WO2019065089A1 - Anisotropically conductive sheet and anisotropically conductive sheet manufacturing method - Google Patents

Anisotropically conductive sheet and anisotropically conductive sheet manufacturing method Download PDF

Info

Publication number
WO2019065089A1
WO2019065089A1 PCT/JP2018/032439 JP2018032439W WO2019065089A1 WO 2019065089 A1 WO2019065089 A1 WO 2019065089A1 JP 2018032439 W JP2018032439 W JP 2018032439W WO 2019065089 A1 WO2019065089 A1 WO 2019065089A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive material
conductive sheet
sheet
carbon nanotube
Prior art date
Application number
PCT/JP2018/032439
Other languages
French (fr)
Japanese (ja)
Inventor
稔 森田
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2018565424A priority Critical patent/JPWO2019065089A1/en
Publication of WO2019065089A1 publication Critical patent/WO2019065089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to, for example, an anisotropic conductive sheet electrically connected to a test electrode of a circuit device to conduct a continuity test of the test electrode, and a method of manufacturing the anisotropic conductive sheet.
  • an electrical connector called a contact probe has been used to confirm normal conduction of wiring such as a semiconductor package or a high frequency component.
  • miniaturization of the contact probe has been achieved.
  • the contact probe is a precision mechanical component including a spring, a metal capillary and the like, and its miniaturization is limited. For this reason, an anisotropically conductive sheet is used as an electrical connector which can be substituted for a contact probe.
  • an anisotropically conductive sheet a core sheet in which a plurality of metal wires are arranged in parallel in one direction parallel to the plane of a sheet-like member formed of an elastic insulating member is laminated, and the length direction of the metal wires
  • an anisotropically conductive sheet produced by cutting in a direction substantially orthogonal to see, for example, Patent Document 1.
  • a plurality of through holes extending in the thickness direction of the sheet of insulating polymer elastic body are provided, and the through holes are filled with an elastic polymer substance containing a conductive material, and the conductive material is subjected to the action of a magnetic field.
  • An anisotropic conductive sheet produced by rearrangement is also known (see, for example, Patent Document 2).
  • an elastic polymer substance containing a conductive material is filled with narrowing of the pitch of the wiring such as a semiconductor package or a high frequency component and thinning of the wiring itself.
  • the width (diameter) of the through holes it is necessary to use small conductive particles having a uniform particle size as the conductive material.
  • aggregates of the conductive particles are easily generated, and there is a problem that it becomes more difficult to fill the through holes with the conductive material.
  • the anisotropic conductive sheet and the anisotropic conductive sheet can be easily manufactured, which can be used for inspection of semiconductor packages and high frequency parts in which the wiring is narrowed and the wiring itself is thinned.
  • the purpose is to provide a manufacturing method of
  • the anisotropic conductive sheet according to the present invention has an insulating sheet body provided with a plurality of through holes penetrating in the thickness direction, and a conductive path formed in the through holes.
  • the conductive path is formed by curing a conductive material containing at least conductive nanoparticles and a binder resin, and the conductive material has a viscosity of 100000 mPa ⁇ s or less.
  • the conductive nanoparticles are preferably carbon nanotubes.
  • the BET specific surface area of the carbon nanotube is preferably 600 m 2 / g or more.
  • the binder resin is an epoxy resin
  • the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant, and the carbon nanotube It is preferable that the content of is 0.1 to 10% by weight with respect to the total solid component contained in the conductive material.
  • the insulating sheet is made of silicone rubber, and the tensile elastic modulus at normal temperature measured according to the method defined in JIS K 7127 is 0.1 MP to 100 MPa. preferable.
  • the anisotropic conductive sheet preferably has a distance of 500 ⁇ m or less between the adjacent conductive paths.
  • the manufacturing method of the anisotropically conductive sheet according to the present invention is a through hole forming step of forming a plurality of through holes penetrating in the thickness direction in the insulating sheet body;
  • the conductive nanoparticles are preferably carbon nanotubes.
  • the BET specific surface area of the said carbon nanotube is 600 m ⁇ 2 > / g or more in the manufacturing method of the said anisotropically conductive sheet.
  • the binder resin is an epoxy resin
  • the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant. It is preferable that the content of the carbon nanotube is 0.1 to 10% by weight with respect to the total solid component contained in the conductive material.
  • the insulating sheet is made of silicone rubber, and the tensile elastic modulus at normal temperature measured according to the method defined in JIS K 7127 is 0.1 MPa to 100 MPa. Is preferred.
  • the said electroconductive material filling process is performed by the squeegee method as the manufacturing method of the said anisotropically conductive sheet.
  • the anisotropic conductive sheet and the anisotropic conductive sheet can be easily manufactured, which can be used for inspection of semiconductor packages and high frequency parts in which the wiring is narrowed and the wiring itself is thinned.
  • (A) is a top view which shows typically the structure of the anisotropic conductive sheet which concerns on embodiment of this invention
  • (B) is AA sectional drawing of (A). It is explanatory drawing which shows typically the manufacturing method of the anisotropically conductive sheet which concerns on embodiment of this invention
  • (A) is sectional drawing which shows the preparation process of an insulating sheet body
  • (B) is an insulating sheet
  • (C) is sectional drawing which shows the electrically-conductive material filling process which fills the electrically-conductive material in the through-hole of an insulating sheet body. Is a cross-sectional view showing a curing step of curing the conductive material.
  • It is sectional drawing which demonstrates typically the usage method of the anisotropic conductive sheet which concerns on embodiment of this invention.
  • It is a top view which illustrates typically the usage method of the anisotropic conductive sheet which concerns on
  • FIG. 1A is a plan view schematically showing the structure of the anisotropic conductive sheet 1 according to the embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA of FIG.
  • this anisotropically conductive sheet 1 has an insulating sheet 3 provided with a plurality of through holes 2 penetrating in the thickness direction, and a conductive path 4 formed in the through holes 2.
  • the conductive path 4 is formed by curing a conductive material containing at least conductive nanoparticles and a binder resin, and the viscosity of the conductive material is 100000 mPa ⁇ s or less. Each component will be described below.
  • the insulating sheet 3 has a sheet-like shape. Moreover, the insulating sheet body 3 secures the insulation of the conductive paths 4 formed in the through holes 2 penetrating in the substantially thickness direction. Therefore, “insulation” or “insulation” as referred to in the present application means having an electric resistance sufficient to secure the insulation between the conductive paths 4, and preferably, the volume resistivity is 1. The property of 0 ⁇ 10 12 ⁇ ⁇ cm or more is said.
  • the insulating sheet 3 is not particularly limited as long as it has insulating properties, but is preferably made of a polymeric substance having insulating properties, and more preferably made of an elastic polymeric substance.
  • conjugated diene rubbers such as silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and hydrogenated products thereof, styrene-butadiene-diene block co-polymer Polymer rubber, block copolymer rubber such as styrene-isoprene block copolymer and hydrogenated products thereof, chloroprene, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene Copolymer rubber, soft liquid epoxy rubber and the like can be mentioned.
  • silicone rubber is preferred from the viewpoint of moldability and electrical properties.
  • the silicone rubber one obtained by crosslinking or condensing liquid silicone rubber is preferable.
  • the liquid silicone rubber may be any of condensation type, addition type, and those containing a vinyl group or a hydroxyl group. Specifically, dimethyl silicone gum, methyl vinyl silicone gum, methylphenyl vinyl silicone gum and the like can be mentioned.
  • the insulating sheet 3 preferably has a tensile elastic modulus at normal temperature of 0.1 MPa to 100 MPa measured in accordance with the method defined in JIS K 7127.
  • a tensile elastic modulus at normal temperature of 0.1 MPa to 100 MPa measured in accordance with the method defined in JIS K 7127.
  • the size of the insulating sheet 3 can be appropriately changed depending on the size of the circuit device 9 to be inspected and the like, and is not particularly limited.
  • the thickness of the insulating sheet 3 is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m, and particularly preferably 150 to 300 ⁇ m.
  • the insulating sheet 3 is provided with a plurality of through holes 2 penetrating in the thickness direction.
  • the distance between the through holes 2 is appropriately designed based on the suitable distance P of the conductive paths 4 and is preferably 10 to 500 ⁇ m, more preferably 10 to 150 ⁇ m, and particularly preferably 20 to 80 ⁇ m. If the distance between the through holes 2 is less than the lower limit value, the necessary insulation between the adjacent conductive paths 4 may not be obtained. On the other hand, when the distance between the through holes 2 exceeds the upper limit value, the conductive path 4 is positioned between the adjacent electrodes in the circuit device 9 when it is superimposed on the circuit device 9 to be inspected. The required electrical connection may not be achieved for some of the electrodes in the circuit arrangement 9.
  • the maximum width of the through hole 2 is appropriately designed based on the suitable maximum width d of the conductive path 4 and is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m. In particular, in order to cope with the narrowing of the wiring of the circuit device 9, 15 ⁇ m or less is preferable.
  • the maximum width of the through hole 2 is less than 1 ⁇ m, the conductive path 4 is positioned between the adjacent electrodes in the circuit device 9 when overlapping the circuit device 9 to be inspected, and as a result, the circuit The required electrical connection may not be achieved for some of the electrodes in device 9. In addition, it is difficult to form the conductive path 4 having a diameter d of less than 1 ⁇ m.
  • the maximum width of the through hole 2 exceeds 100 ⁇ m, two or more electrodes in the circuit device 9 are connected to the same conductive path 4 when stacked on the circuit device 9, and as a result, required May not be obtained.
  • the cross-sectional shape of the through hole 2 may be any shape such as a circle, a star, an octagon, a hexagon, a square, or a triangle.
  • the conductive path 4 is formed by curing a conductive material 7 (see FIG. 2C) containing at least conductive nanoparticles and a binder resin.
  • conductive nanoparticles As the conductive nanoparticles, known conductive nanoparticles can be used without particular limitation. For example, metal nanoparticles such as gold, silver and copper, carbon nanoparticles such as graphene and carbon nanotube, metal oxide nanoparticles such as titanium oxide and tin oxide, and the like can be used. Among these conductive nanoparticles, a carbon nanotube is preferable from the viewpoint of achieving conductivity with a small filling amount by having a structure in which electricity easily flows in the longitudinal direction and by orientation dispersion.
  • a known carbon nanotube can be used, and although not particularly limited, a single-walled carbon nanotube in which one sheet surface of graphite is wound in one layer, a multilayer carbon nanotube wound in multiple layers, or the like can be used.
  • single-walled carbon nanotubes and multi-walled carbon nanotubes may be used in combination.
  • a long single-walled carbon nanotube having a small diameter (fiber diameter) and a large aspect ratio is used alone, or
  • the shape (average length, fiber diameter, aspect ratio) of each carbon nanotube is not particularly limited, and the conductivity, flexibility, durability, etc. required for the conductor are comprehensively determined and appropriately selected. Good.
  • the single-walled carbon nanotube When using a single long single-walled carbon nanotube having a small diameter and a large aspect ratio, the single-walled carbon nanotube preferably has a diameter of 0.5 nm or more, more preferably 1 nm or more. Is preferably 15 nm or less, and more preferably 10 nm or less. When the diameter is 0.5 nm or more, aggregation can be suppressed when dispersed in a binder resin. In addition, if the diameter is 15 nm or less, mechanical property improvement by the nano effect can be expressed.
  • the aspect ratio of the single-walled carbon nanotube is preferably 100 or more, more preferably 1000 or more, still more preferably 10000 or more, and particularly preferably 30000 or more.
  • conductivity is secured with a smaller number of electrical contacts than when short carbon nanotubes are used, and the number of electrical contacts with one carbon nanotube with another carbon nanotube As a result, it is possible to form a higher dimensional electrical network, and even when the conductive path 4 is deformed, the conductive path is less likely to be cut.
  • the single-walled carbon nanotube preferably has a carbon purity of 99% by weight or more.
  • the conductivity of the conductive path 4 may be lowered.
  • the volume resistivity can be kept lower and smaller than when single-walled carbon nanotubes are used alone.
  • the single-walled carbon nanotube the long single-walled carbon nanotube described above is preferable.
  • the multi-walled carbon nanotube may be a double-walled carbon nanotube (DWNT), or may be a multi-walled carbon nanotube (MWNT) having three or more layers (in the present specification, both are simply combined to be a multi-walled carbon nanotube) Called
  • the fiber diameter of the multi-walled carbon nanotube is preferably 5 to 15 nm. If the fiber diameter is less than 5 nm, the dispersion of multi-walled carbon nanotubes may be deteriorated, and as a result, the conductive path may not spread and the conductivity may be insufficient, while if it exceeds 15 nm, the number of carbon nanotubes may be the same And the conductivity may be insufficient.
  • the aspect ratio of the multi-walled carbon nanotube is preferably 50 to 2,000.
  • the content of the single-walled carbon nanotube is preferably 20 to 70% by weight with respect to the total amount of the single-walled carbon nanotube and the multi-walled carbon nanotube.
  • the content of the single-walled carbon nanotube is less than 20% by weight, the volume resistivity may be largely fluctuated when the conductive path 4 is deformed, while the content of the single-walled carbon nanotube is 70% by weight In some cases, the effect of reducing the volume resistivity can not be sufficiently obtained.
  • the content of the single-walled carbon nanotube is more preferably 30 to 70% by weight.
  • the carbon nanotube preferably has a BET specific surface area of 600 m 2 / g or more. If the BET specific surface area is 600 m 2 / g or more, the electrical conductivity, the thermal conductivity and the strength of the conductive path 4 can be sufficiently enhanced.
  • the "BET specific surface area” refers to the nitrogen adsorption specific surface area measured using the BET method.
  • the carbon nanotubes are preferably dispersed in an organic solvent to prevent aggregation in the conductive material 7.
  • organic solvent include methanol, ethanol, isopropanol, butanol, methoxyethoxyethanol, butoxyethanol, butyl carbitol, hexyloxyethanol, octanol, alcohol solvents such as 1-methoxy-2-propanol and ethylene glycol, chloroform and the like
  • Aliphatic halogen solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, dimethyl sulfoxide (DMSO), etc.
  • Aprotic polar solvent chlorobenzene, dichlorobenzene, trichlorobenzene, benzene, toluene, ethylbenzene, xylene, mesitylene, tetralin, tetramethylbenzene, anisole, thioanisole
  • Aromatic solvents such as fluorobenzene, trifluoromethylbenzene, pyridine and quinoline, cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, ketone solvents such as isophorone and acetophenone, diethyl ether, THF (tetrahydrofuran), t- Ether solvents such as butyl methyl ether, diisopropyl ether, dimethoxyethane, dioxane, diglyme and the like, ester solvents such as methyl acetate, ethyl
  • the mixing of the carbon nanotube and the organic solvent is not particularly limited.
  • a homogenizer, thin film swirl, jaw crusher, automatic mortar, ultracentrifugal grinding, jet mill, cutting mill, disc mill, ball mill, rotational revolution agitation, ultrasonic dispersion And the like can be performed using an apparatus capable of performing such methods.
  • two or more of these methods may be combined as needed.
  • the content of the carbon nanotube is preferably 0.001 to 50 w%, more preferably 0.01 to 25 w%, and still more preferably 0.01 to 10 w% with respect to the organic solvent. By being in this range, the dispersibility of the carbon nanotube in the conductive material 7 is improved.
  • Binder resin As the binder resin, it is preferable to use a thermosetting resin, or a thermosetting resin and a thermoplastic resin, and it is also preferable to use a radiation curable resin.
  • thermosetting resin an amino resin, unsaturated polyester resin, a polyurethane resin, a silicone resin, a thermosetting polyimide resin etc. other than an epoxy resin and a phenol resin are mentioned.
  • a thermosetting resin can be used individually or in combination of 2 or more types.
  • An epoxy resin is particularly preferable as the thermosetting resin.
  • the epoxy resin is not particularly limited.
  • bisphenol A epoxy resin bisphenol F epoxy resin, bisphenol S epoxy resin, brominated bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol AF epoxy Bifunctional epoxy such as resin, biphenyl type epoxy resin, naphthalene type epoxy resin, fluronene type epoxy resin, phenol novolac type epoxy resin, ortho cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin Epoxy resin such as resin, polyfunctional epoxy resin, hydantoin type epoxy resin, tris glycidyl isocyanurate type epoxy resin or glycidyl amine type epoxy resin It can be used fat.
  • an epoxy resin curing agent When using an epoxy resin as a thermosetting resin, an epoxy resin curing agent can be used. Although known curing agents such as amines, acid anhydrides and polyhydric phenols can be used, latent curing which exhibits curability at a predetermined temperature above normal temperature and exhibits fast curing is preferable. It is an agent. As the latent curing agent, dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complex, amine imide, polyamine salt and modified products thereof, and those of microcapsule type can also be used. These can be used alone or in combination of two or more. The amount of epoxy resin curing agent used is usually in the range of 0.5 to 50 w% with respect to the epoxy resin.
  • the conductive material 7 preferably has adhesiveness (adhesion) to the through hole 2 of the insulating sheet 3. Therefore, in order to crosslink the conductive material 7 to some extent in advance, a polyfunctional compound that reacts with a functional group at the molecular chain terminal of the polymer or the like may be added as a crosslinker.
  • the crosslinking agent is not particularly limited, and known crosslinking agents can be used. Specifically, for example, in addition to isocyanate type crosslinking agents, epoxy type crosslinking agents, melamine type crosslinking agents, peroxide type crosslinking agents, urea type crosslinking agents, metal alkoxide type crosslinking agents, metal chelate type crosslinking agents, metal salts
  • the crosslinking agents include carbodiimide type crosslinking agents, carbodiimide type crosslinking agents, oxazoline type crosslinking agents, aziridine type crosslinking agents, amine type crosslinking agents and the like.
  • a crosslinking agent an isocyanate type crosslinking agent and an epoxy type crosslinking agent are suitable.
  • the said crosslinking agent can be used individually or in combination of 2 or more types.
  • thermoplastic resin for example, natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, Thermoplastic polyimide resin, polyamide resin such as 6-nylon or 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET (polyethylene terephthalate) or PBT (polybutylene terephthalate), polyamide imide resin, or fluorine resin Etc.
  • the thermoplastic resins can be used alone or in combination of two or more.
  • acrylic resins are preferable in that they have few ionic impurities and are excellent in stress relaxation properties.
  • a phenoxy resin is preferable at the point which makes flexibility and intensity
  • the radiation curable resin examples include an addition type radiation curable resin in which a radiation curable monomer component and a radiation curable oligomer component are blended, and among them, an acrylic radiation curable resin is preferable.
  • acrylic radiation curable resin for example, (meth) acrylic acid alkyl ester (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl Ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of the alkyl group such as decyl ester, is
  • (meth) acrylic acid cycloalkyl esters e.g., cyclopentyl ester, cyclohexyl ester, etc.
  • acryl-based polymer such as one or more was used as a monomer component thereof.
  • (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of this invention is the same meaning altogether.
  • the acrylic radiation-curable resin is a unit corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or the cycloalkyl ester as necessary for the purpose of modifying cohesion, heat resistance, etc. May be included.
  • carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, etc .
  • maleic anhydride Acid anhydride monomers such as itaconic anhydride
  • Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylic acid, 10-hydroxydecyl (meth) acrylic acid, 12-hydroxylauryl (meth) acrylic acid, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate
  • Monomer Monomer; phosphoric acid group-containing monomer such as 2-hydroxyethyl acryloyl phosphate; acrylamide, acrylonitrile and the like.
  • These copolymerizable monomer components can be used alone or in combination of two or more.
  • the amount of these copolymerizable monomers used is preferably 40% by weight or less of the total monomer components.
  • a polyfunctional monomer or the like can also be included as a monomer component for copolymerization, if necessary.
  • polyfunctional monomers for example, hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the multifunctional monomers.
  • the acrylic radiation curable resin preferably contains a photopolymerization initiator when it is cured by ultraviolet light or the like.
  • the conductive material 7 preferably contains a dispersant.
  • the dispersant is not particularly limited as long as it has a function of dispersing conductive nanoparticles, but a silane coupling agent is suitably used as a dispersant for carbon nanotubes.
  • functional groups that adsorb to carbon nanotubes for example, alkyl groups, aromatic groups such as pyrene, anthracene, terphenylene, porphyrins, alicyclic groups such as cholesterol, etc.
  • steric repulsion groups that suppress aggregation of carbon nanotubes A linear or branched alkyl group, a group derived from a polymer such as polyacrylic acid ester, etc., and an electrostatic repulsive group (eg, a salt such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, an ammonium group etc.)
  • an electrostatic repulsive group eg, a salt such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, an ammonium group etc.
  • the silane coupling agent is not particularly limited as long as it is a compound having a hydrolyzable silyl group or silanol group and a functional group.
  • a hydrolysable silyl group which a silane coupling agent has an alkoxy silyl group is mentioned, for example.
  • the number of carbon atoms of the alkoxy group contained in the alkoxysilyl group can be 1 to 5.
  • the number of alkoxy groups bonded to one silicon atom is preferably 2 or 3.
  • the hydrocarbon group that can be bonded to a silicon atom is not particularly limited.
  • an alkyl group is mentioned.
  • a silane coupling agent As a functional group which a silane coupling agent has, an epoxy group, an amino group, an imino group (-NH-), a hydroxy group is mentioned, for example. Among them, epoxy group is preferable.
  • the hydrolyzable silyl group or silanol group and the functional group can be bonded to a hydrocarbon group which may have a hetero atom.
  • the hetero atom and the hydrocarbon group are as defined above.
  • the silane coupling agent is preferably epoxysilane or aminosilane.
  • epoxysilane for example, glycidyloxyalkyltrialkoxysilane and glycidyloxyalkyldialkoxyalkylsilane are more preferable, and 3-glycidyloxypropyltrimethoxysilane can be mentioned.
  • the aminosilane can have an amino group and / or an imino group. Aminosilane is mentioned as one of the preferred embodiments having an imino group.
  • aminosilane having an imino group for example, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropyltrimethoxysilane is mentioned.
  • the silane coupling agents can be used alone or in combination of two or more.
  • the content of the dispersant is preferably 0.1 to 100 times, more preferably 1 to 10 times, and particularly preferably 1 to 5 times the weight of the carbon nanotube.
  • the content of carbon nanotubes in the conductive material 7 is preferably 0.1 to 10% by weight based on the total solid components contained in the conductive material 7.
  • the content of carbon nanotubes is less than 0.1% by weight, the conductivity becomes insufficient. If the content of carbon nanotubes is more than 10% by weight, carbon nanotubes can not be dispersed sufficiently.
  • the viscosity of the conductive material 7 is increased, and the filling property of the insulating sheet into the through holes 2 is deteriorated.
  • the solid component is a component excluding volatile components such as an organic solvent contained in the conductive material 7, and also includes carbon nanotubes.
  • the viscosity of the conductive material 7 is 100,000 mPa ⁇ s or less. By setting the viscosity of the conductive material 7 to 100,000 mPa ⁇ s or less, the conductive material 7 can be favorably filled in the through holes 2 of the insulating sheet.
  • the carbon nanotube particularly contains carbon nanotubes dispersed in an organic solvent, an epoxy resin, an epoxy resin curing agent, and a dispersing agent, and the content of carbon nanotubes relative to the total solid component in the conductive material 7 is
  • the conductive material 7 is preferably 0.1 to 10% by weight.
  • cured electrically conductive material can be confirmed by observing the cross section of hardened
  • additives can be appropriately blended in the conductive material 7 as needed.
  • Other additives include, for example, other electrically conductive fillers (fillers), flame retardants, ion trap agents, thickeners, anti-aging agents, antioxidants, surfactants and the like.
  • the insulating sheet body 3 is manufactured by forming a plurality of through holes 2 penetrating in the thickness direction in the insulating sheet 5.
  • the method for forming the through holes 2 in the film thickness direction of the specific position of the insulating sheet 5 include a chemical etching method, a thermal decomposition method, an ablation method by laser light or soft X-ray irradiation, and an ultrasonic method.
  • the method of forming the through holes 2 by irradiating a laser beam is preferable in that the small through holes 2 having the largest maximum width can be formed with high accuracy.
  • a light shielding sheet (not shown) is disposed on the upper surface of the insulating sheet 3.
  • a light shielding sheet for example, a tungsten sheet is preferable.
  • a plurality of openings are formed in the tungsten sheet by photolithography or the like, and the openings are used as light transmission parts. A portion through which light is transmitted and irradiated from the plurality of openings of the light shielding sheet to the insulating sheet 3 side is melted and evaporated away, and the through holes 2 are formed.
  • the pattern of the openings of the light shielding sheet can be any shape such as a circle, a star, an octagon, a hexagon, a quadrangle, and a triangle.
  • the hole diameter of the opening may be appropriately formed in accordance with the through hole 2 of the insulating sheet 3.
  • a laser beam a carbon dioxide gas pulse laser, an excimer laser etc. can be utilized, for example.
  • the specific irradiation conditions of the laser beam can be appropriately selected in consideration of the type of the material forming the insulating sheet 3, the thickness of the insulating sheet 3, and other configuration conditions.
  • the insulating sheet 3 in which the through holes 2 are formed is placed on the release film 6.
  • synthetic resin films such as polyethylene, a polypropylene, a polyethylene terephthalate, etc., paper, etc. are mentioned.
  • the conductive material 7 is filled in the through holes 2 using a squeegee by a screen printing method.
  • the method of filling the conductive material 7 is not limited to this, and the filling may be performed by any method such as gravure printing, dispensing, dipping, and the like.
  • the unnecessary conductive material 8 (see FIG. 2C) attached to the surface of the insulating sheet 3 is wiped off with a rag or the like. Thereafter, the organic solvent is preferably volatilized at normal temperature or by heating. Furthermore, in the case where the conductive material 7 contains a thermosetting resin as a binder resin, usually 70 to 250 ° C., for example, in the case of an epoxy resin used as a liquid amine curing agent, depending on the type of curing agent and curing catalyst. The conductive material 7 is cured by heating at 1500 ° C. for 1 to 60 minutes to form the conductive path 4.
  • a thermosetting resin as a binder resin
  • the conductive material 7 comprising a radiation-curable resin as the binder resin is usually 200mJ / cm 2 ⁇ 1000mJ / cm 2, more preferably the conductive material by irradiating the radiation of 400mJ / cm 2 ⁇ 750mJ / cm 2 7 Are cured to form the conductive path 4.
  • the anisotropically conductive sheet 1 is obtained.
  • conductive nanoparticles are used as the conductive substance, aggregation can be sufficiently prevented.
  • the conductive material 7 can be easily filled in the through holes 2 having a narrow spacing and a small width.
  • the manufacturing process can be simplified.
  • the anisotropic conductive sheet 1 of the present invention is used for a continuity test of the electrode 10 to be inspected in the circuit device 9 to be inspected.
  • the inspection circuit board 11 is used to conduct the continuity test.
  • inspection is shown.
  • a large number of connection electrodes 12 are provided corresponding to the electrodes to be inspected 10 in the circuit device 9 to be inspected.
  • a large number of terminal electrodes 14 electrically connected to the connection electrodes 12 via the internal wiring 13 are formed.
  • the terminal electrodes 14 of the test circuit board are electrically connected to a tester (not shown) by appropriate means.
  • the anisotropic conductive sheet 1 of the present embodiment is disposed on the first surface of the circuit board 11 for inspection, and the circuit device 9 to be inspected is disposed on the anisotropic conductive sheet 1.
  • the inspection electrode 10 is disposed in contact with the anisotropically conductive sheet 1.
  • at least one conductive path 4 in the anisotropic conductive sheet 1 is connected to the inspected electrode 10 of the circuit device 9 to be tested.
  • Two or more test electrodes 10 are not connected to the same conductive path 4.
  • the electrical connection between the inspection electrode 10 of the circuit device 9 to be inspected and the connection electrode 12 of the circuit board 11 for inspection is achieved through the conductive path 4 of the anisotropically conductive sheet 1. , The required inspection is performed.
  • the pitch between the test electrodes 10 of the circuit device 9 to be tested is extremely small, and the test electrodes 10 have a fine and complicated pattern.
  • the required electrical connection can be reliably achieved.
  • Example 1 ⁇ Production of Insulating Sheet> A silicone rubber sheet (trade name: T-50, manufactured by Inoac Corporation, thickness 200 ⁇ m, tensile modulus 7.3 MPa) was prepared and cut into a predetermined size to obtain an insulating sheet having a size of 100 ⁇ 100 cm. Through holes with a diameter of 200 ⁇ m were formed on this sheet at intervals of 2.5 cm using a carbon dioxide pulse laser apparatus (trade name: p100, manufactured by Shinrad Co., Ltd.) to produce an insulating sheet.
  • a carbon dioxide pulse laser apparatus trade name: p100, manufactured by Shinrad Co., Ltd.
  • liquid, epoxy equivalent weight: 190 90 parts by mass, epoxy resin curing 10 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Co., Ltd., purity: 99% or more, specific gravity: 0.95) as an agent, epoxy silane coupling agent as a dispersant (trade name: S-510, manufactured by JNC Corporation, 3 11 parts by mass of glycidyloxypropyltrimethoxysilane, single-walled carbon nanotubes dispersed in methyl ethyl ketone as an organic solvent (trade name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, ratio surface area: 800 m 2 / g or more) 314 parts by weight of 250ml plus Weigh in a container (trade name: Pack Ace P-250, manufactured by Terraoka Co., Ltd.) and stir for 10 minutes with a planetary stirring / defoaming device (trade name:
  • the insulating sheet is placed on a polyethylene terephthalate film (trade name: E7002, manufactured by Toyobo Co., Ltd., 25 ⁇ m thick) as a peelable film, and a piece of adhesive tape (trade name: Kapton adhesive tape 650S, manufactured by Teraoka Seisakusho Co., Ltd.)
  • the conductive material is fixed with a thickness of 25 ⁇ m, and 100 g of the above-mentioned conductive material is placed on the insulating sheet body, and the conductive material is micro-squeegeeed using a screen printing machine (trade name: MTP-1100 series, manufactured by Micro Tech Inc.)
  • the through holes of the insulating sheet were filled.
  • Example 2 In preparation of the conductive material, 26 parts by mass of epoxy-based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane), single-walled carbon nanotube dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) except that 743 parts by mass were used, Example 1 was the same as Example 1 An anisotropic conductive sheet according to No. 2 was obtained.
  • epoxy-based silane coupling agent trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane
  • ZEONANO registered trademark
  • SG101 manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more
  • Example 3 In preparation of the conductive material, it is changed to a bisphenol A type epoxy resin and a hardly crystalline liquid epoxy resin (trade name: ZX-1059, manufactured by Shin-Nikka Epoxy Co., Ltd., viscosity 2250 mPa ⁇ s, softening point: 25 ° C. or less, liquid, Example 3 Example 3 in the same manner as Example 1, except that 91 parts by mass of epoxy equivalent weight, and 9 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Inc., purity: 99% or more, specific gravity: 0.95) were used.
  • Example 4 In preparation of the conductive material, in place of the bisphenol A epoxy resin, a cyclic aliphatic diglycidyl ether epoxy resin (trade name: ZX-1658GS, manufactured by Nippon Steel Epoxy Co., Ltd., viscosity 50 mPa ⁇ s, softening point 25 ° C. or less) Liquid, epoxy equivalent weight: 133), and 7 parts by weight of diethylenetriamine (manufactured by Mitsui Chemicals Fine Co., Ltd., purity: 99% or more, specific gravity: 0.95) in the same manner as Example 1. An anisotropic conductive sheet according to Example 4 was obtained.
  • Example 5 In preparation of the conductive material, polypropylene glycol diglycidyl ether epoxy resin (trade name: PG-207GS, manufactured by Nippon Steel Epoxy Co., Ltd., viscosity 45 mPa ⁇ s, softening point: 25 ° C. or less, instead of bisphenol A type epoxy resin Example 1 was carried out in the same manner as Example 1, except that 85 parts by mass of liquid, epoxy equivalent: 315) and 15 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Inc., purity: 99% or more, specific gravity: 0.95) were used. An anisotropic conductive sheet according to Example 5 was obtained.
  • PG-207GS manufactured by Nippon Steel Epoxy Co., Ltd., viscosity 45 mPa ⁇ s, softening point: 25 ° C. or less
  • Example 1 was carried out in the same manner as Example 1, except that 85 parts by mass of liquid, epoxy equivalent: 315) and 15 parts by mass of diethylenetriamine (
  • Example 6 In preparation of the conductive material, single-walled carbon nanotubes (product: 44 parts by mass of epoxy based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) except that 1257 parts by mass was used, Example 5 was the same as Example 5 The anisotropic conductive sheet according to 6 was obtained.
  • epoxy based silane coupling agent trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane
  • methyl ethyl ketone product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35
  • Example 7 In the preparation of a conductive material, 110 parts by mass of an epoxy-based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane), single-walled carbon nanotube dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) 3143 parts by mass An anisotropic conductive sheet according to No. 7 was obtained.
  • an epoxy-based silane coupling agent trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane
  • single-walled carbon nanotube dispersed in methyl ethyl ketone product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt
  • Comparative example 1 As a conductive material, single-walled carbon nanotubes dispersed in methyl ethyl ketone (trade name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) 314 parts by mass An anisotropic conductive sheet according to Comparative Example 1 was obtained in the same manner as Example 1 except that only the above was used.
  • methyl ethyl ketone trade name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more
  • Comparative example 3 In preparation of the conductive material, instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, 650 parts by mass of spherical silver particles (trade name: AG2-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 1.0 ⁇ m), epoxy based silane Anisotropic conductivity according to Comparative Example 3 in the same manner as in Example 5 except that 65 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
  • a coupling agent trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane
  • Comparative example 4 In preparation of the conductive material, instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, 650 parts by mass of spherical silver particles (trade name: AG5-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 3.0 ⁇ m), epoxy based silane Anisotropic conductivity according to Comparative Example 4 in the same manner as in Example 5 except that 65 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
  • a coupling agent trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane
  • Comparative example 5 In preparation of the conductive material, 300 parts by mass of spherical silver particles (trade name: AG2-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 1.0 ⁇ m) instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, epoxy based silane Anisotropic conductivity according to Comparative Example 5 in the same manner as in Example 5 except that 30 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
  • a coupling agent trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane
  • Comparative example 6 In preparation of the conductive material, 300 parts by mass of spherical silver particles (trade name: AG5-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 3.0 ⁇ m) instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, epoxy based silane Anisotropic conductivity according to Comparative Example 6 in the same manner as Example 5, except that 30 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
  • a coupling agent trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane
  • the conductive material according to each example and comparative example is filled in a disc-shaped mold having a diameter of 12.5 mm and a thickness of 2 mm, and heated and pressurized at a temperature of 180 ° C. and a pressure of 2 MPa for 10 minutes using a compression press molding machine After taking it out, the conductive material was thermally cured by further heating in a drier at a temperature of 180 ° C. for 1 hour to obtain a disc-like test piece having a diameter of 12.5 mm and a thickness of 2 mm.
  • the volume resistivity of this test piece was measured with a high-precision high-performance low-resistivity meter (model number: Loresta GX, manufactured by Mitsubishi Chemical Analytech Co., Ltd., measurement terminal: PSP probe MCP-TP06P RMH112). ⁇ what volume resistivity was less than 1.0 ⁇ 10 -2 ⁇ ⁇ cm as a non-defective, evaluated by ⁇ what volume resistivity was 1.0 ⁇ 10 -2 ⁇ ⁇ cm or more as a defective did. The results are shown in Tables 1 and 2.
  • the through holes in which the conductive paths penetrate in the thickness direction of the insulating sheet were filled with a conductive material containing at least carbon nanotubes and a binder resin.
  • a conductive material containing at least carbon nanotubes and a binder resin As a result of hardening and curing, good results were obtained in volume resistivity.
  • the viscosity of the conductive material was 100,000 mPa ⁇ s or less, good results were obtained in all of the light transmission filling property and the cross section filling property.
  • the anisotropic conductive sheet according to Comparative Example 1 since the anisotropic conductive sheet according to Comparative Example 1 does not contain the binder resin, the result was inferior in light transmission filling property and cross-sectional filling property. Moreover, since the sample test piece by shaping
  • the anisotropic conductive sheets according to Comparative Examples 3 to 6 use silver particles, not carbon nanotubes, as the conductive material.
  • the content of silver particles was increased, so that a good volume resistivity could be obtained, but the varnish viscosity became high and the light transmission filling property and the cross-sectional filling property were high. The result was inferior.
  • the content of silver particles was reduced to lower the varnish viscosity, so that it was possible to obtain good light transmission filling property and good cross sectional filling property. However, the result is inferior in volume resistivity.
  • anisotropic conductive sheet 2 through hole 3: insulating sheet body 4: conductive path 7: conductive material 9: circuit device 10 to be inspected: inspected electrode 11: circuit board for inspection

Abstract

Provided are an anisotropically conductive sheet which can be used for the inspection of a semiconductor package or a high frequency component having a narrowed wiring pitch and thinned wiring, and which can be easily manufactured, and an anisotropically conductive sheet manufacturing method. The anisotropically conductive sheet 1 of the present invention comprises an insulating sheet body 3 having a plurality of through-holes 2 penetrating therethrough in a thickness direction, and an electrically conductive path 4 formed in the through-holes 2, and is characterized in that the electrically conductive path 4 is formed by curing an electrically conductive material 7 including at least electrically conductive nanoparticles and a binder resin, wherein the electrically conductive material 7 has a viscosity of not more than 100000 mPa·s.

Description

異方導電性シートおよび異方導電性シートの製造方法Anisotropic conductive sheet and method of manufacturing anisotropic conductive sheet
 本発明は、例えば回路装置の被検査電極と電気的に接続して被検査電極の導通検査を行うために用いられる異方導電性シートおよび異方導電性シートの製造方法に関する。 The present invention relates to, for example, an anisotropic conductive sheet electrically connected to a test electrode of a circuit device to conduct a continuity test of the test electrode, and a method of manufacturing the anisotropic conductive sheet.
 従来から、半導体パッケージや高周波部品等の配線の正常な導通を確認するために、コンタクトプローブと称する電気コネクタが使用されている。近年、上記配線の狭ピッチ化および配線自体の細線化に伴い、コンタクトプローブの小型化が図られている。しかし、コンタクトプローブは、バネ、金属細管などを含む精密機械部品であり、その小型化には限界がある。このため、コンタクトプローブに代替可能な電気コネクタとして、異方導電性シートが用いられている。 2. Description of the Related Art Conventionally, an electrical connector called a contact probe has been used to confirm normal conduction of wiring such as a semiconductor package or a high frequency component. In recent years, with the narrowing of the wiring and the thinning of the wiring itself, miniaturization of the contact probe has been achieved. However, the contact probe is a precision mechanical component including a spring, a metal capillary and the like, and its miniaturization is limited. For this reason, an anisotropically conductive sheet is used as an electrical connector which can be substituted for a contact probe.
 このような異方導電性シートとしては、弾性絶縁部材から構成されるシート状部材の平面と平行に一方向に揃えて複数の金属線を配置したコアシートを積層し、金属線の長さ方向と略直交する方向から切断することにより作製された異方導電性シートが知られている(例えば、特許文献1参照)。また、絶縁性高分子弾性体のシートの厚み方向に伸びる複数の貫通孔を設け、該貫通孔内に導電性材料が含有された弾性高分子物質を充填し、導電性材料を磁場の作用によって再配列させて製造された異方導電性シートも知られている(例えば、特許文献2参照)。 As such an anisotropically conductive sheet, a core sheet in which a plurality of metal wires are arranged in parallel in one direction parallel to the plane of a sheet-like member formed of an elastic insulating member is laminated, and the length direction of the metal wires There is known an anisotropically conductive sheet produced by cutting in a direction substantially orthogonal to (see, for example, Patent Document 1). Further, a plurality of through holes extending in the thickness direction of the sheet of insulating polymer elastic body are provided, and the through holes are filled with an elastic polymer substance containing a conductive material, and the conductive material is subjected to the action of a magnetic field. An anisotropic conductive sheet produced by rearrangement is also known (see, for example, Patent Document 2).
特許第6026321号公報Patent No. 6026321 特許第5018612号公報Patent No. 5018612 gazette
 しかしながら、上記特許文献1に記載の異方導電性シートでは、半導体パッケージや高周波部品等の配線の狭ピッチ化および配線自体の細線化に伴い、金属線も細線化する必要があり、また金属線も狭ピッチで配置する必要があるため、弾性絶縁部材から構成されるシート状部材に金属線を一定間隔で配置する際に、金属線が破断したり、隣接する金属線同士が接触してしまったりするという問題があった。 However, in the anisotropically conductive sheet described in Patent Document 1 described above, it is necessary to thin the metal wire along with the narrowing of the pitch of the wiring such as the semiconductor package and the high frequency parts and the thinning of the wiring itself. Because it is necessary to arrange at a narrow pitch as well, when arranging metal wires at regular intervals on a sheet-like member made of an elastic insulating member, the metal wires may be broken or adjacent metal wires may be in contact with each other. There was a problem of snarling.
 また、特許文献2に記載した異方導電性シートでは、半導体パッケージや高周波部品等の配線の狭ピッチ化および配線自体の細線化に伴い、導電性材料が含有された弾性高分子物質を充填する貫通孔の幅(径)が小さくなるため、導電性材料として粒径の揃った小さな導電粒子を用いる必要がある。その結果、導電粒子の凝集物が発生し易くなり、より貫通孔に導電性材料を充填することが困難になるという問題があった。また、導電粒子に磁場を作用させて再配列させる必要があり、異方導電性シートの製造に手間がかかるという問題があった。 Further, in the anisotropic conductive sheet described in Patent Document 2, an elastic polymer substance containing a conductive material is filled with narrowing of the pitch of the wiring such as a semiconductor package or a high frequency component and thinning of the wiring itself. In order to reduce the width (diameter) of the through holes, it is necessary to use small conductive particles having a uniform particle size as the conductive material. As a result, aggregates of the conductive particles are easily generated, and there is a problem that it becomes more difficult to fill the through holes with the conductive material. In addition, it is necessary to cause a magnetic field to act on the conductive particles to rearrange them, and there is a problem that it takes time and effort to manufacture the anisotropic conductive sheet.
 そこで、本願発明は、配線が狭ピッチ化され、配線自体も細線化した半導体パッケージや高周波部品の検査に用いることができ、容易に製造することができる異方導電性シートおよび異方導電性シートの製造方法を提供することを目的とする。 Therefore, according to the present invention, the anisotropic conductive sheet and the anisotropic conductive sheet can be easily manufactured, which can be used for inspection of semiconductor packages and high frequency parts in which the wiring is narrowed and the wiring itself is thinned. The purpose is to provide a manufacturing method of
 以上の課題を解決するため、本発明に係る異方導電性シートは、厚み方向に貫通する複数の貫通孔が設けられた絶縁性シート体と、前記貫通孔に形成された導電路とを有し、前記導電路は、少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料を硬化させてなり、前記導電材料の粘度が100000mPa・s以下であることを特徴とする。 In order to solve the above problems, the anisotropic conductive sheet according to the present invention has an insulating sheet body provided with a plurality of through holes penetrating in the thickness direction, and a conductive path formed in the through holes. The conductive path is formed by curing a conductive material containing at least conductive nanoparticles and a binder resin, and the conductive material has a viscosity of 100000 mPa · s or less.
 上記異方導電性シートは、前記導電性ナノ粒子がカーボンナノチューブであることが好ましい。 In the anisotropically conductive sheet, the conductive nanoparticles are preferably carbon nanotubes.
 上記異方導電性シートは、前記カーボンナノチューブのBET比表面積が600m2/g以上であることが好ましい。 In the anisotropic conductive sheet, the BET specific surface area of the carbon nanotube is preferably 600 m 2 / g or more.
 上記異方導電性シートは、前記バインダー樹脂はエポキシ樹脂であり、前記導電材料は、有機溶媒に分散された前記カーボンナノチューブ、前記エポキシ樹脂、エポキシ樹脂硬化剤、及び分散剤を含み、前記カーボンナノチューブの含有量が前記導電材料に含まれる全固形成分に対して0.1~10重量%であることが好ましい。 In the anisotropic conductive sheet, the binder resin is an epoxy resin, and the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant, and the carbon nanotube It is preferable that the content of is 0.1 to 10% by weight with respect to the total solid component contained in the conductive material.
 上記異方導電性シートは、前記絶縁性シート体がシリコーンゴムからなり、JIS  K  7127に規定された方法に準拠して測定された常温での引張弾性率が0.1MP~100MPaであることが好ましい。 In the anisotropic conductive sheet, the insulating sheet is made of silicone rubber, and the tensile elastic modulus at normal temperature measured according to the method defined in JIS K 7127 is 0.1 MP to 100 MPa. preferable.
 上記異方導電性シートは、隣接する前記導電路間の間隔が500μm以下であることが好ましい。 The anisotropic conductive sheet preferably has a distance of 500 μm or less between the adjacent conductive paths.
 また、上述の課題を解決するため、本発明に係る異方導電性シートの製造方法は、絶縁性シート体に厚み方向に貫通する複数の貫通孔を形成する貫通孔形成工程と、前記貫通孔に少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料を充填する導電材料充填工程と、前記導電材料充填工程の後、前記導電材料を硬化させる硬化工程とを有し、前記導電材料の粘度が100000mPa・s以下であることを特徴とする。 Moreover, in order to solve the above-mentioned subject, the manufacturing method of the anisotropically conductive sheet according to the present invention is a through hole forming step of forming a plurality of through holes penetrating in the thickness direction in the insulating sheet body; A conductive material filling step of filling a conductive material containing at least conductive nanoparticles and a binder resin, and a curing step of curing the conductive material after the conductive material filling step, wherein the viscosity of the conductive material is It is characterized in that it is 100000 mPa · s or less.
 上記異方導電性シートの製造方法は、前記導電性ナノ粒子がカーボンナノチューブであることが好ましい。 In the method for producing the anisotropically conductive sheet, the conductive nanoparticles are preferably carbon nanotubes.
 上記異方導電性シートの製造方法は、前記カーボンナノチューブのBET比表面積が600m2/g以上であることが好ましい。 It is preferable that the BET specific surface area of the said carbon nanotube is 600 m < 2 > / g or more in the manufacturing method of the said anisotropically conductive sheet.
 上記異方導電性シートの製造方法は、前記バインダー樹脂はエポキシ樹脂であり、前記導電材料は、有機溶媒に分散された前記カーボンナノチューブ、前記エポキシ樹脂、エポキシ樹脂硬化剤、及び分散剤を含み、前記カーボンナノチューブの含有量が前記導電材料に含まれる全固形成分に対して0.1~10重量%であることが好ましい。 In the method for producing the anisotropic conductive sheet, the binder resin is an epoxy resin, and the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant. It is preferable that the content of the carbon nanotube is 0.1 to 10% by weight with respect to the total solid component contained in the conductive material.
 上記異方導電性シートの製造方法は、前記絶縁性シート体がシリコーンゴムからなり、JIS  K  7127に規定された方法に準拠して測定された常温での引張弾性率が0.1MPa~100MPaであることが好ましい。 In the method for producing an anisotropic conductive sheet, the insulating sheet is made of silicone rubber, and the tensile elastic modulus at normal temperature measured according to the method defined in JIS K 7127 is 0.1 MPa to 100 MPa. Is preferred.
 上記異方導電性シートの製造方法は、前記導電材料充填工程がスキージ法により行われることが好ましい。 It is preferable that the said electroconductive material filling process is performed by the squeegee method as the manufacturing method of the said anisotropically conductive sheet.
 本発明によれば、配線が狭ピッチ化され、配線自体も細線化した半導体パッケージや高周波部品の検査に用いることができ、容易に製造することができる異方導電性シートおよび異方導電性シートの製造方法を提供することができる。 According to the present invention, the anisotropic conductive sheet and the anisotropic conductive sheet can be easily manufactured, which can be used for inspection of semiconductor packages and high frequency parts in which the wiring is narrowed and the wiring itself is thinned. Can provide a manufacturing method of
(A)は、本発明の実施形態に係る異方導電性シートの構造を模式的に示す平面図であり、(B)は、(A)のA-A断面図である。(A) is a top view which shows typically the structure of the anisotropic conductive sheet which concerns on embodiment of this invention, (B) is AA sectional drawing of (A). 本発明の実施形態に係る異方導電性シートの製造方法を模式的に示す説明図であり、(A)は絶縁性シート体の準備工程を示す断面図であり、(B)は絶縁性シート体に貫通孔を形成する貫通孔形成工程を示す方向断面図であり、(C)は絶縁性シート体の貫通孔に導電材料を充填する導電材料充填工程を示す断面図であり、(D)は導電材料を硬化させる硬化工程を示す断面図である。It is explanatory drawing which shows typically the manufacturing method of the anisotropically conductive sheet which concerns on embodiment of this invention, (A) is sectional drawing which shows the preparation process of an insulating sheet body, (B) is an insulating sheet It is direction sectional drawing which shows the through-hole formation process which forms a through-hole in a body, (C) is sectional drawing which shows the electrically-conductive material filling process which fills the electrically-conductive material in the through-hole of an insulating sheet body. Is a cross-sectional view showing a curing step of curing the conductive material. 本発明の実施形態に係る異方導電性シートの使用方法を模式的に説明する断面図である。It is sectional drawing which demonstrates typically the usage method of the anisotropic conductive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る異方導電性シートの使用方法を模式的に説明する平面図である。It is a top view which illustrates typically the usage method of the anisotropic conductive sheet which concerns on embodiment of this invention.
 以下に、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1(A)は、本発明の実施形態に係る異方導電性シート1の構造を模式的に示す平面図であり、(B)は、(A)のA-A断面図である。この異方導電性シート1は、図1に示すように、厚み方向に貫通する複数の貫通孔2が設けられた絶縁性シート体3と、貫通孔2に形成された導電路4とを有しており、導電路4は少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料を硬化させてなり、導電材料の粘度は100000mPa・s以下である。以下に、各構成要素について説明する。 FIG. 1A is a plan view schematically showing the structure of the anisotropic conductive sheet 1 according to the embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 1, this anisotropically conductive sheet 1 has an insulating sheet 3 provided with a plurality of through holes 2 penetrating in the thickness direction, and a conductive path 4 formed in the through holes 2. The conductive path 4 is formed by curing a conductive material containing at least conductive nanoparticles and a binder resin, and the viscosity of the conductive material is 100000 mPa · s or less. Each component will be described below.
<絶縁性シート体3>
 絶縁性シート体3は、シート状の形状を有している。また、絶縁性シート体3は、その略厚さ方向に貫通する貫通孔2に形成された導電路4同士の絶縁性を確保している。したがって、本願でいう「絶縁」あるいは「絶縁性」は、導電路4同士の絶縁性を確保するのに十分な電気抵抗を有することを意味しており、好ましくは、その体積抵抗率が1.0×1012Ω・cm以上である性質をいう。
<Insulating sheet 3>
The insulating sheet 3 has a sheet-like shape. Moreover, the insulating sheet body 3 secures the insulation of the conductive paths 4 formed in the through holes 2 penetrating in the substantially thickness direction. Therefore, “insulation” or “insulation” as referred to in the present application means having an electric resistance sufficient to secure the insulation between the conductive paths 4, and preferably, the volume resistivity is 1. The property of 0 × 10 12 Ω · cm or more is said.
 絶縁性シート体3は、絶縁性を有していれば特に限定はないが、絶縁性を有する高分子物質により構成されることが好ましく、弾性高分子物質により構成されることがより好ましい。例えば、シリコーンゴム、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエン共重合体ゴムなどの共役ジエン系ゴムおよびこれらの水素添加物、スチレン-ブタジエン-ジエンブロック共重合体ゴム、スチレン-イソプレンブロック共重合体などのブロック共重合体ゴムおよびこれらの水素添加物、クロロプレン、ウレタンゴム、ポリエステル系ゴム、エピクロルヒドリンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン共重合体ゴム、軟質液状エポキシゴムなどが挙げられる。これらの中では、成形加工性および電気特性の観点から、シリコーンゴムが好ましい。 The insulating sheet 3 is not particularly limited as long as it has insulating properties, but is preferably made of a polymeric substance having insulating properties, and more preferably made of an elastic polymeric substance. For example, conjugated diene rubbers such as silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and hydrogenated products thereof, styrene-butadiene-diene block co-polymer Polymer rubber, block copolymer rubber such as styrene-isoprene block copolymer and hydrogenated products thereof, chloroprene, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene Copolymer rubber, soft liquid epoxy rubber and the like can be mentioned. Among these, silicone rubber is preferred from the viewpoint of moldability and electrical properties.
 シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。液状シリコーンゴムは、縮合型のもの、付加型のもの、ビニル基やヒドロキシル基を含有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メチルビニルシリコーン生ゴム、メチルフェニルビニルシリコーン生ゴムなどを挙げることができる。 As the silicone rubber, one obtained by crosslinking or condensing liquid silicone rubber is preferable. The liquid silicone rubber may be any of condensation type, addition type, and those containing a vinyl group or a hydroxyl group. Specifically, dimethyl silicone gum, methyl vinyl silicone gum, methylphenyl vinyl silicone gum and the like can be mentioned.
 絶縁性シート体3は、JIS  K  7127に規定された方法に準拠して測定された常温での引張弾性率が0.1MPa~100MPaであることが好ましい。引張弾性率が0.1MPa未満であると、半導体パッケージを検査シート上に載せ検査する際に、シート形状が潰されて電気的導通を取るのが困難となる。引張弾性率が100MPa超であると、導電材料7を貫通孔2に充填する際に、貫通孔2の導電材料7が充填される側とは逆側から空気が抜けにくくなり未充填箇所が発生しやすくなる。 The insulating sheet 3 preferably has a tensile elastic modulus at normal temperature of 0.1 MPa to 100 MPa measured in accordance with the method defined in JIS K 7127. When the tensile elastic modulus is less than 0.1 MPa, when the semiconductor package is placed on an inspection sheet and inspected, the sheet shape is crushed and it becomes difficult to take electrical conduction. When filling the conductive material 7 in the through hole 2 with a tensile elastic modulus of more than 100 MPa, air is less likely to come off from the side opposite to the side where the conductive material 7 is filled in the through hole 2 and an unfilled portion is generated. It becomes easy to do.
  絶縁性シート体3の大きさは、検査対象となる回路装置9の大きさなどにより適宜変更でき、特に制約を受けるものではない。また、絶縁性シート体3の厚みは、特に限定されるものではないが、好ましくは10~1000μm、より好ましくは50~500μm、特に好ましくは150~300μmである。 The size of the insulating sheet 3 can be appropriately changed depending on the size of the circuit device 9 to be inspected and the like, and is not particularly limited. The thickness of the insulating sheet 3 is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 500 μm, and particularly preferably 150 to 300 μm.
  絶縁性シート体3には、厚み方向に貫通する複数の貫通孔2が設けられている。貫通孔2の間隔は、導電路4の好適な間隔Pに基いて適宜設計されるが、好ましくは10~500μm、より好ましくは10~150μm、特に好ましくは20~80μmである。貫通孔2の間隔が下限値未満である場合には、隣接する導電路4間における必要な絶縁性が得られないことがある。一方、貫通孔2の間隔が上限値を超える場合には、検査対象となる回路装置9に重ね合わせたときに、当該回路装置9における隣接する電極間に導電路4が位置され、その結果、回路装置9における一部の電極に対して所要の電気的接続が達成されないことがある。 The insulating sheet 3 is provided with a plurality of through holes 2 penetrating in the thickness direction. The distance between the through holes 2 is appropriately designed based on the suitable distance P of the conductive paths 4 and is preferably 10 to 500 μm, more preferably 10 to 150 μm, and particularly preferably 20 to 80 μm. If the distance between the through holes 2 is less than the lower limit value, the necessary insulation between the adjacent conductive paths 4 may not be obtained. On the other hand, when the distance between the through holes 2 exceeds the upper limit value, the conductive path 4 is positioned between the adjacent electrodes in the circuit device 9 when it is superimposed on the circuit device 9 to be inspected. The required electrical connection may not be achieved for some of the electrodes in the circuit arrangement 9.
  貫通孔2の最大幅は、導電路4の好適な最大幅dに基いて適宜設計されるが、好ましくは1~100μm、より好ましくは5~50μmである。特に、回路装置9の配線の挟ピッチ化に対応するためには、15μm以下が好ましい。貫通孔2の最大幅が1μm未満である場合には、検査対象となる回路装置9に重ね合わせたときに、当該回路装置9における隣接する電極間に導電路4が位置され、その結果、回路装置9における一部の電極に対して所要の電気的接続が達成されないことがある。また、直径dが1μm未満の導電路4を形成すること自体が困難である。一方、貫通孔2の最大幅が100μmを超える場合には、回路装置9に重ね合わせたときに、当該回路装置9における2個以上の電極が同一の導電路4に接続され、その結果、所要の絶縁性が得られないことがある。 The maximum width of the through hole 2 is appropriately designed based on the suitable maximum width d of the conductive path 4 and is preferably 1 to 100 μm, more preferably 5 to 50 μm. In particular, in order to cope with the narrowing of the wiring of the circuit device 9, 15 μm or less is preferable. When the maximum width of the through hole 2 is less than 1 μm, the conductive path 4 is positioned between the adjacent electrodes in the circuit device 9 when overlapping the circuit device 9 to be inspected, and as a result, the circuit The required electrical connection may not be achieved for some of the electrodes in device 9. In addition, it is difficult to form the conductive path 4 having a diameter d of less than 1 μm. On the other hand, when the maximum width of the through hole 2 exceeds 100 μm, two or more electrodes in the circuit device 9 are connected to the same conductive path 4 when stacked on the circuit device 9, and as a result, required May not be obtained.
  貫通孔2の断面形状は、円形、星型、八角形、六角形、四角形、三角形など任意である。 The cross-sectional shape of the through hole 2 may be any shape such as a circle, a star, an octagon, a hexagon, a square, or a triangle.
<導電路4>
 導電路4は、少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料7(図2(C)参照)を硬化させてなる。
<Conductive path 4>
The conductive path 4 is formed by curing a conductive material 7 (see FIG. 2C) containing at least conductive nanoparticles and a binder resin.
(導電性ナノ粒子)
 導電性ナノ粒子としては、公知の導電性ナノ粒子を使用することができ、特に限定されない。例えば、金、銀および銅等の金属ナノ粒子、グラフェン、カーボンナノチューブ等のカーボンナノ粒子、酸化チタンや酸化スズ等の金属酸化物ナノ粒子等を使用することができる。これらの導電性ナノ粒子の中で、長尺方向に電気が流れやすい構造を持ち、配向分散させることで少ない充填量で導電性が得られる観点から、カーボンナノチューブが好ましい。
 カーボンナノチューブとしては、公知のカーボンナノチューブを使用することができ、特に限定されないが、グラファイトの1枚面を1層に巻いた単層カーボンナノチューブ、多層に巻いた多層カーボンナノチューブ等が用いられ得る。また、単層カーボンナノチューブおよび多層カーボンナノチューブを組み合わせて用いてもよい。本発明では、導電性や機械的特性の観点から、特に、(i)直径(繊維径)が小さくアスペクト比が大きい長尺の単層カーボンナノチューブを単独で使用するか、又は、(ii)単層カーボンナノチューブと多層カーボンナノチューブとの混合物を使用することが好ましい。更に、各カーボンナノチューブの形状(平均長さや繊維径、アスペクト比)も特には限定されず、導電体に要求される導電性や柔軟性、耐久性等を総合的に判断して適宜選択すればよい。
(Conductive nanoparticles)
As the conductive nanoparticles, known conductive nanoparticles can be used without particular limitation. For example, metal nanoparticles such as gold, silver and copper, carbon nanoparticles such as graphene and carbon nanotube, metal oxide nanoparticles such as titanium oxide and tin oxide, and the like can be used. Among these conductive nanoparticles, a carbon nanotube is preferable from the viewpoint of achieving conductivity with a small filling amount by having a structure in which electricity easily flows in the longitudinal direction and by orientation dispersion.
As a carbon nanotube, a known carbon nanotube can be used, and although not particularly limited, a single-walled carbon nanotube in which one sheet surface of graphite is wound in one layer, a multilayer carbon nanotube wound in multiple layers, or the like can be used. In addition, single-walled carbon nanotubes and multi-walled carbon nanotubes may be used in combination. In the present invention, from the viewpoint of conductivity and mechanical properties, in particular, (i) a long single-walled carbon nanotube having a small diameter (fiber diameter) and a large aspect ratio is used alone, or (ii) It is preferred to use a mixture of multi-walled carbon nanotubes and multi-walled carbon nanotubes. Furthermore, the shape (average length, fiber diameter, aspect ratio) of each carbon nanotube is not particularly limited, and the conductivity, flexibility, durability, etc. required for the conductor are comprehensively determined and appropriately selected. Good.
 (i)直径が小さくアスペクト比が大きい長尺の単層カーボンナノチューブを単独で使用する場合、単層カーボンナノチューブの直径は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。直径が0.5nm以上であれば、バインダー樹脂に分散する場合に凝集を抑制することができる。また、直径が15nm以下であればナノ効果による機械的特性向上が発現できる。 (I) When using a single long single-walled carbon nanotube having a small diameter and a large aspect ratio, the single-walled carbon nanotube preferably has a diameter of 0.5 nm or more, more preferably 1 nm or more. Is preferably 15 nm or less, and more preferably 10 nm or less. When the diameter is 0.5 nm or more, aggregation can be suppressed when dispersed in a binder resin. In addition, if the diameter is 15 nm or less, mechanical property improvement by the nano effect can be expressed.
 また、上記単層カーボンナノチューブのアスペクト比は、100以上であることが好ましく、1000以上であることがより好ましく、10000以上であることが更に好ましく、30000以上であることが特に好ましい。長尺のカーボンナノチューブを用いた場合、短尺のカーボンナノチューブを用いた場合に比べて、少ない電気接点数で導電性が確保されるとともに、1本のカーボンナノチューブにおける他のカーボンナノチューブとの電気接点数が多くなるためより高次元な電気的ネットワークを形成することができ、導電路4が変形しても導電パスが切断されにくくなるからである。 The aspect ratio of the single-walled carbon nanotube is preferably 100 or more, more preferably 1000 or more, still more preferably 10000 or more, and particularly preferably 30000 or more. When long carbon nanotubes are used, conductivity is secured with a smaller number of electrical contacts than when short carbon nanotubes are used, and the number of electrical contacts with one carbon nanotube with another carbon nanotube As a result, it is possible to form a higher dimensional electrical network, and even when the conductive path 4 is deformed, the conductive path is less likely to be cut.
 上記単層カーボンナノチューブは、炭素純度が99重量%以上であることが好ましい。不純物を多量に含有するカーボンナノチューブを用いて導電路4を形成した場合、導電路4の導電性が低下することがあるからである。 The single-walled carbon nanotube preferably has a carbon purity of 99% by weight or more. When the conductive path 4 is formed using a carbon nanotube containing a large amount of impurities, the conductivity of the conductive path 4 may be lowered.
 (ii)単層カーボンナノチューブと多層カーボンナノチューブとの混合物を使用する場合、単層カーボンナノチューブを単独で使用した場合に比べて、体積抵抗率をより低く小さく抑えることができる。単層カーボンナノチューブとしては、上述した長尺の単層カーボンナノチューブが好ましい。一方、多層カーボンナノチューブは、2層カーボンナノチューブ(DWNT)であっても良いし、3層以上の多層カーボンナノチューブ(MWNT)であってもよい(本明細書では、両者を合わせて単に多層カーボンナノチューブと称する。)。 (Ii) When a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes is used, the volume resistivity can be kept lower and smaller than when single-walled carbon nanotubes are used alone. As the single-walled carbon nanotube, the long single-walled carbon nanotube described above is preferable. On the other hand, the multi-walled carbon nanotube may be a double-walled carbon nanotube (DWNT), or may be a multi-walled carbon nanotube (MWNT) having three or more layers (in the present specification, both are simply combined to be a multi-walled carbon nanotube) Called
 上記多層カーボンナノチューブの繊維径は、5~15nmが好ましい。上記繊維径が5nm未満では、多層カーボンナノチューブの分散が悪くなり、その結果導電パスが広がらず、導電性が不充分になることがあり、一方、15nmを超えると、同じ重量でもカーボンナノチューブの本数が少なくなり、導電性が不充分になることがある。また、上記多層カーボンナノチューブのアスペクト比は、50~2000が好ましい。 The fiber diameter of the multi-walled carbon nanotube is preferably 5 to 15 nm. If the fiber diameter is less than 5 nm, the dispersion of multi-walled carbon nanotubes may be deteriorated, and as a result, the conductive path may not spread and the conductivity may be insufficient, while if it exceeds 15 nm, the number of carbon nanotubes may be the same And the conductivity may be insufficient. The aspect ratio of the multi-walled carbon nanotube is preferably 50 to 2,000.
 上記単層カーボンナノチューブと多層カーボンナノチューブとの混合物において、上記単層カーボンナノチューブと上記多層カーボンナノチューブとの合計量に対する、上記単層カーボンナノチューブの含有量は、20~70重量%が好ましい。上記単層カーボンナノチューブの含有量が20重量%未満では、導電路4が変形した際に体積抵抗率が大きく変動してしまうことがあり、一方、上記単層カーボンナノチューブの含有量が70重量%を超えると、体積抵抗率を小さくする効果を充分に享受することができないことがある。上記単層カーボンナノチューブの含有量は、30~70重量%がより好ましい。 In the mixture of the single-walled carbon nanotube and the multi-walled carbon nanotube, the content of the single-walled carbon nanotube is preferably 20 to 70% by weight with respect to the total amount of the single-walled carbon nanotube and the multi-walled carbon nanotube. When the content of the single-walled carbon nanotube is less than 20% by weight, the volume resistivity may be largely fluctuated when the conductive path 4 is deformed, while the content of the single-walled carbon nanotube is 70% by weight In some cases, the effect of reducing the volume resistivity can not be sufficiently obtained. The content of the single-walled carbon nanotube is more preferably 30 to 70% by weight.
 カーボンナノチューブは、BET比表面積が600m2/g以上であることが好ましい。BET比表面積が600m2/g以上であれば、導電路4の電気伝導性、熱伝導性および強度を十分に高めることができる。なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。 The carbon nanotube preferably has a BET specific surface area of 600 m 2 / g or more. If the BET specific surface area is 600 m 2 / g or more, the electrical conductivity, the thermal conductivity and the strength of the conductive path 4 can be sufficiently enhanced. In the present invention, the "BET specific surface area" refers to the nitrogen adsorption specific surface area measured using the BET method.
(有機溶媒)
 カーボンナノチューブは、導電材料7中での凝集を防止するため有機溶媒に分散させておくことが好ましい。有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、メトキシエトキシエタノール、ブトキシエタノール、ブチルカルビトール、ヘキシルオキシエタノール、オクタノール、1-メトキシ-2-プロパノール、エチレングリコール等のアルコール系溶媒、クロロホルム等の脂肪族ハロゲン系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、N-エチル-2-ピロリドン、ジメチルスルホキシド(DMSO)等の非プロトン性の極性溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、テトラリン、テトラメチルベンゼン、アニソール、チオアニソール、フルオロベンゼン、トリフルオロメチルベンゼン、ピリジン、キノリン等の芳香族系溶媒、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、イソホロン、アセトフェノン等のケトン系溶媒、ジエチルエーテル、THF(テトラヒドロフラン)、t-ブチルメチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、ジオキサン、ジグライム等のエーテル系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、ジアセトキシプロパン等のエステル溶媒、プロピレングリコール1-モノメチルエーテル2-アセタート等が挙げられる。 有機溶媒は、1種単独でまたは2種以上組み合わせて使用することができる。
(Organic solvent)
The carbon nanotubes are preferably dispersed in an organic solvent to prevent aggregation in the conductive material 7. Examples of the organic solvent include methanol, ethanol, isopropanol, butanol, methoxyethoxyethanol, butoxyethanol, butyl carbitol, hexyloxyethanol, octanol, alcohol solvents such as 1-methoxy-2-propanol and ethylene glycol, chloroform and the like Aliphatic halogen solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, dimethyl sulfoxide (DMSO), etc. Aprotic polar solvent, chlorobenzene, dichlorobenzene, trichlorobenzene, benzene, toluene, ethylbenzene, xylene, mesitylene, tetralin, tetramethylbenzene, anisole, thioanisole Aromatic solvents such as fluorobenzene, trifluoromethylbenzene, pyridine and quinoline, cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, ketone solvents such as isophorone and acetophenone, diethyl ether, THF (tetrahydrofuran), t- Ether solvents such as butyl methyl ether, diisopropyl ether, dimethoxyethane, dioxane, diglyme and the like, ester solvents such as methyl acetate, ethyl acetate, butyl acetate and diacetoxypropane, propylene glycol 1-monomethyl ether 2-acetate and the like can be mentioned. The organic solvents can be used singly or in combination of two or more.
 カーボンナノチューブと有機溶媒との混合は、特に限定されないが、例えば、ホモジナイザー、薄膜旋回、ジョークラッシャー、自動乳鉢、超遠心粉砕、ジェットミル、カッティングミル、ディスクミル、ボールミル、自転公転撹拌、超音波分散などの方法を実施できる装置を用いて行うことができる。これらの混合方法の中でも、バンドル径の制御が容易になるという観点、およびカーボンナノチューブに欠陥が生じることを少なくできるという観点から、工程Aにおける混合をホモジナイザー、ジェットミルによって行うことが好ましく、ホモジナイザーを用いることがより好ましい。また、必要に応じて、これらの方法を2つ以上組み合わせてもよい。 The mixing of the carbon nanotube and the organic solvent is not particularly limited. For example, a homogenizer, thin film swirl, jaw crusher, automatic mortar, ultracentrifugal grinding, jet mill, cutting mill, disc mill, ball mill, rotational revolution agitation, ultrasonic dispersion And the like can be performed using an apparatus capable of performing such methods. Among these mixing methods, it is preferable to perform mixing in step A by a homogenizer or a jet mill, from the viewpoint of facilitating control of the bundle diameter and reducing the occurrence of defects in carbon nanotubes. It is more preferable to use. Also, two or more of these methods may be combined as needed.
 カーボンナノチューブの含有量は、有機溶媒に対して0.001~50w%であることが好ましく、0.01~25w%であることがより好ましく、0.01~10w%であることがさらに好ましい。この範囲にあることで、導電材料7中におけるカーボンナノチューブの分散性が向上する。 The content of the carbon nanotube is preferably 0.001 to 50 w%, more preferably 0.01 to 25 w%, and still more preferably 0.01 to 10 w% with respect to the organic solvent. By being in this range, the dispersibility of the carbon nanotube in the conductive material 7 is improved.
(バインダー樹脂)
 バインダー樹脂としては、熱硬化性樹脂、あるいは熱硬化性樹脂および熱可塑性樹脂を用いることが好ましく、放射線硬化型樹脂を用いることも好ましい。
(Binder resin)
As the binder resin, it is preferable to use a thermosetting resin, or a thermosetting resin and a thermoplastic resin, and it is also preferable to use a radiation curable resin.
 熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂の他、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、熱硬化性ポリイミド樹脂等が挙げられる。熱硬化性樹脂は、単独で又は2種以上併用して用いることができる。熱硬化性樹脂としては、特にエポキシ樹脂が好適である。 As a thermosetting resin, an amino resin, unsaturated polyester resin, a polyurethane resin, a silicone resin, a thermosetting polyimide resin etc. other than an epoxy resin and a phenol resin are mentioned. A thermosetting resin can be used individually or in combination of 2 or more types. An epoxy resin is particularly preferable as the thermosetting resin.
 エポキシ樹脂としては、特に限定は無く、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオンレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型エポキシ樹脂、トリスグリシジルイソシアヌレート型エポキシ樹脂若しくはグリシジルアミン型エポキシ樹脂等のエポキシ樹脂を用いることができる。 The epoxy resin is not particularly limited. For example, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, brominated bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol AF epoxy Bifunctional epoxy such as resin, biphenyl type epoxy resin, naphthalene type epoxy resin, fluronene type epoxy resin, phenol novolac type epoxy resin, ortho cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin Epoxy resin such as resin, polyfunctional epoxy resin, hydantoin type epoxy resin, tris glycidyl isocyanurate type epoxy resin or glycidyl amine type epoxy resin It can be used fat.
 熱硬化性樹脂としてエポキシ樹脂を用いる場合には、エポキシ樹脂硬化剤を用いることができる。アミン類、酸無水物類、多価フェノール類等の公知の硬化剤を用いることができるが、好ましくは常温以上の所定の温度で硬化性を発揮し、しかも速硬化性を発揮する潜在性硬化剤である。潜在性硬化剤には、ジシアンジアミド、イミダゾール類、ヒドラジド類、三弗化ホウ素-アミン錯体、アミンイミド、ポリアミン塩及びこれらの変性物、更にマイクロカプセル型のものも使用可能である。これらは、単独あるいは2種以上混ぜて使用できる。エポキシ樹脂硬化剤の使用量は、通常、エポキシ樹脂に対して0.5~50w%の範囲である。 When using an epoxy resin as a thermosetting resin, an epoxy resin curing agent can be used. Although known curing agents such as amines, acid anhydrides and polyhydric phenols can be used, latent curing which exhibits curability at a predetermined temperature above normal temperature and exhibits fast curing is preferable. It is an agent. As the latent curing agent, dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complex, amine imide, polyamine salt and modified products thereof, and those of microcapsule type can also be used. These can be used alone or in combination of two or more. The amount of epoxy resin curing agent used is usually in the range of 0.5 to 50 w% with respect to the epoxy resin.
 導電材料7は、絶縁性シート体3の貫通孔2に対して接着性(密着性)を有していることが好ましい。そこで、導電材料7を予めある程度架橋させておくため、重合体の分子鎖末端の官能基等と反応する多官能性化合物を架橋剤として添加させておいてもよい。 The conductive material 7 preferably has adhesiveness (adhesion) to the through hole 2 of the insulating sheet 3. Therefore, in order to crosslink the conductive material 7 to some extent in advance, a polyfunctional compound that reacts with a functional group at the molecular chain terminal of the polymer or the like may be added as a crosslinker.
 架橋剤としては、特に制限されず、公知の架橋剤を用いることができる。具体的には、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤の他、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤などが挙げられる。架橋剤としては、イソシアネート系架橋剤やエポキシ系架橋剤が好適である。また、前記架橋剤は単独で又は2種以上組み合わせて使用することができる。 The crosslinking agent is not particularly limited, and known crosslinking agents can be used. Specifically, for example, in addition to isocyanate type crosslinking agents, epoxy type crosslinking agents, melamine type crosslinking agents, peroxide type crosslinking agents, urea type crosslinking agents, metal alkoxide type crosslinking agents, metal chelate type crosslinking agents, metal salts The crosslinking agents include carbodiimide type crosslinking agents, carbodiimide type crosslinking agents, oxazoline type crosslinking agents, aziridine type crosslinking agents, amine type crosslinking agents and the like. As a crosslinking agent, an isocyanate type crosslinking agent and an epoxy type crosslinking agent are suitable. Moreover, the said crosslinking agent can be used individually or in combination of 2 or more types.
 なお、本発明では、架橋剤を用いる代わりに、あるいは、架橋剤を用いるとともに、電子線や紫外線などの照射により架橋処理を施すことも可能である。 In the present invention, instead of using a crosslinking agent, or while using a crosslinking agent, it is also possible to carry out a crosslinking treatment by irradiation with an electron beam or ultraviolet light.
 熱可塑性樹脂としては、例えば、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PET(ポリエチレンテレフタレート)やPBT(ポリブチレンテレフタレート)等の飽和ポリエステル樹脂、ポリアミドイミド樹脂、又はフッ素樹脂等が挙げられる。熱可塑性樹脂は単独で又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく応力緩和性に優れる点でアクリル樹脂が好ましい。また、可とう性と強度を両立して高靭性である点でフェノキシ樹脂が好ましい。 As a thermoplastic resin, for example, natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, Thermoplastic polyimide resin, polyamide resin such as 6-nylon or 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET (polyethylene terephthalate) or PBT (polybutylene terephthalate), polyamide imide resin, or fluorine resin Etc. The thermoplastic resins can be used alone or in combination of two or more. Among these thermoplastic resins, acrylic resins are preferable in that they have few ionic impurities and are excellent in stress relaxation properties. Moreover, a phenoxy resin is preferable at the point which makes flexibility and intensity | strength compatible and it is high toughness.
 放射線硬化型樹脂としては、放射線硬化性のモノマー成分や放射線硬化性のオリゴマー成分を配合した添加型の放射線硬化型樹脂を例示できるが、その中でもアクリル系放射線硬化型樹脂が好ましい。 Examples of the radiation curable resin include an addition type radiation curable resin in which a radiation curable monomer component and a radiation curable oligomer component are blended, and among them, an acrylic radiation curable resin is preferable.
 アクリル系放射線硬化型樹脂としては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。尚、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 As the acrylic radiation curable resin, for example, (meth) acrylic acid alkyl ester (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl Ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of the alkyl group such as decyl ester, octadecyl ester, eicosyl ester, etc. And (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) acryl-based polymer such as one or more was used as a monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of this invention is the same meaning altogether.
 アクリル系放射線硬化型樹脂は、凝集力、耐熱性等の改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;アクリルアミド、アクリロニトリル等が挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic radiation-curable resin is a unit corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or the cycloalkyl ester as necessary for the purpose of modifying cohesion, heat resistance, etc. May be included. As such monomer components, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, etc .; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylic acid, 10-hydroxydecyl (meth) acrylic acid, 12-hydroxylauryl (meth) acrylic acid, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Styrenes Sulfonic acid group containing phosphoric acid, allylsulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, (meth) acrylamidopropanesulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalenesulfonic acid, etc. Monomer; phosphoric acid group-containing monomer such as 2-hydroxyethyl acryloyl phosphate; acrylamide, acrylonitrile and the like. These copolymerizable monomer components can be used alone or in combination of two or more. The amount of these copolymerizable monomers used is preferably 40% by weight or less of the total monomer components.
 更に、アクリル系放射線硬化型樹脂は、架橋されるため、多官能性モノマー等も必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic radiation curable resin is crosslinked, a polyfunctional monomer or the like can also be included as a monomer component for copolymerization, if necessary. As such polyfunctional monomers, for example, hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the multifunctional monomer used is preferably 30% by weight or less of the total monomer components.
 アクリル系放射線硬化型樹脂には、紫外線等により硬化させる場合には光重合開始剤を含有させることが好ましい。 The acrylic radiation curable resin preferably contains a photopolymerization initiator when it is cured by ultraviolet light or the like.
(分散剤)
 導電材料7は、分散剤を含むことが好ましい。分散剤としては、導電性ナノ粒子を分散させる機能を有しているものであれば特に限定されるものではないが、カーボンナノチューブに対する分散剤としてシランカップリング剤が好適に用いられる。また、カーボンナノチューブに吸着する官能基(例えば、アルキル基、ピレン、アントラセン、ターフェニレン、ポルフィリンなどの芳香族基、コレステロールなどの脂環基など)と、カーボンナノチューブの凝集を抑制する立体反発基(直鎖、分岐のアルキル基、ポリアクリル酸エステルなどのポリマー由来の基など)、静電反発基(例えば、カルボキシル基、スルホン酸基、リン酸基などの塩、アンモニウム基など)と、を有するものも使用可能であるが、中でも界面活性剤を用いることが好ましい。
(Dispersant)
The conductive material 7 preferably contains a dispersant. The dispersant is not particularly limited as long as it has a function of dispersing conductive nanoparticles, but a silane coupling agent is suitably used as a dispersant for carbon nanotubes. In addition, functional groups that adsorb to carbon nanotubes (for example, alkyl groups, aromatic groups such as pyrene, anthracene, terphenylene, porphyrins, alicyclic groups such as cholesterol, etc.) and steric repulsion groups that suppress aggregation of carbon nanotubes ( A linear or branched alkyl group, a group derived from a polymer such as polyacrylic acid ester, etc., and an electrostatic repulsive group (eg, a salt such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, an ammonium group etc.) Although a thing can also be used, it is preferable to use surfactant especially.
 シランカップリング剤は、加水分解性シリル基又はシラノール基と官能基とを有する化合物であれば特に制限されない。 シランカップリング剤が有する加水分解性シリル基としては、例えば、アルコキシシリル基が挙げられる。アルコキシシリル基が有するアルコキシ基の炭素原子の数は1~5個とすることができる。1個のケイ素原子に結合するアルコキシ基の数は、2個又は3個であるのが好ましい。 1個のケイ素原子に結合するアルコキシ基の数が2個以下である場合、ケイ素原子に結合できる炭化水素基は特に制限されない。例えば、アルキル基が挙げられる。 The silane coupling agent is not particularly limited as long as it is a compound having a hydrolyzable silyl group or silanol group and a functional group. As a hydrolysable silyl group which a silane coupling agent has, an alkoxy silyl group is mentioned, for example. The number of carbon atoms of the alkoxy group contained in the alkoxysilyl group can be 1 to 5. The number of alkoxy groups bonded to one silicon atom is preferably 2 or 3. When the number of alkoxy groups bonded to one silicon atom is 2 or less, the hydrocarbon group that can be bonded to a silicon atom is not particularly limited. For example, an alkyl group is mentioned.
 シランカップリング剤が有する官能基としては、例えば、エポキシ基、アミノ基、イミノ基(-NH-)、ヒドロキシ基が挙げられる。なかでもエポキシ基が好ましい。  加水分解性シリル基又はシラノール基と官能基とはヘテロ原子を有してもよい炭化水素基に結合することができる。ヘテロ原子、炭化水素基は上記と同義である。 As a functional group which a silane coupling agent has, an epoxy group, an amino group, an imino group (-NH-), a hydroxy group is mentioned, for example. Among them, epoxy group is preferable. The hydrolyzable silyl group or silanol group and the functional group can be bonded to a hydrocarbon group which may have a hetero atom. The hetero atom and the hydrocarbon group are as defined above.
 シランカップリング剤は、エポキシシラン、アミノシランが好ましい。  エポキシシランとしては例えば、グリシジルオキシアルキルトリアルコキシシラン、グリシジルオキシアルキルジアルコキシアルキルシランがより好ましく、3-グリシジルオキシプロピルトリメトキシシランが挙げられる。アミノシランはアミノ基及び/又はイミノ基を有することができる。アミノシランはイミノ基を有するのが好ましい態様の1つとして挙げられる。イミノ基を有するアミノシランとしては、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランが挙げられる。 The silane coupling agent is preferably epoxysilane or aminosilane. As the epoxysilane, for example, glycidyloxyalkyltrialkoxysilane and glycidyloxyalkyldialkoxyalkylsilane are more preferable, and 3-glycidyloxypropyltrimethoxysilane can be mentioned. The aminosilane can have an amino group and / or an imino group. Aminosilane is mentioned as one of the preferred embodiments having an imino group. As the aminosilane having an imino group, for example, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropyltrimethoxysilane is mentioned.
  シランカップリング剤はそれぞれ単独でまたは2種以上を組み合わせて使用することが
できる。
The silane coupling agents can be used alone or in combination of two or more.
  分散剤の含有量としては、カーボンナノチューブの重量に対して、0.1~100倍であることが好ましく、1~10倍であることがより好ましく、1~5倍であることが特に好ましい。 The content of the dispersant is preferably 0.1 to 100 times, more preferably 1 to 10 times, and particularly preferably 1 to 5 times the weight of the carbon nanotube.
 導電材料7におけるカーボンナノチューブの含有量は、導電材料7に含まれる全固形成分対して0.1~10重量%であることが好ましい。カーボンナノチューブの含有量が0.1重量%未満であると、導電性が不十分になる。また、カーボンナノチューブの含有量が10重量%超であると、カーボンナノチューブを十分に分散させることができなくなる。また、導電材料7の粘度が高くなり絶縁性シートの貫通孔2への充填性が悪くなる。ここで、固形成分とは、導電材料7に含まれる有機溶媒などの揮発成分を除いた成分であり、カーボンナノチューブも含まれる。 The content of carbon nanotubes in the conductive material 7 is preferably 0.1 to 10% by weight based on the total solid components contained in the conductive material 7. When the content of carbon nanotubes is less than 0.1% by weight, the conductivity becomes insufficient. If the content of carbon nanotubes is more than 10% by weight, carbon nanotubes can not be dispersed sufficiently. In addition, the viscosity of the conductive material 7 is increased, and the filling property of the insulating sheet into the through holes 2 is deteriorated. Here, the solid component is a component excluding volatile components such as an organic solvent contained in the conductive material 7, and also includes carbon nanotubes.
 導電材料7の粘度は100000mPa・s以下である。導電材料7の粘度を100000mPa・s以下とすることにより、導電材料7を絶縁性シートの貫通孔2に良好に充填させることができる。 The viscosity of the conductive material 7 is 100,000 mPa · s or less. By setting the viscosity of the conductive material 7 to 100,000 mPa · s or less, the conductive material 7 can be favorably filled in the through holes 2 of the insulating sheet.
 上述した導電材料7の中でも、特に、有機溶媒に分散されたカーボンナノチューブ、エポキシ樹脂、エポキシ樹脂硬化剤、及び分散剤を含み、導電材料7中の全固形成分に対してカーボンナノチューブの含有量が0.1~10重量%である導電材料7が好ましい。なお、硬化した導電材料中のカーボンナノチューブは、例えば、硬化物の断面をTEMにて観察することで確認できる。 Among the conductive materials 7 described above, the carbon nanotube particularly contains carbon nanotubes dispersed in an organic solvent, an epoxy resin, an epoxy resin curing agent, and a dispersing agent, and the content of carbon nanotubes relative to the total solid component in the conductive material 7 is The conductive material 7 is preferably 0.1 to 10% by weight. In addition, the carbon nanotube in the hardened | cured electrically conductive material can be confirmed by observing the cross section of hardened | cured material by TEM, for example.
 導電材料7には、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば、その他の電気伝導性充填剤(フィラー)、難燃剤、イオントラップ剤の他、増粘剤、老化防止剤、酸化防止剤、界面活性剤などが挙げられる。 Other additives can be appropriately blended in the conductive material 7 as needed. Other additives include, for example, other electrically conductive fillers (fillers), flame retardants, ion trap agents, thickeners, anti-aging agents, antioxidants, surfactants and the like.
 次に、本実施の形態に係る異方導電性シート1の製造方法について説明する。本実施の形態に係る異方導電性シート1の製造方法は、絶縁性シート体3に厚み方向に貫通する複数の貫通孔2を形成する貫通孔形成工程と、貫通孔2に少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料7を充填する導電材料充填工程と、導電材料充填工程の後、導電材料7を硬化させる硬化工程とを有し、導電材料7の粘度が100000mPa・s以下である。以下、詳細に説明する。 Next, a method of manufacturing the anisotropic conductive sheet 1 according to the present embodiment will be described. In the method of manufacturing the anisotropically conductive sheet 1 according to the present embodiment, a through hole forming step of forming a plurality of through holes 2 penetrating in the thickness direction in the insulating sheet 3, and at least conductive nano particles in the through holes 2. It has a conductive material filling process of filling conductive material 7 containing particles and a binder resin, and a curing process of curing conductive material 7 after the conductive material filling process, and the viscosity of conductive material 7 is 100000 mPa · s or less is there. The details will be described below.
<準備工程>
 まず、図2(A)に示すように、絶縁シート5を用意する。
<Preparation process>
First, as shown in FIG. 2A, the insulating sheet 5 is prepared.
<貫通孔形成工程>
 次に、図2(B)に示すように、絶縁シート5に、厚み方向に貫通する複数の貫通孔2を形成することにより絶縁性シート体3を作製する。絶縁シート5の特定位置の膜厚方向に貫通孔2を形成する方法としては、例えば、化学エッチング法、熱分解法、レーザ光や軟X線照射によるアブレーション法、超音波法などが挙げられる。中でも、レーザ光を照射して貫通孔2を形成する方法が、狭い間隔で最大幅の小さい貫通孔2を高精度に形成できる点で好ましい。
<Through hole formation process>
Next, as shown in FIG. 2 (B), the insulating sheet body 3 is manufactured by forming a plurality of through holes 2 penetrating in the thickness direction in the insulating sheet 5. Examples of the method for forming the through holes 2 in the film thickness direction of the specific position of the insulating sheet 5 include a chemical etching method, a thermal decomposition method, an ablation method by laser light or soft X-ray irradiation, and an ultrasonic method. Among them, the method of forming the through holes 2 by irradiating a laser beam is preferable in that the small through holes 2 having the largest maximum width can be formed with high accuracy.
  波長250nm以下のレーザ光を照射して貫通孔2を形成する場合には、以下の手順による。貫通孔2を形成する前に、絶縁性シート体3の上面に光遮蔽シート(図示せず)を配置する。光遮蔽シートとしては、例えば、タングステンシートが好ましい。タングステンシートに、フォトリソグラフィーなどを用いて複数の開口部を形成し、この開口部を光透過部とする。光遮蔽シートの複数の開口部より絶縁性シート体3側に光が透過し照射された箇所は、溶融・蒸発除去されて貫通孔2が形成される。光遮蔽シートの開口部のパターンは、円形、星型、八角形、六角形、四角形、三角形など任意の形状が可能である。開口部の孔径は、絶縁性シート体3の貫通孔2に応じて適宜形成すればよい。 In the case of forming the through hole 2 by irradiating a laser beam having a wavelength of 250 nm or less, the following procedure is performed. Before forming the through holes 2, a light shielding sheet (not shown) is disposed on the upper surface of the insulating sheet 3. As a light shielding sheet, for example, a tungsten sheet is preferable. A plurality of openings are formed in the tungsten sheet by photolithography or the like, and the openings are used as light transmission parts. A portion through which light is transmitted and irradiated from the plurality of openings of the light shielding sheet to the insulating sheet 3 side is melted and evaporated away, and the through holes 2 are formed. The pattern of the openings of the light shielding sheet can be any shape such as a circle, a star, an octagon, a hexagon, a quadrangle, and a triangle. The hole diameter of the opening may be appropriately formed in accordance with the through hole 2 of the insulating sheet 3.
  なおレーザ光としては、例えば炭酸ガスパルスレーザーやエキシマレーザーなどを利用することができる。また具体的なレーザ光の照射条件は、絶縁性シート体3を構成する材料の種類、絶縁性シート体3の厚みおよびその他の構成条件を考慮して適宜選択することができる。 In addition, as a laser beam, a carbon dioxide gas pulse laser, an excimer laser etc. can be utilized, for example. The specific irradiation conditions of the laser beam can be appropriately selected in consideration of the type of the material forming the insulating sheet 3, the thickness of the insulating sheet 3, and other configuration conditions.
<導電材料充填工程>
 次に、図2(C)に示すように、貫通孔2が形成された絶縁性シート体3を剥離フィルム6上に載置する。剥離フィルム6としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルムや紙などが挙げられる。その後、スクリーン印刷の手法でスキージを用いて、導電材料7を貫通孔2に充填する。なお、導電材料7の充填方法はこれに限定されることはなく、グラビア印刷、ディスペンス、ディッピングなど、任意の方法でして充填してもよい。
<Conductive material filling process>
Next, as shown in FIG. 2C, the insulating sheet 3 in which the through holes 2 are formed is placed on the release film 6. As the peeling film 6, synthetic resin films, such as polyethylene, a polypropylene, a polyethylene terephthalate, etc., paper, etc. are mentioned. Thereafter, the conductive material 7 is filled in the through holes 2 using a squeegee by a screen printing method. The method of filling the conductive material 7 is not limited to this, and the filling may be performed by any method such as gravure printing, dispensing, dipping, and the like.
<硬化工程>
 次に、図2(D)に示すように、絶縁性シート体3の表面に付着した不要な導電材料8(図2(C)参照)をウエス等で拭取り除去する。その後、常温で、または加熱によって、有機溶剤を揮散させることが好ましい。さらに、導電材料7にバインダー樹脂として熱硬化性樹脂を含む場合は、硬化剤及び硬化触媒に種類に応じて、通常70~250℃、例えば液状アミン系硬化剤として用いるエポキシ樹脂の場合、50~1500℃で1~60分加熱し、導電材料7を硬化させて導電路4を形成させる。また、導電材料7にバインダー樹脂として放射線硬化型樹脂を含む場合は、通常200mJ/cm2~1000mJ/cm2、更に好ましくは400mJ/cm2~750mJ/cm2の放射線を照射して導電材料7を硬化させて導電路4を形成させる。
<Hardening process>
Next, as shown in FIG. 2D, the unnecessary conductive material 8 (see FIG. 2C) attached to the surface of the insulating sheet 3 is wiped off with a rag or the like. Thereafter, the organic solvent is preferably volatilized at normal temperature or by heating. Furthermore, in the case where the conductive material 7 contains a thermosetting resin as a binder resin, usually 70 to 250 ° C., for example, in the case of an epoxy resin used as a liquid amine curing agent, depending on the type of curing agent and curing catalyst. The conductive material 7 is cured by heating at 1500 ° C. for 1 to 60 minutes to form the conductive path 4. Further, when the conductive material 7 comprising a radiation-curable resin as the binder resin is usually 200mJ / cm 2 ~ 1000mJ / cm 2, more preferably the conductive material by irradiating the radiation of 400mJ / cm 2 ~ 750mJ / cm 2 7 Are cured to form the conductive path 4.
 以上のようにして、異方導電性シート1が得られる。本発明によれば、導電性物質として導電性ナノ粒子を用いているため、凝集を十分に防止することができる。その結果、間隔が狭く幅も小さな貫通孔2にも、導電材料7を容易に充填することができる。また、金属製の導電粒子のように磁場を作用させて再配列させる必要がないため、製造工程を簡略化することができる。 As described above, the anisotropically conductive sheet 1 is obtained. According to the present invention, since conductive nanoparticles are used as the conductive substance, aggregation can be sufficiently prevented. As a result, the conductive material 7 can be easily filled in the through holes 2 having a narrow spacing and a small width. In addition, since it is not necessary to cause a magnetic field to act and rearrange as in the case of metal conductive particles, the manufacturing process can be simplified.
 次に、本実施形態の異方導電性シート1の使用方法について、図3,4を参照しながら説明する。本発明の異方導電性シート1は、検査対象である回路装置9における被検査電極10の導通検査に用いられる。 Next, a method of using the anisotropic conductive sheet 1 of the present embodiment will be described with reference to FIGS. The anisotropic conductive sheet 1 of the present invention is used for a continuity test of the electrode 10 to be inspected in the circuit device 9 to be inspected.
 具体的には、図3に示すように、導通検査を行うためには検査用回路基板11が用いられる。検査用回路基板11の一例を示す。この検査用回路基板11の第一の面には、検査対象である回路装置9における被検査電極10に対応して多数の接続用電極12が設けられている。また検査用回路基板11の第二の面には、内部配線13を介して接続用電極12に電気的に接続された多数の端子電極14が形成されている。そして、この検査用回路基板の端子電極14は、適宜の手段によってテスター(図示省略)に電気的に接続されている。 Specifically, as shown in FIG. 3, the inspection circuit board 11 is used to conduct the continuity test. An example of the circuit board 11 for a test | inspection is shown. On the first surface of the circuit board 11 for inspection, a large number of connection electrodes 12 are provided corresponding to the electrodes to be inspected 10 in the circuit device 9 to be inspected. Further, on the second surface of the test circuit board 11, a large number of terminal electrodes 14 electrically connected to the connection electrodes 12 via the internal wiring 13 are formed. The terminal electrodes 14 of the test circuit board are electrically connected to a tester (not shown) by appropriate means.
 検査用回路基板11の第一の面上には、本実施形態の異方導電性シート1が配置されており、異方導電性シート1上に、検査対象である回路装置9が、その被検査電極10が異方導電性シート1に接するように配置されている。この状態で加圧することにより、図4に示すように、検査対象である回路装置9の被検査電極10には、異方導電性シート1における少なくとも1個の導電路4が接続されると共に、2個以上の被検査電極10が同一の導電路4に接続されていない状態になる。これにより、異方導電性シート1の導電路4を介して、検査対象である回路装置9の被検査電極10と検査用回路基板11の接続用電極12との間の電気的接続が達成され、所要の検査が行われる。 The anisotropic conductive sheet 1 of the present embodiment is disposed on the first surface of the circuit board 11 for inspection, and the circuit device 9 to be inspected is disposed on the anisotropic conductive sheet 1. The inspection electrode 10 is disposed in contact with the anisotropically conductive sheet 1. By applying pressure in this state, as shown in FIG. 4, at least one conductive path 4 in the anisotropic conductive sheet 1 is connected to the inspected electrode 10 of the circuit device 9 to be tested. Two or more test electrodes 10 are not connected to the same conductive path 4. Thereby, the electrical connection between the inspection electrode 10 of the circuit device 9 to be inspected and the connection electrode 12 of the circuit board 11 for inspection is achieved through the conductive path 4 of the anisotropically conductive sheet 1. , The required inspection is performed.
 なお、図4においては、円形の被検査電極10を示したが、これに限られず、矩形の被検査電極等に対しても適用することができる。 In addition, in FIG. 4, although the circular to-be-tested electrode 10 was shown, it is not restricted to this, It is applicable also to a rectangular to-be-tested electrode etc.
 本実施形態による異方導電性シート1を使用することにより、検査対象である回路装置9の被検査電極10間のピッチが極めて小さく、かつ被検査電極10が微細で複雑なパターンのものであっても、所要の電気的接続を確実に達成することができる。 By using the anisotropically conductive sheet 1 according to the present embodiment, the pitch between the test electrodes 10 of the circuit device 9 to be tested is extremely small, and the test electrodes 10 have a fine and complicated pattern. However, the required electrical connection can be reliably achieved.
<実施例>
 次に、本発明の効果をさらに明確にするために、実施例および比較例について詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<Example>
Next, in order to further clarify the effects of the present invention, examples and comparative examples will be described in detail, but the present invention is not limited to these examples.
(実施例1)
<絶縁性シート体の作製>
 シリコーンゴムシート(商品名:T-50、株式会社イノアックコーポレーション製、厚み200μm、引張弾性率7.3MPa)を用意し、所定の大きさにカットし、寸法100×100cmの絶縁シートを得た。このシートに炭酸ガスパルスレーザー装置(商品名:p100、シンラッド社製)を用いて、直径200μmの貫通孔を、2.5cm間隔で形成し、絶縁性シート体を作製した。
Example 1
<Production of Insulating Sheet>
A silicone rubber sheet (trade name: T-50, manufactured by Inoac Corporation, thickness 200 μm, tensile modulus 7.3 MPa) was prepared and cut into a predetermined size to obtain an insulating sheet having a size of 100 × 100 cm. Through holes with a diameter of 200 μm were formed on this sheet at intervals of 2.5 cm using a carbon dioxide pulse laser apparatus (trade name: p100, manufactured by Shinrad Co., Ltd.) to produce an insulating sheet.
<導電材料の調整>
 バインダー樹脂としてビスフェノールA型エポキシ樹脂(商品名:YD-128、新日化エポキシ製造製、質量平均分子量:400、軟化点:25℃以下、液体、エポキシ当量:190)90質量部、エポキシ樹脂硬化剤としてジエチレントリアミン(三井化学ファイン株式会社製、純度:99%以上、比重:0.95)10質量部、分散剤としてエポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)11質量部、有機溶媒としてのメチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800 m2/g 以上)314質量部を250mlプラスチック容器(商品名:パックエースP-250、株式会社テラオカ製)に秤量し、遊星式撹拌・脱泡装置(商品名:マゼルスターKK-250、倉敷紡績株式会社製)にて10分間撹拌を行い、導電材料を得た。
<Adjustment of conductive material>
Bisphenol A type epoxy resin as a binder resin (trade name: YD-128, manufactured by Nippon Steel Epoxy Co., Ltd., weight average molecular weight: 400, softening point: 25 ° C. or less, liquid, epoxy equivalent weight: 190) 90 parts by mass, epoxy resin curing 10 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Co., Ltd., purity: 99% or more, specific gravity: 0.95) as an agent, epoxy silane coupling agent as a dispersant (trade name: S-510, manufactured by JNC Corporation, 3 11 parts by mass of glycidyloxypropyltrimethoxysilane, single-walled carbon nanotubes dispersed in methyl ethyl ketone as an organic solvent (trade name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, ratio surface area: 800 m 2 / g or more) 314 parts by weight of 250ml plus Weigh in a container (trade name: Pack Ace P-250, manufactured by Terraoka Co., Ltd.) and stir for 10 minutes with a planetary stirring / defoaming device (trade name: Mazerustar KK-250, manufactured by Kurashiki Spinning Co., Ltd.) Conducted to obtain a conductive material.
<異方導電性シートの作製>
 上記絶縁性シート体を剥離フィルムとしてのポリエチレンテレフタレートフィルム(商品名:E7002、東洋紡株式会社製、厚み25μm)の上にのせ、一片を粘着テープ(商品名:カプトン粘着テープ650S、株式会社寺岡製作所製、厚み25μm)で固定し、上述の導電材料100gを絶縁性シート体上にのせ、スクリーン印刷機(商品名:MTP-1100シリーズ、マイクロ・テック株式会社製)を用いてマイクロスキージにより導電材料を絶縁性シート体の貫通孔に充填させた。次いで、絶縁性シート体の表面に付着した不要な導電材料をウエスで拭取り除去した。その後、180℃で10分加熱し、導電材料を硬化させて導電路を形成した。これにより、実施例1に係る異方導電性シートを得た。
<Preparation of anisotropic conductive sheet>
The insulating sheet is placed on a polyethylene terephthalate film (trade name: E7002, manufactured by Toyobo Co., Ltd., 25 μm thick) as a peelable film, and a piece of adhesive tape (trade name: Kapton adhesive tape 650S, manufactured by Teraoka Seisakusho Co., Ltd.) The conductive material is fixed with a thickness of 25 μm, and 100 g of the above-mentioned conductive material is placed on the insulating sheet body, and the conductive material is micro-squeegeeed using a screen printing machine (trade name: MTP-1100 series, manufactured by Micro Tech Inc.) The through holes of the insulating sheet were filled. Next, unnecessary conductive material attached to the surface of the insulating sheet was wiped off with a rag. Thereafter, the conductive material was cured by heating at 180 ° C. for 10 minutes to form a conductive path. Thus, an anisotropic conductive sheet according to Example 1 was obtained.
(実施例2)
 導電材料の調整において、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を26質量部、メチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800 m2/g 以上)を743質量部用いた他は実施例1と同様にして、実施例2に係る異方導電性シートを得た。
(Example 2)
In preparation of the conductive material, 26 parts by mass of epoxy-based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane), single-walled carbon nanotube dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) except that 743 parts by mass were used, Example 1 was the same as Example 1 An anisotropic conductive sheet according to No. 2 was obtained.
(実施例3)
 導電材料の調整において、ビスフェノールA型エポキシ樹脂に替えて難結晶性液状エポキシ樹脂(商品名:ZX-1059、新日化エポキシ株式会社製、粘度2250mPa・s、軟化点:25℃以下、液体、エポキシ当量:165)を91質量部、ジエチレントリアミン(三井化学ファイン株式会社製、純度:99%以上、比重:0.95)を9質量部用いた他は実施例1と同様にして、実施例3に係る異方導電性シートを得た。
(Example 3)
In preparation of the conductive material, it is changed to a bisphenol A type epoxy resin and a hardly crystalline liquid epoxy resin (trade name: ZX-1059, manufactured by Shin-Nikka Epoxy Co., Ltd., viscosity 2250 mPa · s, softening point: 25 ° C. or less, liquid, Example 3 Example 3 in the same manner as Example 1, except that 91 parts by mass of epoxy equivalent weight, and 9 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Inc., purity: 99% or more, specific gravity: 0.95) were used. An anisotropic conductive sheet according to
(実施例4)
 導電材料の調整において、ビスフェノールA型エポキシ樹脂に替えて環状脂肪族ジグリジルエ-テル系エポキシ樹脂(商品名:ZX-1658GS、新日化エポキシ株式会社製、粘度50mPa・s、軟化点:25℃以下、液体、エポキシ当量:133)を93質量部、ジエチレントリアミン(三井化学ファイン株式会社製、純度:99%以上、比重:0.95)を7質量部用いた他は実施例1と同様にして、実施例4に係る異方導電性シートを得た。
(Example 4)
In preparation of the conductive material, in place of the bisphenol A epoxy resin, a cyclic aliphatic diglycidyl ether epoxy resin (trade name: ZX-1658GS, manufactured by Nippon Steel Epoxy Co., Ltd., viscosity 50 mPa · s, softening point 25 ° C. or less) Liquid, epoxy equivalent weight: 133), and 7 parts by weight of diethylenetriamine (manufactured by Mitsui Chemicals Fine Co., Ltd., purity: 99% or more, specific gravity: 0.95) in the same manner as Example 1. An anisotropic conductive sheet according to Example 4 was obtained.
(実施例5)
 導電材料の調整において、ビスフェノールA型エポキシ樹脂に替えてポリプロピレングリコールジグリシジルエーテル系エポキシ樹脂(商品名:PG-207GS、新日化エポキシ株式会社製、粘度45mPa・s、軟化点:25℃以下、液体、エポキシ当量:315)を85質量部、ジエチレントリアミン(三井化学ファイン株式会社製、純度:99%以上、比重:0.95)を15質量部用いた他は実施例1と同様にして、実施例5に係る異方導電性シートを得た。
(Example 5)
In preparation of the conductive material, polypropylene glycol diglycidyl ether epoxy resin (trade name: PG-207GS, manufactured by Nippon Steel Epoxy Co., Ltd., viscosity 45 mPa · s, softening point: 25 ° C. or less, instead of bisphenol A type epoxy resin Example 1 was carried out in the same manner as Example 1, except that 85 parts by mass of liquid, epoxy equivalent: 315) and 15 parts by mass of diethylenetriamine (manufactured by Mitsui Chemicals Fine Inc., purity: 99% or more, specific gravity: 0.95) were used. An anisotropic conductive sheet according to Example 5 was obtained.
(実施例6)
 導電材料の調整において、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を44質量部、メチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800 m2/g 以上)を1257質量部用いた他は実施例5と同様にして、実施例6に係る異方導電性シートを得た。
(Example 6)
In preparation of the conductive material, single-walled carbon nanotubes (product: 44 parts by mass of epoxy based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) except that 1257 parts by mass was used, Example 5 was the same as Example 5 The anisotropic conductive sheet according to 6 was obtained.
(実施例7)
 導電材料の調整において、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を110質量部、メチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800 m2/g 以上)を3143質量部用いた他は実施例5と同様にして、実施例7に係る異方導電性シートを得た。
(Example 7)
In the preparation of a conductive material, 110 parts by mass of an epoxy-based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyloxypropyltrimethoxysilane), single-walled carbon nanotube dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) 3143 parts by mass An anisotropic conductive sheet according to No. 7 was obtained.
(比較例1)
 導電材料として、メチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800 m2/g 以上)314質量部のみ用いた他以外は実施例1と同様にして、比較例1に係る異方導電性シートを得た。
(Comparative example 1)
As a conductive material, single-walled carbon nanotubes dispersed in methyl ethyl ketone (trade name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) 314 parts by mass An anisotropic conductive sheet according to Comparative Example 1 was obtained in the same manner as Example 1 except that only the above was used.
(比較例2)
 導電材料の調整において、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を44質量部、メチルエチルケトンに分散された単層カーボンナノチューブ(商品名:ZEONANO(登録商標)SG101、日本ゼオン株式会社製、固形分0.35wt%、比表面積:800m2/g 以上)を1257質量部用いた他は実施例1と同様にして、比較例2に係る異方導電性シートを得た。
(Comparative example 2)
In preparation of the conductive material, single-walled carbon nanotubes (product: 44 parts by mass of epoxy based silane coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) dispersed in methyl ethyl ketone (product Name: ZEONANO (registered trademark) SG101, manufactured by Nippon Zeon Co., Ltd., solid content 0.35 wt%, specific surface area: 800 m 2 / g or more) Comparative Example 2 in the same manner as Example 1 except using 12 parts by mass An anisotropic conductive sheet according to
(比較例3)
 導電材料の調整において、メチルエチルケトンに分散された単層カーボンナノチューブに替えて球状銀粒子(商品名:AG2-8F、DOWAエレクトロニクス株式会社製、平均粒径1.0μm)を650質量部、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を65質量部用いた他は実施例5と同様にして、比較例3に係る異方導電性シートを得た。
(Comparative example 3)
In preparation of the conductive material, instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, 650 parts by mass of spherical silver particles (trade name: AG2-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 1.0 μm), epoxy based silane Anisotropic conductivity according to Comparative Example 3 in the same manner as in Example 5 except that 65 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
(比較例4)
 導電材料の調整において、メチルエチルケトンに分散された単層カーボンナノチューブに替えて球状銀粒子(商品名:AG5-8F、DOWAエレクトロニクス株式会社製、平均粒径3.0μm)を650質量部、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を65質量部用いた他は、実施例5と同様にして比較例4に係る異方導電性シートを得た。
(Comparative example 4)
In preparation of the conductive material, instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, 650 parts by mass of spherical silver particles (trade name: AG5-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 3.0 μm), epoxy based silane Anisotropic conductivity according to Comparative Example 4 in the same manner as in Example 5 except that 65 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
(比較例5)
 導電材料の調整において、メチルエチルケトンに分散された単層カーボンナノチューブに替えて球状銀粒子(商品名:AG2-8F、DOWAエレクトロニクス株式会社製、平均粒径1.0μm)を300質量部、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を30質量部用いた他は実施例5と同様にして、比較例5に係る異方導電性シートを得た。
(Comparative example 5)
In preparation of the conductive material, 300 parts by mass of spherical silver particles (trade name: AG2-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 1.0 μm) instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, epoxy based silane Anisotropic conductivity according to Comparative Example 5 in the same manner as in Example 5 except that 30 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
(比較例6)
 導電材料の調整において、メチルエチルケトンに分散された単層カーボンナノチューブに替えて球状銀粒子(商品名:AG5-8F、DOWAエレクトロニクス株式会社製、平均粒径3.0μm)を300質量部、エポキシ系シランカップリング剤(商品名:S-510、JNC株式会社製、3-グリシジルオキシプロピルトリメトキシシラン)を30質量部用いた他は実施例5と同様にして、比較例6に係る異方導電性シートを得た。
(Comparative example 6)
In preparation of the conductive material, 300 parts by mass of spherical silver particles (trade name: AG5-8F, manufactured by Dowa Electronics Co., Ltd., average particle diameter 3.0 μm) instead of single-walled carbon nanotubes dispersed in methyl ethyl ketone, epoxy based silane Anisotropic conductivity according to Comparative Example 6 in the same manner as Example 5, except that 30 parts by mass of a coupling agent (trade name: S-510, manufactured by JNC, 3-glycidyl oxypropyl trimethoxysilane) was used I got a sheet.
 実施例1~7及び比較例1~6に係る異方導電性シートについて以下の測定および評価を行った。その結果を表1,2に示す。 The following measurements and evaluations were performed on the anisotropic conductive sheets according to Examples 1 to 7 and Comparative Examples 1 to 6. The results are shown in Tables 1 and 2.
(ワニス粘度)
  各実施例及び比較例に係るワニス状の導電材料をそれぞれ0.5ml採取し、コーンプレート型粘度測定装置(型番:DV3TCP、英弘精機株式会社製、コーン:CPA-52Z)を用いて、回転数1.0rpm、測定温度25度、測定時間2分間の条件にて粘度を測定した。その結果を表1,2に示す。
(Varnish viscosity)
0.5 ml of the varnish-like conductive material according to each example and comparative example is collected, and the rotation speed is measured using a cone-plate type viscosity measuring device (model number: DV3TCP, manufactured by EKO INSTRUMENTS CO., LTD., Cone: CPA-52Z) The viscosity was measured under the conditions of 1.0 rpm, a measurement temperature of 25 degrees, and a measurement time of 2 minutes. The results are shown in Tables 1 and 2.
(体積抵抗率)
 各実施例及び比較例に係る導電材料を直径12.5mm、厚さ2mmの円盤状金型内に充填し、圧縮プレス成型機を用いて、温度180℃、圧力2MPaで10分間加熱加圧して取り出した後、さらに乾燥機中において温度180℃で1時間加熱することにより導電材料を熱硬化させ、直径12.5mm、厚さ2mmの円盤状の試験片を得た。この試験片について、高精度高機能低抵抗率計(型番:ロレスタGX、株式会社三菱化学アナリテック製、測定端子:PSPプローブ MCP-TP06P RMH112)にて体積抵抗率を測定した。体積抵抗率が1.0×10-2Ω・cm未満であったものを良品として○、体積抵抗率が1.0×10-2Ω・cm以上であったものを不良品として×で評価した。その結果を表1,2に示す。
(Volume resistivity)
The conductive material according to each example and comparative example is filled in a disc-shaped mold having a diameter of 12.5 mm and a thickness of 2 mm, and heated and pressurized at a temperature of 180 ° C. and a pressure of 2 MPa for 10 minutes using a compression press molding machine After taking it out, the conductive material was thermally cured by further heating in a drier at a temperature of 180 ° C. for 1 hour to obtain a disc-like test piece having a diameter of 12.5 mm and a thickness of 2 mm. The volume resistivity of this test piece was measured with a high-precision high-performance low-resistivity meter (model number: Loresta GX, manufactured by Mitsubishi Chemical Analytech Co., Ltd., measurement terminal: PSP probe MCP-TP06P RMH112). ○ what volume resistivity was less than 1.0 × 10 -2 Ω · cm as a non-defective, evaluated by × what volume resistivity was 1.0 × 10 -2 Ω · cm or more as a defective did. The results are shown in Tables 1 and 2.
(光透過充填性)
 各実施例及び比較例に係る異方導電性シートについて、貫通孔からの光透過の有無を目視にて観察することにより、導電材料が貫通孔に良好に充填されているかを評価した。全ての貫通孔について光透過が観察されなかったものを良品として○、一つでも貫通孔から光透過が観察されたものを不良品として×で評価した。その結果を表1,2に示す。
(Light transmission filling property)
About the anisotropically conductive sheet which concerns on each Example and a comparative example, it was evaluated by visual observation whether the light transmission from a through-hole was to see whether the conductive material was suitably filled with the through-hole. A product in which light transmission was not observed for all the through holes was evaluated as 良 as a non-defective product, and one in which light transmission was observed through at least one through hole was evaluated as a defective product as ×. The results are shown in Tables 1 and 2.
(断面充填性)
 各実施例及び比較例に係る異方導電性シートについて、厚み方向において略半分に切断し、その断面を走査電子顕微鏡(商品名:JSM-7900F、日本電子株式会社製)にて観察することにより、導電材料が貫通孔に良好に充填されているかを評価した。全ての貫通孔について導電路との間に隙間が観察されなかったものを良品として○、一つでも貫通孔と導電路との間に隙間が観察されたものを不良品として×で評価した。その結果を表1,2に示す。
(Cross-sectional filling ability)
About the anisotropic conductive sheet which concerns on each Example and a comparative example, it cut in about half in the thickness direction, and observing the cross section with a scanning electron microscope (brand name: JSM-7900F, Nippon Denshi Co., Ltd. make) Then, it was evaluated whether the conductive material was well filled in the through holes. A good product was rated as ○ for which no gap was observed between all the through holes and the conductive path, and a 品 was rated for at least one where a gap was observed between the through hole and the conductive path. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~7に係る異方導電性シートは、導電路が絶縁性シート体の厚み方向に貫通する貫通孔に少なくともカーボンナノチューブとバインダー樹脂とを含む導電材料を充填させ、硬化させてなるため、体積抵抗率において良好な結果となった。また、導電材料の粘度が100000mPa・s以下であるため、光透過充填性、断面充填性の全てにおいて良好な結果となった。 As shown in Table 1, in the anisotropic conductive sheets according to Examples 1 to 7, the through holes in which the conductive paths penetrate in the thickness direction of the insulating sheet were filled with a conductive material containing at least carbon nanotubes and a binder resin. As a result of hardening and curing, good results were obtained in volume resistivity. In addition, since the viscosity of the conductive material was 100,000 mPa · s or less, good results were obtained in all of the light transmission filling property and the cross section filling property.
 これに対して、表1に示すように、比較例1に係る異方導電性シートは、バインダー樹脂を含まないため、光透過充填性、断面充填性に劣る結果となった。また、熱硬化による成形によるサンプル試験片が作製できないため、体積抵抗率は測定できなかった。比較例2に係る異方導電性シートは、導電材料の粘度が100000mPa・sを超えるため、光透過充填性、断面充填性に劣る結果となった。 On the other hand, as shown in Table 1, since the anisotropic conductive sheet according to Comparative Example 1 does not contain the binder resin, the result was inferior in light transmission filling property and cross-sectional filling property. Moreover, since the sample test piece by shaping | molding by thermosetting was not producible, the volume resistivity was not able to be measured. In the anisotropically conductive sheet according to Comparative Example 2, since the viscosity of the conductive material exceeded 100000 mPa · s, the result was inferior in the light transmitting property and the cross sectional property.
 比較例3~6に係る異方導電性シートは、導電性物質としてカーボンナノチューブではなく銀粒子を用いている。比較例3,4に係る異方導電性シートは、銀粒子の含有量を多くしたため、良好な体積抵抗率を得ることができたが、ワニス粘度が高くなり光透過充填性、断面充填性において劣る結果となった。一方、比較例5,6に係る異方導電性シートは、銀粒子の含有量を少なくしてワニス粘度を低くしため、良好な光透過充填性、良好な断面充填性を得ることができたが、体積抵抗率において劣る結果となった。 The anisotropic conductive sheets according to Comparative Examples 3 to 6 use silver particles, not carbon nanotubes, as the conductive material. In the anisotropic conductive sheet according to Comparative Examples 3 and 4, the content of silver particles was increased, so that a good volume resistivity could be obtained, but the varnish viscosity became high and the light transmission filling property and the cross-sectional filling property were high. The result was inferior. On the other hand, in the anisotropic conductive sheet according to Comparative Examples 5 and 6, the content of silver particles was reduced to lower the varnish viscosity, so that it was possible to obtain good light transmission filling property and good cross sectional filling property. However, the result is inferior in volume resistivity.
1:異方導電性シート
2:貫通孔
3:絶縁性シート体
4:導電路
7:導電材料
9:検査対象である回路装置
10:被検査電極
11:検査用回路基板
1: anisotropic conductive sheet 2: through hole 3: insulating sheet body 4: conductive path 7: conductive material 9: circuit device 10 to be inspected: inspected electrode 11: circuit board for inspection

Claims (12)

  1.  厚み方向に貫通する複数の貫通孔が設けられた絶縁性シート体と、
     前記貫通孔に形成された導電路とを有し、
     前記導電路は、少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料を硬化させてなり、
     前記導電材料の粘度が100000mPa・s以下であることを特徴とする異方導電性シート。
    An insulating sheet body provided with a plurality of through holes penetrating in the thickness direction;
    And a conductive path formed in the through hole,
    The conductive path is formed by curing a conductive material containing at least conductive nanoparticles and a binder resin,
    The anisotropic conductive sheet, wherein the conductive material has a viscosity of 100,000 mPa · s or less.
  2.  前記導電性ナノ粒子はカーボンナノチューブであることを特徴とする請求項1に記載の異方導電性シート。 The anisotropic conductive sheet according to claim 1, wherein the conductive nanoparticles are carbon nanotubes.
  3.  前記カーボンナノチューブは、BET比表面積が600m2/g以上であることを特徴とする請求項2に記載の異方導電性シート。 The anisotropic conductive sheet according to claim 2, wherein the carbon nanotube has a BET specific surface area of 600 m 2 / g or more.
  4.  前記バインダー樹脂はエポキシ樹脂であり、前記導電材料は、有機溶媒に分散された前記カーボンナノチューブ、前記エポキシ樹脂、エポキシ樹脂硬化剤、及び分散剤を含み、前記カーボンナノチューブの含有量が前記導電材料に含まれる全固形成分に対して0.1~10重量%であることを特徴とする請求項2または請求項3に記載の異方導電性シート。 The binder resin is an epoxy resin, the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant, and the content of the carbon nanotube is the conductive material. The anisotropically conductive sheet according to claim 2 or 3, wherein the amount is 0.1 to 10% by weight based on the total solid components contained.
  5.  前記絶縁性シート体は、シリコーンゴムからなり、JIS  K  7127に規定された方法に準拠して測定された常温での引張弾性率が0.1MPa~100MPaであることを特徴とする請求項1から請求項4のいずれか一項に記載の異方導電性シート。 The said insulating sheet body consists of silicone rubber, The tensile elasticity modulus in normal temperature measured according to the method prescribed | regulated to JISK7127 is 0.1 Mpa-100 Mpa, It is characterized by the above-mentioned. The anisotropically conductive sheet as described in any one of Claims.
  6.  隣接する前記導電路間の間隔が500μm以下であることを特徴とする請求項1から請求項5のいずれか一項に記載の異方導電性シート。 The space | interval between the said adjacent conductive paths is 500 micrometers or less, The anisotropic conductive sheet as described in any one of the Claims 1-5 characterized by the above-mentioned.
  7.  絶縁性シート体に厚み方向に貫通する複数の貫通孔を形成する貫通孔形成工程と、
     前記貫通孔に少なくとも導電性ナノ粒子とバインダー樹脂とを含む導電材料を充填する導電材料充填工程と、
     前記導電材料充填工程の後、前記導電材料を硬化させる硬化工程とを有し、
     前記導電材料の粘度が100000mPa・s以下であることを特徴とする異方導電性シートの製造方法。
    A through hole forming step of forming a plurality of through holes penetrating in the thickness direction in the insulating sheet;
    A conductive material filling step of filling the through holes with a conductive material containing at least conductive nanoparticles and a binder resin;
    And curing the conductive material after the conductive material filling step.
    The viscosity of the said electrically-conductive material is 100000 mPa * s or less, The manufacturing method of the anisotropically conductive sheet characterized by the above-mentioned.
  8.  前記導電性ナノ粒子はカーボンナノチューブであることを特徴とする請求項7に記載の異方導電性シートの製造方法。 8. The method of claim 7, wherein the conductive nanoparticles are carbon nanotubes.
  9.  前記カーボンナノチューブは、BET比表面積が600m2/g以上であることを特徴とする請求項8に記載の異方導電性シートの製造方法。 The method for producing an anisotropic conductive sheet according to claim 8, wherein the carbon nanotube has a BET specific surface area of 600 m 2 / g or more.
  10.  前記バインダー樹脂はエポキシ樹脂であり、前記導電材料は、有機溶媒に分散された前記カーボンナノチューブ、前記エポキシ樹脂、エポキシ樹脂硬化剤、及び分散剤を含み、前記カーボンナノチューブの含有量が前記導電材料に含まれる全固形成分に対して0.1~10重量%であることを特徴とする請求項8または請求項9に記載の異方導電性シートの製造方法。 The binder resin is an epoxy resin, the conductive material includes the carbon nanotube dispersed in an organic solvent, the epoxy resin, an epoxy resin curing agent, and a dispersant, and the content of the carbon nanotube is the conductive material. The method for producing an anisotropic conductive sheet according to claim 8 or 9, which is 0.1 to 10% by weight based on the total solid components contained.
  11.  前記絶縁性シート体は、シリコーンゴムからなり、JIS  K  7127に規定された方法に準拠して測定された常温での引張弾性率が0.1MPa~100MPaであることを特徴とする請求項7から請求項10のいずれか一項に記載の異方導電性シートの製造方法。 The said insulating sheet body is made of silicone rubber, and the tensile elastic modulus at normal temperature measured according to the method defined in JIS K 7127 is 0.1 MPa to 100 MPa. The manufacturing method of the anisotropically conductive sheet as described in any one of Claim 10.
  12.  前記導電材料充填工程は、スキージ法により行われることを特徴とする請求項7から請求項11のいずれか一項に記載の異方導電性シートの製造方法。 The method for producing an anisotropic conductive sheet according to any one of claims 7 to 11, wherein the conductive material filling step is performed by a squeegee method.
PCT/JP2018/032439 2017-09-29 2018-08-31 Anisotropically conductive sheet and anisotropically conductive sheet manufacturing method WO2019065089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565424A JPWO2019065089A1 (en) 2017-09-29 2018-08-31 Anisotropic conductive sheet and method for producing anisotropic conductive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190510 2017-09-29
JP2017190510 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065089A1 true WO2019065089A1 (en) 2019-04-04

Family

ID=65902423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032439 WO2019065089A1 (en) 2017-09-29 2018-08-31 Anisotropically conductive sheet and anisotropically conductive sheet manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2019065089A1 (en)
TW (1) TWI709632B (en)
WO (1) WO2019065089A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244479A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Carbon nanotube-containing composition and method for producing thermoset product of carbon nanotube-containing composition
JP2021075661A (en) * 2019-11-12 2021-05-20 三菱ケミカル株式会社 Interface heat conductive sheet
GB2593490A (en) * 2020-03-24 2021-09-29 Quantum Conductors Ltd Conductive element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660930A (en) * 1992-08-03 1994-03-04 Bridgestone Corp Anisotropic conductive connector and manufacture thereof
JPH11354178A (en) * 1998-06-08 1999-12-24 Jsr Corp Anisotropic conductive sheet and its manufacture, and test device and test method for circuit device
JP2010539650A (en) * 2007-09-13 2010-12-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive composition
JP6174292B1 (en) * 2016-04-05 2017-08-02 リンテック株式会社 Sheet for manufacturing three-dimensional integrated multilayer circuit and method for manufacturing three-dimensional integrated multilayer circuit
JP2017133042A (en) * 2012-05-15 2017-08-03 日本ゼオン株式会社 Conductive composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980554B2 (en) * 2012-04-23 2016-08-31 新光電気工業株式会社 Electrical connection member, inspection method, and manufacturing method of electrical connection member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660930A (en) * 1992-08-03 1994-03-04 Bridgestone Corp Anisotropic conductive connector and manufacture thereof
JPH11354178A (en) * 1998-06-08 1999-12-24 Jsr Corp Anisotropic conductive sheet and its manufacture, and test device and test method for circuit device
JP2010539650A (en) * 2007-09-13 2010-12-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive composition
JP2017133042A (en) * 2012-05-15 2017-08-03 日本ゼオン株式会社 Conductive composition
JP6174292B1 (en) * 2016-04-05 2017-08-02 リンテック株式会社 Sheet for manufacturing three-dimensional integrated multilayer circuit and method for manufacturing three-dimensional integrated multilayer circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244479A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Carbon nanotube-containing composition and method for producing thermoset product of carbon nanotube-containing composition
JP2021075661A (en) * 2019-11-12 2021-05-20 三菱ケミカル株式会社 Interface heat conductive sheet
JP7327094B2 (en) 2019-11-12 2023-08-16 三菱ケミカル株式会社 Face-to-face heat conduction sheet
GB2593490A (en) * 2020-03-24 2021-09-29 Quantum Conductors Ltd Conductive element
WO2021191601A1 (en) * 2020-03-24 2021-09-30 Quantum Conductors Ltd Conductive element
GB2593490B (en) * 2020-03-24 2022-07-27 Quantum Conductors Ltd Conductive element

Also Published As

Publication number Publication date
JPWO2019065089A1 (en) 2019-11-14
TWI709632B (en) 2020-11-11
TW201920546A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2019065089A1 (en) Anisotropically conductive sheet and anisotropically conductive sheet manufacturing method
JP5763078B2 (en) Underfill for high density interconnect flip chip
US9212298B2 (en) Adhesive sheet and method for manufacturing semiconductor device
TWI556266B (en) Anisotropic conductive film and semiconductor device using the same
JP5892780B2 (en) Manufacturing method of semiconductor device
WO2013089199A1 (en) Semiconductor chip with attached anisotropic electroconductive film, semiconductor wafer with attached anisotropic electroconductive film, and semiconductor device
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
US9005485B2 (en) High performance die attach adhesives (DAAs) nanomaterials for high brightness LED
JP6636306B2 (en) Adhesive sheet, dicing tape-integrated adhesive sheet, and method of manufacturing semiconductor device
TW201132691A (en) Thermal conductive sheet
TW201522591A (en) Sealing thermosetting-resin sheet and hollow-package manufacturing method
TW202128874A (en) Thermosetting sheet and dicing die-bonding film
JP5725559B2 (en) Liquid conductive resin composition and electronic component
US9490229B2 (en) Semiconductor device connected by anisotropic conductive film
KR102291539B1 (en) Carbon nanotube-containing composition and method for producing a thermosetting product of carbon nanotube-containing composition
CN112005451B (en) Method for producing anisotropic conductive sheet
JP6394160B2 (en) Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
JP6394159B2 (en) Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
JP6398416B2 (en) Connection structure manufacturing method and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565424

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863164

Country of ref document: EP

Kind code of ref document: A1