WO2019061371A1 - 一种激光器封装结构 - Google Patents

一种激光器封装结构 Download PDF

Info

Publication number
WO2019061371A1
WO2019061371A1 PCT/CN2017/104688 CN2017104688W WO2019061371A1 WO 2019061371 A1 WO2019061371 A1 WO 2019061371A1 CN 2017104688 W CN2017104688 W CN 2017104688W WO 2019061371 A1 WO2019061371 A1 WO 2019061371A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
structure according
guiding structure
package structure
Prior art date
Application number
PCT/CN2017/104688
Other languages
English (en)
French (fr)
Inventor
陈辉
时军朋
李兴龙
廖启维
黄永特
赵志伟
徐宸科
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to CN201780089622.8A priority Critical patent/CN110546430A/zh
Priority to JP2020600055U priority patent/JP3228571U/ja
Priority to PCT/CN2017/104688 priority patent/WO2019061371A1/zh
Publication of WO2019061371A1 publication Critical patent/WO2019061371A1/zh
Priority to US16/831,512 priority patent/US11271362B2/en
Priority to US17/586,305 priority patent/US11769985B2/en
Priority to US18/232,919 priority patent/US20230396035A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • H01S5/0609Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Definitions

  • the present invention relates to the field of lasers, and in particular, to a method and a process for packaging a high power laser.
  • semiconductor lasers have excellent monochromaticity, small size, long life, high power density and high speed operation
  • semiconductor lasers in laser ranging, laser radar, laser communication, laser simulation weapons, automatic control , testing instruments and even medical beauty have been widely used, forming a broad market.
  • LED headlights have a higher density of light output and a smaller illumination angle, with an illumination distance of up to 600 meters, twice the former.
  • the package structure 100 includes a laser diode 104
  • the sub-adhesive substrate 102 is fixed on the circuit board 106 (such as a printed circuit board, PCB), and has at least two layout traces on the circuit board 106 as two electrodes (not shown), and The electrodes can be electrically connected to the laser diode 104.
  • the manner of electrical connection can be accomplished in a variety of known ways, such as wire bonds and the like.
  • the laser diode 104 can generate the laser beam 108 after the two electrodes provide a bias voltage.
  • the present invention provides a laser package structure.
  • the technical solution of the present invention is: a laser package structure, comprising a substrate; a laser element, fixed on the upper surface of the substrate, can emit a first laser beam; a light guiding structure, comprising a transparent heat conducting block and a reflection a mirror that optically shapes the horizontal direction light emitted by the laser element and emits light in a vertical direction; a wavelength conversion layer is formed on an upper surface of the light guiding structure, and the light guiding structure serves as a heat dissipation channel The heat transfer produced by the wavelength conversion layer conversion process.
  • the transparent heat conducting block is made by high precision and high thermal conductivity material, and the material has a thermal conductivity of 5 W/(mK) or more and a transmittance of 80 ⁇ 3 ⁇ 4@lmm or more.
  • the material may be a high thermal conductive glass, silica, sapphire or transparent ceramic.
  • the transparent heat conducting block has an incident surface, a reflective surface, and an exit surface, and the wavelength conversion layer is formed on the exit surface.
  • the light incident surface of the light guiding structure may be plated with a low refractive index antireflection film to reduce the interface light reflection loss, and the antireflection film has a refractive index of less than 1.5, specifically may be dioxide Silicon, magnesium fluoride, etc.
  • the light emitted by the laser element is incident on the light guiding structure, and the refractive index ⁇ ⁇ , n 2 of the material on both sides of the interface (air or transparent filling glue and the light incident surface of the light guiding structure) satisfy the relationship:
  • the incident surface of the transparent heat conducting block is provided with a microstructure lens facing the position of the laser element, and the laser beam is collimated to obtain a smaller illuminating angle light source.
  • the mirror surface of the light guiding structure is formed by forming a high reflectivity coating on a slope or a curved surface of the transparent heat conducting block, and the reflectivity is 90 ⁇ 3 ⁇ 4 or more, and the material may be Ag, Al, Au. Or other dielectric high-reflection film layer, and the like.
  • the number of reflecting surfaces of the light guiding structure is one or several, and the inclination angle of the mirror or the tangent line thereof is 30-60°, and the shape or angle of different reflecting surfaces may be different.
  • the angle between the exit direction of the light emitted by the laser element and the normal direction of the package structure is less than 30° after passing through the reflective surface.
  • the light guiding structure has a plurality of mirrors, and the angle of the slope is adjusted according to different application requirements.
  • the degree of overlap of the light spots of the plurality of laser elements is controlled to realize light sources of different illumination angles.
  • the package structure has two or more of the laser elements, and two or more can be realized by adjusting a bevel angle of a reflective layer of the light guiding structure and a distance of the reflective surface from the wavelength conversion layer.
  • the spot coincidence degree is over 50%.
  • the laser element portion is in direct contact with the light guiding structure to shorten the distance of the laser element to the mirror.
  • the bottom of the light guiding structure is stepped, narrow and wide, and the laser element is located below the step of the light guiding structure.
  • the wavelength conversion layer converts short-wavelength light emitted by the laser element into long-wavelength light, for example, converting blue or violet or near-ultraviolet light into green/yellow/orange/red light.
  • the wavelength conversion layer comprises a glass fluorescent sheet, a ceramic fluorescent sheet or a single crystal fluorescent sheet.
  • the light emitted by the laser element passes through the wavelength conversion layer, and the light emission angle is less than 90°, and the normal light intensity is the largest.
  • a high thermal conductivity combination is adopted between the wavelength conversion layer and the light guiding structure to achieve good heat dissipation, including SAB (Surface Activated Bonding) and ADB (Atomic Diffusion Bonding).
  • a transparent silica gel or a material having a thermal conductivity greater than > lW/(m «K) may also be used between the wavelength converting material and the light guiding structure.
  • the wavelength conversion layer is bonded to the light guiding structure and the upper surface of the top of the substrate to seal the laser element and the light guiding structure inside the substrate.
  • the height of the light guiding structure is controlled to be flush with the height of the substrate
  • the wavelength conversion layer is bonded to the light guiding structure and the upper surface of the substrate
  • the wavelength conversion layer directly seals the package structure as a cover plate, thereby simplifying the packaging process. ⁇ Reduces the interface in the light path conduction and improves light extraction efficiency.
  • the package structure further includes a transparent cover formed on the substrate to enclose the laser element, the conductive structure, and the wavelength conversion layer inside the substrate.
  • the non-light-emitting area of the lower surface of the cover plate is plated with a reflective layer to prevent the reflected light of the light emitted from the chip at the interface of the light-conducting structure from passing through the cover plate, and the light-emitting angle of the package is reduced.
  • the present invention provides a light-transmitting, heat-conducting light guiding structure, comprising a transparent heat-conducting block composed of a heat-dissipating material, the transparent heat-conducting block having an incident surface, a reflective layer and an exit surface, the transparent Thermal block After the light of the horizontally placed laser chip is light-shaped, the light is emitted in the vertical direction, and the same as the heat dissipation channel.
  • the transparent thermally conductive block has a thermal conductivity of >5 W/(nvK) and a transmittance of >80 ⁇ 3 ⁇ 4@1 mm.
  • the incident surface of the light guiding structure is provided with a microstructure lens for collimating the laser beam for obtaining a smaller illumination angle light source.
  • the mirror surface of the light guiding structure has a certain curvature mirror surface, and the divergent light is converted into parallel light to improve light source uniformity.
  • the bottom of the light guiding structure is stepped, and the chip can be buried inside, shortening the distance between the chip and the mirror, shortening the optical path of the light in the light guiding structure, and reducing the light loss.
  • the number of reflective surfaces of the light guiding structure is one or several, and the inclined angle of the reflecting surface or the tangent thereof ranges from 30 to 60°.
  • the present invention also provides a light guiding structure, comprising a transparent heat conducting block, the transparent heat conducting block having an incident surface, a reflective layer and an exit surface, wherein the transparent heat conducting block has a concave end opposite to the exit surface A reflecting surface is formed for light-shaping the light emitted from the horizontally disposed light-emitting element to become vertical light.
  • the transparent heat conductive block has a thermal conductivity of 5 W/(m.K) or more.
  • the light guiding structure has a stepped shape that is wide and narrow, and can embed the light emitting element inside, and shorten the distance from the light emitting element to the reflecting surface.
  • the incident surface of the light guiding structure is provided with a microstructure lens for collimating the laser beam for obtaining a smaller illumination angle light source.
  • the surface of the incident surface of the transparent heat conductive block is plated with an anti-reflection film.
  • the antireflection layer film has a refractive index of 1.5 or less.
  • the transparent heat conducting block has two or more reflecting surfaces.
  • the reflecting surface has a certain curvature, and converts the divergent light into parallel light to improve the light uniformity of the light source.
  • the angle of inclination of the reflecting surface ranges from 30 to 60°.
  • the reflective surface is plated with a reflective film having a reflectance of 90% or more.
  • the light guiding structure can perform light shaping of the light on which the LD chip is horizontally placed, and then emits light in a vertical direction.
  • the upper surface of the light guiding structure is waved
  • it can also be used as a heat dissipation channel to derive the heat generated by the wavelength conversion material down-conversion process, and the light guide structure can be adjusted to achieve small-angle illumination.
  • the above laser package structure can be applied to a headlight, a mining lamp, a laser television, a projector, or the like.
  • the present invention provides a laser package structure including at least the following technical effects.
  • the light source device has high thermal conductivity and good heat dissipation performance, reduces the influence of heat on the laser light emission, and improves the reliability of the package body.
  • the heat generated by the wavelength conversion material down conversion process is derived.
  • a micro-structured lens is added to the side of the light-guiding structure or the mirror surface is curved to collimate the divergent laser beam to obtain a smaller illumination angle light source.
  • 1 is a schematic view showing a package structure of a known side-emitting laser diode.
  • FIG. 2 is a schematic view of a surface-emitting laser of a tubular package of a known transistor appearance.
  • FIG 3 is a first embodiment of a package structure of the present invention.
  • 4 is a second embodiment of a package structure of the present invention.
  • 5 is a third embodiment of a package structure of the present invention.
  • FIG. 6 is a fourth embodiment of a package structure of the present invention.
  • FIG. 7 is a fifth embodiment of a package structure of the present invention.
  • 9 is a seventh embodiment of a package structure of the present invention.
  • 10 to 11 are schematic views showing a manufacturing process of the package structure shown in FIG. 5.
  • FIG. 12 is an application embodiment of the present invention.
  • 100 package structure
  • 102 sub-adhesive substrate
  • 104 laser element
  • 106 circuit board
  • 122 metal housing; 124: window; 126: space; 130: metal base; 130a : projection; 13 2: laser element; 134: sub-adhesive substrate; 150: electrode; 210: substrate; a lower portion of the bottom of the substrate; 212: a high portion at the bottom of the substrate; 213: a top surface of the substrate; 214: a cavity; 215: a side portion of the substrate; 216: a bottom portion of the substrate; 220: a laser element; 230: a light guiding structure; 231 : incident surface; 232: reflective surface; 233: exit surface; 240: wavelength long layer; 250: transparent cover; 251: non-light-emitting area of the lower surface of the transparent cover; 260: electrode connection; 300: application light source Module; 310: laser light source package; 320: module lens; 330: illumination area range.
  • the present embodiment provides a laser package structure including a substrate 210, a laser element 22 0, a light guiding structure 230, a light conversion layer 240, and a transparent cover 250.
  • the substrate 210 is a cup substrate, and is composed of a bottom portion 216 and a side portion 215, and a cavity 214 is constructed.
  • the bottom portion 216 is stepped and divided into a lower portion 211 and a high portion 212.
  • the substrate 210 is preferably made of a ceramic substrate such as A1 2 0 3 , A1N or the like, and an electric circuit is provided thereon.
  • the laser element 220 is placed horizontally on the bottom surface of the substrate 210, preferably directly on the high surface 212 of the bottom, and the light guiding structure 230 is disposed on the surface of the lower portion 211 of the bottom of the substrate.
  • the light guiding structure 230 is an optical element having high transmittance and high thermal conductivity, and the light of the horizontally placed laser element is light-shaped and then emitted into the vertical direction.
  • the main body of the light guiding structure 230 is a transparent heat conducting block, and the surface includes an incident surface 231, a reflecting surface 232 and an emitting surface 233, wherein the incident surface 231 faces the laser element 220, and the surface of the incident surface can be plated with a low refractive index.
  • the anti-reflection film is used to reduce the reflection loss of the interface light
  • the reflective layer 232 is a tilted high-reflection mirror surface for optically shaping the light beam L1 emitted from the laser element into a vertical direction beam L2 from the exit surface 233.
  • the transparent heat conducting block is made of high transmittance and high thermal conductivity material, preferably having a thermal conductivity of 5 W/(m*K) or more and a transmittance of 80% @1 mm or more.
  • the material may be High thermal conductivity glass, silica, sapphire, transparent ceramics, etc.
  • the antireflection film has a refractive index of less than 1.5, and the material may be silica, magnesium fluoride or the like.
  • the light emitted from the laser element 220 is incident on the light guiding structure 230, and the interface is made of two sides.
  • the material (air or transparent filler in the cavity 214 and the light incident surface of the light guiding structure) refractive index ⁇ ⁇ , n 2 satisfy the relationship:
  • the mirror surface 232 of the light guiding structure is formed by plating a high reflectivity on the slope of the transparent heat conducting block, and the material may be Ag, Ah Au or the like. Dielectric high-reflection film layer, etc.
  • the tilt angle ⁇ of the mirror surface 232 ranges from 30 to 60°, and the light exits through the reflective surface 2 32 and It is preferable that the angle of the normal direction of the package is less than 30°.
  • the light conversion layer 240 is disposed on the light exit surface 233 of the light guiding structure 230 and is in direct contact with the light guiding structure 230.
  • the wavelength conversion layer 240 can use a glass fluorescent sheet, a ceramic fluorescent sheet, a single crystal fluorescent sheet or the like to convert short-wavelength light emitted from the laser element 220 into a wavelength-enhancing light, for example, convert blue or violet or near-ultraviolet light into green/yellow/orange /Red light.
  • the wavelength conversion layer 240 and the light guiding structure 230 are combined by a high thermal conductivity to achieve good heat dissipation, and the method includes SAB (Surface Activated
  • the wavelength conversion layer 240 and the light guiding structure 230 may also be bonded by a transparent material having a high thermal conductivity, and the thermal conductivity is preferably 1 W/(m*K) or more.
  • the laser beam L1 emitted from the laser element 220 passes through the wavelength conversion layer 240, and the laser beam L2 emits light at an angle of less than 90°, and the normal light intensity is the largest.
  • a transparent cover 250 is disposed on the top 213 of the substrate 210 for sealing all of the components within the substrate cup.
  • the package may be sealed by a silicone or Au-Sn eutectic between the transparent cover 250 and the bowl of the substrate.
  • the transparent cover material may be glass, quartz, sapphire, transparent ceramic or the like. It should be noted that it is not limited to the use of a transparent cover to seal the various components on the substrate. Some embodiments may also fill the substrate 210 with silicone to cover all of the components to protect all components on the substrate 210.
  • the package body can be horizontally placed on the ceramic substrate platform, and the process of the solid crystal bonding wire is simple; the horizontal direction of the laser component is emitted by using a light guiding structure with high transmittance and high thermal conductivity. After light is light-shaping, it becomes a vertical direction of light, which enhances light-emitting efficiency; the wavelength conversion layer directly and the light-guiding structure Contact, the light guiding structure can be used as a heat dissipation channel to derive the heat generated by the wavelength conversion material conversion process.
  • the overall heat dissipation capability of the package is much higher than that of the TO package, and the same angle can achieve small angle illumination.
  • the light guiding structure 230 of the embodiment is located at a central position of the substrate 210, and a plurality of mirror surfaces 232a, 232b and the like are designed inside, corresponding to the multi-laser chip package. Increase the overall brightness of the package by a factor of two.
  • the shape or angle of the different reflecting surfaces 232a, 232b may be different, and the tilt angle a of the reflecting mirror may range from 30 to 60 degrees.
  • the angle between the exit direction of the light passing through the reflecting surface and the normal direction of the package is less than 30°.
  • the slope angle ⁇ and the distance of the reflection slope from the wavelength conversion layer are adjusted to achieve a degree of coincidence of two or more spots of 50% or more.
  • the slope angle ⁇ of the mirror can be adjusted according to different application requirements to control the overlapping degree of the light spots of the plurality of laser elements, and realize the light sources with different illumination angles. Specifically: the smaller the ⁇ angle value is, the higher the spot overlap ratio is. On the contrary, the larger the ⁇ angle value is, the higher the spot overlap ratio is.
  • the reflective slope is adjusted (the intersection of the center ray and the oblique surface emitted by the laser element as a reference point) and wavelength conversion.
  • the distance of the layers controls the degree of overlap of the light spots of the plurality of laser elements: the larger the distance, the higher the overlap ratio of the spots, and the smaller the distance, the smaller the overlap. The larger the ratio of the spot overlap of two or more laser elements, the smaller the angle of the light source is obtained.
  • the light incident surface 231 of the light guiding structure 230 of the present embodiment is provided with a microstructure lens 234 at a position facing the laser element, and the laser beam emitted from the laser element.
  • L1 is collimated by the microstructure lens 234 to form a parallel light beam L1', thereby obtaining a smaller illumination angle light source L2.
  • the light guiding structure 230 of the present embodiment has a stepped shape that is wide and narrow, and is recessed at a position flush with the laser element 220, so that the laser element is formed.
  • the portion 220 is buried inside the light guiding structure, directly contacts the lower side surface 231b of the light guiding structure 230, and enters the inside of the light guiding structure from 231b, shortens the distance of the laser element 220 to the mirror surface 232, and shortens the laser beam in the light guiding structure.
  • the optical path within 230 reduces the light loss.
  • the size of the upper portion of the light guiding structure is larger than the size of the lower portion, and the wavelength conversion layer 250 directly contacts the upper surface 233 of the light guiding structure to ensure that the heat dissipation area of the wavelength converting layer is sufficiently large, so that the wavelength can be quickly converted.
  • the reflective mirror surface of the light guiding structure 230 of the present embodiment is formed into a curved mirror surface, and the divergent light is converted into parallel light to improve the light uniformity of the light source.
  • the oblique angle of the tangential surface of the mirror surface 232a/232b ranges from 30 to 60°, and the angle between the exit direction of the light passing through the reflective surface and the normal direction of the package is less than 30°.
  • the non-light-emitting region 251 of the lower surface of the transparent cover 250 of the present embodiment is plated with a reflective layer to prevent the reflection of light from the laser element at the interface of the light-guiding structure.
  • the non-light-emitting area of the transparent cover is emitted to reduce the illumination angle of the package.
  • the upper surface 233 of the light guiding structure of the present embodiment is flush with the top surface 213 of the bowl, and the wavelength conversion layer 240 is the same as the upper surface of the light guiding structure.
  • 233 is attached to the upper surface 21 3 of the cup, and the wavelength conversion layer directly seals the package as a cover plate, which simplifies the packaging process, and can reduce the interface in the optical path conduction and improve the light extraction efficiency.
  • FIG. 10 and 11 are schematic views showing the manufacturing process of the package structure shown in FIG. 5.
  • a cup of the substrate 210 is provided; then, the laser element 220 is mounted on the substrate 210, and the bonding and bonding are performed; and then, a light guiding structure 230 is provided to be mounted on the surface of the substrate 210; The wavelength conversion layer 240 is formed on the light-emitting surface 233 of the light guiding structure 230, and finally the transparent cover 250 is mounted to seal the components on the substrate 210 to complete the packaging of the laser element.
  • a high thermal conductivity combination can be adopted between the wavelength conversion layer 240 and the light guiding structure 230 to achieve good heat dissipation, including SAB (Surface Activated Bonding) and ADB (Atomic Diffusion Bonding). It can also be bonded by a transparent material having a thermal conductivity greater than >1 W/(m*K); the package can be sealed between the transparent cover 250 and the substrate 210 by using a silica gel or an Au-Sn eutectic.
  • Small-angle laser sources have significant advantages in high-directional illumination or communication fields, such as headlights, high bay lights, fishing lights, navigation lights, projectors, laser televisions, etc., because small angle light sources are more susceptible to illumination in a given area.
  • Optical communication, etc. in the matrix light source module 300, multiple laser lights
  • the source 310a, 310b. 310c, etc. can be independently controlled by the circuit design, and the light emitted by the light source is processed by the optical system of the lens 32 0 or the mirror (not shown); in the illuminable range 330a, 330b. 330c, etc. Inside, implements lighting that requires a designated area.
  • the solution proposed in this embodiment can control the snoring light sources 330b, 330c to realize illumination only in the illumination area 330b. 330c, which not only satisfies the driving illumination of the vehicle, but also avoids the safety hazard caused by the strong light irradiation of the other party.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器封装结构及其导光结构(230),激光器的封装结构包括:基板(210);激光元件(220),固定在基板的上表面,可发射第一激光光束;导光结构,包括透明导热块和反射镜(232),对激光元件发出的水平方向光进行光整形后变成垂直方向的光出射;波长转换层(240),形成于导光结构的上表面,导光结构作为散热通道,将波长转换层转换过程产生的热导出。激光器的封装结构采用SMD封装,光源器件热导率高,散热性能好,减小热对激光器发光产生的影响,提升封装体的可靠性。

Description

一种激光器封装结构 技术领域
[0001] 本发明涉及激光器领域, 特别涉及一种高功率激光器的封装方法及工艺。
背景技术
[0002] 由于半导体激光器 (LD) 有着单色性好、 体积小、 寿命长、 高功率密度和高 速工作的优异特点, 半导体激光器在激光测距、 激光雷达、 激光通信、 激光模 拟武器、 自动控制、 检测仪器甚至医疗美容等方面已经获得了广泛的应用, 形 成了广阔的市场。 近年来, 半导体激光器在汽车照明领域的应用也备受关注, 成为继氙气灯、 LED车大灯之后的新宠。 与 LED车大灯相比, 激光车灯具有更高 密度的光输出和更小的发光角, 照射距离可达 600米, 是前者的两倍之远。
[0003] 图 1显示了公知边射型激光二极管 (edge-emitting Laser diode)的封装结构示意图 。 此封装结构 100包括一激光二极管 (Laser diode) 104
固定于一次粘着基板 (submOUnt)102上。 再者, 次粘着基板 102固定于电路板 106( 如印刷电路板, PCB)上, 且在电路板 106上有至少二布局线路 (layout trace)以作 为二个电极(未示出), 并且二个电极可电性连接至激光二极管 104。 基本上, 电 性连接的方式可以利用各种已知方式来完成, 例如线连接 (wire bond)等等。 再者 , 于二个电极提供一偏压后, 激光二极管 104即可产生激光光束 108。
技术问题
[0004] 目前大部分激光器封装主要采用 TO封装 (如图 2) , 然而尽管此类封装体积大 , 而对芯片工作产生热的散热通道却十分有限, 散热性能只能满足于小功率器 件。
问题的解决方案
技术解决方案
[0005] 为了克服现有技术的不足, 本发明提供一种激光器封装结构。
[0006] 本发明的技术方案为: 一种激光器的封装结构, 包括基板; 激光元件, 固定于 该基板的上表面, 可发射一第一激光光束; 导光结构, 包含透明导热块和反射 镜, 对所述激光元件发出的水平方向光进行光整形后变成垂直方向的光射出; 波长转换层, 形成于所述导光结构的上表面, 所述导光结构作为散热通道, 将 所述波长转换层转换过程产生的热导出。
[0007] 优选地, 所述透明导热块由高透过、 率高热导率材料精密加工制成, 其材料的 热导率为 5W/(m.K)以上, 透过率为 80<¾@ lmm以上, 具体的, 可以是高导热玻璃 、 二氧化硅、 蓝宝石或透明陶瓷等。
[0008] 优选地, 所述透明导热块具有入射面、 反射面和出射面, 所述波长转换层形成 于所述出射面之上。
[0010] 优选地, 所述导光结构的光入射面表面可通过镀低折射率的抗反射膜, 以降低 界面光反射损失, 所述抗反射膜折射率小于 1.5, 具体的可以是二氧化硅、 氟化 镁等。
[0011] 优选地, 所述激光元件出射的光在入射到导光结构吋, 界面两侧材料 (空气或 透明填充胶与导光结构光入射表面) 折射率 η ι、 n 2满足关系式:
Figure imgf000004_0001
<5% , 以保证光在材料导光结构界面的反射率 <5%。
[0012] 优选地, 所述透明导热块的入射面正对所述激光元件的位置设有微结构透镜, 对激光束进行准直, 获得更小发光角光源。
[0013] 优选地, 所述导光结构中反射镜面是由在所述透明导热块的斜面或曲面制作高 反射率镀层形成, 其反射率为 90<¾以上, 材料可以为 Ag、 Al、 Au或其它介电高 反射膜层等。
[0014] 优选地, 所述导光结构的反射面数量为一个或者若干个, 反射镜或者其切线的 倾斜角范围 30-60°, 不同反射面的形状或者角度可以不同。
[0015] 优选地, 所述激光元件出射的光经过反射面后出射方向与所述封装结构法线方 向的夹角小于 30°。
[0016] 优选地, 所述导光结构具有多个反射镜, 根据不同应用需求, 调整斜面角度而 控制多颗激光元件的出光光斑的交叠程度, 实现不同发光角的光源。
[0017] 优选地, 所述封装结构具有两个以上的所述激光元件, 可以通过调整导光结构 之反射层的斜面角度和反射面距离所述波长转换层的距离, 实现两个或者多个 光斑重合度达到 50%以上。
[0018] 优选地, 所述激光元件部分直接与所述导光结构接触, 缩短激光元件到反射镜 的距离。 在一些实施例, 所述导光结构的底部呈台阶状, 下窄上宽, 所述激光 元件位于所述导光结构的台阶下方。
[0019] 优选地, 所述波长转换层将所述激光元件发出的短波长光转换成长波长光, 例 如将蓝光或者紫光或者近紫外光转换成绿 /黄 /橙 /红光。
[0020] 优选地, 所述波长转换层包括玻璃荧光片, 陶瓷荧光片或者单晶荧光片。
[0021] 优选地, 所述激光元件出射的光经过所述波长转换层后发光角小于 90°, 并且 法向的光强度最大。
[0022] 优选地, 所述波长转换层与导光结构之间采用高导热的结合方式, 以实现良好 的散热, 包含 SAB (Surface Activated Bonding) 、 ADB(Atomic Diffusion Bonding)等方式。
[0023] 在一些实施例, 波长转换材料与导光结构之间亦可采用透明硅胶或者导热率大 于> lW/(m«K)的材料粘结。
[0024] 优选的, 所述波长转换层同吋与所述导光结构和所述基板顶部的上表面贴合, 从而将所述激光元件、 导光结构密封于所述所述基板内部。 例如控制所述导光 结构的高度与基板高度平齐, 所述波长转换层同吋与导光结构和基板上表面贴 合, 波长转换层直接作为盖板将封装结构密封, 简化封装制程, 同吋可减少光 路传导中的界面, 提升光取出效率。
[0025] 在一些实施例中, 所述封装结构还包括透明盖板, 形成于该基板之上, 将所述 激光元件、 导电结构和波长转换层封闭于所述基板内部。
[0026] 优选地, 所述盖板下表面非出光区域镀上反射层, 防止芯片出光在导光结构界 面的反射光透过盖板出射, 同吋减小封装体发光角。
[0027] 本发明同吋提供了一种具透光、 导热的导光结构, 包括由散热性材料构成的透 明导热块, 所述透明导热块具有入射面、 反射层和出射面, 所述透明导热块用 于对水平放置的激光芯片的光进行光整形后变成垂直方向的光出射, 同吋作为 散热通道。
[0028] 优选地, 所述透明导热块的热导率 >5W/(nvK), 透过率 >80<¾@ lmm。
[0029] 优选地, 所述导光结构的入射面设微结构透镜, 对激光束进行准直, 用于获得 更小发光角光源。
[0030] 优选地, 所述导光结构的反射镜面具有一定弧度镜面, 将发散的光转换成平行 光, 改善光源出光均匀性。
[0031] 优选地, 所述导光结构的底部呈阶梯状, 可将芯片埋入到内部, 缩短芯片到反 射镜的距离, 缩短光在导光结构内的光程, 减小光损失。
[0032] 优选地, 所述导光结构的反射面数量为一个或者若干个, 反射面或者其切线的 倾斜角范围 30-60°。
[0033] 本发明还提供了一种导光结构, 包括透明导热块, 所述透明导热块具有入射面 、 反射层和出射面, 所述透明导热块之与所述出射面相对的一端部内凹形成反 射面, 用于对水平放置的发光元件出射的光进行光整形后变成垂直方向的光。
[0034] 优选地, 所述透明导热块的热导率为 5W/(m.K)以上。
[0035] 优选地, 所述导光结构呈上宽下窄的阶梯状, 能够将发光元件埋入到内部, 缩 短发光元件到反射面的距离。
[0036] 优选地, 所述导光结构的入射面设有微结构透镜, 对激光束进行准直, 用于获 得更小发光角光源。
[0037] 优选地, 所述透明导热块的入射面表面镀有抗反射膜。
[0038] 优选地, 所述抗反射层膜的折射率为 1.5以下。
[0039] 优选地, 所述透明导热块具有两个以上的反射面。
[0040] 优选地, 所述反射面具有一定弧度, 将发散的光转换成平行光, 改善光源出光 均匀性。
[0041] 优选地, 所述反射面的倾斜角范围 30-60°。
[0042] 优选地, 所述反射面镀有反射膜, 其反射率为 90%以上。
[0043] 上述导光结构可对水平放置 LD芯片的光进行光整形后变成垂直方向的光出射
, 避免芯片竖直放置给固晶焊线制程造成的困难, 此外, 导光结构上表面加波 长转换材料的情况下, 它还可作为散热通道, 将波长转换材料下转换过程产生 的热导出, 同吋调整导光结构设计可实现小角度发光。
[0044] 上述激光器封装结构可应用于车头灯、 工矿灯、 激光电视或投影仪等。
发明的有益效果
有益效果
[0045] 与现有技术相比, 本发明提供的一种激光器封装结构, 至少包括以下技术效果
[0046] (1) 采用 SMD封装, 光源器件热导率高, 散热性能好, 减小热对激光器发光 产生的影响, 提升封装体的可靠性。
[0047] (2) 使用高透过率高热导率的导光结构, 对激光元件发出的光进行光整形后 激发波长转换材料, 光出射高, 同吋导光结构可作为波长转换材料的散热通道
, 将波长转换材料下转换过程产生的热导出。
[0048] (3) 在导光结构侧边加上微结构透镜或者将反射镜面做成曲面, 对发散的激 光束进行准直, 可获得更小发光角光源。
[0049] (4) 在导光结构内部设计多个反射镜面, 对应多芯片封装, 使封装体整体亮 度呈倍数增加。
[0050] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0051] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0052] 图 1为公知边射型激光二极管的封装结构示意图。
[0053] 图 2为公知晶体管外观筒状封装的面射型激光示意图。
[0054] 图 3为本发明的封装结构第一实施例。
[0055] 图 4为本发明的封装结构第二实施例。 [0056] 图 5为本发明的封装结构第三实施例。
[0057] 图 6为本发明的封装结构第四实施例。
[0058] 图 7为本发明的封装结构第五实施例。
[0059] 图 8为本发明的封装结构第六实施例。
[0060] 图 9为本发明的封装结构第七实施例。
[0061] 图 10~11为图 5所示的封装结构的制作过程示意图。
[0062] 图 12为本发明的应用实施例。
[0063] 其中, 附图标记说明如下:
[0064] 100: 封装结构; 102: 次粘着基板; 104: 激光元件; 106: 电路板; 108、 120
: 激光光束
[0065] 122: 金属壳体; 124: 窗口; 126: 空间; 130: 金属底座; 130a: 凸出部; 13 2: 激光元件; 134: 次粘着基板; 150: 电极; 210: 基板; 211: 基板底部的低 部; 212: 基板底部的高部; 213: 基板的顶表面; 214: 腔体; 215: 基板的侧 部; 216: 基板的底部; 220: 激光元件; 230: 导光结构; 231 : 入射面; 232: 反射面; 233: 出射面; 240: 波长转长层; 250: 透明盖板; 251 : 透明盖板下 表面的非出光区域; 260: 电极连线; 300: 应用光源模组; 310: 激光光源封装 ; 320: 模组透镜; 330: 照明区域范围。
本发明的实施方式
[0066] 下面结合示意图对本发明的激光器封装结构进行详细的描述, 在进一步介绍本 发明之前, 应当理解, 由于可以对特定的实施例进行改造, 因此, 本发明并不 限于下述的特定实施例。 还应当理解, 由于本发明的范围只由所附权利要求限 定, 因此所采用的实施例只是介绍性的, 而不是限制性的。
[0067] 相关的术语诸如"于"或"在"或"之上"或"之下"或"上方"或"正放"或"竖放"或"倒 放"可以在本发明中用于描述如附图中所述的一个元件、 层或区与另一个元件、 层或区之间的相对位置关系。 应理解, 这些术语旨在包含除附图中所描述的方 位之外的装置的不同方位。
[0068] 本发明所使用的术语仅出于描述具体实施方式的目的, 而不是旨在限制本发明 。 如本发明所使用的, 单数形式"一"、 "一种 "和"所述"也旨在包括复数形式, 除 上下文清楚地表明之外。 应进一步理解, 当在本发明中使用术语"包含"、 "包括" 、 "含有 "吋, 用于表明陈述的特征、 整体、 步骤、 操作、 元件、 和 /或封装件的 存在, 而不排除一个或多个其他特征、 整体、 步骤、 操作、 元件、 封装件、 和 / 或它们的组合的存在或增加。
[0069] 除另有定义之外, 本发明所使用的所有术语 (包括技术术语和科学术语) 具有 与本发明所属领域的普通技术人员通常所理解的含义相同的含义。 应进一步理 解, 本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相 关领域中的含义一致的含义, 并且不应以理想化或过于正式的意义来理解, 除 本发明中明确如此定义之外。
[0070] 实施例 1
[0071] 如图 3所示, 本实施例提供一种激光器封装结构, 其包括基板 210、 激光元件 22 0、 导光结构 230、 光转换层 240和透明盖板 250。
[0072] 其中, 基板 210采用碗杯基板, 由底部 216和侧部 215构成, 并构建一个腔体 214 。 在本实施例中, 较佳的, 底部 216呈台阶状, 分为低部 211、 高部 212。 在本实 施例中基板 210优选采用陶瓷基板, 例如 A1 20 3、 A1N等材质, 其上设有电路。 激光元件 220水平放置于基底 210的底部表面上, 较佳的直接设置在底部的高部 表面 212, 导光结构 230设置在基板底部的低部 211表面上。
[0073] 在本实施例中, 导光结构 230为一高透过率、 高热导率的光学元件, 可将水平 放置的激光元件的光进行光整形后变成垂直方向的光出射。 具体的, 该导光结 构 230的主体为一透明导热块, 表面包括入射面 231、 反射面 232和出射面 233, 其中入射面 231正对着激光元件 220, 入射面表面可通过镀低折射率的抗反射膜 , 以降低界面光反射损失, 反射层 232为一倾斜高反射镜面, 用于对激光元件发 出的水平方向的光束 L1进行光整形后变成垂直方向的光束 L2, 从出射面 233射出 。 具体的, 透明导热块由高透过、 率高热导率材料精密加工制成, 优选的其热 导率为 5W/(m*K)以上, 透过率为 80% @ lmm以上, 材料可以是高导热玻璃、 二 氧化硅、 蓝宝石、 透明陶瓷等。 具体的, 抗反射膜折射率小于 1.5, 材料可以是 二氧化硅、 氟化镁等。 激光元件 220出射的光入射到导光结构 230, 界面两侧材 料 (腔体 214中的空气或透明填充胶与导光结构光入射表面) 折射率 η ι、 n 2满足 关系式:
Figure imgf000010_0001
<5% , 以保证光在材料导光结构界面的反射率 <5%, 导光结构的反射镜面 232由 在透明导热块的斜面制作高反射率镀层形成, 材料可以为 Ag、 Ah Au或其它介 电高反射膜层等。 在一些需要小发光角度的应用中, 例如车头灯、 工矿灯、 激 光电视、 投影仪, 反射镜面 232的倾斜角 α的取值范围为 30~60°, 光经过反射面 2 32后出射方向与封装体法线方向的夹角小于 30°为佳。
光转换层 240设置在导光结构 230的出光面 233上, 并直接与导光结构 230接触。 波长转换层 240可以采用玻璃荧光片, 陶瓷荧光片, 单晶荧光片等, 将激光元件 220发出的短波长光转换成长波长光, 例如将蓝光或者紫光或者近紫外光转换成 绿 /黄 /橙 /红光。 较佳的, 波长转换层 240与导光结构 230之间采用高导热的结合方 式, 以实现良好的散热, 其方式包含 SAB (Surface Activated
Figure imgf000010_0002
Bonding)等方式。 波长转换层 240与导光结构 230之间还可采用高导热率的透明材 料粘结, 其导热率为 lW/(m*K)以上为佳。 在实施例中, 激光元件 220出射的激光 束 L1经过波长转换层 240向外射出的激光束 L2的发光角小于 90°, 并且法向的光 强度最大。
[0075] 透明盖板 250设置在基板 210的顶部 213, 用于密封基板碗杯内的所有元件。 透 明盖板 250与基板的碗杯之间可以采用硅胶或者 Au-Sn共晶的方式使封装体密封 。 透明盖板材料可以是玻璃、 石英、 蓝宝石、 透明陶瓷等。 应该说明的, 并不 局限于采用透明盖板进行密封基板上的各个元件, 一些实施例也可将硅胶填充 于基板 210上覆盖住所有元件, 以保护基板 210上的所有元件。
[0076] 在本实例中, 封装体可在陶瓷基板平台上, 水平放置激光元件, 固晶焊线制程 简单; 使用高透过高率热导率的导光结构, 对激光元件发出的水平方向光进行 光整形后变成垂直方向的光出射, 提升出光效率; 波长转换层直接与导光结构 接触, 导光结构同吋可作为散热通道, 将波长转换材料转换过程产生的热导出
, 封装体整体散热能力远高于 TO封装, 同吋可实现小角度发光。
[0077] 实施例 2
[0078] 如图 4所示, 与实施例 1不同的是, 本实施例的导光结构 230位于基板 210的中心 位置, 其内部设计多个反射镜面 232a、 232b等, 对应多激光芯片封装, 使封装体 整体亮度呈倍数增加。 不同的反射面 232a、 232b的形状或者角度可以不同, 反射 镜面倾斜角 a的取值范围为 30~60°。 优选的, 光经过反射面后出射方向与封装体 法线方向的夹角小于 30°。 优选的, 调整斜面角度 α和反射斜面距离波长转换层 的距离, 实现两个或者多个光斑重合度达到 50%以上。
[0079] 在本实施例中, 可根据不同应用需求, 调整所述反射镜的斜面角度 α, 以控制 多颗激光元件的出光光斑的交叠程度, 实现不同发光角的光源。 具体地: α角度 数值越小光斑交叠比例越高, 反之 α角度数值越大光斑交叠比例越高; 调整反射 斜面 (以激光元件出射的中心光线与斜面相交点作为参考点) 与波长转换层的 距离控制多颗激光元件的出光光斑的交叠程度: 距离越大光斑交叠比例越高, 距离越小交叠越小。 两颗或多颗激光元件光斑交叠比例越大, 获得光源角度越 小。
[0080] 实施例 3
[0081] 如图 5所示, 与实施例 2不同的是, 本实施例的导光结构 230的入光面 231正对激 光元件的位置设置有微结构透镜 234, 当激光元件出射的激光束 L1通过微结构透 镜 234后进行准直形成平行光束 L1', 从而获得更小发光角光源 L2。
[0082] 实施例 4
[0083] 如图 6所示, 与实施例 3不同的是, 本实施例的导光结构 230呈上宽下窄的呈台 阶状, 在与激光元件 220齐平的位置内陷, 使得激光元件 220部分埋入到导光结 构内部, 直接与导光结构 230的下部侧面 231b接触, 并从 231b入射至导光结构内 部, 缩短激光元件 220到反射镜面 232的距离, 缩短激光束在导光结构 230内的光 程, 减小光损失。 进一步, 本实施例, 保持导光结构上部的尺寸大于下部的尺 寸, 波长转换层 250直接与导光结构的上表面 233接触, 保证波长转长层的散热 面积足够大, 从而可以快速将波长转换层转换过程产生的热导出, [0084] 实施例 5
[0085] 如图 7所示, 与实施例 3不同的是, 本本实施例的导光结构 230的构反射镜面做 成一定弧度镜面, 将发散的光转换成平行光, 改善光源出光均匀性。 在本实施 例中, 对于一些小发光角度的应用, 反射镜面 232a/232b切线的倾斜角范围 30-60° , 光经过反射面后出射方向与封装体法线方向的夹角小于 30°。
[0086] 实施例 6
[0087] 如图 8所示, 与实施例 3不同的是, 本实施例的透明盖板 250下表面非出光区域 2 51镀上反射层, 防止激光元件出光在导光结构界面的反射光透过透明盖板的非 出光区域出射, 减小封装体发光角。
[0088] 实施例 7
[0089] 如图 9所示, 与实施例 3不同的是, 本实施例控制导光结构的上表面 233与碗杯 的顶部表面 213平齐, 波长转换层 240同吋与导光结构上表面 233和碗杯上表面 21 3贴合, 波长转换层直接作为盖板将封装体密封, 简化封装制程, 同吋可减少光 路传导中的界面, 提升光取出效率。
[0090] 实施例 8
[0091] 图 10和 11显示了图 5所示的封装结构的制作过程示意图。 首先, 提供一碗杯基 板 210; 接着, 在基板 210上安装激光元件 220, 并进行固晶、 焊线; 再接着, 提 供一导光结构 230, 将其安装在基板 210的表面上; 然后在导光结构 230的出光面 233上制作波长转长层 240, 最后安装透明盖板 250, 从而将基板 210上的元件进 行密封, 完成激光元件的封装。
[0092] 在本实施例, 波长转换层 240与导光结构 230之间可以采用高导热的结合方式, 以实现良好的散热, 包含 SAB (Surface Activated Bonding) 、 ADB(Atomic Diffusion Bonding)等方式, 亦可采用导热率大于 >lW/(m*K)的透明材料粘结; 透 明盖板 250与基板 210之间可以采用硅胶或者 Au-Sn共晶的方式使封装体密封。
[0093] 实施例 9
[0094] 由于小角度光源更容易实现指定区域照射, 小角度激光光源在高指向性照明或 通信领域具有明显优势, 如车头灯、 工矿灯、 捕鱼灯、 航海灯、 投影仪、 激光 电视、 光通信等。 特别地, 如图 12所示, 在矩阵式光源模组 300中, 多颗激光光 源 310a、 310b. 310c等经过电路设计可独立控制其幵关, 光源出射光经过透镜 32 0或反射镜 (图中未画出) 光学***处理后; 在可照射范围 330a、 330b. 330c等 区域内, 实现在需要指定区域的照明。 具体的, 如车大灯应该用中, 在近距离 会车或遇到行人吋, 需要将对方行驶范围内的远光关闭, 保证道路交通安全。 本实施例提出的方案即可通过控制打幵光源 330b、 330c , 从而实现只在照明区域 330b. 330c中照明, 既满足自身行车照明, 又可避免对方受到强光照射带来的安 全隐患。
应当理解的是, 上述具体实施方案仅为本发明的部分优选实施例, 以上实施例 还可以进行各种组合、 变形。 本发明的范围不限于以上实施例, 凡依本发明所 做的任何变更, 皆属本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种激光器封装结构, 包括
基板;
激光元件, 固定于该基板的上表面, 可发射一第一激光光束; 导光结构, 包含透明导热块和反射镜, 对所述激光元件发出的水平方 向光进行光整形后变成垂直方向的光射出;
波长转换层, 形成于所述导光结构的上表面, 所述导光结构作为散热 通道, 将所述波长转换层转换过程产生的热导出。
[权利要求 2] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述透明 导热块的热导率为 5W/(m.K)以上, 透过率为 80<¾@ lmm以上。
[权利要求 3] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述透明 导热块的材料是高导热玻璃、 二氧化硅、 蓝宝石或透明陶瓷。
[权利要求 4] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述透明 导热块具有入射面、 反射面和出射面, 所述波长转换层形成于所述出 射面之上。
[权利要求 5] 根据权利要求 4所述的一种激光器封装结构, 其特征在于: 所述入射 面表面镀有抗反射膜, 其折射率小于 1.5。
[权利要求 6] 根据权利要求 4所述的一种激光器封装结构, 其特征在于: 所述激光 元件出射的光在入射到导光结构吋, 界面两侧材料折射率 η ι、 n 2满足 关系式:
'、-■一■■■ ¾2:
«■ ― '、.".'.· ,:, ,,¾
<5%。
[权利要求 7] 根据权利要求 4所述的一种激光器封装结构, 其特征在于: 所述透明 导热块的入射面正对所述激光元件的位置设有微结构透镜, 对激光束 进行准直, 获得更小发光角光源。
[权利要求 8] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述激光 元件出射的光在入射到所述导光结构吋, 其界面的反射率为 5%以下
[权利要求 9] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述反射 镜是由在所述透明导热块的斜面或曲面制作高反射率镀层形成, 其反 射率为 90%以上。
[权利要求 10] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述导光 结构的反射面数量为一个或者若干个, 反射镜或者其切线的倾斜角范 围 30-60。。
[权利要求 11] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述激光 元件射出的光经过反射镜后的出射方向与所述封装结构法线方向的夹 角小于 30°。
[权利要求 12] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述导光 结构具有多个反射镜, 根据不同应用需求, 调整所述反射镜的斜面角 度以控制多颗激光元件的出光光斑的交叠程度, 实现不同发光角的光 源。
[权利要求 13] 根据权利要求 12所述的一种激光器封装结构, 其特征在于: 具有两个 以上的所述激光元件, 各个所述激光元件发射的光斑重合度达到 50% 以上。
[权利要求 14] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述激光 元件部分直接与所述导光结构接触, 缩短激光元件到反射镜的距离。
[权利要求 15] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述波长 转换层将所述激光元件发出的短波长光转换成长波长光。
[权利要求 16] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述波长 转换层包括玻璃荧光片, 陶瓷荧光片或者单晶荧光片。
[权利要求 17] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述激光 元件出射的光经过所述波长转换层后发光角小于 90°, 并且法向的光 强度最大。
[权利要求 18] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述波长 转换层与所述导光结构之间采用高导热的结合方式。
[权利要求 19] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述波长 转换层与所述导光结构通过导热率大于 >lW/(m,K)的材料粘结。
[权利要求 20] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 所述波长 转换层同吋与所述导光结构和所述基板顶部的上表面贴合, 从而将所 述激光元件、 导光结构密封于所述所述基板内部。
[权利要求 21] 根据权利要求 1所述的一种激光器封装结构, 其特征在于: 还包括透 明盖板, 形成于该基板之上, 将所述激光元件、 导电结构和波长转换 层密封于所述基板内部。
[权利要求 22] 根据权利要求 21所述的一种激光器封装结构, 其特征在于: 所述盖板 下表面非出光区域镀上反射层, 防止芯片出光在导光结构界面的反射 光透过盖板出射, 同吋减小封装体发光角。
[权利要求 23] —种具透光、 导热的导光结构, 包括由散热性材料构成的透明导热块
, 所述透明导热块具有入射面、 反射层和出射面, 所述透明导热块用 于对水平放置的激光芯片的光进行光整形后变成垂直方向的光出射, 同吋作为散热通道。
[权利要求 24] 根据权利要求 23所述的导光结构, 其特征在于: 所述透明导热块的热 导率为 5W/(m.K)以上, 透过率为 80<¾@ lmm以上。
[权利要求 25] 根据权利要求 23所述的导光结构, 其特征在于: 所述导光结构呈上宽 下窄的阶梯状, 能够将发光元件埋入到内部, 缩短发光元件到反射镜 面的距离。
[权利要求 26] 根据权利要求 23所述的导光结构, 其特征在于: 所述入射面设有微结 构透镜, 对激光束进行准直, 用于获得更小发光角光源。
[权利要求 27] 根据权利要求 23所述的导光结构, 其特征在于: 所述反射面具有一定 弧度镜面, 将发散的光转换成平行光, 改善光源出光均匀性。
[权利要求 28] 根据权利要求 23所述的导光结构, 其特征在于: 所述导光结构的反射 面数量为一个或者若干个, 其倾斜角为范围 30-60°。
[权利要求 29] —种光源模组, 其特征在于: 包括前述权利要求 1~22所述的任意一种 激光器封装结构。
[权利要求 30] 根据权利要求 29所述的一种光源模组, 其特征在于: 所述光源模组应 用于车头灯、 工矿灯、 激光电视或投影仪。
PCT/CN2017/104688 2017-09-30 2017-09-30 一种激光器封装结构 WO2019061371A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780089622.8A CN110546430A (zh) 2017-09-30 2017-09-30 一种激光器封装结构
JP2020600055U JP3228571U (ja) 2017-09-30 2017-09-30 レーザー装置のパッケージ構造
PCT/CN2017/104688 WO2019061371A1 (zh) 2017-09-30 2017-09-30 一种激光器封装结构
US16/831,512 US11271362B2 (en) 2017-09-30 2020-03-26 Laser device and light guide member used with the same
US17/586,305 US11769985B2 (en) 2017-09-30 2022-01-27 Laser device and light guide member used with the same
US18/232,919 US20230396035A1 (en) 2017-09-30 2023-08-11 Laser device and light guide member used with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104688 WO2019061371A1 (zh) 2017-09-30 2017-09-30 一种激光器封装结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/831,512 Continuation-In-Part US11271362B2 (en) 2017-09-30 2020-03-26 Laser device and light guide member used with the same

Publications (1)

Publication Number Publication Date
WO2019061371A1 true WO2019061371A1 (zh) 2019-04-04

Family

ID=65900191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104688 WO2019061371A1 (zh) 2017-09-30 2017-09-30 一种激光器封装结构

Country Status (4)

Country Link
US (3) US11271362B2 (zh)
JP (1) JP3228571U (zh)
CN (1) CN110546430A (zh)
WO (1) WO2019061371A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181893A (ja) * 2019-04-25 2020-11-05 日亜化学工業株式会社 発光装置
CN111934193A (zh) * 2020-10-14 2020-11-13 山东元旭光电股份有限公司 一种ld芯片无机封装结构及其制备方法
WO2022008409A1 (en) * 2020-07-07 2022-01-13 Signify Holding B.V. Laser phosphor based pixelated light source
WO2022062916A1 (zh) * 2020-09-24 2022-03-31 深圳市中光工业技术研究院 光源装置和投影设备
WO2022116631A1 (zh) * 2020-12-01 2022-06-09 深圳市中光工业技术研究院 一种光源装置
JP2022549941A (ja) * 2019-09-30 2022-11-29 エイエムエス-オスラム インターナショナル ゲーエムベーハー レーザーパッケージおよびレーザーパッケージを備えたシステム
US11920752B2 (en) 2019-12-25 2024-03-05 Sony Group Corporation Light source device, headlight, display apparatus, and illumination apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228571U (ja) * 2017-09-30 2020-11-05 厦門市三安光電科技有限公司 レーザー装置のパッケージ構造
CN111162455A (zh) * 2020-01-03 2020-05-15 广东省半导体产业技术研究院 一种激光二极管封装结构与电子设备
CN113410750B (zh) * 2020-03-17 2022-07-12 潍坊华光光电子有限公司 一种双光束半导体激光器及制作方法
JP7373476B2 (ja) * 2020-09-08 2023-11-02 日本特殊陶業株式会社 発光装置および発光素子収容体
JP2024502701A (ja) 2020-12-20 2024-01-23 ルムス エルティーディー. 空間光変調器上のレーザ走査による画像プロジェクタ
US11490058B2 (en) * 2021-03-12 2022-11-01 Osram Opto Semiconductors Gmbh Optoelectronic light source and data glasses
CN117856044A (zh) * 2024-01-18 2024-04-09 绍兴上瑞光电科技有限公司 一种白光激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486542A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 光源装置及照明装置
CN103486458A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 照明装置
CN104075153A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
JP2017068923A (ja) * 2015-09-28 2017-04-06 株式会社小糸製作所 光源モジュール
CN107166179A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
CN207250931U (zh) * 2017-09-30 2018-04-17 厦门市三安光电科技有限公司 一种导光结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124587A1 (ja) * 2011-03-16 2012-09-20 シャープ株式会社 波長変換部材およびその製造方法、ならびに、発光装置、照明装置および前照灯
WO2013008361A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
CN103017033A (zh) * 2012-12-07 2013-04-03 康佳集团股份有限公司 一种双侧光式的背光模组
CN203965766U (zh) * 2014-05-28 2014-11-26 东莞光谷茂和激光技术有限公司 一种带有高亮度激光网点式导光板的背光模组
EP3189549B1 (en) * 2014-09-02 2019-06-12 Lumileds Holding B.V. A light emitting device
CN105425521A (zh) * 2015-12-23 2016-03-23 海信集团有限公司 光源装置及映像显示装置
JP6964611B2 (ja) * 2016-06-28 2021-11-10 ルミレッズ ホールディング ベーフェー 熱伝導性の蛍光取り出しドームを備えたレーザベース光源
JP6776765B2 (ja) * 2016-09-26 2020-10-28 日亜化学工業株式会社 発光装置
JP3228571U (ja) * 2017-09-30 2020-11-05 厦門市三安光電科技有限公司 レーザー装置のパッケージ構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486542A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 光源装置及照明装置
CN103486458A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 照明装置
CN104075153A (zh) * 2013-03-25 2014-10-01 东芝照明技术株式会社 固体照明装置
JP2017068923A (ja) * 2015-09-28 2017-04-06 株式会社小糸製作所 光源モジュール
CN107166179A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
CN207250931U (zh) * 2017-09-30 2018-04-17 厦门市三安光电科技有限公司 一种导光结构

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181893A (ja) * 2019-04-25 2020-11-05 日亜化学工業株式会社 発光装置
JP7389316B2 (ja) 2019-04-25 2023-11-30 日亜化学工業株式会社 発光装置
JP2022549941A (ja) * 2019-09-30 2022-11-29 エイエムエス-オスラム インターナショナル ゲーエムベーハー レーザーパッケージおよびレーザーパッケージを備えたシステム
US11920752B2 (en) 2019-12-25 2024-03-05 Sony Group Corporation Light source device, headlight, display apparatus, and illumination apparatus
WO2022008409A1 (en) * 2020-07-07 2022-01-13 Signify Holding B.V. Laser phosphor based pixelated light source
US11933462B2 (en) 2020-07-07 2024-03-19 Signify Holding B.V. Laser phosphor based pixelated light source
WO2022062916A1 (zh) * 2020-09-24 2022-03-31 深圳市中光工业技术研究院 光源装置和投影设备
CN111934193A (zh) * 2020-10-14 2020-11-13 山东元旭光电股份有限公司 一种ld芯片无机封装结构及其制备方法
CN111934193B (zh) * 2020-10-14 2021-01-05 山东元旭光电股份有限公司 一种ld芯片无机封装结构及其制备方法
WO2022116631A1 (zh) * 2020-12-01 2022-06-09 深圳市中光工业技术研究院 一种光源装置

Also Published As

Publication number Publication date
CN110546430A (zh) 2019-12-06
US20220149586A1 (en) 2022-05-12
US20230396035A1 (en) 2023-12-07
JP3228571U (ja) 2020-11-05
US11769985B2 (en) 2023-09-26
US20200227890A1 (en) 2020-07-16
US11271362B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2019061371A1 (zh) 一种激光器封装结构
US10465873B2 (en) Light emitting device, vehicle headlamp, illumination device, and laser element
US8330342B2 (en) Spherical light output LED lens and heat sink stem system
KR101847932B1 (ko) 발광모듈
JP5261380B2 (ja) 発光装置
US9791119B2 (en) Light emitting module and head lamp including the same
KR101276360B1 (ko) 개선된 광 시준을 갖는 발광 다이오드
CN107036033B (zh) 发光装置及照明***
CN207250931U (zh) 一种导光结构
JP2005513815A (ja) 発光ダイオード及び発光ダイオード・ランプ
JP2009088235A (ja) 発光装置および照明器具
TWM514537U (zh) 車用發光二極體頭燈
US8801234B2 (en) Light emitting module and optical wavelength converting member
CN109737354A (zh) 远近光一体的照明灯
US20210126423A1 (en) Laser diode packaging structure and light source module including the same
CN209279065U (zh) 一种远近光一体的激光照明灯
TW202107006A (zh) 用於智慧頭燈應用的led/雷射的混合光源
CN110748805B (zh) 一种照明光源***
CN109668112A (zh) 一种激光照明灯
CN215764914U (zh) 照明装置以及包含该照明装置的汽车外灯
CN209279068U (zh) 远近光一体的照明灯
CN209279064U (zh) 一种激光照明灯
TWI667157B (zh) 車用發光二極體頭燈
CN219912791U (zh) 发光单元和发光装置
CN209487933U (zh) 一种激光器封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020600055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926961

Country of ref document: EP

Kind code of ref document: A1