WO2019065287A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2019065287A1
WO2019065287A1 PCT/JP2018/034089 JP2018034089W WO2019065287A1 WO 2019065287 A1 WO2019065287 A1 WO 2019065287A1 JP 2018034089 W JP2018034089 W JP 2018034089W WO 2019065287 A1 WO2019065287 A1 WO 2019065287A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
secondary battery
lithium ion
positive electrode
acid ester
Prior art date
Application number
PCT/JP2018/034089
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 智彦
宏郁 角田
亮介 木戸
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2019065287A1 publication Critical patent/WO2019065287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • lithium ion secondary batteries used as a main power source for mobile communication devices and portable electronic devices have features of high electromotive force and high energy density.
  • layered compounds such as LiCoO 2 and LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel compounds such as LiMn 2 O 4 have been used as positive electrode materials (positive electrode active materials) for lithium ion secondary batteries.
  • olivine type compounds represented by LiFePO 4 have attracted attention. It is known that positive electrode materials having an olivine structure have high thermal stability at high temperatures and high safety.
  • LiCoPO 4 , LiNiPO 4 and the like have been proposed as phosphoric acid based positive electrode materials capable of realizing high charge and discharge voltage.
  • LiCoPO 4 , LiNiPO 4 and the like have been proposed as phosphoric acid based positive electrode materials capable of realizing high charge and discharge voltage.
  • sufficient capacity is not obtained.
  • vanadium phosphate compounds having a structure of LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 are known as compounds capable of achieving a 4 V-class charge / discharge voltage.
  • vanadium phosphate compounds having a structure of LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 are known as compounds capable of achieving a 4 V-class charge / discharge voltage.
  • Patent Document 1 reports that, by adding hydrofluoric acid to the electrolytic solution, the reaction with vanadium ions which is a cause of gas generation is caused to suppress the gas generation.
  • the inventors of the present invention conducted intensive studies and found that the tap density of the lithium vanadium compound is low, which makes it difficult to increase the density of the positive electrode using the compound, and that the electrolytic solution is not sufficiently impregnated by capillary action. I found it to be the cause. That is, since the non-uniform film is formed by performing the initial charge and discharge in a state where the positive electrode is not sufficiently wet, the cycle characteristics are impaired.
  • the present invention has been made in view of the problems of the above-mentioned prior art, and it is an object of the present invention to provide a lithium ion secondary battery capable of improving cycle characteristics.
  • a lithium ion secondary battery according to the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolytic solution.
  • the positive electrode contains a lithium vanadium compound
  • the electrolytic solution contains a carboxylic acid ester.
  • the carboxylic ester has a sufficiently low viscosity and high wettability, even an electrode containing a lithium vanadium compound rapidly penetrates, thereby forming a uniform film and improving the cycle characteristics. Do.
  • the carboxylic acid ester is preferably represented by the following chemical formula (1).
  • R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms or a substituted alkyl group, and the total number of carbon atoms of R 1 and R 2 is 5 or less.
  • the carboxylic acid ester is propionic acid ester or acetic acid ester.
  • the above-mentioned carboxylic acid ester is contained in the above-mentioned electrolytic solution at 50% by volume or more and 90% by volume or less.
  • Lithium-ion secondary battery according to the present invention preferably further the lithium vanadium compound is LiVOPO 4.
  • a lithium ion secondary battery capable of improving cycle characteristics is provided.
  • the lithium ion secondary battery 100 As shown in FIG. 1, the lithium ion secondary battery 100 according to this embodiment is disposed adjacent to each other between the plate-like negative electrode 20 and the plate-like positive electrode 10 facing each other, and between the negative electrode 20 and the positive electrode 10. And an electrolytic solution containing lithium ions, a case 50 for accommodating these in a sealed state, and one end of the negative electrode 20 are electrically connected. It has a lead 62 whose other end protrudes outside the case, and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case.
  • the positive electrode 10 has a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. Further, the negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.
  • the positive electrode according to the present embodiment contains a lithium vanadium compound.
  • the positive electrode current collector 12 may be any conductive plate material, and for example, aluminum or an alloy thereof, or a thin metal plate (metal foil) such as stainless steel can be used.
  • the positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive aid.
  • the positive electrode active material according to the present embodiment contains a lithium vanadium compound.
  • the impregnation of the electrolyte solution by capillary action sufficiently proceeds, a uniform film is formed, and the cycle characteristics are improved.
  • the effect of improving the cycle characteristics when combined with the electrolytic solution according to the present embodiment, the effect of improving the cycle characteristics can be further obtained.
  • the positive electrode binder bonds the positive electrode active materials to one another, and also bonds the positive electrode active material layer 14 and the positive electrode current collector 12.
  • the binder may be any one as long as the above-mentioned bonding is possible, for example, a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), cellulose, styrene butadiene rubber, ethylene / propylene rubber, polyimide Resin, polyamide imide resin, etc. may be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • cellulose cellulose
  • styrene butadiene rubber styrene butadiene rubber
  • ethylene / propylene rubber polyimide Resin
  • polyamide imide resin etc.
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer examples include polyacetylene, polythiophene, polyaniline and the like.
  • the ion conductive conductive polymer for example, those obtained by combining a polyether type polymer compound such as polyethylene oxide or polypropylene oxide with a lithium salt such as LiClO 4 , LiBF 4 or LiPF 6 are listed.
  • the content of the binder in the positive electrode active material layer 14 is not particularly limited, but when it is added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.
  • the conductive aid for the positive electrode is not particularly limited as long as it can improve the conductivity of the positive electrode active material layer 14, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, fine powders of metals such as copper, nickel, stainless steel and iron, and conductive oxides such as ITO.
  • the negative electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate such as copper (metal foil) can be used.
  • the negative electrode active material layer 24 is mainly composed of a negative electrode active material, a binder for the negative electrode, and a conductive additive for the negative electrode.
  • the negative electrode active material is not particularly limited as long as it can reversibly advance absorption and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and known electrode active materials can be used.
  • carbon-based materials such as graphite and hard carbon
  • silicon-based materials such as silicon oxide (SiO x ) metal silicon (Si)
  • metal oxides such as lithium titanate (LTO)
  • metal materials such as lithium, tin and zinc Can be mentioned.
  • the negative electrode active material layer 24 may further contain a negative electrode binder and a negative electrode conductive aid.
  • the negative electrode binder is not particularly limited, and the same positive electrode binder as described above can be used.
  • the electrolytic solution according to the present embodiment contains a carboxylic acid ester.
  • the carboxylic ester has a sufficiently low viscosity and high wettability, even an electrode containing a lithium vanadium compound rapidly penetrates, thereby forming a uniform film and improving the cycle characteristics. Do.
  • the carboxylic acid ester is preferably represented by a chemical formula (1), and more preferably a propionic acid ester or an acetic acid ester.
  • the carboxylic acid ester is preferably contained in the electrolytic solution in an amount of 50% by volume or more and 90% by volume or less.
  • the electrolyte solution which concerns on this embodiment can use the solvent generally used for the lithium ion secondary battery other than the said carboxylic ester.
  • the solvent is not particularly limited, and examples thereof include cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), linear carbonate compounds such as diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and the like. It can be mixed and used in the ratio of
  • the electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery, and examples thereof include inorganic acid anion salts such as LiPF 6 , LiBF 4 and lithium bis oxalate borate, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.
  • inorganic acid anion salts such as LiPF 6 , LiBF 4 and lithium bis oxalate borate, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.
  • Example 1 (Production of positive electrode) 85 parts by mass of LiVOPO 4 as a lithium vanadium compound, 5 parts by mass of carbon black and 10 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a positive electrode active material layer.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to one surface of a 20 ⁇ m thick aluminum metal foil so that the coating amount of the positive electrode active material was 9.0 mg / cm 2, and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded by the roller press, and produced the positive electrode.
  • Example 2 A lithium ion secondary battery for evaluation of Example 2 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 3 A lithium ion secondary battery for evaluation of Example 3 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 4 A lithium ion secondary battery for evaluation of Example 4 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 5 A lithium ion secondary battery for evaluation of Example 5 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 6 A lithium ion secondary battery for evaluation of Example 6 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 7 A lithium ion secondary battery for evaluation of Example 7 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 8 A lithium ion secondary battery for evaluation of Example 8 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 9 A lithium ion secondary battery for evaluation of Example 9 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 10 A lithium ion secondary battery for evaluation of Example 10 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 11 A lithium ion secondary battery for evaluation of Example 11 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 12 A lithium ion secondary battery for evaluation of Example 12 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 13 A lithium ion secondary battery for evaluation of Example 13 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 14 A lithium ion secondary battery for evaluation of Example 14 was produced in the same manner as Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 15 A lithium ion secondary battery for evaluation of Example 15 was produced in the same manner as in Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 16 A lithium ion secondary battery for evaluation of Example 16 was produced in the same manner as Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 17 A lithium ion secondary battery for evaluation of Example 17 was produced as in Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 18 A lithium ion secondary battery for evaluation of Example 18 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 19 A lithium ion secondary battery for evaluation of Example 19 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 20 A lithium ion secondary battery for evaluation of Example 20 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
  • Example 21 A lithium ion secondary battery for evaluation of Example 21 was produced in the same manner as in Example 1 except that the lithium vanadium compound used in producing the positive electrode was changed as shown in Table 1.
  • Example 22 A lithium ion secondary battery for evaluation of Example 22 was produced in the same manner as in Example 1 except that the lithium vanadium compound used in producing the positive electrode was changed as shown in Table 1.
  • Example 23 A lithium ion secondary battery for evaluation of Example 23 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
  • Example 24 The composition of the slurry for forming a positive electrode active material layer produced in manufacturing the positive electrode, LiVOPO 4 70 parts by weight LiCoO 2 15 parts by weight of carbon black 5 parts by mass, and PVDF10 parts by mass to prepare a positive electrode.
  • a lithium ion secondary battery for evaluation of Example 24 was produced in the same manner as Example 1 except for the above.
  • Example 25 The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 70 parts by mass of LiVOPO 4 , 15 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, 10 parts by mass of PVDF As a part, a positive electrode was produced.
  • a lithium ion secondary battery for evaluation of Example 25 was produced in the same manner as Example 1 except for the above.
  • Comparative Example 1 A lithium ion secondary battery for evaluation of Comparative Example 1 was produced as in Example 1 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 2 A lithium ion secondary battery for evaluation of Comparative Example 2 was produced as in Example 1 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 3 A lithium ion secondary battery for evaluation of Comparative Example 3 was produced in the same manner as in Example 21 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 4 A lithium ion secondary battery for evaluation of Comparative Example 4 was produced in the same manner as in Example 22 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
  • Comparative Example 5 The composition of the slurry for forming a positive electrode active material layer produced in manufacturing the positive electrode, LiCoO 2 85 parts by weight of carbon black 5 parts by mass, and PVDF10 parts by mass to prepare a positive electrode.
  • a lithium ion secondary battery for evaluation of Comparative Example 5 was produced in the same manner as Example 2 except for the above.
  • Comparative Example 6 The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 85 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF to prepare a positive electrode. did.
  • a lithium ion secondary battery for evaluation of Comparative Example 6 was produced in the same manner as Example 2 except for the above.
  • Comparative Example 7 The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 70 parts by mass of LiFePO 4 , 15 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, 10 parts by mass of PVDF As a part, a positive electrode was produced. A lithium ion secondary battery for evaluation of Comparative Example 7 was produced in the same manner as Example 1 except for the above.
  • Examples 1 to 25 improved the capacity retention rate after 300 cycles as compared with Comparative Examples 1 and 2 in which no carboxylic acid ester was used.
  • Example 24 and Example 25 and Comparative Example 5 From the results of Example 24 and Example 25 and Comparative Example 5, it was confirmed that when the lithium vanadium compound is used in addition to the conventional positive electrode active material, the improvement effect of the capacity retention rate after 300 cycles can be obtained.
  • a lithium ion secondary battery capable of improving cycle characteristics is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a lithium ion secondary battery which is capable of improving cycle characteristics. This lithium ion secondary battery is provided with a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte. The lithium ion secondary battery is characterized in that: the positive electrode includes a lithium vanadium compound; and the electrolyte includes a carboxylic acid ester.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 近年、移動体通信機器、携帯電子機器の主電源として利用されているリチウムイオン二次電池は、起電力が高く、高エネルギー密度であるという特長を有している。 In recent years, lithium ion secondary batteries used as a main power source for mobile communication devices and portable electronic devices have features of high electromotive force and high energy density.
 従来、リチウムイオン二次電池の正極材料(正極活物質)としてLiCoOやLiNi1/3Mn1/3Co1/3等の層状化合物やLiMn等のスピネル化合物が用いられてきた。近年では、LiFePOに代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する正極材料は高温での熱安定性が高く、安全性が高いことが知られている。  Conventionally, layered compounds such as LiCoO 2 and LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel compounds such as LiMn 2 O 4 have been used as positive electrode materials (positive electrode active materials) for lithium ion secondary batteries. The In recent years, olivine type compounds represented by LiFePO 4 have attracted attention. It is known that positive electrode materials having an olivine structure have high thermal stability at high temperatures and high safety.
 しかし、LiFePOを用いたリチウムイオン二次電池は、その充放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。そのため、高い充放電電圧を実現し得るリン酸系正極材料として、LiCoPOやLiNiPO等が提案されている。しかし、これらの正極材料を用いたリチウムイオン二次電池においても、十分な容量が得られていないのが現状である。 However, a lithium ion secondary battery using LiFePO 4 has a disadvantage that the charge and discharge voltage is as low as about 3.5 V and the energy density is low. Therefore, LiCoPO 4 , LiNiPO 4 and the like have been proposed as phosphoric acid based positive electrode materials capable of realizing high charge and discharge voltage. However, even in lithium ion secondary batteries using these positive electrode materials, at present, sufficient capacity is not obtained.
 上記リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOやLi(POの構造を持つバナジウムホスフェート化合物が知られている。 しかしながら、これらの化合物ではガス発生が顕著という問題が存在し、特に金属ラミネート外装体を用いた電池では形状安定性が損なわれてしまう。 Among the above-described phosphoric acid-based positive electrode materials, vanadium phosphate compounds having a structure of LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 are known as compounds capable of achieving a 4 V-class charge / discharge voltage. However, in these compounds, there is a problem that gas generation is remarkable, and in particular, in a battery using a metal laminate outer package, shape stability is lost.
 そこで、特許文献1では電解液中にフッ酸を加えることで、ガス発生の原因となるバナジウムイオンと反応させ、ガス発生を抑制させることが報告されている。 Therefore, Patent Document 1 reports that, by adding hydrofluoric acid to the electrolytic solution, the reaction with vanadium ions which is a cause of gas generation is caused to suppress the gas generation.
特開2013-229303号JP 2013-229303
 しかしながら、いまだ諸特性は満足されず、特にサイクル特性の改善が求められている。 However, various properties are not satisfied yet, and in particular, improvement of cycle characteristics is required.
 発明者らは鋭意研究の結果、リチウムバナジウム化合物のタップ密度が低いために、上記化合物を使用した正極の密度が上がりにくく、毛細管現象による電解液の含浸が不十分であることがサイクル特性悪化の原因であることを見出した。すなわち、正極が十分に濡れていない状態で初回充放電を行われることで不均一な皮膜が形成されるため、サイクル特性が損なわれてしまう。 The inventors of the present invention conducted intensive studies and found that the tap density of the lithium vanadium compound is low, which makes it difficult to increase the density of the positive electrode using the compound, and that the electrolytic solution is not sufficiently impregnated by capillary action. I found it to be the cause. That is, since the non-uniform film is formed by performing the initial charge and discharge in a state where the positive electrode is not sufficiently wet, the cycle characteristics are impaired.
 本発明は上記従来技術の有する課題に鑑みてなされたものであり、サイクル特性を改善することが可能なリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the problems of the above-mentioned prior art, and it is an object of the present invention to provide a lithium ion secondary battery capable of improving cycle characteristics.
 上記課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と、負極と、上記正極と上記負極の間に位置するセパレータと、電解液とを備えるリチウムイオン二次電池であって、上記正極がリチウムバナジウム化合物を含み、上記電解液がカルボン酸エステルを含むことを特徴とする。 In order to solve the above problems, a lithium ion secondary battery according to the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolytic solution. The positive electrode contains a lithium vanadium compound, and the electrolytic solution contains a carboxylic acid ester.
 これによれば、カルボン酸エステルは十分粘度が低いことに加え、濡れ性が高いため、リチウムバナジウム化合物を含む電極であっても速やかに浸透するため、均一な皮膜が形成され、サイクル特性が改善する。 According to this, since the carboxylic ester has a sufficiently low viscosity and high wettability, even an electrode containing a lithium vanadium compound rapidly penetrates, thereby forming a uniform film and improving the cycle characteristics. Do.
 本発明に係るリチウムイオン二次電池はさらに、上記カルボン酸エステルが、下記化学式(1)で表されることが好ましい。
(ここで、RおよびRは炭素数1~4の直鎖状または分岐状のアルキル基または置換アルキル基であり、RとRの炭素数の合計が5以下である。)
Further, in the lithium ion secondary battery according to the present invention, the carboxylic acid ester is preferably represented by the following chemical formula (1).
(Here, R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms or a substituted alkyl group, and the total number of carbon atoms of R 1 and R 2 is 5 or less.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 これによれば、カルボン酸エステルとして好適であり、サイクル特性が更に改善する。 According to this, it is suitable as a carboxylic acid ester, and the cycle characteristics are further improved.
 本発明に係るリチウムイオン二次電池はさらに、上記カルボン酸エステルが、プロピオン酸エステルまたは酢酸エステルであることが好ましい。 In the lithium ion secondary battery according to the present invention, preferably, the carboxylic acid ester is propionic acid ester or acetic acid ester.
 これによれば、カルボン酸エステルとして好適であり、サイクル特性が更に改善する。 According to this, it is suitable as a carboxylic acid ester, and the cycle characteristics are further improved.
 本発明に係るリチウムイオン二次電池はさらに、上記カルボン酸エステルが、上記電解液中に50体積%以上90体積%以下含まれることが好ましい。 In the lithium ion secondary battery according to the present invention, preferably, the above-mentioned carboxylic acid ester is contained in the above-mentioned electrolytic solution at 50% by volume or more and 90% by volume or less.
 これによれば、カルボン酸エステルの比率として好適であり、サイクル特性が更に改善する。 According to this, it is suitable as a ratio of carboxylic acid ester, and cycle characteristics are further improved.
 本発明に係るリチウムイオン二次電池はさらに、上記リチウムバナジウム化合物がLiVOPOであることが好ましい。 Lithium-ion secondary battery according to the present invention preferably further the lithium vanadium compound is LiVOPO 4.
 本発明によれば、サイクル特性を改善することが可能なリチウムイオン二次電池が提供される。 According to the present invention, a lithium ion secondary battery capable of improving cycle characteristics is provided.
本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.
 以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想到できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. Further, the components described below include those which can be easily conceived by those skilled in the art and those substantially the same. Furthermore, the components described below can be combined as appropriate.
 <リチウムイオン二次電池>
 図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, the lithium ion secondary battery 100 according to this embodiment is disposed adjacent to each other between the plate-like negative electrode 20 and the plate-like positive electrode 10 facing each other, and between the negative electrode 20 and the positive electrode 10. And an electrolytic solution containing lithium ions, a case 50 for accommodating these in a sealed state, and one end of the negative electrode 20 are electrically connected. It has a lead 62 whose other end protrudes outside the case, and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case.
 正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。 The positive electrode 10 has a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. Further, the negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.
 <正極>
 本実施形態に係る正極は、リチウムバナジウム化合物を含むものである。
 (正極集電体)
 正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
The positive electrode according to the present embodiment contains a lithium vanadium compound.
(Positive current collector)
The positive electrode current collector 12 may be any conductive plate material, and for example, aluminum or an alloy thereof, or a thin metal plate (metal foil) such as stainless steel can be used.
 (正極活物質層)
 正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive aid.
 (正極活物質)
 本実施形態に係る正極活物質は、リチウムバナジウム化合物を含む。
(Positive electrode active material)
The positive electrode active material according to the present embodiment contains a lithium vanadium compound.
 上記正極活物質と、本実施形態に係る電解液を組み合わせると、毛細管現象による電解液の含浸が十分に進み、均一な皮膜が形成され、サイクル特性が改善する。 When the positive electrode active material and the electrolyte solution according to the present embodiment are combined, the impregnation of the electrolyte solution by capillary action sufficiently proceeds, a uniform film is formed, and the cycle characteristics are improved.
 本実施形態に係る正極活物質はさらに、Li(M)(PO(ただし、M=VOまたはV、かつ、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3)であることが好ましく、LiVOPOであることがより好ましい。 The positive electrode active material according to the present embodiment further includes Li a (M) b (PO 4 ) c (where M = VO or V, and 0.9 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2). 2. 0.9 ≦ c ≦ 3.3) is preferable, and LiVOPO 4 is more preferable.
 上記正極活物質を使用した正極の場合、本実施形態に係る電解液と組み合わせた際に、よりサイクル特性の改善効果が得られる。 In the case of the positive electrode using the above-mentioned positive electrode active material, when combined with the electrolytic solution according to the present embodiment, the effect of improving the cycle characteristics can be further obtained.
 (正極用バインダー)
 正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to one another, and also bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder may be any one as long as the above-mentioned bonding is possible, for example, a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), cellulose, styrene butadiene rubber, ethylene / propylene rubber, polyimide Resin, polyamide imide resin, etc. may be used. In addition, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, polyaniline and the like. As the ion conductive conductive polymer, for example, those obtained by combining a polyether type polymer compound such as polyethylene oxide or polypropylene oxide with a lithium salt such as LiClO 4 , LiBF 4 or LiPF 6 are listed. Be
 正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5~5質量部であることが好ましい。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but when it is added, it is preferably 0.5 to 5 parts by mass with respect to the mass of the positive electrode active material.
 (正極用導電助剤)
 正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive agent for positive electrode)
The conductive aid for the positive electrode is not particularly limited as long as it can improve the conductivity of the positive electrode active material layer 14, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, fine powders of metals such as copper, nickel, stainless steel and iron, and conductive oxides such as ITO.
 <負極>
 (負極集電体)
 負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative current collector)
The negative electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate such as copper (metal foil) can be used.
 (負極活物質層)
 負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Anode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a binder for the negative electrode, and a conductive additive for the negative electrode.
 (負極活物質)
 負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Anode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance absorption and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and known electrode active materials can be used. . For example, carbon-based materials such as graphite and hard carbon, silicon-based materials such as silicon oxide (SiO x ) metal silicon (Si), metal oxides such as lithium titanate (LTO), and metal materials such as lithium, tin and zinc Can be mentioned.
 負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。 When a metal material is not used as the negative electrode active material, the negative electrode active material layer 24 may further contain a negative electrode binder and a negative electrode conductive aid.
 (負極用バインダー)
 負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
The negative electrode binder is not particularly limited, and the same positive electrode binder as described above can be used.
 (負極用導電助剤)
 負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive additive for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.
 <電解液>
 本実施形態に係る電解液は、カルボン酸エステルを含むものである。
<Electrolyte solution>
The electrolytic solution according to the present embodiment contains a carboxylic acid ester.
 これによれば、カルボン酸エステルは十分粘度が低いことに加え、濡れ性が高いため、リチウムバナジウム化合物を含む電極であっても速やかに浸透するため、均一な皮膜が形成され、サイクル特性が改善する。 According to this, since the carboxylic ester has a sufficiently low viscosity and high wettability, even an electrode containing a lithium vanadium compound rapidly penetrates, thereby forming a uniform film and improving the cycle characteristics. Do.
 本実施形態に係る電解液はさらに、上記カルボン酸エステルが、化学式(1)で表されることが好ましく、プロピオン酸エステルまたは酢酸エステルであることがより好ましい。 Further, in the electrolytic solution according to the present embodiment, the carboxylic acid ester is preferably represented by a chemical formula (1), and more preferably a propionic acid ester or an acetic acid ester.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 これによれば、カルボン酸エステルとして好適であり、サイクル特性が更に改善する。 According to this, it is suitable as a carboxylic acid ester, and the cycle characteristics are further improved.
 本実施形態に係る電解液はさらに、上記カルボン酸エステルが、電解液中に50体積%以上90体積%以下含まれることが好ましい。 In the electrolytic solution according to the present embodiment, the carboxylic acid ester is preferably contained in the electrolytic solution in an amount of 50% by volume or more and 90% by volume or less.
 これによれば、カルボン酸エステルの比率として好適であり、サイクル特性が更に改善する。また、カルボン酸エステルが50体積%以上含まれている場合、電解液の粘度は十分に低減され、低粘度化の効果を最大限に得ることが出来る。 According to this, it is suitable as a ratio of carboxylic acid ester, and cycle characteristics are further improved. In addition, when the carboxylic acid ester is contained at 50% by volume or more, the viscosity of the electrolytic solution is sufficiently reduced, and the effect of lowering the viscosity can be obtained to the maximum.
 (その他の溶媒)
 本実施形態に係る電解液は、上記カルボン酸エステル以外にも一般にリチウムイオン二次電池に用いられている溶媒を用いることが出来る。上記溶媒としては特に限定はなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート化合物、等を任意の割合で混合して用いることができる。
(Other solvents)
The electrolyte solution which concerns on this embodiment can use the solvent generally used for the lithium ion secondary battery other than the said carboxylic ester. The solvent is not particularly limited, and examples thereof include cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), linear carbonate compounds such as diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and the like. It can be mixed and used in the ratio of
 (電解質)
 電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery, and examples thereof include inorganic acid anion salts such as LiPF 6 , LiBF 4 and lithium bis oxalate borate, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.
 以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although the suitable embodiment concerning the present invention was described, the present invention is not limited to the above-mentioned embodiment.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 [実施例1]
 (正極の作製)
 リチウムバナジウム化合物としてLiVOPO85質量部、カーボンブラック5質量部、PVDF10質量部をN-メチル-2-ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
Example 1
(Production of positive electrode)
85 parts by mass of LiVOPO 4 as a lithium vanadium compound, 5 parts by mass of carbon black and 10 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a positive electrode active material layer. The slurry was applied to one surface of a 20 μm thick aluminum metal foil so that the coating amount of the positive electrode active material was 9.0 mg / cm 2, and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded by the roller press, and produced the positive electrode.
 (負極の作製)
 天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN-メチル-2-ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Fabrication of negative electrode)
90 parts by mass of natural graphite, 5 parts by mass of carbon black and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a 20 μm thick copper foil so that the coating amount of the negative electrode active material was 6.0 mg / cm 2, and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded by the roller press, and produced the negative electrode.
 (電解液の作製)
 カルボン酸エステルとしてプロピオン酸メチルを用い、体積比でEC:プロピオン酸エチル=30:70の組成比となるように調整し、これに1.0mol/Lの濃度となるようにLiPFを溶解させ、電解液を作製した。
(Preparation of electrolyte)
Using methyl propionate as the carboxylic acid ester, adjust the composition ratio of EC: ethyl propionate = 30: 70 by volume ratio, and dissolve LiPF 6 so that the concentration becomes 1.0 mol / L. , And an electrolyte was prepared.
 (評価用リチウムイオン二次電池の作製)
 上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れた。このアルミラミネートパックに、上記で作製した電解液を注入した後、真空シールし、評価用リチウムイオン二次電池を作製した。
(Preparation of lithium ion secondary battery for evaluation)
The positive electrode and the negative electrode produced above and a separator made of a polyethylene microporous film were interposed between them and placed in an aluminum laminate pack. The electrolytic solution prepared above was injected into the aluminum laminate pack, and vacuum sealing was performed to prepare a lithium ion secondary battery for evaluation.
 (300サイクル後容量維持率の測定)
 上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、充電レート1.0C(25℃で定電流充電を行ったときに1時間で充電終了となる電流値)の定電流充電で電池電圧が4.2Vとなるまで充電を行い、放電レート1.0Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記充放電を1サイクルとし、続けて300サイクルの充放電を行い、300サイクル後容量維持率(300サイクル目放電容量/1サイクル目放電容量×100)を求めた。得られた結果を表1に示す。
(Measurement of capacity retention rate after 300 cycles)
For the lithium ion secondary battery for evaluation prepared above, using a secondary battery charge and discharge test device (manufactured by Hokuto Denko Corporation), charging rate 1.0 C (constant current charging at 25 ° C.) takes 1 hour The battery was charged until the battery voltage reached 4.2 V by constant current charging (the current value at which the charging is completed), and was discharged until the battery voltage reached 2.8 V by constant current discharging at a discharge rate of 1.0C. The charge / discharge cycle was defined as one cycle, followed by 300 cycles of charge / discharge, and after 300 cycles, the capacity retention ratio (300th cycle discharge capacity / first cycle discharge capacity × 100) was determined. The obtained results are shown in Table 1.
 [実施例2]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例2の評価用リチウムイオン二次電池を作製した。
Example 2
A lithium ion secondary battery for evaluation of Example 2 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例3]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例3の評価用リチウムイオン二次電池を作製した。
[Example 3]
A lithium ion secondary battery for evaluation of Example 3 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例4]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例4の評価用リチウムイオン二次電池を作製した。
Example 4
A lithium ion secondary battery for evaluation of Example 4 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例5]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例5の評価用リチウムイオン二次電池を作製した。
[Example 5]
A lithium ion secondary battery for evaluation of Example 5 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例6]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例6の評価用リチウムイオン二次電池を作製した。
[Example 6]
A lithium ion secondary battery for evaluation of Example 6 was produced as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例7]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例7の評価用リチウムイオン二次電池を作製した。
[Example 7]
A lithium ion secondary battery for evaluation of Example 7 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例8]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例8の評価用リチウムイオン二次電池を作製した。
[Example 8]
A lithium ion secondary battery for evaluation of Example 8 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例9]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例9の評価用リチウムイオン二次電池を作製した。
[Example 9]
A lithium ion secondary battery for evaluation of Example 9 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例10]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例10の評価用リチウムイオン二次電池を作製した。
[Example 10]
A lithium ion secondary battery for evaluation of Example 10 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例11]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例11の評価用リチウムイオン二次電池を作製した。
[Example 11]
A lithium ion secondary battery for evaluation of Example 11 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例12]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例12の評価用リチウムイオン二次電池を作製した。
[Example 12]
A lithium ion secondary battery for evaluation of Example 12 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例13]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例13の評価用リチウムイオン二次電池を作製した。
[Example 13]
A lithium ion secondary battery for evaluation of Example 13 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例14]
 電解液の組成比を、表1に示した通りに変更した以外は実施例10と同様として、実施例14の評価用リチウムイオン二次電池を作製した。
Example 14
A lithium ion secondary battery for evaluation of Example 14 was produced in the same manner as Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例15]
 電解液の組成比を、表1に示した通りに変更した以外は実施例10と同様として、実施例15の評価用リチウムイオン二次電池を作製した。
[Example 15]
A lithium ion secondary battery for evaluation of Example 15 was produced in the same manner as in Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例16]
 電解液の組成比を、表1に示した通りに変更した以外は実施例10と同様として、実施例16の評価用リチウムイオン二次電池を作製した。
[Example 16]
A lithium ion secondary battery for evaluation of Example 16 was produced in the same manner as Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例17]
 電解液の組成比を、表1に示した通りに変更した以外は実施例10と同様として、実施例17の評価用リチウムイオン二次電池を作製した。
[Example 17]
A lithium ion secondary battery for evaluation of Example 17 was produced as in Example 10 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例18]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例18の評価用リチウムイオン二次電池を作製した。
[Example 18]
A lithium ion secondary battery for evaluation of Example 18 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例19]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例19の評価用リチウムイオン二次電池を作製した。
[Example 19]
A lithium ion secondary battery for evaluation of Example 19 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例20]
 電解液の作製で用いたカルボン酸エステルを、表1に示した通りに変更した以外は実施例1と同様として、実施例20の評価用リチウムイオン二次電池を作製した。
[Example 20]
A lithium ion secondary battery for evaluation of Example 20 was produced in the same manner as in Example 1 except that the carboxylic acid ester used in the production of the electrolytic solution was changed as shown in Table 1.
 [実施例21]
 正極の作製で用いたリチウムバナジウム化合物を、表1に示した通りに変更した以外は実施例1と同様として、実施例21の評価用リチウムイオン二次電池を作製した。
[Example 21]
A lithium ion secondary battery for evaluation of Example 21 was produced in the same manner as in Example 1 except that the lithium vanadium compound used in producing the positive electrode was changed as shown in Table 1.
 [実施例22]
 正極の作製で用いたリチウムバナジウム化合物を、表1に示した通りに変更した以外は実施例1と同様として、実施例22の評価用リチウムイオン二次電池を作製した。
Example 22
A lithium ion secondary battery for evaluation of Example 22 was produced in the same manner as in Example 1 except that the lithium vanadium compound used in producing the positive electrode was changed as shown in Table 1.
 [実施例23]
 電解液の組成比を、表1に示した通りに変更した以外は実施例2と同様として、実施例23の評価用リチウムイオン二次電池を作製した。
[Example 23]
A lithium ion secondary battery for evaluation of Example 23 was produced in the same manner as in Example 2 except that the composition ratio of the electrolytic solution was changed as shown in Table 1.
 [実施例24]
 正極の作製で作製した正極活物質層形成用のスラリーの組成を、LiVOPO70質量部、LiCoO15質量部、カーボンブラック5質量部、PVDF10質量部とし、正極を作製した。それ以外は実施例1と同様として、実施例24の評価用リチウムイオン二次電池を作製した。
[Example 24]
The composition of the slurry for forming a positive electrode active material layer produced in manufacturing the positive electrode, LiVOPO 4 70 parts by weight LiCoO 2 15 parts by weight of carbon black 5 parts by mass, and PVDF10 parts by mass to prepare a positive electrode. A lithium ion secondary battery for evaluation of Example 24 was produced in the same manner as Example 1 except for the above.
 [実施例25]
 正極の作製で作製した正極活物質層形成用のスラリーの組成を、LiVOPO70質量部、LiNi0.80Co0.15Al0.0515質量部、カーボンブラック5質量部、PVDF10質量部とし、正極を作製した。それ以外は実施例1と同様として、実施例25の評価用リチウムイオン二次電池を作製した。
[Example 25]
The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 70 parts by mass of LiVOPO 4 , 15 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, 10 parts by mass of PVDF As a part, a positive electrode was produced. A lithium ion secondary battery for evaluation of Example 25 was produced in the same manner as Example 1 except for the above.
 [比較例1]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
Comparative Example 1
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced as in Example 1 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
 [比較例2]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例1と同様として、比較例2の評価用リチウムイオン二次電池を作製した。
Comparative Example 2
A lithium ion secondary battery for evaluation of Comparative Example 2 was produced as in Example 1 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
 [比較例3]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例21と同様として、比較例3の評価用リチウムイオン二次電池を作製した。
Comparative Example 3
A lithium ion secondary battery for evaluation of Comparative Example 3 was produced in the same manner as in Example 21 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
 [比較例4]
 電解液の組成比を、カルボン酸エステルを用いず表1に示した通りに変更した以外は実施例22と同様として、比較例4の評価用リチウムイオン二次電池を作製した。
Comparative Example 4
A lithium ion secondary battery for evaluation of Comparative Example 4 was produced in the same manner as in Example 22 except that the composition ratio of the electrolytic solution was changed as shown in Table 1 without using a carboxylic acid ester.
 [比較例5]
 正極の作製で作製した正極活物質層形成用のスラリーの組成を、LiCoO85質量部、カーボンブラック5質量部、PVDF10質量部とし、正極を作製した。それ以外は実施例2と同様として、比較例5の評価用リチウムイオン二次電池を作製した。
Comparative Example 5
The composition of the slurry for forming a positive electrode active material layer produced in manufacturing the positive electrode, LiCoO 2 85 parts by weight of carbon black 5 parts by mass, and PVDF10 parts by mass to prepare a positive electrode. A lithium ion secondary battery for evaluation of Comparative Example 5 was produced in the same manner as Example 2 except for the above.
 [比較例6]
 正極の作製で作製した正極活物質層形成用のスラリーの組成を、LiNi0.80Co0.15Al0.0585質量部、カーボンブラック5質量部、PVDF10質量部とし、正極を作製した。それ以外は実施例2と同様として、比較例6の評価用リチウムイオン二次電池を作製した。
Comparative Example 6
The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 85 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF to prepare a positive electrode. did. A lithium ion secondary battery for evaluation of Comparative Example 6 was produced in the same manner as Example 2 except for the above.
 [比較例7]
 正極の作製で作製した正極活物質層形成用のスラリーの組成を、LiFePO70質量部、LiNi0.80Co0.15Al0.0515質量部、カーボンブラック5質量部、PVDF10質量部とし、正極を作製した。それ以外は実施例1と同様として、比較例7の評価用リチウムイオン二次電池を作製した。
Comparative Example 7
The composition of the slurry for forming the positive electrode active material layer prepared in the preparation of the positive electrode was 70 parts by mass of LiFePO 4 , 15 parts by mass of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 5 parts by mass of carbon black, 10 parts by mass of PVDF As a part, a positive electrode was produced. A lithium ion secondary battery for evaluation of Comparative Example 7 was produced in the same manner as Example 1 except for the above.
 実施例2~25、および比較例1~7で作製した評価用リチウムイオン二次電池について、実施例1と同様に、300サイクル後容量維持率の測定を行った。結果を表1に示す。 For the lithium ion secondary batteries for evaluation prepared in Examples 2 to 25 and Comparative Examples 1 to 7, measurement of the capacity retention after 300 cycles was performed in the same manner as in Example 1. The results are shown in Table 1.
 実施例1~25はいずれも、カルボン酸エステルを使用しなかった比較例1および2に対し、300サイクル後容量維持率が改善した。 Examples 1 to 25 improved the capacity retention rate after 300 cycles as compared with Comparative Examples 1 and 2 in which no carboxylic acid ester was used.
 実施例1~4、および実施例9~13の結果から、カルボン酸の総炭素数を5以下とすることで、300サイクル後容量維持率がより改善する効果が得られることが確認された。 From the results of Examples 1 to 4 and Examples 9 to 13, it was confirmed that by setting the total carbon number of the carboxylic acid to 5 or less, an effect of further improving the capacity retention rate after 300 cycles can be obtained.
 実施例18~20の結果から、カルボン酸エステルとしてプロピオン酸エステルまたは酢酸エステルを使用することで、300サイクル後容量維持率がより改善する効果が得られることが確認された。 From the results of Examples 18 to 20, it was confirmed that the use of propionic acid ester or acetic acid ester as the carboxylic acid ester has the effect of further improving the capacity retention after 300 cycles.
 実施例5~8、および実施例14~17の結果から、電解液の組成を最適化することで、300サイクル後容量維持率がより改善する効果が得られることが確認された。 From the results of Examples 5 to 8 and Examples 14 to 17, it was confirmed that the effect of further improving the capacity retention after 300 cycles can be obtained by optimizing the composition of the electrolytic solution.
 実施例22および23と、比較例3および4の結果から、リチウムバナジウム化合物としてLiVOPOを用いた場合、300サイクル後容量維持率のより高い改善効果が得られることが確認された。 From the results of Examples 22 and 23 and Comparative Examples 3 and 4, it was confirmed that a higher improvement effect of the capacity retention after 300 cycles can be obtained when LiVOPO 4 is used as the lithium vanadium compound.
 実施例24および実施例25と、比較例5の結果から、従来の正極活物質に加えてリチウムバナジウム化合物を用いた場合、300サイクル後容量維持率の改善効果が得られることが確認された。 From the results of Example 24 and Example 25 and Comparative Example 5, it was confirmed that when the lithium vanadium compound is used in addition to the conventional positive electrode active material, the improvement effect of the capacity retention rate after 300 cycles can be obtained.
 比較例6、7の結果から、カルボン酸エステルを用いた場合においても、リチウムバナジウム化合物を用いない場合、300サイクル後容量維持率の改善効果が得られないことが確認された。 From the results of Comparative Examples 6 and 7, it was confirmed that the improvement effect of the capacity retention rate after 300 cycles was not obtained even when the carboxylic acid ester was used, when the lithium vanadium compound was not used.
 上記結果から、カルボン酸エステルとリチウムバナジウム化合物とを組み合わせた場合において、300サイクル後容量維持率の改善効果が得られることが確認された。 From the above results, it was confirmed that when the carboxylic acid ester and the lithium vanadium compound were combined, the improvement effect of the capacity retention rate after 300 cycles was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明により、サイクル特性を改善することが可能なリチウムイオン二次電池が提供される。 According to the present invention, a lithium ion secondary battery capable of improving cycle characteristics is provided.
 10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。 DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 , 62 ... lead, 100 ... lithium ion secondary battery.

Claims (5)

  1.  正極と、負極と、前記正極と前記負極の間に位置するセパレータと、電解液とを備えるリチウムイオン二次電池であって、
     前記正極がリチウムバナジウム化合物を含み、
     前記電解液がカルボン酸エステルを含むことを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolytic solution,
    The positive electrode contains a lithium vanadium compound,
    The lithium ion secondary battery, wherein the electrolytic solution contains a carboxylic acid ester.
  2.  前記カルボン酸エステルが、下記化学式(1)で表されることを特徴とする請求項1に記載のリチウムイオン二次電池。
    (ここで、RおよびRは炭素数1~4の直鎖状または分岐状のアルキル基または置換アルキル基であり、RとRの炭素数の合計が5以下である。)
    Figure JPOXMLDOC01-appb-C000001
    The lithium ion secondary battery according to claim 1, wherein the carboxylic acid ester is represented by the following chemical formula (1).
    (Here, R 1 and R 2 each represent a linear or branched alkyl group having 1 to 4 carbon atoms or a substituted alkyl group, and the total number of carbon atoms of R 1 and R 2 is 5 or less.)
    Figure JPOXMLDOC01-appb-C000001
  3.  前記カルボン酸エステルが、プロピオン酸エステルまたは酢酸エステルであることを特徴とする請求項1または2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the carboxylic acid ester is propionic acid ester or acetic acid ester.
  4.  前記カルボン酸エステルが、前記電解液中に50体積%以上90体積%以下含まれることを特徴とする請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the carboxylic acid ester is contained in the electrolytic solution at 50% by volume or more and 90% by volume or less.
  5.  前記リチウムバナジウム化合物がLiVOPOであることを特徴とする請求項1乃至4のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4 , wherein the lithium vanadium compound is LiVOPO4.
PCT/JP2018/034089 2017-09-26 2018-09-14 Lithium ion secondary battery WO2019065287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184259 2017-09-26
JP2017-184259 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065287A1 true WO2019065287A1 (en) 2019-04-04

Family

ID=65902111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034089 WO2019065287A1 (en) 2017-09-26 2018-09-14 Lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2019065287A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234621A (en) * 1992-02-25 1993-09-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JPH07235295A (en) * 1994-02-21 1995-09-05 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
JP2008140760A (en) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same
WO2012133027A1 (en) * 2011-03-31 2012-10-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery system
JP2016085837A (en) * 2014-10-24 2016-05-19 Tdk株式会社 Lithium ion secondary battery
JP2017082303A (en) * 2015-10-29 2017-05-18 Tdk株式会社 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery
JP2017152126A (en) * 2016-02-23 2017-08-31 Tdk株式会社 Negative electrode active material, negative electrode containing negative electrode active material, and lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234621A (en) * 1992-02-25 1993-09-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
JPH07235295A (en) * 1994-02-21 1995-09-05 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2008140760A (en) * 2006-06-14 2008-06-19 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using the same
WO2012133027A1 (en) * 2011-03-31 2012-10-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery system
JP2016085837A (en) * 2014-10-24 2016-05-19 Tdk株式会社 Lithium ion secondary battery
JP2017082303A (en) * 2015-10-29 2017-05-18 Tdk株式会社 Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery
JP2017152126A (en) * 2016-02-23 2017-08-31 Tdk株式会社 Negative electrode active material, negative electrode containing negative electrode active material, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
KR102240708B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2016119180A (en) Non-aqueous lithium secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP5271751B2 (en) Lithium ion secondary battery
JP6992362B2 (en) Lithium ion secondary battery
WO2013183524A1 (en) Nonaqueous electrolyte secondary battery
JP2019160617A (en) Lithium ion secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2019061835A (en) Lithium ion secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
US20180241041A1 (en) Lithium ion secondary battery
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP2018133335A (en) Nonaqueous electrolyte battery
JP2019061827A (en) Lithium ion secondary battery
JP2019061828A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
WO2019065287A1 (en) Lithium ion secondary battery
JP2019145409A (en) Lithium ion secondary battery
JP2019061825A (en) Lithium ion secondary battery
JP2019160615A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP