WO2019054591A1 - 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 - Google Patents

기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 Download PDF

Info

Publication number
WO2019054591A1
WO2019054591A1 PCT/KR2018/003801 KR2018003801W WO2019054591A1 WO 2019054591 A1 WO2019054591 A1 WO 2019054591A1 KR 2018003801 W KR2018003801 W KR 2018003801W WO 2019054591 A1 WO2019054591 A1 WO 2019054591A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
basic
block
unit
encoding unit
Prior art date
Application number
PCT/KR2018/003801
Other languages
English (en)
French (fr)
Inventor
이진영
표인지
최웅일
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207003361A priority Critical patent/KR102185370B1/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1020207033587A priority patent/KR102232245B1/ko
Priority to CN201880056184.XA priority patent/CN111095925B/zh
Priority to CN202310357043.4A priority patent/CN116389748A/zh
Priority to CN202310356867.XA priority patent/CN116389747A/zh
Priority to KR1020227021151A priority patent/KR102480419B1/ko
Priority to EP18856771.3A priority patent/EP3637773A4/en
Priority to KR1020227044580A priority patent/KR102574479B1/ko
Priority to MX2020001665A priority patent/MX2020001665A/es
Priority to KR1020217008313A priority patent/KR102414679B1/ko
Priority to US16/634,400 priority patent/US11589070B2/en
Publication of WO2019054591A1 publication Critical patent/WO2019054591A1/ko
Priority to US18/153,879 priority patent/US20230164346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • This disclosure relates to the field of video encoding and decoding. More particularly, this disclosure relates to a method and apparatus for encoding a motion vector of a video, and a method and apparatus for decoding.
  • one picture may be divided into macroblocks for encoding an image, and each macroblock may be predictively encoded through inter prediction or intraprediction.
  • Inter prediction is a method of compressing an image by eliminating temporal redundancy between pictures, and is a typical example of motion estimation encoding.
  • Motion estimation coding predicts blocks of a current picture using at least one reference picture. A reference block most similar to the current block can be searched in a predetermined search range by using a predetermined evaluation function.
  • the current block is predicted based on the reference block, and the residual block generated by subtracting the prediction block generated from the prediction result from the current block is encoded.
  • a codec such as H.264 AVC (Advanced Video Coding) and HEVC (High Efficiency Video Coding)
  • H.264 AVC Advanced Video Coding
  • HEVC High Efficiency Video Coding
  • a method of decoding a motion vector includes: determining at least one PMV candidate block used for determining a prediction motion vector of a current block; Determining availability of a motion vector of the at least one PMV candidate block; Determining a predicted motion vector of the current block using a basic motion vector (MV) if there is a PMV candidate block judged to be unavailable; And obtaining a motion vector of the current block based on the determined predicted motion vector.
  • MV basic motion vector
  • the apparatus and method for encoding a motion vector and the apparatus and method for decoding a motion vector determine an accurate predicted motion vector for a current block using a basic motion vector, The quality of the reconstructed image can be improved.
  • FIG. 1 shows a block diagram of an image decoding apparatus capable of decoding an image based on at least one of block type information and division type information according to an embodiment.
  • FIG. 2 is a block diagram of an image encoding apparatus capable of encoding an image based on at least one of block type information and division type information according to an embodiment.
  • FIG. 3 illustrates a process in which at least one encoding unit is determined by dividing a current encoding unit according to an embodiment.
  • FIG. 4 illustrates a process in which at least one encoding unit is determined by dividing an encoding unit in the form of a non-square according to an embodiment.
  • FIG. 5 illustrates a process in which an encoding unit is divided based on at least one of block type information and division type information according to an embodiment.
  • FIG. 6 illustrates a method of determining a predetermined encoding unit among odd number of encoding units according to an embodiment.
  • FIG. 7 illustrates a sequence in which a plurality of encoding units are processed when a current encoding unit is divided to determine a plurality of encoding units according to an embodiment.
  • FIG. 8 illustrates a process in which, if an encoding unit can not be processed in a predetermined order according to an embodiment, it is determined that the current encoding unit is divided into odd number of encoding units.
  • FIG. 9 illustrates a process in which a first encoding unit is divided according to an embodiment to determine at least one encoding unit.
  • FIG. 10 illustrates that when a non-square type second coding unit determined by dividing a first coding unit according to an embodiment satisfies a predetermined condition, a form in which the second coding unit can be divided is limited .
  • FIG. 11 illustrates a process in which a square-shaped encoding unit is divided when division type information can not be divided into four square-shaped encoding units according to an embodiment
  • FIG. 12 illustrates that the processing order among a plurality of coding units may be changed according to a division process of a coding unit according to an exemplary embodiment.
  • FIG. 13 illustrates a process of determining the depth of an encoding unit according to a change in type and size of an encoding unit when a plurality of encoding units are determined by recursively dividing an encoding unit according to an embodiment.
  • FIG. 14 illustrates a depth index (hereinafter referred to as PID) for coding unit classification and depth that can be determined according to the type and size of coding units according to an exemplary embodiment.
  • PID depth index
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • FIG. 16 shows a processing block serving as a reference for determining a determination order of a reference encoding unit included in a picture according to an embodiment.
  • FIG. 17 shows coding units that can be determined for each picture when combinations of types in which coding units can be divided according to an embodiment are different from picture to picture.
  • FIG. 18 illustrates various types of coding units that can be determined based on the division type information that can be represented by a binary code according to an embodiment.
  • Figure 19 shows another form of an encoding unit that can be determined based on partition type information that can be represented in binary code according to one embodiment.
  • 20 is a block diagram of an image encoding and decoding system performing loop filtering.
  • FIG. 21 is a diagram illustrating an example of filtering units included in the maximum encoding unit according to an exemplary embodiment, and filtering performing information of the filtering unit.
  • FIG. 22 illustrates a process of performing merge or split between coding units determined according to a predetermined coding method according to an embodiment.
  • FIG. 23 shows an index according to a Z scan sequence of an encoding unit according to an embodiment.
  • 24 is a diagram illustrating reference samples for intraprediction of an encoding unit according to an embodiment.
  • 25 is a block diagram showing a configuration of a motion vector decoding apparatus according to an embodiment.
  • 26 is a flowchart for explaining a motion vector decoding method according to an embodiment.
  • FIG. 27 is a block diagram illustrating a configuration of a motion vector coding apparatus according to an embodiment.
  • FIG. 28 is a flowchart illustrating a motion vector coding method according to an embodiment.
  • 29 is a diagram illustrating spatial blocks and temporal blocks associated with the current block.
  • FIG. 30 is a diagram illustrating basic MV candidate blocks for determining a basic MV.
  • 31 and 32 are diagrams illustrating PMV candidate blocks for determining a predicted motion vector.
  • FIG. 33 shows a case where a minimum MVR selectable for a current block is a 1/4 pixel unit MVR, and a motion vector corresponding to 1/4 pixel unit MVR, 1/2 pixel unit MVR, 1 pixel unit MVR and 2 pixel unit MVR And the positions of the pixels that can be pointed to.
  • 34 and 35 are diagrams for explaining a method of adjusting the basic MV.
  • 36 is a diagram showing an exemplary syntax for explaining the process of acquiring the MVR index of the current block.
  • a method of decoding a motion vector includes: determining at least one PMV candidate block used for determining a prediction motion vector of a current block; Determining availability of a motion vector of the at least one PMV candidate block; Determining a predicted motion vector of the current block using a basic motion vector (MV) if there is a PMV candidate block judged to be unavailable; And obtaining a motion vector of the current block based on the determined predicted motion vector.
  • MV basic motion vector
  • the decoding method of the motion vector may include determining the basic MV based on motion vectors of a plurality of basic MV candidate blocks related to the current block.
  • the step of determining the basic MV includes sequentially determining whether a motion vector exists for the plurality of basic MV candidate blocks according to a priority order; And determining the basic MVs based on the motion vectors of the basic MV candidate blocks in the order in which the existence of the motion vectors is confirmed.
  • the method of decoding a motion vector may further include determining a motion vector derived through a decoder side MV derivation (DMVD) as the basic MV.
  • DMVD decoder side MV derivation
  • the step of determining the basic MV may include changing the priority in consideration of a reference video index of the current block and a reference video index of the plurality of basic MV candidate blocks.
  • the step of determining the basic MV may include determining the basic MV based on a motion vector of a basic MV candidate block having the same reference video index as the reference video index of the current block.
  • the step of determining the basic MV comprises: selecting at least one basic MV candidate block based on a size of a motion vector of the plurality of basic MV candidate blocks; And determining the basic MV based on a motion vector of the selected at least one basic MV candidate block.
  • the selecting of the at least one basic MV candidate block may include selecting a basic MV candidate block having a largest motion vector or a smallest motion vector among the motion vectors of the plurality of basic MV candidate blocks can do.
  • the step of determining the basic MV may include determining the basic MV based on an average value or a median value of the motion vectors of the plurality of basic MV candidate blocks.
  • the step of determining the basic MV may further include determining a motion vector of the basic MV candidate in the previously decoded picture, the previously decoded slice, or the basic MV candidate in the most selected position as the predicted motion vector in the previously decoded maximum coding unit, among the plurality of basic MV candidate blocks And determining the basic MV based on a motion vector of the block.
  • the step of determining the basic MV may include determining a plurality of basic MVs corresponding to the respective directions from the basic MV candidate blocks located in different directions with respect to the current block.
  • the plurality of basic MVs include a first basic MV and a second basic MV
  • the step of determining the basic MV includes using a motion vector of a basic MV candidate block located in a first direction on the basis of the current block Determining the first basic MV and determining the second basic MV using a motion vector of a basic MV candidate block located in a second direction with respect to the current block.
  • the step of determining a predicted motion vector of the current block includes the step of determining that the at least one PMV candidate block includes a PMV candidate block located in a first direction and a PMV candidate block located in a second direction based on the current block If the motion vector does not exist in the PMV candidate block located in the first direction, the first basic MV is assigned to the motion vector of the PMV candidate block located in the first direction, And determining a predicted motion vector of the current block by assigning the second basic MV to a motion vector of a PMV candidate block located in the second direction if a motion vector does not exist in the PMV candidate block.
  • the decoding method of the motion vector further includes a step of determining a motion vector resolution for the current block, and the step of determining a predicted motion vector of the current block includes: And allocating the basic MV to a PMV candidate block in which the motion vector does not exist when a motion vector does not exist in the PMV candidate block determined to be used as a predictive motion vector.
  • the step of determining a predicted motion vector of the current block comprises: adjusting the basic MV based on a motion vector resolution of the current block; And determining a predicted motion vector of the current block based on the adjusted basic MV.
  • the step of determining a prediction motion vector of the current block comprises: constructing a prediction candidate list from a motion vector of the at least one PMV candidate block according to the determination result of the availability; If the number of prediction candidates included in the prediction candidate list is less than a predetermined number, including the basic MV in the prediction candidate list so that the number of prediction candidates is the predetermined number; And determining a prediction motion vector of the current block based on the prediction candidate included in the prediction candidate list.
  • the step of determining a predicted motion vector of the current block may include allocating the basic MV to a PMV candidate block in which no motion vector is present among the at least one PMV candidate block at a predetermined position.
  • An apparatus for decoding a motion vector includes a basic motion vector determination unit for determining a basic MV of a current block; And determining the availability of a motion vector of at least one PMV candidate block used to determine a predicted motion vector of the current block, and if there is a PMV candidate block determined not to be available, And a prediction decoding unit that determines a predicted motion vector of the current block and acquires a motion vector of the current block based on the determined predicted motion vector.
  • a method of coding a motion vector includes: determining availability of a motion vector of at least one PMV candidate block used to determine a predicted motion vector of a current block; And determining a predicted motion vector of the current block using a basic MV if a PMV candidate block determined to be unavailable exists.
  • a component represented by 'unit', 'module', or the like refers to a case where two or more components are combined into one component, or one component is divided into two or more ≪ / RTI >
  • each of the components to be described below may additionally perform some or all of the functions of the other components in addition to the main functions of the component itself, and some of the main functions And may be performed entirely by components.
  • an 'image' or a 'picture' may be a still image of a video or a moving image, that is, a video itself.
  • sample' means data to be processed as data assigned to a sampling position of an image.
  • pixel values in the image of the spatial domain, and transform coefficients on the transform domain may be samples.
  • a unit including at least one of these samples may be defined as a block.
  • the 'current block' may mean a block of a maximum encoding unit, an encoding unit, a prediction unit, or a conversion unit of a current image to be encoded or decoded.
  • 'motion vector resolution' may refer to the precision of the position of a pixel that a motion vector determined through inter-prediction among pixels included in a reference image (or an interpolated reference image) can point to .
  • the fact that the motion vector resolution has N pixels units (N is a rational number) means that the motion vector can have an accuracy of N pixels units.
  • the motion vector resolution in the unit of a quarter pixel may mean that the motion vector can point to a pixel position in a quarter pixel unit (i.e., a sub-pixel unit) in the interpolated reference image, May mean that a motion vector may indicate a pixel position corresponding to one pixel unit (i.e., an integer pixel unit) in the interpolated reference picture.
  • 'candidate motion vector resolution' means at least one motion vector resolution that can be selected as a motion vector resolution of a block, 'candidate block' is mapped to a candidate motion vector resolution, and prediction Means one or more blocks that can be used as a block for a motion vector.
  • 'pixel unit' may be replaced with terms such as pixel accuracy, pixel accuracy, and the like.
  • each of the video encoding apparatus 200 and the video decoding apparatus 100 to be described with reference to Figs. 1 to 24 includes a motion vector encoding apparatus 2700 and a motion vector decoding apparatus 2500, which will be described with reference to Figs. 25 to 36, Respectively.
  • FIG. 1 shows a block diagram of an image decoding apparatus 100 capable of decoding an image based on at least one of block type information and division type information according to an embodiment.
  • the video decoding apparatus 100 includes a bitstream obtaining unit 110 for obtaining predetermined information such as partition type information and block type information from a bitstream according to an embodiment, And a decoding unit 120 for decoding the image.
  • the decoding unit 120 of the video decoding apparatus 100 may block At least one encoding unit for dividing an image based on at least one of information and division type information can be determined.
  • the decoding unit 120 of the image decoding apparatus 100 may determine the type of the encoding unit based on the block type information.
  • the block type information may include information indicating whether the encoding unit is a square or a non-square.
  • the decoding unit 120 may determine the type of the encoding unit using the block type information.
  • the decoding unit 120 may determine what type of encoding unit is to be divided based on the division type information.
  • the division type information may indicate information on the type of at least one encoding unit included in the encoding unit.
  • the decoding unit 120 may determine whether the encoding unit is divided or not according to the division type information.
  • the division type information may include information on at least one encoding unit included in the encoding unit. If the division type information indicates that only one encoding unit is included in the encoding unit, or indicates that the encoding unit is not divided, The decoding unit 120 may determine that the encoding unit including the division type information is not divided. When the division type information indicates that the coding unit is divided into a plurality of coding units, the decoding unit 120 may divide the coding unit into a plurality of coding units included in the coding unit based on the division type information.
  • the division type information indicates whether to divide an encoding unit into a plurality of encoding units or can indicate which direction to divide.
  • the division type information may indicate that division is performed in at least one of a vertical direction and a horizontal direction, or may indicate that division is not performed.
  • FIG. 3 illustrates a process in which the image decoding apparatus 100 determines at least one encoding unit by dividing a current encoding unit according to an embodiment.
  • the block shape may include 4Nx4N, 4Nx2N, 2Nx4N, 4NxN, or Nx4N. Where N may be a positive integer.
  • the block type information is information indicating at least one of a ratio, or a size, of a shape, direction, width, and height of an encoding unit.
  • the shape of the encoding unit may include a square and a non-square. If the width and height of the encoding unit are the same (4Nx4N), the image decoding apparatus 100 can determine the block type information of the encoding unit as a square. The image decoding apparatus 100 can determine the shape of the encoding unit as a non-square.
  • the image decoding apparatus 100 can determine the block type information of the encoding unit as a non-square when the lengths of the widths and heights of the encoding units are different (4Nx2N, 2Nx4N, 4NxN, or Nx4N).
  • the image decoding apparatus 100 sets the width and height ratio of the block type information of the coding unit to 1: 2, 2: 1, 1: 4, 4: Or 8: 1.
  • the video decoding apparatus 100 can determine whether the coding unit is the horizontal direction or the vertical direction. Further, the image decoding apparatus 100 can determine the size of the encoding unit based on at least one of the width of the encoding unit, the length of the height, and the width.
  • the image decoding apparatus 100 may determine the type of the encoding unit using the block type information and determine the type of the encoding unit to be divided using information on the division type mode. That is, according to which block type the block type information used by the video decoding apparatus 100 indicates, the division method of the encoding unit indicated by the information on the split mode mode can be determined.
  • the image decoding apparatus 100 may obtain information on the split mode mode from the bit stream. However, the present invention is not limited thereto, and the image decoding apparatus 100 and the image encoding apparatus 200 may acquire information on the promised split mode mode based on the block type information.
  • the image decoding apparatus 100 may acquire information on the promised divided mode mode for the maximum encoding unit or the minimum encoding unit. For example, the image decoding apparatus 100 can determine the size of the maximum encoding unit to be 256x256.
  • the image decoding apparatus 100 may determine the information about the promised division mode in advance as a quad split. Quad partitioning is a split mode mode that bisects both the width and the height of the encoding unit.
  • the image decoding apparatus 100 can obtain a 128x128 encoding unit from the 256x256 maximum encoding unit based on the information on the split mode mode. Also, the image decoding apparatus 100 can determine the size of the minimum encoding unit to be 4x4. The image decoding apparatus 100 can acquire information on the split mode mode indicating " not split " for the minimum encoding unit.
  • the image decoding apparatus 100 may use block type information indicating that the current encoding unit is a square type. For example, the image decoding apparatus 100 can determine whether to divide a square encoding unit according to information on the division mode, vertically or horizontally, or four encoding units. 3, if the block type information of the current encoding unit 300 indicates a square shape, the decoding unit 120 decodes the current encoding unit 300 and the current encoding unit 300 according to the information on the split mode mode, It is possible not to divide the coding unit 310a having the same size or to determine the divided coding units 310b, 310c and 310d based on the information on the division mode mode indicating the predetermined division method.
  • the image decoding apparatus 100 includes two encoding units 310b, 320b, 320c, 320c, 320c, 320c, 320c, 320c, Can be determined.
  • the image decoding apparatus 100 may determine two encoding units 310c in which the current encoding unit 300 is divided in the horizontal direction based on the information on the split mode mode indicating that the image is divided in the horizontal direction.
  • the image decoding apparatus 100 can determine four encoding units 310d in which the current encoding unit 300 is divided into the vertical direction and the horizontal direction based on the information on the split mode mode indicating that the image is divided into the vertical direction and the horizontal direction have.
  • the division type in which the square encoding unit can be divided should not be limited to the above-mentioned form, but may include various forms in which the information on the division type mode can be represented.
  • the predetermined divisional form in which the square encoding unit is divided will be described in detail by way of various embodiments below.
  • FIG. 4 illustrates a process in which the image decoding apparatus 100 determines at least one encoding unit by dividing a non-square encoding unit according to an embodiment.
  • the image decoding apparatus 100 may use block type information indicating that the current encoding unit is a non-square format.
  • the video decoding apparatus 100 may determine whether to divide the non-square current encoding unit according to the information on the split mode mode or not in a predetermined method.
  • the image decoding apparatus 100 performs a current encoding process according to the information on the split mode mode,
  • the encoding unit 410 or 460 having the same size as the unit 400 or 450 is determined or the encoding unit 420a, 420b, 430a, or 430b divided based on the information on the division mode mode indicating the predetermined division method , 430c, 470a, 470b, 480a, 480b, 480c.
  • the predetermined division method in which the non-square coding unit is divided will be described in detail through various embodiments.
  • the image decoding apparatus 100 may determine a type in which a coding unit is divided using information on a division type mode.
  • information on the division type mode may include at least one Lt; / RTI > can be represented by the number of encoding units.
  • the image decoding apparatus 100 performs a current encoding
  • the unit 400 or 450 may be divided to determine two encoding units 420a, 420b, or 470a and 470b included in the current encoding unit.
  • the image decoding apparatus 100 may divide the non- The current encoding unit can be divided in consideration of the position of the long side of the current encoding unit (400 or 450). For example, the image decoding apparatus 100 divides the current encoding unit 400 or 450 in the direction of dividing the long side of the current encoding unit 400 or 450 in consideration of the shape of the current encoding unit 400 or 450 So that a plurality of encoding units can be determined.
  • the video decoding apparatus 100 when the information on the split mode mode indicates that an encoding unit is divided into an odd number of blocks (tri-split), the video decoding apparatus 100 includes the current encoding unit 400 or 450 An odd number of encoding units can be determined. For example, when the information on the split mode mode indicates that the current encoding unit 400 or 450 is divided into three encoding units, the video decoding apparatus 100 encodes the current encoding unit 400 or 450 into three encodings Can be divided into units 430a, 430b, 430c, 480a, 480b, and 480c.
  • the ratio of the width and height of the current encoding unit 400 or 450 may be 4: 1 or 1: 4. If the ratio of width to height is 4: 1, the length of the width is longer than the length of the height, so the block type information may be horizontal. If the ratio of width to height is 1: 4, the block type information may be vertical because the length of the width is shorter than the length of the height.
  • the image decoding apparatus 100 may determine to divide the current encoding unit into odd number blocks based on the information on the split mode mode. The image decoding apparatus 100 can determine the division direction of the current encoding unit 400 or 450 based on the block type information of the current encoding unit 400 or 450.
  • the image decoding apparatus 100 can determine the encoding units 430a, 430b, and 430c by dividing the current encoding unit 400 in the horizontal direction. Also, when the current encoding unit 450 is in the horizontal direction, the image decoding apparatus 100 can determine the encoding units 480a, 480b, and 480c by dividing the current encoding unit 450 in the vertical direction.
  • the image decoding apparatus 100 may determine an odd number of encoding units included in the current encoding unit 400 or 450, and the sizes of the determined encoding units may not be the same. For example, the size of a predetermined encoding unit 430b or 480b among the determined odd number of encoding units 430a, 430b, 430c, 480a, 480b, and 480c is different from the size of the other encoding units 430a, 430c, 480a, and 480c .
  • an encoding unit that can be determined by dividing the current encoding unit (400 or 450) may have a plurality of types of sizes, and an odd number of encoding units (430a, 430b, 430c, 480a, 480b, 480c) May have different sizes.
  • the image decoding apparatus 100 can determine an odd number of encoding units included in the current encoding unit 400 or 450 Further, the image decoding apparatus 100 may limit the encoding unit of at least one of odd number of encoding units generated by division.
  • the image decoding apparatus 100 includes a coding unit 430a, 430b, 430c, 480a, 480b, and 480c, which are generated by dividing a current coding unit 400 or 450, The decoding process for the coding units 430b and 480b may be different from the coding units 430a, 430c, 480a, and 480c.
  • the coding units 430b and 480b positioned at the center are restricted so as not to be further divided unlike the other coding units 430a, 430c, 480a, and 480c, It can be limited to be divided.
  • FIG. 5 illustrates a process in which the image decoding apparatus 100 divides an encoding unit based on at least one of information on a block type information and a division mode mode according to an embodiment.
  • the image decoding apparatus 100 determines whether to divide or not divide the square-shaped first coding unit 500 into coding units based on at least one of information on the block type information and the information on the division mode mode .
  • the image decoding apparatus 100 divides the first encoding unit 500 in the horizontal direction, 2 encoding unit 510, as shown in FIG.
  • the first encoding unit, the second encoding unit, and the third encoding unit used according to an embodiment are terms used to understand the relation before and after the division between encoding units.
  • the second encoding unit can be determined, and if the second encoding unit is divided, the third encoding unit can be determined.
  • the relationship between the first coding unit, the second coding unit and the third coding unit used can be understood to be in accordance with the above-mentioned characteristic.
  • the image decoding apparatus 100 may determine that the determined second encoding unit 510 is not divided or divided into encoding units based on at least one of the block type information and the information on the split mode mode .
  • the image decoding apparatus 100 includes a second encoding unit (not shown) of a non-square shape determined by dividing a first encoding unit 500 based on at least one of information on block type information and information on a split mode 510) may be divided into at least one third encoding unit 520a, 520b, 520c, 520d, or the second encoding unit 510 may not be divided.
  • the image decoding apparatus 100 may acquire at least one of the block type information and the information on the split mode mode and the image decoding apparatus 100 may acquire at least one of the block type information and the split mode mode
  • the second encoding unit 510 may divide the first encoding unit 500 into a plurality of second encoding units of various types (for example, 510), and the second encoding unit 510 may divide the block type information and the information
  • the first encoding unit 500 may be divided according to a manner in which the first encoding unit 500 is divided.
  • the first encoding unit 500 is divided into the second encoding units 510 based on at least one of the block type information for the first encoding unit 500 and the information about the split mode mode 520b, 520c, and 520d (e.g., 520a, 520b, 520c, and 520d) based on at least one of the block type information on the second encoding unit 510 and the information on the split mode mode, Etc.). That is, the encoding unit may be recursively divided based on at least one of the information on the split mode mode and the block type information associated with each of the encoding units. Therefore, a square encoding unit may be determined in a non-square encoding unit, and a non-square encoding unit may be determined by dividing the square encoding unit recursively.
  • predetermined encoding units for example, An encoding unit or a square-shaped encoding unit
  • the square-shaped third coding unit 520b which is one of the odd-numbered third coding units 520b, 520c, and 520d, may be divided in the horizontal direction and divided into a plurality of fourth coding units.
  • the non-square fourth encoding unit 530b or 530d which is one of the plurality of fourth encoding units 530a, 530b, 530c, and 530d, may be further divided into a plurality of encoding units.
  • the fourth encoding unit 530b or 530d in the non-square form may be divided again into odd number of encoding units.
  • a method which can be used for recursive division of an encoding unit will be described later in various embodiments.
  • the image decoding apparatus 100 divides each of the third encoding units 520a, 520b, 520c, and 520d into units of encoding based on at least one of information on the block type information and the information on the split mode mode . Also, the image decoding apparatus 100 may determine that the second encoding unit 510 is not divided based on at least one of the block type information and the information on the split mode mode. The image decoding apparatus 100 may divide the non-square second encoding unit 510 into odd third encoding units 520b, 520c and 520d according to an embodiment.
  • the image decoding apparatus 100 may set a predetermined restriction on a predetermined third encoding unit among odd numbered third encoding units 520b, 520c, and 520d. For example, the image decoding apparatus 100 may limit the number of encoding units 520c located in the middle among odd numbered third encoding units 520b, 520c, and 520d to no longer be divided, or be divided into a set number of times .
  • the image decoding apparatus 100 includes an encoding unit (not shown) located in the middle among odd third encoding units 520b, 520c, and 520d included in the second encoding unit 510 in the non- 520c may not be further divided or may be limited to being divided into a predetermined division form (for example, divided into four coding units only or divided into a form corresponding to a form in which the second coding units 510 are divided) (For example, dividing only n times, n > 0).
  • a predetermined division form for example, divided into four coding units only or divided into a form corresponding to a form in which the second coding units 510 are divided
  • the above restriction on the coding unit 520c positioned at the center is merely an example and should not be construed to be limited to the above embodiments and the coding unit 520c positioned at the center is not limited to the coding units 520b and 520d Quot;), < / RTI > which can be decoded differently.
  • the image decoding apparatus 100 may acquire at least one of the block type information and the division type mode information used for dividing the current encoding unit at a predetermined position in the current encoding unit.
  • FIG. 6 illustrates a method by which the image decoding apparatus 100 determines a predetermined encoding unit among odd number of encoding units according to an embodiment.
  • At least one of the block type information of the current encoding units 600 and 650 and the information of the split mode mode is a sample of a predetermined position among a plurality of samples included in the current encoding units 600 and 650 For example, samples 640 and 690 positioned in the middle).
  • the predetermined position in the current encoding unit 600 in which at least one of the block type information and the information on the split mode mode can be obtained should not be limited to the middle position shown in FIG. 6, It should be understood that various positions (e.g., top, bottom, left, right, top left, bottom left, top right, or bottom right, etc.) that may be included in unit 600 may be included.
  • the image decoding apparatus 100 may determine that the current encoding unit is divided or not divided into the encoding units of various types and sizes by acquiring at least one of the block type information obtained from the predetermined position and the information on the division mode mode .
  • the image decoding apparatus 100 may select one of the encoding units.
  • the method for selecting one of the plurality of encoding units may be various, and description of these methods will be described later in various embodiments.
  • the image decoding apparatus 100 may divide the current encoding unit into a plurality of encoding units and determine a predetermined encoding unit.
  • the image decoding apparatus 100 may use information indicating the positions of odd-numbered encoding units in order to determine an encoding unit located in the middle among odd-numbered encoding units. 6, the image decoding apparatus 100 divides the current encoding unit 600 or the current encoding unit 650 into odd number of encoding units 620a, 620b, 620c or odd number of encoding units 660a, 660b, and 660c. The image decoding apparatus 100 may use the information on the positions of the odd-numbered encoding units 620a, 620b, and 620c or the odd-numbered encoding units 660a, 660b, and 660c, (660b).
  • the image decoding apparatus 100 determines the positions of the encoding units 620a, 620b, and 620c based on information indicating the positions of predetermined samples included in the encoding units 620a, 620b, and 620c,
  • the encoding unit 620b located in the encoding unit 620b can be determined.
  • the video decoding apparatus 100 encodes the encoding units 620a, 620b, and 620c based on information indicating the positions of the upper left samples 630a, 630b, and 630c of the encoding units 620a, 620b, and 620c,
  • the encoding unit 620b located in the center can be determined.
  • Information indicating the positions of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c according to one embodiment is stored in the pictures of the coding units 620a, 620b, and 620c Or information about the position or coordinates of the object.
  • Information indicating the positions of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c according to one embodiment is stored in the coding units 620a , 620b, and 620c, and the width or height may correspond to information indicating the difference between the coordinates of the encoding units 620a, 620b, and 620c in the picture.
  • the image decoding apparatus 100 directly uses the information on the position or the coordinates in the picture of the coding units 620a, 620b, and 620c or the information on the width or height of the coding unit corresponding to the difference value between the coordinates
  • the encoding unit 620b located in the center can be determined.
  • the information indicating the position of the upper left sample 630a of the upper coding unit 620a may indicate the coordinates (xa, ya) and the upper left sample 530b of the middle coding unit 620b May indicate the coordinates (xb, yb), and the information indicating the position of the upper left sample 630c of the lower coding unit 620c may indicate the coordinates (xc, yc).
  • the video decoding apparatus 100 can determine the center encoding unit 620b using the coordinates of the upper left samples 630a, 630b, and 630c included in the encoding units 620a, 620b, and 620c.
  • the coding unit 620b including (xb, yb) coordinates of the sample 630b located at the center, Can be determined as a coding unit located in the middle of the coding units 620a, 620b, and 620c determined by dividing the current coding unit 600.
  • the coordinates indicating the positions of the samples 630a, 630b and 630c in the upper left corner may indicate the coordinates indicating the absolute position in the picture
  • the position of the upper left sample 630a of the upper coding unit 620a may be (Dxb, dyb), which is information indicating the relative position of the sample 630b at the upper left of the middle encoding unit 620b, and the relative position of the sample 630c at the upper left of the lower encoding unit 620c
  • Information dyn (dxc, dyc) coordinates may also be used.
  • the method of determining the coding unit at a predetermined position by using the coordinates of the sample as information indicating the position of the sample included in the coding unit should not be limited to the above-described method, and various arithmetic Should be interpreted as a method.
  • the image decoding apparatus 100 may divide the current encoding unit 600 into a plurality of encoding units 620a, 620b, and 620c and may encode a predetermined one of the encoding units 620a, 620b, and 620c
  • the encoding unit can be selected according to the criterion. For example, the image decoding apparatus 100 can select an encoding unit 620b having a different size from among the encoding units 620a, 620b, and 620c.
  • the image decoding apparatus 100 may include (xa, ya) coordinates, which is information indicating the position of the upper left sample 630a of the upper encoding unit 620a, a sample of the upper left sample of the middle encoding unit 620b (Xc, yc) coordinates, which is information indicating the position of the lower-stage coding unit 630b and the position of the upper-left sample 630c of the lower-stage coding unit 620c, , 620b, and 620c, respectively.
  • the image decoding apparatus 100 encodes the encoding units 620a and 620b using the coordinates (xa, ya), (xb, yb), (xc, yc) indicating the positions of the encoding units 620a, 620b and 620c , And 620c, respectively.
  • the image decoding apparatus 100 may determine the width of the upper encoding unit 620a as the width of the current encoding unit 600.
  • the image decoding apparatus 100 can determine the height of the upper encoding unit 620a as yb-ya.
  • the image decoding apparatus 100 may determine the width of the middle encoding unit 620b as the width of the current encoding unit 600 according to an embodiment.
  • the image decoding apparatus 100 can determine the height of the middle encoding unit 620b as yc-yb.
  • the image decoding apparatus 100 may determine the width or height of the lower coding unit by using the width or height of the current coding unit and the width and height of the upper coding unit 620a and the middle coding unit 620b .
  • the image decoding apparatus 100 may determine an encoding unit having a different size from other encoding units based on the widths and heights of the determined encoding units 620a, 620b, and 620c. Referring to FIG.
  • the image decoding apparatus 100 may determine a coding unit 620b as a coding unit at a predetermined position while having a size different from that of the upper coding unit 620a and the lower coding unit 620c.
  • the process of determining the encoding unit having a size different from that of the other encoding units by the video decoding apparatus 100 may be the same as that of the first embodiment in which the encoding unit of a predetermined position is determined using the size of the encoding unit determined based on the sample coordinates .
  • Various processes may be used for determining the encoding unit at a predetermined position by comparing the sizes of the encoding units determined according to predetermined sample coordinates.
  • the video decoding apparatus 100 determines the position (xd, yd) which is the information indicating the position of the upper left sample 670a of the left encoding unit 660a and the position (xd, yd) of the sample 670b at the upper left of the middle encoding unit 660b 660b and 660c using the (xf, yf) coordinates, which is information indicating the (xe, ye) coordinate which is the information indicating the position of the right encoding unit 660c and the position of the sample 670c at the upper left of the right encoding unit 660c, Each width or height can be determined.
  • the image decoding apparatus 100 encodes the encoded units 660a and 660b using the coordinates (xd, yd), (xe, ye), (xf, yf) indicating the positions of the encoding units 660a, 660b and 660c And 660c, respectively.
  • the image decoding apparatus 100 may determine the width of the left encoding unit 660a as xe-xd. The image decoding apparatus 100 can determine the height of the left encoding unit 660a as the height of the current encoding unit 650. [ According to an embodiment, the image decoding apparatus 100 may determine the width of the middle encoding unit 660b as xf-xe. The image decoding apparatus 100 can determine the height of the middle encoding unit 660b as the height of the current encoding unit 600.
  • the image decoding apparatus 100 may determine that the width or height of the right encoding unit 660c is less than the width or height of the current encoding unit 650 and the width and height of the left encoding unit 660a and the middle encoding unit 660b . ≪ / RTI > The image decoding apparatus 100 may determine an encoding unit having a different size from the other encoding units based on the widths and heights of the determined encoding units 660a, 660b, and 660c. Referring to FIG.
  • the image decoding apparatus 100 may determine a coding unit 660b as a coding unit at a predetermined position while having a size different from that of the left coding unit 660a and the right coding unit 660c.
  • the process of determining the encoding unit having a size different from that of the other encoding units by the video decoding apparatus 100 may be the same as that of the first embodiment in which the encoding unit of a predetermined position is determined using the size of the encoding unit determined based on the sample coordinates .
  • Various processes may be used for determining the encoding unit at a predetermined position by comparing the sizes of the encoding units determined according to predetermined sample coordinates.
  • the position of the sample to be considered for determining the position of the coding unit should not be interpreted as being limited to the left upper end, and information about the position of any sample included in the coding unit can be interpreted as being available.
  • the image decoding apparatus 100 can select a coding unit at a predetermined position among the odd number of coding units determined by dividing the current coding unit considering the type of the current coding unit. For example, if the current coding unit is a non-square shape having a width greater than the height, the image decoding apparatus 100 can determine a coding unit at a predetermined position along the horizontal direction. That is, the image decoding apparatus 100 may determine one of the encoding units which are located in the horizontal direction and limit the encoding unit. If the current coding unit is a non-square shape having a height greater than the width, the image decoding apparatus 100 can determine a coding unit at a predetermined position in the vertical direction. That is, the image decoding apparatus 100 may determine one of the encoding units having different positions in the vertical direction and set a restriction on the encoding unit.
  • the image decoding apparatus 100 may use information indicating positions of even-numbered encoding units in order to determine an encoding unit at a predetermined position among the even-numbered encoding units.
  • the image decoding apparatus 100 may determine an even number of coding units by binary coding the current coding unit and determine a coding unit at a predetermined position by using information on the positions of the even number of coding units.
  • a concrete procedure for this is omitted because it may be a process corresponding to a process of determining a coding unit of a predetermined position (e.g., the middle position) among the odd number of coding units described with reference to FIG.
  • the video decoding apparatus 100 may determine the block type information stored in the sample included in the middle coding unit, Mode may be used.
  • the image decoding apparatus 100 divides the current encoding unit 600 into a plurality of encoding units 620a, 620b, and 620c based on at least one of information on the block type information and the information on the split mode mode And the encoding unit 620b located in the middle of the plurality of encoding units 620a, 620b, and 620c can be determined. Furthermore, the image decoding apparatus 100 may determine the coding unit 620b located at the center in consideration of the position at which at least one of the block type information and the division type mode information is obtained.
  • At least one of the block type information of the current encoding unit 600 and the information of the division mode mode can be obtained in the sample 640 located in the middle of the current encoding unit 600, If the current encoding unit 600 is divided into a plurality of encoding units 620a, 620b, and 620c based on at least one of the information on the division mode mode and the encoding unit 620b including the sample 640, As shown in FIG.
  • the information used for determining the encoding unit located in the middle should not be limited to at least one of the block type information and the information about the division mode mode, and a process of determining an encoding unit in which various types of information are located in the middle ≪ / RTI >
  • predetermined information for identifying a coding unit at a predetermined position may be obtained from a predetermined sample included in a coding unit to be determined.
  • the image decoding apparatus 100 includes a plurality of encoding units 620a, 620b, and 620c that are determined by dividing a current encoding unit 600, (For example, a sample located in the middle of the current encoding unit 600) at a predetermined position in the current encoding unit 600 in order to determine an encoding unit located in the middle of the encoding unit, And at least one of information on the split mode mode may be used.
  • the image decoding apparatus 100 can determine the sample at the predetermined position in consideration of the block form of the current encoding unit 600, and the image decoding apparatus 100 can determine a plurality of A coding unit 620b including samples from which predetermined information (for example, at least one of information on the block type information and the division mode information) can be obtained from the plurality of coding units 620a, 620b, and 620c So that a predetermined limit can be set.
  • the image decoding apparatus 100 may determine a sample 640 located in the center of a current encoding unit 600 as a sample from which predetermined information can be obtained,
  • the coding unit 100 may limit the coding unit 620b including the sample 640 to a predetermined limit in the decoding process.
  • the position of the sample from which the predetermined information can be obtained should not be construed to be limited to the above-mentioned position, but may be interpreted as samples at arbitrary positions included in the encoding unit 620b to be determined for limiting.
  • the position of a sample from which predetermined information can be obtained may be determined according to the type of the current encoding unit 600.
  • the block type information can determine whether the current encoding unit is a square or a non-square, and determine the position of a sample from which predetermined information can be obtained according to the shape.
  • the video decoding apparatus 100 may use at least one of the information on the width of the current coding unit and the information on the height to position at least one of the width and the height of the current coding unit in half The sample can be determined as a sample from which predetermined information can be obtained.
  • the image decoding apparatus 100 selects one of the samples adjacent to the boundary dividing the longer side of the current encoding unit into halves by a predetermined Can be determined as a sample from which the information of < / RTI >
  • the image decoding apparatus 100 may determine the encoding unit of a predetermined position among the plurality of encoding units, Information can be used.
  • the image decoding apparatus 100 may acquire at least one of information on the block type information and the information on the division mode mode from a sample of a predetermined position included in the encoding unit,
  • the plurality of coding units generated by dividing the unit may be divided using at least one of the information on the division mode and the block type information obtained from the sample at the predetermined position included in each of the plurality of the coding units.
  • the coding unit can be recursively divided using at least one of the block type information obtained in the sample at the predetermined position included in each of the coding units and the information about the division mode. Since the recursive division process of the encoding unit has been described with reference to FIG. 5, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 can determine at least one encoding unit by dividing the current encoding unit, and the order in which the at least one encoding unit is decoded is determined as a predetermined block (for example, ). ≪ / RTI >
  • FIG. 7 illustrates a sequence in which a plurality of coding units are processed when the image decoding apparatus 100 determines a plurality of coding units by dividing a current coding unit according to an exemplary embodiment.
  • the image decoding apparatus 100 determines the second encoding units 710a and 710b by dividing the first encoding unit 700 in the vertical direction according to information on the block type information and the division mode,
  • the second encoding units 730a and 730b may be determined by dividing the first encoding units 700a to 750c by dividing the first encoding units 700a and 750b in the horizontal direction to divide the first encoding units 700 in the vertical direction and the horizontal direction, , 750d can be determined.
  • the image decoding apparatus 100 may determine the order in which the second encoding units 710a and 710b determined by dividing the first encoding unit 700 in the vertical direction are processed in the horizontal direction 710c .
  • the image decoding apparatus 100 may determine the processing order of the second encoding units 730a and 730b determined by dividing the first encoding unit 700 in the horizontal direction as the vertical direction 730c.
  • the image decoding apparatus 100 processes the encoding units located in one row of the second encoding units 750a, 750b, 750c and 750d determined by dividing the first encoding unit 700 in the vertical direction and the horizontal direction, (For example, a raster scan order or a z scan order 750e) in which the encoding units located in the next row are processed.
  • the image decoding apparatus 100 may recursively divide encoding units. 7, the image decoding apparatus 100 may determine a plurality of encoding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d by dividing the first encoding unit 700, The determined plurality of encoding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d can be recursively divided.
  • the method of dividing the plurality of encoding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be a method corresponding to the method of dividing the first encoding unit 700.
  • the plurality of encoding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be independently divided into a plurality of encoding units. Referring to FIG.
  • the image decoding apparatus 100 can determine the second encoding units 710a and 710b by dividing the first encoding unit 700 in the vertical direction, and can further determine the second encoding units 710a and 710b Can be determined not to divide or separate independently.
  • the image decoding apparatus 100 may divide the second encoding unit 710a on the left side in the horizontal direction into the third encoding units 720a and 720b and the second encoding units 710b ) May not be divided.
  • the processing order of the encoding units may be determined based on the division process of the encoding units.
  • the processing order of the divided coding units can be determined based on the processing order of the coding units immediately before being divided.
  • the image decoding apparatus 100 can determine the order in which the third encoding units 720a and 720b determined by dividing the second encoding unit 710a on the left side are processed independently of the second encoding unit 710b on the right side.
  • the third encoding units 720a and 720b may be processed in the vertical direction 720c because the second encoding units 710a on the left side are divided in the horizontal direction and the third encoding units 720a and 720b are determined.
  • the order in which the left second encoding unit 710a and the right second encoding unit 710b are processed corresponds to the horizontal direction 710c
  • the right encoding unit 710b can be processed after the blocks 720a and 720b are processed in the vertical direction 720c.
  • the above description is intended to explain the process sequence in which encoding units are determined according to the encoding units before division. Therefore, it should not be construed to be limited to the above-described embodiments, It should be construed as being used in various ways that can be handled independently in sequence.
  • FIG. 8 illustrates a process of determining that the current encoding unit is divided into odd number of encoding units when the image decoding apparatus 100 can not process the encoding units in a predetermined order according to an embodiment.
  • the image decoding apparatus 100 may determine that the current encoding unit is divided into odd number of encoding units based on the obtained block type information and information on the split mode mode.
  • the first encoding unit 800 of a square shape may be divided into second non-square encoding units 810a and 810b, and the second encoding units 810a and 810b may be independently 3 encoding units 820a, 820b, 820c, 820d, and 820e.
  • the image decoding apparatus 100 can determine the plurality of third encoding units 820a and 820b by dividing the left encoding unit 810a of the second encoding unit in the horizontal direction, and the right encoding unit 810b Can be divided into an odd number of third encoding units 820c, 820d, and 820e.
  • the image decoding apparatus 100 determines whether or not the third encoding units 820a, 820b, 820c, 820d, and 820e can be processed in a predetermined order and determines whether there are odd- You can decide. 8, the image decoding apparatus 100 may recursively divide the first encoding unit 800 to determine the third encoding units 820a, 820b, 820c, 820d, and 820e.
  • the video decoding apparatus 100 may further include a first coding unit 800, a second coding unit 810a and 810b or a third coding unit 820a and 820b based on at least one of information on the block type information and the information on the division mode mode , 820c, 820d, and 820e are divided into odd number of coding units among the divided types. For example, an encoding unit located on the right of the second encoding units 810a and 810b may be divided into odd third encoding units 820c, 820d, and 820e.
  • the order in which the plurality of coding units included in the first coding unit 800 are processed may be a predetermined order (for example, a z-scan order 830) 100 can determine whether the third encoding units 820c, 820d, and 820e determined by dividing the right second encoding unit 810b into odd numbers satisfy the condition that the third encoding units 820c, 820d, and 820e can be processed according to the predetermined order.
  • a predetermined order for example, a z-scan order 830
  • the image decoding apparatus 100 satisfies a condition that third encoding units 820a, 820b, 820c, 820d, and 820e included in the first encoding unit 800 can be processed in a predetermined order And it is determined whether or not at least one of the widths and heights of the second encoding units 810a and 810b is divided in half according to the boundaries of the third encoding units 820a, 820b, 820c, 820d, and 820e, .
  • the third encoding units 820a and 820b which are determined by dividing the height of the left second encoding unit 810a in the non-square shape by half, can satisfy the condition.
  • the boundaries of the third encoding units 820c, 820d, and 820e determined by dividing the right second encoding unit 810b into three encoding units do not divide the width or height of the right second encoding unit 810b in half ,
  • the third encoding units 820c, 820d, and 820e may be determined as not satisfying the condition.
  • the image decoding apparatus 100 may determine that the scan order is disconnection in the case of such unsatisfactory condition and determine that the right second encoding unit 810b is divided into odd number of encoding units based on the determination result.
  • the image decoding apparatus 100 may limit a coding unit of a predetermined position among the divided coding units when the coding unit is divided into odd number of coding units. Since the embodiment has been described above, a detailed description thereof will be omitted.
  • FIG. 9 illustrates a process in which the image decoding apparatus 100 determines at least one encoding unit by dividing a first encoding unit 900 according to an embodiment.
  • the image decoding apparatus 100 may divide the first encoding unit 900 based on at least one of the block type information obtained through the bitstream obtaining unit 110 and the information on the split mode mode have.
  • the first coding unit 900 in the form of a square may be divided into four coding units having a square form, or may be divided into a plurality of non-square coding units.
  • the image decoding apparatus 100 1 encoding unit 900 into a plurality of non-square encoding units.
  • the image decoding apparatus 100 performs a first encoding
  • the unit 900 can be divided into the second coding units 910a, 910b and 910c divided in the vertical direction as the odd number of coding units or the second coding units 920a, 920b and 920c divided in the horizontal direction .
  • the image decoding apparatus 100 may be configured such that the second encoding units 910a, 910b, 910c, 920a, 920b, and 920c included in the first encoding unit 900 are processed in a predetermined order And the condition is that at least one of the width and the height of the first encoding unit 900 is divided in half according to the boundaries of the second encoding units 910a, 910b, 910c, 920a, 920b, and 920c .
  • the boundaries of the second encoding units 910a, 910b, and 910c which are determined by vertically dividing the first encoding unit 900 in a square shape, are divided in half by the width of the first encoding unit 900
  • the first encoding unit 900 can be determined as not satisfying a condition that can be processed in a predetermined order.
  • the boundaries of the second encoding units 920a, 920b, and 920c which are determined by dividing the first encoding unit 900 in the horizontal direction into the horizontal direction, can not divide the width of the first encoding unit 900 in half, 1 encoding unit 900 may be determined as not satisfying a condition that can be processed in a predetermined order.
  • the image decoding apparatus 100 may determine that the scan sequence is disconnection in the case of such unsatisfactory condition and determine that the first encoding unit 900 is divided into odd number of encoding units based on the determination result. According to an embodiment, the image decoding apparatus 100 may limit a coding unit of a predetermined position among the divided coding units when the coding unit is divided into odd number of coding units. Since the embodiment has been described above, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine the encoding units of various types by dividing the first encoding unit.
  • the image decoding apparatus 100 may divide a first coding unit 900 in a square form, a first coding unit 930 or 950 in a non-square form into various types of coding units .
  • the image decoding apparatus 100 may include a first encoding unit 1000 in the form of a square based on at least one of block type information and division mode information acquired through the bitstream obtaining unit 110 It may be determined to divide into non-square second encoding units 1010a, 1010b, 1020a, and 1020b.
  • the second encoding units 1010a, 1010b, 1020a, and 1020b may be independently divided. Accordingly, the image decoding apparatus 100 divides or divides the image data into a plurality of encoding units based on at least one of the block type information and the division type mode information related to each of the second encoding units 1010a, 1010b, 1020a, and 1020b You can decide not to.
  • the image decoding apparatus 100 divides the left second encoding unit 1010a in a non-square form determined by dividing the first encoding unit 1000 in the vertical direction into a horizontal direction, 1012a, and 1012b.
  • the right-side second encoding unit 1010b is arranged in the horizontal direction in the same manner as the direction in which the left second encoding unit 1010a is divided, As shown in Fig.
  • the left second encoding unit 1010a and the right second encoding unit 1010b are arranged in the horizontal direction
  • the third encoding units 1012a, 1012b, 1014a, and 1014b can be determined by being independently divided.
  • the image decoding apparatus 100 may divide the first encoding unit 1000 into four square-shaped second encoding units 1030a, 1030b, 1030c, and 1030d based on at least one of the block type information and the information on the split mode mode ), which may be inefficient in terms of image decoding.
  • the image decoding apparatus 100 divides a second encoding unit 1020a or 1020b in a non-square form determined by dividing a first encoding unit 1000 in a horizontal direction into a vertical direction, (1022a, 1022b, 1024a, 1024b).
  • the image decoding apparatus 100 may be configured to encode the second encoding unit (for example, The encoding unit 1020b) can be restricted such that the upper second encoding unit 1020a can not be divided vertically in the same direction as the divided direction.
  • FIG. 11 illustrates a process in which the image decoding apparatus 100 divides a square-shaped encoding unit when the information on the split mode mode can not be shown to be divided into four square-shaped encoding units according to an embodiment .
  • the image decoding apparatus 100 divides the first encoding unit 1100 based on at least one of information on the block type information and the information on the split mode mode to generate second encoding units 1110a, 1110b, 1120a, and 1120b Etc.) can be determined.
  • the information on the division type mode may include information on various types in which the coding unit can be divided, but information on various types may not include information for dividing into four square units of coding units.
  • the image decoding apparatus 100 can not divide the first encoding unit 1100 in the square form into the second encoding units 1130a, 1130b, 1130c, and 1130d in the form of four squares .
  • the image decoding apparatus 100 may determine the second encoding units 1110a, 1110b, 1120a, and 1120b in the non-square form based on the information on the split mode mode.
  • the image decoding apparatus 100 may independently divide the non-square second encoding units 1110a, 1110b, 1120a, and 1120b, respectively.
  • Each of the second encoding units 1110a, 1110b, 1120a, and 1120b may be divided in a predetermined order through a recursive method, and the first encoding units 1110a, 1110b, 1120a, and 1120b may be divided according to at least one of the block type information, May be a division method corresponding to how the unit 1100 is divided.
  • the image decoding apparatus 100 can determine the third encoding units 1112a and 1112b in the form of a square by dividing the left second encoding unit 1110a in the horizontal direction and the right second encoding unit 1110b It is possible to determine the third encoding units 1114a and 1114b in the form of a square by being divided in the horizontal direction. Furthermore, the image decoding apparatus 100 may divide the left second encoding unit 1110a and the right second encoding unit 1110b in the horizontal direction to determine the third encoding units 1116a, 1116b, 1116c, and 1116d in the form of a square have. In this case, the encoding unit can be determined in the same manner as the first encoding unit 1100 is divided into the four second square encoding units 1130a, 1130b, 1130c, and 1130d.
  • the image decoding apparatus 100 can determine the third encoding units 1122a and 1122b in the form of a square by dividing the upper second encoding unit 1120a in the vertical direction, and the lower second encoding units 1120b May be divided in the vertical direction to determine the third encoding units 1124a and 1124b in the form of a square. Further, the image decoding apparatus 100 may divide the upper second encoding unit 1120a and the lower second encoding unit 1120b in the vertical direction to determine the square-shaped third encoding units 1126a, 1126b, 1126a, and 1126b have. In this case, the encoding unit can be determined in the same manner as the first encoding unit 1100 is divided into the four second square encoding units 1130a, 1130b, 1130c, and 1130d.
  • FIG. 12 illustrates that the processing order among a plurality of coding units may be changed according to a division process of a coding unit according to an exemplary embodiment.
  • the image decoding apparatus 100 may divide the first encoding unit 1200 based on information on the block type information and the split mode mode.
  • the block type information indicates a square shape and the information on the split mode mode indicates that the first encoding unit 1200 is divided into at least one of a horizontal direction and a vertical direction
  • the unit 1200 can be divided to determine the second encoding unit (e.g., 1210a, 1210b, 1220a, 1220b, etc.). Referring to FIG.
  • the non-square second encoding units 1210a, 1210b, 1220a, and 1220b which are determined by dividing the first encoding unit 1200 only in the horizontal direction or the vertical direction, Can be independently divided based on information on the < / RTI >
  • the image decoding apparatus 100 divides the second encoding units 1210a and 1210b, which are generated by dividing the first encoding unit 1200 in the vertical direction, in the horizontal direction, and outputs the third encoding units 1216a, 1216b, 1216c and 1216d can be determined and the second encoding units 1220a and 1220b generated by dividing the first encoding unit 1200 in the horizontal direction are divided in the horizontal direction and the third encoding units 1226a, , 1226d. Since the process of dividing the second encoding units 1210a, 1210b, 1220a, and 1220b has been described above with reference to FIG. 11, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may process an encoding unit in a predetermined order.
  • the features of the processing of the encoding unit in the predetermined order have been described in detail with reference to FIG. 7, and a detailed description thereof will be omitted. 12, the image decoding apparatus 100 divides a first encoding unit 1200 of a square shape into 4 pieces of fourth encoding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d Can be determined.
  • the image decoding apparatus 100 may process the third encoding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d according to the form in which the first encoding unit 1200 is divided You can decide.
  • the image decoding apparatus 100 divides the generated second encoding units 1210a and 1210b in the vertical direction and divides them in the horizontal direction to determine third encoding units 1216a, 1216b, 1216c, and 1216d And the image decoding apparatus 100 first processes the third encoding units 1216a and 1216c included in the left second encoding unit 1210a in the vertical direction and then processes the third encoding units 1216a and 1216c included in the second right encoding unit 1210b The third encoding units 1216a, 1216b, 1216c, and 1216d can be processed according to the order 1217 of processing the third encoding units 1216b and 1216d in the vertical direction.
  • the image decoding apparatus 100 divides the second encoding units 1220a and 1220b generated in the horizontal direction into vertical directions to determine the third encoding units 1226a, 1226b, 1226c and 1226d And the image decoding apparatus 100 first processes the third encoding units 1226a and 1226b included in the upper second encoding unit 1220a in the horizontal direction and then encodes the third encoding units 1226a and 1226b included in the lower second encoding unit 1220b The third encoding units 1226a, 1226b, 1226c, and 1226d may be processed in accordance with an order 1227 for processing the third encoding units 1226c and 1226d in the horizontal direction.
  • the second encoding units 1210a, 1210b, 1220a, and 1220b are divided to determine the third encoding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d, have.
  • the second encoding units 1210a and 1210b determined to be divided in the vertical direction and the second encoding units 1220a and 1220b determined to be divided in the horizontal direction are divided into different formats, but the third encoding units 1216a , 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d, the result is that the first encoding unit 1200 is divided into the same type of encoding units.
  • the image decoding apparatus 100 recursively divides the encoding units based on at least one of the block type information and the information on the division type mode, thereby eventually determining the same type of encoding units, A plurality of encoding units may be processed in different orders.
  • FIG. 13 illustrates a process of determining the depth of an encoding unit according to a change in type and size of an encoding unit when a plurality of encoding units are determined by recursively dividing an encoding unit according to an embodiment.
  • the image decoding apparatus 100 may determine the depth of a coding unit according to a predetermined criterion.
  • a predetermined criterion may be a length of a long side of a coding unit.
  • the depth of the current encoding unit is smaller than the depth of the encoding unit before being divided it can be determined that the depth is increased by n.
  • an encoding unit with an increased depth is expressed as a lower-depth encoding unit.
  • the image decoding apparatus 100 may generate a square 1 encoding unit 1300 can be divided to determine the second encoding unit 1302, the third encoding unit 1304, etc. of the lower depth. If the size of the first encoding unit 1300 in the form of a square is 2Nx2N, the second encoding unit 1302 determined by dividing the width and height of the first encoding unit 1300 by 1/2 may have a size of NxN have.
  • the third encoding unit 1304 determined by dividing the width and height of the second encoding unit 1302 by a half size may have a size of N / 2xN / 2.
  • the width and height of the third encoding unit 1304 correspond to 1/4 of the first encoding unit 1300. If the depth of the first encoding unit 1300 is D, the depth of the second encoding unit 1302, which is half the width and height of the first encoding unit 1300, may be D + 1, The depth of the third encoding unit 1304, which is one fourth of the width and height of the third encoding unit 1300, may be D + 2.
  • block type information indicating a non-square shape for example, block type information is' 1: NS_VER 'indicating that the height is a non-square having a width greater than the width or' 2 >
  • the image decoding apparatus 100 divides the first coding unit 1310 or 1320 in a non-square form into a second coding unit 1312 or 1322 of a lower depth, The third encoding unit 1314 or 1324, or the like.
  • the image decoding apparatus 100 may determine a second coding unit (for example, 1302, 1312, 1322, etc.) by dividing at least one of the width and the height of the first coding unit 1310 of Nx2N size. That is, the image decoding apparatus 100 can determine the second encoding unit 1302 of NxN size or the second encoding unit 1322 of NxN / 2 size by dividing the first encoding unit 1310 in the horizontal direction, It is also possible to determine the second encoding unit 1312 of N / 2xN size by dividing it in the horizontal direction and the vertical direction.
  • a second coding unit for example, 1302, 1312, 1322, etc.
  • the image decoding apparatus 100 divides at least one of a width and a height of a 2NxN first encoding unit 1320 to determine a second encoding unit (e.g., 1302, 1312, 1322, etc.) It is possible. That is, the image decoding apparatus 100 can determine the second encoding unit 1302 of NxN size or the second encoding unit 1312 of N / 2xN size by dividing the first encoding unit 1320 in the vertical direction, The second encoding unit 1322 of the NxN / 2 size may be determined by dividing the image data in the horizontal direction and the vertical direction.
  • a second encoding unit e.g. 1302, 1312, 1322, etc.
  • the image decoding apparatus 100 divides at least one of the width and the height of the second encoding unit 1302 of NxN size to determine a third encoding unit (for example, 1304, 1314, 1324, etc.) It is possible. That is, the image decoding apparatus 100 determines the third encoding unit 1304 of N / 2xN / 2 size by dividing the second encoding unit 1302 in the vertical direction and the horizontal direction, or determines the third encoding unit 1304 of N / 4xN / 3 encoding unit 1314 or a third encoding unit 1324 of N / 2xN / 4 size.
  • a third encoding unit for example, 1304, 1314, 1324, etc.
  • the image decoding apparatus 100 may divide at least one of the width and the height of the second encoding unit 1312 of N / 2xN size into a third encoding unit (e.g., 1304, 1314, 1324, etc.) . That is, the image decoding apparatus 100 divides the second encoding unit 1312 in the horizontal direction to generate a third encoding unit 1304 of N / 2xN / 2 or a third encoding unit 1324 of N / 2xN / 4 size ) Or may be divided in the vertical and horizontal directions to determine the third encoding unit 1314 of N / 4xN / 2 size.
  • a third encoding unit e.g. 1304, 1314, 1324, etc.
  • the image decoding apparatus 100 divides at least one of the width and the height of the second encoding unit 1322 of NxN / 2 size to generate a third encoding unit 1304, 1314, 1324, . That is, the image decoding apparatus 100 divides the second encoding unit 1322 in the vertical direction to generate a third encoding unit 1304 of N / 2xN / 2 or a third encoding unit 1314 of N / 4xN / 2 size ) Or may be divided in the vertical and horizontal directions to determine the third encoding unit 1324 of N / 2xN / 4 size.
  • the image decoding apparatus 100 may divide a square-shaped encoding unit (for example, 1300, 1302, and 1304) into a horizontal direction or a vertical direction.
  • a square-shaped encoding unit for example, 1300, 1302, and 1304
  • the first encoding unit 1300 having a size of 2Nx2N is divided in the vertical direction to determine a first encoding unit 1310 having a size of Nx2N or the first encoding unit 1310 having a size of 2NxN to determine a first encoding unit 1320 having a size of 2NxN .
  • the depth of the encoding unit when the depth is determined based on the length of the longest side of the encoding unit, the depth of the encoding unit, which is determined by dividing the first encoding unit 1300 of 2Nx2N size in the horizontal direction or the vertical direction, May be the same as the depth of the unit (1300).
  • the width and height of the third encoding unit 1314 or 1324 may correspond to one fourth of the first encoding unit 1310 or 1320.
  • the depth of the first coding unit 1310 or 1320 is D
  • the depth of the second coding unit 1312 or 1322 which is half the width and height of the first coding unit 1310 or 1320 is D +
  • the depth of the third encoding unit 1314 or 1324, which is one fourth of the width and height of the first encoding unit 1310 or 1320 may be D + 2.
  • FIG. 14 illustrates a depth index (hereinafter referred to as PID) for coding unit classification and depth that can be determined according to the type and size of coding units according to an exemplary embodiment.
  • PID depth index
  • the image decoding apparatus 100 may divide the first encoding unit 1400 in a square form to determine various types of second encoding units. 14, the image decoding apparatus 100 divides a first encoding unit 1400 into at least one of a vertical direction and a horizontal direction according to information on a division mode mode, and outputs the second encoding units 1402a and 1402b , 1404a, 1404b, 1406a, 1406b, 1406c, 1406d. That is, the image decoding apparatus 100 determines the second encoding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d based on the information on the split mode mode for the first encoding unit 1400 .
  • the second encoding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d which are determined according to the information on the split mode mode for the first encoding unit 1400 in the square form.
  • the depth can be determined based on the length of the sides. For example, since the length of one side of the first encoding unit 1400 in the square form is the same as the length of long sides of the second encoding units 1402a, 1402b, 1404a, and 1404b in the non-square form, 1400) and the non-square type second encoding units 1402a, 1402b, 1404a, 1404b are denoted by D in the same manner.
  • the length of one side of the second encoding units 1406a, 1406b, 1406c and 1406d in the form of the second encoding units 1406a, 1406b, 1406c and 1406d is 1/2 of the length of one side of the first encoding unit 1400, May be a depth of D + 1 that is one depth lower than D, which is the depth of the first encoding unit 1400.
  • the image decoding apparatus 100 divides a first encoding unit 1410 having a height greater than a width in a horizontal direction according to information on a split mode, and generates a plurality of second encoding units 1412a and 1412b , 1414a, 1414b, and 1414c.
  • the image decoding apparatus 100 divides a first encoding unit 1420 of a shape whose width is longer than a height in a vertical direction according to information on a division mode, and generates a plurality of second encoding units 1422a and 1422b , 1424a, 1424b, 1424c.
  • 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1414c, 1414b, 1414c, 1414b, 1414c, 1414b, 1414c, 1414b, 1414c, 1424a, 1424b, 1424c can be determined in depth based on the length of the long side. For example, since the length of one side of the square-shaped second encoding units 1412a and 1412b is 1/2 times the length of one side of the non-square first encoding unit 1410 whose height is longer than the width, The depth of the second encoding units 1412a and 1412b of the form is D + 1 which is one depth lower than the depth D of the first encoding unit 1410 of the non-square form.
  • the image decoding apparatus 100 may divide the non-square first coding unit 1410 into odd second coding units 1414a, 1414b and 1414c based on the information on the division mode mode.
  • the odd number of second encoding units 1414a, 1414b and 1414c may include non-square second encoding units 1414a and 1414c and a square second encoding unit 1414b.
  • the length of the long sides of the non-square type second encoding units 1414a and 1414c and the length of one side of the second encoding unit 1414b in the square form are set to 1/10 of the length of one side of the first encoding unit 1410
  • the depth of the second encoding units 1414a, 1414b, and 1414c may be a depth of D + 1 which is one depth lower than D, which is the depth of the first encoding unit 1410.
  • the image decoding apparatus 100 is connected to the first encoding unit 1420 in the form of a non-square shape whose width is longer than the height in a manner corresponding to the scheme for determining the depths of the encoding units associated with the first encoding unit 1410 The depth of the encoding units can be determined.
  • the image decoding apparatus 100 determines an index (PID) for distinguishing the divided coding units. If the odd-numbered coding units are not the same size, The index can be determined based on the index. 14, an encoding unit 1414b positioned at the center among the odd-numbered encoding units 1414a, 1414b, and 1414c has the same width as other encoding units 1414a and 1414c, Lt; / RTI > 1414a and 1414c. That is, in this case, the encoding unit 1414b positioned in the middle may include two of the other encoding units 1414a and 1414c.
  • PID index
  • the coding unit 1414c positioned next to the coding unit 1414c may be three days in which the index is increased by two. That is, there may be a discontinuity in the value of the index.
  • the image decoding apparatus 100 may determine whether odd-numbered encoding units are not the same size based on the presence or absence of an index discontinuity for distinguishing between the divided encoding units.
  • the image decoding apparatus 100 may determine whether the image is divided into a specific division form based on an index value for distinguishing a plurality of coding units divided from the current coding unit. 14, the image decoding apparatus 100 divides a first coding unit 1410 of a rectangular shape whose height is longer than the width to determine an even number of coding units 1412a and 1412b or an odd number of coding units 1414a and 1414b , And 1414c.
  • the image decoding apparatus 100 may use an index (PID) indicating each coding unit in order to distinguish each of the plurality of coding units.
  • the PID may be obtained at a sample of a predetermined position of each coding unit (e.g., the upper left sample).
  • the image decoding apparatus 100 may determine a coding unit of a predetermined position among the coding units determined by using the index for classifying the coding unit. According to an embodiment, when the information on the division type mode for the rectangular first type encoding unit 1410 whose height is longer than the width is divided into three encoding units, the image decoding apparatus 100 may encode the first encoding unit 1410 can be divided into three coding units 1414a, 1414b, 1414c. The image decoding apparatus 100 can assign an index to each of the three encoding units 1414a, 1414b, and 1414c. The image decoding apparatus 100 may compare the indexes of the respective encoding units in order to determine the middle encoding unit among the encoding units divided into odd numbers.
  • the image decoding apparatus 100 encodes an encoding unit 1414b having an index corresponding to a middle value among the indices based on the indices of the encoding units by encoding the middle position among the encoding units determined by dividing the first encoding unit 1410 Can be determined as a unit.
  • the image decoding apparatus 100 may determine an index based on a size ratio between coding units when the coding units are not the same size in determining the index for dividing the divided coding units .
  • the coding unit 1414b generated by dividing the first coding unit 1410 is divided into coding units 1414a and 1414c having the same width as the other coding units 1414a and 1414c but different in height Can be double the height.
  • the image decoding apparatus 100 may determine that the image decoding apparatus 100 is divided into a plurality of encoding units including encoding units having different sizes from other encoding units. , The image decoding apparatus 100 determines that the encoding unit (for example, the middle encoding unit) at a predetermined position among the odd number of encoding units is different from the encoding unit for the odd number of encoding units and the size Can divide the current encoding unit into other forms.
  • the encoding unit for example, the middle encoding unit
  • the image decoding apparatus 100 may determine an encoding unit having a different size by using an index (PID) for the encoding unit.
  • PID index
  • the index and the size or position of the encoding unit at a predetermined position to be determined are specific for explaining an embodiment, and thus should not be construed to be limited thereto, and various indexes, positions and sizes of encoding units can be used Should be interpreted.
  • the image decoding apparatus 100 may use a predetermined data unit in which a recursive division of an encoding unit starts.
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • a predetermined data unit may be defined as a unit of data in which an encoding unit starts to be recursively segmented using at least one of block type information and information on a division mode mode. That is, it may correspond to a coding unit of the highest depth used in the process of determining a plurality of coding units for dividing the current picture.
  • a predetermined data unit is referred to as a reference data unit for convenience of explanation.
  • the reference data unit may represent a predetermined size and shape.
  • the reference encoding unit may comprise samples of MxN.
  • M and N may be equal to each other, or may be an integer represented by a multiplier of 2. That is, the reference data unit may represent a square or a non-square shape, and may be divided into an integer number of encoding units.
  • the image decoding apparatus 100 may divide the current picture into a plurality of reference data units. According to an exemplary embodiment, the image decoding apparatus 100 may divide a plurality of reference data units for dividing a current picture into pieces using information on a division type mode for each reference data unit. The segmentation process of the reference data unit may correspond to the segmentation process using a quad-tree structure.
  • the image decoding apparatus 100 may determine in advance a minimum size that the reference data unit included in the current picture can have. Accordingly, the image decoding apparatus 100 can determine reference data units of various sizes having a size of a minimum size or more, and use at least one of the block type information and the division mode mode information based on the determined reference data unit The encoding unit can be determined.
  • the image decoding apparatus 100 may use a square-shaped reference encoding unit 1500 or a non-square-shaped reference encoding unit 1502.
  • the type and size of the reference encoding unit may include various data units (e.g., a sequence, a picture, a slice, a slice segment a slice segment, a maximum encoding unit, and the like).
  • the bitstream obtaining unit 110 of the video decoding apparatus 100 obtains at least one of the information on the type of the reference encoding unit and the size of the reference encoding unit from the bitstream for each of the various data units can do.
  • the process of determining at least one encoding unit included in the reference type encoding unit 1500 is described in detail in the process of dividing the current encoding unit 300 of FIG. 3, and the non- Is determined in the process of dividing the current encoding unit 400 or 450 of FIG. 4, so that a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may include an index for identifying the size and type of the reference encoding unit Can be used. That is, the bitstream obtaining unit 110 obtains a predetermined condition (for example, a size of a slice or less) of the various data units (for example, a sequence, a picture, a slice, a slice segment, Data unit), it is possible to obtain only an index for identification of the size and type of the reference encoding unit for each slice, slice segment, maximum encoding unit, and the like.
  • a predetermined condition for example, a size of a slice or less
  • the various data units for example, a sequence, a picture, a slice, a slice segment, Data unit
  • the image decoding apparatus 100 can determine the size and shape of the reference data unit for each data unit satisfying the predetermined condition by using the index.
  • the information on the type of the reference encoding unit and the information on the size of the reference encoding unit are obtained from the bitstream for each relatively small data unit and used, the use efficiency of the bitstream may not be good. Therefore, Information on the size of the reference encoding unit and information on the size of the reference encoding unit can be acquired and used. In this case, at least one of the size and the type of the reference encoding unit corresponding to the index indicating the size and type of the reference encoding unit may be predetermined.
  • the image decoding apparatus 100 selects at least one of the size and the type of the reference encoding unit in accordance with the index, thereby obtaining at least one of the size and the type of the reference encoding unit included in the data unit, You can decide.
  • the image decoding apparatus 100 may use at least one reference encoding unit included in one maximum encoding unit. That is, the maximum encoding unit for dividing an image may include at least one reference encoding unit, and the encoding unit may be determined through a recursive division process of each reference encoding unit. According to an exemplary embodiment, at least one of the width and the height of the maximum encoding unit may correspond to at least one integer multiple of the width and height of the reference encoding unit. According to an exemplary embodiment, the size of the reference encoding unit may be a size obtained by dividing the maximum encoding unit n times according to a quadtree structure.
  • the image decoding apparatus 100 can determine the reference encoding unit by dividing the maximum encoding unit n times according to the quad tree structure, and determine the reference encoding unit as the block type information and the information about the split mode Based on at least one of them.
  • FIG. 16 shows a processing block serving as a reference for determining a determination order of a reference encoding unit included in a picture 1600 according to an embodiment.
  • the image decoding apparatus 100 may determine at least one processing block for dividing a picture.
  • the processing block is a data unit including at least one reference encoding unit for dividing an image, and at least one reference encoding unit included in the processing block may be determined in a specific order. That is, the order of determination of at least one reference encoding unit determined in each processing block may correspond to one of various kinds of order in which the reference encoding unit can be determined, and the reference encoding unit determination order determined in each processing block May be different for each processing block.
  • the order of determination of the reference encoding unit determined for each processing block is a raster scan, a Z scan, an N scan, an up-right diagonal scan, a horizontal scan a horizontal scan, and a vertical scan. However, the order that can be determined should not be limited to the scan orders.
  • the image decoding apparatus 100 may obtain information on the size of the processing block and determine the size of the at least one processing block included in the image.
  • the image decoding apparatus 100 may obtain information on the size of the processing block from the bitstream to determine the size of the at least one processing block included in the image.
  • the size of such a processing block may be a predetermined size of a data unit represented by information on the size of the processing block.
  • the bitstream obtaining unit 110 of the video decoding apparatus 100 may obtain information on the size of the processing block from the bitstream for each specific data unit.
  • information on the size of a processing block can be obtained from a bitstream in units of data such as an image, a sequence, a picture, a slice, a slice segment, and the like. That is, the bitstream obtaining unit 110 may obtain information on the size of the processing block from the bitstream for each of the plurality of data units, and the image decoding apparatus 100 may use the obtained information on the size of the processing block
  • the size of the at least one processing block to be divided may be determined, and the size of the processing block may be an integer multiple of the reference encoding unit.
  • the image decoding apparatus 100 may determine the sizes of the processing blocks 1602 and 1612 included in the picture 1600.
  • the video decoding apparatus 100 can determine the size of the processing block based on information on the size of the processing block obtained from the bitstream.
  • the image decoding apparatus 100 according to an exemplary embodiment of the present invention may be configured such that the horizontal size of the processing blocks 1602 and 1612 is four times the horizontal size of the reference encoding unit, four times the vertical size of the reference encoding unit, You can decide.
  • the image decoding apparatus 100 may determine an order in which at least one reference encoding unit is determined in at least one processing block.
  • the video decoding apparatus 100 may determine each processing block 1602, 1612 included in the picture 1600 based on the size of the processing block, and may include in the processing blocks 1602, 1612 The determination order of at least one reference encoding unit is determined.
  • the determination of the reference encoding unit may include determining the size of the reference encoding unit according to an embodiment.
  • the image decoding apparatus 100 may obtain information on a determination order of at least one reference encoding unit included in at least one processing block from a bitstream, So that the order in which at least one reference encoding unit is determined can be determined.
  • the information on the decision order can be defined in the order or direction in which the reference encoding units are determined in the processing block. That is, the order in which the reference encoding units are determined may be independently determined for each processing block.
  • the image decoding apparatus 100 may obtain information on a determination order of a reference encoding unit from a bitstream for each specific data unit.
  • the bitstream obtaining unit 110 may obtain information on a determination order of a reference encoding unit from a bitstream for each data unit such as an image, a sequence, a picture, a slice, a slice segment, and a processing block. Since the information on the determination order of the reference encoding unit indicates the reference encoding unit determination order in the processing block, the information on the determination order can be obtained for each specific data unit including an integer number of processing blocks.
  • the image decoding apparatus 100 may determine at least one reference encoding unit based on the determined order according to an embodiment.
  • the bitstream obtaining unit 110 may obtain information on a reference encoding unit determination order from the bitstream as information related to the processing blocks 1602 and 1612, and the image decoding apparatus 100 may obtain It is possible to determine the order of determining at least one reference encoding unit included in the processing blocks 1602 and 1612 and determine at least one reference encoding unit included in the picture 1600 according to the determination order of the encoding units.
  • the image decoding apparatus 100 may determine a determination order 1604 and 1614 of at least one reference encoding unit associated with each of the processing blocks 1602 and 1612.
  • the reference encoding unit determination order associated with each processing block 1602, 1612 may be different for each processing block. If the reference encoding unit determination order 1604 related to the processing block 1602 is a raster scan order, the reference encoding unit included in the processing block 1602 can be determined according to the raster scan order. On the other hand, when the reference encoding unit determination order 1614 related to the other processing block 1612 is a reverse order of the raster scan order, the reference encoding unit included in the processing block 1612 can be determined according to the reverse order of the raster scan order.
  • the image decoding apparatus 100 may decode the determined at least one reference encoding unit according to an embodiment.
  • the image decoding apparatus 100 can decode an image based on the reference encoding unit determined through the above-described embodiment.
  • the method of decoding the reference encoding unit may include various methods of decoding the image.
  • the image decoding apparatus 100 may obtain block type information indicating a type of a current encoding unit or information on a split mode mode indicating a method of dividing a current encoding unit from a bitstream.
  • Information about the block type information or the split mode mode may be included in a bitstream related to various data units.
  • the video decoding apparatus 100 may include a sequence parameter set, a picture parameter set, a video parameter set, a slice header, a slice segment header slice block type information included in the segment header or information on the split mode mode can be used.
  • the image decoding apparatus 100 may obtain a syntax element corresponding to information on the maximum encoding unit, the reference encoding unit, the block format information from the bit stream, or the split format mode for each processing block from the bit stream and use the syntax element.
  • FIG. 17 shows coding units that can be determined for each picture when combinations of types in which coding units can be divided according to an embodiment are different from picture to picture.
  • the image decoding apparatus 100 may determine a combination of division types in which a coding unit can be divided for each picture differently.
  • the video decoding apparatus 100 may include a picture 1700 that can be divided into four coding units out of at least one pictures included in the video, a picture 1710 that can be divided into two or four coding units ) And a picture 1720 that can be divided into two, three, or four encoding units.
  • the image decoding apparatus 100 may use only division type information indicating that the picture 1700 is divided into four square encoding units in order to divide the picture 1700 into a plurality of encoding units.
  • the image decoding apparatus 100 may use only division type information indicating division into two or four coding units in order to divide the picture 1710.
  • the image decoding apparatus 100 may use only division type information indicating division into two, three or four coding units in order to divide the picture 1720. [ Since the combination of divisional types described above is merely an example for explaining the operation of the video decoding apparatus 100, the combination of the divisional types described above should not be construed to be limited to the above embodiments, It should be understood that combinations of shapes can be used.
  • the bitstream obtaining unit 110 of the video decoding apparatus 100 may convert a bitstream including an index indicating a combination of division type information into a predetermined data unit (e.g., a sequence, a picture, a slice, ).
  • a predetermined data unit e.g., a sequence, a picture, a slice,
  • the bitstream obtaining unit 110 may obtain an index indicating a combination of segment type information in a sequence parameter set, a picture parameter set, or a slice header .
  • the video decoding apparatus 100 of the video decoding apparatus 100 can determine a combination of division types in which a coding unit can be divided for each predetermined data unit by using the acquired index, A combination of division types can be used.
  • FIG. 18 illustrates various types of coding units that can be determined based on the division type information that can be represented by a binary code according to an embodiment.
  • the image decoding apparatus 100 may divide a coding unit into various types using block type information and division type information acquired through the bitstream obtaining unit 110.
  • the type of the encoding unit that can be divided may correspond to various types including the types described in the above embodiments.
  • the image decoding apparatus 100 may divide a square-shaped encoding unit into at least one of a horizontal direction and a vertical direction based on the division type information, and may divide the non- Direction or vertical direction.
  • division type information for a square encoding unit is represented there are four possible partition types.
  • the partition type information may be represented by a two-digit binary code, and a binary code may be allocated to each partition type.
  • the division type information can be expressed by (00) b, and when the coding unit is divided into the horizontal direction and the vertical direction, the division type information can be represented by (01) b, When the coding unit is divided in the horizontal direction, the division type information can be expressed by (10) b, and when the coding unit is divided in the vertical direction, the division type information can be expressed by (11) b.
  • the image decoding apparatus 100 may classify the types of division types that can be represented by the division type information into several encoding units Can be determined.
  • the image decoding apparatus 100 may divide up to three non-square encoding units according to an embodiment.
  • the image decoding apparatus 100 may divide an encoding unit into two encoding units.
  • the division type information may be expressed by (10) b.
  • the image decoding apparatus 100 may divide an encoding unit into three encoding units. In this case, the division type information may be expressed by (11) b.
  • the video decoding apparatus 100 can determine that the encoding unit is not divided, and in this case, the division type information can be expressed by (0) b. That is, the video decoding apparatus 100 may use VLC (Varyable Length Coding) instead of Fixed Length Coding (FLC) in order to use a binary code indicating division type information.
  • VLC Vector Length Coding
  • FLC Fixed Length Coding
  • a binary code of division type information indicating that an encoding unit is not divided can be expressed by (0) b. If the binary code of the division type information indicating that the encoding unit is not divided is set to (00) b, even though the division type information set in (01) b is absent, all of the binary codes of the 2-bit division type information Should be used.
  • the image decoding apparatus 100 uses 1-bit binary code (0) b as the division type information It is possible to determine that the encoding unit is not divided, so that the bit stream can be efficiently used.
  • the division form of the non-square type coding unit represented by the division type information should not be construed to be limited to only the three types shown in FIG. 18, but should be interpreted in various forms including the above-described embodiments.
  • Figure 19 shows another form of an encoding unit that can be determined based on partition type information that can be represented in binary code according to one embodiment.
  • the image decoding apparatus 100 can divide a square-shaped encoding unit into horizontal or vertical directions based on the division type information, divide a non-square encoding unit horizontally or vertically can do. That is, the division type information can indicate that a square-shaped encoding unit is divided in one direction.
  • the binary code of the division type information indicating that the square type encoding unit is not divided can be expressed by (0) b. If the binary code of the division type information indicating that the encoding unit is not divided is set to (00) b, even though the division type information set in (01) b is absent, all of the binary codes of the 2-bit division type information Should be used. However, as shown in FIG.
  • the image decoding apparatus 100 can use the 1-bit binary code (0) b as the division type information, It can be determined that the unit is not divided, so that the bit stream can be used efficiently.
  • the division type of the square type encoding unit represented by the division type information should not be construed to be limited only to the three types shown in FIG. 19, and should be interpreted in various forms including the above-described embodiments.
  • the block type information or the division type information can be expressed using a binary code, and this information can be immediately generated as a bit stream.
  • the block type information or the division type information that can be represented by the binary code may not be directly generated as a bitstream but may be used as a binary code to be input in context adaptive binary arithmetic coding (CABAC).
  • CABAC context adaptive binary arithmetic coding
  • the image decoding apparatus 100 may obtain a bitstream including a binary code for the syntax.
  • the image decoding apparatus 100 can detect a syntax element indicating block type information or division type information by inverse binarizing the bin string included in the acquired bit stream.
  • the image decoding apparatus 100 may obtain a set of binary bin strings corresponding to a syntax element to be decoded, decode each bin using probability information, and the image decoding apparatus 100 may decode You can iterate until the empty string consisting of the empty beans is equal to one of the previously obtained empty strings.
  • the image decoding apparatus 100 can determine the syntax element by performing inverse binarization of the bin string.
  • the image decoding apparatus 100 can determine the syntax for the division type information using the obtained binary code having a size of 1 bit or 2 bits.
  • the video decoding apparatus 100 may update the probability for each bit of the 2-bit binary code to determine the syntax for the division type information. That is, the image decoding apparatus 100 can update the probability of having a value of 0 or 1 when decoding the next bin, depending on whether the value of the first bin of the 2-bit binary code is 0 or 1.
  • the image decoding apparatus 100 may update the probability of bins used in decoding the bins of the empty string for the syntax in the process of determining the syntax, and the image decoding apparatus 100 may update It can be determined that the certain bit of the empty string has the same probability without updating the probability.
  • the image decoding apparatus 100 does not divide a non-square type encoding unit
  • the syntax for the division type information can be determined using one bin having a value of 0. That is, when the block type information indicates that the current encoding unit is a non-square type, the first bin of the bin string for the division type information is 0 when the non-square type encoding unit is not divided, and 2 or 3 And may be 1 when it is divided into coding units. Accordingly, the probability that the first bin of the bin string of the partition type information for the non-square encoding unit is 0 may be 1/3, and the probability of 1 day may be 2/3.
  • the image decoding apparatus 100 can represent only a 1-bit empty string having a value of 0 as the division type information indicating that the non-square type encoding unit is not divided. Therefore, The syntax for the division type information can be determined by determining whether the second bin is 0 or 1 only when the first bin of the type information is 1. According to an exemplary embodiment, the image decoding apparatus 100 may decode a bin if the first bin of the partition type information is 1, and the probability of the second bin being 0 or 1 is equal to each other.
  • the image decoding apparatus 100 may use various probabilities for each bin in the process of determining a bin of an empty string for the partition type information. According to an exemplary embodiment, the image decoding apparatus 100 may determine the probability of the bin for the partition type information according to the direction of the non-square block. According to an embodiment, the image decoding apparatus 100 may determine the probability of the bin for the division type information differently according to the width of the current encoding unit or the length of the long side. According to an exemplary embodiment, the image decoding apparatus 100 may determine the probability of the bin for the division type information according to at least one of the type of the current encoding unit and the length of the long side.
  • the image decoding apparatus 100 can determine the probability of the bin for the division type information to be the same for the encoding units of a predetermined size or larger. For example, it can be determined that the probability of a bin for division type information is the same for encoding units of 64 samples or more based on the length of the long side of the encoding unit.
  • the image decoding apparatus 100 may determine an initial probability for bins constituting an empty string of the division type information based on a slice type (for example, I slice, P slice or B slice ...) .
  • a slice type for example, I slice, P slice or B slice .
  • 20 is a block diagram of an image encoding and decoding system performing loop filtering.
  • the encoding unit 2010 of the image encoding and decoding system 2000 transmits the encoded bit stream of the image and the decoding unit 2050 receives and decodes the bit stream to output the reconstructed image.
  • the encoding stage 2010 may be similar to the image encoding device 200 described later, and the decoding stage 2050 may be similar to the image decoding device 100.
  • the predictive encoding unit 2015 outputs a reference image through inter-prediction and intra-prediction, and the transform and quantization unit 2020 transforms the residual data between the reference image and the current input image into a quantized transform coefficient And outputs the quantized signal.
  • the entropy encoding unit 2025 encodes the quantized transform coefficients, converts the quantized transform coefficients, and outputs them as a bit stream.
  • the quantized transform coefficients are reconstructed into spatial domain data through an inverse quantization and inverse transform unit 2030 and the reconstructed spatial domain data is output as a reconstructed image through a deblocking filtering unit 2035 and a loop filtering unit 2040 do.
  • the reconstructed image can be used as a reference image of the next input image through the predictive encoding unit 2015.
  • the coded image data of the bitstream received by the decoding unit 2050 is restored into residual data of the spatial domain through an entropy decoding unit 2055 and an inverse quantization and inverse transform unit 2060.
  • the deblocking filtering unit 2065 and the loop filtering unit 2070 perform filtering on the image data in the spatial domain by combining the reference image and the residual data output from the predictive decoding unit 2075, And output a restored image of the current original image.
  • the reconstructed image may be used as a reference image for the next original image by the predictive decoding unit 2075.
  • the loop filtering unit 2040 of the encoding unit 2010 performs loop filtering using the input filter information according to a user input or a system setting.
  • the filter information used by the loop filtering unit 2040 is output to the entropy encoding unit 2010 and is transmitted to the decoding unit 2050 together with the encoded image data.
  • the loop filtering unit 2070 of the decoding unit 2050 may perform loop filtering based on the filter information input from the decoding unit 2050.
  • FIG. 21 is a diagram illustrating an example of filtering units included in the maximum encoding unit according to an exemplary embodiment, and filtering performing information of the filtering unit.
  • the filtering units of the loop filtering unit 2040 of the encoding stage 2010 and the loop filtering unit 2070 of the decoding stage 2050 are similar to the encoding units according to the embodiment described above with reference to FIGS.
  • the filter information may include block type information and division type information of a data unit for indicating a filtering unit and loop filtering performance information indicating whether to perform loop filtering on the filtering unit.
  • the filtering units included in the maximum coding unit 2100 may have the same block type and division type as the coding units included in the maximum coding unit 2100.
  • the filtering units included in the maximum encoding unit 2100 according to an exemplary embodiment may be divided based on the sizes of the encoding units included in the maximum encoding unit 2100.
  • the filtering units include a square-shaped filtering unit 2140 having a depth D, non-square filtering units 2132 and 2134 having a depth D, a square filtering unit 2134 having a depth D + Square filtering units 2162 and 2166 of depth D + 1 and square filtering units 2122, 2124, 2126 and 2128 of depth D + 2 ).
  • the block type information, the division type information (depth), and the loop filtering performance information of the filtering units included in the maximum encoding unit 2100 can be encoded as shown in Table 1 below.
  • the process of recursively dividing an encoding unit according to block type information and block division information according to an embodiment to determine a plurality of encoding units is as described above with reference to FIG.
  • the loop filtering performance information of the filtering units according to an exemplary embodiment indicates that loop filtering is performed for the corresponding filtering unit when the flag value is 1, and indicates that loop filtering is not performed when the flag value is 0. [ Referring to Table 1, information of a data unit for determining a filtering unit to be filtered by the loop filtering units 2040 and 2070 can be all encoded as filter information and transmitted.
  • the filtering unit may be determined based on the encoding unit according to the embodiment, so that the operation of determining the filtering unit separately from the determination of the encoding unit may be omitted.
  • the information for determining the division type of the filtering unit can be omitted by determining the filtering unit based on the encoding unit according to the embodiment, the transmission bit rate of the filter information can be saved.
  • the filtering unit is determined based on the encoding unit according to the embodiment. However, the filtering unit is divided based on the encoding unit, May be determined.
  • the determination of the filtering unit disclosed in the above embodiments can be applied not only to loop filtering but also to various embodiments such as deblocking filtering, adaptive loop filtering, and the like.
  • the image decoding apparatus 100 may divide the current encoding unit using at least one of the block type information and the division type information, and the block type information is determined in advance to use only the square type, Can be determined in advance to indicate that it is not divided or can be divided into four square-shaped encoding units. That is, according to the block type information of the current coding unit, the coding unit always has a square shape, and can be divided into four or four square-shaped coding units based on the division type information.
  • the video decoding apparatus 100 can use the block form and the division form only to acquire a bitstream generated using a predetermined encoding method through the bitstream obtaining unit 110, Only a predetermined block type and division type can be used.
  • the image decoding apparatus 100 can solve the compatibility problem with a predetermined encoding method by using a predetermined decoding method similar to the predetermined encoding method.
  • the image decoding apparatus 100 uses the predetermined decoding method using only a predetermined block type and division type among various types of block type information and division type information that can be represented, The image decoding apparatus 100 can omit the process of obtaining block type information from the bitstream.
  • a syntax indicating whether or not to use the predetermined decoding method described above can be used.
  • the syntax may be a bitstream for each of various types of data units that can include a plurality of coding units such as a sequence, a picture, a slice unit, Lt; / RTI > That is, the bitstream obtaining unit 110 can determine whether to obtain a syntax indicating block type information from a bitstream based on a syntax indicating whether or not a predetermined decoding method is used.
  • FIG. 23 shows an index according to a Z scan sequence of an encoding unit according to an embodiment.
  • the image decoding apparatus 100 may scan the lower data units included in the upper data unit according to the Z scan order.
  • the image decoding apparatus 100 can sequentially access data according to a Z-scan index within a coding unit included in a maximum coding unit or a processing block.
  • the image decoding apparatus 100 can divide a reference encoding unit into at least one encoding unit as described above with reference to FIG. 3 to FIG. At this time, square-shaped encoding units and non-square-shaped encoding units may be mixed in the reference encoding unit.
  • the image decoding apparatus 100 may perform data access according to a Z scan index included in each encoding unit in the reference encoding unit. In this case, the method of applying the Z scan index may be different depending on whether or not a non-square type encoding unit exists in the reference encoding unit.
  • encoding units of lower depth in the reference encoding unit may have a continuous Z scan index.
  • an encoding unit of a higher depth may include four encoding units of a lower depth.
  • the coding units of four sub-depths may be contiguous with each other, and the coding units of each sub-depth may be scanned in the Z scan order according to the index indicating the Z scanning order.
  • the index indicating the Z scan order may be set to a number that increases in accordance with the Z scan order for each encoding unit. In this case, it is possible to scan the depth-based encoding units of the same depth according to the Z scan order.
  • the image decoding apparatus 100 divides encoding units in the reference encoding unit into subblocks,
  • the blocks can be scanned according to the Z scan order. For example, if there is a non-square encoding unit in the vertical or horizontal direction within the reference encoding unit, the Z scan can be performed using the divided sub-blocks.
  • Z scans can be performed using sub-blocks.
  • the subblock may be a square in which an encoding unit or an arbitrary encoding unit that is not further divided is divided. For example, four square-shaped sub-blocks may be divided from a square-shaped encoding unit. Also, for example, two square-shaped subblocks can be divided from a non-square-shaped encoding unit.
  • an apparatus 100 for decoding an image decodes encoded units 2302, 2304, 2306, 2308, and 2310 of lower depth in an encoding unit 2300 in a Z scan order
  • the encoding unit 2300 and the encoding units 2302, 2304, 2306, 2308, and 2310 are relatively higher encoding units and lower encoding units, respectively.
  • the encoding unit 2300 includes horizontal non-square encoding units 2306 and 2310. These non-square-shaped encoding units 2306 and 2310 are discontinuous with the adjacent square-shaped encoding units 2302 and 2304.
  • the coding unit 2308 is a square unit, and the coding unit of the non-square type is an odd-numbered coding unit located at the middle of the division. Like the non-square-shaped encoding units 2306 and 2310, the encoding unit 2308 is discontinuous with the adjacent square-shaped encoding units 2302 and 2304.
  • the image decoding apparatus 100 can continuously set the Z scan index by dividing the encoding units into sub-blocks.
  • the image decoding apparatus 100 may perform a continuous Z scan on a coding unit 2308 positioned in the middle of a non-square type coding unit 2306 or 2310 or a non-square type coding unit divided into an odd number Can be performed.
  • the coding unit 2320 shown in FIG. 23 is obtained by dividing the coding units 2302, 2304, 2306, 2308, and 2310 in the coding unit 2300 into sub-blocks. Since a Z scan index can be set for each of the subblocks, and adjacent borders between the subblocks are continuous, the subblocks can be scanned according to the Z scan order among the subblocks.
  • the coding unit 2308 can be divided into subblocks 2322, 2324, 2326, and 2328. [ At this time, subblocks 2322 and 2324 may be scanned after data processing for subblock 2330 and subblocks 2326 and 2328 may be scanned after data processing for subblock 2332 . In addition, each sub-block may be scanned according to the Z scan order.
  • scanning in accordance with the Z scan order for data units may be for data storage, data loading, data access, and the like.
  • data units can be scanned according to the Z scan order.
  • the scan order of the data units may be various scan orders such as a raster scan, an N scan, a rightward diagonal scan, a horizontal scan, , And is not limited to the Z scan sequence.
  • scanning is performed on the encoding units in the reference encoding unit.
  • the present invention is not limited to this, and the object of the scan may be any block in the maximum encoding unit or the processing block. have.
  • the scan is performed according to the Z scan order by dividing the block into subblocks only when there is at least one non-square block.
  • the sub-blocks may be divided to perform the scan according to the Z scan order.
  • the video decoding apparatus 100 generates prediction data by performing inter prediction or intra prediction on a coding unit and performs inverse conversion on a conversion unit included in the current coding unit to generate residual data And the current encoding unit can be restored by using the generated prediction data and residual data.
  • the prediction mode of an encoding unit may be at least one of an intra mode, an inter mode, and a skip mode. According to one embodiment, the prediction mode can be selected independently for each coding unit.
  • the inter mode prediction and the intra mode prediction may be separately performed for each of the 2xN type encoding units have.
  • a skip mode may be applied to 2NxN or Nx2N type encoding units according to an embodiment.
  • the image decoding apparatus 100 may allow bi-prediction in the skip mode of 8x4 or 4x8 type encoding units.
  • the image decoding apparatus 100 may allow bidirectional prediction on a coding unit to which a skip mode is applied, thereby improving the decoding efficiency.
  • the video decoding apparatus 100 permits bidirectional prediction for an 8x4 or 4x8 type coding unit, and sets a relatively small number of interpolation tap in the motion compensation step, Can be used.
  • an interpolation filter of less than 8 taps e.g., a 2-tap interpolation filter
  • the image decoding apparatus 100 divides an area included in the current encoding unit into a predetermined format (for example, slant-based partitioning), and transmits intra or inter prediction information for each divided area to signaling You may.
  • a predetermined format for example, slant-based partitioning
  • the image decoding apparatus 100 can acquire prediction samples of the current encoding unit using the neighboring samples of the current encoding unit using the intra mode. At this time, intra prediction performs prediction using surrounding already reconstructed samples, and these samples are referred to as reference samples.
  • FIG. 24 is a diagram illustrating reference samples for intraprediction of an encoding unit according to an embodiment.
  • the upper reference sample 2302 is w + h
  • a total of 2 (w + h) +1 reference samples are required, one for the reference sample 2304 on the left side and w + h for the left reference sample 2306 and one for the reference sample 2306 on the upper left side.
  • padding may be performed on the portion where the reference sample does not exist, and a reference sample-by-prediction filtering process may be performed to reduce the quantization error included in the reconstructed reference sample.
  • the number of reference samples in the case where the block type of the current encoding unit is a non-rectangular shape has been described in the above embodiments, the number of reference samples is also applied to the case where the current encoding unit is a rectangular block type.
  • FIG. 2 illustrates a block diagram of an image encoding apparatus 200 capable of encoding an image based on at least one of block type information and division type information according to an embodiment.
  • the image encoding apparatus 200 may include a coding unit 220 and a bitstream generation unit 210.
  • the encoding unit 220 may encode the input image by receiving the input image.
  • the encoding unit 220 may encode the input image to obtain at least one syntax element.
  • the syntax element includes a skip flag, a prediction mode, a motion vector difference, a motion vector prediction method or a transform quantized coefficient, a coded block pattern, a coded block flag, an intra prediction mode, a prediction direction, and a transform index.
  • the encoding unit 220 can determine the context model based on the block type information including at least one of the ratio, or the size, of the shape, direction, width, and height of the encoding unit.
  • the bitstream generator 210 may generate a bitstream based on the encoded input image. For example, the bitstream generator 210 may generate a bitstream by entropy encoding a syntax element based on the context model. In addition, the image encoding apparatus 200 may transmit the bit stream to the video decoding apparatus 100.
  • the encoding unit 220 of the image encoding apparatus 200 can determine the type of an encoding unit.
  • the coding unit may have a square or a non-square shape, and information indicating this type may be included in the block type information.
  • the encoding unit 220 can determine what type of encoding unit is to be divided.
  • the encoding unit 220 can determine the type of at least one encoding unit included in the encoding unit and the bitstream generating unit 210 generates a bitstream including the format information including information on the type of the encoding unit Can be generated.
  • the encoding unit 220 may determine whether the encoding unit is divided or not. When the encoding unit 220 determines that only one encoding unit is included in the encoding unit or that the encoding unit is not divided, the bitstream generating unit 210 includes the type information indicating that the encoding unit is not divided A bitstream can be generated.
  • the encoding unit 220 may be divided into a plurality of encoding units included in the encoding unit, and the bitstream generating unit 210 may generate a bitstream including the division type information indicating that the encoding unit is divided into a plurality of encoding units, Can be generated.
  • information indicating whether to divide an encoding unit into several encoding units or which direction to be divided may be included in the division type information.
  • the division type information may indicate that division is performed in at least one of a vertical direction and a horizontal direction, or may indicate that division is not performed.
  • the image coding apparatus 200 determines information on the divisional mode based on the divisional mode of the encoding unit.
  • the image coding apparatus 200 determines a context model based on at least one of a ratio or a size of a shape, a direction, a width, and a height of a coding unit. Then, the image encoding apparatus 200 generates information on the split mode for dividing the encoding unit based on the context model into a bit stream.
  • the image encoding apparatus 200 may obtain an arrangement for mapping at least one of the ratio, or the size, of the shape, direction, width, and height of the encoding unit to the index for the context model, in order to determine the context model.
  • the image encoding apparatus 200 may obtain an index for the context model based on at least one of the ratio, or the size, of the shape, direction, width, and height of the encoding unit in the arrangement.
  • the image encoding apparatus 200 can determine the context model based on the index for the context model.
  • the image encoding apparatus 200 may further include a context model based on the block type information including at least one of the ratio, or the size, of the shape, direction, width, and height of the neighboring encoding units adjacent to the encoding unit You can decide.
  • the surrounding encoding unit may include at least one of a left side, a left side, an upper left side, an upper side, an upper right side, a right side, or a lower right side encoding unit of an encoding unit.
  • the image coding apparatus 200 can compare the length of the width of the upper peripheral encoding unit and the length of the width of the encoding unit. In addition, the image encoding apparatus 200 can compare the lengths of the heights of the left and right peripheral encoding units and the lengths of the encoding units. Also, the image encoding apparatus 200 can determine the context model based on the comparison results.
  • the operation of the image encoding apparatus 200 includes contents similar to the operations of the video decoding apparatus 100 described with reference to FIG. 3 to FIG. 24, and a detailed description thereof will be omitted.
  • FIG. 25 An apparatus and method for decoding a motion vector and an apparatus and method for encoding a motion vector according to an embodiment will be described below with reference to FIGS. 25 to 36.
  • FIG. 25 An apparatus and method for decoding a motion vector and an apparatus and method for encoding a motion vector according to an embodiment will be described below with reference to FIGS. 25 to 36.
  • 25 is a block diagram showing a configuration of a motion vector decoding apparatus 2500 according to an embodiment.
  • a motion vector decoding apparatus 2500 may include a bitstream obtaining unit 2510, a basic motion vector determining unit 2530, and a predictive decoding unit 2550.
  • the motion vector decoding apparatus 2500 may be included in the image decoding apparatus 100 described above.
  • the bitstream obtaining unit 2510 may be included in the bitstream obtaining unit 110 of the video decoding apparatus 100 shown in FIG. 1, and the basic motion vector determining unit 2530 and the prediction decoding unit 2550 May be included in the decoding unit 120 of the image decoding apparatus 100.
  • Inter prediction in image coding and decoding refers to a prediction method that utilizes similarity between a current image and another image.
  • a reference block similar to the current block of the current image is detected from the reference image decoded prior to the current image, and a distance on the coordinate between the current block and the reference block is expressed by a motion vector.
  • the difference of the pixel values between the current block and the reference block can be expressed by residual data. Therefore, instead of directly outputting the video information of the current block by inter prediction of the current block, it is possible to improve the efficiency of encoding and decoding by outputting an index, a motion vector, and residual data indicating a reference image.
  • the motion vector decoding apparatus 2500 can determine a motion vector for reconstruction of a current block encoded through inter prediction.
  • the type of block may be square or rectangular, and may be any geometric shape.
  • the block according to an exemplary embodiment is not limited to a unit of a predetermined size, and may include a maximum encoding unit, an encoding unit, a prediction unit, and a conversion unit among the encoding units according to the tree structure.
  • the bitstream obtaining unit 2510 obtains a bitstream including information for image decoding.
  • the bitstream may include information on at least one of a residual motion vector, a predictive motion vector, whether a basic MV is determined, a prediction direction (whether unidirectional prediction or bidirectional prediction), a reference video index, and a motion vector resolution, .
  • the basic motion vector determination unit 2530 may determine a default motion vector (hereinafter referred to as a basic MV) of the current block.
  • the basic MV can be used to determine the predicted motion vector of the current block.
  • a PMV candidate having no availability of a motion vector among at least one PMV candidate block If there is a block, the predictive motion vector of the current block can be determined using the basic MV.
  • the basic MV may be a spare motion vector (MV) for the motion vector of the PMV candidate block used for determining the predicted motion vector of the current block.
  • MV spare motion vector
  • the basic motion vector determination unit 2530 may determine one or a plurality of basic MVs based on motion vectors of a plurality of basic MV candidate blocks related to the current block.
  • the positions and the numbers of the plurality of basic MV candidate blocks may be predetermined in the basic motion vector determination unit 2530.
  • the plurality of basic MV candidate blocks may include previously decoded spatial blocks and / or previously decoded temporal blocks associated with the current block.
  • the spatial block may include at least one block spatially adjacent to the current block.
  • the temporal block may include at least one block located at the same point as the current block in the reference image having the POC different from the POC (Picture Order Count) of the current block and a block spatially adjacent to the block at the same position.
  • FIG. 29 illustrates spatial blocks and temporal blocks associated with current block 2900.
  • a spatial block spatially related to the current block 2900 includes a left upper block a, a right upper block b, an upper left block c, an upper right block d, A left lower block j, a lower left block k, and a lower left block k.
  • the temporal blocks temporally related to the current block 2900 include the adjacent block r of the co-located block q and the co-located block q belonging to the reference frame having a different POC from the current block 2900 .
  • the spatial blocks and temporal blocks associated with the current block shown in Fig. 29 are one example, and a plurality of basic MV candidate blocks may include at least some of the blocks shown in Fig.
  • the basic motion vector determination unit 2530 can determine the basic MV of the current block using at least some of the motion vectors of the plurality of basic MV candidate blocks.
  • FIG. 30 is a diagram showing basic MV candidate blocks for determining a basic MV.
  • the basic MV candidate blocks include a left block C0, a left upper block C1, an upper left block C2, an upper right block C3, and a left upper end block C4 of the current block 2900, And a lower left outer block C5.
  • the number and position of the basic MV candidate blocks shown are exemplary only, and can be variously changed within a range that is obvious to a person skilled in the art.
  • the basic motion vector determination unit 2530 sets priorities for the basic MV candidate blocks, and determines the presence or absence of a motion vector for each basic MV candidate block according to the priority.
  • the basic motion vector determination unit 2530 can determine the motion vector of the basic MV candidate block as the basic MV in the order in which the existence of the motion vector is confirmed.
  • the priority may be determined in advance by the basic motion vector determination unit 2530 or may be determined by the basic motion vector determination unit 2530 in an arbitrary manner.
  • the basic motion vector determination unit 2530 determines the motion vector of each basic MV candidate block according to the priority order and determines the motion vector of the basic MV candidate block in which the existence of the motion vector is first confirmed as the basic MV have.
  • the basic motion vector determination unit 2530 determines the presence or absence of a motion vector for each basic MV candidate block according to a priority order, and determines a motion vector of a plurality of basic MV candidate blocks as a plurality As the base MV of the video.
  • the basic motion vector determination unit 2530 can determine a motion vector of a C1 block having the highest priority as a basic MV while having a motion vector.
  • the basic motion vector determination unit 2530 determines a motion vector of the C1 block having the highest priority and a motion vector of the C2 block having the second priority, Can be determined by two basic MVs.
  • the basic motion vector determination unit 2530 may compare the reference video index of the current block with the reference video index of the plurality of basic MV candidate blocks to change the priority order set for the plurality of basic MV candidate blocks. For example, the basic motion vector determination unit 2530 may change the priority of the basic MV candidate block having the same reference video index as the reference video index of the current block to a higher priority. When there are a plurality of basic MV candidate blocks having the same reference picture index as the reference picture index of the current block, the order among the plurality of basic MV candidate blocks may be set to a preset priority order.
  • the C5 block when priority is set in the order from the C0 block to the C5 block and only the reference video index of the C5 block is the same as the reference video index of the current block, the C5 block can be changed to the first rank. Accordingly, the priorities are changed according to the order of the C5 block, the C0 block, the C1 block, the C2 block, the C3 block, and the C4 block. If the priority order is set in the order from the C0 block to the C5 block and the reference video index of the C4 block and the reference video index of the C5 block are the same as the reference video index of the current block, Thereby raising the priority of the block.
  • the priorities can be changed in order of C4 block, C5 block, C0 block, C1 block, C2 block, and C3 block so that the priority of the C4 block is higher than the priority of the C5 block according to the original priority.
  • the basic motion vector determination unit 2530 determines whether or not the reference video index of each basic MV candidate block is the same as the reference video index of the current block according to the priority order, It is also possible to determine each of the motion vectors of at least one basic MV candidate block as at least one basic MV. If there is no basic MV candidate block having the same reference picture index as the reference picture index of the current block, the basic motion vector determination unit 2530 determines motion vectors in each basic MV candidate block according to the priority, The motion vector of at least one basic MV candidate block may be determined to be at least one basic MV in the order in which the existence of the vector is determined.
  • the basic motion vector determination unit 2530 determines each of the motion vectors of one or more basic MV candidate blocks having the same reference picture index as the reference picture index of the current block, regardless of whether priority is set or not, It can be decided by MV.
  • the basic motion vector determination unit 2530 selects a predetermined number of basic MV candidate blocks based on the size of the motion vector of the basic MV candidate blocks, and outputs the motion vector of each selected basic MV candidate block May be determined as the basic MV.
  • the basic motion vector determination unit 2530 selects a predetermined number of basic MV candidate blocks in descending order of the motion vector size among the basic MV candidate blocks, and outputs the motion vectors of the selected basic MV candidate blocks as basic MV can be determined.
  • a predetermined number of basic MV candidate blocks may be selected in descending order of the size of the motion vector among the basic MV candidate blocks, and the motion vector of each selected basic MV candidate block may be determined as the basic MV.
  • the basic motion vector determination unit 2530 may determine a value obtained by combining motion vectors of a plurality of basic MV candidate blocks, for example, a mean value or a median value of motion vectors as a basic MV .
  • a mean value or a median value of motion vectors may be determined as a basic MV.
  • an average value or an intermediate value of these motion vectors may be determined as a basic MV. If a motion vector exists only in the C0 block, the C1 block, and the C2 block, the mean value or the median value of the motion vectors of the C0 block, the motion vector of the C1 block, and the motion vector of the C2 block may be determined as the basic MV.
  • the basic motion vector determination unit 2530 may determine a basic MV corresponding to the specific direction from a basic MV candidate block located in a specific direction with reference to the current block. For example, when it is desired to determine the basic MV corresponding to the left direction, the basic motion vector determination unit 2530 determines the basic MV based on the motion vector of the basic MV candidate block located in the left direction with respect to the current block . For example, when determining a basic MV corresponding to an upper direction, the basic motion vector determination unit 2530 determines a basic MV based on a motion vector of a basic MV candidate block located in an upper direction with respect to a current block, .
  • the basic MV candidate block corresponding to the left direction may be a C0 block, a C1 block, a C4 block, and a C5 block
  • the basic motion vector determination unit 2530 may include a C0 block, a C1 block, a C4 block
  • the motion vector of at least one of the C5 blocks may be used to determine the basic MV corresponding to the left direction.
  • the basic motion vector determination unit 2530 determines the motion vectors of the C0 block, the C1 block, the C4 block, and the C5 block according to the priority order, Direction may be determined as the basic MV corresponding to the direction.
  • the basic MV candidate block corresponding to the upward direction may be a C2 block, a C3 block, and a C4 block
  • the basic motion vector determination unit 2530 may use at least one of the C2 block, the C3 block, and the C4 block So that the basic MV corresponding to the upper direction can be determined.
  • the basic motion vector determination unit 2530 determines a motion vector for the C2 block, the C3 block, and the C4 block according to the priority order, It is also possible to decide with the basic MV that
  • a basic MV corresponding to a specific direction may be allocated to a PMV block that is not available, as will be described later.
  • the type of the basic MV to be allocated may vary depending on the direction in which the PMV candidate block is located have.
  • the basic motion vector determination unit 2530 determines whether or not a motion vector of a previously decoded picture, a previously decoded slice, or a most recently decoded maximum coding unit among the at least one basic MV candidate block,
  • the motion vector of the basic MV candidate block at the selected position may be determined as the basic MV of the current block. For example, the left block C0, the left upper block C1, the upper left block C2, the upper right block C3, the upper left outer block C4, and the lower left outer block C5 shown in FIG.
  • the basic motion vector determination unit 2530 can determine the basic MV using the motion vector of the C0 block.
  • the basic motion vector determination unit 2530 selects a plurality of basic MV candidate blocks in order of predominantly decoded pictures, slices, or predictive motion vectors in a maximum coding unit, A plurality of basic MVs may be determined using motion vectors of respective basic MV candidate blocks.
  • the basic motion vector determination unit 2530 may determine the basic MV in advance before determining the predicted motion vector for the current block encoded through the inter prediction.
  • the basic MV may be determined when the basic MV is required, in accordance with the availability judgment for the PMV candidate block described later.
  • the basic motion vector determining unit 2530 may determine a basic MV for the current block .
  • the basic motion vector determination unit 2530 determines The motion vector of the basic MV candidate block may be directly determined as the basic MV, the motion vector of any one of the basic MV candidate blocks may be changed, and the changed motion vector may be determined as the basic MV.
  • the basic motion vector determination unit 2530 determines The motion vector of the basic MV candidate block may be scaled considering the reference video index of the current block and the scaled motion vector may be determined as the basic MV.
  • the basic motion vector determination unit 2530 may determine a motion vector derived through a DMVD (decoder side MV derivation) as a basic MV of a current block.
  • DMVD may include, for example, a template matching method, a bilateral matching method.
  • the predictive decoding unit 2550 can determine the predictive motion vector of the current block using the motion vector of at least one PMV candidate block.
  • the predicted motion vector of the current block may include previously decoded spatial blocks associated with the current block and / or previously decoded temporal blocks.
  • At least one PMV candidate block may be selected from blocks temporally related to blocks spatially related to the current block shown in FIG.
  • the position and the number of at least one PMV candidate block used to determine the predicted motion vector of the current block may be the same as the position and the number of the plurality of basic MV candidate blocks used for determining the basic MV previously.
  • at least one PMV candidate block and at least one basic MV candidate block may be different from each other in at least one of position and number.
  • the number and position of the PMV candidate blocks may be determined in advance by the predictive decoding unit 2550 or may be determined by the predictive decoding unit 2550 on a picture basis, a slice basis, or a block basis according to a predetermined criterion. In one embodiment, the number and position of PMV candidate blocks may be determined according to information included in the bitstream, for example, motion vector resolution of the current block, which will be described later.
  • the predictive decoding unit 2550 determines the availability of a motion vector of at least one PMV candidate block. If there is a PMV candidate block determined to be unavailable, the predictive decoding unit 2550 calculates a predictive motion vector of the current block using the basic MV You can decide.
  • the availability of the motion vector of the PMV candidate block may be determined based on whether or not a motion vector exists in the PMV candidate block and whether it has the same motion vector as the motion vector of another PMV candidate block determined to be available Or < / RTI >
  • a certain block is intra-predicted, it can be determined that no motion vector exists in the corresponding block.
  • one motion vector and another motion vector are the same in judging the availability, it may mean that both the motion vector and the reference image index are the same.
  • any one of the PMV candidate blocks is not available. Also, for example, if the motion vector of one PMV candidate block is the same as the motion vector of another PMV candidate block determined to be available, any one of the PMV candidate blocks is not available . Judging the availability according to the identity of the motion vector can be seen as applying a kind of pruning.
  • the prediction decoding unit 2550 may construct a prediction candidate list including a predetermined number of prediction candidates from the motion vectors of each of the at least one PMV candidate block, according to the determination of availability.
  • the predictive decoding unit 2550 may determine a predictive motion vector of a current block using one or more predictive candidates included in the predictive candidate list.
  • the predictive decoding unit 2550 may determine a predictive motion vector of a current block using one or more predictive candidates identified from the information included in the bitstream, among the predictive candidates included in the predictive candidate list.
  • the predictive decoding unit 2550 can directly determine one predictive candidate as a predictive motion vector of the current block, change one predictive candidate, and determine the changed predictive candidate as a predictive motion vector of the current block. Also, the prediction decoding unit 2550 can determine a value obtained by combining a plurality of prediction candidates, for example, an average value or an intermediate value of a plurality of prediction candidates as a prediction motion vector of the current block.
  • the predictive decoding unit 2550 can construct a predictive candidate list by determining the availability of a motion vector of each PMV candidate block.
  • the predictive decoding unit 2550 can determine the availability of each PMV candidate block according to the priority order. 31, when priority is set in the order of A0 block, A1 block, B0 block, B1 block, B2 block, C3 block, and H block, a motion vector The motion vector of the A0 block can be included in the prediction candidate list as a prediction candidate. Next, if there is no motion vector in the A1 block having the second highest priority or if the motion vector of the A1 block is equal to the motion vector of the A0 already included in the prediction candidate list, the A1 block has the availability And it is possible to determine the availability of the block B0 of the next priority.
  • the prediction decoding unit 2550 can determine the availability of each block from the A0 block to the H block according to the priority order until a prediction candidate list including a predetermined number of prediction candidates is constructed.
  • the predictive decoding unit 2550 constructs a predictive candidate list by determining availability from the A0 block to the H block, and if the number of predictive candidates included in the predictive candidate list is less than a predetermined number, the predictive decoding unit 2550 inserts the basic MV into the predictive candidate list .
  • the prediction decoding unit 2550 decodes the two basic The MV can be included in the prediction candidate list. Also, when two prediction candidates are included in the prediction candidate list constructed according to the determination of availability, the prediction decoding unit 2550 can include one basic MV in the prediction candidate list.
  • the predetermined number of prediction candidates to be included in the prediction candidate list may be set in advance.
  • the basic motion vector determination unit 2530 may determine the number of basic MVs corresponding to a predetermined number of prediction candidates to be included in the prediction candidate list.
  • the predictive decoding unit 2550 determines availability of each PMV candidate block, assigns a basic MV to a PMV candidate block determined not to be available, and then assigns a priority to each PMV candidate block
  • a prediction candidate list may be constructed. For example, it is possible to determine availability from A0 block to H block in FIG. 31. If it is determined that there is no availability of A1 block, a basic MV can be allocated to A1 block. The motion vector of each block can be included in the prediction candidate list according to the priority order from A0 block to H block.
  • the predictive decoding unit 2550 can determine a predictive motion vector of the current block using at least one predictive candidate of the predictive candidate list including the basic MV or the predictive candidate list not including the basic MV.
  • the predictive decoding unit 2550 may determine a predictive motion vector of the current block based on a motion vector of at least one PMV candidate block at a predetermined position.
  • the predictive decoding unit 2550 can determine the availability of at least one PMV candidate block at a predetermined position and allocate a basic MV to the PMV candidate block determined to be unavailable.
  • assigning a basic MV to a PMV candidate block may mean that a basic MV is used as a motion vector of a PMV candidate block.
  • the basic MV can be assigned as the motion vector of the D2 block.
  • the basic motion vector determination unit 2530 can determine the number of basic MVs equal to the number of PMV candidate blocks at a predetermined position.
  • the predictive decoding unit 2550 may determine a predictive motion vector of a current block using a motion vector of one PMV candidate block at a predetermined position. In this case, when it is determined that there is no possibility of using one PMV candidate block, the predictive decoding unit 2550 can allocate the basic MV to one PMV candidate block. The predictive decoding unit 2550 may determine the basic MV allocated to the one PMV candidate block as the predictive motion vector of the current block as it is or change the basic MV and determine the changed basic MV as the predictive motion vector of the current block have.
  • the predictive decoding unit 2550 may assign a basic MV to a PMV candidate block that is not available among PMV candidate blocks at a predetermined position. If the number of PMV candidate blocks that are not available is plural , It is also possible to allocate a plurality of basic MVs to each of a plurality of PMV candidate blocks that are not available.
  • the predictive decoding unit 2550 decodes the basic MV Can be assigned to the D1 block.
  • the predictive decoding unit 2550 decodes a plurality May be assigned to the D1 block and the D2 block, respectively.
  • the position of the PMV candidate block may be considered.
  • the basic motion vector determination unit 2530 can determine a basic MV corresponding to the specific direction from a basic MV candidate block located in a specific direction with reference to the current block.
  • the predictive decoding unit 2550 decodes It is possible to allocate a corresponding basic MV in consideration of the direction in which the PMV candidate block that is not available based on the block is located.
  • the predictive decoding unit 2550 allocates the basic MV determined in the left direction to the D1 block, If there is no motion vector in the D2 block located in the upper direction with respect to the current block, the predictive decoding unit 2550 can allocate the determined basic MV to the D2 block in the upper direction. If there is no motion vector in the D3 block, a basic MV determined in the upper direction may be allocated, or a value determined by a combination of at least some basic MVs of the plurality of basic MVs may be allocated to the D3 block.
  • the number and type of the at least one PMV candidate block may be determined according to the motion vector resolution (MVR) of the current block.
  • the predictive decoding unit 2550 may directly determine the MVR of the current block according to a predetermined condition or may determine the MVR by referring to the information included in the bitstream obtained by the bitstream obtaining unit 2510.
  • the bitstream obtaining unit 2510 may obtain information on the MVR for each inter-predicted encoding unit.
  • 36 is a diagram showing a syntax for obtaining information on MVR from a bitstream.
  • cu_skip_flag indicates whether skip mode is applied to the current encoding unit.
  • the current encoding unit is processed according to the skip mode. If the skip mode is not found in the d statement, the pred_mode_flag is extracted from the e statement. pred_mode_flag indicates whether the current coding unit is intra-predicted or inter-predicted.
  • pred_mvr_idx is extracted from the g-syntax.
  • pred_mvr_idx is the index indicating the MVR of the current coding unit, and the MVR corresponding to each index is as shown in Table 2 below.
  • the MVR of the current block may indicate the precision of the position of the pixel that the motion vector of the current block among the pixels included in the reference image (or the interpolated reference image) can point to.
  • the MVR of the current block may be selected from at least one candidate MVR.
  • the at least one candidate MVR may be, for example, MVR in units of 1/8 pixel, MVR in quarter pixel, MVR in 1/2 pixel, MVR in 1 pixel, MVR in 2 pixels, MVR, and MVR of 8-pixel units.
  • the present invention is not limited thereto.
  • the number and type of PMV candidate blocks used to determine the predicted motion vector of the current block may be determined in advance according to the type of MVR of the current block. For example, when the MVR of the current block is a quarter-pixel-unit MVR, the PMV candidate block may include a left block and an upper block. If the MVR of the current block is MVR of one pixel unit, And a lower block. In addition, when the MVR of the current block is a 2-pixel unit MVR, the PMV candidate block may include a right block. Thus, if the MVR of the current block is determined, the type and number of PMV candidate blocks used to determine the predicted motion vector can be determined automatically. In one embodiment, for each MVR, the number of PMV candidate blocks for determining a predicted motion vector is one, and the location may be different for each MVR.
  • the predictive decoding unit 2550 determines the availability of the motion vector of each PMV candidate block, as described above. Then, a basic MV is assigned as a motion vector of the PMV candidate block judged to be unavailable, and the predicted motion vector of the current block can be determined.
  • the predictive decoding unit 2550 may adjust the basic MV by comparing the minimum MVR among the candidate MVRs that can be selected for the current block with the MVR of the current block.
  • the basic MV is determined from the motion vector of the basic MV candidate block. Since the motion vector of the basic MV candidate block is predicted to point to the pixel coordinates in the interpolated image according to the minimum MVR, the basic MV .
  • the adjustment process of the basic MV is necessary. However, if the number of PMV candidate blocks used for the determination of a predictive motion vector is one, the availability of one PMV candidate block is available, and the number of PMV candidate blocks used for determining a predictive motion vector is plural . If there is a possibility that some of the PMV candidate blocks are available, the motion vector of the PMV candidate block that is usable is used to determine the predicted motion vector. Therefore, the PMV candidate block The motion vector of the motion vector needs the same adjustment process as that of the basic MV.
  • FIG. 33 The process of adjusting the basic MV will be described in detail with reference to FIGS. 33 to 35.
  • FIG. 33 The process of adjusting the basic MV will be described in detail with reference to FIGS. 33 to 35.
  • the predictive decoding unit 2550 can obtain a motion vector of the current block from the predictive motion vector when the predictive motion vector of the current block is determined.
  • the predictive decoding unit 2550 determines a predictive motion vector as a motion vector of the current block if the current block has a skip mode or a merge mode and if the prediction mode of the current block is an advanced motion vector prediction mode, the motion vector of the current block can be obtained by adding the residual motion vector and the predicted motion vector.
  • the predictive decoding unit 2550 compares the MVR of the current block with the minimum MVR to upscale the residual motion vector obtained from the bitstream, adds the upscaled residual motion vector and the predictive motion vector, .
  • the upscale of the residual motion vector will be described later.
  • 26 is a flowchart for explaining a motion vector decoding method according to an embodiment.
  • step S2610 the motion vector decoding apparatus 2500 determines a predicted motion vector of the current block.
  • the motion vector decoding apparatus 2500 can determine a predicted motion vector of a current block using at least one PMV candidate block associated with the current block.
  • the motion vector decoding apparatus 2500 determines the availability of a motion vector of at least one PMV candidate block.
  • the motion vector decoding apparatus 2500 can determine a predicted motion vector of a current block using a basic MV determined from a plurality of basic MV candidate blocks if there is a PMV candidate block judged to be unavailable.
  • the motion vector decoding apparatus 2500 may determine the predicted motion vector of the current block using the basic MV adjusted according to the MVR of the current block.
  • step S2620 the motion vector decoding apparatus 2500 obtains the motion vector of the current block based on the predicted motion vector of the current block.
  • the motion vector decoding apparatus 2500 may obtain the predicted motion vector of the current block as a motion vector of the current block or may obtain a result of adding the residual motion vector to the predicted motion vector as a motion vector of the current block. In one embodiment, when the MVR of the current block is determined, the motion vector decoding apparatus 2500 may selectively up-scramble the residual motion vector, and then obtain the motion vector of the current block by adding the motion vector to the predicted motion vector.
  • FIG. 27 is a block diagram showing a configuration of a motion vector coding apparatus 2700 according to an embodiment.
  • a motion vector coding apparatus 2700 may include a basic motion vector determination unit 2710, a predictive coding unit 2730, and a bitstream generation unit 2750.
  • the motion vector coding apparatus 2700 may be included in the image coding apparatus 200 described above.
  • the basic motion vector determination unit 2710 and the predictive encoding unit 2730 of the motion vector encoding apparatus 2700 may be included in the encoding unit 220 of the image encoding apparatus 200
  • the bitstream generation unit 2750 of the image encoding apparatus 200 may be included in the bitstream generation unit 210 of the image encoding apparatus 200.
  • the basic motion vector determination unit 2710 can determine the basic MV of the current block.
  • the basic MV can be used to determine the predicted motion vector of the current block.
  • the predictive motion vector of the current block can be determined using the basic MV.
  • the basic motion vector determination unit 2710 can determine one or a plurality of basic MVs based on motion vectors of a plurality of basic MV candidate blocks related to the current block.
  • the positions and the numbers of the plurality of basic MV candidate blocks may be predetermined in the basic motion vector determination unit 2710.
  • the plurality of basic MV candidate blocks may include previously coded spatial blocks and / or previously coded temporal blocks associated with the current block.
  • the spatial block may include at least one block spatially adjacent to the current block.
  • the temporal block may include at least one block located at the same point as the current block in the reference image having the POC different from the POC (Picture Order Count) of the current block and a block spatially adjacent to the block at the same position.
  • the basic motion vector determination unit 2710 may set priorities for the basic MV candidate blocks, and determine the presence or absence of a motion vector for each basic MV candidate block according to the priorities.
  • the basic motion vector determination unit 2710 may determine at least one basic MV based on the motion vectors of at least one basic MV candidate block in the order in which the existence of the motion vector is confirmed.
  • the basic motion vector determination unit 2710 determines the motion vector of each basic MV candidate block according to the priority order and determines the motion vector of the basic MV candidate block in which the existence of the motion vector is first confirmed as the basic MV have.
  • the basic motion vector determination unit 2710 determines the presence or absence of a motion vector for each basic MV candidate block according to the priority order, and determines a motion vector of a plurality of basic MV candidate blocks as a plurality As the base MV of the video.
  • the basic motion vector determination unit 2710 may compare the reference video index of the current block with the reference video index of the plurality of basic MV candidate blocks to change the priority set for the plurality of basic MV candidate blocks. For example, the basic motion vector determination unit 2710 may change the priority of the basic MV candidate block having the same reference video index as the reference video index of the current block to a higher priority. When there are a plurality of basic MV candidate blocks having the same reference picture index as the reference picture index of the current block, the order among the plurality of basic MV candidate blocks may be set to a preset priority order.
  • the basic motion vector determination unit 2710 determines whether the reference video index of each basic MV candidate block is the same as the reference video index of the current block according to the priorities, It is also possible to determine each of the motion vectors of at least one basic MV candidate block as at least one basic MV. If there is no basic MV candidate block having the same reference picture index as the reference picture index of the current block, the basic motion vector determination unit 2710 determines whether or not a motion vector exists in each basic MV candidate block, The motion vector of at least one basic MV candidate block may be determined to be at least one basic MV in the order in which the existence of the vector is determined. In one embodiment, the basic motion vector determination unit 2710 determines a motion vector of one or more basic MV candidate blocks having the same reference video index as the reference video index of the current block as a basic MV irrespective of whether priority is set or not It is possible.
  • the basic motion vector determination unit 2710 selects a predetermined number of basic MV candidate blocks based on the size of the motion vector of the basic MV candidate blocks, and determines a motion of a predetermined number of basic MV candidate blocks
  • the vector may be determined as the basic MV.
  • the basic motion vector determination unit 2710 selects a predetermined number of basic MV candidate blocks in descending order of the motion vector size among the basic MV candidate blocks, and calculates a motion vector of a predetermined number of basic MV candidate blocks It can be decided by the basic MV.
  • a predetermined number of basic MV candidate blocks may be selected in descending order of the size of the motion vector among the basic MV candidate blocks, and the motion vectors of the selected predetermined number of basic MV candidate blocks may be determined as the basic MV
  • the basic motion vector determination unit 2710 may determine a value obtained by combining motion vectors of a plurality of basic MV candidate blocks, for example, an average value or a median value of motion vectors, as a basic MV .
  • the basic motion vector determination unit 2710 may determine a basic MV corresponding to the specific direction from a basic MV candidate block located in a specific direction with respect to the current block. For example, when it is desired to determine the basic MV corresponding to the left direction, the basic motion vector determination unit 2710 determines the basic MV based on the motion vector of the basic MV candidate block located in the left direction with respect to the current block . For example, when it is desired to determine a basic MV corresponding to the upward direction, the basic motion vector determination unit 2710 determines a basic MV based on the motion vector of the basic MV candidate block located in the upper direction with respect to the current block, .
  • the basic motion vector determination unit 2710 determines whether the motion vector of the previous encoded picture, the previously encoded slice, or the most recently coded maximum coding unit among the at least one basic MV candidate block, The motion vector of the basic MV candidate block at the selected position may be determined as the basic MV.
  • the basic motion vector determination unit 2710 selects a plurality of basic MV candidate blocks in order of a previously coded picture, a slice, or a predominantly selected prediction motion vector in a maximum coding unit, A plurality of basic MVs may be determined using motion vectors of respective basic MV candidate blocks.
  • the basic motion vector determination unit 2710 may determine the basic MV in advance before determining the predicted motion vector for the current block.
  • the basic MV may be determined when the basic MV is required, in accordance with the availability judgment for the PMV candidate block described later.
  • a basic MV when a basic MV is determined using a motion vector of a basic MV candidate block selected according to a predetermined reference among a plurality of basic MV candidate blocks,
  • the motion vector of the basic MV candidate block may be directly determined as the basic MV, the motion vector of any one of the basic MV candidate blocks may be changed, and the changed motion vector may be determined as the basic MV.
  • the basic motion vector determiner 2710 determines The motion vector of the basic MV candidate block may be scaled considering the reference video index of the current block and the scaled motion vector may be determined as the basic MV.
  • the basic motion vector determination unit 2710 may determine a motion vector derived through a decoder side MV derivation (DMVD) as a basic MV of a current block.
  • DMVD may include, for example, a template matching method, a bilateral matching method.
  • the basic motion vector determining unit 2710 of the motion vector encoding apparatus 2700 can also determine a motion vector through DMVD.
  • the predictive encoding unit 2730 can determine the motion vector of the current block.
  • the predictive encoding unit 2730 interpolates a reference image for inter prediction of a current block, detects a block closest to the current block in a reference image, The distance can be determined as a motion vector of the current block.
  • the predictive encoding unit 2730 can determine the MVR of the current block and determine the motion vector according to the determined MVR.
  • the predictive encoding unit 2730 may determine any one candidate MVR among the at least one candidate MVR that can be selected for the current block to be the MVR of the current block.
  • the predictive encoding unit 2730 may interpolate the reference image according to the minimum MVR among at least one candidate MVR that can be selected for the current block and determine a motion vector using the MVR of the current block.
  • the predictive encoding unit 2730 can interpolate the reference image in units of a quarter pixel, which is the minimum MVR, and determine a motion vector in units of pixels in the interpolated reference image.
  • the predictive encoding unit 2730 can determine a predictive motion vector of the current block for encoding the motion vector of the current block.
  • the predicted motion vector of the current block may be determined from at least one PMV candidate block comprising a spatial block and / or a temporal block associated with the current block.
  • the number and position of the PMV candidate blocks may be determined in advance by the predictive encoding unit 2730 or may be determined by the predictive encoding unit 2730 on a picture basis, a slice basis, or a block basis. In one embodiment, the number and location of PMV candidate blocks may be determined according to the MVR of the current block.
  • the predictive encoding unit 2730 determines the availability of a motion vector of at least one PMV candidate block, and when there is a PMV candidate block judged to be unavailable, the predictive encoding unit 2730 calculates a predictive motion vector of the current block You can decide.
  • the availability of the motion vector of the PMV candidate block may be determined based on whether or not a motion vector exists in the PMV candidate block and whether it has the same motion vector as the motion vector of another PMV candidate block determined to be available Or < / RTI >
  • the predictive encoding unit 2730 may construct a predictive candidate list including a predetermined number of predictive candidates from the motion vectors of each of the at least one PMV candidate block, according to the determination of availability. Also, the predictive coding unit 2730 can determine a predictive motion vector of the current block using one or more predictive candidates included in the predictive candidate list.
  • the predictive coding unit 2730 may determine one predictive candidate as a predictive motion vector of the current block, change one predictive candidate, and determine the changed predictive candidate as a predictive motion vector of the current block.
  • the prediction decoding unit 2730 may determine a value obtained by combining a plurality of prediction candidates, for example, an average value or an intermediate value of a plurality of prediction candidates as a prediction motion vector of the current block.
  • the predictive encoding unit 2730 can construct a predictive candidate list by determining the availability of a motion vector of each PMV candidate block.
  • the predictive encoding unit 2730 may determine the availability of each PMV candidate block according to the priority order. 31, when priority is set in the order of A0 block, A1 block, B0 block, B1 block, B2 block, C3 block, and H block, a motion vector The motion vector of the A0 block can be included in the prediction candidate list as a prediction candidate.
  • the predictive encoding unit 2730 can determine the availability of each block from the A0 block to the H block according to the priority order until a prediction candidate list including a predetermined number of prediction candidates is constructed.
  • the predictive encoding unit 2730 constructs a predictive candidate list by determining availability from the A0 block to the H block, and if the number of predictive candidates included in the predictive candidate list is less than the predetermined number, the predictive encoding unit 2730 includes the basic MV in the predictive candidate list .
  • the predictive encoding unit 2730 determines the availability of each PMV candidate block, assigns a basic MV to a PMV candidate block determined to be unavailable, and then assigns a priority to each PMV candidate block A prediction candidate list may be constructed.
  • the predetermined number of prediction candidates to be included in the prediction candidate list may be set in advance.
  • the basic motion vector determination unit 2710 can determine the number of basic MVs corresponding to a predetermined number of prediction candidates to be included in the prediction candidate list.
  • the predictive encoding unit 2730 can determine a predictive motion vector of the current block using at least one predictive candidate of the predictive candidate list including the basic MV or the predictive candidate list not including the basic MV.
  • the predictive encoding unit 2730 may determine a predictive motion vector of a current block based on a motion vector of at least one PMV candidate block at a predetermined position.
  • the predictive encoding unit 2730 may determine the availability of at least one PMV candidate block at a predetermined position and may assign a basic MV as a motion vector of the PMV candidate block determined to be unavailable. 32, when a predicted motion vector of the current block is determined as a combination value of a motion vector of the D1 block, a motion vector of the D2 block, and a motion vector of the D3 block, if there is no motion vector in the D2 block, The basic MV can be assigned as the motion vector of the D2 block.
  • the predictive encoding unit 2730 may determine a predictive motion vector of a current block using a motion vector of one PMV candidate block at a predetermined position. In this case, if the predictive encoding unit 2730 determines that there is no possibility of using one PMV candidate block, the predictive encoding unit 2730 can allocate the basic MV to one PMV candidate block. The predictive encoding unit 2730 may determine the basic MV allocated to the one PMV candidate block as the predictive motion vector of the current block as it is or change the basic MV and determine the changed basic MV as the predictive motion vector of the current block have.
  • the predictive encoding unit 2730 may assign a basic MV to a PMV candidate block that is not available among PMV candidate blocks at a predetermined position. If the number of PMV candidate blocks that are not available is plural , It is also possible to allocate a plurality of basic MVs to each of a plurality of PMV candidate blocks that are not available. In one embodiment, the basic motion vector determination unit 2530 can determine the number of basic MVs equal to the number of PMV candidate blocks at a predetermined position.
  • the position of the PMV candidate block may be considered.
  • the basic motion vector determination unit 2710 can determine a basic MV corresponding to the specific direction from a basic MV candidate block located in a specific direction on the basis of the current block.
  • the predictive encoding unit 2730 predicts It is possible to allocate a corresponding basic MV in consideration of a direction in which a PMV candidate block having no motion vector exists based on the block.
  • the predictive encoding unit 2730 can obtain a residual motion vector that is a difference between a motion vector of the current block and a predictive motion vector according to a prediction mode of the current block, when the motion vector and the predictive motion vector of the current block are determined.
  • the predictive encoding unit 2730 skips the acquisition of the residual motion vector when the prediction mode of the current block is a skip mode or a merge mode and the prediction mode of the current block is an advanced motion vector prediction (AMVP) mode
  • the residual motion vector can be obtained.
  • the predictive encoding unit 2730 can generate information on the predictive motion vector of the current block. For example, when a predictive motion vector of a current block is determined from a predetermined number of prediction candidate lists, the predictive coding unit 2730 determines which predictive candidate among a predetermined number of predictive candidates is used as a predictive motion vector of the current block Information can be generated.
  • the predictive encoding unit 2730 may omit the generation of information about the predictive motion vector. This is because the motion vector decoding apparatus 2500 can also determine the predicted motion vector using the PMV candidate block at the same position in determining the motion vector of the current block.
  • the predictive encoding unit 2730 may generate information that a basic MV has been determined for determination of a predictive motion vector of a current block. For example, when the basic MV is determined by the basic motion vector determination unit 2710, the flag 1 is generated, and when the basic MV determination process is omitted, the flag 0 can be generated.
  • the predictive encoding unit 2730 can generate information indicating the MVR of the current block.
  • the bitstream generation unit 2750 generates information on the residual motion vector generated by the predictive coding unit 2730, information on the predicted motion vector, information on whether the basic MV is determined, information on the MVR of the current block, Information on a prediction direction (whether to be unidirectional or bi-directional) and information on a reference video index.
  • FIG. 28 is a flowchart illustrating a motion vector coding method according to an embodiment.
  • the motion vector coding apparatus 2700 determines a motion vector of the current block.
  • the motion vector coding apparatus 2700 can find a reference block most similar to the current block in the reference image and determine a motion vector indicating a distance on a coordinate between the reference block and the current block.
  • the motion vector coding device 2700 can determine a motion vector according to the MVR of the current block in the interpolated image according to the minimum MVR.
  • step S2820 the motion vector coding apparatus 2700 determines a predicted motion vector of the current block.
  • the motion vector coding apparatus 2700 can determine a predicted motion vector of a current block using a motion vector of at least one PMV candidate block.
  • the motion vector coding device 2700 determines the availability of a motion vector of at least one PMV candidate block. When there is a PMV candidate block determined not to be usable, the motion vector coding device 2700 can determine a predicted motion vector of the current block using a basic MV determined from a plurality of basic MV candidate blocks.
  • the motion vector coding device 2700 may determine the predicted motion vector of the current block using the basic MV adjusted according to the MVR of the current block.
  • FIG. 33 the process of adjusting the basic MV when the MVR of the current block is determined will be described with reference to FIGS. 33 to 35.
  • the basic MV is used to determine the predicted motion vector of the current block using the basic MV, It should be adjusted according to the resolution of the block.
  • FIG. 33 shows a case where a minimum MVR selectable for a current block is a 1/4 pixel unit MVR, and a motion vector corresponding to 1/4 pixel unit MVR, 1/2 pixel unit MVR, 1 pixel unit MVR and 2 pixel unit MVR Indicates the positions of the pixels that can be pointed.
  • FIG. 33 (a), (b), (c) and (d) of FIG. 33 respectively show MVR on a quarter pixel basis, MVR on a half pixel basis, MVR on a pixel basis, (Denoted by a black square) of the pixels that the motion vector of the unit MVR can point to.
  • the coordinates of a pixel that a motion vector of a quarter-pixel-unit MVR can point to are (a / 4, b / 4) (2c / 4, 2d / 4) (c, d is an integer), and the coordinates of a pixel that a motion vector of one pixel unit MVR can point to is 4e / 4, 4f / 4) (e, f is an integer), and the coordinates of the pixel that the motion vector of the 2-pixel-unit MVR can point to are (8g / 4, 8h / 4) do.
  • the minimum MVR is 2 m (m is an integer) pixel unit
  • the coordinates of the pixel that can be represented by 2 n (n is an integer) pixel unit MVR is (2 nm * i / 2 -m , 2 nm * j / 2 -m ) (i, j is an integer).
  • the motion vector is expressed by the coordinates in the interpolated image according to the unit of the 1/4 pixel which is the minimum MVR.
  • the motion vector coding apparatus 2700 determines a motion vector in an interpolated image according to a minimum MVR. Therefore, a motion vector may be a reciprocal of a pixel unit value of a minimum MVR, For example, if the minimum MVR is 2 m (m is an integer) pixel unit, it can be multiplied by 2 -m to represent a motion vector in an integer unit. 2 -m may be used in the motion vector coding apparatus 2700 and the motion vector decoding apparatus 2500. [
  • the motion vector of the 1/2 pixel unit MVR starting from the coordinate (0, 0) indicates the coordinates (2/4, 6/4) and the minimum MVR has the unit of the quarter pixel, (2, 6), which is a value obtained by multiplying the motion vector by the integer 4, can be determined as a motion vector.
  • Fig. 34 is a diagram for explaining a method of adjusting the basic MV. Fig.
  • the motion vector coding device 2700 and the motion vector decoding device 2500 can adjust the basic MV to be used as the predicted motion vector of the current block when the MVR of the current block is larger than the minimum MVR of the selectable candidate MVR.
  • the fact that the MVR of the current block is larger than the minimum MVR may mean that the pixel unit of the MVR of the current block is larger than the pixel unit of the minimum MVR.
  • the MVR of one pixel unit is larger than that of the half-pixel unit, and the MVR of the half-pixel unit is larger than that of the quarter-pixel unit.
  • the motion vector coding device 2700 and the motion vector decoding device 2500 may adjust the basic MV expressed by the coordinates in the interpolated image according to the minimum MVR to the MVR of the current block, To be referred to.
  • the coordinates (19, 27) of the pixel 3410 indicated by the MV (A) are divided by the integer 4 (i.e., downscale) It may not be indicated.
  • the motion vector coding device 2700 and the motion vector decoding device 2500 can adjust the downscaled basic MV to point to an integer pixel unit.
  • the coordinates of the surrounding integer pixels around the coordinates (19/4, 27/4) are (16/4, 28/4), (16/4, 24/4), (20/4 , 28/4), (20/4, 24/4).
  • the motion vector coding apparatus 2700 and the motion vector decoding apparatus 2500 are arranged in such a manner that the downscaled basic MV (A) is a right-upper-side coordinate (20 / 4, 28/4), and then multiplied by an integer 4 (i.e., upscaled) to obtain a pixel 3440 whose final adjusted MV (D) corresponds to the coordinates 20, 28 You can point it at.
  • the motion vector coding device 2700 and the motion vector decoding device 2500 are arranged such that the downscaled basic MV is located at the left-bottom position, the left-top position or the right-bottom position As shown in FIG.
  • the adjusted basic MV indicates an integer pixel located at the upper end of the pixel indicated by the base MV before the adjustment or an integer pixel located at the lower end .
  • the adjusted basic MV indicates an integer pixel positioned on the left side of the pixel pointed to by the basic MV before adjustment or an integer pixel positioned on the right side .
  • the motion vector coding device 2700 and the motion vector decoding device 2500 may select a point indicated by the adjusted basic MV differently according to the MVR of the current block when adjusting the basic MV.
  • the adjusted basic MV indicates the left-top pixel 3530 of the pixel indicated by the basic MV before being adjusted .
  • the adjusted basic MV indicates the right-top pixel 3520 of the pixel indicated by the basic MV before the adjustment, and if the MVR of the current block is MVR of 2 pixels ,
  • the adjusted basic MV can be adjusted to point to the right-bottom pixel 3540 of the pixel indicated by the basic MV before being adjusted.
  • the motion vector coding apparatus 2700 and the motion vector decoding apparatus 2500 can adjust the basic MV in consideration of the MVR and the minimum MVR of the current block according to Equation (1) below.
  • default MV 'de notes the adjusted basic MV
  • k is a value determined according to the difference between the MVR and the minimum MVR of the current block.
  • the MVR of the current block is 2 m pixel units (m is an integer) Is a unit of 2 n pixels (n is an integer), and when m> n, k can be mn.
  • k may be an index of the MVR.
  • the candidate MVR includes a quarter pixel unit MVR, a half pixel unit MVR, a one pixel unit MVR, a two pixel unit MVR, and a four pixel unit MVR
  • the MVR corresponding to each index is shown in Table 2.
  • the motion vector decoding apparatus 2500 can adjust the basic MV according to Equation (1) using the MVR index as k.
  • &quot is a bit shift operation, which means an operation for reducing or increasing the size of the basic MV.
  • offset means a value to be added or subtracted to indicate an integer pixel when the down-scaled base MV does not point to an integer pixel according to the value of k. offset may be determined differently for each of the x-coordinate value and the y-coordinate value of the basic MV.
  • the motion vector coding device 2700 and the motion vector decoding device 2500 may change according to the same criterion when the downscaled basic MV is changed to point to an integer pixel.
  • the x-coordinate value and y-coordinate value of the downscaled base MV do not point to an integer pixel, the x-coordinate value and the y-coordinate value of the downscaled base MV are always increased to point to an integer pixel And may always be reduced to point to an integer pixel.
  • the x-coordinate value and the y-coordinate value of the downscaled basic MV may be rounded to indicate an integer pixel.
  • the motion vector coding apparatus 2700 and the motion vector decoding apparatus 2500 when adjusting the basic MV, omit downscale and upscale of the basic MV, and when the basic MV is the pixel corresponding to the MVR of the current block May be adjusted in the coordinate plane within the interpolated reference image according to the minimum MVR to point to the unit.
  • the motion vector coding apparatus 2700 and the motion vector decoding apparatus 2500 may use Equation (2) instead of Equation (1) when adjusting the basic MV considering the MVR and the minimum MVR of the current block It can also be adjusted accordingly.
  • Equation (2) is similar to Equation (1) but it can be seen that offset is not applied to the downscaled basic MV as in Equation (1), but offset is applied to the original basic MV and then downscaled according to k .
  • the motion vector coding apparatus 2700 can find the motion vector of the current block with the MVR of the current block and obtain the difference between the motion vector of the current block and the predicted motion vector as a residual motion vector.
  • the motion vector coding apparatus 2700 can determine and code the residual motion vector according to Equation (3) below.
  • Equation (3) MV is the motion vector of the current block
  • PMV is the predicted motion vector
  • MVD is the residual motion vector.
  • the PMV may refer to a predicted motion vector determined based on the adjusted motion vectors of the adjusted primary MV and / or PMV candidate blocks.
  • the motion vector coding apparatus 2700 may downsample the residual motion vector as shown in Equation (4) and generate a bitstream including information indicating the downscaled residual motion vector .
  • Equation (4) MVD 'denotes a downscaled residual motion vector
  • k is a value determined according to a difference between a minimum MVR and a MVR of a current block, which is the same as k in Equation (1).
  • the motion vector coding unit 2700 may downsample the motion vector and the predicted motion vector of the current block according to the k value, and then may code the difference between the two values as a residual motion vector.
  • the motion vector coding apparatus 2700 may calculate a downscaled residual motion vector according to Equation (5) instead of Equations (3) and (4).
  • MVD represents a downscaled residual motion vector
  • MV is a motion vector of the current block
  • PMV is a predictive motion vector
  • R represents a pixel unit value of the MVR of the current block, for example, 1/4 in the case of a 1/4 pixel unit MVR.
  • S is an inverse number of the pixel unit value of the minimum MVR. When the minimum MVR is a quarter pixel unit, S represents 4.
  • the motion vector decoding apparatus 2500 can recover the motion vector of the current block using the predicted motion vector and the residual motion vector of the current block.
  • the motion vector decoding apparatus 2500 can up-scale the residual motion data as shown in Equation (6) below.
  • Equation (6) MVD 'denotes a residual-scaled residual motion vector at the encoder side, and MVD' 'denotes an up-scaled residual motion vector.
  • K is a value determined according to the difference between the minimum MVR and the MVR of the current block, which is the same as k in Equation (1).
  • the motion vector decoding apparatus 2500 may decode the motion vector of the current block by selectively adding the up-scaled residual motion vector and the predicted motion vector according to the difference between the minimum MVR and the MVR of the current block.
  • the motion vector decoding apparatus 2500 may determine an upscaled residual motion vector according to Equation (7) instead of Equation (6).
  • MVD represents a downscaled residual motion vector
  • R represents a pixel unit value of the MVR of the current block, for example, 1/4 for a quarter-pixel-unit MVR.
  • S is an inverse number of the pixel unit value of the minimum MVR. When the minimum MVR is a quarter pixel unit, S represents 4.
  • the motion vector decoding apparatus 2500 when the MVR of the current block is less than the MVR of one pixel, the motion vector decoding apparatus 2500 interpolates the reference image according to the minimum MVR and then outputs the prediction block of the current block according to the motion vector of the current block Can be searched. In addition, when the MVR of the current block is equal to or greater than the MVR of one pixel, the motion vector decoding apparatus 2500 can search the predicted block of the current block according to the motion vector of the current block without interpolating the reference image. The motion vector decoding apparatus 2500 may restore the current block by adding the prediction block to the inverse transformed and dequantized residual data.
  • the above-described embodiments can be made into a program that can be executed in a computer, and the created program can be stored in a medium.
  • the medium may be one that continues to store computer executable programs, or temporarily store them for execution or download.
  • the medium may be a variety of recording means or storage means in the form of a combination of a single hardware or a plurality of hardware, but is not limited to a medium directly connected to a computer system, but may be dispersed on a network.
  • Examples of the medium include a magnetic medium such as a hard disk, a floppy disk and a magnetic tape, an optical recording medium such as CD-ROM and DVD, a magneto-optical medium such as a floptical disk, And program instructions including ROM, RAM, flash memory, and the like.
  • a recording medium or a storage medium managed by a site or a server that supplies or distributes an application store or various other software to distribute the application may be mentioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

현재 블록의 예측 움직임 벡터(Prediction Motion Vector)를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록을 결정하는 단계; 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계; 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV(Motion Vector)를 이용하여, 현재 블록의 예측 움직임 벡터를 결정하는 단계; 및 결정된 예측 움직임 벡터에 기초하여 현재 블록의 움직임 벡터를 획득하는 단계를 포함하는 것을 특징으로 하는 일 실시예에 따른 움직임 벡터의 복호화 방법이 개시된다.

Description

기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
본 개시는 비디오 부호화 및 복호화 분야에 관한 것이다. 보다 구체적으로, 본 개시는 비디오의 움직임 벡터를 부호화하는 방법 및 장치, 복호화하는 방법 및 장치에 관한 것이다.
비디오의 부호화 및 복호화 방법에서는 영상을 부호화하기 위해 하나의 픽처를 매크로블록으로 분할하고, 인터 예측(inter prediction) 또는 인트라 예측(intraprediction)을 통해 각각의 매크로블록을 예측 부호화할 수 있다.
인터 예측은 픽처들 사이의 시간적인 중복성을 제거하여 영상을 압축하는 방법으로 움직임 추정 부호화가 대표적인 예이다. 움직임 추정 부호화는 적어도 하나의 참조 픽처를 이용해 현재 픽처의 블록들을 예측한다. 소정의 평가 함수를 이용하여 현재 블록과 가장 유사한 참조 블록을 소정의 검색 범위에서 검색할 수 있다.
현재 블록을 참조 블록에 기초하여 예측하고, 예측 결과 생성된 예측 블록을 현재 블록으로부터 감산하여 생성된 잔차 블록을 부호화한다. 이 때, 예측을 보다 정확하게 수행하기 위해 참조 픽처의 검색 범위에 대해 보간을 수행하여 정수 화소 단위(integer pel unit)보다 작은 부화소 단위(sub pel unit) 픽셀들을 생성하고, 생성된 부화소 단위의 픽셀에 기초해 인터 예측을 수행할 수 있다.
H.264 AVC(Advanced Video Coding) 및 HEVC(High Efficiency Video Coding)와 같은 코덱에서는 현재 블록의 움직임 벡터를 예측하기 위해 현재 블록에 인접한 이전에 부호화된 블록들 또는 이전에 부호화된 픽처에 포함된 블록들의 움직임 벡터를 현재 블록의 예측 움직임 벡터(Prediction Motion Vector)로 이용한다.
일 실시예에 따른 움직임 벡터의 복호화 방법은, 현재 블록의 예측 움직임 벡터(Prediction Motion Vector)를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록을 결정하는 단계; 상기 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계; 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV(Motion Vector)를 이용하여, 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계; 및 상기 결정된 예측 움직임 벡터에 기초하여 상기 현재 블록의 움직임 벡터를 획득하는 단계를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법은 기본 움직임 벡터를 이용하여 현재 블록을 위한 정확한 예측 움직임 벡터를 결정함으로써, 잔차 움직임 벡터를 표현하기 위한 비트량을 감소시킬 수 있으면서, 복원된 영상의 퀄리티를 향상시킬 수 있다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 영상 복호화 장치의 블록도를 도시한다.
도 2는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 영상 부호화 장치의 블록도를 도시한다.
도 3은 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 4는 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 5는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 6은 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 7은 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 9는 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 10은 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 18은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
도 19는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 20은 루프 필터링을 수행하는 영상 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
도 21은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
도 22는 일 실시예에 따라 소정의 부호화 방법에 따라 결정된 부호화 단위들 간의 병합(merge) 또는 분할(split)이 수행되는 과정을 도시한다.
도 23은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
도 24는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다.
도 25는 일 실시예에 따른 움직임 벡터 복호화 장치의 구성을 나타내는 블록도이다.
도 26은 일 실시예에 따른 움직임 벡터 복호화 방법을 설명하기 위한 순서도이다.
도 27은 일 실시예에 따른 움직임 벡터 부호화 장치의 구성을 나타내는 블록도이다.
도 28은 일 실시예에 따른 움직임 벡터 부호화 방법을 설명하기 위한 순서도이다.
도 29는 현재 블록과 연관된 공간적 블록과 시간적 블록을 예시하고 있는 도면이다.
도 30은 기본 MV를 결정하기 위한 기본 MV 후보 블록들을 예시하고 있는 도면이다.
도 31 및 도 32는 예측 움직임 벡터를 결정하기 위한 PMV 후보 블록들을 예시하고 있는 도면이다.
도 33은 현재 블록에 대해 선택 가능한 최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR에 대응하여 움직임 벡터가 가리킬 수 있는 화소들의 위치를 나타내는 도면이다.
도 34 및 도 35는 기본 MV의 조정 방법을 설명하기 위한 도면이다.
도 36은 현재 블록의 MVR 인덱스를 획득하는 과정을 설명하기 위한 예시적인 신택스를 나타내는 도면이다.
일 실시예에 따른 움직임 벡터의 복호화 방법은, 현재 블록의 예측 움직임 벡터(Prediction Motion Vector)를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록을 결정하는 단계; 상기 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계; 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV(Motion Vector)를 이용하여, 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계; 및 상기 결정된 예측 움직임 벡터에 기초하여 상기 현재 블록의 움직임 벡터를 획득하는 단계를 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, 상기 현재 블록과 관련된 복수의 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 우선 순위에 따라 순차적으로 상기 복수의 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하는 단계; 및 상기 움직임 벡터의 존재가 확인된 순서대로 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, DMVD(decoder side MV derivation) 통해 도출된 움직임 벡터를 상기 기본 MV로 결정하는 단계를 더 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 현재 블록의 참조 영상 인덱스와 상기 복수의 기본 MV 후보 블록의 참조 영상 인덱스를 고려하여, 상기 우선 순위를 변경하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 움직임 벡터에 기초하여, 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 복수의 기본 MV 후보 블록의 움직임 벡터의 크기에 기초하여 적어도 하나의 기본 MV 후보 블록을 선택하는 단계; 및 상기 선택된 적어도 하나의 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 적어도 하나의 기본 MV 후보 블록을 선택하는 단계는, 상기 복수의 기본 MV 후보 블록의 움직임 벡터 중 크기가 가장 큰 움직임 벡터 또는 크기가 가장 작은 움직임 벡터를 갖는 기본 MV 후보 블록을 선택하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 복수의 기본 MV 후보 블록의 움직임 벡터의 평균 값 또는 중간(median) 값에 기초하여 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 복수의 기본 MV 후보 블록 중, 이전에 복호화된 픽처, 이전에 복호화된 슬라이스 또는 이전에 복호화된 최대 부호화 단위에서 예측 움직임 벡터로서 가장 많이 선택된 위치의 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 기본 MV를 결정하는 단계는, 상기 현재 블록을 기준으로 서로 다른 방향에 위치하는 기본 MV 후보 블록들로부터 각 방향에 대응하는 복수의 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 복수의 기본 MV는, 제 1 기본 MV 및 제 2 기본 MV를 포함하며, 상기 기본 MV를 결정하는 단계는, 상기 현재 블록을 기준으로 제 1 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터를 이용하여 상기 제 1 기본 MV를 결정하고, 상기 현재 블록을 기준으로 제 2 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터를 이용하여 상기 제 2 기본 MV를 결정하는 단계를 포함할 수 있다.
상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는, 상기 적어도 하나의 PMV 후보 블록이, 상기 현재 블록을 기준으로 제 1 방향에 위치하는 PMV 후보 블록과 제 2 방향에 위치하는 PMV 후보 블록을 포함하는 경우, 상기 제 1 방향에 위치하는 PMV 후보 블록에 움직임 벡터가 존재하지 않으면, 상기 제 1 기본 MV를 상기 제 1 방향에 위치하는 PMV 후보 블록의 움직임 벡터로 할당하고, 상기 제 2 방향에 위치하는 PMV 후보 블록에 움직임 벡터가 존재하지 않으면, 상기 제 2 기본 MV를 상기 제 2 방향에 위치하는 PMV 후보 블록의 움직임 벡터로 할당하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, 상기 현재 블록에 대한 움직임 벡터 해상도를 결정하는 단계를 더 포함하고, 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는, 상기 이용 가능성의 판단 결과, 상기 움직임 벡터 해상도에 따라 예측 움직임 벡터로 이용되는 것으로 결정된 PMV 후보 블록에 움직임 벡터가 존재하지 않는 경우, 상기 기본 MV를 상기 움직임 벡터가 존재하지 않는 PMV 후보 블록에 할당하는 단계를 포함할 수 있다.
상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는, 상기 현재 블록의 움직임 벡터 해상도에 기초하여 상기 기본 MV를 조정하는 단계; 및 상기 조정된 기본 MV에 기초하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함할 수 있다.
상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는, 상기 이용 가능성의 판단 결과에 따라, 상기 적어도 하나의 PMV 후보 블록의 움직임 벡터로부터 예측 후보 리스트를 구성하는 단계; 상기 예측 후보 리스트에 포함된 예측 후보의 개수가 소정 개수 미만인 경우, 상기 예측 후보의 개수가 상기 소정 개수가 되도록 상기 기본 MV를 상기 예측 후보 리스트에 포함시키는 단계; 및 상기 예측 후보 리스트에 포함된 예측 후보에 기초하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함할 수 있다.
상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는, 미리 결정된 위치의 상기 적어도 하나의 PMV 후보 블록 중 움직임 벡터가 존재하지 않는 PMV 후보 블록에 대해 상기 기본 MV를 할당하는 단계를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 복호화 장치는, 현재 블록의 기본 MV를 결정하는 기본 움직임 벡터 결정부; 및 현재 블록의 예측 움직임 벡터를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 상기 결정된 기본 MV를 이용하여 상기 현재 블록의 예측 움직임 벡터를 결정하고, 상기 결정된 예측 움직임 벡터에 기초하여 상기 현재 블록의 움직임 벡터를 획득하는 예측 복호화부를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 부호화 방법은, 현재 블록의 예측 움직임 벡터를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계; 및 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV를 이용하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함할 수 있다.
본 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 개시의 실시 형태에 대해 한정하려는 것이 아니며, 본 개시는 여러 실시예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
또한, 본 명세서에서, '영상' 또는 '픽처'는 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
또한, 본 명세서에서 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
또한, 본 명세서에서,'현재 블록(Current Block)'은, 부호화 또는 복호화하고자 하는 현재 영상의 최대 부호화 단위, 부호화 단위, 예측 단위 또는 변환 단위의 블록을 의미할 수 있다.
또한, 본 명세서에서, '움직임 벡터 해상도'는, 참조 영상(또는 보간된 참조 영상)에 포함된 화소들 중, 인터 예측을 통해 결정된 움직임 벡터가 가리킬 수 있는 화소의 위치의 정밀도를 의미할 수 있다. 움직임 벡터 해상도가 N 화소 단위(N은 유리수)를 갖는다는 것은, 움직임 벡터가 N 화소 단위의 정밀도를 가질 수 있다는 것을 의미한다. 일 예로서, 1/4 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1/4 화소 단위(즉, 부화소 단위)의 화소 위치를 가리킬 수 있다는 것을 의미할 수 있고, 1 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1 화소 단위(즉, 정수 화소 단위)에 대응하는 화소 위치를 가리킬 수 있다는 것을 의미할 수 있다.
또한 본 명세서에서, '후보 움직임 벡터 해상도'는 블록의 움직임 벡터 해상도로 선택될 수 있는 하나 이상의 움직임 벡터 해상도를 의미하며, '후보 블록'은 후보 움직임 벡터 해상도에 매핑되어, 인터 예측되는 블록의 예측 움직임 벡터를 위한 블록으로 이용될 수 있는 하나 이상의 블록을 의미한다.
또한, 본 명세서에서 '화소 단위'는 화소 정밀도, 화소 정확도 등의 용어로 대체되어 설명될 수도 있다.
이하에서는, 도 1 내지 도 24를 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 영상 부호화 방법 및 그 장치, 영상 복호화 방법 및 그 장치가 개시된다. 도 1 내지 도 24를 참조하여 설명할 영상 부호화 장치(200) 및 영상 복호화 장치(100) 각각은 도 25 내지 도 36을 참조하여 설명할 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화(2500) 장치 각각을 포함할 수 있다.
도 1은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 영상 복호화 장치(100)의 블록도를 도시한다.
도 1을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 비트스트림으로부터 분할 형태 정보, 블록 형태 정보 등과 같은 소정의 정보를 획득하기 위한 비트스트림 획득부(110), 획득한 정보를 이용하여 영상을 복호화 하기 위한 복호화부(120)를 포함할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)에서 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득한 경우, 영상 복호화 장치(100)의 복호화부(120)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 분할하는 적어도 하나의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 복호화부(120)는 블록 형태 정보에 기초하여 부호화 단위의 형태를 결정할 수 있다. 예를 들면 블록 형태 정보는 부호화 단위가 정사각형인지 또는 비-정사각형인지 여부를 나타내는 정보를 포함할 수 있다. 복호화부(120)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 예를 들면 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태에 대한 정보를 나타낼 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 따라 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위에 대한 정보를 포함할 수 있으며, 만일 분할 형태 정보가 부호화 단위에 하나의 부호화 단위만이 포함되는 것을 나타내거나 또는 분할되지 않음을 나타내는 경우, 복호화부(120)는 분할 형태 정보를 포함하는 부호화 단위가 분할되지 않는 것으로 결정할 수 있다. 분할 형태 정보가, 부호화 단위가 복수개의 부호화 단위로 분할됨을 나타내는 경우 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있다.
일 실시예에 따라 분할 형태 정보는 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타낼 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N,4Nx2N, 2Nx4N, 4NxN 또는 Nx4N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(4Nx4N), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(4Nx2N, 2Nx4N, 4NxN 또는 Nx4N), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8 또는 8:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이, 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드에 대한 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(200)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드에 대한 정보를 쿼드 분할(quad split)로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드에 대한 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드에 대한 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드에 대한 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드에 대한 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위를 분할(트라이 분할; tri split)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4를 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드에 대한 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이 분할; binarysplit)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7을 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8은 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8을 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9는 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9를 참조하면, 블록 형태 정보가 제1 부호화 단위(900)는 정사각형임을 나타내고 분할 형태 모드에 대한 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드에 대한 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드에 대한 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드에 대한 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드에 대한 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 모드에 대한 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드에 대한 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드에 대한 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드에 대한 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 모드에 대한 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 비트스트림 획득부(110)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 비트스트림 획득부(110)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 비트스트림 획득부(110)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 비트스트림 획득부(110)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드에 대한 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 모드에 대한 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 블록 형태 정보 또는 분할 형태 모드에 대한 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드에 대한 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
도 17은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 17을 참조하면, 영상 복호화 장치(100)는 픽쳐마다 부호화 단위가 분할될 수 있는 분할 형태들의 조합을 다르게 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 영상에 포함되는 적어도 하나의 픽쳐들 중 4개의 부호화 단위로 분할될 수 있는 픽쳐(1700), 2개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1710) 및 2개, 3개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1720)를 이용하여 영상을 복호화 할 수 있다. 영상 복호화 장치(100)는 픽쳐(1700)를 복수개의 부호화 단위로 분할하기 위하여, 4개의 정사각형의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 영상 복호화 장치(100)는 픽쳐(1710)를 분할하기 위하여, 2개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 영상 복호화 장치(100)는 픽쳐(1720)를 분할하기 위하여, 2개, 3개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 상술한 분할 형태의 조합은 영상 복호화 장치(100)의 동작을 설명하기 위한 실시예에 불과하므로 상술한 분할 형태의 조합은 상기 실시예에 한정하여 해석되어서는 안되며 소정의 데이터 단위마다 다양한 형태의 분할 형태의 조합이 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 분할 형태 정보의 조합을 나타내는 인덱스를 포함하는 비트스트림을 소정의 데이터 단위 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스 등)마다 획득할 수 있다. 예를 들면, 비트스트림 획득부(110)는 시퀀스 파라미터 세트(Sequence Parameter Set), 픽쳐 파라미터 세트(Picture Parameter Set) 또는 슬라이스 헤더(Slice Header)에서 분할 형태 정보의 조합을 나타내는 인덱스를 획득할 수 있다. 영상 복호화 장치(100)의 영상 복호화 장치(100)는 획득한 인덱스를 이용하여 소정의 데이터 단위마다 부호화 단위가 분할될 수 있는 분할 형태의 조합을 결정할 수 있으며, 이에 따라 소정의 데이터 단위마다 서로 다른 분할 형태의 조합을 이용할 수 있다.
도 18은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 정보를 이용하여 부호화 단위를 다양한 형태로 분할할 수 있다. 분할될 수 있는 부호화 단위의 형태는 상술한 실시예들을 통해 설명한 형태들을 포함하는 다양한 형태에 해당할 수 있다.
도 18을 참조하면, 영상 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향으로 분할하여 4개의 정사각형의 부호화 단위로 분할할 수 있는 경우, 정사각형의 부호화 단위에 대한 분할 형태 정보가 나타낼 수 있는 분할 형태는 4가지일 수 있다. 일 실시예에 따라 분할 형태 정보는 2자리의 바이너리 코드로써 표현될 수 있으며, 각각의 분할 형태마다 바이너리 코드가 할당될 수 있다. 예를 들면 부호화 단위가 분할되지 않는 경우 분할 형태 정보는 (00)b로 표현될 수 있고, 부호화 단위가 수평 방향 및 수직 방향으로 분할되는 경우 분할 형태 정보는 (01)b로 표현될 수 있고, 부호화 단위가 수평 방향으로 분할되는 경우 분할 형태 정보는 (10)b로 표현될 수 있고 부호화 단위가 수직 방향으로 분할되는 경우 분할 형태 정보는 (11)b로 표현될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할하는 경우 분할 형태 정보가 나타낼 수 있는 분할 형태의 종류는 몇 개의 부호화 단위로 분할하는지에 따라 결정될 수 있다. 도 18을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 부호화 단위를 3개까지 분할할 수 있다. 영상 복호화 장치(100)는 부호화 단위를 두 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (10)b로 표현될 수 있다. 영상 복호화 장치(100)는 부호화 단위를 세 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (11)b로 표현될 수 있다. 영상 복호화 장치(100)는 부호화 단위를 분할하지 않는 것으로 결정할 수 있으며, 이 경우 분할 형태 정보는 (0)b로 표현될 수 있다. 즉, 영상 복호화 장치(100)는 분할 형태 정보를 나타내는 바이너리 코드를 이용하기 위하여 고정길이 코딩(FLC: Fixed Length Coding)이 아니라 가변길이 코딩(VLC: Varaible Length Coding)을 이용할 수 있다.`
일 실시예에 따라 도 18을 참조하면, 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 18에서 도시하는 바와 같이, 비-정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 영상 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 비-정사각형 형태의 부호화 단위의 분할 형태는 단지 도 18에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
도 19는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 19를 참조하면 영상 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다. 즉, 분할 형태 정보는 정사각형 형태의 부호화 단위를 한쪽 방향으로 분할되는 것을 나타낼 수 있다. 이러한 경우 정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 19에서 도시하는 바와 같이, 정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 영상 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 정사각형 형태의 부호화 단위의 분할 형태는 단지 도 19에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
일 실시예에 따라 블록 형태 정보 또는 분할 형태 정보는 바이너리 코드를 이용하여 표현될 수 있고, 이러한 정보가 곧바로 비트스트림으로 생성될 수 있다. 또한 바이너리 코드로 표현될 수 있는 블록 형태 정보 또는 분할 형태 정보는 바로 비트스트림으로 생성되지 않고 CABAC(context adaptive binary arithmetic coding)에서 입력되는 바이너리 코드로서 이용될 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 CABAC을 통해 블록 형태 정보 또는 분할 형태 정보에 대한 신택스를 획득하는 과정을 설명한다. 비트스트림 획득부(110)를 통해 상기 신택스에 대한 바이너리 코드를 포함하는 비트스트림을 획득할 수 있다. 영상 복호화 장치(100)는 획득한 비트스트림에 포함되는 빈 스트링(bin string)을 역 이진화하여 블록 형태 정보 또는 분할 형태 정보를 나타내는 신택스 요소(syntax element)를 검출할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 복호화할 신택스 요소에 해당하는 바이너리 빈 스트링의 집합을 구하고, 확률 정보를 이용하여 각각의 빈을 복호화할 수 있고, 영상 복호화 장치(100)는 이러한 복호화된 빈으로 구성되는 빈 스트링이 이전에 구한 빈 스트링들 중 하나와 같아질 때까지 반복할수 있다. 영상 복호화 장치(100)는 빈 스트링의 역 이진화를 수행하여 신택스 요소를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 적응적 이진 산술 코딩(adaptive binary arithmetic coding)의 복호화 과정을 수행하여 빈 스트링에 대한 신택스를 결정할 수 있고, 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 빈들에 대한 확률 모델을 갱신할 수 있다. 도 18을 참조하면, 영상 복호화 장치(100)의 비트스트림 획득부(110)는 일 실시예에 따라 분할 형태 정보를 나타내는 바이너리 코드를 나타내는 비트스트림을 획득할 수 있다. 획득한 1비트 또는 2비트의 크기를 가지는 바이너리 코드를 이용하여 영상 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정할 수 있다. 영상 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정하기 위하여, 2비트의 바이너리 코드 중 각각의 비트에 대한 확률을 갱신할 수 있다. 즉, 영상 복호화 장치(100)는 2비트의 바이너리 코드 중 첫번째 빈의 값이 0 또는 1 중 어떤 값이냐에 따라, 다음 빈을 복호화 할 때 0 또는 1의 값을 가질 확률을 갱신할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 신택스를 결정하는 과정에서, 신택스에 대한 빈 스트링의 빈들을 복호화 하는 과정에서 이용되는 빈들에 대한 확률을 갱신할 수 있으며, 영상 복호화 장치(100)는 상기 빈 스트링 중 특정 비트에서는 확률을 갱신하지 않고 동일한 확률을 가지는 것으로 결정할 수 있다.
도 18을 참조하면, 비-정사각형 형태의 부호화 단위에 대한 분할 형태 정보를 나타내는 빈 스트링을 이용하여 신택스를 결정하는 과정에서, 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 분할하지 않는 경우에는 0의 값을 가지는 하나의 빈을 이용하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 즉, 블록 형태 정보가 현재 부호화 단위는 비-정사각형 형태임을 나타내는 경우, 분할 형태 정보에 대한 빈 스트링의 첫번째 빈은, 비-정사각형 형태의 부호화 단위가 분할되지 않는 경우 0이고, 2개 또는 3개의 부호화 단위로 분할되는 경우 1일 수 있다. 이에 따라 비-정사각형의 부호화 단위에 대한 분할 형태 정보의 빈 스트링의 첫번째 빈이 0일 확률은 1/3, 1일 확률은 2/3일 수 있다. 상술하였듯이 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보는 0의 값을 가지는 1비트의 빈 스트링만을 표현될 수 있으므로, 영상 복호화 장치(100)는 분할 형태 정보의 첫번째 빈이 1인 경우에만 두번째 빈이 0인지 1인지 판단하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보에 대한 첫번째 빈이 1인 경우, 두번째 빈이 0 또는 1일 확률은 서로 동일한 확률인 것으로 보고 빈을 복호화할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보에 대한 빈 스트링의 빈을 결정하는 과정에서 각각의 빈에 대한 다양한 확률을 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 블록의 방향에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 넓이 또는 긴 변의 길이에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태 및 긴 변의 길이 중 적어도 하나에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 소정 크기 이상의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률을 동일한 것으로 결정할 수 있다. 예를 들면, 부호화 단위의 긴 변의 길이를 기준으로 64샘플 이상의 크기의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률이 동일한 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보의 빈 스트링을 구성하는 빈들에 대한 초기 확률은 슬라이스 타입(예를 들면, I 슬라이스, P 슬라이스 또는 B 슬라이스…)에 기초하여 결정될 수 있다.
도 20는 루프 필터링을 수행하는 영상 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
영상 부호화 및 복호화 시스템(2000)의 부호화단(2010)은 영상의 부호화된 비트스트림을 전송하고, 복호화단(2050)은 비트스트림을 수신하여 복호화함으로써 복원 영상을 출력한다. 여기서 부호화단(2010)은 후술할 영상 부호화 장치(200)에 유사한 구성일 수 있고, 복호화단(2050)은 영상 복호화 장치(100)에 유사한 구성일 수 있다.
부호화단(2010)에서, 예측 부호화부(2015)는 인터 예측 및 인트라 예측을 통해 참조 영상을 출력하고, 변환 및 양자화부(2020)는 참조 영상과 현재 입력 영상 간의 레지듀얼 데이터를 양자화된 변환 계수로 양자화하여 출력한다. 엔트로피 부호화부(2025)는 양자화된 변환 계수를 부호화하여 변환하고 비트스트림으로 출력한다. 양자화된 변환 계수는 역양자화 및 역변환부(2030)을 거쳐 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹 필터링부(2035) 및 루프 필터링부(2040)를 거쳐 복원 영상으로 출력된다. 복원 영상은 예측 부호화부(2015)를 거쳐 다음 입력 영상의 참조 영상으로 사용될 수 있다.
복호화단(2050)으로 수신된 비트스트림 중 부호화된 영상 데이터는, 엔트로피 복호화부(2055) 및 역양자화 및 역변환부(2060)를 거쳐 공간 영역의 레지듀얼 데이터로 복원된다. 예측 복호화부(2075)로부터 출력된 참조 영상 및 레지듀얼 데이터가 조합되어 공간 영역의 영상 데이터가 구성되고, 디블로킹 필터링부(2065) 및 루프 필터링부(2070)는 공간 영역의 영상 데이터에 대해 필터링을 수행하여 현재 원본 영상에 대한 복원 영상을 출력할 수 있다. 복원 영상은 예측 복호화부(2075)에 의해 다음 원본 영상에 대한 참조 영상으로서 이용될 수 있다.
부호화단(2010)의 루프 필터링부(2040)는 사용자 입력 또는 시스템 설정에 따라 입력된 필터 정보를 이용하여 루프 필터링을 수행한다. 루프 필터링부(2040)에 의해 사용된 필터 정보는 엔트로피 부호화부(2010)로 출력되어, 부호화된 영상 데이터와 함께 복호화단(2050)으로 전송된다. 복호화단(2050)의 루프 필터링부(2070)는 복호화단(2050)으로부터 입력된 필터 정보에 기초하여 루프 필터링을 수행할 수 있다.
도 21은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
부호화단(2010)의 루프 필터링부(2040) 및 복호화단(2050)의 루프 필터링부(2070)의 필터링 단위가, 도 3 내지 도 5를 통해 전술한 일 실시예에 따른 부호화 단위와 유사한 데이터 단위로 구성된다면, 필터 정보는 필터링 단위를 나타내기 위한 데이터 단위의 블록 형태 정보 및 분할 형태 정보, 그리고 필터링 단위에 대한 루프 필터링 수행 여부를 나타내는 루프 필터링 수행 정보를 포함할 수 있다.
일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들과 동일한 블록 형태 및 분할 형태를 가질 수 있다. 또한, 일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들의 크기를 기준으로 분할될 수 있다. 도 21을 참조하여 예를 들면, 필터링 단위들은 심도 D의 정사각형 형태의 필터링 단위(2140), 심도 D의 비-정사각형 형태의 필터링 단위(2132, 2134), 심도 D+1의 정사각형 형태의 필터링 단위(2112, 2114, 2116, 2152, 2154, 2164), 심도 D+1의 비-정사각형 형태의 필터링 단위(2162, 2166), 심도 D+2의 정사각형 형태의 필터링 단위(2122, 2124, 2126, 2128)를 포함할 수 있다.
최대 부호화 단위(2100)에 포함된 필터링 단위들의 블록 형태 정보, 분할 형태 정보(심도) 및 루프 필터링 수행 정보는 아래 표 1과 같이 부호화될 수 있다.
Figure PCTKR2018003801-appb-T000001
일 실시예에 따른 블록 형태 정보 및 블록 분할 정보에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 과정은, 도 13을 통해 전술한 바와 같다. 일 실시예에 따른 필터링 단위들의 루프 필터링 수행 정보는, 플래그 값이 1인 경우 해당 필터링 단위에 대해 루프 필터링이 수행됨을 나타내며, 0인 경우 루프 필터링이 수행되지 않음을 나타낸다. 표 1을 참조하면, 루프 필터링부(2040, 2070)에 의해 필터링의 대상이 되는 필터링 단위를 결정하기 위한 데이터 단위의 정보들은 필터 정보로서 모두 부호화되어 전송될 수 있다.
일 실시예에 따라 구성된 부호화 단위들은, 원본 영상과의 오차를 최소화하는 형태로 구성된 부호화 단위이므로, 부호화 단위 내에서 공간적 상관도가 높다고 예상된다. 따라서, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위가 결정됨으로써, 부호화 단위의 결정과 별도로 필터링 단위를 결정하는 동작이 생략될 수도 있다. 또한 이에 따라, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위를 결정함으로써 필터링 단위의 분할 형태를 결정하기 위한 정보를 생략할 수 있으므로 필터 정보의 전송 비트레이트를 절약할 수 있다.
전술한 실시예에서는 필터링 단위가 일 실시예에 따른 부호화 단위에 기반하여 결정되는 것으로 설명하였지만, 부호화 단위에 기반하여 필터링 단위의 분할을 수행하다가 임의의 심도에서 더 이상 분할하지 않고 해당 심도까지만 필터링 단위의 형태가 결정될 수도 있다.
전술한 실시예에 개시된 필터링 단위의 결정은 루프 필터링 뿐만 아니라, 디블로킹 필터링, 적응적 루프 필터링 등 다양한 실시예에도 적용될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 현재 부호화 단위를 분할할 수 있으며, 블록 형태 정보는 정사각형 형태만을 이용하는 것으로 미리 결정되고, 분할 형태 정보는 분할하지 않거나 또는 4개의 정사각형 형태의 부호화 단위로 분할됨을 나타낼 수 있는 것으로 미리 결정될 수 있다. 즉, 현재 부호화 단위는 상기 블록 형태 정보에 따르면 부호화 단위는 항상 정사각형 형태를 가지고, 상기 분할 형태 정보에 기초하여 분할되지 않거나 4개의 정사각형 형태의 부호화 단위들로 분할될 수 있다. 영상 복호화 장치(100)는 이러한 블록 형태 및 분할 형태만을 이용하는 것으로 미리 결정된 소정의 부호화 방법을 이용하여 생성된 비트스트림을 비트스트림 획득부(110)를 통해 획득할 수 있고, 영상 복호화 장치(100)는 미리 결정된 블록 형태 및 분할 형태만을 이용할 수 있다. 이러한 경우 영상 복호화 장치(100)는 상술한 소정의 부호화 방법과 유사한 소정의 복호화 방법을 이용함으로써 소정의 부호화 방법과의 호환성 문제를 해결할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보가 나타낼 수 있는 다양한 형태들 중 미리 결정된 블록 형태 및 분할 형태만을 이용하는 상술한 소정의 복호화 방법을 이용하는 경우, 블록 형태 정보는 정사각형 형태만을 나타내게 되므로 영상 복호화 장치(100)는 비트스트림으로부터 블록 형태 정보를 획득하는 과정을 생략할 수 있다. 상술한 소정의 복호화 방법을 이용할 것인지 여부를 나타내는 신택스가 이용될 수 있고, 이러한 신택스는 시퀀스, 픽쳐, 슬라이스 단위, 최대부호화단위 등 복수개의 부호화 단위를 포함할 수 있는 다양한 형태의 데이터 단위마다 비트스트림으로부터 획득될 수 있다. 즉, 비트스트림 획득부(110)는 소정의 복호화 방법의 사용 여부를 나타내는 신택스에 기초하여 블록 형태 정보를 나타내는 신택스를 비트스트림으로부터 획득하는지 여부를 결정할 수 있다.
도 23은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
일 실시예에 따른 영상 복호화 장치(100)는, 상위 데이터 단위에 포함된 하위 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있다. 또한, 일 실시예에 따른 영상 복호화 장치(100)는 최대 부호화 단위 또는 프로세싱 블록에 포함되는 부호화 단위 내의 Z 스캔 인덱스에 따라 데이터를 순차적으로 액세스할 수 있다.
일 실시예에 따른 영상 복호화 장치(100)가 기준 부호화 단위를 적어도 하나의 부호화 단위로 분할할 수 있음은 도 3 내지 도 4를 참조하여 전술한 바와 같다. 이 때, 기준 부호화 단위 내에는 정사각형 형태의 부호화 단위들과 비-정사각형 형태의 부호화 단위들이 혼재할 수 있다. 일 실시예에 따른 영상 복호화 장치(100)는, 기준 부호화 단위 내의 각 부호화 단위에 포함된 Z 스캔 인덱스에 따라 데이터 액세스를 수행할 수 있다. 이 때, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하는지 여부에 따라 Z 스캔 인덱스를 적용하는 방식이 상이해질 수 있다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하지 않는 경우, 기준 부호화 단위 내의 하위 심도의 부호화 단위들끼리는 연속된 Z 스캔 인덱스를 가질 수 있다. 예를 들어, 일 실시예에 따라 상위 심도의 부호화 단위는 하위 심도의 부호화 단위 4 개를 포함할 수 있다. 여기서, 4 개의 하위 심도의 부호화 단위들은 서로 인접하는 경계가 연속적일 수 있으며, 각각의 하위 심도의 부호화 단위들은 Z 스캔 순서를 나타내는 인덱스에 따라 Z 스캔 순서로 스캔될 수 있다. 일 실시예에 따른 Z 스캔 순서를 나타내는 인덱스는 각 부호화 단위에 대해 Z 스캔 순서에 따라 증가하는 수로 설정될 수 있다. 이 경우, 동일한 심도의 심도별 부호화 단위들끼리 Z 스캔 순서에 따라 스캔이 가능하다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 적어도 하나 이상 존재하는 경우, 영상 복호화 장치(100)는 기준 부호화 단위 내의 부호화 단위들을 각각 서브 블록들로 분할하여, 분할된 서브 블록들에 대해 Z 스캔 순서에 따른 스캔을 수행할 수 있다. 예를 들어, 기준 부호화 단위 내에 수직 방향 또는 수평 방향의 비-정사각형 형태의 부호화 단위가 존재하는 경우 분할된 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 또한, 예를 들어, 기준 부호화 단위 내에서 홀수 개의 부호화 단위들로 분할이 수행된 경우 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 서브 블록은, 더 이상 분할되지 않는 부호화 단위 또는 임의의 부호화 단위가 분할된 것으로서, 정사각형 형태일 수 있다. 예를 들어, 정사각형 형태의 부호화 단위로부터 4개의 정사각형 형태의 서브 블록들이 분할될 수 있다. 또한, 예를 들어, 비-정사각형 형태의 부호화 단위로부터는 2 개의 정사각형 형태의 서브 블록들이 분할될 수 있다.
도 23을 참조하여 예를 들면, 일 실시예에 따른 영상 복호화 장치(100)는, 부호화 단위(2300) 내에서 하위 심도의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 Z 스캔 순서에 따라 스캔할 수 있다. 부호화 단위(2300) 및 부호화 단위(2302, 2304, 2306, 2308, 2310)는, 각각 상대적으로 상위 부호화 단위 및 하위 부호화 단위이다. 부호화 단위(2300)는 수평 방향의 비-정사각형 형태의 부호화 단위(2306, 2310)를 포함한다. 이들 비-정사각형 형태의 부호화 단위들(2306, 2310)은 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 또한, 부호화 단위(2308)는 정사각형 형태이며, 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위이다. 비-정사각형 형태의 부호화 단위들(2306, 2310)과 마찬가지로, 부호화 단위(2308)는 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 부호화 단위(2300) 내에 비-정사각형 형태의 부호화 단위(2306, 2310)가 포함되거나 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위(2308)가 포함된 경우, 부호화 단위들 간에 인접하는 경계가 불연속적이기 때문에 연속적인 Z 스캔 인덱스가 설정될 수 없다. 따라서, 영상 복호화 장치(100)는 부호화 단위들을 서브 블록들로 분할함으로써 Z 스캔 인덱스를 연속적으로 설정할 수 있다. 또한, 영상 복호화 장치(100)는, 비-정사각형 형태의 부호화 단위(2306, 2310) 또는 홀수 개로 분할된 비-정사각형 형태의 부호화 단위의 중간에 위치한 부호화 단위(2308)에 대해 연속된 Z 스캔을 수행할 수 있다.
도 23에 도시된 부호화 단위(2320)는 부호화 단위(2300) 내의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 서브 블록들로 분할한 것이다. 서브 블록들 각각에 대해 Z 스캔 인덱스가 설정될 수 있고, 서브 블록들 간의 인접하는 경계는 연속적이므로, 서브 블록들끼리 Z 스캔 순서에 따라 스캔이 가능하다. 예를 들어, 일 실시예에 따른 복호화 장치에서, 부호화 단위(2308)는 서브 블록들(2322, 2324, 2326, 2328)로 분할될 수 있다. 이 때, 서브 블록(2322, 2324)은 서브 블록(2330)에 대한 데이터 처리 이후에 스캔될 수 있으며, 서브 블록(2326, 2328)은 서브 블록(2332)에 대한 데이터 처리 이후에 스캔될 수 있다. 또한, 각각의 서브 블록들끼리 Z 스캔 순서에 따라 스캔될 수 있다.
전술한 실시예에서, 데이터 단위들에 대해 Z 스캔 순서에 따라 스캔하는 것은, 데이터 저장, 데이터 로딩, 데이터 액세스 등을 위한 것일 수 있다.
또한, 전술한 실시예에서는, 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있음을 설명하였지만, 데이터 단위들의 스캔 순서는 래스터 스캔, N 스캔, 우상향 대각 스캔, 수평적 스캔, 수직적 스캔 등 다양한 스캔 순서로 수행될 수 있고, Z 스캔 순서에 한정하여 해석되는 것은 아니다.
또한, 전술한 실시예에서는, 기준 부호화 단위 내의 부호화 단위들에 대해 스캔을 수행하는 것으로 설명하였지만, 이에 한정하여 해석되어서는 안되며, 스캔 수행의 대상은 최대 부호화 단위 또는 프로세싱 블록 내의 임의의 블록일 수 있다.
또한, 전술한 실시예에서는, 비-정사각형 형태의 블록이 적어도 하나 이상 존재하는 경우에만 서브 블록들로 분할하여 Z 스캔 순서에 따른 스캔을 수행하는 것으로 설명하였지만, 단순화된 구현을 위해 비-정사각형 형태의 블록이 존재하지 않는 경우에도 서브 블록들을 분할하여 Z 스캔 순서에 따른 스캔을 수행할 수도 있다.
일 실시예에 따른 영상 복호화 장치(100)는, 부호화 단위에 대한 인터 예측 또는 인트라 예측을 수행하여 예측 데이터를 생성하고, 현재 부호화 단위에 포함된 변환 단위에 대해 역변환을 수행하여 레지듀얼 데이터를 생성하며, 생성된 예측 데이터와 레지듀얼 데이터를 이용하여 현재 부호화 단위를 복원할 수 있다.
일 실시예에 따른 부호화 단위의 예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 일 실시예에 따라, 부호화 단위 마다 독립적으로 예측 모드가 선택될 수 있다.
일 실시예에 따른 2Nx2N 형태의 부호화 단위가 분할하여 두 개의 2NxN 또는 두 개의 Nx2N 형태의 부호화 단위들로 분할된 경우, 이들 각각의 부호화 단위에 대해서 인터 모드 예측 및 인트라 모드 예측이 별개로 수행될 수도 있다. 또한, 일 실시예에 따른 2NxN 또는 Nx2N 형태의 부호화 단위에 대해서는 스킵 모드가 적용될 수도 있다.
한편, 일 실시예에 따른 영상 복호화 장치(100)는, 8x4 또는 4x8 형태의 부호화 단위의 스킵 모드에서 양방향 예측(bi-prediction)의 수행이 허용될 수도 있다. 스킵 모드에서는 부호화 단위에 대해 스킵 모드 정보만을 전송받기 때문에 해당 부호화 단위에 대한 레지듀얼 데이터의 이용이 생략된다. 따라서, 이 경우 역양자화 및 역변환에 대한 오버헤드(overhead)를 절약할 수 있다. 그 대신, 일 실시예에 따른 영상 복호화 장치(100)는 스킵 모드가 적용되는 부호화 단위에 대해 양방향 예측을 허용하여 복호화 효율을 높일 수 있다. 또한, 일 실시예에 따른 영상 복호화 장치(100)는 8x4 또는 4x8 형태의 부호화 단위에 대해 양방향 예측을 허용하되, 움직임 보상 단계에서 보간 탭(interpolation tap) 수를 상대적으로 적게 설정하여 메모리 대역폭을 효율적으로 사용할 수 있다. 일 예로, 8-탭의 보간 필터를 사용하는 대신 8 미만의 탭 수의 보간 필터(예를 들어, 2-탭 보간 필터)를 사용할 수도 있다.
또한, 일 실시예에 따른 영상 복호화 장치(100)는 현재 부호화 단위에 포함된 영역을 미리설정된 형태로 분할(예를 들어, 사선 기반 분할)하여 분할된 각 영역에 대한 인트라 또는 인터 예측 정보를 시그널링할 수도 있다.
일 실시예에 따른 영상 복호화 장치(100)는 인트라 모드를 이용하여 현재 부호화 단위의 예측 샘플을 현재 부호화 단위의 주변 샘플을 이용하여 획득할 수 있다. 이 때, 인트라 예측은 주변의 이미 재구성된 샘플들을 사용하여 예측을 수행하는데 이러한 샘플들을 참조 샘플이라고 한다.
도 24는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다. 도 24를 참조하면, 블록 형태가 비-사각형 형태이고 수평 방향의 길이가 w, 수직 방향의 길이가 h인 현재 부호화 단위(2300)에 대하여, 상단의 참조 샘플(2302)이 w+h 개, 좌측의 참조 샘플(2304)이 w+h 개, 좌측 상단의 참조 샘플(2306)에 한 개로 총 2(w+h)+1 개의 참조 샘플이 필요하다. 참조 샘플의 준비를 위해, 참조 샘플이 존재하지 않는 부분에 대해 패딩을 수행하는 단계를 거치며, 재구성된 참조 샘플에 포함된 양자화 에러를 줄이기 위한 예측 모드별 참조 샘플 필터링 과정을 거칠 수도 있다.
전술한 실시예에서는 현재 부호화 단위의 블록 형태가 비-사각형 형태인 경우의 참조 샘플의 개수를 설명하였으나, 이러한 참조 샘플의 개수는 현재 부호화 단위가 사각형 형태의 블록 형태인 경우에도 동일하게 적용된다.
상술한 다양한 실시예들은 영상 복호화 장치(100)이 수행하는 영상 복호화 방법과 관련된 동작을 설명한 것이다. 이하에서는 이러한 영상 복호화 방법에 역순의 과정에 해당하는 영상 부호화 방법을 수행하는 영상 부호화 장치(200)의 동작을 다양한 실시예를 통해 설명하도록 한다.
도 2는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 영상 부호화 장치(200)의 블록도를 도시한다.
영상 부호화 장치(200)는 부호화부(220) 및 비트스트림 생성부(210)를 포함할 수 있다. 부호화부(220)는 입력 영상을 수신하여 입력 영상을 부호화할 수 있다. 부호화부(220)는 입력 영상을 부호화하여 적어도 하나의 신택스 엘리먼트를 획득할 수 있다. 신택스 엘리먼트는 skip flag, prediction mode, motion vector difference, motion vector prediction method (or index), transform quantized coefficient, coded block pattern, coded block flag, intra prediction mode, direct flag, merge flag, delta QP, reference index, prediction direction, transform index 중 적어도 하나를 포함할 수 있다. 부호화부(220)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 기초하여 컨텍스트 모델을 결정할 수 있다.
비트스트림 생성부(210)는 부호화된 입력 영상에 기초하여 비트스트림을 생성할 수 있다. 예를 들어 비트스트림 생성부(210)는 컨텍스트 모델에 기초하여 신택스 엘리먼트를 엔트로피 부호화함으로써 비트스트림을 생성할 수 있다. 또한 영상 부호화 장치(200)는 비트스트림을 비디오 복호화 장치(100)로 전송할 수 있다.
일 실시예에 따라 영상 부호화 장치(200)의 부호화부(220)는 부호화 단위의 형태를 결정할 수 있다. 예를 들면 부호화 단위가 정사각형인지 또는 비-정사각형의 형태를 가질 수 있고, 이러한 형태를 나타내는 정보는 블록 형태 정보에 포함될 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 부호화부(220)는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태를 결정할 수 있고 비트스트림 생성부(210)는 이러한 부호화 단위의 형태에 대한 정보를 포함하는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 부호화부(220)가 부호화 단위에 하나의 부호화 단위만이 포함되거나 또는 부호화 단위가 분할되지 않는 것으로 결정하는 경우 비트스트림 생성부(210)는 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다. 또한 부호화부(220)는 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있고, 비트스트림 생성부(210)는 부호화 단위는 복수개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타내는 정보가 분할 형태 정보에 포함될 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
영상 부호화 장치(200)는 부호화 단위의 분할 형태 모드에 기초하여 분할 형태 모드에 대한 정보를 결정한다. 영상 부호화 장치(200)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델을 결정한다. 그리고, 영상 부호화 장치(200)는 컨텍스트 모델에 기초하여 부호화 단위를 분할하기 위한 분할 형태 모드에 대한 정보를 비트스트림으로 생성한다.
영상 부호화 장치(200)는 컨텍스트 모델을 결정하기 위하여, 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나와 컨텍스트 모델에 대한 인덱스를 대응시키기 위한 배열을 획득할 수 있다. 영상 부호화 장치(200)는 배열에서 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델에 대한 인덱스를 획득할 수 있다. 영상 부호화 장치(200)는 컨텍스트 모델에 대한 인덱스에 기초하여 컨텍스트 모델을 결정할 수 있다.
영상 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 부호화 단위에 인접한 주변 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 더 기초하여 컨텍스트 모델을 결정할 수 있다. 또한 주변 부호화 단위는 부호화 단위의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측 또는 우하측에 위치한 부호화 단위 중 적어도 하나를 포함할 수 있다.
또한, 영상 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 상측 주변 부호화 단위의 너비의 길이와 부호화 단위의 너비의 길이를 비교할 수 있다. 또한, 영상 부호화 장치(200)는 좌측 및 우측의 주변 부호화 단위의 높이의 길이와 부호화 단위의 높이의 길이를 비교할 수 있다. 또한, 영상 부호화 장치(200)는 비교 결과들에 기초하여 컨텍스트 모델을 결정할 수 있다.
영상 부호화 장치(200)의 동작은 도 3 내지 도 24에서 설명한 비디오 복호화 장치(100)의 동작과 유사한 내용을 포함하고 있으므로, 상세한 설명은 생략한다.
이하 도 25 내지 도 36을 참조하여, 일 실시예에 따른 움직임 벡터의 복호화 장치 및 방법, 및 움직임 벡터의 부호화 장치 및 방법이 제안된다.
도 25는 일 실시예에 따른 움직임 벡터 복호화 장치(2500)의 구성을 나타내는 블록도이다.
도 25를 참조하면, 일 실시예에 따른 움직임 벡터 복호화 장치(2500)는 비트스트림 획득부(2510), 기본 움직임 벡터 결정부(2530) 및 예측 복호화부(2550)를 포함할 수 있다.
움직임 벡터 복호화 장치(2500)는 전술한 영상 복호화 장치(100)에 포함될 수 있다. 예를 들어, 비트스트림 획득부(2510)는 도 1에 도시된 영상 복호화 장치(100)의 비트스트림 획득부(110)에 포함될 수 있고, 기본 움직임 벡터 결정부(2530) 및 예측 복호화부(2550)는 영상 복호화 장치(100)의 복호화부(120)에 포함될 수 있다.
영상 부호화 및 복호화에서 인터 예측(inter prediction)은 현재 영상과 다른 영상 간의 유사성을 이용하는 예측 방법을 의미한다. 현재 영상보다 먼저 복호화된 참조 영상 중에서, 현재 영상의 현재 블록과 유사한 참조 블록이 검출되고, 현재 블록과 참조 블록 사이의 좌표상의 거리가 움직임 벡터로 표현된다. 또한, 현재 블록과 참조 블록 간의 픽셀 값들의 차이가 잔차(Residual) 데이터로 표현될 수 있다. 따라서, 현재 블록에 대한 인터 예측에 의해, 현재 블록의 영상 정보를 직접 출력하는 대신, 참조 영상을 가리키는 인덱스, 움직임 벡터 및 잔차 데이터를 출력하여 부호화 및 복호화의 효율을 향상시킬 수 있다.
움직임 벡터 복호화 장치(2500)는 인터 예측을 통해 부호화된 현재 블록의 복원을 위한 움직임 벡터를 결정할 수 있다.
블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일 실시예에 따른 블록은 일정한 크기의 데이터 단위로 제한되는 것은 아니며, 트리 구조에 따른 부호화 단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등을 포함할 수 있다.
비트스트림 획득부(2510)는 영상의 복호화를 위한 정보를 포함하는 비트스트림을 획득한다. 비트스트림은 현재 블록의 예측 모드에 따라, 잔차 움직임 벡터, 예측 움직임 벡터, 기본 MV의 결정 여부, 예측 방향(단방향 예측 또는 양방향 예측 여부), 참조 영상 인덱스, 움직임 벡터 해상도 중 적어도 하나에 대한 정보를 포함할 수 있다.
기본 움직임 벡터 결정부(2530)는 현재 블록의 기본 움직임 벡터(default motion vector, 이하 기본 MV)를 결정할 수 있다.
기본 MV는 현재 블록의 예측 움직임 벡터를 결정하는데 이용될 수 있다. 일 예에서, 적어도 하나의 PMV(Prediction motion vector) 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정하는 방식에 있어, 적어도 하나의 PMV 후보 블록 중 움직임 벡터의 이용 가능성이 없는 PMV 후보 블록이 있는 경우, 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터가 결정될 수 있다.
다시 말하면, 기본 MV는 현재 블록의 예측 움직임 벡터의 결정을 위해 이용되는 PMV 후보 블록의 움직임 벡터에 대한 예비용 MV(spare motion vector)일 수 있다.
기본 움직임 벡터 결정부(2530)는 현재 블록과 관련된 복수의 기본 MV 후보 블록의 움직임 벡터에 기초하여 하나 또는 복수의 기본 MV를 결정할 수 있다.
복수의 기본 MV 후보 블록의 위치 및 개수는 기본 움직임 벡터 결정부(2530)에 미리 결정되어 있을 수 있다. 상기 복수의 기본 MV 후보 블록은, 현재 블록과 연관된, 이전에 복호화된 공간적 블록 및/또는 이전에 복호화된 시간적 블록을 포함할 수 있다. 공간적 블록은 현재 블록과 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다. 시간적 블록은 현재 블록의 POC(Picture Order Count)와 상이한 POC를 갖는 참조 영상 내에서 현재 블록과 동일한 지점에 위치한 블록과, 동일 위치의 블록에 대해 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다.
도 29는 현재 블록(2900)과 연관된 공간적 블록과 시간적 블록을 예시하고 있다. 도 29를 참조하면, 현재 블록(2900)에 대해 공간적으로 관련있는 공간적 블록은, 좌측 상부 블록(a), 우측 상부 블록(b), 상부 좌측 블록(c), 상부 우측 블록(d), 좌상단 외곽 블록(e), 우상단 외곽 블록(f), 좌하단 외곽 블록(g), 우하단 외곽 블록(h), 좌측 하부 블록(i), 우측 하부 블록(j), 하부 좌측 블록(k), 하부 우측 블록(l), 좌측 블록(m), 우측 블록(n), 상부 블록(o) 및 하부 블록(p)을 포함할 수 있다. 또한, 현재 블록(2900)에 대해 시간적으로 관련있는 시간적 블록은 현재 블록(2900)과 다른 POC를 갖는 참조 프레임에 속한 동일 위치 블록(q) 및 동일 위치 블록(q)의 인접 블록(r)을 포함할 수 있다. 도 29에 도시된 현재 블록과 연관된 공간적 블록 및 시간적 블록은 하나의 예시이며, 복수의 기본 MV 후보 블록은 도 29에 도시된 블록들 중 적어도 일부를 포함할 수 있다.
기본 움직임 벡터 결정부(2530)는 복수의 기본 MV 후보 블록의 움직임 벡터들 중 적어도 일부를 이용하여 현재 블록의 기본 MV를 결정할 수 있다.
도 30은 기본 MV를 결정하기 위한 기본 MV 후보 블록들을 도시하는 도면이다.
도 30을 참조하면, 기본 MV 후보 블록들은 현재 블록(2900)의 좌측 블록(C0), 좌측 상부 블록(C1), 상부 좌측 블록(C2), 상부 우측 블록(C3), 좌상단 외곽 블록(C4) 및 좌하단 외곽 블록(C5)을 포함할 수 있다. 그러나, 도시된 기본 MV 후보 블록의 개수 및 위치는 예시일 뿐이며, 당업자에게 자명한 범위 내에서 다양하게 변경될 수 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 기본 MV 후보 블록들에 대해 우선 순위를 설정하고, 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단할 수 있다. 기본 움직임 벡터 결정부(2530)는 움직임 벡터의 존재가 확인되는 순서대로 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수 있다. 상기 우선 순위는 기본 움직임 벡터 결정부(2530)에 미리 결정되어 있을 수도 있고, 기본 움직임 벡터 결정부(2530)가 임의의 방법으로 결정할 수도 있다.
기본 움직임 벡터 결정부(2530)는 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하면서 가장 먼저 움직임 벡터의 존재가 확인된 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수 있다.
또한, 기본 움직임 벡터 결정부(2530)는 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하면서 움직임 벡터의 존재가 확인되는 순서대로 복수의 기본 MV 후보 블록의 움직임 벡터를 복수의 기본 MV로 결정할 수도 있다.
예를 들어, C0 블록으로부터 C5 블록까지의 순서대로 우선 순위가 설정되고, C1 블록, C2 블록 및 C4 블록에 움직임 벡터가 존재한다고 가정한다. 기본 움직임 벡터 결정부(2530)는 하나의 기본 MV를 결정하고자 하는 경우, 움직임 벡터를 가지고 있으면서, 가장 높은 우선 순위를 갖는 C1 블록의 움직임 벡터를 기본 MV로 결정할 수 있다. 또한, 기본 움직임 벡터 결정부(2530)는 두 개의 기본 MV를 결정하고자 하는 경우, 움직임 벡터를 가지고 있으면서, 가장 높은 우선 순위를 갖는 C1 블록의 움직임 벡터와 두 번째 우선 순위를 갖는 C2 블록의 움직임 벡터를 두 개의 기본 MV로 결정할 수 있다.
기본 움직임 벡터 결정부(2530)는 현재 블록의 참조 영상 인덱스와 복수의 기본 MV 후보 블록의 참조 영상 인덱스를 비교하여, 복수의 기본 MV 후보 블록에 대해 설정된 우선 순위를 변경할 수도 있다. 예를 들어, 기본 움직임 벡터 결정부(2530)는 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 우선 순위를 높게 변경할 수도 있다. 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 개수가 복수인 경우, 복수의 기본 MV 후보 블록 사이의 순위는 미리 설정된 우선 순위를 따르도록 할 수 있다.
예를 들어, C0 블록으로부터 C5 블록까지의 순서대로 우선 순위가 설정되어 있고, C5 블록의 참조 영상 인덱스만이 현재 블록의 참조 영상 인덱스와 동일한 경우, C5 블록을 1순위로 변경할 수 있다. 이에 따라, C5 블록, C0 블록, C1 블록, C2 블록, C3 블록, C4 블록의 순위로 우선 순위가 변경된다. 또한, 예를 들어, C0 블록으로부터 C5 블록까지의 순서대로 우선 순위가 설정되어 있고, C4 블록의 참조 영상 인덱스 및 C5 블록의 참조 영상 인덱스가 현재 블록의 참조 영상 인덱스와 동일한 경우, C4 블록과 C5 블록의 우선 순위를 상승시킨다. 그리고, 원래의 우선 순위에 따라 C4 블록의 우선 순위가 C5 블록의 우선 순위보다 앞서도록, C4 블록, C5 블록, C0 블록, C1 블록, C2 블록, C3 블록의 순위로 우선 순위를 변경할 수 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 우선 순위에 따라 각 기본 MV 후보 블록의 참조 영상 인덱스와 현재 블록의 참조 영상 인덱스의 동일 여부를 판단하면서, 참조 영상 인덱스가 동일한 것으로 판단된 순서대로 적어도 하나의 기본 MV 후보 블록의 움직임 벡터 각각을 적어도 하나의 기본 MV로 결정할 수도 있다. 만약, 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록이 없는 경우, 기본 움직임 벡터 결정부(2530)는 우선 순위에 따라 각 기본 MV 후보 블록에 움직임 벡터가 존재하는지를 판단하면서 움직임 벡터의 존재가 판단된 순서대로 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 적어도 하나의 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 우선 순위의 설정 여부와는 무관하게 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 하나 이상의 기본 MV 후보 블록의 움직임 벡터 각각을 하나 이상의 기본 MV로 결정할 수도 있다.
또한, 일 실시예에서, 기본 움직임 벡터 결정부(2530)는 기본 MV 후보 블록들의 움직임 벡터의 크기에 기초하여, 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 각각의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다. 예를 들어, 기본 움직임 벡터 결정부(2530)는 기본 MV 후보 블록들 중 움직임 벡터의 크기가 큰 순서대로 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 각각의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수 있다. 또한, 예를 들어, 기본 MV 후보 블록들 중 움직임 벡터의 크기가 작은 순서대로 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 각각의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 복수의 기본 MV 후보 블록의 움직임 벡터들을 조합한 값, 예를 들어, 움직임 벡터들의 평균 값 또는 중간(median) 값을 기본 MV로 결정할 수도 있다. 도 30을 참조하면, C0 블록 내지 C5 블록 모두에 움직임 벡터가 존재하는 경우, 이들 움직임 벡터들의 평균 값 또는 중간 값이 기본 MV로 결정될 수 있다. 만약, C0 블록, C1 블록 및 C2 블록에만 움직임 벡터가 존재하는 경우, 이들 C0 블록의 움직임 벡터, C1 블록의 움직임 벡터 및 C2 블록의 움직임 벡터의 평균 값 또는 중간 값이 기본 MV로 결정될 수도 있다.
또한, 일 실시예에서, 기본 움직임 벡터 결정부(2530)는 현재 블록을 기준으로 특정 방향에 위치하는 기본 MV 후보 블록으로부터 상기 특정 방향에 대응하는 기본 MV를 결정할 수도 있다. 일 예로서, 좌측 방향에 대응하는 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2530)는 현재 블록을 기준으로 좌측 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터에 기초하여 기본 MV를 결정할 수 있다. 또한, 일 예로서, 상부 방향에 대응하는 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2530)는 현재 블록을 기준으로 상부 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터에 기초하여 기본 MV를 결정할 수도 있다.
도 30을 참조하면, 좌측 방향에 대응하는 기본 MV 후보 블록은 C0 블록, C1 블록, C4 블록 및 C5 블록이 될 수 있고, 기본 움직임 벡터 결정부(2530)는 C0 블록, C1 블록, C4 블록 및 C5 블록 중 적어도 하나의 움직임 벡터를 이용하여 좌측 방향에 대응하는 기본 MV를 결정할 수 있다. 기본 움직임 벡터 결정부(2530)는 C0 블록, C1 블록, C4 블록 및 C5 블록에 대해 우선 순위에 따라 움직임 벡터의 존재 여부를 판단하면서, 가장 먼저 움직임 벡터의 존재가 확인된 블록의 움직임 벡터를 좌측 방향에 대응하는 기본 MV로 결정할 수도 있다.
또한, 상부 방향에 대응하는 기본 MV 후보 블록은 C2 블록, C3 블록 및 C4 블록이 될 수 있고, 기본 움직임 벡터 결정부(2530)는 C2 블록, C3 블록 및 C4 블록 중 적어도 하나의 움직임 벡터를 이용하여 상부 방향에 대응하는 기본 MV를 결정할 수 있다. 기본 움직임 벡터 결정부(2530)는 C2 블록, C3 블록 및 C4 블록에 대해 우선 순위에 따라 움직임 벡터의 존재 여부를 판단하면서, 가장 먼저 움직임 벡터의 존재가 확인된 블록의 움직임 벡터를 상부 방향에 대응하는 기본 MV로 결정할 수도 있다.
특정 방향에 대응하는 기본 MV는 후술하는 바와 같이, 이용 가능성이 없는 PMV 블록에 할당될 수 있는데, 이때, 할당되는 기본 MV의 종류는 현재 블록을 기준으로 PMV 후보 블록이 위치하는 방향에 따라 달라질 수 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는, 적어도 하나의 기본 MV 후보 블록 중, 이전에 복호화된 픽처, 이전에 복호화된 슬라이스 또는 이전에 복호화된 최대 부호화 단위에서 예측 움직임 벡터로서 가장 많이 선택된 위치의 기본 MV 후보 블록의 움직임 벡터를 현재 블록의 기본 MV로 결정할 수도 있다. 예를 들어, 도 30에 도시된 좌측 블록(C0), 좌측 상부 블록(C1), 상부 좌측 블록(C2), 상부 우측 블록(C3), 좌상단 외곽 블록(C4) 및 좌하단 외곽 블록(C5) 중 이전에 복호화된 픽처에서 예측 움직임 벡터로서 가장 많이 선택된 블록이 좌측 블록인 경우, 기본 움직임 벡터 결정부(2530)는 C0 블록의 움직임 벡터를 이용하여 기본 MV를 결정할 수 있다. 복수의 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2530)는 이전에 복호화된 픽처, 슬라이스 또는 최대 부호화 단위에서 예측 움직임 벡터로서 많이 선택된 순서대로 복수의 기본 MV 후보 블록을 선택하고, 선택된 각각의 기본 MV 후보 블록의 움직임 벡터를 이용하여 복수의 기본 MV를 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 인터 예측을 통해 부호화된 현재 블록에 대한 예측 움직임 벡터를 결정하기 전에 미리 기본 MV를 결정할 수도 있다. 또는, 후술하는 PMV 후보 블록에 대한 이용 가능성 판단에 따라, 기본 MV가 필요한 경우에 기본 MV를 결정할 수도 있다. 또는, 기본 움직임 벡터 결정부(2530)는 비트스트림 획득부(2510)가 획득한 비트스트림에 현재 블록에 대한 기본 MV가 결정되었다는 정보가 포함되어 있는 경우, 현재 블록에 대한 기본 MV를 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 복수의 기본 MV 후보 블록 중 소정의 기준에 따라 선택된 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 이용하여 기본 MV를 결정할 때, 상기 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 그대로 기본 MV로 결정할 수도 있고, 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 변경하고, 변경된 움직임 벡터를 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 복수의 기본 MV 후보 블록 중 소정의 기준에 따라 선택된 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 이용하여 기본 MV를 결정할 때, 상기 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 현재 블록의 참조 영상 인덱스를 고려하여 스케일(scale)하고, 스케일된 움직임 벡터를 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2530)는 DMVD(decoder side MV derivation)을 통해 도출된 움직임 벡터를 현재 블록의 기본 MV로 결정할 수도 있다. DMVD는 예를 들어, 템플릿 매칭(template matching) 방법, 양방향 매칭(bilateral matching) 방법을 포함할 수 있다.
예측 복호화부(2550)는 적어도 하나의 PMV 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 실시예에서, 현재 블록의 예측 움직임 벡터는 현재 블록과 관련된, 이전에 복호화된 공간적 블록 및/또는 이전에 복호화된 시간적 블록을 포함할 수 있다. 적어도 하나의 PMV 후보 블록은 도 29에 도시된 현재 블록과 공간적으로 관련 있는 블록들과 시간적으로 관련있는 블록들 중에서 선택될 수 있다.
현재 블록의 예측 움직임 벡터를 결정하기 위해 이용되는 적어도 하나의 PMV 후보 블록의 위치 및 개수는, 앞서 기본 MV를 결정하기 위해 이용되는 복수의 기본 MV 후보 블록의 위치 및 개수와 동일할 수 있다. 일 실시예에서, 적어도 하나의 PMV 후보 블록과 적어도 하나의 기본 MV 후보 블록은 위치 및 개수 중 적어도 하나에 있어 서로 상이할 수도 있다.
PMV 후보 블록의 개수 및 위치는 예측 복호화부(2550)에 미리 결정되어 있을 수도 있고, 예측 복호화부(2550)가 소정 기준에 따라 픽처 단위, 슬라이스 단위, 블록 단위별로 결정할 수도 있다. 일 실시예에서, PMV 후보 블록의 개수 및 위치는 비트스트림에 포함된 정보, 예를 들어, 후술하는 현재 블록의 움직임 벡터 해상도에 대한 정보에 따라 결정될 수도 있다.
예측 복호화부(2550)는 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 실시예에서, PMV 후보 블록의 움직임 벡터의 이용 가능성은, PMV 후보 블록에 움직임 벡터가 존재하는지 여부, 및 이용 가능성이 있는 것으로 먼저 판단된 다른 PMV 후보 블록의 움직임 벡터와 동일한 움직임 벡터를 가지고 있는지 여부 중 적어도 하나를 기준으로 하여 판단될 수 있다.
어느 블록이 인트라 예측된 경우는 해당 블록에 움직임 벡터가 존재하지 않는 것으로 판단할 수 있다. 또한, 이용 가능성을 판단하는데 있어, 어느 하나의 움직임 벡터와 다른 하나의 움직임 벡터가 동일한 경우는, 움직임 벡터와 참조 영상 인덱스가 모두 동일한 경우를 의미할 수 있다.
예를 들어, 어느 하나의 PMV 후보 블록에 움직임 벡터가 없는 경우, 상기 어느 하나의 PMV 후보 블록은 이용 가능성이 없는 것으로 판단될 수 있다. 또한, 예를 들어, 어느 하나의 PMV 후보 블록의 움직임 벡터가, 이용 가능성이 있는 것으로 먼저 판단된 다른 하나의 PMV 후보 블록의 움직임 벡터와 동일한 경우, 상기 어느 하나의 PMV 후보 블록은 이용 가능성이 없는 것으로 판단될 수 있다. 움직임 벡터의 동일성 여부에 따라 이용 가능성을 판단하는 것은 일종의 프루닝(pruning)이 적용되는 것으로 볼 수 있다.
일 실시예에서, 예측 복호화부(2550)는 이용 가능성의 판단에 따라, 적어도 하나의 PMV 후보 블록 각각의 움직임 벡터로부터 소정 개수의 예측 후보들을 포함하는 예측 후보 리스트를 구성할 수 있다. 또한, 예측 복호화부(2550)는 예측 후보 리스트에 포함된 예측 후보들 중 하나 이상의 예측 후보를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다. 예측 복호화부(2550)는 예측 후보 리스트에 포함된 예측 후보들 중 비트스트림에 포함된 정보로부터 확인된 하나 이상의 예측 후보를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 예로서, 예측 복호화부(2550)는 하나의 예측 후보를 그대로 현재 블록의 예측 움직임 벡터로 결정하거나, 하나의 예측 후보를 변경한 후 변경된 예측 후보를 현재 블록의 예측 움직임 벡터로 결정할 수 있다. 또한, 예측 복호화부(2550)는 복수의 예측 후보를 조합한 값, 예를 들어, 복수의 예측 후보의 평균 값 또는 중간 값을 현재 블록의 예측 움직임 벡터로 결정할 수 있다.
예측 복호화부(2550)는 각 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하면서 예측 후보 리스트를 구성할 수 있다.
일 예로서, 예측 복호화부(2550)는 우선 순위에 따라 각 PMV 후보 블록의 이용 가능성을 판단할 수 있다. 도 31을 참조하여 설명하면, A0 블록, A1 블록, B0 블록, B1 블록, B2 블록, C3 블록, H 블록의 순으로 우선 순위가 설정되어 있는 경우, 가장 높은 우선 순위를 갖는 A0 블록에 움직임 벡터가 포함되어 있으면, A0 블록의 움직임 벡터를 예측 후보로서 예측 후보 리스트에 포함시킬 수 있다. 다음으로, 두 번째 높은 우선 순위를 갖는 A1 블록에 움직임 벡터가 존재하지 않거나, 존재하더라도 A1 블록의 움직임 벡터가 이미 예측 후보 리스트에 포함된 A0의 움직임 벡터와 동일한 경우에는, A1 블록은 이용 가능성이 없는 것으로 판단하고, 다음 우선 순위의 B0 블록의 이용 가능성을 판단할 수 있다. 예측 복호화부(2550)는 소정 개수의 예측 후보를 포함하는 예측 후보 리스트가 구성될 때까지, 우선 순위에 따라 A0 블록으로부터 H 블록까지 각 블록의 이용 가능성을 판단할 수 있다. 예측 복호화부(2550)는 A0 블록으로부터 H 블록까지 이용 가능성을 판단하면서 예측 후보 리스트를 구성한 후, 예측 후보 리스트에 포함된 예측 후보의 개수가 소정 개수 미만인 경우에는 기본 MV를 예측 후보 리스트에 포함시킬 수 있다.
예를 들어, 예측 후보 리스트에 포함되어야 할 예측 후보의 소정 개수가 3개이고, 이용 가능성의 판단에 따라 구성된 예측 후보 리스트에 예측 후보가 1개 포함된 경우, 예측 복호화부(2550)는 2개의 기본 MV를 예측 후보 리스트에 포함시킬 수 있다. 또한, 이용 가능성의 판단에 따라 구성된 예측 후보 리스트에 예측 후보가 2개 포함된 경우에는, 예측 복호화부(2550)는 1개의 기본 MV를 예측 후보 리스트에 포함시킬 수 있다.
상기 예측 후보 리스트에 포함되어야 할 예측 후보의 소정 개수는 미리 설정될 수 있다. 일 실시예에서, 기본 움직임 벡터 결정부(2530)는 예측 후보 리스트에 포함되어야 할 예측 후보의 소정 개수에 대응하는 개수의 기본 MV를 결정할 수 있다.
일 실시예에서, 예측 복호화부(2550)는 각각의 PMV 후보 블록의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록에 기본 MV를 할당한 후, 각 PMV 후보 블록의 우선 순위에 따라 예측 후보 리스트를 구성할 수도 있다. 예를 들어, 도 31의 A0 블록부터 H 블록까지 이용 가능성을 판단하고, 만약, A1 블록의 이용 가능성이 없는 것으로 판단되면 A1 블록에 기본 MV를 할당할 수 있다. 그리고, A0 블록부터 H 블록까지의 우선 순위대로 각 블록의 움직임 벡터를 예측 후보 리스트에 포함시킬 수 있다.
예측 복호화부(2550)는 기본 MV가 포함된 예측 후보 리스트 또는 기본 MV가 포함되지 않은 예측 후보 리스트의 적어도 하나의 예측 후보를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
현재 블록의 예측 움직임 벡터를 결정하는 일 실시예에서, 예측 복호화부(2550)는 미리 결정된 위치의 적어도 하나의 PMV 후보 블록의 움직임 벡터를 기초로 현재 블록의 예측 움직임 벡터를 결정할 수도 있다. 예측 복호화부(2550)는 미리 결정된 위치의 적어도 하나의 PMV 후보 블록의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록에 대해 기본 MV를 할당할 수 있다. 여기서, PMV 후보 블록에 대해 기본 MV를 할당한다는 것은, PMV 후보 블록의 움직임 벡터로서 기본 MV를 이용한다는 것을 의미할 수 있다.
도 32에 도시된 바와 같이, 현재 블록의 예측 움직임 벡터가 D1 블록의 움직임 벡터, D2 블록의 움직임 벡터 및 D3 블록의 움직임 벡터의 조합 값으로 결정되는 경우, D2 블록에 움직임 벡터가 존재하지 않으면, 기본 MV를 D2 블록의 움직임 벡터로 할당할 수 있다. 일 실시예에서, 기본 움직임 벡터 결정부(2530)는 미리 결정된 위치의 PMV 후보 블록의 개수와 동일한 개수의 기본 MV를 결정할 수 있다.
또한, 일 실시예에서, 예측 복호화부(2550)는 미리 결정된 위치의 하나의 PMV 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수도 있다. 이 경우, 예측 복호화부(2550)는 하나의 PMV 후보 블록의 이용 가능성이 없는 것으로 판단된 경우, 기본 MV를 하나의 PMV 후보 블록에 할당할 수 있다. 예측 복호화부(2550)는 상기 하나의 PMV 후보 블록에 할당된 기본 MV를 그대로 현재 블록의 예측 움직임 벡터로 결정하거나, 상기 기본 MV를 변경하고, 변경된 기본 MV를 현재 블록의 예측 움직임 벡터로 결정할 수도 있다.
일 실시예에서, 예측 복호화부(2550)는 미리 결정된 위치의 PMV 후보 블록들 중 이용 가능성이 없는 PMV 후보 블록에 대해 기본 MV를 할당할 수 있는데, 이용 가능성이 없는 PMV 후보 블록의 개수가 복수인 경우, 이용 가능성이 없는 복수의 PMV 후보 블록 각각에 복수의 기본 MV를 할당할 수도 있다.
예를 들어, 도 32에서, 하나의 D1 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정하는 방식에서, D1 블록에 움직임 벡터가 존재하지 않으면, 예측 복호화부(2550)는 기본 MV를 D1 블록에 할당할 수 있다. 또한, D1 블록, D2 블록 및 D3 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정하는 방식에서, D1 블록과 D2 블록에 움직임 벡터가 존재하지 않는 경우, 예측 복호화부(2550)는 복수의 기본 MV를 D1 블록 및 D2 블록 각각에 할당할 수도 있다.
기본 MV를 이용 가능성이 없는 PMV 후보 블록에 할당하는 경우, PMV 후보 블록의 위치가 고려될 수도 있다. 전술한 바와 같이, 기본 움직임 벡터 결정부(2530)는 현재 블록을 기준으로 특정 방향에 위치하는 기본 MV 후보 블록으로부터 상기 특정 방향에 대응하는 기본 MV를 결정할 수 있는데, 예측 복호화부(2550)는 현재 블록을 기준으로 이용 가능성이 없는 PMV 후보 블록이 위치하는 방향을 고려하여, 그에 대응하는 기본 MV를 할당할 수 있다.
예를 들어, 도 32에서 현재 블록을 기준으로 좌측 방향에 위치하는 D1 블록에 움직임 벡터가 존재하지 않는 경우, 예측 복호화부(2550)는 좌측 방향에 대응하여 결정된 기본 MV를 D1 블록에 할당하고, 현재 블록을 기준으로 상부 방향에 위치하는 D2 블록에 움직임 벡터가 존재하지 않는 경우, 예측 복호화부(2550)는 상부 방향에 대응하여 결정된 기본 MV를 D2 블록에 할당할 수 있다. D3 블록에 움직임 벡터가 존재하지 않는 경우에는, 상부 방향에 대응하여 결정된 기본 MV를 할당하거나, 복수의 기본 MV 중 적어도 일부의 기본 MV의 조합으로 결정된 값을 D3 블록에 할당될 수도 있다.
일 실시예에서, 전술한 적어도 하나의 PMV 후보 블록의 개수 및 종류는 현재 블록의 움직임 벡터 해상도(motion vector resolution, 이하, MVR)에 따라 결정될 수 있다. 예측 복호화부(2550)는 소정의 조건에 따라 현재 블록의 MVR을 직접 결정할 수도 있고, 비트스트림 획득부(2510)가 획득한 비트스트림에 포함된 정보를 참조하여 결정할 수도 있다.
일 실시예에서, 비트스트림 획득부(2510)는 MVR에 대한 정보를 인터 예측된 부호화 단위마다 획득할 수도 있다. 도 36은 비트스트림으로부터 MVR에 대한 정보를 획득하는 신택스를 나타내는 도면이다.
도 36을 참조하면, a 구문에서 현재 부호화 단위를 포함하는 슬라이스가 I 슬라이스가 아니라면, b 구문에서 cu_skip_flag가 추출된다. cu_skip_flag는 현재 부호화 단위에 대해 스킵 모드를 적용할지 여부를 나타낸다. c 구문에서 스킵 모드의 적용이 확인되면, 현재 부호화 단위를 스킵 모드에 따라 처리하게 된다. d 구문에서 스킵 모드의 미적용이 확인되면, e 구문에서 pred_mode_flag가 추출된다. pred_mode_flag는 현재 부호화 단위가 인트라 예측되었는지, 인터 예측 되었는지를 나타낸다. f 구문에서 현재 부호화 단위가 인트라 예측된 것이 아니라면, 즉, 인터 예측되었다면 g 구문에서 pred_mvr_idx가 추출된다. pred_mvr_idx는 현재 부호화 단위의 MVR을 나타내는 인덱스이며, 각 인덱스에 대응하는 MVR은 아래의 표 2와 같다.
MVR Index 0 1 2 3 4
Resolution (R) in pel 1/4 1/2 1 2 4
현재 블록의 MVR은 참조 영상(또는 보간된 참조 영상)에 포함된 화소들 중 현재 블록의 움직임 벡터가 가리킬 수 있는 화소의 위치의 정밀도를 의미할 수 있다. 현재 블록의 MVR은 적어도 하나의 후보 MVR 중에서 선택될 수 있다. 적어도 하나의 후보 MVR은 예를 들어, 1/8 화소 단위의 MVR, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR 및 8 화소 단위의 MVR 중 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니다.
현재 블록의 예측 움직임 벡터를 결정하는데 이용되는 PMV 후보 블록의 개수 및 종류는 현재 블록의 MVR의 종류에 따라 미리 결정될 수 있다. 예를 들어, 현재 블록의 MVR이 1/4 화소 단위 MVR인 경우, PMV 후보 블록은 좌측 블록 및 상부 블록을 포함할 수 있고, 현재 블록의 MVR이 1 화소 단위 MVR인 경우, PMV 후보 블록은 좌측 하부 블록을 포함할 수 있다. 또한, 현재 블록의 MVR이 2 화소 단위 MVR인 경우, PMV 후보 블록은 우측 블록을 포함할 수 있다. 이와 같이, 현재 블록의 MVR이 결정되면, 그에 따라 예측 움직임 벡터를 결정하기 위해 이용되는 PMV 후보 블록의 종류 및 개수가 자동적으로 결정될 수 있다. 일 실시예에서, 각각의 MVR에 대해, 예측 움직임 벡터를 결정하기 위한 PMV 후보 블록의 개수는 1개이되, 그 위치가 MVR마다 상이할 수도 있다.
현재 블록의 MVR이 결정되고, 그에 따라 PMV 후보 블록이 결정되면, 전술한 바와 같이, 예측 복호화부(2550)는 각각의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단한다. 그리고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록의 움직임 벡터로서 기본 MV를 할당하고, 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
기본 MV를 PMV 후보 블록에 할당할 때, 예측 복호화부(2550)는 현재 블록에 대해 선택 가능한 후보 MVR 중 최소 MVR과, 현재 블록의 MVR을 비교하여 기본 MV를 조정할 수도 있다. 기본 MV는 기본 MV 후보 블록의 움직임 벡터로부터 결정된 것인데, 기본 MV 후보 블록의 움직임 벡터는 최소 MVR에 따라 보간된 영상 내의 화소 좌표를 가리키도록 예측된 것이므로, 현재 블록의 MVR에 대응시키기 위해 기본 MV를 조정하는 것이다.
현재 블록의 MVR에 따라 예측 움직임 벡터의 결정을 위해 이용되는 PMV 후보 블록의 개수가 하나이고, 하나의 PMV 후보 블록의 이용 가능성이 없는 것으로 판단되어 하나의 PMV 후보 블록에 기본 MV가 할당된 경우에는 기본 MV의 조정 과정이 필요하다. 그러나, 예측 움직임 벡터의 결정을 위해 이용되는 PMV 후보 블록의 개수가 하나이고, 하나의 PMV 후보 블록의 이용 가능성이 있는 경우, 그리고, 예측 움직임 벡터의 결정을 위해 이용되는 PMV 후보 블록의 개수가 복수이고, 복수의 PMV 후보 블록 중 일부 PMV 후보 블록의 이용 가능성이 있는 경우에는, 이용 가능성이 있는 PMV 후보 블록의 움직임 벡터가 예측 움직임 벡터를 결정하는데 이용되므로, 이용 가능성이 있는 것으로 판단된 PMV 후보 블록의 움직임 벡터도 기본 MV와 같은 조정 과정이 필요하다.
기본 MV를 조정하는 과정에 대해서는 도 33 내지 도 35를 참조하여 상세히 설명한다.
예측 복호화부(2550)는 현재 블록의 예측 움직임 벡터가 결정되면, 예측 움직임 벡터로부터 현재 블록의 움직임 벡터를 획득할 수 있다. 예측 복호화부(2550)는 현재 블록의 예측 모드가 스킵(skip) 모드 또는 머지(merge) 모드인 경우 예측 움직임 벡터를 현재 블록의 움직임 벡터로 결정하고, 현재 블록의 예측 모드가 AMVP(advanced motion vector prediction) 모드인 경우에는 잔차 움직임 벡터와 예측 움직임 벡터를 합하여 현재 블록의 움직임 벡터를 획득할 수 있다.
또한, 예측 복호화부(2550)는 현재 블록의 MVR과 최소 MVR을 비교하여, 비트스트림으로부터 획득된 잔차 움직임 벡터를 업스케일하고, 업스케일된 잔차 움직임 벡터와 예측 움직임 벡터를 합하여 현재 블록의 움직임 벡터를 획득할 수도 있다. 잔차 움직임 벡터의 업스케일에 대해서는 후술한다.
도 26은 일 실시예에 따른 움직임 벡터 복호화 방법을 설명하기 위한 순서도이다.
S2610 단계에서, 움직임 벡터 복호화 장치(2500)는 현재 블록의 예측 움직임 벡터를 결정한다.
움직임 벡터 복호화 장치(2500)는 현재 블록과 관련된 적어도 하나의 PMV 후보 블록을 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
전술한 바와 같이, 움직임 벡터 복호화 장치(2500)는 적어도 하나의 PMV 후보 블록의 움직임 벡터에 대해 이용 가능성을 판단한다. 움직임 벡터 복호화 장치(2500)는 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 있는 경우, 복수의 기본 MV 후보 블록으로부터 결정된 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
현재 블록의 MVR이 결정된 경우, 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR에 따라 조정된 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수도 있다.
S2620 단계에서, 움직임 벡터 복호화 장치(2500)는 현재 블록의 예측 움직임 벡터에 기초하여 현재 블록의 움직임 벡터를 획득한다.
움직임 벡터 복호화 장치(2500)는 현재 블록의 예측 움직임 벡터를 현재 블록의 움직임 벡터로 획득할 수도 있고, 예측 움직임 벡터에 잔차 움직임 벡터를 합한 결과를 현재 블록의 움직임 벡터로 획득할 수도 있다. 일 실시예에서, 현재 블록의 MVR이 결정된 경우, 움직임 벡터 복호화 장치(2500)는 잔차 움직임 벡터를 선택적으로 업스케일 한 후, 예측 움직임 벡터에 합하여 현재 블록의 움직임 벡터를 획득할 수도 있다.
도 27은 일 실시예에 따른 움직임 벡터 부호화 장치(2700)의 구성을 나타내는 블록도이다.
도 27을 참조하면, 일 실시예에 따른 움직임 벡터 부호화 장치(2700)는 기본 움직임 벡터 결정부(2710), 예측 부호화부(2730) 및 비트스트림 생성부(2750)를 포함할 수 있다. 움직임 벡터 부호화 장치(2700)는 앞서 설명한 영상 부호화 장치(200)에 포함될 수 있다. 예를 들어, 움직임 벡터 부호화 장치(2700)의 기본 움직임 벡터 결정부(2710) 및 예측 부호화부(2730)는 영상 부호화 장치(200)의 부호화부(220)에 포함될 수 있고, 움직임 벡터 부호화 장치(2700)의 비트스트림 생성부(2750)는 영상 부호화 장치(200)의 비트스트림 생성부(210)에 포함될 수 있다.
기본 움직임 벡터 결정부(2710)는 현재 블록의 기본 MV를 결정할 수 있다.
기본 MV는 현재 블록의 예측 움직임 벡터를 결정하는데 이용될 수 있다. 일 예에서, 적어도 하나의 PMV 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정하는 방식에 있어, 적어도 하나의 PMV 후보 블록 중 움직임 벡터의 이용 가능성이 없는 PMV 후보 블록이 있는 경우, 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터가 결정될 수 있다.
기본 움직임 벡터 결정부(2710)는 현재 블록과 관련된 복수의 기본 MV 후보 블록의 움직임 벡터에 기초하여 하나 또는 복수의 기본 MV를 결정할 수 있다.
복수의 기본 MV 후보 블록의 위치 및 개수는 기본 움직임 벡터 결정부(2710)에 미리 결정되어 있을 수 있다. 상기 복수의 기본 MV 후보 블록은, 현재 블록과 연관된, 이전에 부호화된 공간적 블록 및/또는 이전에 부호화된 시간적 블록을 포함할 수 있다. 공간적 블록은 현재 블록과 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다. 시간적 블록은 현재 블록의 POC(Picture Order Count)와 상이한 POC를 갖는 참조 영상 내에서 현재 블록과 동일한 지점에 위치한 블록과, 동일 위치의 블록에 대해 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 기본 MV 후보 블록들에 대해 우선 순위를 설정하고, 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단할 수 있다. 기본 움직임 벡터 결정부(2710)는 움직임 벡터의 존재가 확인되는 순서대로 적어도 하나의 기본 MV 후보 블록의 움직임 벡터에 기초하여 적어도 하나의 기본 MV를 결정할 수 있다.
기본 움직임 벡터 결정부(2710)는 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하면서 가장 먼저 움직임 벡터의 존재가 확인된 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수 있다.
또한, 기본 움직임 벡터 결정부(2710)는 우선 순위에 따라 각 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하면서 움직임 벡터의 존재가 확인되는 순서대로 복수의 기본 MV 후보 블록의 움직임 벡터를 복수의 기본 MV로 결정할 수도 있다.
기본 움직임 벡터 결정부(2710)는 현재 블록의 참조 영상 인덱스와 복수의 기본 MV 후보 블록의 참조 영상 인덱스를 비교하여, 복수의 기본 MV 후보 블록에 대해 설정된 우선 순위를 변경할 수도 있다. 예를 들어, 기본 움직임 벡터 결정부(2710)는 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 우선 순위를 높게 변경할 수도 있다. 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 개수가 복수인 경우, 복수의 기본 MV 후보 블록 사이의 순위는 미리 설정된 우선 순위를 따르도록 할 수 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 우선 순위에 따라 각 기본 MV 후보 블록의 참조 영상 인덱스와 현재 블록의 참조 영상 인덱스의 동일 여부를 판단하면서, 참조 영상 인덱스가 동일한 것으로 판단된 순서대로 적어도 하나의 기본 MV 후보 블록의 움직임 벡터 각각을 적어도 하나의 기본 MV로 결정할 수도 있다. 만약, 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록이 없는 경우, 기본 움직임 벡터 결정부(2710)는 우선 순위에 따라 각 기본 MV 후보 블록에 움직임 벡터가 존재하는지를 판단하면서 움직임 벡터의 존재가 판단된 순서대로 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 적어도 하나의 기본 MV로 결정할 수도 있다. 일 실시예에서, 기본 움직임 벡터 결정부(2710)는 우선 순위의 설정 여부와는 무관하게 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 하나 이상의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다.
또한, 일 실시예에서, 기본 움직임 벡터 결정부(2710)는 기본 MV 후보 블록들의 움직임 벡터의 크기에 기초하여, 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 소정 개수의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다. 예를 들어, 기본 움직임 벡터 결정부(2710)는 기본 MV 후보 블록들 중 움직임 벡터의 크기가 큰 순서대로 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 소정 개수의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수 있다. 또한, 예를 들어, 기본 MV 후보 블록들 중 움직임 벡터의 크기가 작은 순서대로 소정 개수의 기본 MV 후보 블록을 선택하고, 선택된 소정 개수의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 복수의 기본 MV 후보 블록의 움직임 벡터들을 조합한 값, 예를 들어, 움직임 벡터들의 평균 값 또는 중간(median) 값을 기본 MV로 결정할 수도 있다.
또한, 일 실시예에서, 기본 움직임 벡터 결정부(2710)는 현재 블록을 기준으로 특정 방향에 위치하는 기본 MV 후보 블록으로부터 상기 특정 방향에 대응하는 기본 MV를 결정할 수도 있다. 일 예로서, 좌측 방향에 대응하는 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2710)는 현재 블록을 기준으로 좌측 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터에 기초하여 기본 MV를 결정할 수 있다. 또한, 일 예로서, 상부 방향에 대응하는 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2710)는 현재 블록을 기준으로 상부 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터에 기초하여 기본 MV를 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는, 적어도 하나의 기본 MV 후보 블록 중, 이전에 부호화된 픽처, 이전에 부호화된 슬라이스 또는 이전에 부호화된 최대 부호화 단위에서 예측 움직임 벡터로서 가장 많이 선택된 위치의 기본 MV 후보 블록의 움직임 벡터를 기본 MV로 결정할 수도 있다. 복수의 기본 MV를 결정하고자 하는 경우, 기본 움직임 벡터 결정부(2710)는 이전에 부호화된 픽처, 슬라이스 또는 최대 부호화 단위에서 예측 움직임 벡터로서 많이 선택된 순서대로 복수의 기본 MV 후보 블록을 선택하고, 선택된 각각의 기본 MV 후보 블록의 움직임 벡터를 이용하여 복수의 기본 MV를 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 현재 블록에 대한 예측 움직임 벡터를 결정하기 전에 미리 기본 MV를 결정할 수도 있다. 또는, 후술하는 PMV 후보 블록에 대한 이용 가능성 판단에 따라, 기본 MV가 필요한 경우에 기본 MV를 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 복수의 기본 MV 후보 블록 중 소정의 기준에 따라 선택된 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 이용하여 기본 MV를 결정할 때, 상기 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 그대로 기본 MV로 결정할 수도 있고, 어느 하나의 기본 MV 후보 블록의 움직임 벡터를 변경하고, 변경된 움직임 벡터를 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 복수의 기본 MV 후보 블록 중 소정의 기준에 따라 선택된 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 이용하여 기본 MV를 결정할 때, 상기 적어도 하나의 기본 MV 후보 블록의 움직임 벡터를 현재 블록의 참조 영상 인덱스를 고려하여 스케일(scale)하고, 스케일된 움직임 벡터를 기본 MV로 결정할 수도 있다.
일 실시예에서, 기본 움직임 벡터 결정부(2710)는 DMVD(decoder side MV derivation)을 통해 도출된 움직임 벡터를 현재 블록의 기본 MV로 결정할 수도 있다. DMVD는 예를 들어, 템플릿 매칭(template matching) 방법, 양방향 매칭(bilateral matching) 방법을 포함할 수 있다. 일반적으로 부호화 장치는 복호화 장치를 포함하므로, 움직임 벡터 부호화 장치(2700)의 기본 움직임 벡터 결정부(2710) 역시 DMVD를 통해 움직임 벡터를 결정할 수 있다.
예측 부호화부(2730)는 현재 블록의 움직임 벡터를 결정할 수 있다. 일 실시예에서, 예측 부호화부(2730)는 현재 블록의 인터 예측을 위한 참조 영상을 보간(interpolation)하고, 현재 블록과 가장 유사한 블록을 참조 영상에서 검출하고, 현재 블록과 참조 블록 사이의 좌표상 거리를 현재 블록의 움직임 벡터로 결정할 수 있다.
일 실시예에서, 예측 부호화부(2730)는 현재 블록의 MVR을 결정하고, 결정된 MVR에 따라 움직임 벡터를 결정할 수 있다.
예측 부호화부(2730)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR 중 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다. 예측 부호화부(2730)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR 중 최소 MVR에 따라 참조 영상을 보간하고, 현재 블록의 MVR로 움직임 벡터를 결정할 수 있다. 예를 들어, 현재 블록에 대해 선택 가능한 후보 MVR이 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR 및 2 화소 단위의 MVR을 포함하고, 현재 블록의 MVR로 1 화소 단위 MVR이 선택된 경우, 예측 부호화부(2730)는 최소 MVR인 1/4 화소 단위로 참조 영상을 보간하고, 보간된 참조 영상에서 1 화소 단위로 움직임 벡터를 결정할 수 있다.
예측 부호화부(2730)는 현재 블록의 움직임 벡터의 부호화를 위해, 현재 블록의 예측 움직임 벡터를 결정할 수 있다. 일 실시예에서, 현재 블록의 예측 움직임 벡터는 현재 블록과 관련된 공간적 블록 및/또는 시간적 블록을 포함하는 적어도 하나의 PMV 후보 블록으로부터 결정될 수 있다.
PMV 후보 블록의 개수 및 위치는 예측 부호화부(2730)에 미리 결정되어 있을 수도 있고, 예측 부호화부(2730)가 픽처 단위, 슬라이스 단위, 블록 단위별로 결정할 수도 있다. 일 실시예에서, PMV 후보 블록의 개수 및 위치는, 현재 블록의 MVR에 따라 결정될 수도 있다.
예측 부호화부(2730)는 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 실시예에서, PMV 후보 블록의 움직임 벡터의 이용 가능성은, PMV 후보 블록에 움직임 벡터가 존재하는지 여부, 및 이용 가능성이 있는 것으로 먼저 판단된 다른 PMV 후보 블록의 움직임 벡터와 동일한 움직임 벡터를 가지고 있는지 여부 중 적어도 하나를 기준으로 하여 판단될 수 있다.
일 실시예에서, 예측 부호화부(2730)는 이용 가능성의 판단에 따라, 적어도 하나의 PMV 후보 블록 각각의 움직임 벡터로부터 소정 개수의 예측 후보들을 포함하는 예측 후보 리스트를 구성할 수 있다. 또한, 예측 부호화부(2730)는 예측 후보 리스트에 포함된 예측 후보들 중 하나 이상의 예측 후보를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 예로서, 예측 부호화부(2730)는 하나의 예측 후보를 그대로 현재 블록의 예측 움직임 벡터로 결정하거나, 하나의 예측 후보를 변경하고, 변경된 예측 후보를 현재 블록의 예측 움직임 벡터로 결정할 수 있다. 또는 예측 복호화부(2730)는 복수의 예측 후보를 조합한 값, 예를 들어, 복수의 예측 후보의 평균 값 또는 중간 값을 현재 블록의 예측 움직임 벡터로 결정할 수 있다.
예측 부호화부(2730)는 각 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하면서 예측 후보 리스트를 구성할 수 있다. 일 예로서, 예측 부호화부(2730)는 우선 순위에 따라 각 PMV 후보 블록의 이용 가능성을 판단할 수 있다. 도 31을 참조하여 설명하면, A0 블록, A1 블록, B0 블록, B1 블록, B2 블록, C3 블록, H 블록의 순으로 우선 순위가 설정되어 있는 경우, 가장 높은 우선 순위를 갖는 A0 블록에 움직임 벡터가 포함되어 있으면, A0 블록의 움직임 벡터를 예측 후보로서 예측 후보 리스트에 포함시킬 수 있다. 다음으로, 두 번째 높은 우선 순위를 갖는 A1 블록에 움직임 벡터가 존재하지 않거나, 존재하더라도 A1 블록의 움직임 벡터가 이미 예측 후보 리스트에 포함된 A0의 움직임 벡터와 동일한 경우에는, A1 블록은 이용 가능성이 없는 것으로 판단하고, 다음 우선 순위의 B0 블록의 이용 가능성을 판단할 수 있다. 예측 부호화부(2730)는 소정 개수의 예측 후보를 포함하는 예측 후보 리스트가 구성될 때까지, 우선 순위에 따라 A0 블록으로부터 H 블록까지 각 블록의 이용 가능성을 판단할 수 있다. 예측 부호화부(2730)는 A0 블록으로부터 H 블록까지 이용 가능성을 판단하면서 예측 후보 리스트를 구성한 후, 예측 후보 리스트에 포함된 예측 후보의 개수가 소정 개수 미만인 경우에는 기본 MV를 예측 후보 리스트에 포함시킬 수 있다.
일 실시예에서, 예측 부호화부(2730)는 각각의 PMV 후보 블록의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록에 기본 MV를 할당한 후, 각 PMV 후보 블록의 우선 순위에 따라 예측 후보 리스트를 구성할 수도 있다. 상기 예측 후보 리스트에 포함되어야 할 예측 후보의 소정 개수는 미리 설정될 수 있다. 일 실시예에서, 기본 움직임 벡터 결정부(2710)는 예측 후보 리스트에 포함되어야 할 예측 후보의 소정 개수에 대응하는 개수의 기본 MV를 결정할 수 있다.
예측 부호화부(2730)는 기본 MV가 포함된 예측 후보 리스트 또는 기본 MV가 포함되지 않은 예측 후보 리스트의 적어도 하나의 예측 후보를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
일 실시예에서, 예측 부호화부(2730)는 미리 결정된 위치의 적어도 하나의 PMV 후보 블록의 움직임 벡터를 기초로 현재 블록의 예측 움직임 벡터를 결정할 수도 있다. 예측 부호화부(2730)는 미리 결정된 위치의 적어도 하나의 PMV 후보 블록의 이용 가능성을 판단하고, 이용 가능성이 없는 것으로 판단된 PMV 후보 블록의 움직임 벡터로서 기본 MV를 할당할 수 있다. 도 32에 도시된 바와 같이, 현재 블록의 예측 움직임 벡터가 D1 블록의 움직임 벡터, D2 블록의 움직임 벡터 및 D3 블록의 움직임 벡터의 조합 값으로 결정되는 경우, D2 블록에 움직임 벡터가 존재하지 않으면, 기본 MV를 D2 블록의 움직임 벡터로 할당할 수 있다.
또한, 일 실시예에서, 예측 부호화부(2730)는 미리 결정된 위치의 하나의 PMV 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수도 있다. 이 경우, 예측 부호화부(2730)는 하나의 PMV 후보 블록의 이용 가능성이 없는 것으로 판단된 경우, 기본 MV를 하나의 PMV 후보 블록에 할당할 수 있다. 예측 부호화부(2730)는 상기 하나의 PMV 후보 블록에 할당된 기본 MV를 그대로 현재 블록의 예측 움직임 벡터로 결정하거나, 상기 기본 MV를 변경하고, 변경된 기본 MV를 현재 블록의 예측 움직임 벡터로 결정할 수도 있다.
일 실시예에서, 예측 부호화부(2730)는 미리 결정된 위치의 PMV 후보 블록들 중 이용 가능성이 없는 PMV 후보 블록에 대해 기본 MV를 할당할 수 있는데, 이용 가능성이 없는 PMV 후보 블록의 개수가 복수인 경우, 이용 가능성이 없는 복수의 PMV 후보 블록 각각에 복수의 기본 MV를 할당할 수도 있다. 일 실시예에서, 기본 움직임 벡터 결정부(2530)는 미리 결정된 위치의 PMV 후보 블록의 개수와 동일한 개수의 기본 MV를 결정할 수 있다.
기본 MV를 이용 가능성이 없는 PMV 후보 블록에 할당하는 경우, PMV 후보 블록의 위치가 고려될 수도 있다. 전술한 바와 같이, 기본 움직임 벡터 결정부(2710)는 현재 블록을 기준으로 특정 방향에 위치하는 기본 MV 후보 블록으로부터 상기 특정 방향에 대응하는 기본 MV를 결정할 수 있는데, 예측 부호화부(2730)는 현재 블록을 기준으로 움직임 벡터가 존재하지 않는 PMV 후보 블록이 위치하는 방향을 고려하여, 그에 대응하는 기본 MV를 할당할 수 있다.
예측 부호화부(2730)는 현재 블록의 움직임 벡터 및 예측 움직임 벡터가 결정되면, 현재 블록의 예측 모드에 따라, 현재 블록의 움직임 벡터와 예측 움직임 벡터의 차인 잔차 움직임 벡터를 획득할 수 있다.
예측 부호화부(2730)는 현재 블록의 예측 모드가 스킵(skip) 모드 또는 머지(merge) 모드인 경우 잔차 움직임 벡터의 획득을 생략하고, 현재 블록의 예측 모드가 AMVP(advanced motion vector prediction) 모드인 경우에는 잔차 움직임 벡터를 획득할 수 있다.
일 실시예에서, 예측 부호화부(2730)는 현재 블록의 예측 움직임 벡터에 관한 정보를 생성할 수 있다. 예를 들어, 현재 블록의 예측 움직임 벡터가 소정 개수의 예측 후보 리스트로부터 결정되는 경우, 예측 부호화부(2730)는 소정 개수의 예측 후보 중 어느 예측 후보가 현재 블록의 예측 움직임 벡터로 사용되었는지를 나타내는 정보를 생성할 수 있다.
현재 블록의 예측 움직임 벡터가 미리 결정된 위치의 PMV 후보 블록의 움직임 벡터로부터 결정되는 경우에는, 예측 부호화부(2730)는 예측 움직임 벡터에 관한 정보의 생성을 생략할 수도 있다. 왜냐하면, 움직임 벡터 복호화 장치(2500) 역시 현재 블록의 움직임 벡터를 결정하는데 있어 동일한 위치의 PMV 후보 블록을 이용하여 예측 움직임 벡터를 결정할 수 있기 때문이다.
일 실시예에서, 예측 부호화부(2730)는 현재 블록의 예측 움직임 벡터의 결정을 위해 기본 MV가 결정되었다는 정보를 생성할 수도 있다. 예를 들어, 기본 움직임 벡터 결정부(2710)에 의해 기본 MV가 결정된 경우 플래그 1을 생성하고, 기본 MV의 결정 과정이 생략된 경우 플래그 0을 생성할 수 있다.
일 실시예에서, 예측 부호화부(2730)는 현재 블록의 MVR을 나타내는 정보를 생성할 수 있다.
비트스트림 생성부(2750)는 예측 부호화부(2730)에 의해 생성된, 잔차 움직임 벡터에 대응하는 정보, 예측 움직임 벡터에 관한 정보, 기본 MV 결정 여부에 대한 정보, 현재 블록의 MVR에 대한 정보, 예측 방향(단방향 또는 양방향 여부)에 대한 정보 및 참조 영상 인덱스에 대한 정보 중 적어도 하나를 포함하는 비트스트림을 생성할 수 있다.
도 28은 일 실시예에 따른 움직임 벡터 부호화 방법을 설명하기 위한 순서도이다.
S2810 단계에서, 움직임 벡터 부호화 장치(2700)는 현재 블록의 움직임 벡터를 결정한다. 움직임 벡터 부호화 장치(2700)는 참조 영상에서 현재 블록과 가장 유사한 참조 블록을 찾고, 참조 블록과 현재 블록 사이의 좌표상 거리를 나타내는 움직임 벡터를 결정할 수 있다.
일 실시예에서, 현재 블록의 MVR이 결정된 경우, 움직임 벡터 부호화 장치(2700)는 최소 MVR에 따라 보간된 영상에서 현재 블록의 MVR에 따라 움직임 벡터를 결정할 수 있다.
S2820 단계에서, 움직임 벡터 부호화 장치(2700)는 현재 블록의 예측 움직임 벡터를 결정한다.
움직임 벡터 부호화 장치(2700)는 적어도 하나의 PMV 후보 블록의 움직임 벡터를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
전술한 바와 같이, 움직임 벡터 부호화 장치(2700)는 적어도 하나의 PMV 후보 블록의 움직임 벡터에 대해 이용 가능성을 판단한다. 움직임 벡터 부호화 장치(2700)는 이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 있는 경우, 복수의 기본 MV 후보 블록으로부터 결정된 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수 있다.
현재 블록의 MVR이 결정된 경우, 움직임 벡터 부호화 장치(2700)는 현재 블록의 MVR에 따라 조정된 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정할 수도 있다.
이하에서는, 도 33 내지 도 35를 참조하여, 현재 블록의 MVR이 결정된 경우, 기본 MV를 조정하는 과정에 대해 설명한다.
전술한 바와 같이, 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR 중 어느 하나의 후보 MVR이 현재 블록의 MVR로 선택되면, 기본 MV를 이용하여 현재 블록의 예측 움직임 벡터를 결정하는데 있어 기본 MV를 현재 블록의 해상도에 따라 조정하여야 한다.
도 33은 현재 블록에 대해 선택 가능한 최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR에 대응하여 움직임 벡터가 가리킬 수 있는 화소들의 위치를 나타낸다.
도 33의 (a), (b), (c), (d)는 각각 좌표 (0, 0)을 기준으로 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표(검정색 사각형으로 표시)들을 나타낸다.
최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (a/4, b/4)(a, b는 정수)가 되고, 1/2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (2c/4, 2d/4)(c, d는 정수)가 되고, 1 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (4e/4, 4f/4)(e, f는 정수)가 되고, 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (8g/4, 8h/4)(g, h는 정수)가 된다. 즉, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2n(n은 정수) 화소 단위 MVR이 가리킬 수 있는 화소의 좌표는 (2n-m*i/2-m, 2n-m*j/2-m)(i, j는 정수)이 된다. 움직임 벡터가 특정의 MVR에 따라 결정되더라도, 움직임 벡터는 최소 MVR인 1/4 화소 단위에 따라 보간된 영상 내 좌표로 표현된다.
일 실시예에서, 움직임 벡터 부호화 장치(2700)는 최소 MVR에 따라 보간된 영상에서 움직임 벡터를 결정하므로, 움직임 벡터가 정수로 표현될 수 있도록, 움직임 벡터에 최소 MVR의 화소 단위 값의 역수, 예를 들어, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2-m을 곱하여 정수 단위의 움직임 벡터를 나타낼 수 있다. 2-m을 곱한 정수 단위의 움직임 벡터가 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)에서 이용될 수 있다.
만약, 좌표(0,0)에서 출발한 1/2 화소 단위 MVR의 움직임 벡터가 좌표 (2/4, 6/4)을 가리키고, 최소 MVR이 1/4 화소 단위를 갖는다면, 움직임 벡터 부호화 장치(2700)는 움직임 벡터에 정수 4를 곱한 값인 (2, 6)를 움직임 벡터로 결정할 수 있다.
도 34는 기본 MV의 조정 방법을 설명하기 위한 도면이다.
움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR이 선택 가능한 후보 MVR 중 최소 MVR보다 큰 경우, 현재 블록의 예측 움직임 벡터로 이용될 기본 MV를 조정할 수 있다. 현재 블록의 MVR이 최소 MVR보다 크다는 것은 현재 블록의 MVR의 화소 단위가 최소 MVR의 화소 단위보다 크다는 것을 의미할 수 있다. 예를 들어, 1 화소 단위의 MVR은 1/2 화소 단위의 MVR보다 크고, 1/2 화소 단위의 MVR은 1/4 화소 단위의 MVR보다 크다.
움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 최소 MVR에 따라 보간된 영상 내 좌표로 표현되는 기본 MV를 현재 블록의 MVR로 조정(adjust)하기 위해, 기본 MV가 가리키는 화소 대신 주변의 화소들을 가리키도록 조정할 수 있다.
일 예로서, 도 34에서, 좌표 (0,0)을 기준으로 좌표 (19, 27)의 화소(3410)를 가리키는 기본 MV(A)를 현재 블록의 MVR인 1 화소 단위 MVR로 조정하기 위해 기본 MV(A)가 가리키는 화소(3410)의 좌표 (19, 27)를 정수 4로 나누게 되는데(즉, 다운스케일), 나눈 결과에 해당하는 좌표 (19/4, 27/4)가 정수 화소 단위를 가리키지 않는 경우가 발생하게 된다.
움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 다운스케일된 기본 MV가 정수 화소 단위를 가리키도록 조정할 수 있다. 예를 들어, 좌표 (19/4, 27/4)를 중심으로 한 주변의 정수 화소의 좌표 각각은 (16/4, 28/4), (16/4, 24/4), (20/4, 28/4), (20/4, 24/4)가 된다. 이 때, 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 다운스케일된 기본 MV(A)가 좌표 (19/4, 27/4) 대신 우측-상단에 위치하는 좌표인 (20/4, 28/4)를 가리키도록 조정한 후, 다시 정수 4를 곱하여(즉, 업스케일), 최종적으로 조정된 기본 MV(D)가 좌표 (20, 28)에 해당하는 화소(3440)를 가리키도록 할 수 있다.
일 실시예에서, 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 다운스케일된 기본 MV가 좌측-하단에 위치하는 좌표, 좌측-상단에 위치하는 좌표 또는 우측-하단에 위치하는 좌표를 가리키도록 조정할 수도 있다.
일 실시예에서, 다운스케일된 기본 MV가 가리키는 x 좌표 값 및 y 좌표 값 중 어느 하나가 정수 화소를 가리키는 경우에는, 정수 화소를 가리키지 않는 좌표 값만을 증가시키거나 감소시켜, 정수 화소를 가리키도록 조정할 수 있다. 즉, 다운스케일된 기본 MV가 가리키는 x 좌표 값이 정수 화소를 가리킬 때에는, 조정된 기본 MV가, 조정되기 전의 기본 MV가 가리키는 화소의 상단에 위치하는 정수 화소 또는 하단에 위치하는 정수 화소를 가리키도록 할 수 있다. 또는, 다운스케일된 기본 MV가 가리키는 y 좌표 값이 정수 화소를 가리킬 때에는, 조정된 기본 MV가, 조정되기 전의 기본 MV가 가리키는 화소의 좌측에 위치하는 정수 화소 또는 우측에 위치하는 정수 화소를 가리키도록 할 수 있다.
움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 기본 MV를 조정할 때, 조정된 기본 MV가 가리키는 지점을, 현재 블록의 MVR에 따라 다르게 선택할 수도 있다.
예를 들어, 도 35에 도시된 바와 같이, 현재 블록의 MVR이 1/2 화소 단위 MVR인 경우, 조정된 기본 MV는 조정되기 전의 기본 MV가 가리키는 화소의 좌측-상단의 화소(3530)를 가리키게 하고, 현재 블록의 MVR이 1 화소 단위 MVR인 경우, 조정된 기본 MV는 조정되기 전의 기본 MV가 가리키는 화소의 우측-상단의 화소(3520)를 가리키게 하고, 현재 블록의 MVR이 2 화소 단위 MVR인 경우, 조정된 기본 MV는 조정되기 전의 기본 MV가 가리키는 화소의 우측-하단의 화소(3540)를 가리키도록 조정할 수 있다.
움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR과 최소 MVR을 고려하여 기본 MV를 조정할 때, 하기의 수학식 1에 따라 조정할 수 있다.
[수학식 1]
default MV' = ((default MV >> k) + offset) << k
수학식 1에서 default MV'는 조정된 기본 MV를 나타내고, k는 현재 블록의 MVR과 최소 MVR의 차이에 따라 결정되는 값으로서, 현재 블록의 MVR이 2m 화소 단위(m은 정수), 최소 MVR이 2n 화소 단위(n은 정수)이고, m > n일 때, k는 m-n일 수 있다.
일 실시예에서, k는 MVR의 인덱스일 수도 있는데, 후보 MVR이 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR, 2 화소 단위 MVR 및 4 화소 단위 MVR을 포함할 때, 각 인덱스에 대응하는 MVR은 앞서 살펴본 표 2와 같다. 움직임 벡터 복호화 장치(2500)는 비트스트림으로부터 MVR 인덱스가 수신되면, MVR 인덱스를 k로 이용하여 기본 MV를 수학식 1에 따라 조정할 수 있다.
또한, 수학식 1에서 >> 또는 <<는 비트 쉬프트(bit shift) 연산으로서, 기본 MV의 크기를 감소 또는 증가시키는 연산을 의미한다. 또한, offset은 k 값에 따라 다운스케일된 기본 MV가 정수 화소를 가리키지 않을 때 정수 화소를 가리키도록 더해지거나 빼지는 값을 의미한다. offset은 기본 MV의 x 좌표 값 및 y 좌표 값 각각에 대해 상이하게 결정될 수도 있다.
일 실시예에서, 움직임 벡터 부호화 장치(2700)와 움직임 벡터 복호화 장치(2500)는 다운스케일된 기본 MV가 정수 화소를 가리키도록 변경시킬 때, 동일 기준에 따라 변경시킬 수 있다.
일 실시예에서, 다운스케일된 기본 MV의 x 좌표 값 및 y 좌표 값이 정수 화소를 가리키지 않을 때, 다운스케일된 기본 MV의 x 좌표 값 및 y 좌표 값을 항상 증가시켜 정수 화소를 가리키도록 할 수 있고, 항상 감소시켜 정수 화소를 가리키도록 할 수도 있다. 또는, 다운스케일된 기본 MV의 x 좌표 값 및 y 좌표 값을 반올림하여 정수 화소를 가리키도록 할 수도 있다.
일 실시예에서, 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 기본 MV를 조정할 때, 기본 MV의 다운스케일 및 업스케일을 생략하고, 기본 MV가 현재 블록의 MVR에 대응하는 화소 단위를 가리키도록 최소 MVR에 따라 보간된 참조 영상 내 좌표 평면에서 조정할 수도 있다.
또한, 일 실시예에서, 움직임 벡터 부호화 장치(2700) 및 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR과 최소 MVR을 고려하여 기본 MV를 조정할 때, 상기 수학식 1 대신 하기의 수학식 2에 따라 조정할 수도 있다.
[수학식 2]
default MV' = ((default MV + offset) >> k) << k
수학식 2는 수학식 1과 유사하나, 수학식 1에서와 같이 offset이 다운스케일된 기본 MV에 적용되는 것이 아니고, 원래의 기본 MV에 offset이 적용된 후, k에 따라 다운스케일된 것을 알 수 있다.
움직임 벡터 부호화 장치(2700)는 현재 블록의 MVR로 현재 블록의 움직임 벡터를 찾고, 현재 블록의 움직임 벡터와 예측 움직임 벡터 사이의 차를 잔차 움직임 벡터로 획득할 수 있다.
움직임 벡터 부호화 장치(2700)는 잔차 움직임 벡터를 하기의 수학식 3과 같이 결정하여 부호화할 수 있다. 수학식 3에서 MV는 현재 블록의 움직임 벡터이고, PMV는 예측 움직임 벡터이고, MVD는 잔차 움직임 벡터를 나타낸다. PMV는 조정된 기본 MV 및/또는 PMV 후보 블록의 조정된 움직임 벡터에 기초하여 결정된 예측 움직임 벡터를 의미할 수 있다.
[수학식 3]
MVD = MV - PMV
움직임 벡터 부호화 장치(2700)는 현재 블록의 MVR이 최소 MVR보다 크다면 잔차 움직임 벡터를 수학식 4와 같이 다운스케일하고, 다운스케일된 잔차 움직임 벡터를 나타내는 정보를 포함하는 비트스트림을 생성할 수 있다.
[수학식 4]
MVD' = (MVD >> k)
상기 수학식 4에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, k는 최소 MVR과 현재 블록의 MVR 사이의 차이에 따라 결정되는 값으로서, 앞서 수학식 1의 k와 동일하다.
일 실시예에서, 움직임 벡터 부호화 장치(2700)는 현재 블록의 움직임 벡터와 예측 움직임 벡터를 상기 k 값에 따라 다운스케일 한 뒤, 두 값의 차를 잔차 움직임 벡터로서 부호화할 수도 있다.
일 실시예에서, 움직임 벡터 부호화 장치(2700)는 수학식 3과 수학식 4 대신 아래의 수학식 5에 따라 다운스케일된 잔차 움직임 벡터를 계산할 수도 있다.
[수학식 5]
MVD' = (MV - PMV) / (R * S)
수학식 5에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, MV는 현재 블록의 움직임 벡터이고, PMV는 예측 움직임 벡터이다. 또한, R은 현재 블록의 MVR의 화소 단위 값, 예를 들어, 1/4 화소 단위 MVR인 경우 1/4을 나타낸다. 또한, S는 최소 MVR의 화소 단위 값의 역수로서, 최소 MVR이 1/4 화소 단위인 경우, S는 4를 나타낸다.
움직임 벡터 복호화 장치(2500)는 현재 블록의 예측 움직임 벡터와 잔차 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 복원할 수 있다.
움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR이 최소 MVR보다 큰 경우에는 잔차 움직임 데이터를 아래의 수학식 6과 같이, 업스케일할 수 있다.
[수학식 6]
MVD'' = (MVD' << k)
상기 수학식 6에서 MVD'는 부호화 장치 측에서 다운스케일된 잔차 움직임 벡터를 나타내고, MVD''는 업스케일된 잔차 움직임 벡터를 나타낸다. 상기 k는 최소 MVR과 현재 블록의 MVR 사이의 차이에 따라 결정되는 값으로서, 앞서 수학식 1의 k와 동일하다.
움직임 벡터 복호화 장치(2500)는 최소 MVR과 현재 블록의 MVR의 크기 차이에 따라 선택적으로 선택적으로 업스케일된 잔차 움직임 벡터와 예측 움직임 벡터를 합하여 현재 블록의 움직임 벡터를 복호화할 수 있다.
일 실시예에서, 움직임 벡터 복호화 장치(2500)는 업스케일된 잔차 움직임 벡터를 상기 수학식 6 대신 아래의 수학식 7에 따라 결정할 수도 있다.
[수학식 7]
MVD'' = MVD' * (R * S)
수학식 7에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, R은 현재 블록의 MVR의 화소 단위 값, 예를 들어, 1/4 화소 단위 MVR인 경우 1/4을 나타낸다. 또한, S는 최소 MVR의 화소 단위 값의 역수로서, 최소 MVR이 1/4 화소 단위인 경우, S는 4를 나타낸다.
일 실시예에서, 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR이 1 화소 단위 MVR 미만인 경우에는, 최소 MVR에 따라 참조 영상을 보간한 후, 현재 블록의 움직임 벡터에 따라 현재 블록의 예측 블록을 탐색할 수 있다. 또한, 움직임 벡터 복호화 장치(2500)는 현재 블록의 MVR이 1 화소 단위 MVR 이상인 경우에는, 참조 영상을 보간하지 않고 현재 블록의 움직임 벡터에 따라 현재 블록의 예측 블록을 탐색할 수 있다. 움직임 벡터 복호화 장치(2500)는 예측 블록을, 역변환 및 역양자화된 잔차 데이터에 합하여 현재 블록을 복원할 수 있다.
한편, 상술한 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 작성된 프로그램은 매체에 저장될 수 있다.
매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.
이상, 본 개시의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 개시의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 개시의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.

Claims (15)

  1. 현재 블록의 예측 움직임 벡터(Prediction Motion Vector)를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록을 결정하는 단계;
    상기 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계;
    이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV(Motion Vector)를 이용하여, 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계; 및
    상기 결정된 예측 움직임 벡터에 기초하여 상기 현재 블록의 움직임 벡터를 획득하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  2. 제1항에 있어서,
    상기 움직임 벡터의 복호화 방법은,
    상기 현재 블록과 관련된 복수의 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  3. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    우선 순위에 따라 순차적으로 상기 복수의 기본 MV 후보 블록에 대해 움직임 벡터의 존재 여부를 판단하는 단계; 및
    상기 움직임 벡터의 존재가 확인된 순서대로 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  4. 제1항에 있어서,
    상기 움직임 벡터의 복호화 방법은,
    DMVD(decoder side MV derivation) 통해 도출된 움직임 벡터를 상기 기본 MV로 결정하는 단계를 더 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  5. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    상기 현재 블록의 참조 영상 인덱스와 동일한 참조 영상 인덱스를 갖는 기본 MV 후보 블록의 움직임 벡터에 기초하여, 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  6. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    상기 복수의 기본 MV 후보 블록의 움직임 벡터의 크기에 기초하여 적어도 하나의 기본 MV 후보 블록을 선택하는 단계; 및
    상기 선택된 적어도 하나의 기본 MV 후보 블록의 움직임 벡터에 기초하여 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  7. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    상기 복수의 기본 MV 후보 블록의 움직임 벡터의 평균 값 또는 중간(median) 값에 기초하여 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  8. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    상기 복수의 기본 MV 후보 블록 중, 이전에 복호화된 픽처, 이전에 복호화된 슬라이스 또는 이전에 복호화된 최대 부호화 단위에서 예측 움직임 벡터로 결정된 횟수에 기초하여 선택된 기본 MV 후보 블록의 움직임 벡터를 이용하여 상기 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  9. 제2항에 있어서,
    상기 기본 MV를 결정하는 단계는,
    상기 현재 블록을 기준으로 서로 다른 방향에 위치하는 기본 MV 후보 블록들로부터 각 방향에 대응하는 복수의 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  10. 제9항에 있어서,
    상기 복수의 기본 MV는,
    제 1 기본 MV 및 제 2 기본 MV를 포함하며,
    상기 기본 MV를 결정하는 단계는,
    상기 현재 블록을 기준으로 제 1 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터를 이용하여 상기 제 1 기본 MV를 결정하고, 상기 현재 블록을 기준으로 제 2 방향에 위치하는 기본 MV 후보 블록의 움직임 벡터를 이용하여 상기 제 2 기본 MV를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  11. 제10항에 있어서,
    상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는,
    상기 적어도 하나의 PMV 후보 블록이, 상기 현재 블록을 기준으로 제 1 방향에 위치하는 PMV 후보 블록과 제 2 방향에 위치하는 PMV 후보 블록을 포함하는 경우,
    상기 제 1 방향에 위치하는 PMV 후보 블록에 움직임 벡터가 존재하지 않으면, 상기 제 1 기본 MV를 상기 제 1 방향에 위치하는 PMV 후보 블록의 움직임 벡터로 할당하고,
    상기 제 2 방향에 위치하는 PMV 후보 블록에 움직임 벡터가 존재하지 않으면, 상기 제 2 기본 MV를 상기 제 2 방향에 위치하는 PMV 후보 블록의 움직임 벡터로 할당하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  12. 제1항에 있어서,
    상기 움직임 벡터의 복호화 방법은,
    상기 현재 블록에 대한 움직임 벡터 해상도를 결정하는 단계를 더 포함하고,
    상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는,
    상기 이용 가능성의 판단 결과, 상기 움직임 벡터 해상도에 따라 예측 움직임 벡터로 이용되는 것으로 결정된 PMV 후보 블록에 움직임 벡터가 존재하지 않는 경우, 상기 기본 MV를 상기 움직임 벡터가 존재하지 않는 PMV 후보 블록에 할당하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  13. 제12항에 있어서,
    상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는,
    상기 현재 블록의 움직임 벡터 해상도에 기초하여 상기 기본 MV를 조정하는 단계; 및
    상기 조정된 기본 MV에 기초하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  14. 제1항에 있어서,
    상기 현재 블록의 예측 움직임 벡터를 결정하는 단계는,
    상기 이용 가능성의 판단 결과에 따라, 상기 적어도 하나의 PMV 후보 블록의 움직임 벡터로부터 예측 후보 리스트를 구성하는 단계;
    상기 예측 후보 리스트에 포함된 예측 후보의 개수가 소정 개수 미만인 경우, 상기 예측 후보의 개수가 상기 소정 개수가 되도록 상기 기본 MV를 상기 예측 후보 리스트에 포함시키는 단계; 및
    상기 예측 후보 리스트에 포함된 예측 후보에 기초하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  15. 현재 블록의 예측 움직임 벡터를 결정하는데 이용되는 적어도 하나의 PMV 후보 블록의 움직임 벡터의 이용 가능성을 판단하는 단계; 및
    이용 가능성이 없는 것으로 판단된 PMV 후보 블록이 존재하는 경우, 기본 MV를 이용하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터의 부호화 방법.
PCT/KR2018/003801 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 WO2019054591A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020227021151A KR102480419B1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR1020207033587A KR102232245B1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
CN201880056184.XA CN111095925B (zh) 2017-09-13 2018-03-30 通过使用基本运动矢量对运动矢量进行编码的设备和方法以及解码设备和方法
CN202310357043.4A CN116389748A (zh) 2017-09-13 2018-03-30 编码设备和方法以及解码设备和方法
CN202310356867.XA CN116389747A (zh) 2017-09-13 2018-03-30 编码设备和方法以及解码设备和方法
KR1020207003361A KR102185370B1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
EP18856771.3A EP3637773A4 (en) 2017-09-13 2018-03-30 DEVICE AND METHOD FOR CODING A MOTION VECTOR USING A BASIC MOTION VECTOR, AND DECODING DEVICE AND METHOD
KR1020217008313A KR102414679B1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
MX2020001665A MX2020001665A (es) 2017-09-13 2018-03-30 Aparato y metodo para codificar vector de movimiento mediante el uso de un vector de movimiento basico y aparato y metodo para decodificar.
KR1020227044580A KR102574479B1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
US16/634,400 US11589070B2 (en) 2017-09-13 2018-03-30 Apparatus and method for encoding motion vector by using basic motion vector, and decoding apparatus and method
US18/153,879 US20230164346A1 (en) 2017-09-13 2023-01-12 Apparatus and method for encoding motion vector by using basic motion vector, and decoding apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762557819P 2017-09-13 2017-09-13
US62/557,819 2017-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/634,400 A-371-Of-International US11589070B2 (en) 2017-09-13 2018-03-30 Apparatus and method for encoding motion vector by using basic motion vector, and decoding apparatus and method
US18/153,879 Continuation US20230164346A1 (en) 2017-09-13 2023-01-12 Apparatus and method for encoding motion vector by using basic motion vector, and decoding apparatus and method

Publications (1)

Publication Number Publication Date
WO2019054591A1 true WO2019054591A1 (ko) 2019-03-21

Family

ID=65722910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003801 WO2019054591A1 (ko) 2017-09-13 2018-03-30 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Country Status (6)

Country Link
US (2) US11589070B2 (ko)
EP (1) EP3637773A4 (ko)
KR (5) KR102414679B1 (ko)
CN (3) CN111095925B (ko)
MX (3) MX2020001665A (ko)
WO (1) WO2019054591A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263038A1 (ko) * 2019-06-27 2020-12-30 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
US11997286B2 (en) 2020-04-10 2024-05-28 Samsung Electronics Co., Ltd. Device and method for encoding motion vector, and device and method for decoding motion vector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683501B2 (en) * 2019-01-17 2023-06-20 Tencent America LLC Method and apparatus for video coding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110020214A (ko) * 2009-08-21 2011-03-02 에스케이 텔레콤주식회사 적응적 움직임 벡터 해상도를 이용한 영상 부호화/복호화 방법 및 장치
KR20130028633A (ko) * 2011-09-09 2013-03-19 주식회사 케이티 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR101419011B1 (ko) * 2011-09-16 2014-07-14 한국항공대학교산학협력단 예측 움직임 벡터 유도 방법 및 이러한 방법을 사용하는 장치
KR20150052878A (ko) * 2010-02-23 2015-05-14 니폰덴신뎅와 가부시키가이샤 움직임 벡터 추정 방법, 다시점 영상 부호화 방법, 다시점 영상 복호 방법, 움직임 벡터 추정 장치, 다시점 영상 부호화 장치, 다시점 영상 복호 장치, 움직임 벡터 추정 프로그램, 다시점 영상 부호화 프로그램 및 다시점 영상 복호 프로그램

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369746B1 (ko) * 2007-01-22 2014-03-07 삼성전자주식회사 적응적 보간 필터를 이용한 영상 부호화, 복호화 방법 및장치
EP1983759A1 (en) * 2007-04-19 2008-10-22 Matsushita Electric Industrial Co., Ltd. Estimation of separable adaptive interpolation filters for hybrid video coding
EP2656610A4 (en) 2010-12-21 2015-05-20 Intel Corp SYSTEM AND METHOD FOR EXTENDED DMVD PROCESSING
KR101377528B1 (ko) * 2011-01-15 2014-03-27 에스케이텔레콤 주식회사 움직임 벡터 부호화/복호화 방법 및 장치
US9319716B2 (en) * 2011-01-27 2016-04-19 Qualcomm Incorporated Performing motion vector prediction for video coding
US20120320936A1 (en) 2011-06-20 2012-12-20 Si-Ware Systems Mems based swept laser source
KR101854003B1 (ko) * 2013-07-02 2018-06-14 경희대학교 산학협력단 복수의 레이어를 포함하는 영상의 부호화 및 복호화 방법
GB2524476B (en) * 2014-03-14 2016-04-27 Canon Kk Method, device and computer program for optimizing transmission of motion vector related information when transmitting a video stream
GB201409634D0 (en) * 2014-05-30 2014-07-16 Canon Kk Intra block copy mode encoding choice
EP3203743A4 (en) * 2014-10-31 2018-01-10 Samsung Electronics Co., Ltd. Method and device for encoding/decoding motion vector
US10148963B2 (en) * 2016-09-23 2018-12-04 Arm Limited Methods of and apparatus for encoding data arrays
KR20180043151A (ko) * 2016-10-19 2018-04-27 에스케이텔레콤 주식회사 영상 부호화 또는 복호화를 위한 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110020214A (ko) * 2009-08-21 2011-03-02 에스케이 텔레콤주식회사 적응적 움직임 벡터 해상도를 이용한 영상 부호화/복호화 방법 및 장치
KR20150052878A (ko) * 2010-02-23 2015-05-14 니폰덴신뎅와 가부시키가이샤 움직임 벡터 추정 방법, 다시점 영상 부호화 방법, 다시점 영상 복호 방법, 움직임 벡터 추정 장치, 다시점 영상 부호화 장치, 다시점 영상 복호 장치, 움직임 벡터 추정 프로그램, 다시점 영상 부호화 프로그램 및 다시점 영상 복호 프로그램
KR20130028633A (ko) * 2011-09-09 2013-03-19 주식회사 케이티 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR101419011B1 (ko) * 2011-09-16 2014-07-14 한국항공대학교산학협력단 예측 움직임 벡터 유도 방법 및 이러한 방법을 사용하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOHARU UEDA: "Bi-prediction by single motion vector using decoder-side inter-reference ME", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3, 23 March 2011 (2011-03-23), Geneva, CH, XP030048303 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263038A1 (ko) * 2019-06-27 2020-12-30 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR20210002042A (ko) * 2019-06-27 2021-01-06 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR102221581B1 (ko) * 2019-06-27 2021-03-02 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR20210023942A (ko) * 2019-06-27 2021-03-04 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR102332530B1 (ko) * 2019-06-27 2021-12-01 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
US20220124366A1 (en) * 2019-06-27 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for decoding video, and method and apparatus for encoding video
EP3993422A4 (en) * 2019-06-27 2023-07-19 Samsung Electronics Co., Ltd. VIDEO DECODING METHOD AND APPARATUS AND VIDEO CODING METHOD AND APPARATUS
US11882307B2 (en) 2019-06-27 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for decoding video, and method and apparatus for encoding video
US11997286B2 (en) 2020-04-10 2024-05-28 Samsung Electronics Co., Ltd. Device and method for encoding motion vector, and device and method for decoding motion vector

Also Published As

Publication number Publication date
EP3637773A4 (en) 2020-07-29
KR20230003415A (ko) 2023-01-05
KR102574479B1 (ko) 2023-09-04
MX2023011668A (es) 2023-10-18
KR102414679B1 (ko) 2022-06-29
KR20200133835A (ko) 2020-11-30
KR102185370B1 (ko) 2020-12-01
US11589070B2 (en) 2023-02-21
MX2020001665A (es) 2020-03-20
CN116389747A (zh) 2023-07-04
US20230164346A1 (en) 2023-05-25
KR20210034117A (ko) 2021-03-29
US20200177908A1 (en) 2020-06-04
CN111095925A (zh) 2020-05-01
KR102232245B1 (ko) 2021-03-25
MX2023011666A (es) 2023-10-18
CN116389748A (zh) 2023-07-04
KR102480419B1 (ko) 2022-12-22
KR20220088817A (ko) 2022-06-28
CN111095925B (zh) 2023-04-14
EP3637773A1 (en) 2020-04-15
KR20200023650A (ko) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2019009504A1 (ko) 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
WO2020060158A1 (ko) 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2019093598A1 (ko) 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
WO2019054736A1 (ko) 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2020076116A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2020076097A1 (ko) 움직임 벡터 차분값을 이용한 비디오 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2019059575A2 (ko) 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2019135648A1 (ko) 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
WO2019168347A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020040626A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2020139059A1 (ko) 움직임 벡터 차분의 부호화 방법 및 부호화 장치, 및 움직임 벡터 차분의 복호화 방법 및 복호화 장치
WO2019093597A1 (ko) 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
WO2020130730A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2019066174A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2019139309A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2019066574A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2021049894A1 (ko) 툴 세트를 이용하는 영상 복호화 장치 및 이에 의한 영상 복호화 방법, 및 영상 부호화 장치 및 이에 의한 영상 부호화 방법
WO2020004978A1 (ko) 비디오 신호 처리 방법 및 장치
WO2020130712A1 (ko) 삼각 예측 모드를 이용하는 영상 부호화 장치 및 영상 복호화 장치, 및 이에 의한 영상 부호화 방법 및 영상 복호화 방법
WO2020040623A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2019066514A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2020101429A1 (ko) 양방향 예측을 이용한 영상의 부호화 및 복호화 방법, 및 영상의 부호화 및 복호화 장치
WO2011129672A2 (ko) 영상 부호화/복호화 장치 및 방법
WO2021086153A1 (ko) 어파인 모델에 따른 인터 예측을 수행하는 비디오 복호화 방법 및 그 장치, 비디오 부호화 방법 및 그 장치
WO2020117010A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018856771

Country of ref document: EP

Effective date: 20200110

ENP Entry into the national phase

Ref document number: 20207003361

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE