WO2019059318A1 - Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer - Google Patents

Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer Download PDF

Info

Publication number
WO2019059318A1
WO2019059318A1 PCT/JP2018/034925 JP2018034925W WO2019059318A1 WO 2019059318 A1 WO2019059318 A1 WO 2019059318A1 JP 2018034925 W JP2018034925 W JP 2018034925W WO 2019059318 A1 WO2019059318 A1 WO 2019059318A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
atom
general formula
independently
polymer
Prior art date
Application number
PCT/JP2018/034925
Other languages
French (fr)
Japanese (ja)
Inventor
司 臼田
祐介 ▲高▼平
森澤 義富
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019059318A1 publication Critical patent/WO2019059318A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/192Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/04Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/20Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule

Definitions

  • the present invention relates to a fluorine-containing compound, a fluorine-containing polymer containing a constituent unit derived from the fluorine-containing compound, and a method for producing the fluorine-containing polymer.
  • norbornene derivative a compound having a norbornene skeleton
  • the polymer containing the structural unit based on the norbornene derivative and the hydrogenated product thereof are excellent in the balance of various properties such as high glass transition temperature (high heat resistance), low water absorption, high light transmittance, etc. It is used in a wide variety of fields such as materials, semiconductor materials, and optical materials.
  • the fluorine-containing norbornene derivative containing a fluorine atom in the norbornene derivative and the polymer thereof are expected to be excellent in chemical durability, weather resistance and light transmittance as compared to the norbornene derivative containing no fluorine and the polymer thereof (Patent Document 1).
  • Non-patent document 1 a polymer obtained by ring-opening polymerization of a disubstituted norbornene compound (Non-patent document 1) in which a perfluoromethyl group is bonded to a carbon atom directly bonded to a norbornene skeleton or a disubstituted norbornene compound containing no fluorine atom by a metathesis reaction.
  • Non-Patent Document 2 has been reported.
  • Non-Patent Document 2 has been reported.
  • an object of the present invention is to provide a novel fluorine-containing compound which is a polysubstituted norbornene derivative having two or more norbornene skeletons and which contains a fluorine atom between the norbornene skeletons.
  • Another object of the present invention is to provide a novel polymer containing the above-mentioned fluorine-containing compound as a monomer and a method for producing the same.
  • the present invention relates to the following ⁇ 1> to ⁇ 7> as configurations for achieving the above-mentioned problems.
  • ⁇ 1> A fluorine-containing compound represented by the following general formula a.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, m is a natural number of 2 or more, n is 0 or 1.
  • Y is each independently CR 14 R 15 , O, S, NR 16 , PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
  • m is a natural number of 2 or more, n is 0 or 1 and
  • Each of x and v is a natural number representing the number of repetitions of the repeating unit.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, m is a natural number of 2 or more, n is 0 or 1 and u is a natural number representing the number of repetitions of the repeating unit.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, m is a natural number of 2 or more, n is 0 or 1 and x is a natural number representing the number of repetitions of the repeating unit.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, m is a natural number of 2 or more, n is 0 or 1 and v is a natural number representing the number of repetitions of the repeating unit.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
  • Q is an m-valent organic group containing a fluorine atom,
  • R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
  • m is a natural number of 2 or more, n is 0 or 1 and
  • Each of x and u is a natural number representing the number of repetitions of the repeating unit.
  • the fluorine-containing polymer can be easily produced by ring-opening polymerization or addition polymerization using a metathesis reaction, and the obtained fluorine-containing polymer has chemical durability and weather resistance. It is expected to have excellent conductivity, light transmission, transparency, liquid repellency, and a low dielectric constant.
  • the fluorine-containing compound according to the present invention is a fluorine-containing norbornene derivative represented by the general formula a.
  • Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 .
  • the fluorine-containing compound in the present invention can be synthesized, for example, by Diels-Alder reaction of a diene having a five-membered ring structure such as cyclopentadiene as described later and an olefin.
  • Y can be defined by the diene structure of the five-membered ring structure.
  • Y is preferably CH 2 , O or NH from the viewpoint of reactivity and availability, and CH 2 is particularly preferable.
  • Q is an m-valent organic group containing a fluorine atom.
  • the structure of the organic group is not particularly limited as long as Q contains one or more fluorine atoms.
  • Examples of the organic group include a hydrocarbon group containing a fluorine atom, and a hydrocarbon group containing a fluorine atom and a hetero atom other than a fluorine atom.
  • the hetero atom means an atom other than a carbon atom and a hydrogen atom, and preferably one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom and a chlorine atom It can be mentioned.
  • the fluorine-containing compound of the present invention is a compound having two or more norbornene skeletons.
  • the norbornene skeleton means a skeleton of bicyclo [2.2.1] hept-2-ene, but the position of Y in the general formula a may contain a hetero atom.
  • the hetero atom includes an oxygen atom, a sulfur atom, a nitrogen atom and a phosphorus atom.
  • a fluorine-containing compound having three or more norbornene skeletons can be obtained by appropriately having a quaternary carbon atom or a tertiary carbon atom in the structure of Q. Further, the fluorine-containing compound having three or more norbornene skeletons can be obtained not only by carbon atoms but also by containing, for example, Si and N in the main skeleton of Q.
  • a cyclic structure it may have an arenepolyyl group, a cycloalkanepolyyl group, and the like.
  • the arenepolyyl group means a polyvalent group corresponding to a residue obtained by removing two or more hydrogen atoms bonded to a carbon atom or the like forming an aromatic ring in an aromatic compound.
  • the aromatic compound may be either a homoarene which is a carbocyclic ring compound or a heteroarene which is a heterocyclic ring compound.
  • divalent groups such as phenylene group, biphenylene group and naphthylene group
  • trivalent groups such as benzenetriyl group and naphthalenetriyl group
  • tetravalent groups such as benzenetetrayl group and naphthalenetetrayl group
  • cycloalkanepolyyl group means a polyvalent group corresponding to a residue obtained by removing two or more hydrogen atoms bonded to a carbon atom forming a cycloalkane.
  • a divalent group such as a cyclopentadiyl group, a cyclohexanediyl group, a trivalent group such as a cyclopropanetriyl group, a cyclobutanetriyl group, a cyclobutanetriyl group, a cyclopentanetriyl group, a cyclohexanetriyl group, a cyclopropanetetrayl group
  • tetravalent groups such as cyclobutanetetrayl group, cyclopentanetetrayl group and cyclohexanetetrayl group.
  • the cyclic structure in the structure of Q is not limited to a single ring, and may be a polycyclic structure in which a plurality of rings are linked.
  • the polycyclic structure may be a fused ring or a spiro ring.
  • these cyclic structures are not limited to carbocyclic compounds, and may be heterocyclic compounds in which one or more carbon atoms are substituted with hetero atoms.
  • the hydrogen atoms forming the ring some or all of the hydrogen atoms may be substituted with halogen atoms.
  • one or more fluorine atoms may be contained in the structure of Q, and the number of fluorine atoms is not particularly limited as long as it is one or more. Also, the position of the fluorine atom is not particularly limited. Further, it may be a perfluoro compound in which all hydrogen atoms present in the structure of Q are substituted by fluorine atoms.
  • the carbon number of Q is preferably 1 to 100, and more preferably 2 to 60.
  • Q is preferably an m-valent organic group containing at least one of —CF 2 — and —CF 3 .
  • a plurality of these groups may be contained.
  • As the group further contained in Q for example, methylene group, fluoromethylene group, etheric oxygen atom, carbonyl group, ester group, thioether group, amino group, hydroxyl group, carboxyl group, alkoxy group, silyl group, nitrile group, and Although the group of these combination is mentioned, it is not limited to these.
  • the ends of the organic group represented by Q may all be bonded to the norbornene skeleton, or may be another structure.
  • the other structure is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, a hydroxyl group, a carboxyl group, a silanol group, a vinyl group, an aryl group, an ester group, an amino group and the like.
  • at least a part of hydrogen atoms in these groups may be substituted with a halogen atom.
  • R 11 to R 13 each independently represent a hydrogen atom, a halogen atom or a monovalent organic group.
  • R 11 to R 13 mean R 11 , R 12 and R 13 .
  • the halogen atom includes a fluorine atom, a chlorine atom and a bromine atom. Among them, a hydrogen atom or a fluorine atom is preferable from the viewpoint of easy availability.
  • a monovalent hydrocarbon group a monovalent hydrocarbon group containing a halogen atom, a monovalent hydrocarbon group containing a hetero atom, a monovalent hydrocarbon group containing a halogen atom and a hetero atomcan be mentioned.
  • the monovalent organic group a fluorine-containing hydrocarbon group having an etheric oxygen atom is preferable.
  • the carbon number of the monovalent organic group is preferably 1 to 200, more preferably 1 to 100, and still more preferably 1 to 20.
  • m is a natural number of 2 or more.
  • the value of m is determined by the structure of Q (the number of bonds).
  • m should be 2 or more, and the upper limit is not particularly limited, but is preferably 8 or less, more preferably 2 to 4 from the viewpoint of easy availability.
  • n 0 or 1.
  • a fluorine-containing compound is synthesized, for example, by a one-stage Diels-Alder reaction of a diene having a five-membered ring structure with an olefin, as shown in the following scheme, n is 0.
  • N can be made 1 by reacting the obtained compound again with a diene.
  • Y, Q, R 11 to R 13 and m are as described above.
  • R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 to R 17 means R 14 , R 15 , R 16 and R 17 .
  • the olefin to be a raw material may be an m-valent organic group in which Q is a fluorine atom, and R 11 to R 13 may be a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group may be further converted to another monovalent organic group after the Diels-Alder reaction.
  • a ladder-type polymer has less conformational change than a normal polymer and has a rigid structure, so that new physical properties and functions can be expected.
  • Y in the formula is preferably each independently CH 2 , O or NH.
  • R 11 to R 13 are preferably a hydrogen atom, a fluorine atom or a monovalent organic group, and more preferably a hydrogen atom, a fluorine atom or a monovalent fluorine-containing hydrocarbon group having an etheric oxygen atom.
  • Q is preferably a completely fluorinated divalent organic group or a completely fluorinated divalent organic group having an etheric oxygen atom, and a completely fluorinated divalent hydrocarbon group, or A fully fluorinated divalent hydrocarbon group having an etheric oxygen atom is more preferable, and a completely fluorinated bivalent alkylene group having 1 to 20 carbon atoms, or a completely fluorinated having an etheric oxygen atom Particularly preferred is a divalent alkylene group having 1 to 20 carbon atoms.
  • Y in the formula is preferably each independently CH 2 , O or NH.
  • R 11 to R 13 are preferably a hydrogen atom, a fluorine atom or a monovalent organic group, and more preferably a hydrogen atom, a fluorine atom or a monovalent fluorine-containing hydrocarbon group having an etheric oxygen atom.
  • Q is preferably a completely fluorinated trivalent organic group having 5 to 15 carbon atoms, or a fully fluorinated trivalent organic group having 5 to 15 carbon atoms having an etheric oxygen atom.
  • Examples of the fluorine-containing compound represented by the general formula a include the following compounds.
  • l is 1 to 5.
  • the fluorine-containing compound represented by the general formula a is used as a monomer, and a polymerization reaction is carried out to obtain a fluorine-containing polymer including the structure represented by the general formula I or II.
  • the symbols in the formula have the same meanings as the symbols in the general formula a.
  • x and v are natural numbers representing the number of repetitions of the repeating unit.
  • the polymerization reaction may be ring-opening polymerization (ring-opening metathesis polymerization, ROMP) by metathesis reaction, or addition polymerization such as radical polymerization or coordination polymerization.
  • ROMP ring-opening metathesis polymerization
  • addition polymerization such as radical polymerization or coordination polymerization.
  • the main chain double bond of the fluorine-containing polymer represented by the general formula I may be converted into a hydrogenated product by hydrogenation.
  • the fluorine-containing polymer obtained at this time will contain the structure represented by said general formula I '. Details of the hydrogen additive will be described later.
  • the ring-opening metathesis polymerization of the fluorine-containing compound represented by the general formula a is a fluorine-containing fluorine-containing compound having a structure represented by the general formula I by polymerization in the presence of a metal-carbene complex catalyst as shown in the following scheme. Polymers can be obtained.
  • Y, Q, R 11 to R 13 , m, n and x are respectively the same as those described above.
  • Cat is a catalyst which shows metathesis reaction activity.
  • [L] is a ligand
  • M is ruthenium, molybdenum or tungsten
  • a 1 and A 2 are each independently a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may contain a hetero atom, Each means.
  • geometric isomers (cis and trans) are also present during polymerization.
  • a dimer compound is produced from each of the above reaction intermediates, from which the polymerization proceeds to obtain a polymer.
  • geometric isomers exist in the dimer.
  • the resulting polymer may be formed by only one of the two bond types, or may be formed by both bond types.
  • a homopolymer obtained by polymerization using one kind of fluorine-containing compound (monomer) as a raw material is used, but copolymerization may be performed using two or more kinds of monomers as a raw material.
  • the copolymerization it is not particularly limited as long as at least one of the two or more monomers is a fluorine-containing compound represented by the general formula a, and the other monomers are not particularly limited as long as they are cyclic olefins. It may or may not have.
  • the other monomers it is more preferable to have a norbornene skeleton which is considered to be close to ring strain energy and highly reactive with the main monomer.
  • the fluorine-containing compound represented by the general formula a may be used as a main monomer or may be used as a comonomer.
  • alternating copolymer, block copolymer and random copolymer can be synthesized, and a desired copolymer can be obtained depending on the preparation ratio of monomers as raw materials and polymerization conditions. it can.
  • the molecular weight of the polymer is preferably 1,000 to 5,000,000 in view of mechanical properties and physical properties.
  • the molecular weight is a weight average molecular weight, and is measured under conditions of a polymer solution using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the repeating number of the repeating unit represented by x in the formula is preferably 2 to 10,000 from the viewpoint of mechanical properties and physical properties, more preferably 5 to It is 6,500.
  • the total number of repeating units present is preferably 2 to 10,000, more preferably 5 to 6,500.
  • the obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomeric materials, crosslinking agents, airgel materials and the like.
  • Metal-carbene complex compound Although the ring-opening metathesis polymerization reaction proceeds in the presence of a catalyst, it is not particularly limited as long as it is a catalyst that performs ring-opening metathesis polymerization.
  • the metal-carbene complex compound include a ruthenium-carbene complex, a molybdenum-carbene complex, or a tungsten-carbene complex (hereinafter, also collectively referred to as “metal-carbene complex”).
  • a metal-carbene complex compound having an olefin metathesis reaction activity plays a role as a catalyst in the process for producing a fluoropolymer, but means both those charged as a reagent and those generated in the reaction (catalytically active species) Do.
  • metal-carbene complex compounds are known to exhibit catalytic activity by dissociation of some of the ligands under reaction conditions, and to exhibit catalytic activity without dissociation of ligands.
  • the present invention is not limited in any way.
  • the metal in the metal-carbene complex compound is preferably ruthenium, molybdenum or tungsten.
  • ruthenium-carbene complexes those in which the central metal is ruthenium are generally referred to as "ruthenium-carbene complexes", for example, those described in Vougioukalakis, G. et al. C. et al. Chem. Rev. , 2010, 110, 1746-1787.
  • the ruthenium-carbene complex described in can be utilized.
  • ruthenium-carbene complexes commercially available from Aldrich or Umicore can be used.
  • ruthenium-carbene complex examples include bis (triphenylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) -3-methyl-2-butenylideneruthenium dichloride, 1,3-Diisopropylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dicyclohexylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole -2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole -2-ylid
  • the name starting with "Umicore” is a trade name of a product of Umicore.
  • the ruthenium-carbene complexes may be used alone or in combination of two or more. Furthermore, it may be supported on a carrier such as silica gel, alumina, polymer and the like as needed.
  • molybdenum-carbene complex or tungsten-carbene complex
  • tungsten-carbene complex for example, Grela, K. et al. (Ed) Olefin Metathesis: Theory and Practice, Wiley, 2014. Molybdenum-carbene complexes or tungsten-carbene complexes described in the above can be utilized.
  • a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, or Ximo can be used.
  • the molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Furthermore, it may be supported on a carrier such as silica gel, alumina, polymer and the like as needed.
  • Me means methyl
  • i-Pr means isopropyl
  • t-Bu means tertiary butyl
  • Ph means phenyl
  • a degassed monomer as the raw material monomer.
  • the degassing operation is not particularly limited, but is usually in contact with a molecular sieve or the like.
  • the above degassing and dehydrating operations are usually performed before contacting with the metal-carbene complex.
  • the monomer used as a raw material may contain a trace amount impurities (for example, peroxide etc.), you may refine
  • the purification method There is no particular limitation on the purification method. For example, it can be carried out according to the method described in the literature (Armarego, W. L. F. et al., Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier).
  • the molar ratio thereof is not particularly limited, but the compound which is the other monomer is usually 0.01 per 1 mol of the fluorine-containing compound represented by the general formula a as a standard. It is used in an amount of up to about 100 moles, preferably about 0.1 to 10 moles.
  • the metal-carbene complex may be introduced as a reagent or may be generated in situ.
  • a commercially available metal-carbene complex may be used as it is, or a non-commercially available metal-carbene complex synthesized from a commercially available reagent by a known method may be used.
  • metal-carbene complexes prepared from metal complexes which become precursors by known methods can be used in the present invention.
  • the amount of the metal-carbene complex to be used is not particularly limited, but it is usually 0.000001 (1 ppm) to 1 mol of the fluorine-containing compound represented by the general formula a as a reference among the monomers serving as a raw material
  • the amount is about 1 mole, preferably about 0.00001 (10 ppm) to 0.2 mole.
  • the metal-carbene complex to be used is generally charged as a solid into the reaction vessel, but may be charged or dissolved in a solvent.
  • the solvent used at this time is not particularly limited as long as it does not adversely affect the reaction, and an organic solvent, a fluorine-containing organic solvent, an ionic liquid, water and the like can be used alone or in combination. In these solvent molecules, part or all of the hydrogen atoms may be substituted with deuterium atoms.
  • the metal-carbene complex compound is preferably dissolved in the fluorine-containing compound represented by the general formula a.
  • organic solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1, 2 Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran (THF), dioxane, diethyl ether, glyme, diglyme and the like can be used.
  • aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene
  • aliphatic hydrocarbon solvents such as hexane and cyclohexane
  • dichloromethane, chloroform, 1, 2 Halogen solvents such as dichloroethane, chlorobenzene and o-
  • fluorine-containing organic solvent for example, hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, dichloropentafluoropropane and the like It can be used.
  • ionic liquid for example, various pyridinium salts, various imidazolium salts and the like can be used.
  • Hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene and the like, and mixtures thereof are preferred.
  • the solvent that has been degassed and dehydrated there is no particular limitation on the degassing operation, but freeze degassing may be performed.
  • the dehydration operation is not particularly limited, but is usually in contact with a molecular sieve or the like.
  • the degassing and dehydrating operations are usually carried out before contacting with the metal-carbene complex.
  • an olefin or diene can be used as a chain transfer agent for the purpose of controlling molecular weight and its distribution.
  • the olefin for example, ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like, or fluorine-containing olefins thereof can be used.
  • diene examples include non-conjugated dienes such as 1,4-pentadiene, 1,5-hexadiene and 1,6-heptadiene, and fluorine-containing non-conjugated dienes thereof.
  • non-conjugated dienes such as 1,4-pentadiene, 1,5-hexadiene and 1,6-heptadiene
  • fluorine-containing non-conjugated dienes thereof examples include non-conjugated dienes such as 1,4-pentadiene, 1,5-hexadiene and 1,6-heptadiene, and fluorine-containing non-conjugated dienes thereof.
  • olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.
  • the atmosphere in which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but in terms of prolonging the life of the catalyst, it is preferably under an inert gas atmosphere, and more preferably under a nitrogen or argon atmosphere. However, when a compound that becomes a gas under the reaction conditions is used as a raw material monomer, the reaction can be performed under these gas atmospheres.
  • the phase in which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but a liquid phase is usually used in terms of reaction rate. When the monomer used as a raw material is a gas under reaction conditions, it can be carried out in a gas-liquid two phase because it is difficult to carry out in the liquid phase.
  • a solvent when implementing in a liquid phase, a solvent can be used.
  • the same solvents as those used for dissolving or suspending the metal-carbene complex can be used.
  • the monomer used as a raw material contains the liquid thing under reaction conditions, it may be able to implement without a solvent (bulk polymerization).
  • the container for bringing the monomer into contact with the metal-carbene complex is not particularly limited as long as the reaction is not adversely affected.
  • a metal container or a glass container can be used.
  • a pressure-tight container capable of high airtightness is preferable.
  • the temperature at which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but the temperature can be usually in the range of -100 to 200 ° C., and 0 to 150 ° C. is preferable in terms of reaction rate.
  • the reaction does not start at low temperature, and rapid decomposition of the complex may occur at high temperature, so it is necessary to set the lower limit and the upper limit of the temperature appropriately. It is usually carried out at a temperature below the boiling point of the solvent used.
  • the time for contacting the monomer with the metal-carbene complex is not particularly limited, but it is usually carried out in the range of 1 minute to 48 hours.
  • the pressure at which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but may be under pressure, normal pressure or reduced pressure. Usually, it is about 0.001 to 10 MPa, preferably about 0.01 to 1 MPa.
  • the molecular weight of the obtained polymer can be made into a target one by appropriately adjusting reaction conditions such as the preparation ratio of monomers, the above-mentioned reaction temperature, reaction time, reaction pressure and the like.
  • an inorganic salt, an organic compound, a metal complex or the like may be coexistent as long as the reaction is not adversely affected.
  • the mixture of the monomer and the metal-carbene complex may be stirred to such an extent that the reaction is not adversely affected.
  • a mechanical stirrer, a magnetic stirrer or the like can be used as a method of stirring.
  • the target polymer may be isolated by a known method.
  • an isolation method for example, in the case of a solution, the reaction solution is drained into a poor solvent under stirring to precipitate a hydrogenated polymer to form a slurry, which is recovered by filtration, centrifugation, decantation, etc.
  • the steam stripping method which blows in steam to solution and precipitates a polymer, the method of removing a solvent directly from the reaction solution by heating etc., etc. are mentioned, and, in the case of a slurry, it is filtration method, centrifugation, decantation method etc Methods of recovery etc. may be mentioned.
  • column chromatography, recycle preparative HPLC, etc. may be mentioned, and these can be used alone or in combination as needed.
  • the target substance obtained by this reaction can be identified by the same known method as a general polymer compound.
  • a general polymer compound For example, 1 H-, 19 F-, 13 C-NMR, GPC, static light scattering, SIMS, GC-MS and the like can be mentioned, and these can be used alone or in combination as needed.
  • SIMS SIMS
  • GC-MS GC-MS and the like
  • two or more monomers as a copolymer, it is possible to impart various properties as compared to homopolymers.
  • the ratio of the two or more unit structures constituting the copolymer depends on the preparation ratio of the monomers, but is generally represented by the general formula a as a standard Assuming that the number of repeating units derived from fluorine-containing is 1, the number of repeating units derived from other cyclic olefins is about 0.01 to 100, and preferably about 0.1 to 10.
  • the hydrogenated product of the fluorine-containing polymer (ring-opening metathesis polymer) represented by the general formula I in the present invention is obtained by hydrogenating the main chain double bond of the fluorine-containing polymer containing the structure represented by the general formula I And includes the structure represented by the general formula I ′.
  • the conversion (hydrogenation) of hydrogenation of the constituent unit of the fluorine-containing polymer represented by the general formula I to the constituent unit of the fluorine-containing polymer represented by the general formula I ′ is preferably 50% or more It is 100% or less, more preferably 80% or more and 100% or less.
  • the symbols in the formulas are as described above.
  • the fluorine-containing polymer represented by the general formula I contains a large number of main chain double bonds which absorb light at a particular wavelength, particularly at a wavelength in the ultraviolet range, the light transmission to the wavelength in the ultraviolet range is obtained. There is a risk that the optical characteristics may be impaired.
  • the light transmittance can be controlled to the required transmittance by adding (adding) a hydrogen atom to the main chain double bond of the ring-opening metathesis polymer to form a saturated bond. Further, when the amount of double bonds contained in the fluorine-containing polymer represented by the general formula I is large, the refractive index of the polymer is increased, and when the amount of saturated bonds is increased by hydrogenation, the refractive index is decreased. it can.
  • the refractive index can be arbitrarily adjusted by increasing or decreasing the rate of addition of hydrogen atoms (hereinafter sometimes referred to as the hydrogen addition rate).
  • these main chain double bonds limit the free movement of the polymer by having a geometrically planar structure. That is, if there are many double bonds, the glass transition temperature becomes high, and the heat resistance property is improved.
  • the double bond may deteriorate the stability against oxidation, and in order to prevent oxidation, the problem is solved by appropriately adding an antioxidant etc. which can be generally used for an olefin polymer. be able to.
  • the double bond may be oxidized to have an epoxide structure.
  • the amount of these double bonds also affects the mechanical strength and impact resistance of the polymer, and if the amount is large, the rigidity is enhanced, and if double bonds are converted to saturation bonds, flexibility is achieved. And impact resistance can be increased.
  • the hydrogenation ratio of the main chain double bond can be arbitrarily determined by the balance of polymer physical properties such as light transmittance, heat resistance, weather resistance, mechanical strength, and impact resistance.
  • the molecular weight of the ring-opened metathesis polymer hydrogenated substance is preferably 1,000 to 5,000,000 from the viewpoint of mechanical properties and physical properties.
  • the said molecular weight is a value represented by a weight average molecular weight, and is measured on conditions of a polymer solution using GPC.
  • the number of repeating units of the repeating unit represented by u in the formula is 2 to 10,000, in terms of mechanical properties and physical properties. And more preferably 5 to 6,500.
  • the total number of repeating numbers of a plurality of repeating units is preferably 2 to 10,000, more preferably 5 to 6,500. .
  • the obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomer materials, airgel materials and the like.
  • the fluorine-containing compound represented by the general formula a can be obtained by addition polymerization to obtain a fluorine-containing polymer including the structure represented by the general formula II.
  • the symbols in the formula are as described above.
  • polymerization as in the ring opening metathesis polymerization, it may be a homopolymer using only one kind of the fluorine-containing compound represented by the general formula a, or may be copolymerized using two or more kinds of monomers as a raw material Good.
  • the type of repeating unit to be a structural moiety not represented by General Formula II when carrying out the copolymerization is not particularly limited as long as it does not excessively inhibit the effect of the present invention.
  • Such a repeating unit is usually preferably a repeating unit derived from a copolymerizable vinyl compound, and preferable examples of the vinyl compound include ⁇ such as ethylene, propylene, 1-butene, 1-hexene and the like.
  • cyclic olefins styrenes, cyclic olefins etc.
  • styrenes cyclic olefins etc.
  • it is preferable to adopt a cyclic olefin and in particular, it is preferable to adopt a cyclic olefin which can form the same cyclic skeleton as that of the general formula II after polymerization.
  • alternating copolymer, block copolymer and random copolymer can be synthesized, and a desired copolymer can be obtained depending on the preparation ratio of monomers as raw materials and polymerization conditions. it can.
  • the molecular weight of the polymer is preferably 1,000 to 5,000,000 in view of mechanical properties and physical properties.
  • the molecular weight is a weight average molecular weight, and is measured under the conditions of a polymer solution using GPC.
  • the repeating number of the repeating unit represented by v in the formula is preferably 2 to 10,000 from the viewpoint of mechanical properties and physical properties, more preferably 5 to It is 6,500.
  • the total number of repeating units of a plurality of repeating units is preferably 2 to 10,000, more preferably 5 to 6,500.
  • the obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomer materials, airgel materials and the like.
  • a fluorine-containing polymer including a structure represented by the general formula II can be obtained.
  • the fluorine-containing polymer obtained is a fluorine-containing polymer (homopolymer) represented by the general formula II when the monomer is only the fluorine-containing compound represented by the general formula a, and plural kinds of monomers are used.
  • a fluorine-containing copolymer (copolymer) containing the structure represented by the general formula II is obtained.
  • one kind of fluorine-containing compound represented by the general formula a may be used, or a plurality of compounds having different structures may be used in combination as another monomer, which may be appropriately determined according to the desired polymer structure.
  • the polymerization method may, for example, be radical polymerization, cationic polymerization, anionic polymerization or coordination polymerization, among which radical polymerization or coordination polymerization is preferred.
  • the fluorine-containing polymer containing the structure represented by the general formula II can be obtained by a known method using the fluorine-containing compound represented by the general formula a. Among them, the method of addition polymerizing the above-mentioned fluorine-containing compound. As the conditions for addition polymerization, conditions well known to those skilled in the art can be appropriately optimized and adopted.
  • the ratio of the two or more unit structures constituting the copolymer depends on the preparation ratio of the monomers, but is generally represented by the general formula a as a standard Assuming that the number of repeating units derived from fluorine is one, the number of repeating units derived from other olefins is about 0.01 to 100, and preferably about 0.1 to 10.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the fluorine-containing polymer are determined using a standard polymethyl methacrylate sample of known molecular weight from the chromatogram obtained by the GPC apparatus (HLC-8220 manufactured by Tosoh Corporation). It calculated
  • Example 1-1 Diels-Alder reaction of fluorine-containing diene (1) and cyclopentadiene Dicyclopentadiene (5.20 g, 39.4 mmol) in a stainless steel (SUS 316) high-pressure miniature bomb, Table 1 below The fluorinated diene (10.0 g, 39.4 mmol) and hydroquinone (0.13 g, 1.18 mmol) were charged. Next, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 200 ° C. for 3 hours.
  • reaction contents were dissolved in dichloromethane and transferred to a 50 mL round bottom flask and then the solvent was evaporated under reduced pressure. After adding 20 mL of methanol to the concentrate and dissolving under heating and refluxing, it was ice-cooled. The precipitated crystals were filtered under reduced pressure and dried at 60 ° C. under reduced pressure to obtain 6.70 g of a compound represented by 2N-PF4 in a yield of 44%.
  • Example 1-2 Diels-Alder reaction of fluorine-containing diene (2) and cyclopentadiene Dicyclopentadiene (2.99 g, 22.6 mmol) in a stainless steel (SUS 316) high-pressure miniature bomb, Table 2 below The fluorinated diene (8.0 g, 22.6 mmol) and hydroquinone (0.075 g, 0.68 mmol) were charged. Next, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 180 ° C. for 5 hours.
  • reaction contents were dissolved in dichloromethane and transferred to a 50 mL round bottom flask and then the solvent was evaporated under reduced pressure. After adding 10 mL of methanol to the concentrate and dissolving under heating and refluxing, it was ice-cooled. The precipitated crystals were filtered under reduced pressure and dried at 60 ° C. under reduced pressure to obtain 7.51 g of a compound represented by 2N-PF6 in a yield of 68%.
  • Example 1-3 Diels-Alder reaction of fluorine-containing diene (3) and cyclopentadiene Dicyclopentadiene (7.13 g, 54.0 mmol) in a stainless steel (SUS 316) high-pressure miniature cylinder, Table 3 below
  • the fluorinated diene (15.0 g, 54.0 mmol) and hydroquinone (0.18 g, 1.62 mmol) were charged. Then, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 200 ° C. for 7 hours.
  • the reaction contents were transferred to a 30 mL round bottom flask, and then the monomer was purified by distillation under reduced pressure.
  • the compound represented by 2N-BVE was obtained in a yield of 6.85 g, 31%.
  • Example 1-6 Synthesis of Fluorine-Containing Norbornene (H) (1) Compound D is synthesized according to the procedure of Example 1-5.
  • Example 2-1 ROMP Homopolymerization of 2N-PF4 Under nitrogen atmosphere, Grubbs second generation catalyst (22 mg, 0.026 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution did. Next, the compound (2N-PF4) (2.0 g, 5.18 mmol) obtained in Example 1-1 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then the catalyst prepared above was prepared. The solution was added to 1 mL (corresponding to 0.1 mol% of the catalyst) and allowed to react at room temperature for 3 hours.
  • Example 2-2 ROMP Homopolymerization of 2N-PF4 in the Presence of a Chain Transfer Agent Under a nitrogen atmosphere, a Grubbs second generation catalyst (8.07 mg, 0.0095 mmol) was weighed into a 6 mL screw tube and dichloromethane ( The catalyst solution was prepared by dissolving in 0.59 mL). Next, the compound (2N-PF4) (1.0 g, 2.59 mmol) obtained in Example 1-1, dichloromethane (11 mL) and 1-hexene (323 ⁇ L, 2.58 mmol) were added to a 50 mL screw tube bottle.
  • Example 2-3 Addition Polymerization of 2N-PF4 Under nitrogen atmosphere, tricyclohexylphosphine (6.85 mg, 0.024 mmol) was weighed into a 6 mL screw tube bottle, dissolved in toluene (0.5 mL), and then tricyclohexyl phosphine was dissolved. The solution was prepared. Next, weigh palladium (II) acetylacetonate (Pd (acac) 2 , 7.72 mg, 0.025 mmol) into a 6 mL screw-tube bottle, add all the tricyclohexylphosphine solution prepared above, and then add toluene. The catalyst solution was prepared by washing with (0.5 mL).
  • Example 2-4 ROMP Homopolymerization of 2N-PF6 in the Presence of Chain Transfer Agent
  • Grubbs 1st generation catalyst (1.86 g, 2.3 mmol) was weighed in a 300 mL round bottom flask and each dichloromethane was used. The catalyst solution was prepared by dissolving in (186 mL).
  • 2N-PF6 (27.5 g, 56.6 mmol)
  • dichloromethane (832 mL) and hexafluorobenzene (113 mL) were charged into a 2 L round bottom flask and cooled with ice water.
  • Example 2-5 Addition polymerization of 2N-PF6 Under nitrogen atmosphere, tricyclohexylphosphine (6.98 mg, 0.024 mmol) is weighed into a 6 mL screw tube bottle and dissolved in toluene (0.4 mL) to obtain tricyclohexyl phosphine The solution was prepared. Next, weigh Pd (acac) 2 (7.70 mg, 0.025 mmol) in a 6 mL screw-tube, add all the tricyclohexylphosphine solution prepared above, and wash with toluene (0.1 mL) A catalyst solution was prepared.
  • the whole solidified reaction mixture was transferred to a 50 mL screw tube bottle, acetone (20 mL) was added, and the whole was vigorously stirred overnight.
  • the crushed and washed polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure.
  • the yield of the target polymer (PA-2N-PF6) was 56%.
  • the conversion of the raw material monomer (2N-PF4) was 70% from the 1 H-NMR measurement of the filtrate obtained by filtration of the polymer.
  • Example 2-6 ROMP Homopolymerization of 2N-BVE Under nitrogen atmosphere, Grubbs second generation catalyst (22 mg, 0.026 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution did. Next, the compound (2N-BVE) (2.0 g, 4.87 mmol) obtained in Example 1-3 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then the catalyst prepared above was prepared. The solution was added to 1.1 mL (corresponding to 0.1 mol% of the catalyst) and allowed to react at room temperature for 3 hours.
  • Example 2-7 ROMP Homopolymerization of 2N-BVE Diethyl aluminum chloride (0.87 M hexane solution, 0.5 mL) and toluene (4.5 mL) were weighed into a 10 mL screw tube under a nitrogen atmosphere, and then 0. A 087 M solution of diethylaluminum chloride was prepared. Next, molybdenum pentachloride (3.5 mg, 0.013 mmol) was weighed into a 6 mL screw tube bottle and dissolved in toluene (0.8 mL) to prepare a molybdenum pentachloride solution.
  • Example 2-8 ROMP homopolymerization of 2N-BVE in the presence of a chain transfer agent Under nitrogen atmosphere, Grubbs second generation catalyst (27 mg, 0.032 mmol) was weighed into a 10 mL screw tube and dichloromethane (2 mL) The catalyst solution was prepared by Next, the compound (2N-BVE) (5.0 g, 12.19 mmol) obtained in Example 1-3, dichloromethane (50 mL) and 1-hexene (760 ⁇ L, 6.10 mmol) were added to a 100 mL screw tube bottle.
  • Example 2-9 ROMP Copolymerization of 2N-BVE Under nitrogen atmosphere, Grubbs second generation catalyst (11 mg, 0.013 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution. did. Next, the compound (2N-BVE) (0.1 g, 0.24 mmol) obtained in Example 1-3, NPF4 (0.69 g, 2.20 mmol), dichloromethane (10 mL) and 1-hexene (1. h).
  • each of v and z is a positive integer indicating the number of repetition of the repeating unit (hereinafter, the same applies).
  • AK-225 (30 mL, dichloropentafluoropropane: manufactured by AGC) was added and stirred, and then the organic phase was separated. AK-225 (30 mL) was added to the aqueous layer of the pre-liquid separation to re-extract, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase and stirred, and then insoluble matter was removed by filtration under reduced pressure. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by NDM-2PHVE. The yield was 16.0 g, and the yield was 81%.
  • ethyl vinyl ether 80 ⁇ L was added to the reaction solution to terminate the polymerization, and then 10 mL of dichloromethane was added to dilute the polymerization suspension.
  • the polymer suspension was continuously introduced into methanol (100 mL), and the precipitated polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure. The yield was 100%.
  • ROMP Homopolymerization of Fluorine-Containing Norbornene C Under a nitrogen atmosphere, a Grubbs second generation catalyst (5.7 mg, 0.0068 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to be a catalyst Prepare a solution. Next, Compound C (2.0 g, 1.35 mmol) obtained in Example 1-4 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then 1 mL of the catalyst solution prepared above ( Add catalyst (equivalent to 0.1 mol%) and react at room temperature for 3 hours.
  • ethyl vinyl ether (422 ⁇ L) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension.
  • the polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
  • ROMP Homopolymerization of Fluorine-Containing Norbornene E Under a nitrogen atmosphere, a Grubbs second generation catalyst (5.7 mg, 0.0068 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to be a catalyst Prepare a solution. Next, Compound E (2.0 g, 1.35 mmol) obtained in Example 1-5 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then 1 mL of the catalyst solution prepared above ( Add catalyst (equivalent to 0.1 mol%) and react at room temperature for 3 hours.
  • ethyl vinyl ether (422 ⁇ L) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension.
  • the polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
  • ethyl vinyl ether (422 ⁇ L) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension.
  • the polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
  • a fluorine-containing compound having two or more novel norbornene skeletons is obtained, and a fluorine-containing polymer having a desired structure or molecular weight is simply and efficiently obtained by ring-opening metathesis polymerization or addition polymerization of the compound.
  • a fluorine-containing polymer having a desired structure or molecular weight is simply and efficiently obtained by ring-opening metathesis polymerization or addition polymerization of the compound.

Abstract

The present invention pertains to a fluorine-containing compound represented by general formula a. In the formula, each Y is independently C14R15, O, S, NR16, or PR17, Q is an m-valent organic group containing a fluorine atom, R11-R13 are each independently a hydrogen atom, a halogen atom, or a monovalent organic group, R14-R17 are each independently a hydrogen atom or a C1-20 alkyl group, m is a natural number of 2 or more, and n is 0 or 1.

Description

含フッ素化合物、含フッ素重合体及び含フッ素重合体の製造方法Fluorine-containing compound, fluorine-containing polymer and process for producing fluorine-containing polymer
 本発明は、含フッ素化合物と、前記含フッ素化合物由来の構成単位を含む含フッ素重合体、及び前記含フッ素重合体の製造方法に関する。 The present invention relates to a fluorine-containing compound, a fluorine-containing polymer containing a constituent unit derived from the fluorine-containing compound, and a method for producing the fluorine-containing polymer.
 従来、ノルボルネン骨格を持つ化合物(以下、「ノルボルネン誘導体」と称する。)は、金属触媒によるメタセシス反応により開環重合させて重合体を得るためのモノマーとして広く使用されている。このノルボルネン誘導体に基づく構成単位を含む重合体及びその水素添加物は、高ガラス転移温度(高耐熱性)、低吸水性、高光線透過率等の諸特性のバランスに優れており、電気・電子材料、半導体材料、光学材料等の多種多様な分野に利用されている。 Conventionally, a compound having a norbornene skeleton (hereinafter, referred to as “norbornene derivative”) is widely used as a monomer for obtaining a polymer by ring-opening polymerization by a metal-catalyzed metathesis reaction. The polymer containing the structural unit based on the norbornene derivative and the hydrogenated product thereof are excellent in the balance of various properties such as high glass transition temperature (high heat resistance), low water absorption, high light transmittance, etc. It is used in a wide variety of fields such as materials, semiconductor materials, and optical materials.
 このノルボルネン誘導体にフッ素原子を含有させた含フッ素ノルボルネン誘導体およびその重合体は、フッ素を含まないノルボルネン誘導体およびその重合体に比べて化学耐久性、耐候性、光透過性に優れることが期待される(特許文献1)。 The fluorine-containing norbornene derivative containing a fluorine atom in the norbornene derivative and the polymer thereof are expected to be excellent in chemical durability, weather resistance and light transmittance as compared to the norbornene derivative containing no fluorine and the polymer thereof (Patent Document 1).
日本国特許第4752399号公報Japanese Patent No. 4752399
 上記含フッ素ノルボルネン誘導体に対し、ノルボルネン骨格を2以上有する含フッ素多置換ノルボルネン誘導体とすることで、化学耐久性、耐候性、光透過性、耐熱性、撥液性の向上や低誘電性の付与が期待される。
 しかしながら、従来フッ素原子を含んだオレフィン誘導体は反応が進みにくいという知見がある。ここで、ノルボルネン骨格に直接結合する炭素原子にペルフルオロメチル基が結合した2置換ノルボルネン化合物(非特許文献1)や、フッ素原子を含まない2置換ノルボルネン化合物をメタセシス反応により開環重合させた重合体(非特許文献2)が報告されている。しかしながら、2以上のノルボルネン骨格を有し、当該骨格の間にフッ素原子を含む含フッ素多置換ノルボルネン誘導体が製造された報告はなかった。
 そこで本発明では、ノルボルネン骨格を2以上有する多置換ノルボルネン誘導体であって、前記ノルボルネン骨格の間にフッ素原子を含む、新規な含フッ素化合物を提供することを目的とする。また、前記含フッ素化合物をモノマーとした新規な重合体及びその製造方法を提供することを目的とする。
Chemical durability, weather resistance, light transmittance, heat resistance, liquid repellency improvement and low dielectric property can be imparted to the above-mentioned fluorine-containing norbornene derivative by setting it as a fluorine-containing polysubstituted norbornene derivative having two or more norbornene skeletons. There is expected.
However, it has been found that conventionally, olefin derivatives containing a fluorine atom are difficult to react. Here, a polymer obtained by ring-opening polymerization of a disubstituted norbornene compound (Non-patent document 1) in which a perfluoromethyl group is bonded to a carbon atom directly bonded to a norbornene skeleton or a disubstituted norbornene compound containing no fluorine atom by a metathesis reaction. (Non-Patent Document 2) has been reported. However, there has been no report that a fluorine-containing polysubstituted norbornene derivative having two or more norbornene skeletons and containing a fluorine atom between the skeletons was produced.
Therefore, an object of the present invention is to provide a novel fluorine-containing compound which is a polysubstituted norbornene derivative having two or more norbornene skeletons and which contains a fluorine atom between the norbornene skeletons. Another object of the present invention is to provide a novel polymer containing the above-mentioned fluorine-containing compound as a monomer and a method for producing the same.
 前記課題を達成する構成として、本発明は下記<1>~<7>に関する。
<1> 下記一般式aで表される含フッ素化合物。
The present invention relates to the following <1> to <7> as configurations for achieving the above-mentioned problems.
<1> A fluorine-containing compound represented by the following general formula a.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 ただし、上記式中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1である。
However, the symbols in the above formula represent the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1.
<2> 前記一般式aにおけるQが、-CF-及び-CFの少なくともいずれか一方の基を含むm価の有機基である、前記<1>に記載の含フッ素化合物。
<3> 下記一般式I又はIIで表される構造を含む含フッ素重合体。
<2> The fluorine-containing compound according to <1>, wherein Q in the general formula a is an m-valent organic group containing at least one of —CF 2 — and —CF 3 .
The fluorine-containing polymer containing the structure represented by <3> following General formula I or II.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 ただし、上記式中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、PR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1であり、
 x及びvはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formula represent the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 , PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1 and
Each of x and v is a natural number representing the number of repetitions of the repeating unit.
<4> 下記一般式I’で表される構造を含む含フッ素重合体。 The fluorine-containing polymer containing the structure represented by <4> following General formula I '.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 ただし、上記式中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1であり、
 uは繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formula represent the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1 and
u is a natural number representing the number of repetitions of the repeating unit.
<5> 金属-カルベン錯体触媒の存在下、下記一般式aで表される含フッ素化合物を重合させる、下記一般式Iで表される構造を含む含フッ素重合体の製造方法。 <5> A method for producing a fluorine-containing polymer including a structure represented by the following general formula I, wherein a fluorine-containing compound represented by the following general formula a is polymerized in the presence of a metal-carbene complex catalyst.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 ただし、上記式a及びI中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1であり、
 xは繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formulas a and I have the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1 and
x is a natural number representing the number of repetitions of the repeating unit.
<6> 下記一般式aで表される含フッ素化合物を付加重合させる、下記一般式IIで表される構造を含む含フッ素重合体の製造方法。 The manufacturing method of the fluorine-containing polymer containing the structure represented by following General formula II which addition-polymerizes the fluorine-containing compound represented by <6> following General formula a.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 ただし、上記式a及びII中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1であり、
 vは繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formulas a and II have the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1 and
v is a natural number representing the number of repetitions of the repeating unit.
<7> 金属-カルベン錯体触媒の存在下、下記一般式aで表される含フッ素化合物を重合させて下記一般式Iで表される構造を含む含フッ素重合体を得る工程、及び、得られた前記含フッ素重合体に水素添加する工程を含む、下記一般式I’で表される構造を含む含フッ素重合体の製造方法。 <7> a step of polymerizing a fluorine-containing compound represented by the following general formula a in the presence of a metal-carbene complex catalyst to obtain a fluorine-containing polymer including a structure represented by the following general formula I; A process for producing a fluorine-containing polymer comprising a structure represented by the following general formula I ′, which comprises the step of hydrogenating the fluorine-containing polymer.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 ただし、上記式a、I及びI’中の記号は以下の意味を表す。
 Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
 Qはフッ素原子を含むm価の有機基であり、
 R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
 R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
 mは2以上の自然数であり、
 nは0又は1であり、
 x及びuはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formulas a, I and I ′ represent the following meanings.
Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
Q is an m-valent organic group containing a fluorine atom,
R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
m is a natural number of 2 or more,
n is 0 or 1 and
Each of x and u is a natural number representing the number of repetitions of the repeating unit.
 本発明に係る含フッ素化合物によれば、メタセシス反応を用いた開環重合や付加重合により含フッ素重合体を容易に製造することができ、得られた含フッ素重合体は、化学耐久性、耐候性、光透過性、透明性、撥液性に優れ、さらには低誘電率が期待される。 According to the fluorine-containing compound according to the present invention, the fluorine-containing polymer can be easily produced by ring-opening polymerization or addition polymerization using a metathesis reaction, and the obtained fluorine-containing polymer has chemical durability and weather resistance. It is expected to have excellent conductivity, light transmission, transparency, liquid repellency, and a low dielectric constant.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the scope of the present invention.
<含フッ素化合物>
 本発明に係る含フッ素化合物は、前記一般式aで表される、含フッ素ノルボルネン誘導体である。
<Fluorine-containing compound>
The fluorine-containing compound according to the present invention is a fluorine-containing norbornene derivative represented by the general formula a.
 一般式a中、Yはそれぞれ独立してCR1415、O、S、NR16、又はPR17である。本発明における含フッ素化合物は、例えば、後述するようなシクロペンタジエン等の五員環構造のジエンとオレフィンとのディールズアルダー(Diels-Alder)反応によって合成することができる。前記五員環構造のジエンの構造によってYを定めることができる。
 なかでも、YはCH、O、又はNHであることが反応性、入手性の点から好ましく、CHが特に好ましい。
In the general formula a, Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 . The fluorine-containing compound in the present invention can be synthesized, for example, by Diels-Alder reaction of a diene having a five-membered ring structure such as cyclopentadiene as described later and an olefin. Y can be defined by the diene structure of the five-membered ring structure.
Among them, Y is preferably CH 2 , O or NH from the viewpoint of reactivity and availability, and CH 2 is particularly preferable.
 Qはフッ素原子を含むm価の有機基である。Qにフッ素原子が1以上含まれれば、有機基の構造は特に限定されない。有機基としては、フッ素原子を含む炭化水素基、フッ素原子及びフッ素原子以外のヘテロ原子を含む炭化水素基が挙げられる。ヘテロ原子とは、炭素原子と水素原子以外の原子を意味し、好ましくは、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、及び塩素原子からなる群から選ばれる1種以上の原子が挙げられる。 Q is an m-valent organic group containing a fluorine atom. The structure of the organic group is not particularly limited as long as Q contains one or more fluorine atoms. Examples of the organic group include a hydrocarbon group containing a fluorine atom, and a hydrocarbon group containing a fluorine atom and a hetero atom other than a fluorine atom. The hetero atom means an atom other than a carbon atom and a hydrogen atom, and preferably one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom and a chlorine atom It can be mentioned.
 本発明の含フッ素化合物は2以上のノルボルネン骨格を有する化合物である。ノルボルネン骨格とはビシクロ[2.2.1]ヘプタ-2-エンの骨格を意味するが、一般式a中におけるYの箇所はヘテロ原子を含んでいてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、リン原子が挙げられる。例えばQに第四級炭素原子が1つ含まれると、含フッ素化合物はノルボルネン骨格を4個(m=4)有することが可能となる。また、第三級炭素原子が1つ含まれると、含フッ素化合物はノルボルネン骨格を3個(m=3)有することが可能となる。このように、Qの構造中に第四級炭素原子や第三級炭素原子を適宜有することによって、ノルボルネン骨格を3以上有する含フッ素化合物が得られる。
 また炭素原子に限らず、例えばSiやNをQの主骨格中に含むことによっても、ノルボルネン骨格を3以上有する含フッ素化合物が得られる。
The fluorine-containing compound of the present invention is a compound having two or more norbornene skeletons. The norbornene skeleton means a skeleton of bicyclo [2.2.1] hept-2-ene, but the position of Y in the general formula a may contain a hetero atom. The hetero atom includes an oxygen atom, a sulfur atom, a nitrogen atom and a phosphorus atom. For example, when one quaternary carbon atom is contained in Q, the fluorine-containing compound can have four norbornene skeletons (m = 4). In addition, when one tertiary carbon atom is contained, the fluorine-containing compound can have three norbornene skeletons (m = 3). Thus, a fluorine-containing compound having three or more norbornene skeletons can be obtained by appropriately having a quaternary carbon atom or a tertiary carbon atom in the structure of Q.
Further, the fluorine-containing compound having three or more norbornene skeletons can be obtained not only by carbon atoms but also by containing, for example, Si and N in the main skeleton of Q.
 Qの構造の中には、環状構造を有することも可能である。例えば、アレーンポリイル基、シクロアルカンポリイル基等を有することができる。
 アレーンポリイル基とは、芳香族化合物において芳香環を形成する炭素原子等に結合した2以上の水素原子を取り去った残基に相当する多価の基を意味する。芳香族化合物は炭素環化合物であるホモアレーンとヘテロ環化合物であるヘテロアレーンのいずれでもよい。例えば、フェニレン基、ビフェニレン基、ナフチレン基等の2価の基、ベンゼントリイル基やナフタレントリイル基等の3価の基、ベンゼンテトライル基、ナフタレンテトライル基等の4価の基が挙げられる。また、これらはヘテロ環化合物から誘導された構造であってもよい。
 シクロアルカンポリイル基とは、シクロアルカンを形成する炭素原子に結合した2以上の水素原子を取り去った残基に相当する多価の基を意味する。例えば、シクロペンタンジイル基、シクロヘキサンジイル基等の2価の基、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基等の3価の基、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基等の4価の基が挙げられる。
 また、Qの構造中の環状構造は、単環に限定されず、複数の環が結合した多環構造であってもよい。多環構造は縮合環でもスピロ環でもよい。さらに、これら環状構造は炭素環化合物に限られず、1以上の炭素原子がヘテロ原子に置換されたヘテロ環化合物であってもよい。環を形成する水素原子のうち、一部又は全部の水素原子がハロゲン原子に置換されていてもよい。
In the structure of Q, it is also possible to have a cyclic structure. For example, it may have an arenepolyyl group, a cycloalkanepolyyl group, and the like.
The arenepolyyl group means a polyvalent group corresponding to a residue obtained by removing two or more hydrogen atoms bonded to a carbon atom or the like forming an aromatic ring in an aromatic compound. The aromatic compound may be either a homoarene which is a carbocyclic ring compound or a heteroarene which is a heterocyclic ring compound. For example, divalent groups such as phenylene group, biphenylene group and naphthylene group, trivalent groups such as benzenetriyl group and naphthalenetriyl group, tetravalent groups such as benzenetetrayl group and naphthalenetetrayl group can be mentioned. Be In addition, these may have a structure derived from a heterocyclic compound.
The cycloalkanepolyyl group means a polyvalent group corresponding to a residue obtained by removing two or more hydrogen atoms bonded to a carbon atom forming a cycloalkane. For example, a divalent group such as a cyclopentadiyl group, a cyclohexanediyl group, a trivalent group such as a cyclopropanetriyl group, a cyclobutanetriyl group, a cyclobutanetriyl group, a cyclopentanetriyl group, a cyclohexanetriyl group, a cyclopropanetetrayl group And tetravalent groups such as cyclobutanetetrayl group, cyclopentanetetrayl group and cyclohexanetetrayl group.
In addition, the cyclic structure in the structure of Q is not limited to a single ring, and may be a polycyclic structure in which a plurality of rings are linked. The polycyclic structure may be a fused ring or a spiro ring. Furthermore, these cyclic structures are not limited to carbocyclic compounds, and may be heterocyclic compounds in which one or more carbon atoms are substituted with hetero atoms. Of the hydrogen atoms forming the ring, some or all of the hydrogen atoms may be substituted with halogen atoms.
 本発明に係る含フッ素化合物は、Qの構造中にフッ素原子が1以上含まれていればよく、1以上であればフッ素原子の数は特に限定されない。また、フッ素原子の位置も特に限定されない。また、Qの構造中に存在する水素原子がすべてフッ素原子に置換されたペルフルオロ化合物であってもよい。 In the fluorine-containing compound according to the present invention, one or more fluorine atoms may be contained in the structure of Q, and the number of fluorine atoms is not particularly limited as long as it is one or more. Also, the position of the fluorine atom is not particularly limited. Further, it may be a perfluoro compound in which all hydrogen atoms present in the structure of Q are substituted by fluorine atoms.
 Qの炭素数は1~100が好ましく、2~60がより好ましい。
 Qは-CF-及び-CFの少なくともいずれか一方の基を含むm価の有機基であることが好ましい。これらの基は複数含まれていてもよい。
 Qにその他に含まれる基として、例えば、メチレン基、フルオロメチレン基、エーテル性酸素原子、カルボニル基、エステル基、チオエーテル基、アミノ基、水酸基、カルボキシル基、アルコキシ基、シリル基、ニトリル基、及びこれらの組み合わせの基が挙げられるが、これらに限定されない。
The carbon number of Q is preferably 1 to 100, and more preferably 2 to 60.
Q is preferably an m-valent organic group containing at least one of —CF 2 — and —CF 3 . A plurality of these groups may be contained.
As the group further contained in Q, for example, methylene group, fluoromethylene group, etheric oxygen atom, carbonyl group, ester group, thioether group, amino group, hydroxyl group, carboxyl group, alkoxy group, silyl group, nitrile group, and Although the group of these combination is mentioned, it is not limited to these.
 Qで表される有機基の末端はすべてノルボルネン骨格に結合していてもよいし、他の構造であってもよい。他の構造としては、特に限定されないが、例えばアルキル基、シクロアルキル基、水酸基、カルボキシル基、シラノール基、ビニル基、アリール基、エステル基、アミノ基等が挙げられる。また、これらの基における水素原子の少なくとも一部がハロゲン原子に置換されていてもよい。 The ends of the organic group represented by Q may all be bonded to the norbornene skeleton, or may be another structure. The other structure is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, a hydroxyl group, a carboxyl group, a silanol group, a vinyl group, an aryl group, an ester group, an amino group and the like. In addition, at least a part of hydrogen atoms in these groups may be substituted with a halogen atom.
 R11~R13はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基である。ここで「R11~R13」とはR11、R12及びR13を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子が挙げられる。中でも水素原子又はフッ素原子が入手容易性の点から好ましい。1価の有機基としては、1価の炭化水素基、ハロゲン原子を含む1価の炭化水素基、ヘテロ原子を含む1価の炭化水素基、ハロゲン原子及びヘテロ原子を含む1価の炭化水素基が挙げられる。特に、1価の有機基としては、エーテル性酸素原子を有する含フッ素炭化水素基が好ましい。1価の有機基の炭素数は1~200が好ましく、1~100がより好ましく、1~20がさらに好ましい。 R 11 to R 13 each independently represent a hydrogen atom, a halogen atom or a monovalent organic group. Here, “R 11 to R 13 ” mean R 11 , R 12 and R 13 . The halogen atom includes a fluorine atom, a chlorine atom and a bromine atom. Among them, a hydrogen atom or a fluorine atom is preferable from the viewpoint of easy availability. As the monovalent organic group, a monovalent hydrocarbon group, a monovalent hydrocarbon group containing a halogen atom, a monovalent hydrocarbon group containing a hetero atom, a monovalent hydrocarbon group containing a halogen atom and a hetero atom Can be mentioned. In particular, as the monovalent organic group, a fluorine-containing hydrocarbon group having an etheric oxygen atom is preferable. The carbon number of the monovalent organic group is preferably 1 to 200, more preferably 1 to 100, and still more preferably 1 to 20.
 一般式a中、mは2以上の自然数である。mの値はQの構造(結合手の数)によって決定される。mは2以上であればよく、上限は特に限定されないが、入手容易性の点から8以下が好ましく、2~4がより好ましい。 In the general formula a, m is a natural number of 2 or more. The value of m is determined by the structure of Q (the number of bonds). m should be 2 or more, and the upper limit is not particularly limited, but is preferably 8 or less, more preferably 2 to 4 from the viewpoint of easy availability.
 nは0又は1である。含フッ素化合物を、例えば下記スキームに示すように、五員環構造のジエンとオレフィンとの1段のディールズアルダー反応によって合成した場合、nは0となる。得られた化合物に対してジエンを再び反応させることにより、nを1とすることができる。スキーム中、Y、Q、R11~R13及びmはそれぞれ先述したとおりである。 n is 0 or 1. When a fluorine-containing compound is synthesized, for example, by a one-stage Diels-Alder reaction of a diene having a five-membered ring structure with an olefin, as shown in the following scheme, n is 0. N can be made 1 by reacting the obtained compound again with a diene. In the scheme, Y, Q, R 11 to R 13 and m are as described above.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
 原料となるジエンは、シクロペンタジエン及びその誘導体(Y=CR1415)、フラン(Y=O)、チオフェン(Y=S)、アゾール及びその誘導体(Y=NR16)、ホスホール及びその誘導体(Y=PR17)を用いることができる。なお、R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基である。ここで「R14~R17」とはR14、R15、R16及びR17を意味する。
 原料となるオレフィンはQがフッ素原子を含むm価の有機基であり、R11~R13が水素原子、ハロゲン原子又は1価の有機基であればよい。1価の有機基は、ディールズアルダー反応させた後に、さらに他の1価の有機基に変換されてもよい。
The dienes used as raw materials are cyclopentadiene and its derivatives (Y = CR 14 R 15 ), furan (Y = O), thiophenes (Y = S), azoles and their derivatives (Y = NR 16 ), phospholes and their derivatives ( Y = PR 17 ) can be used. R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Here, “R 14 to R 17 ” means R 14 , R 15 , R 16 and R 17 .
The olefin to be a raw material may be an m-valent organic group in which Q is a fluorine atom, and R 11 to R 13 may be a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group may be further converted to another monovalent organic group after the Diels-Alder reaction.
 一般式aで表される含フッ素化合物のうち、m=2で表される化合物をモノマーとすると、ラダー型(はしご型)の重合体を得ることが可能である。ラダー型の重合体は通常の重合体に比べてコンフォメーション変化が少なく、剛直な構造を持つことから、新たな物性や機能の発現が期待できる。 When the compound represented by m = 2 is a monomer among the fluorine-containing compounds represented by the general formula a, it is possible to obtain a ladder-type (ladder-type) polymer. A ladder-type polymer has less conformational change than a normal polymer and has a rigid structure, so that new physical properties and functions can be expected.
 一般式aにおけるmが2である含フッ素化合物としては、式中のYが各々独立に、CH、O、またはNHであることが好ましい。また、R11~R13は、水素原子、フッ素原子又は1価の有機基が好ましく、水素原子、フッ素原子又はエーテル性酸素原子を有する1価の含フッ素炭化水素基がより好ましい。Qは、完全にフッ素化された2価の有機基、またはエーテル性酸素原子を有する完全にフッ素化された2価の有機基が好ましく、完全にフッ素化された2価の炭化水素基、またはエーテル性酸素原子を有する完全にフッ素化された2価の炭化水素基がより好ましく、完全にフッ素化された炭素数1~20の2価のアルキレン基、またはエーテル性酸素原子を有する完全にフッ素化された炭素数1~20の2価のアルキレン基が特に好ましい。 As the fluorine-containing compound in which m is 2 in the general formula a, Y in the formula is preferably each independently CH 2 , O or NH. Further, R 11 to R 13 are preferably a hydrogen atom, a fluorine atom or a monovalent organic group, and more preferably a hydrogen atom, a fluorine atom or a monovalent fluorine-containing hydrocarbon group having an etheric oxygen atom. Q is preferably a completely fluorinated divalent organic group or a completely fluorinated divalent organic group having an etheric oxygen atom, and a completely fluorinated divalent hydrocarbon group, or A fully fluorinated divalent hydrocarbon group having an etheric oxygen atom is more preferable, and a completely fluorinated bivalent alkylene group having 1 to 20 carbon atoms, or a completely fluorinated having an etheric oxygen atom Particularly preferred is a divalent alkylene group having 1 to 20 carbon atoms.
 一般式aで表される含フッ素化合物のうち、mが3以上である化合物は架橋点を多数有することができることから、架橋剤として有用である。 Among the fluorine-containing compounds represented by the general formula a, compounds in which m is 3 or more can have a large number of crosslinking points, and thus are useful as crosslinking agents.
 一般式aにおけるmが3以上である含フッ素化合物としては、式中のYが各々独立に、CH、O、またはNHであることが好ましい。また、R11~R13は、水素原子、フッ素原子又は1価の有機基が好ましく、水素原子、フッ素原子又はエーテル性酸素原子を有する1価の含フッ素炭化水素基がより好ましい。Qは、完全にフッ素化された炭素数5~15の3価の有機基、エーテル性酸素原子を有する完全にフッ素化された炭素数5~15の3価の有機基が好ましい。 As a fluorine-containing compound in which m in the general formula a is 3 or more, Y in the formula is preferably each independently CH 2 , O or NH. Further, R 11 to R 13 are preferably a hydrogen atom, a fluorine atom or a monovalent organic group, and more preferably a hydrogen atom, a fluorine atom or a monovalent fluorine-containing hydrocarbon group having an etheric oxygen atom. Q is preferably a completely fluorinated trivalent organic group having 5 to 15 carbon atoms, or a fully fluorinated trivalent organic group having 5 to 15 carbon atoms having an etheric oxygen atom.
 一般式aで表される含フッ素化合物の例としては、下記化合物が挙げられる。 Examples of the fluorine-containing compound represented by the general formula a include the following compounds.
Figure JPOXMLDOC01-appb-C000014
 
 上記化合物中、lは1~5である。
Figure JPOXMLDOC01-appb-C000014

In the above compounds, l is 1 to 5.
Figure JPOXMLDOC01-appb-C000015
 
 
Figure JPOXMLDOC01-appb-C000015
 
 
Figure JPOXMLDOC01-appb-C000016
 
 
Figure JPOXMLDOC01-appb-C000016
 
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
<含フッ素重合体>
 一般式aで表される含フッ素化合物をモノマーとし、重合反応を行うことにより前記一般式I又はIIで表される構造を含む含フッ素重合体が得られる。式中の記号は一般式aにおける記号とそれぞれ同じ意味を表す。また、x及びvはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
<Fluorinated polymer>
The fluorine-containing compound represented by the general formula a is used as a monomer, and a polymerization reaction is carried out to obtain a fluorine-containing polymer including the structure represented by the general formula I or II. The symbols in the formula have the same meanings as the symbols in the general formula a. Also, x and v are natural numbers representing the number of repetitions of the repeating unit.
 重合反応はメタセシス反応による開環重合(開環メタセシス重合、ROMP)でもラジカル重合や配位重合等の付加重合でもよい。ROMPを行うことにより一般式Iで表される構造を含む含フッ素重合体を得ることができる。付加重合を行うことにより一般式IIで表される構造を含む含フッ素重合体が得られる。 The polymerization reaction may be ring-opening polymerization (ring-opening metathesis polymerization, ROMP) by metathesis reaction, or addition polymerization such as radical polymerization or coordination polymerization. By carrying out ROMP, a fluoropolymer containing the structure represented by the general formula I can be obtained. Addition polymerization is carried out to obtain a fluoropolymer having a structure represented by the general formula II.
 また、一般式Iで表される含フッ素重合体は、その主鎖二重結合を水素添加により水素添加物に変換してもよい。この時得られる含フッ素重合体は、前記一般式I’で表される構造を含むこととなる。当該水素添加物の詳細については後述する。 In addition, the main chain double bond of the fluorine-containing polymer represented by the general formula I may be converted into a hydrogenated product by hydrogenation. The fluorine-containing polymer obtained at this time will contain the structure represented by said general formula I '. Details of the hydrogen additive will be described later.
[開環メタセシス重合]
 一般式aで表される含フッ素化合物の開環メタセシス重合は、下記スキームに表すように、金属-カルベン錯体触媒の存在下で重合させることにより、一般式Iで表される構造を含む含フッ素重合体を得ることができる。
[Open ring metathesis polymerization]
The ring-opening metathesis polymerization of the fluorine-containing compound represented by the general formula a is a fluorine-containing fluorine-containing compound having a structure represented by the general formula I by polymerization in the presence of a metal-carbene complex catalyst as shown in the following scheme. Polymers can be obtained.
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
 上記スキームにおいて、Y、Q、R11~R13、m、n及びxは先述したものとそれぞれ同様である。また、Catはメタセシス反応活性を示す触媒である。該触媒として、上記スキームでは、[L]M=CAで表される金属-カルベン錯体触媒を用いている。ただし、[L]は配位子、Mはルテニウム、モリブデン又はタングステン、AおよびAはそれぞれ独立して水素原子、ハロゲン原子、またはヘテロ原子を含んでいてもよい一価炭化水素基、をそれぞれ意味する。また、重合時には幾何異性体(cis体とtrans体)も存在する。 In the above scheme, Y, Q, R 11 to R 13 , m, n and x are respectively the same as those described above. Moreover, Cat is a catalyst which shows metathesis reaction activity. As the catalyst, in the above scheme, a metal-carbene complex catalyst represented by [L] M = CA 1 A 2 is used. Wherein [L] is a ligand, M is ruthenium, molybdenum or tungsten, and A 1 and A 2 are each independently a hydrogen atom, a halogen atom, or a monovalent hydrocarbon group which may contain a hetero atom, Each means. In addition, geometric isomers (cis and trans) are also present during polymerization.
 上記スキームで示した反応工程において、モノマー(化合物a)と触媒との反応による反応中間体として、下記に示した4種類の化合物のうち少なくともひとつが生成することが考えられる。なお、式中の記号は先述したものとそれぞれ同義である。 In the reaction step shown in the above scheme, it is conceivable that at least one of the four types of compounds shown below is generated as a reaction intermediate by the reaction of the monomer (compound a) and the catalyst. The symbols in the formula are as defined above.
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 上記反応中間体からそれぞれ二量体の化合物が生成され、そこからさらに重合が進んでいくことで重合体が得られる。なお前記二量体にも幾何異性体が存在する。 A dimer compound is produced from each of the above reaction intermediates, from which the polymerization proceeds to obtain a polymer. In addition, geometric isomers exist in the dimer.
 含フッ素化合物(モノマー)が有する複数の二重結合は、重合反応時に同一モノマー間で複数の結合を形成しても、複数のモノマーとの間で結合を形成してもよい。すなわち、例えば一般式Iにおいてm=2である場合に、二量体として下記に示すような2つの結合形式が考えられる。得られる重合体は、前記2つの結合形式のうち、いずれか一方のみで形成されていてもよいし、両方の結合形式により形成されていてもよい。 The plurality of double bonds of the fluorine-containing compound (monomer) may form a plurality of bonds between the same monomers during the polymerization reaction or may form a bond with a plurality of monomers. That is, for example, in the case of m = 2 in the general formula I, two bonding forms as shown below as a dimer are conceivable. The resulting polymer may be formed by only one of the two bond types, or may be formed by both bond types.
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
 また、上記スキームでは一種類の含フッ素化合物(モノマー)を原料として重合を行ったホモポリマーとしているが、二種以上のモノマーを原料として共重合を行ってもよい。共重合を行う場合には、二種以上のモノマーのうち少なくとも一種が一般式aで表される含フッ素化合物であればよく、他のモノマーは環状オレフィンであれば特に限定されず、ノルボルネン骨格を有していても有していなくともよい。他のモノマーの中でも、環ひずみエネルギー(Ring strain energy)が近く主モノマーとの反応性が高いと考えられるノルボルネン骨格を有していることがより好ましい。また、一般式aで表される含フッ素化合物を主モノマーとして用いてもよいし、コモノマーとして用いてもよい。 In the above scheme, a homopolymer obtained by polymerization using one kind of fluorine-containing compound (monomer) as a raw material is used, but copolymerization may be performed using two or more kinds of monomers as a raw material. When the copolymerization is performed, it is not particularly limited as long as at least one of the two or more monomers is a fluorine-containing compound represented by the general formula a, and the other monomers are not particularly limited as long as they are cyclic olefins. It may or may not have. Among the other monomers, it is more preferable to have a norbornene skeleton which is considered to be close to ring strain energy and highly reactive with the main monomer. In addition, the fluorine-containing compound represented by the general formula a may be used as a main monomer or may be used as a comonomer.
 得られる共重合体としては、例えば交互共重合体、ブロック共重合体、ランダム共重合体が合成可能であり、原料であるモノマーの仕込み比や、重合条件によって所望の共重合体を得ることができる。 As a copolymer to be obtained, for example, alternating copolymer, block copolymer and random copolymer can be synthesized, and a desired copolymer can be obtained depending on the preparation ratio of monomers as raw materials and polymerization conditions. it can.
 重合体の分子量は1,000~5,000,000が機械的物性、物理的物性の点から好ましい。前記分子量は重量平均分子量であり、ゲルパーミエーションクロマトグラフィー(GPC)を用いて重合体溶液の条件下で測定される。
 また、重合体がホモポリマーである場合、式中xで表される繰り返し単位の繰り返し数は2~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。共重合体である場合は、複数存在する繰り返し単位の総数が2~10,000であることが好ましく、より好ましくは5~6,500である。
The molecular weight of the polymer is preferably 1,000 to 5,000,000 in view of mechanical properties and physical properties. The molecular weight is a weight average molecular weight, and is measured under conditions of a polymer solution using gel permeation chromatography (GPC).
When the polymer is a homopolymer, the repeating number of the repeating unit represented by x in the formula is preferably 2 to 10,000 from the viewpoint of mechanical properties and physical properties, more preferably 5 to It is 6,500. In the case of a copolymer, the total number of repeating units present is preferably 2 to 10,000, more preferably 5 to 6,500.
 得られたポリマーは高耐熱性、低吸水性、高光線透過率(透明性)、高化学耐久性、高耐候性、高撥液性等といった特性を有し、これら諸特性のバランスにも優れることから、電気・電子材料、半導体材料、光学材料、医療器具・細胞培養材料、撥液材料、エラストマー材料、架橋剤、エアロゲル材料等の多種多様な分野に利用することができる。 The obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomeric materials, crosslinking agents, airgel materials and the like.
[金属-カルベン錯体化合物]
 上記開環メタセシス重合反応は触媒の存在下で進行するが、開環メタセシス重合する触媒であれば特に限定されない。例えば、[L]M=CAで表される金属-カルベン錯体化合物はその代表例である。金属-カルベン錯体化合物としては、ルテニウム-カルベン錯体、モリブデン-カルベン錯体、又はタングステン-カルベン錯体(以下、「金属-カルベン錯体」とも総称する。)が例示できる。
[Metal-carbene complex compound]
Although the ring-opening metathesis polymerization reaction proceeds in the presence of a catalyst, it is not particularly limited as long as it is a catalyst that performs ring-opening metathesis polymerization. For example, a metal-carbene complex compound represented by [L] M = CA 1 A 2 is a representative example. Examples of the metal-carbene complex compound include a ruthenium-carbene complex, a molybdenum-carbene complex, or a tungsten-carbene complex (hereinafter, also collectively referred to as “metal-carbene complex”).
 オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物は、含フッ素重合体の製造方法において触媒としての役割を果たすが、試薬として投入するもの及び反応中で生成するもの(触媒活性種)の両方を意味する。ここで、金属-カルベン錯体化合物は反応条件下、配位子のいくつかが解離することで触媒活性を示すようになるものと、配位子の解離なしで触媒活性を示すものが知られているが、本発明ではいずれでもよく限定されない。また一般に、開環メタセシス重合は触媒への環状オレフィンの配位と開環と解離とを繰り返しながら進行するため、反応中、触媒上に環状オレフィン以外の配位子がいくつ配位しているかは必ずしも明確でない。したがって本明細書中、[L]は配位子の数や種類を特定するものではない。また、金属-カルベン錯体化合物における金属はルテニウム、モリブデン、またはタングステンであることが好ましい。 A metal-carbene complex compound having an olefin metathesis reaction activity plays a role as a catalyst in the process for producing a fluoropolymer, but means both those charged as a reagent and those generated in the reaction (catalytically active species) Do. Here, metal-carbene complex compounds are known to exhibit catalytic activity by dissociation of some of the ligands under reaction conditions, and to exhibit catalytic activity without dissociation of ligands. However, the present invention is not limited in any way. Also, in general, since ring-opening metathesis polymerization proceeds while repeating coordination, ring-opening and dissociation of cyclic olefin to the catalyst, how many ligands other than cyclic olefin are coordinated on the catalyst during the reaction is It is not always clear. Therefore, in the present specification, [L] does not specify the number or type of ligands. The metal in the metal-carbene complex compound is preferably ruthenium, molybdenum or tungsten.
 これらの触媒のうち中心金属がルテニウムのものは一般的に「ルテニウム-カルベン錯体」と称されるものであり、例えばVougioukalakis,G.C.et al.,Chem.Rev.,2010,110,1746-1787.に記載されているルテニウム-カルベン錯体を利用することができる。また、例えばAldrich社やUmicore社から市販されているルテニウム-カルベン錯体を利用することができる。 Among these catalysts, those in which the central metal is ruthenium are generally referred to as "ruthenium-carbene complexes", for example, those described in Vougioukalakis, G. et al. C. et al. Chem. Rev. , 2010, 110, 1746-1787. The ruthenium-carbene complex described in can be utilized. In addition, for example, ruthenium-carbene complexes commercially available from Aldrich or Umicore can be used.
 ルテニウム-カルベン錯体の具体例としては、ビス(トリフェニルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)-3-メチル-2-ブテニリデンルテニウムジクロリド、(1,3-ジイソプロピルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジシクロヘキシルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2,6-ジイソプロピルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2-メチルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ジシクロヘキシル-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[ビス(3-ブロモピリジン)]ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPr等が挙げられ、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPrが特に好ましい。なお上記錯体のうち、「Umicore」で始まる名称は、Umicore社の製品の商品名である。
 なお、上記ルテニウム-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Specific examples of the ruthenium-carbene complex include bis (triphenylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) -3-methyl-2-butenylideneruthenium dichloride, 1,3-Diisopropylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dicyclohexylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole -2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole) 2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, [1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazole-2-ylidene] (tricyclohexylphosphine) benzylideneruthenium dichloride, [1 , 3-Bis (2-methylphenyl) -4,5-dihydroimidazole-2-ylidene] (tricyclohexylphosphine) benzylideneruthenium dichloride, [1,3-dicyclohexyl-4,5-dihydroimidazole-2-ylidene] ( Tricyclohexylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) ethoxymethylideneruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylide ) (Tricyclohexylphosphine) ethoxymethylidene ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylidene) [bis (3-bromopyridine)] benzylidene ruthenium dichloride, (1,3-dimesityl- 4,5-Dihydroimidazole-2-ylidene) (2-isopropoxyphenylmethylidene) ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylidene) [(tricyclohexylphosphoranyl) methylidene ] Dichlororuthenium tetrafluoroborate, Umicore M2, Umicore M51, Umicore M52, Umicore M71 SIMes, Umicore M71 SIPr, Umicore M73 SIMes, Umicore M73 (1,3-dimesityl-4,5-dihydroimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylidene) ) (2-Isopropoxyphenylmethylidene) ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylidene) [(tricyclohexylphosphoranyl) methylidene] dichlororuthenium tetrafluoroborate, Umicore M2, Umicore M51, Umicore M52, Umicore M71 SIMes, Umicore M71 SIPr, Umicore M73 SIMes, Umicore M73 SIPr are particularly preferred. Among the above complexes, the name starting with "Umicore" is a trade name of a product of Umicore.
The ruthenium-carbene complexes may be used alone or in combination of two or more. Furthermore, it may be supported on a carrier such as silica gel, alumina, polymer and the like as needed.
 これらの触媒のうち中心金属がモリブデン、タングステンであるものは一般的に「モリブデン-カルベン錯体」、「タングステン-カルベン錯体」と称されるものであり、例えばGrela,K.(Ed)Olefin Metathesis:Theory and Practice,Wiley,2014.に記載されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。また、例えばAldrich社やStrem社、Ximo社から市販されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。
 なお、上記モリブデン-カルベン錯体又はタングステン-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Among these catalysts, those in which the central metal is molybdenum or tungsten are generally referred to as "molybdenum-carbene complex" or "tungsten-carbene complex", for example, Grela, K. et al. (Ed) Olefin Metathesis: Theory and Practice, Wiley, 2014. Molybdenum-carbene complexes or tungsten-carbene complexes described in the above can be utilized. In addition, for example, a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, or Ximo can be used.
The molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Furthermore, it may be supported on a carrier such as silica gel, alumina, polymer and the like as needed.
 具体例を下記に示す。なお、Meとはメチル基を、i-Prとはイソプロピル基を、t-Buとはターシャリーブチル基を、Phとはフェニル基を、それぞれ意味する。 A specific example is shown below. Me means methyl, i-Pr means isopropyl, t-Bu means tertiary butyl, and Ph means phenyl.
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
[製造方法]
 一般式aで表される含フッ素化合物を少なくとも1種のモノマーとして用い、上記カルベン-金属錯体化合物を触媒として開環メタセシス反応を行うことで、一般式Iで表される構造を含む含フッ素重合体を得ることができる。なお得られる含フッ素重合体は、モノマーを一般式aで表される含フッ素化合物1種のみとした場合には一般式Iで表される含フッ素重合体(ホモポリマー)となる。また構造の異なる複数種のモノマーを用いた場合には、一般式Iで表される構造を含む含フッ素共重合体(コポリマー)が得られることとなる。
[Production method]
A fluorine-containing heavy chain containing a structure represented by the general formula I by performing a ring-opening metathesis reaction using the fluorine-containing compound represented by the general formula a as at least one monomer and using the carbene-metal complex compound as a catalyst You can get a union. The fluorine-containing polymer obtained is a fluorine-containing polymer (homopolymer) represented by the general formula I when the monomer is only one kind of the fluorine-containing compound represented by the general formula a. In addition, when plural kinds of monomers having different structures are used, a fluorine-containing copolymer (copolymer) including the structure represented by the general formula I is obtained.
 目的物収率向上の点で、原料となるモノマーは脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。原料となるモノマーについて、前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
 また原料となるモノマーは微量の不純物(例えば過酸化物等)を含むことがあるので、目的物収率向上の点で精製してもよい。精製方法については特に制限はない。例えば文献(Armarego,W.L.F.et al.,Purification of Laboratory Chemicals(Sixth Edition),2009,Elsevier)に記載の方法に従って行うことができる。
From the viewpoint of improving the yield of the desired product, it is preferable to use a degassed monomer as the raw material monomer. There is no particular limitation on the degassing operation, but freeze degassing may be performed. The dehydration operation is not particularly limited, but is usually in contact with a molecular sieve or the like. For the raw material monomers, the above degassing and dehydrating operations are usually performed before contacting with the metal-carbene complex.
Moreover, since the monomer used as a raw material may contain a trace amount impurities (for example, peroxide etc.), you may refine | purify in the point of a target product yield improvement. There is no particular limitation on the purification method. For example, it can be carried out according to the method described in the literature (Armarego, W. L. F. et al., Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier).
 原料となるモノマーを反応容器に投入する際に、2種以上のモノマーを用いる場合は、反応容器にそれらをあらかじめ混合してから投入しても、別々に投入しても構わない。
 2種以上のモノマーを用いる場合、それらのモル比に特に限定はないが、通常基準となる一般式aで表される含フッ素化合物1モルに対して、その他のモノマーである化合物を0.01~100モル程度用い、好ましくは0.1~10モル程度用いる。
When two or more types of monomers are used when charging the monomer as the raw material into the reaction container, they may be mixed in advance after being mixed into the reaction container or may be separately charged.
When two or more types of monomers are used, the molar ratio thereof is not particularly limited, but the compound which is the other monomer is usually 0.01 per 1 mol of the fluorine-containing compound represented by the general formula a as a standard. It is used in an amount of up to about 100 moles, preferably about 0.1 to 10 moles.
 金属-カルベン錯体は試薬として投入しても、系内で発生させてもよい。
 試薬として投入する場合、市販の金属-カルベン錯体をそのまま用いてもよく、あるいは市販試薬から公知の方法で合成した市販されていない金属-カルベン錯体を用いてもよい。
 系内で発生させる場合、公知の方法で前駆体となる金属錯体から調製した金属-カルベン錯体を本発明に用いることができる。
The metal-carbene complex may be introduced as a reagent or may be generated in situ.
When added as a reagent, a commercially available metal-carbene complex may be used as it is, or a non-commercially available metal-carbene complex synthesized from a commercially available reagent by a known method may be used.
In the case of generating in a system, metal-carbene complexes prepared from metal complexes which become precursors by known methods can be used in the present invention.
 用いる金属-カルベン錯体の量としては、特に制限はないが、原料となるモノマーの内、基準となる一般式aで表される含フッ素化合物1モルに対して、通常0.000001(1ppm)~1モル程度用い、好ましくは0.00001(10ppm)~0.2モル程度用いる。 The amount of the metal-carbene complex to be used is not particularly limited, but it is usually 0.000001 (1 ppm) to 1 mol of the fluorine-containing compound represented by the general formula a as a reference among the monomers serving as a raw material The amount is about 1 mole, preferably about 0.00001 (10 ppm) to 0.2 mole.
 用いる金属-カルベン錯体は、通常固体のまま反応容器に投入するが、溶媒に溶解又は懸濁させて投入してもよい。この時用いる溶媒としては、反応に悪影響を及ぼさない範囲で特に制限はなく、有機溶媒、含フッ素有機溶媒、イオン液体、水等を単独又は混合して用いることができる。なお、これらの溶媒分子中、一部又はすべての水素原子が重水素原子で置換されていてもよい。
 またモノマーが液体である場合(加熱して液化する場合も含む)は、溶媒を用いないでバルク重合とすることが好ましい。この場合一般式aで表される含フッ素化合物に金属-カルベン錯体化合物が溶解することが好ましい。
The metal-carbene complex to be used is generally charged as a solid into the reaction vessel, but may be charged or dissolved in a solvent. The solvent used at this time is not particularly limited as long as it does not adversely affect the reaction, and an organic solvent, a fluorine-containing organic solvent, an ionic liquid, water and the like can be used alone or in combination. In these solvent molecules, part or all of the hydrogen atoms may be substituted with deuterium atoms.
When the monomer is liquid (including when liquefied by heating), it is preferable to use bulk polymerization without using a solvent. In this case, the metal-carbene complex compound is preferably dissolved in the fluorine-containing compound represented by the general formula a.
 有機溶媒としては、例えば、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン等の芳香族炭化水素系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン系溶媒;テトラヒドロフラン(THF)、ジオキサン、ジエチルエーテル、グライム、ジグライム等のエーテル系溶媒等を使用することができる。含フッ素有機溶媒としては、例えば、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン、ジクロロペンタフルオロプロパン等を使用することができる。イオン液体としては、例えば、各種ピリジニウム塩、各種イミダゾリウム塩等を用いることができる。上記溶媒の中でも、金属-カルベン錯体の溶解性等の点で、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン、ジクロロメタン、クロロホルム、クロロベンゼン、o-ジクロロベンゼン、ジエチルエーテル、ジオキサン、THF、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン等、及びこれらの混合物が好ましい。
 なお、目的物収率向上の点で、前記溶媒は脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1, 2 Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran (THF), dioxane, diethyl ether, glyme, diglyme and the like can be used. As the fluorine-containing organic solvent, for example, hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene, dichloropentafluoropropane and the like It can be used. As the ionic liquid, for example, various pyridinium salts, various imidazolium salts and the like can be used. Among the above solvents, benzene, toluene, o-, m-, p-xylene, mesitylene, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, diethyl ether, dioxane, THF in view of the solubility of metal-carbene complex etc. Hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene and the like, and mixtures thereof are preferred.
From the viewpoint of improving the yield of the target product, it is preferable to use the solvent that has been degassed and dehydrated. There is no particular limitation on the degassing operation, but freeze degassing may be performed. The dehydration operation is not particularly limited, but is usually in contact with a molecular sieve or the like. The degassing and dehydrating operations are usually carried out before contacting with the metal-carbene complex.
[連鎖移動剤による分子量制御]
 開環メタセシス重合を行う時は分子量、およびその分布を制御する目的で、連鎖移動剤としてオレフィンまたはジエンを使用することができる。
 オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィンまたはこれらのフッ素含有オレフィンを用いることができる。さらには、ビニルトリメチルシラン、アリルトリメチルシラン、ビニルトリエトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン、トリクロロビニルシラン、トリクロロアリルシラン、トリメトキシ(2-トリメトキシシリルエテニル)シラン、ビス(トリエトキシシリル)エチレン、トリクロロ(2-トリクロロシリルエテニル)シラン、1,4-ビス(トリメトキシシリル)-2-ブテン、1,4-ビス(トリエトキシシリル)-2-ブテン、1,4-ビス(トリクロロシリル)-2-ブテン等のケイ素含有オレフィン、または、これらのケイ素含有オレフィンのフッ素の含有物(フッ素及びケイ素含有オレフィン)等も連鎖移動剤として用いることもできる。
 ジエンとしては、1,4-ペンタジエン、1,5-ヘキサジエン、1,6-ヘプタジエン等の非共役系ジエンまたはこれらのフッ素含有非共役系ジエンがあげられる。これらオレフィン、フッ素含有オレフィンまたはジエンはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。
[Molecular weight control by chain transfer agent]
When ring-opening metathesis polymerization is carried out, an olefin or diene can be used as a chain transfer agent for the purpose of controlling molecular weight and its distribution.
As the olefin, for example, α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like, or fluorine-containing olefins thereof can be used. Furthermore, vinyltrimethylsilane, allyltrimethylsilane, vinyltriethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, allyltriethylsilane, allyltriisopropylsilane, trichlorovinylsilane, trichloroarylsilane, trimethoxy Methoxysilylethenyl) silane, bis (triethoxysilyl) ethylene, trichloro (2-trichlorosilylethenyl) silane, 1,4-bis (trimethoxysilyl) -2-butene, 1,4-bis (triethoxysilyl) ) Silicon-containing olefins such as 2-butene, 1,4-bis (trichlorosilyl) -2-butene, or fluorine-containing substances of these silicon-containing olefins (fluorine and silicon-containing olefins) It can also be used as a chain transfer agent.
Examples of the diene include non-conjugated dienes such as 1,4-pentadiene, 1,5-hexadiene and 1,6-heptadiene, and fluorine-containing non-conjugated dienes thereof. These olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.
 モノマーと金属-カルベン錯体を接触させる雰囲気としては、特に限定はないが、触媒の長寿命化の点で、不活性気体雰囲気下が好ましく、中でも窒素又はアルゴン雰囲気下が好ましい。ただし、反応条件において気体となる化合物を原料モノマーとして用いる場合、これらの気体雰囲気下で行うことができる。
 モノマーと金属-カルベン錯体を接触させる相としては、特に制限はないが、反応速度の点で、通常は液相が用いられる。原料となるモノマーが反応条件下で気体の場合、液相で実施するのが難しいため、気-液二相で実施することもできる。なお、液相で実施する場合には溶媒を用いることができる。このとき用いる溶媒としては、上記、金属-カルベン錯体の溶解又は懸濁に用いた溶媒と同様のものを利用することができる。なお、原料として用いるモノマーに反応条件下で液体のものが含まれる場合、無溶媒で実施できることがある(バルク重合)。
The atmosphere in which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but in terms of prolonging the life of the catalyst, it is preferably under an inert gas atmosphere, and more preferably under a nitrogen or argon atmosphere. However, when a compound that becomes a gas under the reaction conditions is used as a raw material monomer, the reaction can be performed under these gas atmospheres.
The phase in which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but a liquid phase is usually used in terms of reaction rate. When the monomer used as a raw material is a gas under reaction conditions, it can be carried out in a gas-liquid two phase because it is difficult to carry out in the liquid phase. In addition, when implementing in a liquid phase, a solvent can be used. As the solvent used at this time, the same solvents as those used for dissolving or suspending the metal-carbene complex can be used. In addition, when the monomer used as a raw material contains the liquid thing under reaction conditions, it may be able to implement without a solvent (bulk polymerization).
 モノマーと金属-カルベン錯体を接触させる容器としては、反応に悪影響を与えない範囲で特に制限はなく、例えば金属製容器又はガラス製容器等を用いることができる。なお、開環メタセシス重合は反応条件下、気体状態のモノマー化合物を扱うことがあるので、高気密が可能な耐圧容器が好ましい。 The container for bringing the monomer into contact with the metal-carbene complex is not particularly limited as long as the reaction is not adversely affected. For example, a metal container or a glass container can be used. In addition, since ring-opening metathesis polymerization may handle a monomer compound in a gaseous state under reaction conditions, a pressure-tight container capable of high airtightness is preferable.
 モノマーと金属-カルベン錯体を接触させる温度としては、特に制限はないが、通常-100~200℃の範囲で実施することができ、反応速度の点で、0~150℃が好ましい。なお、低温では反応が開始せず、高温では錯体の速やかな分解が生じることがあるので適宜温度の下限と上限を設定する必要がある。通常、用いる溶媒の沸点以下の温度で実施される。
 モノマーと金属-カルベン錯体を接触させる時間としては、特に制限はないが、通常1分~48時間の範囲で実施される。
 モノマーと金属-カルベン錯体を接触させる圧力としては、特に制限はないが、加圧下でも、常圧下でもよいし、減圧下でもよい。通常0.001~10MPa程度、好ましくは0.01~1MPa程度である。
 モノマーの仕込み比や、上記反応温度や反応時間、反応圧力等の反応条件を適宜調整することで、得られる重合体の分子量を目的のものとすることができる。
The temperature at which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but the temperature can be usually in the range of -100 to 200 ° C., and 0 to 150 ° C. is preferable in terms of reaction rate. The reaction does not start at low temperature, and rapid decomposition of the complex may occur at high temperature, so it is necessary to set the lower limit and the upper limit of the temperature appropriately. It is usually carried out at a temperature below the boiling point of the solvent used.
The time for contacting the monomer with the metal-carbene complex is not particularly limited, but it is usually carried out in the range of 1 minute to 48 hours.
The pressure at which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but may be under pressure, normal pressure or reduced pressure. Usually, it is about 0.001 to 10 MPa, preferably about 0.01 to 1 MPa.
The molecular weight of the obtained polymer can be made into a target one by appropriately adjusting reaction conditions such as the preparation ratio of monomers, the above-mentioned reaction temperature, reaction time, reaction pressure and the like.
 モノマーと金属-カルベン錯体を接触させる際に、反応に悪影響を及ぼさない範囲で無機塩や有機化合物、金属錯体等を共存させてもよい。また、反応に悪影響を及ぼさない範囲で、モノマーと金属-カルベン錯体の混合物を攪拌してもよい。このとき、攪拌の方法としては、メカニカルスターラーやマグネティックスターラー等を用いることができる。 When the monomer and the metal-carbene complex are brought into contact with each other, an inorganic salt, an organic compound, a metal complex or the like may be coexistent as long as the reaction is not adversely affected. In addition, the mixture of the monomer and the metal-carbene complex may be stirred to such an extent that the reaction is not adversely affected. At this time, a mechanical stirrer, a magnetic stirrer or the like can be used as a method of stirring.
 モノマーと金属-カルベン錯体を接触させて重合反応を終えた後、目的物である重合体は公知の方法で単離してもよい。単離方法としては、例えば溶液の場合、撹拌下の貧溶媒中に反応溶液を排出し重合体水素化物を沈殿させスラリーとし、濾過法、遠心分離法、デカンテーション法等により回収する方法、反応溶液にスチームを吹き込んで重合体を析出させるスチームストリッピング法、反応溶液から溶媒を加熱等により直接除去する方法等が挙げられ、スラリーの場合、そのまま濾過法、遠心分離法、デカンテーション法等により回収する方法等が挙げられる。その他、カラムクロマトグラフィー、リサイクル分取HPLC等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。 After contacting the monomer with the metal-carbene complex to complete the polymerization reaction, the target polymer may be isolated by a known method. As an isolation method, for example, in the case of a solution, the reaction solution is drained into a poor solvent under stirring to precipitate a hydrogenated polymer to form a slurry, which is recovered by filtration, centrifugation, decantation, etc. The steam stripping method which blows in steam to solution and precipitates a polymer, the method of removing a solvent directly from the reaction solution by heating etc., etc. are mentioned, and, in the case of a slurry, it is filtration method, centrifugation, decantation method etc Methods of recovery etc. may be mentioned. In addition, column chromatography, recycle preparative HPLC, etc. may be mentioned, and these can be used alone or in combination as needed.
 本反応で得られた目的物は通常の高分子化合物と同様の公知の方法で同定することができる。例えば、H-,19F-,13C-NMR、GPC、静的光散乱、SIMSやGC-MS等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。
 また、2種以上のモノマーを用いて共重合体とすることで、ホモポリマーに比べて多様な性質を付与することも可能である。
The target substance obtained by this reaction can be identified by the same known method as a general polymer compound. For example, 1 H-, 19 F-, 13 C-NMR, GPC, static light scattering, SIMS, GC-MS and the like can be mentioned, and these can be used alone or in combination as needed.
In addition, by using two or more monomers as a copolymer, it is possible to impart various properties as compared to homopolymers.
 得られた含フッ素重合体が共重合体である場合、その共重合体を構成する2種以上の単位構造の比はモノマーの仕込み比に依存するが、通常基準となる一般式aで表される含フッ素由来の繰り返し単位数を1とすると、その他の環状オレフィン由来の繰り返し単位数は0.01~100程度であり、好ましくは0.1~10程度である。 When the obtained fluoropolymer is a copolymer, the ratio of the two or more unit structures constituting the copolymer depends on the preparation ratio of the monomers, but is generally represented by the general formula a as a standard Assuming that the number of repeating units derived from fluorine-containing is 1, the number of repeating units derived from other cyclic olefins is about 0.01 to 100, and preferably about 0.1 to 10.
[開環メタセシス重合体の水素添加物]
 本発明における一般式Iで表される含フッ素重合体(開環メタセシス重合体)の水素添加物は、一般式Iで表される構造を含む含フッ素重合体の主鎖二重結合を水素添加したものであり、一般式I’で表される構造を含む。一般式Iで表される含フッ素重合体の構成単位から、一般式I’で表される含フッ素重合体の構成単位へと水素添加される反応率(還元率)は、好ましくは50%以上100%以下であり、より好ましくは80%以上100%以下である。なお、式中の記号はそれぞれ先述したとおりである。
[Hydrogen additive of ring-opened metathesis polymer]
The hydrogenated product of the fluorine-containing polymer (ring-opening metathesis polymer) represented by the general formula I in the present invention is obtained by hydrogenating the main chain double bond of the fluorine-containing polymer containing the structure represented by the general formula I And includes the structure represented by the general formula I ′. The conversion (hydrogenation) of hydrogenation of the constituent unit of the fluorine-containing polymer represented by the general formula I to the constituent unit of the fluorine-containing polymer represented by the general formula I ′ is preferably 50% or more It is 100% or less, more preferably 80% or more and 100% or less. The symbols in the formulas are as described above.
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
 一般式Iで表される含フッ素重合体が、特定の波長に対して、特に紫外線領域の波長に対して光を吸収する主鎖二重結合を多く含有すると紫外線領域の波長に対する光透過性が低下し光学特性を損なうおそれがある。この光透過性は、開環メタセシス重合体の主鎖二重結合に対して水素原子を添加(付加)し飽和結合にすることで、必要とする透過率に制御できる。
 また一般式Iで表される含フッ素重合体が有する二重結合の量が多いと重合体の屈折率は高くなり、水素添加することによって飽和結合の量を増すと屈折率を低下させることができる。この水素原子の添加の割合(以下、水素添加率ということがある)の増減で屈折率を任意に調整できる。
When the fluorine-containing polymer represented by the general formula I contains a large number of main chain double bonds which absorb light at a particular wavelength, particularly at a wavelength in the ultraviolet range, the light transmission to the wavelength in the ultraviolet range is obtained. There is a risk that the optical characteristics may be impaired. The light transmittance can be controlled to the required transmittance by adding (adding) a hydrogen atom to the main chain double bond of the ring-opening metathesis polymer to form a saturated bond.
Further, when the amount of double bonds contained in the fluorine-containing polymer represented by the general formula I is large, the refractive index of the polymer is increased, and when the amount of saturated bonds is increased by hydrogenation, the refractive index is decreased. it can. The refractive index can be arbitrarily adjusted by increasing or decreasing the rate of addition of hydrogen atoms (hereinafter sometimes referred to as the hydrogen addition rate).
 一方、これらの主鎖二重結合は、幾何学的に平面構造を有することでポリマーの自由な運動を制限する。すなわち、二重結合が多くあれば、ガラス転移温度は高くなり、耐熱特性が向上する。しかし、二重結合は酸化に対する安定性を悪化させることがあり、酸化を防止する目的で、一般的にオレフィン系重合体に使用することができる酸化防止剤などを適宜加えることによって問題を解決することができる。また、二重結合を酸化させてエポキサイドの構造を持たせてもよい。 On the other hand, these main chain double bonds limit the free movement of the polymer by having a geometrically planar structure. That is, if there are many double bonds, the glass transition temperature becomes high, and the heat resistance property is improved. However, the double bond may deteriorate the stability against oxidation, and in order to prevent oxidation, the problem is solved by appropriately adding an antioxidant etc. which can be generally used for an olefin polymer. be able to. Alternatively, the double bond may be oxidized to have an epoxide structure.
 さらに、これら二重結合の量は、ポリマーの機械的強度、耐衝撃性にも影響を与え、その量が多ければ剛性を高め、二重結合を水素添加し飽和結合に変換すれば、柔軟性や耐衝撃強度を高めることができる。この主鎖二重結合の水素添加の割合は、光透過性、耐熱性、耐候性や機械的強度、耐衝撃性などのポリマー物性のバランスによって任意に決めることができる。 Furthermore, the amount of these double bonds also affects the mechanical strength and impact resistance of the polymer, and if the amount is large, the rigidity is enhanced, and if double bonds are converted to saturation bonds, flexibility is achieved. And impact resistance can be increased. The hydrogenation ratio of the main chain double bond can be arbitrarily determined by the balance of polymer physical properties such as light transmittance, heat resistance, weather resistance, mechanical strength, and impact resistance.
 開環メタセシス重合体水素添加物の分子量は1,000~5,000,000であることが、機械的物性、物理的物性の点から好ましい。前記分子量は重量平均分子量で表される値であり、GPCを用いて重合体溶液の条件下で測定される。 The molecular weight of the ring-opened metathesis polymer hydrogenated substance is preferably 1,000 to 5,000,000 from the viewpoint of mechanical properties and physical properties. The said molecular weight is a value represented by a weight average molecular weight, and is measured on conditions of a polymer solution using GPC.
 また、重合体が開環メタセシス単独重合体の水素添加物である場合、式中uで表される繰り返し単位の繰り返し数は2~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。重合体が開環メタセシス共重合体の水素添加物である場合は、複数存在する繰り返し単位の繰り返し数の総数が2~10,000であることが好ましく、より好ましくは5~6,500である。 When the polymer is a hydrogenated product of a ring-opening metathesis homopolymer, the number of repeating units of the repeating unit represented by u in the formula is 2 to 10,000, in terms of mechanical properties and physical properties. And more preferably 5 to 6,500. When the polymer is a hydrogenated product of a ring-opening metathesis copolymer, the total number of repeating numbers of a plurality of repeating units is preferably 2 to 10,000, more preferably 5 to 6,500. .
 得られたポリマーは高耐熱性、低吸水性、高光線透過率(透明性)、高化学耐久性、高耐候性、高撥液性等といった特性を有し、これら諸特性のバランスにも優れることから、電気・電子材料、半導体材料、光学材料、医療器具・細胞培養材料、撥液材料、エラストマー材料、エアロゲル材料等の多種多様な分野に利用することができる。 The obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomer materials, airgel materials and the like.
[付加重合]
 一般式aで表される含フッ素化合物は付加重合により、一般式IIで表される構造を含む含フッ素重合体を得ることができる。式中の記号は先述したとおりである。
[Addition polymerization]
The fluorine-containing compound represented by the general formula a can be obtained by addition polymerization to obtain a fluorine-containing polymer including the structure represented by the general formula II. The symbols in the formula are as described above.
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 付加重合では、開環メタセシス重合と同様に、一般式aで表される含フッ素化合物の1種のみを用いたホモポリマーとしてもよいし、二種以上のモノマーを原料として共重合を行ってもよい。
 共重合を行う際の、一般式IIで表されない構造部分となる繰り返し単位の種類は、本発明の効果を過度に阻害しないものであれば特に制限されない。かかる繰り返し単位としては、通常は、共重合可能なビニル化合物から誘導される繰り返し単位であることが好ましく、前記ビニル化合物の好ましい例としては、エチレン、プロピレン、1-ブテン、1-ヘキセンなどのα-オレフィン、スチレン、環状オレフィンなどを挙げることができる。これらの中では、環状オレフィンを採用することが好ましく、特に重合した後に一般式IIと同じ環状骨格を形成しうる環状オレフィンを採用することが好ましい。
In addition polymerization, as in the ring opening metathesis polymerization, it may be a homopolymer using only one kind of the fluorine-containing compound represented by the general formula a, or may be copolymerized using two or more kinds of monomers as a raw material Good.
The type of repeating unit to be a structural moiety not represented by General Formula II when carrying out the copolymerization is not particularly limited as long as it does not excessively inhibit the effect of the present invention. Such a repeating unit is usually preferably a repeating unit derived from a copolymerizable vinyl compound, and preferable examples of the vinyl compound include α such as ethylene, propylene, 1-butene, 1-hexene and the like. -Olefins, styrenes, cyclic olefins etc. may be mentioned. Among these, it is preferable to adopt a cyclic olefin, and in particular, it is preferable to adopt a cyclic olefin which can form the same cyclic skeleton as that of the general formula II after polymerization.
 得られる共重合体としては、例えば交互共重合体、ブロック共重合体、ランダム共重合体が合成可能であり、原料であるモノマーの仕込み比や、重合条件によって所望の共重合体を得ることができる。 As a copolymer to be obtained, for example, alternating copolymer, block copolymer and random copolymer can be synthesized, and a desired copolymer can be obtained depending on the preparation ratio of monomers as raw materials and polymerization conditions. it can.
 重合体の分子量は1,000~5,000,000が機械的物性、物理的物性の点から好ましい。前記分子量は重量平均分子量であり、GPCを用いて重合体溶液の条件下で測定される。
 また、重合体がホモポリマーである場合、式中vで表される繰り返し単位の繰り返し数は2~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。共重合体である場合は、複数存在する繰り返し単位の繰り返し数の総数が2~10,000であることが好ましく、より好ましくは5~6,500である。
The molecular weight of the polymer is preferably 1,000 to 5,000,000 in view of mechanical properties and physical properties. The molecular weight is a weight average molecular weight, and is measured under the conditions of a polymer solution using GPC.
When the polymer is a homopolymer, the repeating number of the repeating unit represented by v in the formula is preferably 2 to 10,000 from the viewpoint of mechanical properties and physical properties, more preferably 5 to It is 6,500. In the case of a copolymer, the total number of repeating units of a plurality of repeating units is preferably 2 to 10,000, more preferably 5 to 6,500.
 得られたポリマーは高耐熱性、低吸水性、高光線透過率(透明性)、高化学耐久性、高耐候性、高撥液性等といった特性を有し、これら諸特性のバランスにも優れることから、電気・電子材料、半導体材料、光学材料、医療器具・細胞培養材料、撥液材料、エラストマー材料、エアロゲル材料等の多種多様な分野に利用することができる。 The obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, high liquid repellency, etc., and the balance of these properties is also excellent. Therefore, it can be used in a wide variety of fields such as electric and electronic materials, semiconductor materials, optical materials, medical instruments and cell culture materials, liquid repellent materials, elastomer materials, airgel materials and the like.
[製造方法]
 一般式aで表される含フッ素化合物を少なくとも1種のモノマーとして用い、付加重合を行うことで、一般式IIで表される構造を含む含フッ素重合体を得ることができる。なお得られる含フッ素重合体は、モノマーを一般式aで表される含フッ素化合物のみとした場合には一般式IIで表される含フッ素重合体(ホモポリマー)となり、複数種のモノマーを用いた場合には、一般式IIで表される構造を含む含フッ素共重合体(コポリマー)が得られる。
[Production method]
By performing addition polymerization using the fluorine-containing compound represented by the general formula a as at least one monomer, a fluorine-containing polymer including a structure represented by the general formula II can be obtained. The fluorine-containing polymer obtained is a fluorine-containing polymer (homopolymer) represented by the general formula II when the monomer is only the fluorine-containing compound represented by the general formula a, and plural kinds of monomers are used. In such a case, a fluorine-containing copolymer (copolymer) containing the structure represented by the general formula II is obtained.
 モノマーとしては一般式aで表される含フッ素化合物1種を用いても、構造の異なる複数種の化合物を他のモノマーとして併用してもよく、所望する重合体の構造によって適宜決定すればよい。 As the monomer, one kind of fluorine-containing compound represented by the general formula a may be used, or a plurality of compounds having different structures may be used in combination as another monomer, which may be appropriately determined according to the desired polymer structure. .
 重合方法としては、ラジカル重合、カチオン重合、アニオン重合、配位重合が挙げられ、中でもラジカル重合又は配位重合が好ましい。 The polymerization method may, for example, be radical polymerization, cationic polymerization, anionic polymerization or coordination polymerization, among which radical polymerization or coordination polymerization is preferred.
 一般式IIで表される構造を含む含フッ素重合体は、一般式aで表される含フッ素化合物を用いて公知の方法により得ることができる。中でも、前記含フッ素化合物を付加重合する方法である。
 付加重合の条件については、当業者に周知の条件を適宜最適化して採用することができる。
The fluorine-containing polymer containing the structure represented by the general formula II can be obtained by a known method using the fluorine-containing compound represented by the general formula a. Among them, the method of addition polymerizing the above-mentioned fluorine-containing compound.
As the conditions for addition polymerization, conditions well known to those skilled in the art can be appropriately optimized and adopted.
 重合反応を終えた後の単離や同定は開環メタセシス重合の際と同様の方法を用いることができる。 The same method as in ring-opening metathesis polymerization can be used for isolation and identification after completion of the polymerization reaction.
 得られた含フッ素重合体が共重合体である場合、その共重合体を構成する2種以上の単位構造の比はモノマーの仕込み比に依存するが、通常基準となる一般式aで表される含フッ素由来の繰り返し単位数を1とすると、その他のオレフィン由来の繰り返し単位数は0.01~100程度であり、好ましくは0.1~10程度である。 When the obtained fluoropolymer is a copolymer, the ratio of the two or more unit structures constituting the copolymer depends on the preparation ratio of the monomers, but is generally represented by the general formula a as a standard Assuming that the number of repeating units derived from fluorine is one, the number of repeating units derived from other olefins is about 0.01 to 100, and preferably about 0.1 to 10.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<市販試薬>
 本実施例において、触媒および試薬は、特に記載しない場合においては、市販品をそのまま反応に用いた。溶媒は、脱水・脱酸素された市販品を用いた。
<評価方法>
 本実施例において、合成した化合物の構造は日本電子株式会社製の核磁気共鳴装置(JNM-AL300)によりH-NMR、19F-NMR測定を行うことで同定した。
 分子量は株式会社島津製作所製のガスクロマトグラフ質量分析計(GCMS-QP2010Ultra)を用いて、電子イオン化法(EI)、化学イオン化法(CI)により求めた。
 含フッ素重合体の質量平均分子量(Mw)および数平均分子量(Mn)は、GPC装置(東ソー社製、HLC-8220)によって得られたクロマトグラムから、分子量既知の標準ポリメチルメタクリレート試料を用いて作成した検量線を用いて求めた。
EXAMPLES Although an Example is given to the following and this invention is concretely demonstrated to it, this invention is not limited to these.
<Commercial reagent>
In this example, commercial products were used as they were in the reaction unless otherwise stated. The solvent used was a dehydrated / deoxygenated commercial product.
<Evaluation method>
In this example, the structure of the synthesized compound was identified by performing 1 H-NMR and 19 F-NMR measurement with a nuclear magnetic resonance apparatus (JNM-AL300) manufactured by JEOL.
The molecular weight was determined by electron ionization (EI) and chemical ionization (CI) using a gas chromatograph mass spectrometer (GCMS-QP2010 Ultra) manufactured by Shimadzu Corporation.
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the fluorine-containing polymer are determined using a standard polymethyl methacrylate sample of known molecular weight from the chromatogram obtained by the GPC apparatus (HLC-8220 manufactured by Tosoh Corporation). It calculated | required using the prepared calibration curve.
<実施例1-1>含フッ素ジエン(1)とシクロペンタジエンのディールズアルダー反応
 ステンレス鋼(SUS316)製高圧ミニチュア・ボンベにジシクロペンタジエン(5.20g、39.4mmol)、下記式1で表される含フッ素ジエン(10.0g、39.4mmol)、ヒドロキノン(0.13g、1.18mmol)を仕込んだ。次いでボンベに0.20MPaGの窒素を圧入した後、常圧に戻す操作を3回繰り返し窒素置換し、200℃で3時間加熱した。反応内容物をジクロロメタンに溶解させ50mLの丸底フラスコに移した後、減圧下で溶媒を留去した。濃縮物にメタノール20mLを加え加熱還流下溶解させた後、氷冷した。析出した結晶を減圧濾過し、60℃で減圧乾燥し2N-PF4で表される化合物を収量6.70g、収率44%で得た。
<Example 1-1> Diels-Alder reaction of fluorine-containing diene (1) and cyclopentadiene Dicyclopentadiene (5.20 g, 39.4 mmol) in a stainless steel (SUS 316) high-pressure miniature bomb, Table 1 below The fluorinated diene (10.0 g, 39.4 mmol) and hydroquinone (0.13 g, 1.18 mmol) were charged. Next, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 200 ° C. for 3 hours. The reaction contents were dissolved in dichloromethane and transferred to a 50 mL round bottom flask and then the solvent was evaporated under reduced pressure. After adding 20 mL of methanol to the concentrate and dissolving under heating and refluxing, it was ice-cooled. The precipitated crystals were filtered under reduced pressure and dried at 60 ° C. under reduced pressure to obtain 6.70 g of a compound represented by 2N-PF4 in a yield of 44%.
 H-NMR(CDCl):δ(ppm)6.2~6.0(4H)、3.2(2H)、3.0~1.2(12H)。19F-NMR(CDCl):δ(ppm)-110.9~-117.2(4F)、-120.4~-124.0(4F)。GC-MS(EI):M=386、GC-MS(CI):[M+H]=387 1 H-NMR (CDCl 3 ): δ (ppm) 6.2 to 6.0 (4 H), 3.2 (2 H), 3.0 to 1.2 (12 H). 19 F-NMR (CDCl 3 ): δ (ppm) -110.9 to -117.2 (4F), -120.4 to -124.0 (4F). GC-MS (EI): M + = 386, GC-MS (CI): [M + H] + = 387
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
<実施例1-2>含フッ素ジエン(2)とシクロペンタジエンのディールズアルダー反応
 ステンレス鋼(SUS316)製高圧ミニチュア・ボンベにジシクロペンタジエン(2.99g、22.6mmol)、下記式2で表される含フッ素ジエン(8.0g、22.6mmol)、ヒドロキノン(0.075g、0.68mmol)を仕込んだ。次いでボンベに0.20MPaGの窒素を圧入した後、常圧に戻す操作を3回繰り返し窒素置換し、180℃で5時間加熱した。反応内容物をジクロロメタンに溶解させ50mLの丸底フラスコに移した後、減圧下で溶媒を留去した。濃縮物にメタノール10mLを加え加熱還流下溶解させた後、氷冷した。析出した結晶を減圧濾過し、60℃で減圧乾燥し2N-PF6で表される化合物を収量7.51g、収率68%で得た。
<Example 1-2> Diels-Alder reaction of fluorine-containing diene (2) and cyclopentadiene Dicyclopentadiene (2.99 g, 22.6 mmol) in a stainless steel (SUS 316) high-pressure miniature bomb, Table 2 below The fluorinated diene (8.0 g, 22.6 mmol) and hydroquinone (0.075 g, 0.68 mmol) were charged. Next, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 180 ° C. for 5 hours. The reaction contents were dissolved in dichloromethane and transferred to a 50 mL round bottom flask and then the solvent was evaporated under reduced pressure. After adding 10 mL of methanol to the concentrate and dissolving under heating and refluxing, it was ice-cooled. The precipitated crystals were filtered under reduced pressure and dried at 60 ° C. under reduced pressure to obtain 7.51 g of a compound represented by 2N-PF6 in a yield of 68%.
 H-NMR(CDCl):δ(ppm)6.2~6.0(4H)、3.2(2H)、3.0~1.2(12H)。19F-NMR(CDCl):δ(ppm)-111.5~-117.0(4F)、-121.5~-122.8(8F)。 1 H-NMR (CDCl 3 ): δ (ppm) 6.2 to 6.0 (4 H), 3.2 (2 H), 3.0 to 1.2 (12 H). 19 F-NMR (CDCl 3 ): δ (ppm) -111.5 to -117.0 (4F), -121.5 to -122.8 (8F).
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
<実施例1-3>含フッ素ジエン(3)とシクロペンタジエンのディールズアルダー反応
 ステンレス鋼(SUS316)製高圧ミニチュア・ボンベにジシクロペンタジエン(7.13g、54.0mmol)、下記式3で表される含フッ素ジエン(15.0g、54.0mmol)、ヒドロキノン(0.18g、1.62mmol)を仕込んだ。次いでボンベに0.20MPaGの窒素を圧入した後、常圧に戻す操作を3回繰り返し窒素置換し、200℃で7時間加熱した。反応内容物を30mLの丸底フラスコに移した後、減圧蒸留にてモノマーを精製した。2N-BVEで表される化合物を収量6.85g、収率31%で得た。
<Example 1-3> Diels-Alder reaction of fluorine-containing diene (3) and cyclopentadiene Dicyclopentadiene (7.13 g, 54.0 mmol) in a stainless steel (SUS 316) high-pressure miniature cylinder, Table 3 below The fluorinated diene (15.0 g, 54.0 mmol) and hydroquinone (0.18 g, 1.62 mmol) were charged. Then, after 0.20 MPaG of nitrogen was pressured into the bomb, the operation of returning to normal pressure was repeated three times, and nitrogen substitution was performed, and heating was performed at 200 ° C. for 7 hours. The reaction contents were transferred to a 30 mL round bottom flask, and then the monomer was purified by distillation under reduced pressure. The compound represented by 2N-BVE was obtained in a yield of 6.85 g, 31%.
 H-NMR(CDCl):δ(ppm)6.3~5.6(4H)、3.9~1.9(8H)。19F-NMR(CDCl):δ(ppm)-76.9~-85.4(2F)、-105.2~-126.3(7F)、-166.9~-168.8(1F)。GC-MS(EI):M=410、GC-MS(CI):[M+H]=411 1 H-NMR (CDCl 3 ): δ (ppm) 6.3 to 5.6 (4 H), 3.9 to 1.9 (8 H). 19 F-NMR (CDCl 3 ): δ (ppm) -76.9 to -85.4 (2F), -105.2 to -126.3 (7F), -166.9 to -168.8 (1F) ). GC-MS (EI): M + = 410, GC-MS (CI): [M + H] + = 411
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
<実施例1-4>含フッ素ノルボルネン(C)の合成
(1)水酸化カリウム(1.75g、31.2mmol)、アセトニトリル(100mL)、5-ノルボルネン-2,2-ジメタノール(4.76g、30.9mmol)および1,1,2,2,3,3-ヘキサフルオロ-1,3-ビス[(1,2,2-トリフルオロビニル)オキシ]プロパン(5.32g、15.5mmol)を200mLの丸底フラスコに仕込み、ジムロートを取り付けて85℃で5時間反応させた。氷25gと水道水25gを200mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりと連続的に導入した。更に2Nの塩酸(14mL)、水道水(50mL)酢酸エチル(150mL)を加え攪拌した後、有機相を分取した。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相、n-ヘキサン:酢酸エチル=4:1)にて精製し下記化合物Aを得た。収量は2.66g、収率は26%であった。
<Example 1-4> Synthesis of fluorine-containing norbornene (C) (1) Potassium hydroxide (1.75 g, 31.2 mmol), acetonitrile (100 mL), 5-norbornene 2,2-dimethanol (4.76 g) , 30.9 mmol) and 1,1,2,2,3,3-hexafluoro-1,3-bis [(1,2,2-trifluorovinyl) oxy] propane (5.32 g, 15.5 mmol) The mixture was charged into a 200 mL round bottom flask, fitted with a Dimroth, and allowed to react at 85 ° C. for 5 hours. 25 g of ice and 25 g of tap water were charged in a 200 mL beaker and stirred, and the above reaction solution was slowly and continuously introduced into ice cold water. Further, 2N hydrochloric acid (14 mL) and tap water (50 mL) ethyl acetate (150 mL) were added and stirred, and then the organic phase was separated. Anhydrous sodium sulfate was added to the organic phase and stirred, and then insoluble matter was removed by filtration under reduced pressure. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase, n-hexane: ethyl acetate = 4: 1) to obtain the following compound A. The yield was 2.66 g, 26%.
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
(2)水酸化カリウム(0.087g、1.55mmol)、アセトニトリル(10mL)、化合物A(0.50g、0.77mmol)および下記式Bで表される含フッ素オレフィン(0.65g、1.56mmol)を50mLの丸底フラスコに仕込み、ジムロートを取り付けて85℃で3時間反応させる。水道水20gを200mLのビーカーに仕込み攪拌を行い、先の反応液を水道水にゆっくりと連続的に導入する。酢酸エチル(30mL)を加え攪拌した後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し下記化合物Cを得る。 (2) Potassium hydroxide (0.087 g, 1.55 mmol), acetonitrile (10 mL), compound A (0.50 g, 0.77 mmol) and a fluorine-containing olefin (0.65 g, Charge 56 mmol) to a 50 mL round bottom flask, attach a Dimroth, and react at 85 ° C. for 3 hours. 20 g of tap water is charged into a 200 mL beaker and stirred, and the above reaction solution is slowly and continuously introduced into tap water. Ethyl acetate (30 mL) is added and stirred, and then the organic phase is separated. Anhydrous sodium sulfate is added to the organic phase and stirred, and then insolubles are removed by filtration under reduced pressure. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the following compound C.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<実施例1-5>含フッ素ノルボルネン(E)の合成
(1)水酸化カリウム(1.75g、31.2mmol)、アセトニトリル(100mL)、5-ノルボルネン-2,3-ジメタノール(4.76g、30.9mmol)および1,1,2,2,3,3-ヘキサフルオロ-1,3-ビス[(1,2,2-トリフルオロビニル)オキシ]プロパン(5.32g、15.5mmol)を200mLの丸底フラスコに仕込み、ジムロートを取り付けて85℃で5時間反応させる。氷25gと水道水25gを200mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりと連続的に導入する。更に2Nの塩酸(14mL)、水道水(50mL)酢酸エチル(150mL)を加え攪拌した後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し下記化合物Dを得る。
<Example 1-5> Synthesis of fluorine-containing norbornene (E) (1) Potassium hydroxide (1.75 g, 31.2 mmol), acetonitrile (100 mL), 5-norbornene-2,3-dimethanol (4.76 g) , 30.9 mmol) and 1,1,2,2,3,3-hexafluoro-1,3-bis [(1,2,2-trifluorovinyl) oxy] propane (5.32 g, 15.5 mmol) Add to a 200 mL round bottom flask, attach a Dimroth, and react at 85 ° C. for 5 hours. 25 g of ice and 25 g of tap water are charged in a 200 mL beaker and stirred, and the above reaction solution is slowly and continuously introduced into ice cold water. Further, 2N hydrochloric acid (14 mL) and tap water (50 mL) ethyl acetate (150 mL) are added and stirred, and then the organic phase is separated. Anhydrous sodium sulfate is added to the organic phase and stirred, and then insolubles are removed by filtration under reduced pressure. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the following compound D.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(2)水酸化カリウム(0.087g、1.55mmol)、アセトニトリル(10mL)、化合物D(0.50g、0.77mmol)および下記式Bで表される含フッ素オレフィン(0.65g、1.56mmol)を50mLの丸底フラスコに仕込み、ジムロートを取り付けて85℃で3時間反応させる。水道水20gを200mLのビーカーに仕込み攪拌を行い、先の反応液を水道水にゆっくりと連続的に導入する。酢酸エチル(30mL)を加え攪拌した後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し下記化合物Eを得る。 (2) Potassium hydroxide (0.087 g, 1.55 mmol), acetonitrile (10 mL), compound D (0.50 g, 0.77 mmol) and a fluorine-containing olefin (0.65 g, Charge 56 mmol) to a 50 mL round bottom flask, attach a Dimroth, and react at 85 ° C. for 3 hours. 20 g of tap water is charged into a 200 mL beaker and stirred, and the above reaction solution is slowly and continuously introduced into tap water. Ethyl acetate (30 mL) is added and stirred, and then the organic phase is separated. Anhydrous sodium sulfate is added to the organic phase and stirred, and then insolubles are removed by filtration under reduced pressure. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the following compound E.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<実施例1-6>含フッ素ノルボルネン(H)の合成
(1)実施例1-5の手順に従い化合物Dを合成する。
Example 1-6 Synthesis of Fluorine-Containing Norbornene (H) (1) Compound D is synthesized according to the procedure of Example 1-5.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(2)化合物D(14.8g、22.7mmol)、ジクロロメタン(45mL)、および2,6-ルチジン(5.82g、54.4mmol)を100mLの丸底フラスコに仕込み氷冷下で攪拌する。氷冷攪拌下、トリフルオロメタンスルホン酸無水物( 14.0g、49.6mmol)を反応液に滴下する。反応液をシリカゲルカラムクロマトグラフィーにて精製し下記化合物Fを得る。 (2) Compound D (14.8 g, 22.7 mmol), dichloromethane (45 mL), and 2,6-lutidine (5.82 g, 54.4 mmol) are charged into a 100 mL round bottom flask and stirred under ice-cooling. Under stirring with ice cooling, trifluoromethanesulfonic anhydride (14.0 g, 49.6 mmol) is added dropwise to the reaction solution. The reaction solution is purified by silica gel column chromatography to obtain the following compound F.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(3)窒素雰囲気下、化合物F(2.84g、3.1mmol)、ジエチレングリコールジメチルエーテル(20mL)、下記式Gで表される含フッ素化合物(2.16g、6.2mmol)およびフッ化セシウム(1.88g、12.4mmol)を100mLの丸底フラスコに仕込み室温下で16時間攪拌する。反応液にジクロロメタン(50mL)、飽和炭酸水素ナトリウム水溶液(50mL)を加え攪拌後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し下記化合物Hを得る。 (3) Compound F (2.84 g, 3.1 mmol), diethylene glycol dimethyl ether (20 mL), a fluorine-containing compound represented by the following formula G (2.16 g, 6.2 mmol), and cesium fluoride (1 under a nitrogen atmosphere) Charge .88 g (12.4 mmol) to a 100 mL round bottom flask and stir at room temperature for 16 hours. Dichloromethane (50 mL) and saturated aqueous sodium hydrogen carbonate solution (50 mL) are added to the reaction solution, and the mixture is stirred, and then the organic phase is separated. Anhydrous sodium sulfate is added to the organic phase and stirred, and then insolubles are removed by filtration under reduced pressure. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the following compound H.
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
<実施例2-1>2N-PF4のROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(22mg、0.026mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製した。次に、実施例1-1で得られた化合物(2N-PF4)(2.0g、5.18mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈した。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。目的のポリマー(P-2N-PF4)の収率は99%であった。
 これら一連の反応を以下に示す。なお、式中x及びyはそれぞれ繰り返し単位の繰り返し数を示す正の整数である(以下、同様とする)。
Example 2-1 ROMP Homopolymerization of 2N-PF4 Under nitrogen atmosphere, Grubbs second generation catalyst (22 mg, 0.026 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution did. Next, the compound (2N-PF4) (2.0 g, 5.18 mmol) obtained in Example 1-1 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then the catalyst prepared above was prepared. The solution was added to 1 mL (corresponding to 0.1 mol% of the catalyst) and allowed to react at room temperature for 3 hours. Subsequently, ethyl vinyl ether (422 μL) was added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform was added to dilute the polymerization suspension. The polymer suspension was continuously introduced into methanol (250 mL), and the precipitated polymer was collected by vacuum filtration and dried at 50 ° C. under reduced pressure. The yield of the target polymer (P-2N-PF4) was 99%.
A series of these reactions are shown below. In the formulae, x and y are each a positive integer indicating the number of repetition of the repeating unit (the same shall apply hereinafter).
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
<実施例2-2>連鎖移動剤存在下での2N-PF4のROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(8.07mg、0.0095mmol)を6mLのスクリュー管瓶に秤取りジクロロメタン(0.59mL)に溶解させ触媒溶液を調製した。次に、実施例1-1で得られた化合物(2N-PF4)(1.0g、2.59mmol)、ジクロロメタン(11mL)及び1-ヘキセン(323μL、2.58mmol)を50mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液0.16mL(触媒0.1mol%相当)加え室温下で反応させた。反応2時間後にジクロロメタン(15mL)を反応液に追加し、更に1.5時間反応させた。次いでエチルビニルエーテル(211μL)を反応液に加え重合を停止させた。前記ポリマー溶液をメタノール(200mL)に滴下した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。目的のポリマー(P-2N-PF4)の収率は57%であった。本ポリマーはNMR分析より、ラダー型と同定した。x、yは2.30であった。
Example 2-2 ROMP Homopolymerization of 2N-PF4 in the Presence of a Chain Transfer Agent Under a nitrogen atmosphere, a Grubbs second generation catalyst (8.07 mg, 0.0095 mmol) was weighed into a 6 mL screw tube and dichloromethane ( The catalyst solution was prepared by dissolving in 0.59 mL). Next, the compound (2N-PF4) (1.0 g, 2.59 mmol) obtained in Example 1-1, dichloromethane (11 mL) and 1-hexene (323 μL, 2.58 mmol) were added to a 50 mL screw tube bottle. After being charged and dissolved, 0.16 mL (corresponding to 0.1 mol% of catalyst) of the catalyst solution prepared above was added and reacted at room temperature. After 2 hours of reaction, dichloromethane (15 mL) was added to the reaction solution and allowed to react for an additional 1.5 hours. Then, ethyl vinyl ether (211 μL) was added to the reaction solution to terminate the polymerization. The polymer solution was added dropwise to methanol (200 mL), and the precipitated polymer was recovered by filtration under reduced pressure and dried at 60 ° C. under reduced pressure. The yield of the target polymer (P-2N-PF4) was 57%. The polymer was identified as ladder type by NMR analysis. x and y were 2.30.
 H-NMR(CDCl):δ(ppm)6.0~4.9(13H)、3.3~0.8(44H)、1.0~0.8(6H)。19F-NMR(CDCl):δ(ppm)-110~-116(4F)、-119~-124(4F)。 1 H-NMR (CDCl 3 ): δ (ppm) 6.0 to 4.9 (13 H), 3.3 to 0.8 (44 H), 1.0 to 0.8 (6 H). 19 F-NMR (CDCl 3 ): δ (ppm) -110 to -116 (4F), -119 to -124 (4F).
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
<実施例2-3>2N-PF4の付加重合
 窒素雰囲気下、トリシクロヘキシルホスフィン(6.85mg、0.024mmol)を6mLスクリュー管瓶に秤取り、トルエン(0.5mL)に溶解させトリシクロヘキシルホスフィン溶液を調製した。次に、パラジウム(II)アセチルアセトナート(Pd(acac)、7.72mg、0.025mmol)を6mLのスクリュー管瓶に秤取り、先に調製したトリシクロヘキシルホスフィン溶液を全量加えた後、トルエン(0.5mL)で洗い込み触媒溶液を調製した。次に、実施例1-1で得られた化合物(2N-PF4)(0.50g、1.30mmol)、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボラート(38.9mg、0.049mmol)を6mLスクリュー管瓶に秤取り、先に調製した触媒溶液を全量加え80℃で加熱して2.5時間反応させた。反応後、固化した反応混合物の全量を30mLのスクリュー管瓶に移し、メタノール(20mL)を加えて一昼夜激しく撹拌して粉砕した。粉末状に粉砕されたポリマーを減圧濾過で回収し、60℃で減圧乾燥した。
 目的のポリマー(P-A-2N-PF4)の収率は100%であった。ポリマーとろ別したろ液のH-NMR測定から原料モノマー(2N-PF4)の転化率は100%であった。
Example 2-3 Addition Polymerization of 2N-PF4 Under nitrogen atmosphere, tricyclohexylphosphine (6.85 mg, 0.024 mmol) was weighed into a 6 mL screw tube bottle, dissolved in toluene (0.5 mL), and then tricyclohexyl phosphine was dissolved. The solution was prepared. Next, weigh palladium (II) acetylacetonate (Pd (acac) 2 , 7.72 mg, 0.025 mmol) into a 6 mL screw-tube bottle, add all the tricyclohexylphosphine solution prepared above, and then add toluene. The catalyst solution was prepared by washing with (0.5 mL). Next, the compound (2N-PF4) (0.50 g, 1.30 mmol) obtained in Example 1-1, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate (38.9 mg, 0.049 mmol) ) Was weighed into a 6 mL screw tube bottle, and the entire amount of the catalyst solution prepared above was added and heated at 80 ° C. to react for 2.5 hours. After the reaction, the whole solidified reaction mixture was transferred to a 30 mL screw-tube, methanol (20 mL) was added, and the mixture was vigorously stirred overnight for crushing. The powdered polymer was collected by vacuum filtration and dried at 60 ° C. under reduced pressure.
The yield of the target polymer (PA-2N-PF4) was 100%. From the 1 H-NMR measurement of the filtrate separated from the polymer, the conversion of the raw material monomer (2N-PF4) was 100%.
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
<実施例2-4>連鎖移動剤存在下での2N-PF6のROMP単独重合
 窒素雰囲気下、Grubbs第一世代触媒(1.86g、2.3mmol)を300mLの丸底フラスコに秤取りそれぞれジクロロメタン(186mL)に溶解させ触媒溶液を調製した。次に、窒素気流下、2N-PF6(27.5g、56.6mmol)、ジクロロメタン(832mL)、ヘキサフルオロベンゼン(113mL)を2Lの丸底フラスコに仕込み、氷水で冷却した。反応容器内を減圧脱気した後、エチレンで置換し、ガス採集袋でエチレン雰囲気下とした。室温下で30分撹拌した後、先に調製した触媒溶液を全量加え室温下でそれぞれ44時間反応させた。反応液を減圧濃縮した後、シリカゲルカラムクロマトグラフィーにて精製しE-2N-PF6で表される化合物を得た。収量は25.1g、収率は83%であった。NMR分析よりMnは693、xは1.29であった。
1H-NMR(CDCl3):δ(ppm)6.0~5.7(4H)、5.5~5.2(0.5H)、5.1~5.0(m,8H)、3.0~0.83(m,16H)。
19F-NMR(CDCl3):δ(ppm)-110~-115(4F)、-121~-123(m,8F)。
Example 2-4 ROMP Homopolymerization of 2N-PF6 in the Presence of Chain Transfer Agent Under a nitrogen atmosphere, Grubbs 1st generation catalyst (1.86 g, 2.3 mmol) was weighed in a 300 mL round bottom flask and each dichloromethane was used. The catalyst solution was prepared by dissolving in (186 mL). Next, under a nitrogen stream, 2N-PF6 (27.5 g, 56.6 mmol), dichloromethane (832 mL) and hexafluorobenzene (113 mL) were charged into a 2 L round bottom flask and cooled with ice water. After degassing the inside of the reaction vessel under reduced pressure, it was replaced with ethylene, and the gas collection bag was used under an ethylene atmosphere. After stirring for 30 minutes at room temperature, all of the catalyst solution prepared above was added and allowed to react at room temperature for 44 hours. The reaction mixture was concentrated under reduced pressure and then purified by silica gel column chromatography to obtain a compound represented by E-2N-PF6. The yield was 25.1 g, 83%. According to NMR analysis, Mn was 693 and x was 1.29.
1 H-NMR (CDCl 3): δ (ppm) 6.0 to 5.7 (4 H), 5.5 to 5.2 (0.5 H), 5.1 to 5.0 (m, 8 H), 0 to 0.83 (m, 16 H).
19F-NMR (CDCl3): δ (ppm) -110 to -115 (4F), -121 to -123 (m, 8F).
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
<実施例2-5>2N-PF6の付加重合
 窒素雰囲気下、トリシクロヘキシルホスフィン(6.98mg、0.024mmol)を6mLスクリュー管瓶に秤取り、トルエン(0.4mL)に溶解させトリシクロヘキシルホスフィン溶液を調製した。次に、Pd(acac)(7.70mg、0.025mmol)を6mLのスクリュー管瓶に秤取り、先に調製したトリシクロヘキシルホスフィン溶液を全量加えた後、トルエン(0.1mL)で洗い込み触媒溶液を調製した。次に、前記触媒溶液(30μL)とトルエン(1.47mL)をスクリュー管瓶に秤取り0.001Mの触媒溶液を調製した。
 実施例1-2で得られた化合物(2N-PF6)(0.50g、1.02mmol)、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボラート(0.59mg、0.00074mmol)、トルエン(2mL)を6mLスクリュー管瓶に秤取り、先に調製した0.001Mの触媒溶液(0.37mL)を加え80℃で加熱して1.5時間反応させた。反応後、固化した反応混合物の全量を50mLのスクリュー管瓶に移し、アセトン(20mL)を加えて一昼夜激しく撹拌した。粉砕・洗浄されたポリマーを減圧濾過で回収し、60℃で減圧乾燥した。
 目的のポリマー(P-A-2N-PF6)の収率は56%であった。ポリマーとろ別したろ液のH-NMR測定から原料モノマー(2N-PF4)の転化率は70%であった。
<Example 2-5> Addition polymerization of 2N-PF6 Under nitrogen atmosphere, tricyclohexylphosphine (6.98 mg, 0.024 mmol) is weighed into a 6 mL screw tube bottle and dissolved in toluene (0.4 mL) to obtain tricyclohexyl phosphine The solution was prepared. Next, weigh Pd (acac) 2 (7.70 mg, 0.025 mmol) in a 6 mL screw-tube, add all the tricyclohexylphosphine solution prepared above, and wash with toluene (0.1 mL) A catalyst solution was prepared. Next, the catalyst solution (30 μL) and toluene (1.47 mL) were weighed into a screw tube bottle to prepare a 0.001 M catalyst solution.
Compound (2N-PF6) (0.50 g, 1.02 mmol) obtained in Example 1-2, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate (0.59 mg, 0.00074 mmol), toluene (2 mL) was weighed into a 6 mL screw tube bottle, the previously prepared 0.001 M catalyst solution (0.37 mL) was added, and the mixture was heated at 80 ° C. to react for 1.5 hours. After the reaction, the whole solidified reaction mixture was transferred to a 50 mL screw tube bottle, acetone (20 mL) was added, and the whole was vigorously stirred overnight. The crushed and washed polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure.
The yield of the target polymer (PA-2N-PF6) was 56%. The conversion of the raw material monomer (2N-PF4) was 70% from the 1 H-NMR measurement of the filtrate obtained by filtration of the polymer.
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
<実施例2-6>2N-BVEのROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(22mg、0.026mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製した。次に、実施例1-3で得られた化合物(2N-BVE)(2.0g、4.87mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1.1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(397μL)を反応液に加え重合を停止させた後、クロロホルムを60mL加え重合懸濁液を希釈した。前記ポリマー懸濁液をメタノール(200mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。目的のポリマー(P-2N-BVE)の収率は94%であった。
Example 2-6 ROMP Homopolymerization of 2N-BVE Under nitrogen atmosphere, Grubbs second generation catalyst (22 mg, 0.026 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution did. Next, the compound (2N-BVE) (2.0 g, 4.87 mmol) obtained in Example 1-3 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then the catalyst prepared above was prepared. The solution was added to 1.1 mL (corresponding to 0.1 mol% of the catalyst) and allowed to react at room temperature for 3 hours. Subsequently, ethyl vinyl ether (397 μL) was added to the reaction solution to terminate the polymerization, and then 60 mL of chloroform was added to dilute the polymerization suspension. The polymer suspension was continuously introduced into methanol (200 mL), and the precipitated polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure. The yield of the target polymer (P-2N-BVE) was 94%.
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
<実施例2-7>2N-BVEのROMP単独重合
 窒素雰囲気下、ジエチル塩化アルミニウム(0.87M ヘキサン溶液、0.5mL)とトルエン(4.5mL)を10mLのスクリュー管瓶に秤取り0.087Mのジエチル塩化アルミニウム溶液を調製した。次に、5塩化モリブデン(3.5mg、0.013mmol)を6mLのスクリュー管瓶に秤取り、トルエン(0.8mL)で溶解して5塩化モリブデン溶液を調製した。実施例1-3で得られた化合物(2N-BVE)(1.0g、2.43mmol)とトルエン(1.5mL)を6mLのスクリュー管瓶に仕込んだ後、0.087Mのジエチル塩化アルミニウム溶液(0.17mL)、5塩化モリブデン溶液(0.06mL)を加え80℃で22時間加熱した。
 反応液のH-NMR測定から目的とするポリマー(P-2N-BVE)の生成を確認した。
Example 2-7 ROMP Homopolymerization of 2N-BVE Diethyl aluminum chloride (0.87 M hexane solution, 0.5 mL) and toluene (4.5 mL) were weighed into a 10 mL screw tube under a nitrogen atmosphere, and then 0. A 087 M solution of diethylaluminum chloride was prepared. Next, molybdenum pentachloride (3.5 mg, 0.013 mmol) was weighed into a 6 mL screw tube bottle and dissolved in toluene (0.8 mL) to prepare a molybdenum pentachloride solution. Compound (2N-BVE) (1.0 g, 2.43 mmol) obtained in Example 1-3 and toluene (1.5 mL) were charged into a 6 mL screw tube, and then 0.087 M diethyl aluminum chloride solution was added. (0.17 mL) and a molybdenum pentachloride solution (0.06 mL) were added and heated at 80 ° C. for 22 hours.
From the 1 H-NMR measurement of the reaction solution, the formation of the target polymer (P-2N-BVE) was confirmed.
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
<実施例2-8>連鎖移動剤存在下での2N-BVEのROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(27mg、0.032mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(2mL)に溶解させ触媒溶液を調製した。次に、実施例1-3で得られた化合物(2N-BVE)(5.0g、12.19mmol)、ジクロロメタン(50mL)及び1-ヘキセン(760μL、6.10mmol)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液0.76mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(995μL)を反応液に加え重合を停止させた。前記ポリマー溶液をメタノール(500mL)に滴下した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。収率は72%であった。本ポリマーはNMR分析より、ラダー型と同定した。x、yは4.67であった。
<Example 2-8> ROMP homopolymerization of 2N-BVE in the presence of a chain transfer agent Under nitrogen atmosphere, Grubbs second generation catalyst (27 mg, 0.032 mmol) was weighed into a 10 mL screw tube and dichloromethane (2 mL) The catalyst solution was prepared by Next, the compound (2N-BVE) (5.0 g, 12.19 mmol) obtained in Example 1-3, dichloromethane (50 mL) and 1-hexene (760 μL, 6.10 mmol) were added to a 100 mL screw tube bottle. After being charged and dissolved, 0.76 mL (corresponding to 0.1 mol% of the catalyst) of the catalyst solution prepared above was added and allowed to react at room temperature for 3 hours. Then, ethyl vinyl ether (995 μL) was added to the reaction solution to terminate the polymerization. The polymer solution was added dropwise to methanol (500 mL), and the precipitated polymer was recovered by filtration under reduced pressure and dried at 60 ° C. under reduced pressure. The yield was 72%. The polymer was identified as ladder type by NMR analysis. x and y were 4.67.
 H-NMR(CDCl):δ(ppm)6.0~5.0(23H)、3.9~1.2(49H)、0.8~1.0(6H)。19F-NMR(CDCl):δ(ppm)-75.9~-89.5(2F)、-96.1~-162.6(8F)。 1 H-NMR (CDCl 3 ): δ (ppm) 6.0 to 5.0 (23 H), 3.9 to 1.2 (49 H), 0.8 to 1.0 (6 H). 19 F-NMR (CDCl 3 ): δ (ppm) -75.9 to -89.5 (2F), -96.1 to -162.6 (8F).
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000043
 
<実施例2-9>2N-BVEのROMP共重合
 窒素雰囲気下、Grubbs第二世代触媒(11mg、0.013mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製した。次に、実施例1-3で得られた化合物(2N-BVE)(0.1g、0.24mmol)、NPF4(0.69g、2.20mmol)、ジクロロメタン(10mL)及び1-ヘキセン(1.5μL)を20mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液0.1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(20μL)を反応液に加え重合を停止させた後、ジクロロメタンを10mL加え重合懸濁液を希釈した。前記ポリマー懸濁液をメタノール(100mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。仕込みモノマー総重量に対するポリマー回収率は84%であった。なお、式中v及びzはそれぞれ繰り返し単位の繰り返し数を示す正の整数である(以下、同様とする)。
Example 2-9 ROMP Copolymerization of 2N-BVE Under nitrogen atmosphere, Grubbs second generation catalyst (11 mg, 0.013 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to prepare a catalyst solution. did. Next, the compound (2N-BVE) (0.1 g, 0.24 mmol) obtained in Example 1-3, NPF4 (0.69 g, 2.20 mmol), dichloromethane (10 mL) and 1-hexene (1. h). After 5 μL of the catalyst solution was charged into a 20 mL screw tube and dissolved, 0.1 mL (corresponding to 0.1 mol% of catalyst) of the catalyst solution prepared above was added and reacted for 3 hours at room temperature. Subsequently, ethyl vinyl ether (20 μL) was added to the reaction solution to terminate the polymerization, and then 10 mL of dichloromethane was added to dilute the polymerization suspension. The polymer suspension was continuously introduced into methanol (100 mL), and the precipitated polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure. The polymer recovery rate was 84% based on the total weight of charged monomers. In the formula, each of v and z is a positive integer indicating the number of repetition of the repeating unit (hereinafter, the same applies).
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000044
 
<合成例1>
 水酸化カリウム(4.4g、78.4mmol)、アセトニトリル(40mL)、ビシクロ[2.2.1]ヘプタ-5-エン-2,2-ジメタノール(3.0g、19.5mmol)および下記式1で表される含フッ素オレフィン(33.6g、77.8mmol)を300mLの丸底フラスコに仕込み、ジムロートを取り付けて50℃で3時間反応させた。氷35gと水道水35gを500mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりと連続的に導入した。更にAK-225(30mL、ジクロロペンタフルオロプロパン:AGC社製)を加え攪拌した後、有機相を分取した。前分液の水層にAK-225(30mL)を加え再抽出し、得られた有機相を先に得られた有機相と併せた。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)にて精製しNDM-2PHVEで表される化合物を得た。収量は16.0g、収率は81%であった。
 H-NMR(CDCl):δ(ppm)6.25(m,1H)、6.06(m,1H)、5.93(m,1H)、5.76(m,1H)、4.03(m,2H)、3.72(m,2H)、2.90(s,1H)、2.67(s,1H)、1.59~1.50(m,3H)、0.84(m、1H)。19F-NMR(CDCl):δ(ppm)-80.7(m,6F)、-81.9(t,6F、J=6.5Hz)、-82.1~-82.5(m,4F)、-83.8~-86.7(m,4F)、-89.3~-91.3(m,4F)、-130.3(s,4F)、-144.8~-145.5(m,2F)、-145.7(q,2F、J=23.1Hz)。
Synthesis Example 1
Potassium hydroxide (4.4 g, 78.4 mmol), acetonitrile (40 mL), bicyclo [2.2.1] hept-5-ene-2,2-dimethanol (3.0 g, 19.5 mmol) and the following formula The fluorine-containing olefin (33.6 g, 77.8 mmol) represented by 1 was charged into a 300 mL round bottom flask, fitted with a Dimroth, and reacted at 50 ° C. for 3 hours. 35 g of ice and 35 g of tap water were charged into a 500 mL beaker and stirred, and the above reaction solution was slowly and continuously introduced into ice cold water. Further, AK-225 (30 mL, dichloropentafluoropropane: manufactured by AGC) was added and stirred, and then the organic phase was separated. AK-225 (30 mL) was added to the aqueous layer of the pre-liquid separation to re-extract, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase and stirred, and then insoluble matter was removed by filtration under reduced pressure. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by NDM-2PHVE. The yield was 16.0 g, and the yield was 81%.
1 H-NMR (CDCl 3 ): δ (ppm) 6.25 (m, 1 H), 6.06 (m, 1 H), 5.93 (m, 1 H), 5.76 (m, 1 H), 4 .03 (m, 2H), 3.72 (m, 2H), 2.90 (s, 1 H), 2.67 (s, 1 H), 1.59 to 1.50 (m, 3 H), 0.. 84 (m, 1 H). 19 F-NMR (CDCl 3 ): δ (ppm) -80.7 (m, 6F), -81.9 (t, 6F, J = 6.5 Hz), -82.1 to -82.5 (m , 4F), -83.8 to -86.7 (m, 4F), -89.3 to -91.3 (m, 4F), -130.3 (s, 4F), -144.8 to- 145.5 (m, 2F), -145.7 (q, 2F, J = 23.1 Hz).
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000045
 
<実施例2-10>2N-PF6のROMP共重合
 窒素雰囲気下、Grubbs第二世代触媒(4.17mg、0.0049mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製した。次に、実施例1-2で得られた化合物(2N-PF6)(0.024g、0.049mmol)、合成例1で得られたノルボルネン誘導体NDM-2PHVE(1.0g、0.982mmol)、ジクロロメタン(10mL)及び1,4-ビス(トリフルオロメチル)ベンゼン(1mL)を50mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(80μL)を反応液に加え重合を停止させた後、ジクロロメタンを10mL加え重合懸濁液を希釈した。前記ポリマー懸濁液をメタノール(100mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。収率は100%であった。
Example 2-10 ROMP Copolymerization of 2N-PF6 Under nitrogen atmosphere, Grubbs second generation catalyst (4.17 mg, 0.0049 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to obtain a catalyst solution. Was prepared. Next, the compound (2N-PF6) (0.024 g, 0.049 mmol) obtained in Example 1-2, the norbornene derivative NDM-2PHVE (1.0 g, 0.982 mmol) obtained in Synthesis Example 1, Dichloromethane (10 mL) and 1,4-bis (trifluoromethyl) benzene (1 mL) are charged into a 50 mL screw tube and dissolved, and then 1 mL of the previously prepared catalyst solution (equivalent to 0.1 mol% of catalyst) is added to the solution at room temperature. The reaction was carried out for 3 hours. Subsequently, ethyl vinyl ether (80 μL) was added to the reaction solution to terminate the polymerization, and then 10 mL of dichloromethane was added to dilute the polymerization suspension. The polymer suspension was continuously introduced into methanol (100 mL), and the precipitated polymer was recovered by vacuum filtration and dried at 60 ° C. under reduced pressure. The yield was 100%.
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000046
 
<実施例2-11>含フッ素ノルボルネンCのROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(5.7mg、0.0068mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製する。次に、実施例1-4で得られた化合物C(2.0g、1.35mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させる。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈する。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥し目的のポリマーを得る。
<Example 2-11> ROMP Homopolymerization of Fluorine-Containing Norbornene C Under a nitrogen atmosphere, a Grubbs second generation catalyst (5.7 mg, 0.0068 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to be a catalyst Prepare a solution. Next, Compound C (2.0 g, 1.35 mmol) obtained in Example 1-4 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then 1 mL of the catalyst solution prepared above ( Add catalyst (equivalent to 0.1 mol%) and react at room temperature for 3 hours. Next, ethyl vinyl ether (422 μL) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension. The polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
<実施例2-12>含フッ素ノルボルネンEのROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(5.7mg、0.0068mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製する。次に、実施例1-5で得られた化合物E(2.0g、1.35mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させる。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈する。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥し目的のポリマーを得る。
<Example 2-12> ROMP Homopolymerization of Fluorine-Containing Norbornene E Under a nitrogen atmosphere, a Grubbs second generation catalyst (5.7 mg, 0.0068 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to be a catalyst Prepare a solution. Next, Compound E (2.0 g, 1.35 mmol) obtained in Example 1-5 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and then 1 mL of the catalyst solution prepared above ( Add catalyst (equivalent to 0.1 mol%) and react at room temperature for 3 hours. Next, ethyl vinyl ether (422 μL) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension. The polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
<実施例2-13>含フッ素ノルボルネンHのROMP単独重合
 窒素雰囲気下、Grubbs第二世代触媒(6.3mg、0.0074mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製する。次に、実施例1-6で得られた化合物H(2.0g、1.48mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させる。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈する。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥し目的のポリマーを得る。
<Example 2-13> ROMP Homopolymerization of Fluorine-Containing Norbornene H Under a nitrogen atmosphere, a Grubbs second generation catalyst (6.3 mg, 0.0074 mmol) was weighed into a 10 mL screw tube and dissolved in dichloromethane (5 mL) to be a catalyst Prepare a solution. Next, Compound H (2.0 g, 1.48 mmol) obtained in Example 1-6 and dichloromethane (19 mL) were charged into a 100 mL screw tube and dissolved, and 1 mL of the catalyst solution prepared above (1 Add catalyst (equivalent to 0.1 mol%) and react at room temperature for 3 hours. Next, ethyl vinyl ether (422 μL) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension. The polymer suspension is continuously introduced into methanol (250 mL), and the precipitated polymer is recovered by filtration under reduced pressure and dried at 50 ° C. under reduced pressure to obtain the target polymer.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年9月21日出願の日本特許出願(特願2017-181539)に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-181539) filed on September 21, 2017, the contents of which are incorporated herein by reference.
 本発明によれば、新規なノルボルネン骨格を2以上有する含フッ素化合物が得られ、当該化合物の開環メタセシス重合や付加重合によって、所望の構造や分子量を有する含フッ素重合体を簡便かつ効率的に得ることができ、機能性高分子として電気・電子材料、半導体材料、光学材料等、医療器具・細胞培養材料、撥液材料、エラストマー材料、架橋剤、エアロゲル材料の多種多様な分野に利用することができる。 According to the present invention, a fluorine-containing compound having two or more novel norbornene skeletons is obtained, and a fluorine-containing polymer having a desired structure or molecular weight is simply and efficiently obtained by ring-opening metathesis polymerization or addition polymerization of the compound. Use as functional polymers in a wide variety of fields such as electric / electronic materials, semiconductor materials, optical materials, etc., medical devices / cell culture materials, liquid repellent materials, elastomer materials, crosslinking agents, airgel materials Can.

Claims (7)

  1.  下記一般式aで表される含フッ素化合物。
    Figure JPOXMLDOC01-appb-C000001
     
     ただし、上記式中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1である。
    The fluorine-containing compound represented by the following general formula a.
    Figure JPOXMLDOC01-appb-C000001

    However, the symbols in the above formula represent the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1.
  2.  前記一般式aにおけるQが、-CF-及び-CFの少なくともいずれか一方の基を含むm価の有機基である、請求項1に記載の含フッ素化合物。 Q in the formula a is, -CF 2 - and is a m-valent organic group containing at least one of the group of -CF 3, fluorine-containing compound according to claim 1.
  3.  下記一般式I又はIIで表される構造を含む含フッ素重合体。
    Figure JPOXMLDOC01-appb-C000002
     
     ただし、上記式中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1であり、
     x及びvはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
    The fluorine-containing polymer containing the structure represented by the following general formula I or II.
    Figure JPOXMLDOC01-appb-C000002

    However, the symbols in the above formula represent the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1 and
    Each of x and v is a natural number representing the number of repetitions of the repeating unit.
  4.  下記一般式I’で表される構造を含む含フッ素重合体。
    Figure JPOXMLDOC01-appb-C000003
     
     ただし、上記式中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1であり、
     uは繰り返し単位の繰り返し数を表す自然数である。
    The fluorine-containing polymer containing the structure represented by the following general formula I '.
    Figure JPOXMLDOC01-appb-C000003

    However, the symbols in the above formula represent the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1 and
    u is a natural number representing the number of repetitions of the repeating unit.
  5.  金属-カルベン錯体触媒の存在下、下記一般式aで表される含フッ素化合物を重合させる、下記一般式Iで表される構造を含む含フッ素重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     
     ただし、上記式a及びI中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1であり、
     xは繰り返し単位の繰り返し数を表す自然数である。
    A method for producing a fluorine-containing polymer including a structure represented by the following general formula I, wherein a fluorine-containing compound represented by the following general formula a is polymerized in the presence of a metal-carbene complex catalyst.
    Figure JPOXMLDOC01-appb-C000004

    However, the symbols in the above formulas a and I have the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1 and
    x is a natural number representing the number of repetitions of the repeating unit.
  6.  下記一般式aで表される含フッ素化合物を付加重合させる、下記一般式IIで表される構造を含む含フッ素重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
     
     ただし、上記式a及びII中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1であり、
     vは繰り返し単位の繰り返し数を表す自然数である。
    A method for producing a fluorine-containing polymer comprising a structure represented by the following general formula II, which is obtained by addition polymerization of a fluorine-containing compound represented by the following general formula a
    Figure JPOXMLDOC01-appb-C000005

    However, the symbols in the above formulas a and II have the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1 and
    v is a natural number representing the number of repetitions of the repeating unit.
  7.  金属-カルベン錯体触媒の存在下、下記一般式aで表される含フッ素化合物を重合させて下記一般式Iで表される構造を含む含フッ素重合体を得る工程、及び、得られた前記含フッ素重合体に水素添加する工程を含む、下記一般式I’で表される構造を含む含フッ素重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     
     ただし、上記式a、I及びI’中の記号は以下の意味を表す。
     Yは、それぞれ独立して、CR1415、O、S、NR16、又はPR17であり、
     Qはフッ素原子を含むm価の有機基であり、
     R11~R13はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基であり、
     R14~R17はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
     mは2以上の自然数であり、
     nは0又は1であり、
     x及びuはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
    A step of polymerizing a fluorine-containing compound represented by the following general formula a in the presence of a metal-carbene complex catalyst to obtain a fluorine-containing polymer containing a structure represented by the following general formula I; A process for producing a fluoropolymer, which comprises a structure represented by the following general formula I ′, which comprises the step of hydrogenating a fluoropolymer.
    Figure JPOXMLDOC01-appb-C000006

    However, the symbols in the above formulas a, I and I ′ represent the following meanings.
    Y is each independently CR 14 R 15 , O, S, NR 16 or PR 17 ;
    Q is an m-valent organic group containing a fluorine atom,
    R 11 to R 13 are each independently a hydrogen atom, a halogen atom or a monovalent organic group,
    R 14 to R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms,
    m is a natural number of 2 or more,
    n is 0 or 1 and
    Each of x and u is a natural number representing the number of repetitions of the repeating unit.
PCT/JP2018/034925 2017-09-21 2018-09-20 Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer WO2019059318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181539 2017-09-21
JP2017181539 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059318A1 true WO2019059318A1 (en) 2019-03-28

Family

ID=65810295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034925 WO2019059318A1 (en) 2017-09-21 2018-09-20 Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer

Country Status (1)

Country Link
WO (1) WO2019059318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019059320A1 (en) * 2017-09-21 2020-11-05 Agc株式会社 Fluorine-containing compounds and fluoropolymers and methods for producing them

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505308A (en) * 2000-07-28 2004-02-19 グッドリッチ コーポレイション Optical waveguide and manufacturing method thereof
JP2004093690A (en) * 2002-08-29 2004-03-25 Fuji Photo Film Co Ltd Positive resist composition
JP2006047627A (en) * 2004-08-04 2006-02-16 Toray Ind Inc Photosensitive resin precursor composition
JP2010049227A (en) * 2008-08-25 2010-03-04 Korea Kumho Petrochem Co Ltd Positive photosensitive resin composition, method of forming pattern and semiconductor device
JP2015151383A (en) * 2014-02-18 2015-08-24 Dic株式会社 Polymerizable compound and optical anisotropic material
JP2015205843A (en) * 2014-04-22 2015-11-19 Dic株式会社 Polymerizable compound and optical anisotropic body
JP2016017034A (en) * 2014-07-04 2016-02-01 Dic株式会社 Polymerizable compound and optical anisotropic body
US20160289371A1 (en) * 2015-03-31 2016-10-06 Promerus, Llc Flame retardant vinyl addition polycycloolefinic polymers
US20160289373A1 (en) * 2015-03-31 2016-10-06 Promerus, Llc Flame retardant romp polycycloolefinic polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505308A (en) * 2000-07-28 2004-02-19 グッドリッチ コーポレイション Optical waveguide and manufacturing method thereof
JP2004093690A (en) * 2002-08-29 2004-03-25 Fuji Photo Film Co Ltd Positive resist composition
JP2006047627A (en) * 2004-08-04 2006-02-16 Toray Ind Inc Photosensitive resin precursor composition
JP2010049227A (en) * 2008-08-25 2010-03-04 Korea Kumho Petrochem Co Ltd Positive photosensitive resin composition, method of forming pattern and semiconductor device
JP2015151383A (en) * 2014-02-18 2015-08-24 Dic株式会社 Polymerizable compound and optical anisotropic material
JP2015205843A (en) * 2014-04-22 2015-11-19 Dic株式会社 Polymerizable compound and optical anisotropic body
JP2016017034A (en) * 2014-07-04 2016-02-01 Dic株式会社 Polymerizable compound and optical anisotropic body
US20160289371A1 (en) * 2015-03-31 2016-10-06 Promerus, Llc Flame retardant vinyl addition polycycloolefinic polymers
US20160289373A1 (en) * 2015-03-31 2016-10-06 Promerus, Llc Flame retardant romp polycycloolefinic polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019059320A1 (en) * 2017-09-21 2020-11-05 Agc株式会社 Fluorine-containing compounds and fluoropolymers and methods for producing them
JP7036120B2 (en) 2017-09-21 2022-03-15 Agc株式会社 Fluorine-containing compounds and fluoropolymers and methods for producing them

Similar Documents

Publication Publication Date Title
US11794178B2 (en) Catalyst for ring expansion metathesis polymerization of cyclic monomers
JP2009024147A (en) Norbornene monomer having fluorene group and polymer thereof
WO2019059318A1 (en) Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer
JP7331992B2 (en) Fluorine-containing silane compound
JP7036120B2 (en) Fluorine-containing compounds and fluoropolymers and methods for producing them
JP6593433B2 (en) Method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced
JP6593351B2 (en) Method for producing fluoropolymer
JP2003252881A (en) Silylnorbornene, silyltetracyclodecene, method for producing them and use of them
WO2016129608A1 (en) Method for producing fluorine-containing polymer
JP5492711B2 (en) Isobutylene polymer
JP5212164B2 (en) Novel dithiocarbonate norbornene and its (co) polymer
JP6669085B2 (en) Method for producing fluoropolymer
JP2016160231A (en) Method for producing fluorine-containing olefin
JP2013166725A (en) Phenols and process for production thereof
JP2019089714A (en) Manufacturing method of fluorine-containing cyclic olefin monomer
KR101601493B1 (en) Catalyst for Ring Opening Polymerization of Cycloolefin Polymers and Method of Preparing Cycloolefin Polymers Using the Same
JP2018024600A (en) Method for producing fluorine-containing olefin
JP6673107B2 (en) Method for producing substrate into which organic group containing fluorine atom is introduced
JP6413848B2 (en) Method for producing fluorine-containing symmetric olefin
WO2016129607A1 (en) Method for manufacturing fluorine-containing cyclo olefin
JP2022132090A (en) Production method of substituted poly(diphenylacetylene) and the like
JP2007238807A (en) Norbornene derivative with two polar groups at end positions, metathesis ring-opened polymer and their preparation process
WO2005080445A1 (en) Olefin polymerization catalyst
JP2009091569A (en) Random copolymer and its manufacturing method
JP2016160235A (en) Method for producing octa-fluoro-pentene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP