WO2019056525A1 - 量子发光二极管和显示装置 - Google Patents

量子发光二极管和显示装置 Download PDF

Info

Publication number
WO2019056525A1
WO2019056525A1 PCT/CN2017/110203 CN2017110203W WO2019056525A1 WO 2019056525 A1 WO2019056525 A1 WO 2019056525A1 CN 2017110203 W CN2017110203 W CN 2017110203W WO 2019056525 A1 WO2019056525 A1 WO 2019056525A1
Authority
WO
WIPO (PCT)
Prior art keywords
sublayer
electron
hole
light emitting
layer
Prior art date
Application number
PCT/CN2017/110203
Other languages
English (en)
French (fr)
Inventor
袁伟
矫士博
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/576,703 priority Critical patent/US10418578B2/en
Publication of WO2019056525A1 publication Critical patent/WO2019056525A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a quantum light emitting diode and a display device.
  • the wavelength of the quantum dot material varies with the material size, and it has the advantages of wide excitation spectrum, high electron mobility, and high light purity, it is widely used in display devices.
  • Quantum dot backlight Quantum dot Liquid crystal
  • LCD Liquid Crystal display
  • Quantum dots themselves have luminescent properties that will generate red light (Red, R) under the illumination of the blue LED backlight. It is mixed with green light (Green, G) and blue light (Blue, B) which is partially transmitted through the film to obtain white light, thereby improving the illumination effect of the entire LCD backlight.
  • QD-LCD technology only improves the backlighting effect of LCD, QLED (Quantum Dot Light) Emitting Diode, quantum dot light emitting diode technology is the true self-luminous display technology.
  • the quantum dot layer is sandwiched between the electron transport layer and the hole transport layer, and an electric field is applied to move electrons and holes to the quantum dot layer, and carriers are combined in the quantum dot layer to generate excitons, and the excitons are Quantum dot luminescent materials capture and radiate luminescence.
  • existing QLED devices can achieve self-luminescence, but they also have a short life.
  • Embodiments of the present invention provide a quantum light emitting diode including a first electron layer, an organic light emitting layer, a first hole layer, a second electron layer, a quantum dot light emitting layer, and a second hole layer which are sequentially stacked;
  • the first electronic layer is configured to transmit a first electron to the organic light emitting layer
  • the first hole layer is configured to transport a first hole to the organic light emitting layer
  • the organic light emitting layer is configured to combine the first electrons and the first holes to emit first light rays
  • the second electron layer is configured to transmit a second electron to the quantum dot light emitting layer
  • the second hole layer is configured to transport a second hole to the quantum dot light emitting layer
  • the quantum dot light emitting layer is configured to combine the second electrons and the second holes to emit second light.
  • the doping dye of the organic light emitting layer comprises one or more of DSP-ph, DPVB1 or TPATAZ
  • the host material of the organic light emitting layer comprises one or more of CBP, TcTa or TMPyPb
  • the organic light emitting layer has a thickness ranging from 20 to 40 nanometers, and the first light emitting wavelength of the organic light emitting layer ranges from 450 to 480 nanometers.
  • the constituent material of the quantum dot light-emitting layer comprises one or more of cadmium selenide/zinc sulfide, cadmium sulfide/zinc sulfide, cadmium selenide/zinc selenide, cadmium sulfide/zinc selenide.
  • the constituent material has a particle diameter ranging from 2 to 5 nm
  • the quantum dot emitting layer has a thickness ranging from 20 to 40 nm
  • the second light emitting wavelength of the quantum dot emitting layer ranges from 540 to 570 nm.
  • the first electronic layer includes a cathode, an electron injection sub-layer, and a first electron transport sub-layer, which are sequentially stacked, and the first electron transport sub-layer is disposed on the organic light-emitting layer;
  • the cathode is for providing the first electron
  • the electron injection sublayer is configured to inject the first electron into the first electron transport sublayer
  • the first electron transport sublayer is configured to transport the first electron to the organic light emitting layer.
  • the constituent material of the cathode includes one or more of lithium, magnesium, calcium, strontium, barium, strontium, strontium, barium, aluminum, strontium, samarium, and silver, and the thickness of the cathode ranges from 50-200 nm;
  • the constituent material of the electron injection sublayer includes one or more of lithium fluoride, sodium fluoride, and lithium quinolate, and the electron injection sublayer has a thickness ranging from 0.5 to 3 nm;
  • the constituent material of the first electron transport sublayer includes one or more of BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPB1, and TPyPhB, and the thickness of the first electron transport sublayer ranges from 20 to 20 60 nanometers.
  • the first hole layer includes a first hole transporting sublayer and a hole generating sublayer, and the hole generating sublayer is disposed on the second electronic layer;
  • the hole generating sublayer is for providing the first hole
  • the first hole transporting sublayer is configured to transport the first hole to the organic light emitting layer.
  • the constituent material of the first hole transporting sublayer includes one or more of NPB, TDMAB, PIDATA, TDAB, BFA-1T, TPTE, and the thickness of the first hole transporting sublayer The range is 10-60 nm;
  • the material of the composition of the hole generating sublayer includes one or more of HATCN, CuPc, and 2-TNATA, and the hole generating sublayer has a thickness ranging from 5 to 50 nm.
  • the second electron layer includes a charge generation sublayer and a second electron transport sublayer, and the second electron transport sublayer is disposed on the quantum dot light emitting layer;
  • the charge generating sublayer is configured to provide the second electron
  • the second electron transport sublayer is configured to transmit the second electron to the quantum dot light emitting layer.
  • the constituent material of the charge generating sublayer includes an organic material and a metal material, and the charge generating sublayer has a thickness ranging from 5 to 50 nm;
  • the constituent materials of the second electron transport sublayer include BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPBI, TPyPhB
  • One or more of the second electron transport sublayers have a thickness ranging from 20 to 60 nanometers.
  • the second hole layer includes an anode, a hole injection sublayer, and a second hole transport sublayer, which are sequentially stacked, and the quantum dot light emitting layer is disposed on the second hole transporter On the floor
  • the anode is for providing the second cavity
  • the hole injection sublayer is configured to inject the second hole into the second hole transport sublayer
  • the second hole transporting sublayer is configured to transport the second hole to the quantum dot light emitting layer.
  • the constituent material of the hole injection sublayer includes PEDOT:PSS, and the hole injection sublayer has a thickness ranging from 5 to 60 nm;
  • the constituent material of the second hole transporting sublayer includes one or more of PVK, TFB, and Poly-TPD, and the thickness of the second hole transporting sublayer ranges from 10 to 60 nm.
  • the embodiment of the invention further provides a display device, comprising a cover plate, a quantum light emitting diode, a color film unit and a substrate which are sequentially stacked;
  • the quantum light emitting diode includes a first electron layer, an organic light emitting layer, a first hole layer, a second electron layer, a quantum dot light emitting layer and a second hole layer which are sequentially stacked;
  • the first electronic layer is configured to transmit a first electron to the organic light emitting layer
  • the first hole layer is configured to transport a first hole to the organic light emitting layer
  • the organic light emitting layer is configured to combine the first electrons and the first holes to emit first light rays
  • the second electron layer is configured to transmit a second electron to the quantum dot light emitting layer
  • the second hole layer is configured to transport a second hole to the quantum dot light emitting layer
  • the quantum dot light emitting layer is configured to combine the second electrons and the second holes to emit second light.
  • the doping dye of the organic light emitting layer comprises one or more of DSP-ph, DPVB1 or TPATAZ
  • the host material of the organic light emitting layer comprises one or more of CBP, TcTa or TMPyPb
  • the organic light emitting layer has a thickness ranging from 20 to 40 nanometers, and the first light emitting wavelength of the organic light emitting layer ranges from 450 to 480 nanometers.
  • the constituent material of the quantum dot light-emitting layer comprises one or more of cadmium selenide/zinc sulfide, cadmium sulfide/zinc sulfide, cadmium selenide/zinc selenide, cadmium sulfide/zinc selenide.
  • the constituent material has a particle diameter ranging from 2 to 5 nm
  • the quantum dot emitting layer has a thickness ranging from 20 to 40 nm
  • the second light emitting wavelength of the quantum dot emitting layer ranges from 540 to 570 nm.
  • the first electronic layer includes a cathode, an electron injection sub-layer, and a first electron transport sub-layer, which are sequentially stacked, and the first electron transport sub-layer is disposed on the organic light-emitting layer;
  • the cathode is for providing the first electron
  • the electron injection sublayer is configured to inject the first electron into the first electron transport sublayer
  • the first electron transport sublayer is configured to transport the first electron to the organic light emitting layer.
  • the constituent material of the cathode includes one or more of lithium, magnesium, calcium, strontium, barium, strontium, samarium, samarium, aluminum, samarium, samarium, silver, and the thickness of the cathode ranges from 50 to 200 nm;
  • the constituent material of the electron injection sublayer includes one or more of lithium fluoride, sodium fluoride, and lithium quinolate, and the electron injection sublayer has a thickness ranging from 0.5 to 3 nm;
  • the constituent material of the first electron transport sublayer includes one or more of BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPB1, and TPyPhB, and the thickness of the first electron transport sublayer ranges from 20 to 20 60 nanometers.
  • the first hole layer includes a first hole transporting sublayer and a hole generating sublayer, and the hole generating sublayer is disposed on the second electronic layer;
  • the hole generating sublayer is for providing the first hole
  • the first hole transporting sublayer is configured to transport the first hole to the organic light emitting layer.
  • the constituent material of the first hole transporting sublayer includes one or more of NPB, TDABP, PIDATA, TDAB, BFA-1T, and TPTE, and the thickness of the first hole transporting sublayer ranges from 10 to 60 nm. ;
  • the material of the composition of the hole generating sublayer includes one or more of HATCN, CuPc, and 2-TNATA, and the hole generating sublayer has a thickness ranging from 5 to 50 nm.
  • the second electron layer includes a charge generation sublayer and a second electron transport sublayer, and the second electron transport sublayer is disposed on the quantum dot light emitting layer;
  • the charge generating sublayer is configured to provide the second electron
  • the second electron transport sublayer is configured to transmit the second electron to the quantum dot light emitting layer.
  • the constituent material of the charge generating sublayer includes an organic material and a metal material, and the charge generating sublayer has a thickness ranging from 5 to 50 nm;
  • the constituent material of the second electron transport sublayer includes one or more of BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPBI, TPyPhB, and the thickness of the second electron transport sublayer ranges from 20- 60 nanometers.
  • the quantum light emitting diode and the display device of the present invention provide an organic light emitting layer and a quantum dot light emitting layer, and two sets of electron layers and two electrons and holes respectively for transmitting electrons and holes therebetween.
  • the hole layer is provided to increase the life of the quantum light emitting diode.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first structure of a quantum light emitting diode according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second structure of a quantum light emitting diode according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a third structure of a quantum light emitting diode according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a fourth structure of a quantum light emitting diode according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fifth structure of a quantum light emitting diode according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device 1 includes a cover plate 2000, a quantum light emitting diode 1000, a color filter unit 3000, and a substrate 4000 which are sequentially stacked.
  • the color film unit 3000 includes an R sub-pixel 3001, a G sub-pixel 3002, a B sub-pixel 3003, and a W sub-pixel 3004.
  • the R sub-pixel 3001 can filter out red light
  • the G sub-pixel 3002 can filter out green light
  • the B sub-pixel 3003 can filter out blue light
  • the W sub-pixel 3004 does not include a filter layer, and can directly emit white light.
  • the substrate 4000 includes a substrate 4001 and a driving field effect transistor 4002 disposed on the substrate 4001.
  • the driving field effect transistor 4002 includes a semiconductor layer, an insulating layer, a source, a drain, and a gate. It should be noted that an encapsulant is also coated between the cover plate 2000 and the substrate 4000 to isolate the erosion of the quantum light emitting diode by water and oxygen.
  • FIG. 2 is a schematic structural diagram of a quantum light emitting diode according to an embodiment of the present invention.
  • the quantum light emitting diode 1000 includes a first electron layer 100, an organic light emitting layer 200, a first hole layer 300, a second electron layer 400, a quantum dot light emitting layer 500, and a second hole layer 600 which are sequentially stacked.
  • the first electron layer 100 is used to transport the first electrons to the organic light emitting layer 200; the first hole layer 300 is used to transport the first holes to the organic light emitting layer 200; the organic light emitting layer 200 is used to composite the first electrons and the first a hole emits a first light; a second electron layer 400 is used for the vector sub-dot light-emitting layer 500 to transmit a second electron; and a second hole layer 600 is used for the vector sub-dot light-emitting layer 500 to transmit a second hole; the quantum dot light-emitting layer 500 is used to composite the second electron and the second hole to emit the second light.
  • the first electronic layer 100 includes a cathode 101, an electron injection sub-layer 102, and a first electron transport sub-layer 103 which are sequentially stacked.
  • the first electron transport sublayer 103 is disposed on the organic light emitting layer 200.
  • Cathode 101 is used to provide a first electron.
  • the cathode 101 is prepared by using a low work function metal material, and its constituent materials include lithium Li, magnesium Mg, calcium Ca, strontium Sr, ⁇ La, ⁇ Ce, ⁇ Eu, ⁇ Yb, aluminum Al, ⁇ Cs, ⁇ Rb, and silver Ag.
  • a cathode can be prepared by a vacuum evaporation method, and the thickness thereof is set to 50 to 200 nm.
  • the electron injection sub-layer 102 is used to inject a first electron into the first electron transport sub-layer 103.
  • the constituent material of the electron injection sub-layer 102 includes one or more of lithium fluoride LiF, sodium fluoride NaF, and lithium quinolate Liq.
  • the electron injection sub-layer 102 can be prepared by an evaporation process, and has a thickness ranging from 0.5 to 3 nm.
  • the first electron transport sublayer 103 is for transmitting the first electrons to the organic light emitting layer 200.
  • the constituent material of the first electron transporting sublayer 103 includes one or more of BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPB1, and TPyPhB.
  • the first electron transporting sub-layer 103 can be prepared by an evaporation process, and has a thickness ranging from 20 to 60 nm.
  • the organic light emitting layer 200 includes a blue organic light emitting layer, that is, the first light emitted when the first electron and the first hole are composited is a blue light.
  • the doping dye of the organic light-emitting layer 200 includes one or more of DSP-ph, DPVB1, or TPATAZ, and the host material includes one or more of CBP, TcTa, or TMPyPb.
  • the organic light-emitting layer 200 can be prepared by an evaporation process, and has a thickness ranging from 20 to 40 nm, and the emitted first light wavelength ranges from 450 to 480 nm. The lifetime of the quantum light emitting diode can be improved by preparing the organic light emitting layer 200 in the present invention.
  • the first hole layer 300 includes a first hole transporting sub-layer 301 and a hole-generating sub-layer 302, and the hole-generating sub-layer 302 is disposed on the second electron layer 400.
  • the hole generating sub-layer 302 is used to provide a first hole.
  • the material of the composition of the hole generating sub-layer 302 includes one or more of HATCN, CuPc, and 2-TNATA.
  • the hole generating sub-layer 302 may be prepared by an evaporation process, and has a thickness ranging from 5 to 50 nm.
  • the first hole transporting sub-layer 301 is for transferring the first holes to the organic light-emitting layer 200.
  • the constituent materials of the first hole transporting sub-layer 301 include NPB, TDABP, and PIDATA.
  • the first hole transporting sub-layer 301 is prepared by an evaporation process, and has a thickness ranging from 10 to 60 nm.
  • the second electron layer 400 includes a charge generation sub-layer 401 and a second electron transport sub-layer 402, and the second electron transport sub-layer 402 is disposed on the quantum dot light-emitting layer 500.
  • the charge generating sub-layer 401 is for providing a second electron.
  • the constituent materials of the charge generating sub-layer 401 include an organic material and a metal material, wherein the organic material includes one or more of Bphen:Li, Bphen:Yb, and the like.
  • the charge generating sub-layer 401 can be prepared by an evaporation process, and has a thickness ranging from 5 to 50 nm;
  • the second electron transport sub-layer 402 is for transmitting the second electrons onto the quantum dot light-emitting layer 500.
  • the constituent materials of the second electron transport sublayer 402 include BCP, TmPyPb, Bphen, TRZ, OXD-7, TAZ, TPBI, TPyPhB.
  • the second electron transporting sub-layer 402 can be prepared by an evaporation process, and has a thickness ranging from 20 to 60 nm.
  • the quantum dot light-emitting layer 500 includes a yellow quantum dot light-emitting layer, that is, the quantum dot light-emitting layer 500 combines the second light emitted by the second electron and the second hole to be yellow light.
  • the constituent materials of the quantum dot light-emitting layer 500 include cadmium selenide/zinc sulfide (CdSe/ZnS), cadmium sulfide/zinc sulfide (CdS/ZnS), cadmium selenide/zinc selenide (CdSe/ZnSe), cadmium sulfide/selenide
  • One or more of yellow quantum dot luminescent materials having a core-shell structure such as zinc (CdS/ZnSe) and the constituent materials have a particle diameter ranging from 2 to 5 nm.
  • the quantum dot luminescent layer 500 can be prepared by a spin coating or inkjet printing process, and has a thickness ranging from
  • the second hole layer 600 includes an anode 603, a hole injection sub-layer 602, and a second hole transport sub-layer 601 which are sequentially stacked, and the quantum dot light-emitting layer 500 is disposed on the second hole transport sub-layer. 601.
  • the anode 603 is used to provide a second hole, which can be prepared by using indium tin oxide.
  • the hole injection sub-layer 602 is used to inject a second hole into the second hole transport sub-layer 601.
  • the constituent material of the hole injection sub-layer 602 includes PEDOT:PSS.
  • the hole injection sub-layer 602 can be prepared by a spin coating or inkjet printing process, and has a thickness ranging from 5 to 60 nm.
  • the second hole transporting sub-layer 601 is for transporting the second holes to the quantum dot light-emitting layer 500.
  • the constituent material of the second hole transporting sub-layer 601 includes PVK, One or more of TFB and Poly-TPD.
  • the second hole transporting sub-layer 601 can be prepared by a spin coating or inkjet printing process, and has a thickness ranging from 10 to 60 nm.
  • the quantum light emitting diode and the display device of the embodiment of the invention improve the quantum light emitting diode by providing an organic light emitting layer and a quantum dot light emitting layer, and two sets of electron layers and two sets of hole layers for respectively transmitting electrons and holes to the two. life.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子发光二极管包括:第一电子层(100)和第一空穴层(300)用于向有机发光层(200)传输第一电子和第一空穴;有机发光层用于复合第一电子和第一空穴发射第一光线;第二电子层(400)和第二空穴层(600)用于向量子点发光层(500)传输第二电子和第二空穴;量子点发光层用于复合第二电子和第二空穴发射第二光线。

Description

量子发光二极管和显示装置 技术领域
本发明涉及显示技术领域,特别是涉及一种量子发光二极管和显示装置。
背景技术
由于量子点材料的发光波长可随材料尺寸的变化而变化,且其具有激发光谱宽、电子迁移率高、光线纯度高等优势,因此被广泛应用于显示装置中。
量子点背光(Quantum Dot Liquid crystal display,QD-LCD)技术将量子点材料应用到LCD(Liquid crystal display)背光源中。 量子点本身具有发光特性,在蓝色LED背光的照射下将生成红光(Red,R) 和绿光(Green,G),并同部分透过薄膜的蓝光(Blue,B)一起混合得到白光,从而提升整个LCD背光的发光效果。
QD-LCD技术仅仅是提高了LCD的背光发光效果,QLED(Quantum Dot Light Emitting Diode,量子点发光二极管)技术才是真正的自发光显示技术。在QLED中,量子点层夹在电子传输层和空穴传输层之间,外加电场使电子和空穴移动到量子点层,载流子在量子点层中进行复合产生激子,激子被量子点发光材料俘获并辐射发光。然而现有的QLED器件虽然可以实现自发光,但是也存在寿命较短的问题。
技术问题
本发明的目的在于提供一种量子发光二极管和显示装置,可以提高量子发光二极管的寿命。
技术解决方案
本发明实施例提供一种量子发光二极管,包括依次层叠设置的第一电子层、有机发光层、第一空穴层、第二电子层、量子点发光层及第二空穴层;
所述第一电子层用于向所述有机发光层传输第一电子;
所述第一空穴层用于向所述有机发光层传输第一空穴;
所述有机发光层用于复合所述第一电子和所述第一空穴发射第一光线;
所述第二电子层用于向所述量子点发光层传输第二电子;
所述第二空穴层用于向所述量子点发光层传输第二空穴;
所述量子点发光层用于复合所述第二电子和所述第二空穴发射第二光线。
在一些实施例中,所述有机发光层的掺杂染料包括DSP-ph、DPVBl或TPATAZ中的一种或多种,所述有机发光层的主体材料包括CBP、TcTa或TMPyPb的一种或多种,所述有机发光层的厚度范围为20-40纳米,所述有机发光层发射的所述第一光线波长范围为450-480纳米。
在一些实施例中,所述量子点发光层的组成材料包括硒化镉/硫化锌、硫化镉/硫化锌、硒化镉/硒化锌、硫化镉/硒化锌中的一种或多种,所述组成材料的粒径范围为2-5纳米,所述量子点发光层的厚度范围为20-40纳米,所述量子点发光层发射的所述第二光线波长范围为540-570纳米。
在一些实施例中,所述第一电子层包括依次层叠设置的阴极、电子注入子层及第一电子传输子层,所述第一电子传输子层设置在所述有机发光层上;
所述阴极用于提供所述第一电子;
所述电子注入子层用于将所述第一电子注入所述第一电子传输子层;
所述第一电子传输子层用于将所述第一电子传输至所述有机发光层。
在一些实施例中,所述阴极的组成材料包括锂、镁、钙、锶、镧、铕、镱、铈、铝、铯、铷、银的一种或多种,所述阴极的厚度范围为50-200纳米;
所述电子注入子层的组成材料包括氟化锂、氟化钠、喹啉锂的一种或多种,所述电子注入子层的厚度范围为0.5-3纳米;
所述第一电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBl、TPyPhB中一种或多种,所述第一电子传输子层的厚度范围为20-60纳米。
在一些实施例中,所述第一空穴层包括第一空穴传输子层和空穴产生子层,所述空穴产生子层设置在所述第二电子层上;
所述空穴产生子层用于提供所述第一空穴;
所述第一空穴传输子层用于将所述第一空穴传输至所述有机发光层。
在一些实施例中,所述第一空穴传输子层的组成材料包括NPB、TDAPB、PIDATA、TDAB、BFA-1T、TPTE的一种或多种,所述第一空穴传输子层的厚度范围为10-60纳米;
所述空穴产生子层的组成的材料包括HATCN、CuPc、2-TNATA的一种或多种,所述空穴产生子层的厚度范围为5-50纳米。
在一些实施例中,所述第二电子层包括电荷产生子层和第二电子传输子层,所述第二电子传输子层设置在所述量子点发光层上;
所述电荷产生子层用于提供所述第二电子;
所述第二电子传输子层用于将所述第二电子传输至所述量子点发光层。
在一些实施例中,所述电荷产生子层的组成材料包括有机材料和金属材料,所述电荷产生子层的厚度范围为5-50纳米;
所述第二电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBI、TPyPhB 的一种或多种,所述第二电子传输子层的厚度范围为20-60纳米。
在一些实施例中,所述第二空穴层包括依次层叠设置的阳极、空穴注入子层和第二空穴传输子层,所述量子点发光层设置在所述第二空穴传输子层上;
所述阳极用于提供所述第二空穴;
所述空穴注入子层用于将所述第二空穴注入所述第二空穴传输子层;
所述第二空穴传输子层用于将所述第二空穴传输至所述量子点发光层。
在一些实施例中,所述空穴注入子层的组成材料包括PEDOT:PSS,所述空穴注入子层的厚度范围为5-60纳米;
所述第二空穴传输子层的组成材料包括PVK、TFB、Poly-TPD的一种或多种,所述第二空穴传输子层的厚度范围为10-60纳米。
本发明实施例还提供一种显示装置,包括依次层叠设置的盖板、量子发光二极管、彩膜单元以及基板;
所述量子发光二极管包括依次层叠设置的第一电子层、有机发光层、第一空穴层、第二电子层、量子点发光层及第二空穴层;
所述第一电子层用于向所述有机发光层传输第一电子;
所述第一空穴层用于向所述有机发光层传输第一空穴;
所述有机发光层用于复合所述第一电子和所述第一空穴发射第一光线;
所述第二电子层用于向所述量子点发光层传输第二电子;
所述第二空穴层用于向所述量子点发光层传输第二空穴;
所述量子点发光层用于复合所述第二电子和所述第二空穴发射第二光线。
在一些实施例中,所述有机发光层的掺杂染料包括DSP-ph、DPVBl或TPATAZ中的一种或多种,所述有机发光层的主体材料包括CBP、TcTa或TMPyPb的一种或多种,所述有机发光层的厚度范围为20-40纳米,所述有机发光层发射的所述第一光线波长范围为450-480纳米。
在一些实施例中,所述量子点发光层的组成材料包括硒化镉/硫化锌、硫化镉/硫化锌、硒化镉/硒化锌、硫化镉/硒化锌中的一种或多种,所述组成材料的粒径范围为2-5纳米,所述量子点发光层的厚度范围为20-40纳米,所述量子点发光层发射的所述第二光线波长范围为540-570纳米。
在一些实施例中,所述第一电子层包括依次层叠设置的阴极、电子注入子层及第一电子传输子层,所述第一电子传输子层设置在所述有机发光层上;
所述阴极用于提供所述第一电子;
所述电子注入子层用于将所述第一电子注入所述第一电子传输子层;
所述第一电子传输子层用于将所述第一电子传输至所述有机发光层。
在一些实施例中,
所述阴极的组成材料包括锂、镁、钙、锶、镧、铕、镱、铈、铝、铯、铷、银的一种或多种,所述阴极的厚度范围为50-200纳米;
所述电子注入子层的组成材料包括氟化锂、氟化钠、喹啉锂的一种或多种,所述电子注入子层的厚度范围为0.5-3纳米;
所述第一电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBl、TPyPhB中一种或多种,所述第一电子传输子层的厚度范围为20-60纳米。
在一些实施例中,所述第一空穴层包括第一空穴传输子层和空穴产生子层,所述空穴产生子层设置在所述第二电子层上;
所述空穴产生子层用于提供所述第一空穴;
所述第一空穴传输子层用于将所述第一空穴传输至所述有机发光层。
在一些实施例中,
所述第一空穴传输子层的组成材料包括NPB、TDAPB、PIDATA、TDAB、BFA-1T、TPTE的一种或多种,所述第一空穴传输子层的厚度范围为10-60纳米;
所述空穴产生子层的组成的材料包括HATCN、CuPc、2-TNATA的一种或多种,所述空穴产生子层的厚度范围为5-50纳米。
在一些实施例中,所述第二电子层包括电荷产生子层和第二电子传输子层,所述第二电子传输子层设置在所述量子点发光层上;
所述电荷产生子层用于提供所述第二电子;
所述第二电子传输子层用于将所述第二电子传输至所述量子点发光层。
在一些实施例中,
所述电荷产生子层的组成材料包括有机材料和金属材料,所述电荷产生子层的厚度范围为5-50纳米;
所述第二电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBI、TPyPhB的一种或多种,所述第二电子传输子层的厚度范围为20-60纳米。
有益效果
相较于现有的量子发光二极管和显示装置,本发明的量子发光二极管和显示装置通过设置有机发光层和量子点发光层,及分别给二者传输电子和空穴的两套电子层和两套空穴层,提高了量子发光二极管的寿命。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
图1为本发明实施例提供的显示装置的结构示意图。
图2为本发明实施例提供的量子发光二极管的第一种结构示意图。
图3为本发明实施例提供的量子发光二极管的第二种结构示意图。
图4为本发明实施例提供的量子发光二极管的第三种结构示意图。
图5为本发明实施例提供的量子发光二极管的第四种结构示意图。
图6为本发明实施例提供的量子发光二极管的第五种结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本发明实施例提供的显示装置的结构示意图。所述显示装置1包括依次层叠设置的盖板2000、量子发光二极管1000、彩膜单元3000以及基板4000。
其中,彩膜单元3000包括R子像素3001、G子像素3002、B子像素3003和W子像素3004。R子像素3001可以过滤出红光,G子像素3002可以过滤出绿光,B子像素3003可以过滤出蓝光,W子像素3004不包含滤光层,可以直接射出白光。基板4000包括衬底4001和设置在衬底4001上的驱动场效应晶体管4002。驱动场效应晶体管4002包括半导体层、绝缘层、源极、漏极和栅极。需要说明的是,在盖板2000和基板4000之间还涂有封装胶材,以隔绝水氧对量子发光二极管的侵蚀。
请参照图2,图2为本发明实施例提供的量子发光二极管的结构示意图。量子发光二极管1000包括依次层叠设置的第一电子层100、有机发光层200、第一空穴层300、第二电子层400、量子点发光层500及第二空穴层600。
其中,第一电子层100用于向有机发光层200传输第一电子;第一空穴层300用于向有机发光层200传输第一空穴;有机发光层200用于复合第一电子和第一空穴发射第一光线;第二电子层400用于向量子点发光层500传输第二电子;第二空穴层600用于向量子点发光层500传输第二空穴;量子点发光层500用于复合第二电子和第二空穴发射第二光线。
如图3所示,第一电子层100包括依次层叠设置的阴极101、电子注入子层102及第一电子传输子层103。其中,第一电子传输子层103设置在有机发光层200上。
阴极101用于提供第一电子。阴极101采用低功函金属材料制备,其组成材料包括锂Li、镁Mg、钙Ca、锶Sr、镧La、铕Ce、镱Eu、铈Yb、铝Al、铯Cs、铷Rb、银Ag的一种或多种。具体可以采用真空蒸镀方法制备阴极,其厚度设置为50-200纳米。
电子注入子层102用于将第一电子注入第一电子传输子层103。电子注入子层102的组成材料包括氟化锂LiF、氟化钠NaF、喹啉锂Liq的一种或多种。具体的,可以采用蒸镀工艺制备电子注入子层102,其厚度范围为0.5-3纳米。
第一电子传输子层103用于将第一电子传输至有机发光层200。第一电子传输子层103的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBl、TPyPhB中一种或多种。具体的,可以采用蒸镀工艺制备第一电子传输子层103,其厚度范围为20-60纳米。
有机发光层200包括蓝色有机发光层,即在复合第一电子和第一空穴时发射的第一光线为蓝色光线。有机发光层200的掺杂染料包括DSP-ph、DPVBl或TPATAZ中的一种或多种,主体材料包括CBP、TcTa或TMPyPb的一种或多种。具体的,可以采用蒸镀工艺制备有机发光层200,其厚度范围为20-40纳米,发射的第一光线波长范围为450-480纳米。在本发明中通过制备有机发光层200可以提高量子发光二极管的寿命。
如图4所示,第一空穴层300包括第一空穴传输子层301和空穴产生子层302,空穴产生子层302设置在第二电子层400上。
空穴产生子层302用于提供第一空穴。空穴产生子层302的组成的材料包括HATCN、CuPc、2-TNATA的一种或多种。具体的,可以采用蒸镀工艺制备空穴产生子层302,其厚度范围为5-50纳米。
第一空穴传输子层301用于将第一空穴传输至有机发光层200。第一空穴传输子层301的组成材料包括NPB、TDAPB、PIDATA 、TDAB、 BFA-1T、TPTE的一种或多种。具体的,采用蒸镀工艺制备第一空穴传输子层301,其厚度范围为10-60纳米。
如图5所示,第二电子层400包括电荷产生子层401和第二电子传输子层402,第二电子传输子层402设置在量子点发光层500上。
电荷产生子层401用于提供第二电子。电荷产生子层401的组成材料包括有机材料和金属材料,其中有机材料包括Bphen:Li、Bphen:Yb等的一种或多种。具体的,可以采用蒸镀工艺制备电荷产生子层401,其厚度范围为5-50纳米;
第二电子传输子层402用于将第二电子传输至量子点发光层500上。第二电子传输子层402的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBI、TPyPhB 的一种或多种。具体的,可以采用蒸镀工艺制备第二电子传输子层402,其厚度范围为20-60纳米。
量子点发光层500包括黄色量子点发光层,即该量子点发光层500复合第二电子和第二空穴发射的第二光线为黄色光线。量子点发光层500的组成材料包括硒化镉/硫化锌(CdSe/ZnS)、硫化镉/硫化锌(CdS/ZnS)、硒化镉/硒化锌(CdSe/ZnSe)、硫化镉/硒化锌(CdS/ZnSe)等具有核壳结构的黄色量子点发光材料中的一种或多种,组成材料的粒径范围为2-5纳米。具体的,可以采用旋涂或喷墨打印工艺制备量子点发光层500,其厚度范围为20-40纳米,发射的第二关系波长范围为540-570纳米。
如图6所示,第二空穴层600包括依次层叠设置的阳极603、空穴注入子层602和第二空穴传输子层601,量子点发光层500设置在第二空穴传输子层601上。其中,阳极603用于提供第二空穴,可以采用氧化铟锡制备。
空穴注入子层602用于将第二空穴注入第二空穴传输子层601。空穴注入子层602的组成材料包括PEDOT:PSS。具体的,可以采用旋涂或喷墨打印工艺制备空穴注入子层602,其厚度范围为5-60纳米。
第二空穴传输子层601用于将第二空穴传输至量子点发光层500。第二空穴传输子层601的组成材料包括PVK、 TFB、Poly-TPD的一种或多种。具体的,可以采用旋涂或喷墨打印工艺制备第二空穴传输子层601,其厚度范围为10-60纳米。
本发明实施例的量子发光二极管和显示装置通过设置有机发光层和量子点发光层,及分别给二者传输电子和空穴的两套电子层和两套空穴层,提高了量子发光二极管的寿命。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种量子发光二极管,其包括依次层叠设置的第一电子层、有机发光层、第一空穴层、第二电子层、量子点发光层及第二空穴层;
    所述第一电子层用于向所述有机发光层传输第一电子;
    所述第一空穴层用于向所述有机发光层传输第一空穴;
    所述有机发光层用于复合所述第一电子和所述第一空穴发射第一光线;
    所述第二电子层用于向所述量子点发光层传输第二电子;
    所述第二空穴层用于向所述量子点发光层传输第二空穴;
    所述量子点发光层用于复合所述第二电子和所述第二空穴发射第二光线。
  2. 根据权利要求1所述的量子发光二极管,其中,所述有机发光层的掺杂染料包括DSP-ph、DPVBl或TPATAZ中的一种或多种,所述有机发光层的主体材料包括CBP、TcTa或TMPyPb的一种或多种,所述有机发光层的厚度范围为20-40纳米,所述有机发光层发射的所述第一光线波长范围为450-480纳米。
  3. 根据权利要求1所述的量子发光二极管,其中,所述量子点发光层的组成材料包括硒化镉/硫化锌、硫化镉/硫化锌、硒化镉/硒化锌、硫化镉/硒化锌中的一种或多种,所述组成材料的粒径范围为2-5纳米,所述量子点发光层的厚度范围为20-40纳米,所述量子点发光层发射的所述第二光线波长范围为540-570纳米。
  4. 根据权利要求1所述的量子发光二极管,其中,所述第一电子层包括依次层叠设置的阴极、电子注入子层及第一电子传输子层,所述第一电子传输子层设置在所述有机发光层上;
    所述阴极用于提供所述第一电子;
    所述电子注入子层用于将所述第一电子注入所述第一电子传输子层;
    所述第一电子传输子层用于将所述第一电子传输至所述有机发光层。
  5. 根据权利要求4所述的量子发光二极管,其中,
    所述阴极的组成材料包括锂、镁、钙、锶、镧、铕、镱、铈、铝、铯、铷、银的一种或多种,所述阴极的厚度范围为50-200纳米;
    所述电子注入子层的组成材料包括氟化锂、氟化钠、喹啉锂的一种或多种,所述电子注入子层的厚度范围为0.5-3纳米;
    所述第一电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBl、TPyPhB中一种或多种,所述第一电子传输子层的厚度范围为20-60纳米。
  6. 根据权利要求1所述的量子发光二极管,其中,所述第一空穴层包括第一空穴传输子层和空穴产生子层,所述空穴产生子层设置在所述第二电子层上;
    所述空穴产生子层用于提供所述第一空穴;
    所述第一空穴传输子层用于将所述第一空穴传输至所述有机发光层。
  7. 根据权利要求6所述的量子发光二极管,其中,
    所述第一空穴传输子层的组成材料包括NPB、TDAPB、PIDATA、TDAB、BFA-1T、TPTE的一种或多种,所述第一空穴传输子层的厚度范围为10-60纳米;
    所述空穴产生子层的组成的材料包括HATCN、CuPc、2-TNATA的一种或多种,所述空穴产生子层的厚度范围为5-50纳米。
  8. 根据权利要求1所述的量子发光二极管,其中,所述第二电子层包括电荷产生子层和第二电子传输子层,所述第二电子传输子层设置在所述量子点发光层上;
    所述电荷产生子层用于提供所述第二电子;
    所述第二电子传输子层用于将所述第二电子传输至所述量子点发光层。
  9. 根据权利要求8所述的量子发光二极管,其中,
    所述电荷产生子层的组成材料包括有机材料和金属材料,所述电荷产生子层的厚度范围为5-50纳米;
    所述第二电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBI、TPyPhB的一种或多种,所述第二电子传输子层的厚度范围为20-60纳米。
  10. 根据权利要求1所述的量子发光二极管,其中,所述第二空穴层包括依次层叠设置的阳极、空穴注入子层和第二空穴传输子层,所述量子点发光层设置在所述第二空穴传输子层上;
    所述阳极用于提供所述第二空穴;
    所述空穴注入子层用于将所述第二空穴注入所述第二空穴传输子层;
    所述第二空穴传输子层用于将所述第二空穴传输至所述量子点发光层。
  11. 根据权利要求10所述的量子发光二极管,其中,
    所述空穴注入子层的组成材料包括PEDOT:PSS,所述空穴注入子层的厚度范围为5-60纳米;
    所述第二空穴传输子层的组成材料包括PVK、TFB、Poly-TPD的一种或多种,所述第二空穴传输子层的厚度范围为10-60纳米。
  12. 一种显示装置,其包括依次层叠设置的盖板、量子发光二极管、彩膜单元以及基板;
    所述量子发光二极管包括依次层叠设置的第一电子层、有机发光层、第一空穴层、第二电子层、量子点发光层及第二空穴层;
    所述第一电子层用于向所述有机发光层传输第一电子;
    所述第一空穴层用于向所述有机发光层传输第一空穴;
    所述有机发光层用于复合所述第一电子和所述第一空穴发射第一光线;
    所述第二电子层用于向所述量子点发光层传输第二电子;
    所述第二空穴层用于向所述量子点发光层传输第二空穴;
    所述量子点发光层用于复合所述第二电子和所述第二空穴发射第二光线。
  13. 根据权利要求12所述的显示装置,其中,所述有机发光层的掺杂染料包括DSP-ph、DPVBl或TPATAZ中的一种或多种,所述有机发光层的主体材料包括CBP、TcTa或TMPyPb的一种或多种,所述有机发光层的厚度范围为20-40纳米,所述有机发光层发射的所述第一光线波长范围为450-480纳米。
  14. 根据权利要求12所述的显示装置,其中,所述量子点发光层的组成材料包括硒化镉/硫化锌、硫化镉/硫化锌、硒化镉/硒化锌、硫化镉/硒化锌中的一种或多种,所述组成材料的粒径范围为2-5纳米,所述量子点发光层的厚度范围为20-40纳米,所述量子点发光层发射的所述第二光线波长范围为540-570纳米。
  15. 根据权利要求12所述的显示装置,其中,所述第一电子层包括依次层叠设置的阴极、电子注入子层及第一电子传输子层,所述第一电子传输子层设置在所述有机发光层上;
    所述阴极用于提供所述第一电子;
    所述电子注入子层用于将所述第一电子注入所述第一电子传输子层;
    所述第一电子传输子层用于将所述第一电子传输至所述有机发光层。
  16. 根据权利要求15所述的显示装置,其中,
    所述阴极的组成材料包括锂、镁、钙、锶、镧、铕、镱、铈、铝、铯、铷、银的一种或多种,所述阴极的厚度范围为50-200纳米;
    所述电子注入子层的组成材料包括氟化锂、氟化钠、喹啉锂的一种或多种,所述电子注入子层的厚度范围为0.5-3纳米;
    所述第一电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBl、TPyPhB中一种或多种,所述第一电子传输子层的厚度范围为20-60纳米。
  17. 根据权利要求12所述的显示装置,其中,所述第一空穴层包括第一空穴传输子层和空穴产生子层,所述空穴产生子层设置在所述第二电子层上;
    所述空穴产生子层用于提供所述第一空穴;
    所述第一空穴传输子层用于将所述第一空穴传输至所述有机发光层。
  18. 根据权利要求17所述的显示装置,其中,
    所述第一空穴传输子层的组成材料包括NPB、TDAPB、PIDATA、TDAB、BFA-1T、TPTE的一种或多种,所述第一空穴传输子层的厚度范围为10-60纳米;
    所述空穴产生子层的组成的材料包括HATCN、CuPc、2-TNATA的一种或多种,所述空穴产生子层的厚度范围为5-50纳米。
  19. 根据权利要求12所述的显示装置,其中,所述第二电子层包括电荷产生子层和第二电子传输子层,所述第二电子传输子层设置在所述量子点发光层上;
    所述电荷产生子层用于提供所述第二电子;
    所述第二电子传输子层用于将所述第二电子传输至所述量子点发光层。
  20. 根据权利要求19所述的显示装置,其中,
    所述电荷产生子层的组成材料包括有机材料和金属材料,所述电荷产生子层的厚度范围为5-50纳米;
    所述第二电子传输子层的组成材料包括BCP、TmPyPb、Bphen、TRZ、OXD-7、TAZ、TPBI、TPyPhB的一种或多种,所述第二电子传输子层的厚度范围为20-60纳米。
PCT/CN2017/110203 2017-09-22 2017-11-09 量子发光二极管和显示装置 WO2019056525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,703 US10418578B2 (en) 2017-09-22 2017-11-09 Quantum dot light-emitting diode and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710864914.6 2017-09-22
CN201710864914.6A CN107623075A (zh) 2017-09-22 2017-09-22 量子发光二极管和显示装置

Publications (1)

Publication Number Publication Date
WO2019056525A1 true WO2019056525A1 (zh) 2019-03-28

Family

ID=61090763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110203 WO2019056525A1 (zh) 2017-09-22 2017-11-09 量子发光二极管和显示装置

Country Status (2)

Country Link
CN (1) CN107623075A (zh)
WO (1) WO2019056525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354856A (zh) * 2018-12-24 2020-06-30 Tcl集团股份有限公司 一种量子点发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903855A (zh) * 2012-10-22 2013-01-30 东南大学 一种量子点电致发光器件及其制备方法
CN104362255A (zh) * 2014-10-21 2015-02-18 深圳市华星光电技术有限公司 白光oled器件结构
CN105679955A (zh) * 2016-01-25 2016-06-15 深圳市华星光电技术有限公司 量子点发光器件及其制备方法及液晶显示装置
CN106935719A (zh) * 2017-02-24 2017-07-07 深圳市华星光电技术有限公司 一种量子点电致发光器件及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057971A1 (ja) * 2012-10-10 2014-04-17 コニカミノルタ株式会社 エレクトロルミネッセンス素子
CN105514295A (zh) * 2016-02-29 2016-04-20 京东方科技集团股份有限公司 发光装置和形成发光装置的方法以及显示装置
CN105914228B (zh) * 2016-06-02 2020-07-28 深圳市华星光电技术有限公司 Oled器件与oled显示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903855A (zh) * 2012-10-22 2013-01-30 东南大学 一种量子点电致发光器件及其制备方法
CN104362255A (zh) * 2014-10-21 2015-02-18 深圳市华星光电技术有限公司 白光oled器件结构
CN105679955A (zh) * 2016-01-25 2016-06-15 深圳市华星光电技术有限公司 量子点发光器件及其制备方法及液晶显示装置
CN106935719A (zh) * 2017-02-24 2017-07-07 深圳市华星光电技术有限公司 一种量子点电致发光器件及其制作方法

Also Published As

Publication number Publication date
CN107623075A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2012033322A2 (ko) 유기전자소자용 기판 및 이를 포함하는 유기전자소자
WO2014208896A1 (en) Vertical organic light-emitting transistor and organic led illumination apparatus having the same
WO2016176868A1 (zh) 一种量子点发光二极管显示器
US20050031898A1 (en) Organic electroluminescent device based on pyrene derivatives
WO2016011688A1 (zh) 彩色显示器件结构
CN1407837A (zh) 有机电致发光器件及其制造方法
WO2014201712A1 (zh) 一种发光器件、显示面板及其制造方法
WO2015026185A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2015105381A1 (ko) 유기 발광 소자 및 이를 포함하는 조명 장치
WO2013002501A2 (ko) 유기 발광소자
WO2018062677A1 (ko) 백색광 양자점 발광 소자 및 이의 제조 방법
WO2015174673A1 (ko) 유기발광소자 및 이의 제조방법
WO2016004662A1 (zh) Oled像素结构
WO2014201711A1 (zh) 一种发光器件、显示面板及其制造方法
WO2012005540A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2013180544A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2017206213A1 (zh) Oled器件与oled显示器
WO2015065074A1 (ko) 유기 발광 소자, 및 이를 포함하는 디스플레이 장치 및 조명
WO2022179152A1 (zh) 有机发光二极管及其制作方法、显示基板和显示装置
WO2019090838A1 (zh) 一种oled器件、oled显示面板及制备方法
WO2013047981A1 (ko) 최소 적층 구조의 청색 인광 유기 발광소자
WO2020232911A1 (zh) 电致发光显示装置
WO2019056525A1 (zh) 量子发光二极管和显示装置
WO2020019624A1 (zh) Oled模组、显示面板及显示器
JPH05114486A (ja) 電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926326

Country of ref document: EP

Kind code of ref document: A1