denacol EX-731), dibromophenyl glycidyl ether (Denacol EX-147), dibromo neopentyl glycol diglycidyl ether (Denacol EX-221) (The above in parentheses is a trade name and manufactured by Nagase ChemteX.)
 また、その他の市販品のエポキシ樹脂としては、商品名エピコート825、エピコート827、エピコート828、エピコート828EL、エピコート828XA、エピコート834、エピコート801、エピコート801P、エピコート802、エピコート815、エピコート815XA、エピコート816A、エピコート819、エピコート834X90、エピコート1001B80、エピコート1001X70、エピコート1001X75、エピコート1001T75、エピコート806、エピコート806P、エピコート807、エピコート152、エピコート154、エピコート871、エピコート191P、エピコートYX310、エピコートDX255、エピコートYX8000、エピコートYX8034等(以上商品名、ジャパンエポキシレジン製)が挙げられる。 Other commercially available epoxy resins include Epi coat 825, Epi coat 827, Epi coat 828, Epi coat 828 EL, Epi coat 828 XA, Epi coat 834, Epi coat 801, Epi coat 801 P, Epi coat 802, Epi coat 815, Epi coat 815 XA, Epi coat 816 A, Epi coat 819, Epi coat 834X90, Epi coat 1001 B80, Epi coat 1001 X 70, Epi coat 1001 X 75, Epi coat 1001 T75, Epi coat 806 P, Epi coat 806 P, Epi coat 807, Epi coat 152, Epi coat 154, Epi coat 871, Epi coat 191 P, Epi coat YX310, Epi coat DX255, Epi coat YX8000, Epi coat YX8034 Etc (more than product name, Turbocharger bread epoxy resin) and the like.
 オキセタニル基を有するカチオン重合性化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101)、1,4-ビス-3-エチルオキセタン-3-イルメトキシメチルベンゼン(OXT-121)、ビス-1-エチル-3-オキセタニルメチルエーテル(OXT-221)、3-エチル-3-2-エチルへキシロキシメチルオキセタン(OXT-212)、3-エチル-3-フェノキシメチルオキセタン(OXT-211)(以上、カッコ内は商品名で東亜合成製である。)や、商品名エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上商品名、宇部興産製)が挙げられる。 As a cationically polymerizable compound having an oxetanyl group, for example, 3-ethyl-3-hydroxymethyl oxetane (OXT-101), 1,4-bis-3-ethyl oxetan-3-ylmethoxymethylbenzene (OXT-121) , Bis-1-ethyl-3-oxetanyl methyl ether (OXT-221), 3-ethyl-3-2-ethylhexyloxymethyl oxetane (OXT-212), 3-ethyl-3-phenoxymethyl oxetane (OXT- 211) (The above parenthesis is a trade name, manufactured by Toa Gosei.), Trade names Etanacor EHO, Etanacall OXBP, Etanacall OXTP, Etanacall OXMA (trade names, manufactured by Ube Industries, Ltd.).
(3)重合開始剤
 本発明に用いられるハードコート層が含有する前記ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物は、例えば、前記ラジカル重合性化合物及び前記カチオン重合性化合物の少なくとも1種に、必要に応じて重合開始剤を添加して、公知の方法で重合反応させることにより得ることができる。
(3) Polymerization initiator The polymer of at least one of the radically polymerizable compound and the cationically polymerizable compound contained in the hard coat layer used in the present invention is, for example, the radically polymerizable compound and the cationically polymerizable compound. It can be obtained by adding a polymerization initiator to at least one type, if necessary, and causing a polymerization reaction by a known method.
 前記重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。 As the polymerization initiator, a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator and the like can be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to advance radical polymerization and cation polymerization.
 ラジカル重合開始剤は、光照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であれば良い。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられ、更に具体的には、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・ジャパン(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・ジャパン(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア369、チバ・ジャパン(株)製)、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア784、チバ・ジャパン(株)製)等が挙げられるが、これらに限定されるものではない。 The radical polymerization initiator may be capable of releasing a substance that initiates radical polymerization by light irradiation and / or heating. For example, as a radical photopolymerization initiator, imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxy pyridinium salts, thioxanthone derivatives, etc. may be mentioned. More specifically, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 3,3 ', 4,4'-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isooxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name: Irgacure 651, Ciba Japan Ltd.) Product), 1-hydroxy-cyclohexyl-phenyl Ketone (trade name Irgacure 184, manufactured by Ciba Japan Ltd.), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (trade name Irgacure 369, Ciba Japan (trade name Co., Ltd.), bis (, 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium) (trade name: Irgacure 784) Ciba Japan Ltd.) and the like, but not limited thereto.
 上記以外にも、市販品が使用でき、具体的には、チバ・ジャパン(株)製のイルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR  TPO、DAROCUR1173、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure  ONE、Esacure  KIP150、Esacure  KTO46、日本化薬(株)製のKAYACURE  DETX-S、KAYACURE  CTX、KAYACURE  BMS、KAYACURE  DMBI等が挙げられる。 In addition to the above, commercially available products can be used. Specifically, Irgacure 907, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870 manufactured by Ciba Japan Ltd. , IRGACURE OXE01, DAROCUR TPO, DAROCUR 1173, Speedcure MBB, Speedcure PBZ, Speedcure ITX, Speedcure CTX, Speedcure EDB, Esacure ONE, Esacure KIP150, Esacure KTO46, Nippon Kayaku Co., Ltd. KAYACURE DETX-S, made by Nippon Siber Hegner Ltd. , KAYACURE BMS, KAYACURE DMBI etc. are mentioned.
 また、カチオン重合開始剤は、光照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であれば良い。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η-ベンゼン)(η-シクロペンタジエニル)鉄(II)等が例示され、さらに具体的には、ベンゾイントシレート、2,5-ジニトロベンジルトシレート、N-トシフタル酸イミド等が挙げられるが、これらに限定されるものではない。 The cationic polymerization initiator may be capable of releasing a substance that initiates cationic polymerization by at least one of light irradiation and heating. As a cationic polymerization initiator, sulfonic acid ester, imidosulfonate, dialkyl-4-hydroxysulfonium salt, arylsulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, (η 6 -benzene) (η 5 -cyclopentadi Enyl) iron (II) and the like are exemplified, and more specifically, benzoin tosylate, 2, 5-dinitrobenzyl tosylate, N-tosulculimide and the like can be mentioned, however, it is not limited thereto.
  ラジカル重合開始剤としても、カチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示され、更に具体的には、ジフェニルヨードニウム、ジトリルヨードニウム、ビス(p-tert-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウム等のヨードニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のヨードニウム塩、トリフェニルスルホニウム、4-tert-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム等のスルホニウムのクロリド、ブロミド、ホウフッ化塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアンチモネート塩等のスルホニウム塩、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等の2,4,6-置換-1,3,5トリアジン化合物等が挙げられるが、これらに限定されるものではない。 Examples of radical polymerization initiators and cation polymerization initiators include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, iron arene complexes, etc. More specifically, chlorides, bromides, borofluorides, hexafluorophosphates, hexafluorophosphates of iodoniums such as diphenyliodonium, ditollyliodonium, bis (p-tert-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, etc. Iodonium salts such as antimonate salts, triphenylsulfonium, 4-tert-butyltriphenylsulfonium, chlorides of sulfoniums such as tris (4-methylphenyl) sulfonium, bromides, borofluoride salts, hexa Sulfonium salts such as fluorophosphate salts and hexafluoroantimonate salts, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1, Examples include 2,4,6-substituted-1,3,5 triazine compounds such as 3,5-triazine and 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine. It is not limited to these.
(4)添加剤
 本発明に用いられるハードコート層は、前記重合物の他に、必要に応じて、帯電防止剤、防眩剤、防汚剤、硬度を向上させるための無機又は有機微粒子、レべリング剤、各種増感剤等の添加剤を含有していてもよい。
(4) Additives The hard coat layer used in the present invention may contain, in addition to the polymer, an antistatic agent, an antiglare agent, an antifouling agent, inorganic or organic fine particles for improving hardness, as needed. You may contain additives, such as a leveling agent and various sensitizers.
 なお、本開示に用いられるハードコート層に含まれるラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物等は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。 In addition, a polymer of at least one of a radically polymerizable compound and a cationically polymerizable compound contained in the hard coat layer used in the present disclosure is a Fourier transform infrared spectrophotometer (FTIR), a pyrolysis gas chromatograph apparatus (GC The decomposition product of the polymer can be analyzed using a combination of high performance liquid chromatography, gas chromatography mass spectrometer, NMR, elemental analysis, XPS / ESCA, TOF-SIMS and the like.
3.積層体の構成
 本発明の積層体は、前記フィルム又はポリイミドフィルムと、前記ハードコート層とを有するものであれば特に限定はされず、前記フィルム又はポリイミドフィルムの一方の面側に前記ハードコート層が積層されたものであってもよいし、前記フィルム又はポリイミドフィルムの両面に前記ハードコート層が積層されたものであってもよい。また、本発明の積層体は、本発明の効果を損なわない範囲で、前記フィルム又はポリイミドフィルム及び前記ハードコート層の他に、例えば、前記フィルム又はポリイミドフィルムと前記ハードコート層との密着性を向上させるためのプライマー層等の他の層を有するものであってもよく、前記フィルム又はポリイミドフィルムと前記ハードコート層とがプライマー層等の他の層を介して積層されたものであっても良い。また、本発明の積層体は、前記フィルム又はポリイミドフィルムと、前記ハードコート層とが隣接して位置するものであってもよい。また、本発明の積層体はさらに、耐衝撃層、指紋付着防止層、接着乃至粘着層等を有していても良い。
3. Structure of Laminated Body The laminated body of the present invention is not particularly limited as long as it has the film or polyimide film and the hard coat layer, and the hard coat layer is formed on one side of the film or polyimide film. May be laminated, or the hard coat layer may be laminated on both sides of the film or the polyimide film. In addition to the film or the polyimide film and the hard coat layer, the laminate of the present invention is, for example, an adhesive property between the film or the polyimide film and the hard coat layer as long as the effects of the present invention are not impaired. It may have another layer such as a primer layer for improving, or even if the film or the polyimide film and the hard coat layer are laminated via another layer such as a primer layer. good. In the laminate of the present invention, the film or the polyimide film may be positioned adjacent to the hard coat layer. The laminate of the present invention may further have an impact resistant layer, an anti-fingerprint layer, an adhesive or adhesive layer, and the like.
 本発明の積層体の全体厚さは、用途により適宜選択されれば良いが、強度の点から、10μm以上であることが好ましく、更に40μm以上であることが好ましい。一方、屈曲耐性の点から、300μm以下であることが好ましく、更に250μm以下であることが好ましい。
 また、本発明の積層体において、各ハードコート層の厚さは、用途により適宜選択されれば良いが、2μm以上80μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。また、カール防止の観点からポリイミドフィルムの両面にハードコート層を形成しても良い。
The total thickness of the laminate of the present invention may be appropriately selected depending on the application, but from the viewpoint of strength, it is preferably 10 μm or more, and more preferably 40 μm or more. On the other hand, from the viewpoint of bending resistance, the thickness is preferably 300 μm or less, and more preferably 250 μm or less.
In the laminate of the present invention, the thickness of each hard coat layer may be appropriately selected depending on the application, but is preferably 2 μm or more and 80 μm or less, and more preferably 3 μm or more and 50 μm or less. In addition, in order to prevent curling, a hard coat layer may be formed on both sides of the polyimide film.
4.積層体の特性
 本発明の積層体は、ハードコート層側表面の鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがより更に好ましい。
 本発明の積層体の鉛筆硬度は、前記ポリイミドフィルムの鉛筆硬度の測定方法において、荷重を9.8Nとする以外は同様にして測定することができる。
4. Properties of Laminated Body The laminated body of the present invention preferably has a pencil hardness of H or more, more preferably 2H or more, and even more preferably 3H or more on the hard coat layer side surface.
The pencil hardness of the laminate of the present invention can be measured in the same manner as in the method of measuring the pencil hardness of the polyimide film except that the load is 9.8N.
 本発明の積層体は、JIS K7361-1に準拠して測定する全光線透過率が、85%以上であることが好ましく、更に88%以上であることが好ましく、より更に90%以上であることが好ましい。このように透過率が高いことから、透明性が良好になり、ガラス代替材料となり得る。
 本発明の積層体の前記全光線透過率は、前記ポリイミドフィルムのJIS K7361-1に準拠して測定する全光線透過率と同様にして測定することができる。
The laminate of the present invention preferably has a total light transmittance of 85% or more, preferably 88% or more, and more preferably 90% or more according to JIS K7361-1. Is preferred. Such high transmittance allows for good transparency and can be a glass substitute material.
The total light transmittance of the laminate of the present invention can be measured in the same manner as the total light transmittance measured in accordance with JIS K7361-1 of the polyimide film.
 本発明の積層体は、JIS K7373-2006に準拠して算出される黄色度(YI値)が、20以下であることが好ましく、15以下であることがより好ましく、10以下であることがより更に好ましく、5以下であることが特に好ましい。
 また、本発明の積層体は、黄色味の着色が抑制され、光透過性が向上し、ガラス代替材料として好適に用いることができる点から、前記JIS K7373-2006に準拠して算出される黄色度(YI値)を膜厚(μm)で割った値(YI値/膜厚(μm))が0.10以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることがより更に好ましい。
 本発明の積層体の前記黄色度(YI値)は、前記ポリイミドフィルムのJIS K7373-2006に準拠して算出される黄色度(YI値)と同様にして測定することができる。
The layered product of the present invention preferably has a yellowness (YI value) calculated according to JIS K7373-2006 of 20 or less, more preferably 15 or less, and more preferably 10 or less More preferably, it is particularly preferably 5 or less.
In addition, the laminate of the present invention has a yellowish color suppressed, improves light transmittance, and can be suitably used as a glass substitute material, so that the yellow color calculated according to the above-mentioned JIS K7373-2006. The value (YI value / film thickness (μm)) obtained by dividing the degree (YI value) by the film thickness (μm) is preferably 0.10 or less, more preferably 0.05 or less, and 0.03 It is even more preferable that
The yellowness (YI value) of the laminate of the present invention can be measured in the same manner as the yellowness (YI value) calculated according to JIS K7373-2006 of the polyimide film.
 本発明の積層体のヘイズ値は、光透過性の点から、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることがより更に好ましい。
 本発明の積層体のヘイズ値は、前記ポリイミドフィルムのヘイズ値と同様にして測定することができる。
The haze value of the laminate of the present invention is preferably 10 or less, more preferably 8 or less, and still more preferably 5 or less from the viewpoint of light transmittance.
The haze value of the laminate of the present invention can be measured in the same manner as the haze value of the polyimide film.
 本発明の積層体の波長590nmにおける厚み方向の複屈折率は、0.040以下であることが好ましく、0.020以下であることが好ましく、0.015以下であることが好ましく、更に0.010以下であることが好ましく、より更に0.008未満であることが好ましい。
 本発明の積層体の前記複屈折率は、前記ポリイミドフィルムの波長590nmにおける厚み方向の複屈折率と同様にして測定することができる。
The birefringence in the thickness direction at a wavelength of 590 nm of the laminate of the present invention is preferably 0.040 or less, preferably 0.020 or less, more preferably 0.015 or less, and further preferably 0. It is preferably 010 or less, and more preferably less than 0.008.
The birefringence of the laminate of the present invention can be measured in the same manner as the birefringence in the thickness direction at a wavelength of 590 nm of the polyimide film.
5.積層体の用途
 本発明の積層体の用途は特に限定されるものではなく、例えば、前述した本発明のポリイミドフィルムの用途と同様の用途に用いることができる。
5. Application of Laminate The application of the laminate of the present invention is not particularly limited, and can be used, for example, in the same application as the application of the polyimide film of the present invention described above.
6.積層体の製造方法
 本発明の積層体の製造方法としては、例えば、
 前記本発明のフィルム又はポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有するハードコート層形成用組成物の塗膜を形成する工程と、
 前記塗膜を硬化する工程と、を含む製造方法が挙げられる。
6. Method of Producing Laminate As a method of producing a laminate of the present invention, for example,
Forming a coating of a composition for forming a hard coat layer containing at least one of a radically polymerizable compound and a cationically polymerizable compound on at least one surface of the film or the polyimide film of the present invention;
And curing the coating film.
 前記ハードコート層形成用組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種を含有し、必要に応じて更に重合開始剤、溶剤及び添加剤等を含有していてもよい。
 ここで、前記ハードコート層形成用組成物が含有するラジカル重合性化合物、カチオン重合性化合物、重合開始剤及び添加剤については、前記ハードコート層において説明したものと同様のものを用いることができ、溶剤は、公知の溶剤から適宜選択して用いることができる。
The composition for forming a hard coat layer contains at least one of a radically polymerizable compound and a cationically polymerizable compound, and may further contain a polymerization initiator, a solvent, an additive, and the like as necessary.
Here, as the radically polymerizable compound, the cationically polymerizable compound, the polymerization initiator and the additive contained in the composition for forming a hard coat layer, the same ones as those described for the hard coat layer can be used. The solvent can be appropriately selected from known solvents and used.
 フィルム又はポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物の塗膜を形成する方法としては、例えば、フィルム又はポリイミドフィルムの少なくとも一方の面に、前記ハードコート層形成用組成物を、公知の塗布手段により塗布する方法が挙げられる。
 前記塗布手段は、目的とする膜厚で塗布可能な方法であれば特に制限はなく、例えば、前記ポリイミド前駆体樹脂組成物を支持体に塗布する手段と同様のものが挙げられる。
As a method for forming a coating film of the composition for forming a hard coat layer on at least one surface of a film or a polyimide film, for example, the composition for forming a hard coat layer on at least one surface of a film or a polyimide film May be applied by a known application method.
The application means is not particularly limited as long as it can be applied with a target film thickness, and examples thereof include the same means as the means for applying the polyimide precursor resin composition to a support.
 前記ハードコート層用硬化性樹脂組成物の塗膜は必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、更にはこれらの乾燥を組み合わせる方法等が挙げられる。また、常圧で乾燥させる場合は、30℃以上110℃以下で乾燥させることが好ましい。 The coating film of the curable resin composition for a hard coat layer is dried as necessary to remove the solvent. As the drying method, for example, a method of drying under reduced pressure or drying by heating, and further a method of combining these drying and the like can be mentioned. Moreover, when making it dry by a normal pressure, it is preferable to make it dry at 30 degreeC or more and 110 degrees C or less.
 前記ハードコート層用硬化性樹脂組成物を塗布、必要に応じて乾燥させた塗膜に対し、当該硬化性樹脂組成物に含まれるラジカル重合性化合物及びカチオン重合性化合物の重合性基に応じて、光照射及び加熱の少なくともいずれかにより塗膜を硬化させることにより、フィルム又はポリイミドフィルムの少なくとも一方の面に、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を形成することができる。 According to the polymerizable group of the radically polymerizable compound and cationically polymerizable compound contained in the said curable resin composition with respect to the coating film which apply | coated the said curable resin composition for hard-coat layers, and dried it as needed. And a hard coat containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound on at least one surface of the film or the polyimide film by curing the coating film by at least one of light irradiation and heating. Layers can be formed.
 光照射には、主に、紫外線、可視光、電子線、電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cm程度である。
 加熱をする場合は、通常40℃以上120℃以下の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
Ultraviolet light, visible light, electron beam, ionizing radiation and the like are mainly used for light irradiation. In the case of UV curing, UV light emitted from light rays such as ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc and metal halide lamp is used. The irradiation dose of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure dose at an ultraviolet wavelength of 365 nm.
When heating, it is usually treated at a temperature of 40 ° C. or more and 120 ° C. or less. Alternatively, the reaction may be carried out by leaving at room temperature (25 ° C.) for 24 hours or more.
IV.ディスプレイ用部材
 本発明のディスプレイ用部材は、前述した本発明のフィルム又はポリイミドフィルム、或いは、本発明の積層体を含む。
 本発明のディスプレイ用部材としては、例えば、ディスプレイ用表面材やディスプレイ用基材等が挙げられる。
 本発明のディスプレイ用部材は、前述した本発明のフィルム又はポリイミドフィルム、或いは、本発明の積層体であってよい。
IV. Display Member The display member of the present invention includes the film or polyimide film of the present invention described above, or the laminate of the present invention.
As a member for displays of the present invention, a surface material for displays, a substrate for displays, etc. are mentioned, for example.
The display member of the present invention may be the above-described film or polyimide film of the present invention, or the laminate of the present invention.
 本発明のディスプレイ用部材は、例えばディスプレイ用表面材として、各種ディスプレイの表面に位置するように配置して用いられる。本発明のディスプレイ用部材は、前述した本発明のフィルム又はポリイミドフィルム及び本発明の積層体と同様に、透明性に優れ、屈曲耐性が向上し、保護フィルムとして十分な表面硬度を有するため、フレキシブルディスプレイ用として特に好適に用いることができる。 The display member of the present invention is used, for example, as a surface material for display, disposed so as to be located on the surface of various displays. The member for a display of the present invention is flexible because it has excellent transparency, improved bending resistance, and sufficient surface hardness as a protective film, similarly to the film or polyimide film of the present invention and the laminate of the present invention described above. It can be particularly suitably used for displays.
 本発明のディスプレイ用部材は、公知の各種ディスプレイに用いることができ、特に限定はされないが、例えば、前記本発明のポリイミドフィルムの用途で説明したディスプレイ等に用いることができる。 The member for display of the present invention can be used for various known displays, and is not particularly limited. For example, it can be used for the display described in the application of the polyimide film of the present invention.
 なお、本発明のディスプレイ用部材が前記本発明の積層体である場合、当該積層体をディスプレイの表面に配置した後に最表面となる面は、ポリイミドフィルム側の表面であってもよいし、ハードコート層側の表面であってもよい。中でも、ハードコート層側の表面が、より表側の面となるように本発明のディスプレイ用部材を配置することが好ましい。また、本発明のディスプレイ用部材は、最表面に指紋付着防止層を有するものであっても良い。 In addition, when the member for displays of this invention is a laminated body of the said invention, after arrange | positioning the said laminated body on the surface of a display, the surface used as the outermost surface may be the surface by the side of a polyimide film, or hard It may be the surface on the coat layer side. Among them, it is preferable to arrange the display member of the present invention such that the surface on the hard coat layer side is the surface on the front side. The display member of the present invention may have a fingerprint adhesion preventing layer on the outermost surface.
 また、本発明のディスプレイ用部材をディスプレイの表面に配置する方法としては、特に限定はされないが、例えば、接着層を介する方法等が挙げられる。前記接着層としては、ディスプレイ用部材の接着に用いることができる従来公知の接着層を用いることができる。 The method for arranging the display member of the present invention on the surface of the display is not particularly limited. For example, a method of using an adhesive layer may be mentioned. As the adhesive layer, a conventionally known adhesive layer that can be used for adhering a display member can be used.
V.タッチパネル部材
 本発明のタッチパネル部材は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、
 前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
 前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有する。
V. Touch Panel Member The touch panel member of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, or the laminate of the present invention described above;
A transparent electrode comprising a plurality of conductive parts disposed on one side of the film, the polyimide film, or the laminate;
And a plurality of lead lines electrically connected on at least one side of the end of the conductive portion.
 本発明のタッチパネル部材は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、また光学特性に優れる。
 本発明のタッチパネル部材に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明のタッチパネル部材は、特に限定はされないが、前記透明電極が、前記積層体の一方の面側に接して積層されてなるものであることが好ましい。
 本発明のタッチパネル部材は、例えば、各種ディスプレイの表面に位置するように配置して用いることができる。また、各種ディスプレイの表面に、本発明のタッチパネル部材と、表面材としての本発明のポリイミドフィルム又は積層体とを、この順に配置して用いることもできる。
The touch panel member of the present invention is provided with the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention. Since the reduction in hardness is suppressed, it can be particularly suitably used for a flexible display, and has excellent optical properties.
The laminate of the present invention used in the touch panel member of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. Is preferred.
Further, the touch panel member of the present invention is not particularly limited, but it is preferable that the transparent electrode be laminated in contact with one surface side of the laminate.
The touch panel member of the present invention can be used, for example, by being disposed on the surface of various displays. In addition, the touch panel member of the present invention and the polyimide film or laminate of the present invention as a surface material can be disposed on the surface of various displays in this order.
 以下、本発明のタッチパネル部材について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のフィルム若しくはポリイミドフィルムも同様に用いることができる。
 図5は、本発明のタッチパネル部材の一例の一方の面の概略平面図であり、図6は、図5に示すタッチパネル部材のもう一方の面の概略平面図であり、図7は、図5及び図6に示すタッチパネル部材のA-A’断面図である。図5、図6及び図7に示すタッチパネル部材20は、本発明の積層体10と、積層体10の一方の面に接して配置された第一の透明電極4と、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第一の透明電極4においては、x軸方向に伸長するように延在する短冊状の電極片である複数の第一の導電部41が、所定の間隔を空けて配置されている。第一の導電部41には、その長手方向の端部のいずれか一方において、当該第一の導電部41と電気的に接続される第一の取出し線7が接続されている。積層体10の端縁21まで延設された第一の取出し線7の端部には、外部回路と電気的に接続するための第一の端子71を設けることがよい。第一の導電部41と第一の取出し線7とは、一般には、タッチパネルの使用者が視認可能なアクティブエリア22の外側に位置する、非アクティブエリア23内において接続される。
 第一の導電部41と第一の取出し線7との接続は、例えば図5に示すように、接続部24を介在させた接続構造を採用することができる。接続部24は、具体的には、第一の導電部41の長手方向端部から、非アクティブエリア23内の所定の位置まで導電性材料の層を延設することにより形成することができる。さらに、当該接続部24上に、第一の取出し線7の少なくとも一部を重ねることにより、第一の導電部41と第一の取出し線7との接続構造を形成することができる。
 第一の導電部41と第一の取出し線7との接続は、図5に示すような、接続部24を形成する構造には限定されない。例えば、図示は省略するが、第一の導電部41の長手方向端部を非アクティブエリア23まで伸長させ、非アクティブエリア23内において、当該非アクティブエリア23まで伸長させた第一の導電部41の端部に、第一の取出し線7を乗り上げさせることによって、両者を電気的に接続させてもよい。
 なお、図5では、第一の導電部41の長手方向端部のいずれか一方と、第一の取出し線7とを接続する形態を示したが、本発明においては、1つの第一の導電部41の長手方向の両端に、それぞれ、第一の取出し線7を電気的に接続する形態としてもよい。
Hereinafter, the touch panel member of the present invention will be described by using the above-described laminate of the present invention, but instead of the above-described laminate of the present invention, the above-described film or polyimide film of the present invention may be used as well. Can.
FIG. 5 is a schematic plan view of one side of an example of the touch panel member of the present invention, FIG. 6 is a schematic plan view of the other side of the touch panel member shown in FIG. And FIG. 7 is a cross-sectional view of the touch panel member shown in FIG. The touch panel member 20 shown in FIGS. 5, 6 and 7 includes the laminate 10 of the present invention, the first transparent electrode 4 disposed in contact with one surface of the laminate 10, and the other of the laminate 10 And a second transparent electrode 5 disposed in contact with the surface of the substrate. In the first transparent electrode 4, a plurality of first conductive portions 41 which are strip-like electrode pieces extending so as to extend in the x-axis direction are arranged at predetermined intervals. The first lead-out wire 7 electrically connected to the first conductive portion 41 is connected to the first conductive portion 41 at any one of the end portions in the longitudinal direction. At the end of the first lead-out wire 7 extended to the edge 21 of the laminate 10, a first terminal 71 for electrically connecting to an external circuit may be provided. The first conductive portion 41 and the first lead-out line 7 are generally connected in a non-active area 23 located outside the active area 22 visible to the user of the touch panel.
The connection between the first conductive portion 41 and the first lead-out wire 7 can adopt a connection structure in which a connection portion 24 is interposed as shown in FIG. 5, for example. Specifically, the connection portion 24 can be formed by extending a layer of conductive material from a longitudinal end of the first conductive portion 41 to a predetermined position in the non-active area 23. Furthermore, by overlapping at least a part of the first lead-out wire 7 on the connection portion 24, a connection structure between the first conductive portion 41 and the first lead-out wire 7 can be formed.
The connection between the first conductive portion 41 and the first lead-out wire 7 is not limited to the structure forming the connection portion 24 as shown in FIG. For example, although not shown, the first conductive portion 41 which extends the longitudinal end of the first conductive portion 41 to the non-active area 23 and extends to the non-active area 23 in the non-active area 23 The two may be electrically connected by running the first lead-out wire 7 on the end of
In addition, although the form which connects either one of the longitudinal direction edge parts of the 1st electroconductive part 41 and the 1st extraction wire 7 was shown in FIG. 5, in this invention, the 1st 1st electroconductivity is one The first lead wire 7 may be electrically connected to both ends in the longitudinal direction of the portion 41, respectively.
 図6に示すように、タッチパネル部材20は、積層体10のもう一方の面に接して配置された第二の透明電極5とを備える。第二の透明電極5においては、y軸方向に伸長するように延在する複数の短冊状の電極片である第二の導電部51が、x軸方向に所定の間隔を空けて配置されている。
 第二の導電部51には、その長手方向端部の一方において、当該第二の導電部51と電気的に接続される第二の取出し線8が接続されている。
 第二の取出し線8は、積層体10の端縁のうち、前述した第一の取出し線7が延設された端縁21における、第一の端子71と重ならない位置まで延設されている。
 積層体10の端縁21まで延設された第二の取出し線8の端部には、外部回路と電気的に接続するための第二の端子81を設けることがよい。
 第二の導電部51と第二の取出し線8との電気的な接続は、第一の取出し線7と第一の導電部41との電気的な接続と同様の形態を適用することができる。
As shown in FIG. 6, the touch panel member 20 includes a second transparent electrode 5 disposed in contact with the other surface of the laminate 10. In the second transparent electrode 5, second conductive portions 51, which are a plurality of strip-like electrode pieces extending so as to extend in the y-axis direction, are arranged at predetermined intervals in the x-axis direction. There is.
A second lead-out wire 8 electrically connected to the second conductive portion 51 is connected to the second conductive portion 51 at one longitudinal end thereof.
The second lead-out line 8 is extended to a position not overlapping with the first terminal 71 at the end 21 of the end of the laminate 10 where the aforementioned first lead-out line 7 extends. .
At the end of the second lead-out wire 8 extending to the edge 21 of the laminate 10, a second terminal 81 may be provided for electrical connection with an external circuit.
The electrical connection between the second conductive portion 51 and the second lead-out wire 8 can apply the same form as the electrical connection between the first lead-out wire 7 and the first conductive portion 41 .
 なお、図5及び図6に示すような、第1取出し線7を長尺配線とし、第2取出し線8を短尺配線とするパターンは、本発明のタッチパネル部材の一実施形態に過ぎず、例えば、第一の取出し線7を短尺配線とし、第二の取出し線8を長尺配線とするパターンとすることも可能である。また、第一の取出し線7の伸長方向及び第二の取出し線8の伸長方向も、図5及び図6に示す方向に限られず、任意に設計することが可能である。 The pattern in which the first lead-out wire 7 is a long wire and the second lead-out wire 8 is a short wire as shown in FIGS. 5 and 6 is only an embodiment of the touch panel member of the present invention. It is also possible to use a pattern in which the first lead-out wire 7 is a short wire and the second lead-out wire 8 is a long wire. Further, the extension direction of the first lead-out line 7 and the extension direction of the second lead-out line 8 are not limited to the directions shown in FIGS. 5 and 6, and can be designed arbitrarily.
 本発明のタッチパネル部材が備える導電部は、タッチパネル部材において透明電極を構成するものを適宜選択して適用することができ、導電部のパターンは、図5及び図6に示すものに限定されない。例えば、静電容量方式によって、指などの接触または接触に近い状態による電気容量の変化を検知可能な透明電極のパターンを適宜選択して適用することができる。
 前記導電部の材料としては、光透過性の材料であることが好ましく、例えば、インジウム錫オキサイド(ITO)、酸化インジウム、インジウム亜鉛オキサイド(IZO)等を主たる構成成分とする酸化インジウム系透明電極材料、酸化錫(SnO)、酸化亜鉛(ZnO)等を主たる構成成分とする透明導電膜、ポリアニリン、ポリアセチレン等の導電性高分子化合物等が挙げられるが、これらに限定されるものではない。また、第一の導電部41及び第二の導電部51は、互いに同種の導電性材料を用いて形成してもよいし、異種の材料を用いて形成してもよい。特に同種の導電性材料を用いて第一の導電部41及び第2導電部51を形成すると、タッチパネル部材の反りや歪みの発生をより効果的に抑制できる観点で好ましい。
 前記導電部の厚みは、特に限定されないが、例えばフォトリソグラフィ手法により導電部を形成する場合には、一般的には、10nm~500nm程度に形成することができる。
The electroconductive part with which the touch panel member of this invention is equipped can select suitably what comprises a transparent electrode in a touch panel member, and can apply it, and the pattern of an electroconductive part is not limited to what is shown in FIG.5 and FIG.6. For example, it is possible to appropriately select and apply a pattern of a transparent electrode capable of detecting a change in electric capacitance due to a contact with a finger or the like or a state close to a contact by a capacitance method.
The material of the conductive portion is preferably a light transmitting material, and, for example, an indium oxide based transparent electrode material mainly composed of indium tin oxide (ITO), indium oxide, indium zinc oxide (IZO), etc. Examples thereof include, but are not limited to, transparent conductive films containing tin oxide (SnO 2 ), zinc oxide (ZnO) and the like as main components, and conductive polymer compounds such as polyaniline and polyacetylene. The first conductive portion 41 and the second conductive portion 51 may be formed using conductive materials of the same type as each other, or may be formed using different materials. In particular, forming the first conductive portion 41 and the second conductive portion 51 using the same type of conductive material is preferable from the viewpoint of more effectively suppressing the occurrence of warpage or distortion of the touch panel member.
The thickness of the conductive portion is not particularly limited, but in the case of forming the conductive portion by, for example, a photolithography method, the thickness can generally be formed to about 10 nm to 500 nm.
 本発明のタッチパネル部材が備える取出し線を構成する導電材料は、光透過性の有無を問わない。一般的には、取出し線は、高い導電性を有する銀や銅などの金属材料を用いて形成することができる。具体的には、金属単体、金属の複合体、金属と金属化合物の複合体、金属合金を挙げることができる。金属単体としては、銀、銅、金、クロム、プラチナ、アルミニウムの単体などを例示することができる。金属の複合体としては、MAM(モリブデン、アルミニウム、モリブデンの3層構造体)等を例示することができる。金属と金属化合物の複合体としては、酸化クロムとクロムの積層体等を例示することができる。金属合金としては、銀合金や銅合金が汎用される。また、金属合金としては、APC(銀、パラジウム及び銅の合金)等を例示することができる。また、前記取出し線には、前述した金属材料に、適宜樹脂成分が混在していてもよい。
 本発明のタッチパネル部材において、取出し線の端部に設けられる端子は、例えば、前記取出し線と同じ材料を用いて形成することができる。
 前記取出し線の厚み、及び幅寸法は、特に限定されないが、例えばフォトリソグラフィ手法により取出し線を形成する場合には、一般的には、厚みは10nm~1000nm程度に形成され、幅寸法は5μm~200μm程度に形成される。一方、スクリーン印刷などの印刷により取出し線を形成する場合には、一般的には、厚みは5μm~20μm程度に形成され、幅寸法は20μm~300μm程度に形成される。
The electrically conductive material which comprises the extraction line with which the touch panel member of this invention is equipped does not ask | require the optical transparency. Generally, the lead-out lines can be formed using a metal material such as silver or copper having high conductivity. Specifically, simple metals, composites of metals, composites of metals and metal compounds, and metal alloys can be mentioned. Examples of the metal alone include silver, copper, gold, chromium, platinum, and aluminum alone. As a metal complex, MAM (trilayer structure of molybdenum, aluminum, and molybdenum) etc. can be illustrated. As a composite of a metal and a metal compound, a laminate of chromium oxide and chromium can be exemplified. Silver alloys and copper alloys are generally used as metal alloys. Moreover, APC (alloy of silver, palladium, and copper) etc. can be illustrated as a metal alloy. In the lead-out wire, a resin component may be mixed with the above-described metal material as appropriate.
In the touch panel member of the present invention, the terminal provided at the end of the lead-out wire can be formed, for example, using the same material as the lead-out wire.
The thickness and width of the extraction line are not particularly limited. For example, when forming the extraction line by photolithography, the thickness is generally 10 nm to 1000 nm and the width is 5 μm to 500 nm. It is formed to about 200 μm. On the other hand, when forming a lead-out line by printing such as screen printing, generally, the thickness is about 5 μm to 20 μm and the width dimension is about 20 μm to 300 μm.
 本発明のタッチパネル部材は、図5~図7に示す形態には限られず、例えば、第一の透明電極と、第二の透明電極とが、それぞれ別個の積層体の上に積層されて構成されるものであってもよい。
 図8及び図9は、各々本発明の積層体を備える導電性部材の一例を示す概略平面図である。図8に示す第一の導電性部材201は、本発明の積層体10と、当該積層体10の一方の面に接して配置された第一の透明電極4とを有し、当該第一の透明電極4は、複数の第一の導電部41を有する。図9に示す第二の導電性部材202は、本発明の積層体10’と、当該積層体10’の一方の面に接して配置された第二の透明電極5とを有し、当該第二の透明電極5は、複数の第二の導電部51を有する。
 図10は、本発明のタッチパネル部材の別の一例を示す概略断面図であり、図10に示すタッチパネル部材20’は、図8に示す第一の導電性部材201と、図9に示す第二の導電性部材202とを備える。タッチパネル部材20’においては、第一の導電性部材201の第一の透明電極4を有しない面と、第二の導電性部材202の透明電極5を有する面とが、接着層6を介して貼り合わせられている。なお、本発明において、例えば、本発明の積層体と本発明のタッチパネル部材とを接着するための接着層、本発明のタッチパネル部材同士を接着するための接着層、本発明のタッチパネル部材と表示装置等とを接着するための接着層としては、光学部材に用いられている従来公知の接着層を適宜選択して用いることができる。本発明のタッチパネル部材に用いられる導電性部材において、透明電極、取出し線及び端子の構成及び材料は、前述した本発明のタッチパネル部材に用いられる透明電極、取出し線及び端子と各々同様とすることができる。
The touch panel member of the present invention is not limited to the form shown in FIG. 5 to FIG. 7, and for example, the first transparent electrode and the second transparent electrode may be laminated on separate laminates. It may be
8 and 9 are each a schematic plan view showing an example of a conductive member provided with the laminate of the present invention. The first conductive member 201 shown in FIG. 8 has the laminate 10 of the present invention and the first transparent electrode 4 disposed in contact with one surface of the laminate 10, and The transparent electrode 4 has a plurality of first conductive portions 41. The second conductive member 202 shown in FIG. 9 has a laminate 10 ′ of the present invention and a second transparent electrode 5 disposed in contact with one surface of the laminate 10 ′. The second transparent electrode 5 has a plurality of second conductive parts 51.
FIG. 10 is a schematic cross-sectional view showing another example of the touch panel member of the present invention, and the touch panel member 20 ′ shown in FIG. 10 is a first conductive member 201 shown in FIG. And the conductive member 202. In the touch panel member 20 ′, the surface of the first conductive member 201 which does not have the first transparent electrode 4 and the surface of the second conductive member 202 which has the transparent electrode 5 intervene through the adhesive layer 6. It is stuck. In the present invention, for example, an adhesive layer for bonding the laminate of the present invention and the touch panel member of the present invention, an adhesive layer for bonding the touch panel members of the present invention, the touch panel member and the display device of the present invention As a bonding layer for bonding with etc., a conventionally known bonding layer used for an optical member can be appropriately selected and used. In the conductive member used for the touch panel member of the present invention, the configuration and materials of the transparent electrode, the lead wire and the terminal may be the same as the transparent electrode, the lead wire and the terminal used for the touch panel member of the present invention described above. it can.
VI.液晶表示装置
 本発明の液晶表示装置は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部とを有する。
VI. Liquid Crystal Display Device The liquid crystal display device of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, the laminate of the present invention described above, the film or the polyimide film or one surface side of the laminate. And a liquid crystal display unit having a liquid crystal layer between opposing substrates.
 本発明の液晶表示装置は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたものであるため、フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本発明の液晶表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明の液晶表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
 また、本発明の液晶表示装置が有する対向基板は、本発明のフィルム若しくはポリイミドフィルム又は積層体を備えるものであっても良い。
The liquid crystal display device of the present invention comprises the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention, so it is excellent in transparency and improves bending resistance. Since a reduction in surface hardness is suppressed, it can be particularly suitably used for a flexible display, and is excellent in optical characteristics.
The laminate of the present invention used in the liquid crystal display device of the present invention has a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film Is preferred.
In addition, the liquid crystal display device of the present invention may be provided with the touch panel member of the present invention described above.
In addition, the counter substrate included in the liquid crystal display device of the present invention may be provided with the film or the polyimide film or the laminate of the present invention.
 以下、本発明の液晶表示装置について、前述した本発明の積層体を用いた例で説明するが、前述した本発明の積層体の代わりに、前述した本発明のフィルム若しくはポリイミドフィルムも同様に用いることができる。
 図11は、本発明の液晶表示装置の一例を示す概略断面図である。図11に示す液晶表示装置100は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、液晶表示部30とを有する。液晶表示装置100において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。
Hereinafter, the liquid crystal display device of the present invention will be described using an example using the above-mentioned laminate of the present invention, but instead of the above-mentioned laminate of the present invention, the above-mentioned film or polyimide film of the present invention is similarly used. be able to.
FIG. 11 is a schematic cross-sectional view showing an example of the liquid crystal display device of the present invention. The liquid crystal display device 100 shown in FIG. 11 includes the laminate 10 of the present invention and the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and the second transparent electrode 5 on the other surface. And a liquid crystal display unit 30. In the liquid crystal display device 100, the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
 本発明の液晶表示装置に用いられる液晶表示部は、対向配置された基板の間に形成された液晶層を有するものであり、従来公知の液晶表示装置に用いられている構成を採用することができる。
 本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができ、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。
 本発明の液晶表示装置に用いられる対向基板としては、液晶表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明のポリイミドフィルム又は積層体を備えるものを用いても良い。
 液晶層を構成する液晶としては、本発明の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。前記方法によって液晶層を形成後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
 本発明の液晶表示装置において、対向配置された基板の間には、さらに複数色の着色層や、画素を画定する遮光部を有していてもよい。また、液晶表示部は、対向配置された基板の外側において、タッチパネル部材が位置する側とは反対側の位置に、発光素子や蛍光体を有するバックライト部を有していてもよい。また、対向配置された基板の外表面には、それぞれ偏光板を有していてもよい。
The liquid crystal display portion used in the liquid crystal display device of the present invention has a liquid crystal layer formed between the substrates disposed opposite to each other, and adopting the configuration used in the conventionally known liquid crystal display device. it can.
The drive method of the liquid crystal display device of the present invention is not particularly limited, and a drive method generally used for a liquid crystal display device can be adopted. For example, a TN method, an IPS method, an OCB method, and an MVA method Etc. can be mentioned.
The opposite substrate used in the liquid crystal display device of the present invention can be appropriately selected and used according to the driving method of the liquid crystal display device and the like, and a substrate provided with the polyimide film or laminate of the present invention may be used.
As the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy, and a mixture thereof can be used according to the driving method of the liquid crystal display device of the present invention and the like.
As a method of forming a liquid crystal layer, a method generally used as a method of manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method. After forming the liquid crystal layer by the above method, the liquid crystal cell can be gradually cooled to room temperature to orient the enclosed liquid crystal.
In the liquid crystal display device of the present invention, a plurality of colored layers and a light shielding portion for defining a pixel may be further provided between the opposed substrates. In addition, the liquid crystal display unit may have a backlight unit having a light emitting element or a phosphor at a position opposite to the side where the touch panel member is located, on the outside of the oppositely disposed substrate. Moreover, you may have a polarizing plate in the outer surface of the board | substrate by which opposing arrangement | positioning was carried out.
 図12は、本発明の液晶表示装置の別の一例を示す概略断面図である。図12に示す液晶表示装置200は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、液晶表示部30とを有する。液晶表示装置200において、積層体10と第一の導電性部材201、及び第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図10に示すタッチパネル部材20’の構成と同様にすることができる。本発明の液晶表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 12 is a schematic cross-sectional view showing another example of the liquid crystal display device of the present invention. The liquid crystal display device 200 shown in FIG. 12 includes the laminate 10 of the present invention, the first conductive member 201 provided with the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, A touch panel member 20 ′ having a second conductive member 202 provided with a second transparent electrode 5 on one surface of the laminate 10 ′ ′, and a liquid crystal display unit 30. In the liquid crystal display device 200, the laminate 10 , The first conductive member 201, and the first conductive member 201 and the second conductive member 202 are bonded to each other via the adhesive layer 6. The configuration of the touch panel member 20 'is, for example, 10 can be the same as the configuration of the touch panel member 20 ', The conductive member used in the liquid crystal display device of the present invention is the same as the conductive member used in the touch panel member of the present invention. Use Can.
VII.有機エレクトロルミネッセンス表示装置
 本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体と、前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部とを有する。
VII. Organic Electroluminescent Display Device The organic electroluminescent display device of the present invention comprises the film of the present invention described above, the polyimide film of the present invention described above, the laminate of the present invention described above, the film or the polyimide film or the laminate And an organic electroluminescent display unit having an organic electroluminescent layer between opposing substrates disposed on one side.
 本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のフィルム若しくは前述した本発明のポリイミドフィルム又は前述した本発明の積層体を備えるものであることから、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制されたものであるため、
フレキシブルディスプレイ用として特に好適に用いることができ、光学特性に優れる。
 本発明の有機エレクトロルミネッセンス表示装置に用いられる本発明の積層体は、ポリイミドフィルムの両面に隣接して、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層を有するものであることが好ましい。
 また、本発明の有機エレクトロルミネッセンス表示装置は、前述した本発明のタッチパネル部材を備えるものであっても良い。
 また、本発明の有機エレクトロルミネッセンス表示装置が有する対向基板は、本発明のフィルム若しくはポリイミドフィルム又は積層体を備えるものであっても良い。
The organic electroluminescent display device of the present invention is excellent in transparency and improves bending resistance since it comprises the above-described film of the present invention, the above-described polyimide film of the present invention, or the above-described laminate of the present invention. While the decrease in surface hardness is suppressed.
It can be particularly suitably used for a flexible display, and has excellent optical characteristics.
The laminate of the present invention used in the organic electroluminescent display device of the present invention comprises a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound adjacent to both sides of a polyimide film. It is preferable to have.
Moreover, the organic electroluminescent display apparatus of this invention may be equipped with the touch-panel member of this invention mentioned above.
In addition, the opposing substrate included in the organic electroluminescent display device of the present invention may be provided with the film or the polyimide film or the laminate of the present invention.
 図13は、本発明の有機エレクトロルミネッセンス表示装置の一例を示す概略断面図である。図13に示す有機エレクトロルミネッセンス表示装置300は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備え、もう一方の面に第二の透明電極5を備えるタッチパネル部材20と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置300において、積層体10は表面材として用いられており、積層体10とタッチパネル部材20とは、接着層6を介して貼り合わせられている。 FIG. 13 is a schematic cross-sectional view showing an example of the organic electroluminescent display device of the present invention. The organic electroluminescent display device 300 shown in FIG. 13 comprises the laminate 10 of the present invention and the first transparent electrode 4 on one side of the laminate 10 'of the present invention, and the second transparent on the other side. A touch panel member 20 including an electrode 5 and an organic electroluminescence display unit 40 are provided. In the organic electroluminescent display device 300, the laminate 10 is used as a surface material, and the laminate 10 and the touch panel member 20 are bonded to each other through the adhesive layer 6.
 本発明の有機エレクトロルミネッセンス表示装置(有機EL表示装置)に用いられる有機エレクトロルミネッセンス表示部(有機EL表示部)は、対向配置された基板の間に形成された有機エレクトロルミネッセンス層(有機EL層)を有するものであり、従来公知の有機EL表示装置に用いられている構成を採用することができる。
 有機EL表示部は、さらに、支持基板と、有機EL層並びに有機EL層を挟持する陽極層及び陰極層を含む有機EL素子と、有機EL素子を封止する封止基材と、を有していてもよい。前記有機EL層としては、少なくとも有機EL発光層を有するものであれば良いが、例えば、上記陽極層側から、正孔注入層、正孔輸送層、有機EL発光層、電子輸送層および電子注入層がこの順で積層した構造を有するものを有するものを用いることができる。
 本発明の有機EL表示装置は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。本発明の有機EL表示装置に用いられる対向基板としては、有機EL表示装置の駆動方式等に応じて適宜選択して用いることができ、本発明の積層体を備えるものを用いても良い。
The organic electroluminescent display part (organic EL display part) used for the organic electroluminescent display apparatus (organic EL display apparatus) of this invention is an organic electroluminescent layer (organic EL layer) formed between the board | substrates opposingly arranged. It is possible to adopt a configuration that is used in a conventionally known organic EL display device.
The organic EL display portion further includes an organic EL element including a support substrate, an organic EL layer, and an anode layer and a cathode layer sandwiching the organic EL layer, and a sealing base for sealing the organic EL element. It may be As the organic EL layer, any one having at least an organic EL light emitting layer may be used. For example, a hole injection layer, a hole transport layer, an organic EL light emitting layer, an electron transporting layer and an electron injection from the anode layer side It is possible to use one having a structure in which the layers are stacked in this order.
The organic EL display device of the present invention can be applied to, for example, a passive drive organic EL display and an active drive organic EL display. As an opposing board | substrate used for the organic electroluminescence display of this invention, it can select suitably according to the drive system of an organic electroluminescence display etc., and can be used, and you may use what is provided with the laminated body of this invention.
 図14は、本発明の有機エレクトロルミネッセンス表示装置の別の一例を示す概略断面図である。図14に示す有機エレクトロルミネッセンス表示装置400は、本発明の積層体10と、本発明の積層体10’の一方の面に第一の透明電極4を備える第一の導電性部材201と、本発明の積層体10”の一方の面に第二の透明電極5を備える第二の導電性部材202とを有するタッチパネル部材20’と、有機エレクトロルミネッセンス表示部40とを有する。有機エレクトロルミネッセンス表示装置400において、積層体10と第一の導電性部材201、第一の導電性部材201と第二の導電性部材202とは、各々接着層6を介して貼り合わせられている。タッチパネル部材20’の構成は、例えば、図10に示すタッチパネル部材20’の構成と同様にすることができる。本発明の有機エレクトロルミネッセンス表示装置に用いられる導電性部材としては、本発明のタッチパネル部材に用いられる導電性部材と同様のものを用いることができる。 FIG. 14 is a schematic cross-sectional view showing another example of the organic electroluminescent display device of the present invention. The organic electroluminescent display device 400 shown in FIG. 14 includes the laminate 10 of the present invention, the first conductive member 201 having the first transparent electrode 4 on one surface of the laminate 10 ′ of the present invention, and It has a touch panel member 20 ′ having a second conductive member 202 having the second transparent electrode 5 on one surface of the laminate 10 ′ ′ of the invention, and an organic electroluminescence display unit 40. Organic electroluminescence display device In 400, the laminate 10 and the first conductive member 201 and the first conductive member 201 and the second conductive member 202 are bonded to each other through the adhesive layer 6. The touch panel member 20 '. For example, the constitution of the invention can be the same as the constitution of the touch panel member 20 'shown in Fig. 10. The organic electroluminescent display device of the present invention can be used. The that the conductive member may be the same as the conductive member for use in a touch panel member of the present invention.
[評価方法]
 以下、特に断りがない場合は、25℃で測定又は評価を行った。
<ポリイミド前駆体の重量平均分子量>
 ポリイミド前駆体の重量平均分子量は、ポリイミド前駆体を0.5重量%の濃度のN-メチルピロリドン(NMP)溶液とし、その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の10mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、40℃の条件で測定を行った。ポリイミド前駆体の重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド前駆体溶液の粘度>
 ポリイミド前駆体溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
[Evaluation method]
Hereinafter, unless otherwise noted, measurement or evaluation was performed at 25 ° C.
<Weight-average molecular weight of polyimide precursor>
The weight average molecular weight of the polyimide precursor is determined by using the polyimide precursor as a 0.5 wt% N-methylpyrrolidone (NMP) solution, filtering the solution through a syringe filter (pore diameter: 0.45 μm), As a solvent, using a 10 mmol% LiBr-NMP solution with a water content of 500 ppm or less, using a GPC apparatus (HLC-8120 manufactured by Tosoh Corporation, column: GPC LF-804 manufactured by SHODEX), the sample loading amount 50 μL, solvent flow 0.4 mL The measurement was performed under the conditions of 40 ° C./min. The weight average molecular weight of the polyimide precursor is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364, 700, 204,000, 103, 500, 44, 360, 27, 500, 13, 030, 6, 300, It is a converted value to standard polystyrene measured based on 3, 070). The elution time was compared with a calibration curve to determine the weight average molecular weight.
<Viscosity of Polyimide Precursor Solution>
The viscosity of the polyimide precursor solution was measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (eg, TVE-22HT, Toki Sangyo Co., Ltd.).
<ポリイミドの重量平均分子量>
 ポリイミド粉体15mgを、15000mgのN-メチルピロリドン(NMP)に浸漬し、ウォーターバスで60℃に加熱しながら、スターラーを用いて回転速度200rpmで、目視で溶解を確認するまで3~60時間撹拌することにより、0.1重量%の濃度のNMP溶液を得た。その溶液をシリンジフィルター(孔径:0.45μm)に通じて濾過させ、展開溶媒として、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、GPC装置(東ソー製、HLC-8120、検出器:示差屈折率(RID)検出器、使用カラム:SHODEX製GPC LF-804を2本直列に接続)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、カラム温度37℃、検出器温度37℃の条件で測定を行った。ポリイミドの重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプル(重量平均分子量:364,700、204,000、103,500、44,360,27,500、13,030、6,300、3,070)を基準に測定した標準ポリスチレンに対する換算値とした。溶出時間を検量線と比較し、重量平均分子量を求めた。
<ポリイミド溶液の粘度>
 ポリイミド溶液の粘度は、粘度計(例えば、TVE-22HT、東機産業株式会社)を用いて、25℃で、サンプル量0.8mlとして測定した。
<Weight average molecular weight of polyimide>
15 mg of polyimide powder is immersed in 15000 mg of N-methylpyrrolidone (NMP) and heated to 60 ° C. with a water bath, and stirred for 3 to 60 hours until dissolution is visually confirmed at a rotational speed of 200 rpm using a stirrer By doing this, an NMP solution with a concentration of 0.1% by weight was obtained. The solution is filtered through a syringe filter (pore diameter: 0.45 μm), and a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent, and a GPC device (HLC-8120, detector: differential) Refractive index (RID) detector, using column: Two GPC LF-804 (manufactured by SHODEX) connected in series, sample loading amount 50 μL, solvent flow rate 0.4 mL / min, column temperature 37 ° C., detector temperature 37 ° C. The measurement was performed under the following conditions. The weight average molecular weight of the polyimide is a polystyrene standard sample having the same concentration as the sample (weight average molecular weight: 364, 700, 204,000, 103, 500, 44, 360, 27, 500, 13, 030, 6, 300, 3, It is a converted value to standard polystyrene measured based on 070). The elution time was compared with a calibration curve to determine the weight average molecular weight.
<Viscosity of Polyimide Solution>
The viscosity of the polyimide solution was measured as a sample amount of 0.8 ml at 25 ° C. using a viscometer (for example, TVE-22HT, Toki Sangyo Co., Ltd.).
<ポリイミドのケイ素原子含有割合(質量%)>
 ポリイミドのケイ素原子含有割合(質量%)は、仕込みの分子量から算出した。
 例えば、合成例2のポリイミドのように、酸二無水物成分として4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)1モルに対して、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)0.9モルと1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)0.1モルを用いた場合、以下のように算出することができる。
 ポリイミド繰り返し単位1モル分の分子量は、
6FDA由来:(C)12.01×19+(F)19.00×6+(O)16.00×4+(H)1.01×6=412.25
TFMB由来:{(C)12.01×14+(F)19.00×6+(N)14.01×2+(H)1.01×6}×0.9=284.60
AprTMOS由来:{(C)12.01×10+(O)16.00×1+(N)14.01×2+(Si)28.09×2+(H)1.01×24}×0.1=24.45
から、412.25+284.60+24.45=721.30と算出される。
 ポリイミド繰り返し単位1モル中のケイ素原子含有割合(質量%)は、
(28.09×2×0.1)/721.30×100=0.8(質量%)と求められる。
 なお、合成例10の両末端アミン変性ジフェニルシリコーンオイル(信越化学社製:X22-1660B-3、側鎖フェニルタイプ、数平均分子量4400)については、-(CH-を介してアミノ基がシリコーンに結合していると仮定して、数平均分子量4400からジフェニルシロキサンの繰り返し単位数が平均19.7であると算出し、1分子中に平均21.7個のケイ素原子が含まれているものとして算出した。
 また、合成例11のシリコーンジアミン(信越シリコーン社製:KF-8010、数平均分子量860)については、-(CH-を介してアミノ基がシリコーンに結合していると仮定して、数平均分子量860からジメチルシロキサンの繰り返し単位数が平均8.2であると算出し、1分子中に平均10.2個のケイ素原子が含まれているものとして算出した。
<Silicon atom content ratio (mass%) of polyimide>
The silicon atom content rate (mass%) of polyimide was computed from the molecular weight of preparation.
For example, as in the polyimide of Synthesis Example 2, 2,2'-bis as a diamine component relative to 1 mol of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as an acid dianhydride component. When using 0.9 mol of (trifluoromethyl) benzidine (TFMB) and 0.1 mol of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS), calculation can be made as follows: .
The molecular weight of one mole of polyimide repeating unit is
From 6FDA: (C) 12.01 × 19 + (F) 19.00 × 6 + (O) 16.00 × 4 + (H) 1.01 × 6 = 412.25
TFMB origin: {(C) 12.01 × 14 + (F) 19.00 × 6 + (N) 14.01 × 2 + (H) 1.01 × 6} × 0.9 = 284.60
From AprTMOS: {(C) 12.01 × 10 + (O) 16.00 × 1 + (N) 14.01 × 2 + (Si) 28.09 × 2 + (H) 1.01 × 24} × 0.1 = 24.45
From this, it is calculated as 412.25 + 284.60 + 24.45 = 721.30.
The silicon atom content (mass%) in 1 mole of polyimide repeating unit is
It is calculated as (28.09 × 2 × 0.1) /721.30×100=0.8 (% by mass).
Incidentally, both terminal amine-modified diphenyl silicone oil in Synthesis Example 10 (Shin-Etsu Chemical Co., Ltd.: X22-1660B-3, the side chain phenyl type, number average molecular weight 4400) for, - (CH 2) 3 - amino group via an Is calculated to have an average number of repeating units of diphenyl siloxane of 19.7 based on a number average molecular weight of 4400 assuming that it is bonded to silicone, and an average of 21.7 silicon atoms are contained in one molecule. Calculated as
Further, with regard to the silicone diamine of Synthesis Example 11 (Shin-Etsu Silicone Co., Ltd .: KF-8010, number average molecular weight 860), it is assumed that an amino group is bonded to silicone via-(CH 2 ) 3- The number of repeating units of dimethylsiloxane was calculated to be 8.2 on average from a number average molecular weight of 860, and it was calculated as an average of 10.2 silicon atoms contained in one molecule.
<全光線透過率>
 JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
 また、例えば、厚み100μmでの全光線透過率は、ランベルトベールの法則により換算することができる。
 具体的には、ランベルトベールの法則によれば、透過率Tは、
Log10(1/T)=kcb
(k=物質固有の定数、c=濃度、b=光路長)で表される。
 フィルムの透過率の場合、膜厚が変化しても密度が一定であると仮定するとcも定数となるので、上記式は、定数fを用いて
Log10(1/T)=fb
(f=kc)と表すことができる。ここで、ある膜厚の時の透過率がわかれば、各物質の固有の定数fを求めることができる。従って、T=1/10f・b の式を用いて、fに固有の定数、bに目標の膜厚を代入すれば、所望の膜厚の時の透過率を求めることができる。
<Total ray transmittance>
It was measured with a haze meter (HM150 manufactured by Murakami Color Research Laboratory) in accordance with JIS K7361-1.
Also, for example, the total light transmittance at a thickness of 100 μm can be converted according to Lambert-Beer's law.
Specifically, according to Lambert-Beer's law, the transmittance T is
Log 10 (1 / T) = kcb
(K = material-specific constant, c = concentration, b = optical path length)
In the case of the transmittance of a film, c is also a constant assuming that the density is constant even if the film thickness changes, so the above equation can be calculated using Log 10 (1 / T) = fb using a constant f.
It can be expressed as (f = kc). Here, if the transmittance at a certain film thickness is known, the unique constant f of each substance can be determined. Therefore, the transmittance at the desired film thickness can be determined by substituting the specific constant for f and the target film thickness for b using the equation T = 1/10 fb .
<YI値(黄色度)>
 YI値は、JIS K7373-2006に準拠して、紫外可視近赤外分光光度計(日本分光(株) V-7100)を用い、分光測色方法により、補助イルミナントC、2度視野を用いて、250nm以上800nm以下の範囲を1nm間隔で測定される透過率をもとに、XYZ表色系における三刺激値X,Y,Zを求め、そのX,Y,Zの値から以下の式より算出した。
  YI=100(1.2769X-1.0592Z)/Y
 また、例えば、厚み100μmでのYI値は、ある特定の膜厚のサンプルの250nm以上800nm以下の範囲を1nm間隔で測定された各波長における各透過率について、前記全光線透過率と同様にランベルトベールの法則により異なる厚みの各波長における各透過率の換算値を求め、それを元に算出し用いることができる。
<YI value (yellowness)>
YI value is based on JIS K7373-2006 using an ultraviolet visible near infrared spectrophotometer (JASCO Ltd. V-7100) and using an auxiliary illuminant C and a 2 degree visual field by a spectral colorimetry method Based on the transmittance measured at intervals of 1 nm from the range of 250 nm to 800 nm, tristimulus values X, Y, Z in the XYZ color system are determined, and from the values of X, Y, Z, the following equation Calculated.
YI = 100 (1.2769X-1.0592Z) / Y
Also, for example, the YI value at a thickness of 100 μm is the same as the total light transmittance for each transmittance at each wavelength measured at intervals of 1 nm in the range of 250 nm to 800 nm of a sample of a specific thickness The converted value of each transmittance at each wavelength of different thickness can be determined according to Baire's law, and it can be calculated and used based on it.
<膜厚測定法>
 10cm×10cmの大きさに切り出したポリイミドフィルムの試験片の四隅と中央の計5点の膜厚を、デジタルリニアゲージ(株式会社尾崎製作所製、型式PDN12 デジタルゲージ)を用いて測定し、測定値の平均をポリイミドフィルムの膜厚とした。
<Thickness measurement method>
The film thickness of a total of 5 points of the four corners and the center of the polyimide film test piece cut out in a size of 10 cm × 10 cm was measured using a digital linear gauge (Model PDN12 digital gauge manufactured by Ozaki Mfg. Co., Ltd.) Of the film thickness of the polyimide film.
<引張試験>
 15mm×40mmに切り出したポリイミドフィルムの試験片を、温度25℃、相対湿度60%の条件で2時間調湿した後、JIS K7127に準拠し、引張り速度を10mm/分、チャック間距離を20mmとして、25℃における引張試験を行い、引張試験により得られる応力-ひずみ曲線において降伏点におけるひずみ(%)と、引張弾性率と、伸び率を測定した。引張り試験機は(島津製作所製:オートグラフAG-X 1N、ロードセル:SBL-1KN)を用いた。
 前記試験片は、フィルムの中央部付近から切り出した。切り出したフィルムの四隅と中央の計5点の膜厚を、前記膜厚の測定方法で測定し、5点の平均膜厚と各点の膜厚の差が、平均膜厚の6%以内である試験片を用いた。
<Tension test>
The test piece of polyimide film cut out to 15 mm × 40 mm is conditioned at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, and in accordance with JIS K7127, the tensile speed is 10 mm / min and the distance between chucks is 20 mm. The tensile test was conducted at 25 ° C., and the strain (%) at the yield point, the tensile modulus, and the elongation were measured in the stress-strain curve obtained by the tensile test. A tensile tester (manufactured by Shimadzu Corporation: Autograph AG-X 1N, load cell: SBL-1KN) was used.
The test piece was cut out from near the center of the film. The film thickness of a total of five points at the four corners and the center of the cut out film is measured by the method of measuring the film thickness, and the difference between the average film thickness of five points and the film thickness of each point is within 6% of the average film thickness One test piece was used.
<動的屈曲試験>
 20mm×100mmの大きさに切り出したポリイミドフィルムの試験片を、恒温恒湿器内耐久試験システム(ユアサシステム機器製、面状体無負荷U字伸縮試験治具 DMX-FS)にテープで固定した。また、試験片を長辺の半分の位置で折り曲げ、折り畳まれた状態の試験片の長辺の両端部間の距離が6mmとなり、試験片の折り曲げ部分の曲率半径が3mmとなるように折り畳まれた状態を設定した。その後、60±2℃で93±2%相対湿度(RH)の環境下で、平坦に開いた状態から前記折り畳まれた状態にすることを1回の屈曲として、1分間に90回の屈曲回数で、20万回屈曲を繰り返した。
 その後、試験片を取り外してから30分後に、得られた試験片の一方の端部を固定し、試験片の内角を測定した。
 なお、当該動的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
<Dynamic bending test>
A test piece of polyimide film cut out to a size of 20 mm × 100 mm was taped to the endurance test system in a constant temperature and humidity chamber (made by Yuasa System Co., Ltd., sheet-shaped body unloaded U-shaped expansion and contraction test jig DMX-FS) . In addition, the test piece is folded at half of the long side, and the distance between both ends of the long side of the test piece in the folded state is 6 mm, and the curvature radius of the bent portion of the test piece is 3 mm. Set the status. Thereafter, under the environment of 93 ± 2% relative humidity (RH) at 60 ± 2 ° C., changing from the flat open state to the folded state is regarded as one flexing, 90 flexings per minute. And, it repeated bending 200,000 times.
Then, 30 minutes after removing the test piece, one end of the obtained test piece was fixed, and the inner angle of the test piece was measured.
If the film is completely returned without being affected by the dynamic bending test, the inner angle is 180 °.
<静的屈曲試験>
 図4に示すように、15mm×40mmに切り出したポリイミドフィルムの試験片1を、長辺の半分の位置で折り曲げ、当該試験片の長辺の両端部が厚み6mmの金属片2(100mm×30mm×6mm)を上下面から挟むようにして配置し、当該試験片1の両端部と金属片2との上下面での重なりしろが各々10mmずつになるようにテープで固定した状態で、上下からガラス板(100mm×100mm×0.7mm)3a及び3bで挟み、当該試験片を内径6mmで屈曲した状態で固定した。その際に、金属片2とガラス板の間で当該試験片がない部分には、ダミーの試験片4a及び4bを挟み込み、ガラス板が平行になるようにテープで固定した。このようにして屈曲した状態で固定した当該試験片を、室温23±2℃、50±5%相対湿度(RH)の環境下で24時間静置した後、ガラス板と固定用のテープを外し、当該試験片にかかる力を解放した。その後、当該試験片の一方の端部を固定し、試験片にかかる力を解放してから30分後の試験片の内角を測定した。
 なお、当該静的屈曲試験によってフィルムが影響を受けずに完全に元に戻った場合は、前記内角は180°となる。
<Static bending test>
As shown in FIG. 4, a test piece 1 of a polyimide film cut out to 15 mm × 40 mm is bent at half of the long side, and both ends of the long side of the test piece are metal pieces 2 (100 mm × 30 mm with a thickness of 6 mm) Glass plates from above and below with x 6 mm) sandwiched between the upper and lower surfaces and fixed with tape so that the overlapping margin on the upper and lower surfaces of both ends of the test piece 1 and the metal piece 2 is 10 mm each It pinched with (100 mm x 100 mm x 0.7 mm) 3a and 3b, and fixed the test piece concerned in the state where it was bent by internal diameter 6 mm. At that time, dummy test pieces 4a and 4b were sandwiched between the metal piece 2 and the glass plate in a portion where there is no test piece, and fixed with a tape so that the glass plates become parallel. The test piece thus fixed in a bent state is allowed to stand for 24 hours under an environment of room temperature 23 ± 2 ° C. and 50 ± 5% relative humidity (RH), and then the glass plate and the fixing tape are removed. , Released the force applied to the test piece. Thereafter, one end of the test piece was fixed, and the internal angle of the test piece was measured 30 minutes after releasing the force applied to the test piece.
In the case where the film is completely returned without being affected by the static bending test, the inner angle is 180 °.
<鉛筆硬度>
 鉛筆硬度は、測定サンプルを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用い、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(0.98N荷重)をフィルム表面に行い、傷がつかない最も高い鉛筆硬度を評価することにより行った。
<Pencil hardness>
For pencil hardness, after conditioning the measurement sample under the conditions of temperature 25 ° C. and relative humidity 60% for 2 hours, using pencil for test specified in JIS-S-6006, pencil scratching film hardness manufactured by Toyo Seiki Co., Ltd. A pencil hardness test (0.98N load) specified in JIS K5600-5-4 (1999) was performed on the film surface using a hardness tester to evaluate the highest pencil hardness without scratch.
<ヤング率>
 15mm×15mmに切り出したポリイミドフィルムの試験片の表面のヤング率を、温度25℃で、ISO14577に準拠し、ナノインデンテーション法を用いて測定した。具体的には、測定装置は(株)フィッシャー・インストルメンツ社製、PICODENTOR HM500を用い、測定圧子としてビッカース圧子を用いた。試験片表面について、任意の点を8ヶ所測定して数平均して求めた値をヤング率とした。なお、測定条件は、最大押込み深さ:1000nm、加重時間:20秒、クリープ時間:5秒とした。
<Young's modulus>
The Young's modulus of the surface of a test piece of a polyimide film cut out to 15 mm × 15 mm was measured at a temperature of 25 ° C. in accordance with ISO 14577 using a nanoindentation method. Specifically, a measuring apparatus used was PICODENTOR HM500 manufactured by Fisher Instruments Inc., and a Vickers indenter was used as a measuring indenter. With respect to the surface of the test piece, a value obtained by measuring eight arbitrary points and performing number averaging is defined as a Young's modulus. The measurement conditions were: maximum indentation depth: 1000 nm, weighted time: 20 seconds, creep time: 5 seconds.
<外観総合判定>
 前記黄色度の結果と、前記動的屈曲試験の結果と、前記静的屈曲試験の結果とにより、フィルムの外観を総合的に判定した。
 前記静的屈曲試験の試験片の内角(戻り角度)が180度であれば、前記静的屈曲試験後の試験片を平坦に開いた時に折り癖が観測されない。一方で、前記静的屈曲試験の試験片の内角が小さくなる程、前記静的屈曲試験後の試験片を平坦に開いた時に外観変化として折り癖が強く観測される。そのため、フィルムの屈曲後の外観変化として折り癖の強さを前記静的屈曲試験の結果により評価した。なお、折り癖は、試験片を平坦に開いて両端部をテープで固定して試験片表面に蛍光灯等の光を当てた時に、筋状の反射として観測することができる。
(評価基準)
AA : 黄色度が5以下で、且つ、動的屈曲試験で破断せず、試験片の内角が140°以上であり、静的屈曲試験で試験片の内角が180°である。
A : 黄色度が5以下で、且つ、動的屈曲試験で破断せず、試験片の内角が140°以上であり、静的屈曲試験で試験片の内角が170°以上180°未満である。
B : 黄色度が5以下で、且つ、動的屈曲試験で破断せず、試験片の内角が140°以上であり、静的屈曲試験で試験片の内角が155°以上170°未満である。
C : 下記(c1)と下記(c2)の少なくとも一方に該当する
   (c1)黄色度が5超過
   (c2)動的屈曲試験で破断するか、試験片の内角が140°未満であり、静的屈曲試験で試験片の内角が155°未満である。
<Overall appearance judgment>
The appearance of the film was comprehensively judged from the result of the degree of yellowness, the result of the dynamic bending test, and the result of the static bending test.
If the internal angle (return angle) of the test piece of the static bending test is 180 degrees, no crease is observed when the test piece after the static bending test is opened flat. On the other hand, as the internal angle of the test piece of the static bending test becomes smaller, a crease is strongly observed as appearance change when the test piece after the static bending test is opened flat. Therefore, the strength of the crease was evaluated as the appearance change of the film after bending based on the result of the static bending test. In addition, when a test piece is opened flatly, both ends are fixed with a tape and light, such as a fluorescent lamp, is applied to a test piece surface, a fold can be observed as a streak-like reflection.
(Evaluation criteria)
AA: The yellowness is 5 or less, and it is not broken in the dynamic bending test, the inner angle of the test piece is 140 ° or more, and the inner angle of the test piece in the static bending test is 180 °.
A: The degree of yellowness is 5 or less, and does not break in the dynamic bending test, the inner angle of the test piece is 140 ° or more, and the inner angle of the test piece in the static bending test is 170 ° or more and less than 180 °.
B: The yellowness is 5 or less, does not break in the dynamic bending test, the inner angle of the test piece is 140 ° or more, and the inner angle of the test piece is 155 ° or more and less than 170 ° in the static bending test.
C: falls under at least one of the following (c1) and the following (c2): (c1) Yellowness exceeds 5 (c2) Breaking in dynamic bending test or internal angle of test specimen is less than 140 °, static In the bending test, the internal angle of the test piece is less than 155 °.
(合成例1)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド2903g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)16.0g(0.07mol)、を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)14.6g(0.03mol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)400g(1.25mol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)565g(1.27mol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体1が溶解したポリイミド前駆体溶液1(固形分25重量%)を合成した。ポリイミド前駆体1に用いられたTFMBとAprTMOSとのモル比(TFMB:AprTMOS)は95:5であった。ポリイミド前駆体溶液1(固形分25重量%)の25℃における粘度は95300cpsであり、GPCによって測定したポリイミド前駆体1の重量平均分子量は183000であった。
Synthesis Example 1
A solution of 2903 g of dehydrated dimethylacetamide and 16.0 g (0.07 mol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) dissolved in a 500 ml separable flask 14.6 g (0.03 mol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) to a temperature controlled at 30 ° C., gradually increasing the temperature to 2 ° C. or less The mixture was charged and stirred for 30 minutes with a mechanical stirrer. Thereto, 400 g (1.25 mol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) was added, and after confirming that it had completely dissolved, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Anhydrous (6FDA) 565 g (1.27 mol) was divided into several times gradually so that the temperature rise was 2 ° C. or less, and polyimide precursor solution 1 was dissolved (Polyimide precursor solution 1 (solid content 25% by weight) Was synthesized. The molar ratio (TFMB: AprTMOS) of TFMB to AprTMOS used for the polyimide precursor 1 was 95: 5. The viscosity at 25 ° C. of the polyimide precursor solution 1 (solid content 25% by weight) was 95300 cps, and the weight average molecular weight of the polyimide precursor 1 measured by GPC was 183,000.
(合成例2)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド302.0g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)2.49g(10mmol)、を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)2.22g(5mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで4時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)28.8g(90mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)42.0g(94.5mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体1が溶解したポリイミド前駆体溶液2(固形分20重量%)を合成した。ポリイミド前駆体1に用いられたTFMBとAprTMOSとのモル比は90:10であった。ポリイミド前駆体溶液2(固形分20重量%)の25℃における粘度は40150cpsであり、GPCによって測定したポリイミド前駆体2の重量平均分子量は253000であった。
(Composition example 2)
A solution of 302.0 g of dehydrated dimethylacetamide and 2.49 g (10 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) in a 500 ml separable flask At a controlled temperature of 30 ° C, 2.22 g (5 mmol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) is gradually added so that the temperature rise is 2 ° C or less. The mixture was stirred with a mechanical stirrer for 4 hours. Thereto, 28.8 g (90 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) was added, and after confirming that the solution had completely dissolved, 4,4 '-(hexafluoroisopropylidene) diphthalic acid Polyimide precursor solution 2 (solid content 20) in which 42.0 g (94.5 mmol) of anhydride (6FDA) was gradually added in several times so that the temperature rise was 2 ° C. or less, and the polyimide precursor 1 was dissolved. %) Was synthesized. The molar ratio of TFMB to AprTMOS used in the polyimide precursor 1 was 90:10. The viscosity at 25 ° C. of the polyimide precursor solution 2 (solid content 20% by weight) was 40150 cps, and the weight average molecular weight of the polyimide precursor 2 measured by GPC was 253,000.
(合成例3)
 前記合成例2の手順で、表1に記載の原料、固形分濃度になるように反応を実施し、ポリイミド前駆体溶液3とした。
(Composition example 3)
In the procedure of the synthesis example 2, the reaction was carried out so that the concentrations of the raw materials and solid contents shown in Table 1 were obtained, and polyimide precursor solution 3 was obtained.
(合成例4)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド267.9g、及び、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン(HFFAPP)40.1g(61.3mmol)を入れ、HFFAPPを溶解させた溶液の液温が30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)27.0g(60.8mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体10が溶解したポリイミド前駆体溶液4(固形分20重量%)を合成した。ポリイミド前駆体溶液4(固形分20重量%)の25℃における粘度は5560cpsであり、GPCによって測定したポリイミド前駆体4の重量平均分子量は310000であった。
(Composition example 4)
In a 500 ml separable flask, 267.9 g of dehydrated dimethylacetamide and 3,3'-bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexa) 40.1 g (61.3 mmol) of fluoropropane-2,2-diyl) bis (4,1-phenylene oxy)] dianiline (HFFAPP) was added, and the liquid temperature of the solution in which HFFAPP was dissolved was controlled at 30 ° C. At the same time, 27.0 g (60.8 mmol) of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) is gradually added in several portions so that the temperature rise is 2 ° C. or less, A polyimide precursor solution 4 (solid content: 20% by weight) in which the polyimide precursor 10 was dissolved was synthesized. The viscosity at 25 ° C. of the polyimide precursor solution 4 (solid content: 20% by weight) was 5560 cps, and the weight average molecular weight of the polyimide precursor 4 measured by GPC was 310,000.
(合成例5)
 500mLのセパラブルフラスコに、脱水されたジメチルアセトアミド(200g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(1.27g、5.11mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(1.14g、2.56mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで1時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(31.1g、97.1mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(43.9g、98.7mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体5’が溶解したポリイミド前駆体溶液5’(固形分28重量%)を合成した。上記溶液を室温に下げ、脱水されたジメチルアセトアミド(109g)を加え均一になるまで撹拌した。次に触媒であるピリジン(32.1g、405mmol)と無水酢酸(41.4g、405mmol)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液を5Lのセパラブルフラスコに移し、酢酸ブチル(313g)を加え均一になるまで撹拌した。次にメタノール(696g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(1620g)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド5(69.6g)を得た。GPCによって測定したポリイミドの重量平均分子量は192000であった。
(Composition example 5)
A solution of dehydrated dimethylacetamide (200 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (1.27 g, 5.11 mmol) dissolved in a 500 mL separable flask So that the solution temperature is controlled to 30 ° C., 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (1.14 g, 2.56 mmol), so that the temperature rise is 2 ° C. or less The mixture was gradually charged and stirred with a mechanical stirrer for 1 hour. After confirming that 2,2'-bis (trifluoromethyl) benzidine (TFMB) (31.1 g, 97.1 mmol) was completely dissolved therein, 4,4 '-(hexafluoroisopropylidene) ) A polyimide precursor solution in which a polyimide precursor 5 'is dissolved by gradually adding diphthalic anhydride (6FDA) (43.9 g, 98.7 mmol) in several times so that the temperature rise is 2 ° C. or less The 5 '(28 wt% solids) was synthesized. The above solution was cooled to room temperature, dehydrated dimethylacetamide (109 g) was added and stirred until uniform. Next, a catalyst pyridine (32.1 g, 405 mmol) and acetic anhydride (41.4 g, 405 mmol) were added, and the mixture was stirred at room temperature for 24 hours to synthesize a polyimide solution. The obtained polyimide solution was transferred to a 5 L separable flask, butyl acetate (313 g) was added, and the solution was stirred until it became uniform. Next, methanol (696 g) was gradually added to obtain a slightly hazy solution. Methanol (1620 g) was added at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed five times with methanol to obtain polyimide 5 (69.6 g). The weight average molecular weight of the polyimide measured by GPC was 192,000.
(合成例6)
 500mLのセパラブルフラスコに、脱水されたジメチルアセトアミド(200g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(1.27g、5.11mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(1.14g、2.56mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで1時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(31.1g、97.1mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(44.0g、99.2mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体6’が溶解したポリイミド前駆体溶液6’(固形分28重量%)を合成した。上記溶液を室温に下げ、脱水されたジメチルアセトアミド(110g)を加え均一になるまで撹拌した。次に触媒であるピリジン(32.2g、407mmol)と無水酢酸(41.5g、407mmol)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液を5Lのセパラブルフラスコに移し、酢酸ブチル(314g)を加え均一になるまで撹拌した。次にメタノール(698g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(1630g)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド6(69.8g)を得た。GPCによって測定したポリイミドの重量平均分子量は237000であった。
Synthesis Example 6
A solution of dehydrated dimethylacetamide (200 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (1.27 g, 5.11 mmol) dissolved in a 500 mL separable flask So that the solution temperature is controlled to 30 ° C., 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (1.14 g, 2.56 mmol), so that the temperature rise is 2 ° C. or less The mixture was gradually charged and stirred with a mechanical stirrer for 1 hour. After confirming that 2,2'-bis (trifluoromethyl) benzidine (TFMB) (31.1 g, 97.1 mmol) was completely dissolved therein, 4,4 '-(hexafluoroisopropylidene) ) A polyimide precursor solution in which a polyimide precursor 6 'is dissolved by gradually adding diphthalic anhydride (6FDA) (44.0 g, 99.2 mmol) in several steps so that the temperature rise is 2 ° C. or less 6 '(28 wt% solids) was synthesized. The above solution was cooled to room temperature, dehydrated dimethylacetamide (110 g) was added and stirred until uniform. Next, a catalyst pyridine (32.2 g, 407 mmol) and acetic anhydride (41.5 g, 407 mmol) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution. The obtained polyimide solution was transferred to a 5 L separable flask, butyl acetate (314 g) was added, and the solution was stirred until it became uniform. Next, methanol (698 g) was gradually added to obtain a slightly hazy solution. Methanol (1630 g) was added at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed five times with methanol to obtain polyimide 6 (69.8 g). The weight average molecular weight of the polyimide measured by GPC was 237,000.
(合成例7)
 500mLのセパラブルフラスコに、脱水されたジメチルアセトアミド(150g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(1.63g、6.57mmol)を溶解させた溶液を液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(1.46g、3.29mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで1時間撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(40.0g、125mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(54.5g、123mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体7’が溶解したポリイミド前駆体溶液7’(固形分40重量%)を合成した。上記溶液を室温に下げ、脱水されたジメチルアセトアミド(240g)を加え均一になるまで撹拌した。次に触媒であるピリジン(39.8g、504mmol)と無水酢酸(51.4g、504mmol)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液を5Lのセパラブルフラスコに移し、酢酸ブチル(396g)を加え均一になるまで撹拌した。次にメタノール(877g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りのみられる溶液にメタノール(2050g)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド7(87.8g)を得た。GPCによって測定したポリイミドの重量平均分子量は69000であった。
Synthesis Example 7
A solution of dehydrated dimethylacetamide (150 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (1.63 g, 6.57 mmol) in a 500 mL separable flask The solution temperature is controlled to 30 ° C, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (1.46 g, 3.29 mmol), so that the temperature rise is 2 ° C. or less The mixture was gradually charged and stirred with a mechanical stirrer for 1 hour. Thereto, 2,2'-bis (trifluoromethyl) benzidine (TFMB) (40.0 g, 125 mmol) was added, and after confirming that it was completely dissolved, 4,4'- (hexafluoroisopropylidene) diphthalic acid. Acidic anhydride (6FDA) (54.5 g, 123 mmol) was gradually added in several times so that the temperature rise was 2 ° C. or less, and polyimide precursor solution 7 ′ in which polyimide precursor 7 ′ was dissolved (solid state (40% by weight) was synthesized. The above solution was cooled to room temperature, dehydrated dimethylacetamide (240 g) was added and stirred until uniform. Next, a catalyst pyridine (39.8 g, 504 mmol) and acetic anhydride (51.4 g, 504 mmol) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution. The obtained polyimide solution was transferred to a 5 L separable flask, butyl acetate (396 g) was added, and the solution was stirred until it became uniform. Next, methanol (877 g) was gradually added to obtain a slightly hazy solution. Methanol (2050 g) was added at once to the cloudy solution to obtain a white slurry. The slurry was filtered and washed 5 times with methanol to obtain polyimide 7 (87.8 g). The weight average molecular weight of the polyimide measured by GPC was 69000.
(合成例8)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド3081g、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)322g(1.00mol)を入れ、TFMBを溶解させた溶液の液温が30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)443g(1.00mol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体8が溶解したポリイミド前駆体溶液8(固形分20重量%)を合成した。ポリイミド前駆体溶液8(固形分20重量%)の25℃における粘度は383cpsであり、GPCによって測定したポリイミド前駆体9の重量平均分子量は81000であった。
Synthesis Example 8
In a 500 ml separable flask, 3081 g of dehydrated dimethylacetamide and 322 g (1.00 mol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) were added, and the solution temperature of the solution in which TFMB was dissolved was At a controlled temperature of 30 ° C., 443 g (1.00 mol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) is gradually divided into several portions so that the temperature rise is 2 ° C. or less. The polyimide precursor solution 8 (solid content 20% by weight) in which the polyimide precursor 8 was dissolved was synthesized. The viscosity at 25 ° C. of the polyimide precursor solution 8 (solid content: 20% by weight) was 383 cps, and the weight average molecular weight of the polyimide precursor 9 measured by GPC was 81,000.
(合成例9)
 500mlのセパラブルフラスコに、脱水されたジメチルアセトアミド169.5g、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)32.0g(100mmol)を溶解させた溶液を液温30℃に制御されたところへ、ピロメリット酸2無水物(PMDA)21.7g(99.5mmol)を、温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体溶液9(固形分20重量%)を合成した。ポリイミド前駆体溶液9の25℃における粘度は23400cpsであり、GPCによって測定したポリイミド前駆体9の重量平均分子量は83000であった。
Synthesis Example 9
A solution of 169.5 g of dehydrated dimethylacetamide and 32.0 g (100 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) in a 500 ml separable flask is heated to a liquid temperature of 30 ° C. At a controlled point, 21.7 g (99.5 mmol) of pyromellitic dianhydride (PMDA) is gradually added in several portions so that the temperature rise is 2 ° C. or less, and a polyimide precursor solution 9 (20 wt% solids) was synthesized. The viscosity at 25 ° C. of the polyimide precursor solution 9 was 23,400 cps, and the weight average molecular weight of the polyimide precursor 9 measured by GPC was 83,000.
 (合成例10)
 オイルバスを備えた撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、両末端アミン変性ジフェニルシリコーンオイル(信越化学社製:X22-1660B-3(数平均分子量4400))12.25g、N-メチル-2-ピロリドン(NMP)を3432g加え、続いて6FDA222.12g(0.5モル)加えて、室温で30分撹拌した。その後、2,2’‐ビス(トリフルオロメチル)ベンジジン(TFMB)を152.99g(0.478モル)投入して溶解したことを確認した後、室温で3時間撹拌した後、80℃に昇温し、4時間撹拌した後、オイルバスを外して室温に戻し、ポリイミド前駆体溶液10を得た。ポリイミド前駆体溶液10の固形分濃度、25℃における粘度、GPCによって測定したポリイミド前駆体10の重量平均分子量をそれぞれ表1に示す。
Synthesis Example 10
12.25 g of an amine-modified diphenyl silicone oil at both ends (Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (number average molecular weight 4400)) while introducing nitrogen gas into a 3 L separable flask equipped with an oil bath and a stirring rod, 3432 g of N-methyl-2-pyrrolidone (NMP) was added, followed by 222.12 g (0.5 mol) of 6FDA and stirred at room temperature for 30 minutes. After confirming that 152.99 g (0.478 mol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) was added and dissolved, the mixture was stirred at room temperature for 3 hours and then raised to 80.degree. After warming and stirring for 4 hours, the oil bath was removed and the temperature was returned to room temperature to obtain a polyimide precursor solution 10. The solid content concentration of the polyimide precursor solution 10, the viscosity at 25 ° C., and the weight average molecular weight of the polyimide precursor 10 measured by GPC are shown in Table 1, respectively.
(合成例11)
 500mlのセパラブルフラスコに、脱水されたジメチルホルムアミド(144.0g)及び2,2-ビス―[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン(HFBAPP)(31.2g、60mmol)を加え、完全に溶解するまで攪拌した。この溶液を0℃に冷却し、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(39.9g、90mmol)を徐々に投入し、溶解するまで撹拌した。次に変性シリコーンオイルKF-8010(商品名、信越シリコーン製、分子量860)を(24.9g、30mmol)加えて4時間攪拌し、ポリアミド酸溶液を得た。次に、上記ポリアミド酸溶液に、触媒であるβピコリン(8.4g、90mmol)と、無水酢酸(55.2g、540mmol)を添加し、100℃のオイルバス中で1時間攪拌してポリイミド溶液を得た。得られたポリイミド溶液を大量のイソプロピルアルコール(IPA)中に滴下し、ポリイミドを沈殿析出させた。濾過抽出によって得られたポリイミドはIPA中で撹拌洗浄させた。再び濾過を行った後、ポリイミドを80℃、減圧下にて充分に乾燥し、ポリイミド11を得た。GPCによって測定したポリイミド11の重量平均分子量は199000であった。
Synthesis Example 11
Dehydrated dimethylformamide (144.0 g) and 2,2-bis- [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro in a 500 ml separable flask Propane (HFBAPP) (31.2 g, 60 mmol) was added and stirred until completely dissolved. The solution was cooled to 0 ° C. and 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (39.9 g, 90 mmol) was slowly added and stirred until dissolved. Next, (24.9 g, 30 mmol) of modified silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Silicone, molecular weight 860) was added and stirred for 4 hours to obtain a polyamic acid solution. Next, β picoline (8.4 g, 90 mmol) as a catalyst and acetic anhydride (55.2 g, 540 mmol) as a catalyst are added to the above polyamic acid solution, and the solution is stirred for 1 hour in an oil bath at 100 ° C. I got The obtained polyimide solution was dropped into a large amount of isopropyl alcohol (IPA) to precipitate out the polyimide. The polyimide obtained by filtration extraction was washed by stirring in IPA. After filtration again, the polyimide was sufficiently dried at 80 ° C. under reduced pressure to obtain polyimide 11. The weight average molecular weight of the polyimide 11 measured by GPC was 199000.
 以下において、表中の略称はそれぞれ以下のとおりである。
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
AprTMOS:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
HFFAPP:3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン(和歌山精化工業株式会社製)
PMDA:ピロメリット酸無水物
X22-1660B-3:両末端アミン変性ジフェニルシリコーンオイル(信越シリコーン製、X22-1660B-3(数平均分子量4400))
HFBAPP:2,2-ビス―[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン
KF-8010:両末端アミン変性ジメチルシリコーンオイル(信越シリコーン製、KF-8010、分子量860)
In the following, the abbreviations in the table are as follows.
6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride TFMB: 2,2′-bis (trifluoromethyl) benzidine AprTMOS: 1,3-bis (3-aminopropyl) tetramethyldisiloxane HFFAPP: 3,3'-Bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4,1-phenyleneoxy) ] Dianiline (Wakayama Seika Kogyo Co., Ltd.)
PMDA: pyromellitic anhydride X 22-1660 B-3: Amine-modified diphenyl silicone oil at both ends (Shin-Etsu Silicone, X 22-1 60 B-3 (number average molecular weight 4400))
HFBAPP: 2,2-bis- [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane KF-8010: Amine-modified amine-modified dimethyl silicone oil (Shin-Etsu Silicone) , KF-8010, molecular weight 860)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
 なお、表1の固形分濃度は、ポリイミド5~7についてもポリイミド前駆体溶液の固形分濃度を表す。分子量は、ポリイミド前駆体1~4及び8~10ではポリイミド前駆体の分子量、ポリイミド5~7及び11ではポリイミドの分子量を表す。粘度は、ポリイミド前駆体1~4及び8~10ではポリイミド前駆体溶液の粘度、ポリイミド5~7では実施例11と同様にポリイミド溶液を調製した際の粘度、ポリイミド11は比較例6と同様にポリイミド溶液を調製した際の粘度を表す。
Figure JPOXMLDOC01-appb-T000012
The solid content concentration in Table 1 represents the solid content concentration of the polyimide precursor solution also for polyimides 5 to 7. The molecular weight represents the molecular weight of the polyimide precursor for the polyimide precursors 1 to 4 and 8 to 10, and the molecular weight of the polyimide for the polyimides 5 to 7 and 11. The viscosity is the viscosity of the polyimide precursor solution for the polyimide precursors 1 to 4 and 8 to 10, the viscosity when preparing the polyimide solution in the same manner as in Example 11 for the polyimides 5 to 7, the polyimide 11 is the same as in Comparative Example 6. It represents the viscosity when preparing the polyimide solution.
(実施例1~10、比較例1、3~5)
 ポリイミド前駆体溶液1~4、9~11を用い、下記(1)~(3)の手順を行うことで、表2に記載の厚みのポリイミドフィルムをそれぞれ作製した。
(1)各ポリイミド前駆体溶液をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
(2)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、表2に記載のキュア温度まで昇温し、表2に記載のキュア温度で1時間保持後、室温まで冷却した。
(3)ガラスより剥離し、各ポリイミドフィルムを得た。
(Examples 1 to 10, Comparative Examples 1 and 3 to 5)
By performing the following procedures (1) to (3) using the polyimide precursor solutions 1 to 4 and 9 to 11, polyimide films having the thicknesses shown in Table 2 were respectively produced.
(1) Each polyimide precursor solution was apply | coated on glass, and it dried for 10 minutes in a 120 degreeC circulation oven.
(2) In a nitrogen stream (oxygen concentration 100 ppm or less), the temperature is raised to the curing temperature described in Table 2 at a heating rate of 10 ° C./min, and held at the curing temperature described in Table 2 for 1 hour, then cooled to room temperature did.
(3) It peeled from glass and obtained each polyimide film.
(実施例11)
 ポリイミド5を酢酸ブチルとPGMEAの混合溶媒(8:2、体積比)に溶かし、固形分25質量%のポリイミド溶液5を作製した。ポリイミド溶液5(固形分25重量%)の25℃における粘度は16612cpsであった。
 上述のように得られたポリイミド溶液5を用いて、下記(i)~(iii)の手順を行うことで、表2に記載の厚みのポリイミドフィルムを作製した。
 (i)ポリイミド溶液5をガラス上に塗布し、120℃の循環オーブンで10分乾燥した。
 (ii)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、300℃まで昇温し、300℃で1時間保持後、室温まで冷却した。
 (iii)ガラスより剥離し、ポリイミドフィルムを得た。
(Example 11)
The polyimide 5 was dissolved in a mixed solvent of butyl acetate and PGMEA (8: 2, volume ratio) to prepare a polyimide solution 5 having a solid content of 25% by mass. The viscosity at 25 ° C. of the polyimide solution 5 (solid content: 25% by weight) was 16612 cps.
By performing the following procedures (i) to (iii) using the polyimide solution 5 obtained as described above, a polyimide film having a thickness described in Table 2 was produced.
(I) The polyimide solution 5 was applied on glass and dried in a circulating oven at 120 ° C. for 10 minutes.
(Ii) In a nitrogen stream (oxygen concentration 100 ppm or less), the temperature was raised to 300 ° C. at a heating rate of 10 ° C./min, held at 300 ° C. for 1 hour, and cooled to room temperature.
(Iii) It peeled from glass and obtained the polyimide film.
(実施例12、比較例2)
 実施例11において、合成例5のポリイミド5を、合成例6~7のポリイミド6~7に変更した以外は、実施例11と同様にして、ポリイミドフィルムを得た。
(Example 12, Comparative Example 2)
A polyimide film was obtained in the same manner as in Example 11, except that the polyimide 5 of Synthesis Example 5 was changed to the polyimides 6 to 7 of Synthesis Examples 6 to 7 in Example 11.
(比較例6)
 合成例11で得られたポリイミド11をジメチルホルムアミド(DMF)に溶かし、固形分33.3質量%のポリイミド溶液11を作製した。ポリイミド溶液11を用いて、下記(i)~(ii)の手順を行うことで、表2に記載の厚みのポリイミドフィルムを作製した。 
 (i)ポリイミド溶液11をガラス上に塗布し、80℃の循環オーブンで15分乾燥した後、250℃で5分乾燥した。
 (ii)ガラスより剥離し、ポリイミドフィルムを得た。
(Comparative example 6)
The polyimide 11 obtained in Synthesis Example 11 was dissolved in dimethylformamide (DMF) to prepare a polyimide solution 11 having a solid content of 33.3% by mass. By performing the following procedures (i) to (ii) using the polyimide solution 11, a polyimide film having a thickness described in Table 2 was produced.
(I) The polyimide solution 11 was applied on glass, dried in a circulating oven at 80 ° C. for 15 minutes, and then dried at 250 ° C. for 5 minutes.
(Ii) It peeled from glass and obtained the polyimide film.
 比較例7としては、市販品のポリイミドフィルム(商品名:ユーピレックス-S、宇部興産製;BPDA(3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物)-PPD(p-フェニレンジアミン))を用いた。
 得られた各ポリイミドフィルムについて、前記評価方法を用いて評価した。評価結果を表2に示す。
As Comparative Example 7, a commercially available polyimide film (trade name: Upilex-S, manufactured by Ube Industries; BPDA (3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride))-PPD (p-phenylenediamine) ) Was used.
Each obtained polyimide film was evaluated using the said evaluation method. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2より、本発明のポリイミドフィルムに相当する実施例1~12のポリイミドフィルムは、透明性に優れ、屈曲耐性を向上しながら、表面硬度の低下が抑制された樹脂フィルムであることが示された。
 それに対して、比較例1~5のポリイミドフィルムは、応力-ひずみ曲線の降伏点におけるひずみが8%未満であり、動的屈曲耐性が劣っていた。また、比較例4~5のポリイミドフィルムは、黄色度も劣っており、比較例5のポリイミドフィルムは更に鉛筆硬度が劣っており、表面が傷つきやすかった。
 比較例6のポリイミドフィルムは、降伏点におけるひずみが8%以上で引張弾性率が1.8GPa未満であり、屈曲耐性は良好であったものの、鉛筆硬度が劣っており、表面が傷つきやすかった。比較例6のポリイミドフィルムは更に黄色度が劣っていた。
 比較例7の市販品ポリイミドフィルムは、光透過性や黄色度が大きく劣っており、屈曲耐性も実施例に比べて劣るものであった。比較例7のポリイミドフィルムは、フッ素原子を含まず、吸湿性が高い分子構造を有するため、降伏点が大きくても屈曲耐性が劣っていたと推定される。
From Table 2, it is shown that the polyimide films of Examples 1 to 12 corresponding to the polyimide film of the present invention are resin films excellent in transparency, and in which the decrease in surface hardness is suppressed while improving the bending resistance. The
On the other hand, the polyimide films of Comparative Examples 1 to 5 had a strain at the yield point of the stress-strain curve of less than 8%, and had inferior dynamic bending resistance. The polyimide films of Comparative Examples 4 to 5 were also inferior in yellowness, and the polyimide film of Comparative Example 5 was further inferior in pencil hardness, and the surface was easily scratched.
The polyimide film of Comparative Example 6 had a strain at a yield point of 8% or more and a tensile modulus of less than 1.8 GPa, and although the bending resistance was good, the pencil hardness was inferior and the surface was easily damaged. The polyimide film of Comparative Example 6 was further inferior in yellowness.
The commercially available polyimide film of Comparative Example 7 was significantly inferior in light transmittance and yellowness, and was inferior in bending resistance as compared with the examples. Since the polyimide film of Comparative Example 7 does not contain a fluorine atom and has a molecular structure with high hygroscopicity, it is presumed that the bending resistance is inferior even if the yield point is large.
(合成例12)
 1Lのセパラブルフラスコに、脱水されたジメチルアセトアミド(466g)、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)(1.31g)を溶解させた溶液を入れ、液温30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(1.17g)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(65.9g)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(91.7g)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体12’が溶解したポリイミド前駆体溶液12’(固形分25質量%)を合成した。
 窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体溶液12’(400g)を加えた。そこへ、脱水されたジメチルアセトアミド(109g)を加え均一になるまで撹拌した。次に触媒であるピリジン(41.4g)と無水酢酸(53.4g)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。得られたポリイミド溶液に酢酸ブチル(406g)を加え均一になるまで撹拌し、次にメタノール(902g)を徐々に加え、僅かに濁りが見られる溶液を得た。濁りが見られる溶液にメタノール(2105g)を一気に加え白色スラリーを得た。上記スラリーをろ過し、5回メタノールで洗浄し、ポリイミド12(91g)を得た。GPCによって測定したポリイミドの重量平均分子量は201269であった。
Synthesis Example 12
A solution of dehydrated dimethylacetamide (466 g) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (AprTMOS) (1.31 g) is placed in a 1 L separable flask, At a controlled temperature of 30 ° C, slowly add 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (1.17 g) so that the temperature rise is 2 ° C or less, The mixture was stirred for 30 minutes with a mechanical stirrer. Thereto, 2,2'-bis (trifluoromethyl) benzidine (TFMB) (65.9 g) was added, and after confirming complete dissolution, 4,4'- (hexafluoroisopropylidene) diphthalic anhydride Product (6FDA) (91.7g) was divided into several times gradually so that the temperature rise would be 2 ° C or less, and polyimide precursor solution 12 'was dissolved (polyimide precursor solution 12' (solid content 25% by mass) Was synthesized.
Under a nitrogen atmosphere, the above polyimide precursor solution 12 ′ (400 g) cooled to room temperature was added to a 5 L separable flask. Thereto, dehydrated dimethylacetamide (109 g) was added and stirred until it became uniform. Next, a catalyst pyridine (41.4 g) and acetic anhydride (53.4 g) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution. To the obtained polyimide solution, butyl acetate (406 g) was added and stirred until uniform, then methanol (902 g) was gradually added to obtain a slightly hazy solution. Methanol (2105 g) was added in one portion to the solution in which turbidity was observed, to obtain a white slurry. The slurry was filtered and washed 5 times with methanol to obtain polyimide 12 (91 g). The weight average molecular weight of the polyimide measured by GPC was 201269.
(合成例13~14)
 合成例12のポリイミド12を合成した手順で、表3に記載のジアミン比率になるように調整して反応を実施し、ポリイミド13及び14を得た。得られたポリイミドの重量平均分子量を表3に示す。
Synthesis Examples 13 to 14
In the procedure of synthesizing the polyimide 12 of Synthesis Example 12, the reaction was carried out by adjusting the diamine ratio described in Table 3 to obtain polyimides 13 and 14. The weight average molecular weight of the obtained polyimide is shown in Table 3.
Figure JPOXMLDOC01-appb-T000014
 なお、表3の固形分濃度は、実施例13~18と同様にポリイミド溶液を調製した際の固形分濃度を表す。分子量はポリイミドの分子量を表す。粘度は、実施例13~18と同様にポリイミド溶液を調製した際の粘度を表す。
Figure JPOXMLDOC01-appb-T000014
The solid concentration in Table 3 represents the solid concentration when the polyimide solution was prepared in the same manner as in Examples 13 to 18. Molecular weight represents the molecular weight of polyimide. The viscosity represents the viscosity when preparing a polyimide solution in the same manner as in Examples 13-18.
(実施例13)
 ポリイミド12を溶剤(ジクロロメタン)に溶かし、固形分14質量%のポリイミド溶液12を作製した。ポリイミド溶液12(固形分14質量%)の25℃における粘度は4290cpsであった。
 上述のように得られたポリイミド溶液12を用いて、下記(i)~(iii)の手順を行うことで、50μm±5μmの厚みのポリイミドフィルムを作製した。
 (i)ポリイミド溶液12をガラス板上に塗布し、120℃の循環オーブンで10分乾燥した。
 (ii)窒素気流下(酸素濃度100ppm以下)、昇温速度10℃/分で、200℃まで昇温し、200℃で1時間保持後、室温まで冷却した。
 (iii)ガラス板より剥離し、ポリイミドフィルムを得た。
(Example 13)
The polyimide 12 was dissolved in a solvent (dichloromethane) to prepare a polyimide solution 12 with a solid content of 14% by mass. The viscosity at 25 ° C. of the polyimide solution 12 (solid content: 14% by mass) was 4290 cps.
By performing the following procedures (i) to (iii) using the polyimide solution 12 obtained as described above, a polyimide film having a thickness of 50 μm ± 5 μm was produced.
(I) The polyimide solution 12 was applied onto a glass plate and dried in a circulating oven at 120 ° C. for 10 minutes.
(Ii) In a nitrogen stream (oxygen concentration 100 ppm or less), the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, held at 200 ° C. for 1 hour, and cooled to room temperature.
(Iii) It peeled from the glass plate and obtained the polyimide film.
(実施例14~18)
 実施例13において、合成例12のポリイミド12を、表4に示すように、合成例13又は14のポリイミド13又は14に変更し、前記(ii)の工程における昇温温度及び1時間保持する温度(キュア温度)を表4に示すように変更した以外は、実施例13と同様にして、ポリイミドフィルムを得た。
(Examples 14 to 18)
In Example 13, as shown in Table 4, the polyimide 12 of Synthesis Example 12 is changed to the polyimide 13 or 14 of Synthesis Example 13 or 14, and the temperature rise temperature in the step (ii) and the temperature maintained for one hour A polyimide film was obtained in the same manner as in Example 13, except that (Curing temperature) was changed as shown in Table 4.
 得られた各ポリイミドフィルムについて、前記評価方法を用いて評価した。評価結果を表4に示す。 Each obtained polyimide film was evaluated using the said evaluation method. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(実施例19~36:積層体の製造)
 ペンタエリスリトールトリアクリレートの40質量%メチルイソブチルケトン溶液に、ペンタエリスリトールトリアクリレート100質量部に対して10質量部の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF製、イルガキュア184)を添加して、ハードコート層用樹脂組成物を調製した。
 実施例1~18の各ポリイミドフィルム上に前記ハードコート層用樹脂組成物を塗布し、紫外線を窒素気流下200mJ/cmの露光量で照射し硬化させ、10μm膜厚の硬化膜を形成し、積層体を製造した。
 中でもポリイミドフィルム中にケイ素原子を含む場合に、ハードコート層との密着性が良好であった。
Examples 19 to 36: Production of Laminates
10 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, Irgacure 184) per 40 parts by mass of pentaerythritol triacrylate is added to a solution of pentaerythritol triacrylate in 40% by mass methyl isobutyl ketone, The resin composition for coat layers was prepared.
The resin composition for a hard coat layer is coated on each polyimide film of Examples 1 to 18, and ultraviolet rays are irradiated and cured at a dose of 200 mJ / cm 2 under a nitrogen stream to form a 10 μm thick cured film. , Produced a laminate.
In particular, when the polyimide film contains a silicon atom, the adhesion to the hard coat layer is good.

Claims (14)

  1.  15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
     前記引張試験における引張弾性率が1.8GPa以上であり、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である、フィルム。
    In a stress-strain curve obtained by a tensile test in which a 15 mm × 40 mm test piece is measured at 25 ° C. with a tensile speed of 10 mm / min and a chuck distance of 20 mm according to JIS K7127, the strain at the yield point is 8% or more Yes,
    The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
    A film having a total light transmittance of 85% or more measured according to JIS K7361-1 and a yellowness of 5 or less calculated according to JIS K7373-2006.
  2.  15mm×40mmの試験片を、JIS K7127に準拠し、引張速度10mm/分、チャック間距離20mmとして25℃で測定する引張試験により得られる応力-ひずみ曲線において、降伏点におけるひずみが8%以上であり、
     前記引張試験における引張弾性率が1.8GPa以上であり、
     JIS K7361-1に準拠して測定する全光線透過率が、85%以上であり、JIS K7373-2006に準拠して算出される黄色度が、5以下である、ポリイミドフィルム。
    In a stress-strain curve obtained by a tensile test in which a 15 mm × 40 mm test piece is measured at 25 ° C. with a tensile speed of 10 mm / min and a chuck distance of 20 mm according to JIS K7127, the strain at the yield point is 8% or more Yes,
    The tensile modulus of elasticity in the tensile test is 1.8 GPa or more,
    A polyimide film having a total light transmittance of 85% or more measured according to JIS K7361-1 and a yellowness of 5 or less calculated according to JIS K7373-2006.
  3.  温度25℃で、ISO14577に準拠し、ナノインデンテーション法を用いて測定した、フィルム表面のヤング率が、2.3GPa以上である、請求項2に記載のポリイミドフィルム。 The polyimide film according to claim 2, wherein the Young's modulus of the film surface measured at 25 ° C according to ISO 14577 using a nanoindentation method is 2.3 GPa or more.
  4.  下記一般式(1)で表される構造を有するポリイミドを含有する、請求項2又は3に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Rは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、複数のRは各々同一であっても異なっていても良く、Rはジアミン残基である2価の基を表し、複数のRは各々同一であっても異なっていても良く、複数のRの少なくとも一部が芳香族環又は脂肪族環を有するジアミン残基を含む。nは繰り返し単位数を表す。)
    The polyimide film of Claim 2 or 3 containing the polyimide which has a structure represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring, and a plurality of R 1 may be identical to or different from each other) And R 2 represents a divalent group which is a diamine residue, and a plurality of R 2 may be the same or different, and at least a portion of the plurality of R 2 is an aromatic ring or an aliphatic ring Containing diamine residues, n represents the number of repeating units)
  5.  前記一般式(1)で表される構造を有するポリイミドにおいて、
     Rは、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を含むか、或いは、
     Rは、ジアミン残基である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である、請求項4に記載のポリイミドフィルム。
    In the polyimide having a structure represented by the general formula (1),
    R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom, and includes a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or
    R 2 represents a divalent group which is a diamine residue, 50 mol% 2.5 mol% or more of the total amount of R 2 or less, a diamine residue having a silicon atom in the main chain, the total amount of R 2 The polyimide film according to claim 4, wherein 50 mol% or more and 97.5 mol% or less of is a diamine residue having no silicon atom and having an aromatic ring or an aliphatic ring.
  6.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRが、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基である、請求項4又は5に記載のポリイミドフィルム。 In the polyimide having the structure represented by the general formula (1), R 1 in the general formula (1) is cyclohexane tetracarboxylic acid dianhydride residue, cyclopentane tetracarboxylic acid dianhydride residue, di Cyclohexane-3,4,3 ′, 4′-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, pyromellitic acid dianhydride residue, 3,3 ′, 4,4′- Biphenyltetracarboxylic acid dianhydride residue, 2,2 ', 3,3'-biphenyltetracarboxylic acid dianhydride residue, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride residue, 3 ,, 4 '-(hexafluoroisopropylidene) diphthalic anhydride residue, 3,3'-(hexafluoroisopropylidene) diphthalic anhydride residue, 4,4'-oxydiphthalic anhydride residue, and 3, '- is at least one tetravalent group selected from the group consisting of oxydiphthalic anhydride residue, a polyimide film according to claim 4 or 5.
  7.  前記一般式(1)で表される構造を有するポリイミドにおいて、
     Rは、ケイ素原子を有しないジアミン残基から選ばれる少なくとも1種である2価の基を表し、主鎖にヘキサフルオロイソプロピリデン骨格を有するジアミン残基を含むか、或いは、
     Rは、ケイ素原子を有しないジアミン残基、及び、主鎖にケイ素原子を1個又は2個有するジアミン残基から選ばれる少なくとも1種である2価の基を表し、Rの総量の2.5モル%以上50モル%以下が、主鎖にケイ素原子を1個又は2個有するジアミン残基であり、Rの総量の50モル%以上97.5モル%以下が、ケイ素原子を有さず、芳香族環又は脂肪族環を有するジアミン残基である、請求項4乃至6のいずれか一項に記載のポリイミドフィルム。
    In the polyimide having a structure represented by the general formula (1),
    R 2 represents a divalent group which is at least one selected from diamine residues having no silicon atom, and includes a diamine residue having a hexafluoroisopropylidene skeleton in the main chain, or
    R 2 represents a divalent group which is at least one selected from a diamine residue having no silicon atom and a diamine residue having one or two silicon atoms in the main chain, and the total amount of R 2 2.5 mol% or more and 50 mol% or less are diamine residues having one or two silicon atoms in the main chain, and 50 mol% or more and 97.5 mol% or less of the total amount of R 2 are silicon atoms The polyimide film according to any one of claims 4 to 6, which is a diamine residue having no aromatic ring or an aliphatic ring.
  8.  前記一般式(1)で表される構造を有するポリイミドにおいて、前記一般式(1)中のRにおける、前記芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基である、請求項4乃至7のいずれか一項に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
    In the polyimide having a structure represented by the general formula (1), the diamine residue having the aromatic ring or the aliphatic ring in R 2 in the general formula (1) is a trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4'-diaminodiphenylsulfone residue, 3,4'-diaminodiphenylsulfone residue, 2,2-bis (4-aminophenyl) propane residue, 3,3'-Bis (trifluoromethyl) -4,4 '-[(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) bis (4,1-phenyleneoxy) ] Dianiline residue, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, 2,2-bis [4- (4) -A Nopoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane residue, and at least one member selected from the group consisting of divalent groups represented by the following general formula (2) The polyimide film according to any one of claims 4 to 7, which is a divalent group.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or a perfluoroalkyl group.)
  9.  請求項1に記載のフィルム又は請求項2乃至8のいずれか一項に記載のポリイミドフィルムと、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有するハードコート層とを有する積層体。 A film according to claim 1 or a polyimide film according to any one of claims 2 to 8, and a hard coat layer containing at least one polymer of a radically polymerizable compound and a cationically polymerizable compound. Stack.
  10.  請求項1に記載のフィルム若しくは請求項2乃至8のいずれか一項に記載のポリイミドフィルム、又は、請求項9に記載の積層体を含むディスプレイ用部材。 A member for display, comprising the film according to claim 1, the polyimide film according to any one of claims 2 to 8, or the laminate according to claim 9.
  11.  フレキシブルディスプレイに用いられる、請求項10に記載のディスプレイ用部材。 11. The display member according to claim 10, which is used for a flexible display.
  12.  請求項1に記載のフィルム若しくは請求項2乃至8のいずれか一項に記載のポリイミドフィルム、又は請求項9に記載の積層体と、
     前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、複数の導電部からなる透明電極と、
     前記導電部の端部の少なくとも一方側において電気的に接続される複数の取り出し線と、を有するタッチパネル部材。
    A film according to claim 1, a polyimide film according to any one of claims 2 to 8, or a laminate according to claim 9.
    A transparent electrode comprising a plurality of conductive parts disposed on one side of the film, the polyimide film, or the laminate;
    And a plurality of lead-out lines electrically connected on at least one side of the end portion of the conductive portion.
  13.  請求項1に記載のフィルム若しくは請求項2乃至8のいずれか一項に記載のポリイミドフィルム、又は請求項9に記載の積層体と、
     前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に液晶層を有してなる液晶表示部と、を有する液晶表示装置。
    A film according to claim 1, a polyimide film according to any one of claims 2 to 8, or a laminate according to claim 9.
    A liquid crystal display device comprising: a liquid crystal display unit having a liquid crystal layer between opposing substrates disposed on one side of the film, the polyimide film, or the laminate.
  14.  請求項1に記載のフィルム若しくは請求項2乃至8のいずれか一項に記載のポリイミドフィルム、又は請求項9に記載の積層体と、
     前記フィルム若しくは前記ポリイミドフィルム又は前記積層体の一方の面側に配置された、対向基板間に有機エレクトロルミネッセンス層を有してなる有機エレクトロルミネッセンス表示部と、を有する有機エレクトロルミネッセンス表示装置。
    A film according to claim 1, a polyimide film according to any one of claims 2 to 8, or a laminate according to claim 9.
    An organic electroluminescent display device comprising: an organic electroluminescent display portion having an organic electroluminescent layer between opposing substrates disposed on one side of the film, the polyimide film or the laminate.
PCT/JP2018/035439 2017-09-27 2018-09-25 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus WO2019065624A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017186388 2017-09-27
JP2017-186388 2017-09-27
JP2018-176585 2018-09-20
JP2018176585A JP7363019B2 (en) 2017-09-27 2018-09-20 Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices

Publications (1)

Publication Number Publication Date
WO2019065624A1 true WO2019065624A1 (en) 2019-04-04

Family

ID=65902570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035439 WO2019065624A1 (en) 2017-09-27 2018-09-25 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus

Country Status (1)

Country Link
WO (1) WO2019065624A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109896753A (en) * 2019-04-08 2019-06-18 拓米(成都)应用技术研究院有限公司 A kind of foldable ultra-thin glass cover board and its modified CPI are coated with preparation method
CN112086024A (en) * 2019-06-14 2020-12-15 三星显示有限公司 Window member for display device, and manufacturing method for display device
WO2020255864A1 (en) * 2019-06-17 2020-12-24 大日本印刷株式会社 Polyimide film, polyimide varnish, method for producing polyimide film, multilayer body, member for displays, touch panel member, liquid crystal display device and organic electroluminescent display device
CN112530993A (en) * 2019-09-18 2021-03-19 三星显示有限公司 Display device
JP2023503481A (en) * 2019-11-29 2023-01-30 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyimide film and its manufacturing method
EP4317273A3 (en) * 2017-12-04 2024-05-08 Kolon Industries, Inc. Method for manufacturing polyimide-based film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331287A (en) * 1991-09-05 1993-12-14 Ciba Geigy Ag Optical-image-forming polyimide
WO2016002768A1 (en) * 2014-07-03 2016-01-07 ダイキン工業株式会社 Film
WO2016060213A1 (en) * 2014-10-17 2016-04-21 三菱瓦斯化学株式会社 Polyimide resin composition, polyimide film and laminate
US20160185926A1 (en) * 2014-12-26 2016-06-30 Samsung Electronics Co., Ltd. Window for display device and display device including the window
JP2017069200A (en) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Manufacturing method of functional layer-attached polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331287A (en) * 1991-09-05 1993-12-14 Ciba Geigy Ag Optical-image-forming polyimide
WO2016002768A1 (en) * 2014-07-03 2016-01-07 ダイキン工業株式会社 Film
WO2016060213A1 (en) * 2014-10-17 2016-04-21 三菱瓦斯化学株式会社 Polyimide resin composition, polyimide film and laminate
US20160185926A1 (en) * 2014-12-26 2016-06-30 Samsung Electronics Co., Ltd. Window for display device and display device including the window
JP2017069200A (en) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Manufacturing method of functional layer-attached polyimide film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317273A3 (en) * 2017-12-04 2024-05-08 Kolon Industries, Inc. Method for manufacturing polyimide-based film
CN109896753A (en) * 2019-04-08 2019-06-18 拓米(成都)应用技术研究院有限公司 A kind of foldable ultra-thin glass cover board and its modified CPI are coated with preparation method
CN112086024A (en) * 2019-06-14 2020-12-15 三星显示有限公司 Window member for display device, and manufacturing method for display device
WO2020255864A1 (en) * 2019-06-17 2020-12-24 大日本印刷株式会社 Polyimide film, polyimide varnish, method for producing polyimide film, multilayer body, member for displays, touch panel member, liquid crystal display device and organic electroluminescent display device
CN112530993A (en) * 2019-09-18 2021-03-19 三星显示有限公司 Display device
JP2023503481A (en) * 2019-11-29 2023-01-30 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyimide film and its manufacturing method
JP7382505B2 (en) 2019-11-29 2023-11-16 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyimide film and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6973476B2 (en) Polyimide film, laminates, and surface materials for displays
KR102434812B1 (en) Surface materials for polyimide films, laminates and displays
JP7363019B2 (en) Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
TWI777980B (en) Polyimide film, laminate, and surface material for display
WO2019065624A1 (en) Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP2019137864A (en) Polyimide film, laminate, display member, touch panel member, liquid crystal display device and organic electroluminescence display device
WO2018230495A1 (en) Layered body, surface material for displays, touch panel member, liquid crystal display device, and organic electroluminescence display device
JP2018065993A (en) Method for producing polyimide film, method for producing polyimide precursor, method for manufacturing laminate, and method for manufacturing surface material for display
WO2018030410A1 (en) Polyimide film, laminate, and surface material for display
WO2018062190A1 (en) Polyimide film, laminate, and display surface material
JP2019001989A (en) Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
JP7139715B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
TWI784993B (en) Surface material for flexible display
JP2023154059A (en) Polyimide film, laminate, member for display, touch panel member, liquid crystal display device, and organic electronic luminescent display device
JP7226312B2 (en) Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2020004293A1 (en) Polyimide film, polyimide material, layered body, member for display, touch panel member, liquid crystal display device, and organic electroluminescent display device
WO2018117145A1 (en) Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP7351084B2 (en) Polyimide compositions, methods for producing polyimide compositions, methods for producing polyimide films, methods for producing laminates, methods for producing optical members for displays, methods for producing touch panel members, methods for producing liquid crystal display devices, and organic electroluminescent display devices manufacturing method
WO2019078051A1 (en) Polyimide film, polyimide film production method, laminate, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescence display device
WO2018190179A1 (en) Polyimide film, layered product, surface material for display
JP7388011B2 (en) Polyimide films, polyimide materials, laminates, display members, touch panel members, liquid crystal display devices, and organic electroluminescent display devices
JP7247510B2 (en) Polyimide film, method for producing polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860469

Country of ref document: EP

Kind code of ref document: A1