WO2019054394A1 - 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー - Google Patents

近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー Download PDF

Info

Publication number
WO2019054394A1
WO2019054394A1 PCT/JP2018/033735 JP2018033735W WO2019054394A1 WO 2019054394 A1 WO2019054394 A1 WO 2019054394A1 JP 2018033735 W JP2018033735 W JP 2018033735W WO 2019054394 A1 WO2019054394 A1 WO 2019054394A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
infrared
phosphonic acid
composition
Prior art date
Application number
PCT/JP2018/033735
Other languages
English (en)
French (fr)
Inventor
洋介 水谷
なつみ 板本
大福 幸司
福坂 潔
一成 中原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019542077A priority Critical patent/JP7103362B2/ja
Publication of WO2019054394A1 publication Critical patent/WO2019054394A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a near infrared absorbing composition, a near infrared absorbing film using the same, and an image sensor for a solid-state imaging device, and more specifically, dispersion stability and near infrared cut of constituent materials in storage over a long period of time
  • the present invention relates to a near infrared absorbing composition having excellent stability, a near infrared absorbing film using the composition, and an image sensor for a solid-state imaging device including the near infrared absorbing film.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • a near-infrared absorptive composition using a copper phosphonate complex is disclosed (see, for example, Patent Documents 1 to 3).
  • An object of the present invention is to provide an image sensor for a solid-state imaging device, which comprises a near-infrared absorptive film formed using the same and the near-infrared absorptive film.
  • the composition is a near infrared ray absorbing composition containing a copper phosphonate complex and two or more dispersants.
  • a near infrared absorptive composition having improved dispersion stability and near infrared cut stability during storage of copper complex particles over a long period of time, a near infrared absorptive film formed using the composition, and the near infrared absorptive film It has been found that an image sensor for a solid-state imaging device can be realized, and the present invention has been made.
  • It is a near-infrared absorptive composition containing a phosphonic acid copper complex and 2 or more types of dispersing agents, wherein at least one of the dispersing agents has a structure represented by the following general formula (1), and A near-infrared absorptive composition characterized by being a dispersant A having a molecular weight of 190 or less.
  • R 1 represents a hydrogen atom or a monovalent to tetravalent organic group.
  • R 2 represents an alkylene group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, an alkyl group or an acyl group.
  • a is an integer of 0 to 10.
  • b is an integer of 1 to 4;
  • Functional groups hydroxy group, thiol group, carbonyl group, carboxy group, sulfonic acid group, cyano group, amino group, and pyridyl group.
  • the dispersant other than the dispersant A is a dispersant having no structure represented by the general formula (1).
  • Phosphonic acid group A Ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, octylphosphonic acid, 2-ethylhexylphosphonic acid, 2-chloroethylphosphonic acid, 3-bromopropylphosphonic acid, 3 Methoxybutylphosphonic acid, 1,1-dimethylpropylphosphonic acid, 1,1-dimethylethylphosphonic acid, 1-methylpropylphosphonic acid.
  • Phosphonic acid group B phenylphosphonic acid, 4-methoxyphenylphosphonic acid, (4-aminophenyl) phosphonic acid, (4-bromophenyl) phosphonic acid, 3-phosphonobenzoic acid, 4-phosphonobenzoic acid, and (4- Hydroxyphenyl) phosphonic acid.
  • the value of the molar ratio (phosphorus / copper) with respect to copper of the phosphorus which comprises the said phosphonic acid copper complex is 1.5 or less,
  • the said 1 to 6 characterized by the above-mentioned Near infrared absorbing composition.
  • a near-infrared-absorbing film characterized by using the near-infrared-absorbing composition according to any one of the items 1 to 7.
  • the near-infrared absorptive film according to claim 8, comprising a matrix resin having a polysiloxane.
  • An image sensor for a solid-state imaging device comprising the near-infrared absorptive film according to any one of items 8 to 10.
  • two or more dispersants are contained together with the phosphonic acid copper complex particles, and at least one of the dispersants is represented by the general formula (1).
  • a dispersant A having a structure and a molecular weight of 190 or less is applied.
  • the copper phosphonate copper complex has a specific structure with a low molecular weight in the formation step of the copper phosphonate copper complex when examining how stably it is possible to prepare a copper phosphonate copper complex that exhibits absorption characteristics in the near infrared wavelength region
  • dispersant A By mixing dispersant A from the initial state, it becomes easier to act on copper phosphonate, and furthermore, by introducing a site of interaction with copper in one or more other dispersants, copper phosphonate is introduced.
  • the stronger interaction between the complex and the plurality of dispersants enables formation of a copper phosphonate complex particle having an average particle diameter of several hundreds nm, without requiring a large shearing force at the time of particle dispersion. found.
  • dispersant at least one type of dispersant, by applying dispersant A having an oxyalkylene unit represented by the general formula (1) in the main chain and having a molecular weight limited to 190 or less
  • dispersant A having an oxyalkylene unit represented by the general formula (1) in the main chain and having a molecular weight limited to 190 or less In addition to the excellent action of the above, it also acts as a liquid dispersion medium effectively, and from this point as well, it greatly contributes to the stabilization of the copper phosphonate copper complex particles in the near infrared ray absorbing composition. I guess.
  • the near-infrared absorptive composition of the present invention is a near-infrared absorptive composition containing a copper phosphonate complex and two or more dispersants, and at least one of the dispersants has the above-mentioned general formula (1) It is characterized by being a dispersant A having a structure represented by and having a molecular weight of 190 or less. This feature is a technical feature common to the inventions according to the following embodiments.
  • At least one of the two or more kinds of the dispersants constituting the near-infrared-absorbent composition is the above from the viewpoint of being able to further exhibit the effects aimed by the present invention.
  • Storage stability over a longer period of time (dispersion stability and near-infrared cut stability of copper phosphonate copper complex particles) having a dispersant B having at least one functional group selected from the specific functional group of It is preferable at the point which can obtain the near-infrared absorptive composition which has these.
  • one type uses dispersant A having a structure represented by the above general formula (1) and having a molecular weight of 190 or less
  • the further excellent long-term can be achieved by the other dispersing agent used in combination being a dispersing agent not having the structure represented by the general formula (1), that is, by applying two or more kinds of dispersing agents having different structures. It is preferable at the point which can obtain the near-infrared absorptive composition which has storage stability (dispersion stability and near-infrared cut stability of copper phosphonate copper complex particle
  • the alkyl phosphonic acid of a specific structure as a phosphonic acid which comprises a phosphonic acid copper complex from the point which can express the outstanding near-infrared absorptivity which is the objective of this invention more.
  • the ratio of solid content to the total weight of the near-infrared ray absorbing composition within the range of 10 to 34 mass% results in the concentration of an appropriate solid (for example, copper phosphonate copper complex particles), and over a long period of time Even during the storage period, the particle aggregation is suppressed, which is preferable in that long-term storage stability (dispersion stability and near infrared cut stability of copper phosphonate copper complex particles) can be obtained.
  • the value of the molar ratio of phosphorus to copper (phosphorus / copper) is set to 1.5 or less to constitute the phosphonic acid copper complex in that a more excellent near-infrared absorptivity can be obtained.
  • the near-infrared absorptive composition of the present invention contains a copper phosphonate complex and two or more dispersants, and at least one of the dispersants has a structure represented by the general formula (1), and It is characterized by being a dispersant A having a molecular weight of 190 or less.
  • the copper phosphonic acid complex which is a typical component of the near-infrared absorptive composition of this invention, and the dispersing agent to apply are demonstrated.
  • the present invention is not limited to only the configuration exemplified here.
  • the near-infrared absorbing composition of the present invention is characterized by containing a copper phosphonate complex.
  • the near-infrared absorptive composition of this invention contains the phosphonic acid compound which has a structure represented by following General formula (2).
  • R 1 represents a branched, linear or cyclic alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkynyl group, an aryl group or an allyl group, and at least one hydrogen Even if the atom is substituted with a halogen atom, an oxyalkyl group, a polyoxyalkyl group, an oxyaryl group, a polyoxyaryl group, an acyl group, an aldehyde group, a carboxyl group, a hydroxyl group or a group having an aromatic ring, It may not be substituted.
  • Examples of phosphonic acid compounds having a structure represented by the general formula (2) include ethylphosphonic acid represented by phosphonic acid group A, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid and octylphosphonic acid Acid, 2-ethylhexylphosphonic acid, 2-chloroethylphosphonic acid, 3-bromopropylphosphonic acid, 3-methoxybutylphosphonic acid, 1,1-dimethylpropylphosphonic acid, 1,1-dimethylethylphosphonic acid, 1-methyl Propylphosphonic acid, phenylphosphonic acid represented by phosphonic acid group B, 4-methoxyphenylphosphonic acid, (4-aminophenyl) phosphonic acid, (4-bromophenyl) phosphonic acid, 3-phosphonobenzoic acid, 4- And phosphonobenzoic acid, (4-hydroxyphenyl) phosphonic acid, etc.
  • the phosphonic acid constituting the phosphonic acid copper complex is preferably at least one alkylphosphonic acid selected from the following phosphonic acid group.
  • the phosphonic acid copper complex according to the present invention has a structure represented by the following general formula (3).
  • R is an alkyl group, a phenyl group or a benzyl group.
  • the copper salt which can supply a bivalent copper ion is used.
  • the phosphonic acid constituting the phosphonic acid copper complex is preferably an alkyl phosphonic acid.
  • alkyl phosphonic acid ethyl phosphonic acid copper complex, propyl phosphonic acid copper complex, butyl phosphonic acid copper complex, pentyl phosphonic acid copper complex Hexylphosphonic acid copper complex, octylphosphonic acid copper complex, 2-ethylhexylphosphonic acid copper complex, 2-chloroethylphosphonic acid copper complex, 3-bromopropylphosphonic acid copper complex, 3-methoxybutylphosphonic acid copper complex, 1, 1-Dimethylpropylphosphonic acid copper complex, 1,1-dimethylethylphosphonic acid copper complex, 1-methylpropylphosphonic acid copper complex, phenylphosphonic acid copper complex, 4-methoxyphenylphosphonic acid copper complex, (4-aminophenyl) Phosphonate copper complex, (4-Bromophenyl) phosphonate copper complex, 3 Phosphon
  • the near-infrared absorptive composition of the present invention is characterized by containing two or more dispersants together with the copper phosphonate complex.
  • At least one dispersant is a dispersant A having a structure represented by the following general formula (1) and having a molecular weight of 190 or less.
  • the other dispersant to be used in combination with the dispersant A is not particularly limited, but one dispersant is preferably a dispersant B having at least one functional group selected from the following functional group group.
  • Functional groups hydroxy group, thiol group, carbonyl group, carboxy group, sulfonic acid group, cyano group, amino group, and pyridyl group.
  • dispersant A Even if two or more dispersants having different structures are used in combination as dispersant A, or the other one is a dispersion not having a structure represented by the general formula (1) defined by dispersant A An agent may be used in combination.
  • At least one of the two or more dispersants has a structure represented by the following general formula (1), and a dispersant A having a molecular weight of 190 or less It is characterized by being.
  • R 1 represents a hydrogen atom or a monovalent to tetravalent organic group.
  • R 2 represents an alkylene group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, an alkyl group or an acyl group.
  • a is an integer of 0 to 10.
  • b is an integer of 1 to 4; a is preferably an integer of 1 to 10.
  • the structures represented in parentheses may be the same or different.
  • R 1 is a hydrogen atom or, as a monovalent to tetravalent organic group, an acyl group having 2 to 10 carbon atoms, a carbon number within a range that the molecular weight is 190 or less 1 to 10 linear, branched or cyclic alkyl group, aryl group having 6 to 10 carbon atoms or aralkyl group are mentioned, and at least one hydrogen atom bonded to a carbon atom constituting the alkyl group is a halogen It may be substituted by an atom, a hetero atom or an aromatic ring.
  • R 2 represents an alkylene group having 2 to 4 carbon atoms, and n represents 1 to 10.
  • the carbon number of the acyl group is preferably 2 to 10.
  • the carbon number of the alkyl group is preferably 1 to 15.
  • the carbon number of the aryl group or the aralkyl group is preferably 6 to 20.
  • the carbon number of the alkylene group represented by R 2 is preferably 2 to 3, more
  • the acyl group represented by R 1 also includes a divalent acid group derived from a dicarboxylic acid, and, for example, 2-ethylbutanoyl group, (meth) acryloyl group, propionyl group , Butyryl group, valeryl group, isovaleryl group, hexanoyl group, heptanedioyl group.
  • (meth) acryloyl group and 2-ethylhexanoyl group are preferable.
  • examples of the alkyl group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a hexyl group and a nonyl group. Among these, methyl and lauryl are preferable. Furthermore, as the aryl group or aralkyl group represented by R 1 , a phenyl group or 4-nonylphenyl group is preferable. Furthermore, as the alkylene group represented by R 2 , an ethylene group, a propylene group, a butylene group and a tetramethylene group are preferable. By employing such a group, the solubility and dispersibility of the copper-containing phosphorus compound in the resin can be significantly improved.
  • PGMEA Propylene glycol monomethyl ether acetate (molecular weight: 132) 2) PGEEA: Propylene glycol monoethyl ether acetate (molecular weight: 146) 3) PGBEA: Propylene glycol monobutyl ether acetate (molecular weight: 174) 4) Ethylene glycol diacetate (molecular weight: 146) 5) Ethylene glycol diglycidyl ether (molecular weight: 174) 6) Ethylene glycol monomethyl ether acetate (molecular weight: 118) 7) Ethylene glycol monoethyl ether acetate (molecular weight: 132) 8) Ethylene glycol monobutyl ether acetate (molecular weight: 160) 9) Ethylene glycol dibutyl ether (molecular weight: 174) 10) Ethylene glycol monoacetate (molecular weight: 104) 11) Ethylene glycol monoisopropylene
  • At least one of the two or more dispersants has a structure represented by the general formula (1) described above, and a dispersant A having a molecular weight of 190 or less And at least one of the two or more dispersants is preferably a dispersant B having at least one functional group selected from the following functional group groups. It is.
  • the functional group possessed by the dispersant B is at least one selected from a hydroxy group, a thiol group, a carbonyl group, a carboxy group, a sulfonic acid group, a cyano group, an amino group, and a pyridyl group.
  • each dispersing agent can be mentioned as an example of the dispersing agent B which has the said functional group based on this invention.
  • Alkyl imidazoline 2) polyoxyethylene (2) lauryl ether 3) sorbitan monopalmitate 4) polyoxyethylene alkyl (C8) ether phosphate ester 5) styrene-maleic acid 6) polyvinyl pyrrolidone 7) polyoxyethylene styrene Fluorinated phenyl ether 8) polyoxyethylene tridecyl ether 9) 2-ethylhexyl carboxylic acid 10) trimethyl-1-hexanol 11) phenoxyethanol etc.
  • the dispersion liquid B a commercial item can also be used.
  • Kao's Emulgen series for example, 102 KG, 103, 105, 106, 108, 109, etc.
  • Reodore SP-P 10 Ameet series (102, 302), etc. , A208N)
  • DKS Discoat N-14 Pitzcor K-30, Neugen series (EA-157, TDS-100, etc.) and the like.
  • dispersants examples include, for example, dioxyethylene lauryl ether having a molecular weight exceeding 190, trioxyethylene lauryl ether, tetraoxyethylene lauryl ether, pentaoxyethylene lauryl ether, hexaoxyethylene lauryl Ether, heptaoxyethylene lauryl ether, octaoxyethylene lauryl ether, nonaoxyethylene lauryl ether, decaoxyethylene lauryl ether, undecaoxyethylene lauryl ether, dodecaoxyethylene lauryl ether, tridecaoxyethylene lauryl ether, tetradecaoxyethylene Ether compounds such as lauryl ether, diethylene glycol dimethacrylate (NK ester 2G, Shin-Nakamura Chemical Co., Ltd.) Molecular weight: 242), triethylene glycol dimethacrylate (molecular weight: 286), polyethylene glycol # 200
  • copper acetate is used as a copper salt for supplying copper, tetrahydrofuran (abbreviation: THF) as a solvent, and propylene glycol monomethyl ether acetate (abbreviation: PGMEA, molecular weight) as dispersant A according to the present invention Mix and dissolve: 132).
  • THF tetrahydrofuran
  • PGMEA propylene glycol monomethyl ether acetate
  • the insoluble copper salt for example, copper acetate
  • Dispersant B is added to the copper acetate solution and stirred to prepare Solution A.
  • THF is added to the alkylphosphonic acid and stirred to prepare a solution B.
  • the solution B is added while stirring the solution A, and the solution is stirred at room temperature for a fixed time.
  • Near infrared absorbing compositions can be prepared.
  • One feature of the present invention is to form a near-infrared-absorbing film using the near-infrared-absorbing composition of the present invention.
  • a matrix resin is added to the near-infrared absorbing composition containing two or more dispersants of the present invention and a copper phosphonate complex, and fine particles of copper phosphonate are dispersed in the matrix resin. It is formed by putting it in the state of doing.
  • at least one near-infrared dye having an absorption maximum wavelength in a wavelength range of 650 to 800 nm can be added. Examples of near infrared dyes include cyanine dyes, squarylium dyes, croconium dyes, phlocyanine dyes, naphthalocyanine dyes and the like.
  • the coating solution for forming a near infrared ray absorbing film having the above configuration is applied onto a substrate by a spin coating method or a coating method using a dispenser to form a near infrared ray absorbing film. Thereafter, the coating film is subjected to a predetermined heat treatment to cure the coating film, thereby forming a near infrared absorbing film.
  • the matrix resin used to form the near-infrared absorbing film is a resin having light transparency to visible light and near-infrared light and capable of dispersing fine particles of copper phosphonate complex. Copper phosphonate complexes are relatively less polar substances and disperse well in hydrophobic materials. For this reason, as a matrix resin for near-infrared absorptive film formation, resin which has an acryl group, an epoxy group, or a phenyl group can be used. Among them, it is particularly preferable to use a resin having a phenyl group as a matrix resin of the near infrared ray absorbing film. In this case, the matrix resin of the near infrared absorptive film exhibits high heat resistance.
  • polysiloxane silicone resin is difficult to be decomposed by heat, has high light transmittance to visible light and near infrared light, and has high heat resistance, and thus has a characteristic suitable as a material for an image sensor for a solid-state imaging device. .
  • polysiloxane as a matrix resin of a near-infrared absorptive film.
  • Specific examples of the polysiloxane that can be used as a matrix resin of a near infrared absorbing film include KR-255, KR-300, KR-2621-1, KR-211, KR-311, KR-216, KR-212, And KR-251. All of these are silicone resins manufactured by Shin-Etsu Chemical Co., Ltd.
  • silicone resin for example, SS-6203, SS-6309, VS-9301, and VS-9506 can be mentioned, and all of them are silicone resins manufactured by San Yuleck.
  • a matrix resin used for formation of the near-infrared absorptive film of this invention it is a preferable aspect to contain the matrix resin which has an epoxy group from a low gas permeability viewpoint.
  • the matrix resin having an epoxy group constituting the near-infrared absorptive film exhibits high moisture resistance, and thus has a characteristic suitable as a material for an image sensor for a solid-state imaging device.
  • the resin having an epoxy group that can be used as a matrix resin of a near infrared absorbing film include KJC-X5 (manufactured by Shin-Etsu Chemical Co., Ltd.), NLD-L-672 (manufactured by San Yurec Co., Ltd.), LE-1421 (San Yulek) Company) and EpiFine series (made by KISCO company) can be mentioned.
  • resin which has both the polysiloxane mentioned above and an epoxy group is also preferable to use as matrix resin of a near-infrared absorptive film.
  • a matrix resin having both of these polysiloxanes and an epoxy group exhibits high heat resistance and moisture resistance, and thus has properties suitable as a material for an image sensor for a solid-state imaging device.
  • resin having both polysiloxane and epoxy group that can be used as a matrix resin of a near infrared absorbing film
  • resin having both polysiloxane and epoxy group that can be used as a matrix resin of a near infrared absorbing film
  • EpiFine series manufactured by KISCO
  • ILLUMIKA series manufactured by Kaneka
  • additives Various additives known in the prior art can be applied to the near-infrared absorptive film of the present invention as long as the object effects of the present invention are not impaired.
  • sensitizers, crosslinking agents, curing accelerators, fillers, Thermal curing accelerators, thermal polymerization inhibitors, plasticizers, etc. and adhesion promoters to the substrate surface and other auxiliary agents (eg, conductive particles, fillers, antifoaming agents, flame retardants, leveling) Agents, peeling accelerators, antioxidants, perfumes, surface tension regulators, chain transfer agents, etc.) may be used in combination.
  • paragraph numbers (0183) to (0260) of JP 2012-003225 A paragraph numbers (0101) to (0102) of JP 2008-250074 A
  • JP 2008-250074 A JP 2008-250074 A.
  • the description of Paragraph Nos. (0103) to (0104) in Paragraph No. and Paragraph Nos. (0107) to (0109) in JP-A 2008-250074 can be referred to.
  • the near-infrared absorbing composition of the present invention can be in the form of a liquid, so it is easy to form a near-infrared-absorbing film, for example, a near-infrared cut filter, by a simple process of forming a film by spin coating, for example. Can be manufactured.
  • the near-infrared absorptive film of the present invention is, for example, a visibility correction member for CCD, CMOS, or other light receiving element, a member for photometry, a member for heat ray absorption, a composite optical filter, a lens member (for example, glasses, Sunglasses, goggles, optical systems, optical waveguide systems, etc., fiber members (eg, optical fibers), noise cutting members, display covers or display filters such as plasma display front plates, projector front plates, light source heat ray cutting members, color tone
  • the correction member, the illumination luminance adjustment member, the optical element (for example, a light amplification element, a wavelength conversion element, etc.), a Faraday element, an optical communication function device such as an isolator, an optical disc element, etc. are suitable.
  • the application of the near-infrared absorbing composition of the present invention is particularly for a near-infrared cut filter disposed on the light receiving side of a solid-state imaging element substrate (for example, for a near-infrared cut filter for wafer level lens)
  • the present invention is characterized in that it is applied to an image sensor for a solid-state imaging device as a near infrared cut filter or the like on the back surface side (the opposite side to the light receiving side).
  • the near-infrared absorptive film (near-infrared cut filter) of this invention is arrange
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a camera module provided with a solid-state imaging device provided with an infrared cut filter that is a near infrared absorptive film of the present invention.
  • the number described in the parenthesis at the end of a component represents the code
  • the camera module (1) shown in FIG. 1 is connected to a circuit board (12) which is a mounting board via a solder ball (60) which is a connecting member.
  • the camera module (1) comprises a solid-state imaging device substrate (10) including an imaging device portion on a first main surface of a silicone substrate, and a first major surface side of the solid-state imaging device substrate (10) And a near infrared cut filter (9, a near infrared absorptive film) provided on the flattening layer (8), and a near infrared cut filter (9).
  • a glass substrate (3; light transmitting substrate) disposed above, a lens holder (5) disposed above the glass substrate (3) and having an imaging lens (4) in an internal space; And a light shielding and electromagnetic shield (6) disposed to surround the glass substrate (3).
  • Each member is bonded by an adhesive (2, 7).
  • the present invention is a method of manufacturing a camera module having a solid-state imaging device substrate and an infrared cut filter disposed on the light-receiving side of the solid-state imaging device substrate, wherein the light-receiving side of the solid-state imaging device substrate
  • a near infrared absorptive film can be formed by spin coating an infrared absorptive liquid composition.
  • a near infrared absorptive film is formed by spin coating the near infrared absorptive composition of the present invention on the planarizing layer (8) to cut the near infrared radiation. Form a filter (9).
  • the incident light (L) from the outside passes through the imaging lens (4), the glass substrate (3), the near infrared cut filter (9), and the flattening layer (8) sequentially, and then solid It reaches the imaging element portion of the imaging element substrate (10).
  • the camera module (1) is connected to the circuit board (12) via the solder balls (11, connection material) on the second principal surface side of the solid-state imaging element substrate (10).
  • Example 1 Preparation of Near-Infrared Absorbent Composition >> (Preparation of Near-Infrared Absorbent Composition 1) A near infrared absorbing composition 1 was prepared according to the following method.
  • dispersant A1 a copper acetate solution containing dispersant A1
  • a polycarboxylic acid type polymer dispersant having a carboxy group as a functional group as a dispersant B (60 wt% of the copper acetate solution prepared above (Product name: Homogen L 18 by Kao Corporation, hereinafter, “Dispersant”) A) A was obtained by adding 1.0 g of the compound B1) and stirring. On the other hand, 6.0 g of THF was added to 0.63 g of propyl phosphonic acid as the alkyl phosphonic acid and stirred to prepare a solution B.
  • Dispersant C1 Phosphate ether dispersant, Plysurf A 208 F (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene alkyl (C8) ether phosphate, compound having a structure represented by the general formula (1))
  • Phosphate ether dispersant, Plysurf A 208 F manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene alkyl (C8) ether phosphate, compound having a structure represented by the general formula (1)
  • Preparation of Near Infrared Absorbent Composition 3 A near infrared absorbing composition 3 was prepared in the same manner as in the preparation of the near infrared absorbing composition 1, except that octylphosphonic acid was used as the alkylphosphonic acid in place of propylphosphonic acid.
  • a near infrared absorptive composition 4 was prepared in the same manner as in the preparation of the near infrared absorptive composition 1 except that hexylphosphonic acid was used as the alkylphosphonic acid in place of propylphosphonic acid.
  • a near infrared absorbing composition 5 was prepared in the same manner as in the preparation of the near infrared absorbing composition 1, except that ethylphosphonic acid was used as the alkylphosphonic acid in place of propylphosphonic acid.
  • the near infrared rays of the comparative example are prepared similarly except that the same amount of toluene (molecular weight: 92) is used instead of the dispersant A1 (PGMEA) which is the dispersant A in the preparation of the near infrared radiation absorbing composition 1 described above.
  • Absorbent composition 7 was prepared.
  • a near infrared absorbing composition 11 was prepared in the same manner as in the preparation of the near infrared absorbing composition 1, except that the following dispersing agent A2 was used instead of the dispersing agent A (PGMEA) as the dispersing agent A. .
  • Dispersant A2 Propylene glycol monoethyl ether acetate (molecular weight: 146) (Preparation of Near-Infrared Absorbent Composition 12) A near infrared absorptive composition 12 was prepared in the same manner except that the following dispersant A3 was used instead of the dispersant A1 (PGMEA) which is the dispersant A in the preparation of the near infrared absorptive composition 1 described above. .
  • PGMEA dispersant A1
  • Dispersant A3 Propylene glycol monobutyl ether acetate (molecular weight: 174) (Preparation of Near Infrared Absorbent Composition 13)
  • near-infrared ray absorption is carried out in the same manner, except that the following dispersant B2 is used in place of the dispersant B1 (polycarboxylic acid type polymer dispersant) as the dispersant B.
  • Sex composition 13 was prepared.
  • Dispersant B2 Neohytenol L-30 (Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene sulfosuccinic acid, functional group: sulfone group)
  • Preparation of Near-Infrared Absorbent Composition 14 In the preparation of the above-mentioned near-infrared ray absorbing composition 1, near-infrared ray absorption is carried out in the same manner, except that the following dispersant B3 is used in place of the dispersant B1 (polycarboxylic acid type polymer dispersant) as the dispersant B. Sex composition 14 was prepared.
  • Dispersant B3 Cathogen TML (Daiichi Kogyo Seiyaku Co., Ltd., lauryltrimethylammonium clothide, functional group: amino group) (Preparation of Near Infrared Absorbent Composition 15) 3.29 g of copper acetate monohydrate was added to a solution of 10.0 g of 2-ethylhexyl-2-ethylhexyl phosphonate in 15 g of toluene, and acetic acid was distilled off while the solution was heated to reflux.
  • a near infrared absorptive composition 15 was prepared in which the copper complex of 2-ethylhexyl-2-ethylhexyl phosphonate (represented as * 1 in Table I) is 40% by mass in terms of solid content ratio.
  • a near infrared absorbing composition 16 was prepared in the same manner as in the preparation of the near infrared absorbing composition 1 except that the following dispersing agent A4 was used in place of the dispersing agent A (PGMEA) as the dispersing agent A. .
  • Dispersant A4 1,3-butylene glycol dimethacrylate (molecular weight: 226) (Preparation of Near Infrared Absorbent Composition 17)
  • a near infrared absorbing composition 17 was prepared in the same manner as in the preparation of the near infrared absorbing composition 1, except that 0.63 g of propylphosphonic acid was changed to 0.87 g of phenylphosphonic acid.
  • a near infrared absorbing composition 18 was prepared in the same manner as in the preparation of the near infrared absorbing composition 2 except that 0.63 g of propylphosphonic acid was changed to 0.87 g of phenylphosphonic acid.
  • Table 1 shows the basic composition of the above-prepared near infrared ray absorbing compositions 1 to 18.
  • Dispersant A1 Propylene glycol monomethyl ether acetate (PGMEA, molecular weight: 132)
  • Dispersant A2 Propylene glycol monoethyl ether acetate (molecular weight: 146)
  • Dispersant A3 Propylene glycol monobutyl ether acetate (molecular weight: 174)
  • Dispersant A4 1,3-butylene glycol dimethacrylate (molecular weight: 226)
  • Dispersant B2 Neohytenol L-30 (Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene sulfosuccinic acid, functional group: sul
  • Sample 1 was prepared by diluting the solvent component of the near infrared absorptive composition such that the particle concentration of the alkylphosphonic acid copper complex which is the particle was 1.0% by mass for the near infrared absorptive composition.
  • the average particle diameter of the sample 1 was measured by a dynamic light scattering method using ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd. as a measurement device.
  • the average particle diameter immediately after preparation measured by the above method was ranked according to the following criteria.
  • Average particle size is in the range of 10 to 300 nm ⁇ : Average particle size is in the range of 301 to 500 nm ⁇ : Average particle size is in the range of 501 to 700 nm ⁇ : Average particle size Is at least 701 nm (measurement of average particle size after storage)
  • a stock solution of a near infrared absorbing composition is housed in a glass container, the container is sealed in a state of being filled with nitrogen gas, and this glass container is stored in the dark at 5 ° C. for 3 days.
  • Sample 2 after storage processing was prepared by diluting with the solvent component of the near-infrared absorptive composition such that the particle concentration of the alkylphosphonic acid copper complex which is the particles was 1.0% by mass.
  • the average particle diameter was measured by the method similar to the above about sample 2, and the same ranking was performed.
  • Sample 1 was prepared by diluting the solvent component of the near infrared absorptive composition such that the particle concentration of the alkylphosphonic acid copper complex which is the particle was 1.0% by mass for the near infrared absorptive composition.
  • the spectral transmittance of the sample 1 in the wavelength range of 380 to 1200 nm was measured using a spectrophotometer V-570 manufactured by JASCO Corporation as a measurement apparatus.
  • the average spectral transmittance in a wavelength range of 750 to 1100 nm was 1.0%
  • the maximum transmittance T max1 in a visible light region was measured.
  • the maximum transmittance T max1 in the visible light region of the near-infrared absorbing composition immediately after preparation measured by the above method was ranked according to the following criteria.
  • a stock solution of a near infrared absorbing composition is housed in a glass container, the container is sealed in a state filled with nitrogen gas, and the glass container is stored in the dark at 5 ° C.
  • the spectral transmittance of the sample 2 in the wavelength range of 380 to 1200 nm is measured by the same method as above, and the average spectral transmittance in the wavelength range of 750 to 1100 nm is 1.0% after storage.
  • the maximum transmittance T max2 in the visible light region (400 to 750 nm) was measured.
  • the decrease width ⁇ T (T max1 -T max2 ) of the visible light transmittance of the maximum transmittance T max2 of the sample 2 after storage with respect to the maximum transmittance T max1 of the sample 1 immediately after the preparation measured above is determined. According to the criteria, the visible light transmittance after storage was ranked.
  • the reduction width ⁇ T of visible light transmittance is less than 1.0%
  • the reduction width ⁇ T of visible light transmittance is 1.0% or more and less than 3.0%
  • visible light transmittance The reduction width ⁇ T of is 3.0% or more and less than 5.0%.
  • The reduction width ⁇ T of the visible light transmittance is less than 5.0%.
  • the near-infrared absorbing composition of the present invention is smaller than the comparative example in average particles of alkylphosphonic acid copper complex particles immediately after preparation and after being stored. It can be seen that the deterioration rate of the average particle size is low and the storage stability is excellent. Furthermore, the near-infrared absorbing composition of the present invention is superior to the comparative example in the transmittance in the visible light region with respect to the transmittance in the near-infrared region, and the effect on the visible light transmittance is small. It can be seen that it has the ability to cut ambient light. Furthermore, it can be seen that the characteristics do not change even if storage processing is performed.
  • Example 2 Preparation of near-infrared absorbing film >> A polysiloxane silicone resin (KR-255, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to each of the near infrared absorbing compositions prepared in Example 1 and stirred to prepare a coating solution for forming a near infrared absorbing film. . The prepared coating solution was applied onto a substrate by spin coating to form a near infrared absorptive film.
  • KR-255 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 3 Preparation of near-infrared absorbing film >> A resin (KJC-X5, manufactured by Shin-Etsu Chemical Co., Ltd.) having an epoxy group is added to each of the near infrared absorbing compositions prepared in Example 1 and stirred to prepare a coating solution for forming a near infrared absorbing film. did. The prepared coating solution was applied onto a substrate by spin coating to form a near infrared absorptive film.
  • KJC-X5 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the near-infrared absorptive composition of the present invention is excellent in the dispersion stability and near-infrared cut stability of constituent materials in storage over a long period of time, and the near-infrared absorptive film produced by the near-infrared absorptive composition is a video
  • the present invention can be suitably used as an image sensor for a solid-state imaging device applied to a camera, a digital still camera, a mobile phone with a camera function, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本発明の課題は、長期間にわたる保存における、構成材料の分散安定性及び近赤外線カット安定性に優れた近赤外線吸収性組成物と、これを用いて形成した近赤外線吸収性膜と、当該近赤外線吸収性膜を具備する固体撮像素子用イメージセンサーを提供することである。 本発明の近赤外線吸収性組成物は、ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物であって、当該分散剤の少なくとも1種が、下記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする。

Description

近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
 本発明は、近赤外線吸収性組成物と、これを用いた近赤外線吸収性膜及び固体撮像素子用イメージセンサーに関し、より詳しくは、長期間にわたる保存における、構成材料の分散安定性及び近赤外線カット安定性に優れた近赤外線吸収性組成物と、これを用いた近赤外線吸収性膜と、当該近赤外線吸収性膜を具備する固体撮像素子用イメージセンサーに関する。
 近年、ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子としてCCD(Charge Coupled Device)やCMOS(Complementary Metal-oxide Semiconductor)イメージセンサーが用いられているが、これら固体撮像素子はその受光部において近赤外線波長領域に感度を有するシリコンフォトダイオードを使用しているため、視感度補正を行うことが必要となり、そのため、近赤外線カットフィルターを用いることが多い。
 このような近赤外線カットフィルターを形成するための材料の一例として、ホスホン酸銅錯体を用いた近赤外線吸収性組成物が開示されている(例えば、特許文献1~3参照。)。
 上記特許文献において、ホスホン酸銅錯体の分散媒体としては、特許文献1では1種の溶媒を適用すること、特許文献2では特定の可溶化剤を1種適用すること、特許文献3では特定の溶媒を1種適用することにより、品質の向上、例えば、保存安定性の向上を図っているが、いずれの特許文献でも、近赤外線吸収性組成物において、ホスホン酸銅塩に対し、バインダーである樹脂成分を添加した後での安定性を問題としているが、バインダー成分を含まない状態での近赤外線吸収性組成物の安定性に関しての言及はなく、本発明者らが検討を行った結果、バインダー樹脂を添加する前の段階での近赤外線吸収性組成物の分散安定性が、最終品質に対し大きく影響を与えることが判明し、早急な改良が必要とされている。
特許第4684393号公報 特許第4926699号公報 特許第5890805号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、長期間にわたる保存における、構成材料の分散安定性及び近赤外線カット安定性に優れた近赤外線吸収性組成物と、これを用いて形成した近赤外線吸収性膜と、当該近赤外線吸収性膜を具備する固体撮像素子用イメージセンサーを提供することである。
 本発明者は、上記課題を解決すべく上記問題の原因等について検討した結果、ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物であって、当該分散剤の少なくとも1種が、オキシアルキレン単位を有し、かつ分子量が190以下の低分子の分散剤Aであることを特徴とする近赤外線吸収性組成物により、近赤外線吸収性組成物を構成するホスホン酸銅錯体粒子の長期間にわたる保存における分散安定性及び近赤外カット安定性が向上した近赤外線吸収性組成物と、これを用いて形成した近赤外線吸収性膜と、当該近赤外線吸収性膜を具備する固体撮像素子用イメージセンサーを実現することができることを見いだし、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物であって、当該分散剤の少なくとも1種が、下記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする近赤外線吸収性組成物。
Figure JPOXMLDOC01-appb-C000002
〔式中、Rは水素原子又は1~4価の有機基を表す。Rは炭素数2~4のアルキレン基を表す。Rは、水素原子、アルキル基又はアシル基を表す。aは0~10の整数である。bは1~4の整数である。〕
 2.前記2種以上の分散剤のうちの少なくとも1種が、下記官能基群から選ばれる少なくとも一つの官能基を有する分散剤Bであることを特徴とする第1項に記載の近赤外線吸収性組成物。
 官能基群:ヒドロキシ基、チオール基、カルボニル基、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びピリジル基。
 3.前記2種以上の分散剤のうち、前記分散剤Aを除く分散剤が、前記一般式(1)で表される構造を有していない分散剤であることを特徴とする第1項又は第2項に記載の近赤外線吸収性組成物。
 4.前記ホスホン酸銅錯体を構成するホスホン酸が、下記ホスホン酸群Aから選ばれる少なくとも1種のホスホン酸であることを特徴とする第1項から第3項までのいずれか一項に記載の近赤外線吸収性組成物。
 ホスホン酸群A:エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、オクチルホスホン酸、2-エチルヘキシルホスホン酸、2-クロロエチルホスホン酸、3-ブロモプロピルホスホン酸、3-メトキシブチルホスホン酸、1,1-ジメチルプロピルホスホン酸、1,1-ジメチルエチルホスホン酸、1-メチルプロピルホスホン酸。
 5.前記ホスホン酸銅錯体を構成するホスホン酸が、下記ホスホン酸群Bから選ばれる少なくとも1種のホスホン酸であることを特徴とする第1項から第3項までのいずれか一項に記載の近赤外線吸収性組成物。
 ホスホン酸群B:フェニルホスホン酸、4-メトキシフェニルホスホン酸、(4-アミノフェニル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノ安息香酸、4-ホスホノ安息香酸、及び(4-ヒドロキシフェニル)ホスホン酸。
 6.近赤外線吸収性組成物全質量に対する固形分の比率が、10~34質量%の範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載の近赤外線吸収性組成物。
 7.前記ホスホン酸銅錯体を構成するリンの銅に対するモル比(リン/銅)の値が、1.5以下であることを特徴とする第1項から第6項までのいずれか一項に記載の近赤外線吸収性組成物。
 8.少なくとも第1項から第7項までのいずれか一項に記載の近赤外線吸収性組成物を用いたことを特徴とする近赤外線吸収性膜。
 9.ポリシロキサンを有するマトリックス樹脂を含有することを特徴とする第8項に記載の近赤外線吸収性膜。
 10.エポキシ基を有するマトリックス樹脂を含有することを特徴とする第9項に記載の近赤外線吸収性膜。
 11.第8項から第10項までのいずれか一項に記載の近赤外線吸収性膜を具備していることを特徴とする固体撮像素子用イメージセンサー。
 本発明の上記手段により、長期間にわたる保存における、構成材料の分散安定性及び近赤外線カット安定性に優れた近赤外線吸収性組成物と、これを用いて形成した近赤外線吸収性膜と、当該近赤外線吸収性膜を具備する固体撮像素子用イメージセンサーを提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 本発明の近赤外線吸収性組成物においては、ホスホン酸銅錯体粒子とともに、2種以上の分散剤を含有する構成とし、当該分散剤の少なくとも1種を、前記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aを適用することを特徴とする。
 この様に、ホスホン酸銅錯体粒子を含む近赤外線吸収性組成物において、2種以上の分散剤を適用することにより、それぞれ単独の分散剤では予想できなかったシナジー効果が発現し、樹脂成分を添加する前の状態でのホスホン酸銅錯体粒子の微粒子化や、長期保存後の粒径安定性や近赤外線カット安定性に優れた効果を発現することが判明した。
 特に、近赤外線波長領域に吸収特性を発現するホスホン酸銅錯体を、いかに安定して調製することができるかを検討する際に、ホスホン酸銅錯体の形成段階で、低分子量で特定構造を有する分散剤Aを初期状態から混合しておくことにより、よりホスホン酸銅に作用しやすくなり、更に、もう1種以上の分散剤に、銅との相互作用部位を導入することにより、ホスホン酸銅錯体と複数の分散剤とがより強く相互作用することで、粒子分散時に大きな剪断力を必要とすることなく、平均粒径が数100nmレベルのホスホン酸銅錯体粒子を形成することができるとこと判明した。
 加えて、分散剤の少なくとも1種として、一般式(1)で表されるオキシアルキレン単位を主鎖に有し、かつ分子量を190以下に限定した分散剤Aを適用することにより、分散剤としての優れた作用の他に、液状で分散媒としても効果的に作用するため、この点からも、近赤外線吸収性組成物中におけるホスホン酸銅錯体粒子の安定化に大きく貢献しているものと推測している。
本発明の近赤外線吸収性膜を具備した固体撮像素子を備えたカメラモジュールの構成の一例を示す概略断面図
 本発明の近赤外線吸収性組成物は、ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物であって、当該分散剤の少なくとも1種が、前記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする。この特徴は、下記各実施形態に係る発明に共通する技術的特徴である。
 本発明の近赤外線吸収性組成物においては、本発明の目的とする効果をより発現できる観点から、近赤外線吸収性組成物を構成する2種以上の分散剤のうちの少なくとも1種が、前記の特定の官能基群から選ばれる少なくとも一つの官能基を有する分散剤Bとすることが、より優れた長期間にわたる保存安定性(ホスホン酸銅錯体粒子の分散安定性と近赤外線カット安定性)を有する近赤外線吸収性組成物を得ることができ点で好ましい。
 また、近赤外線吸収性組成物を構成する2種以上の分散剤のうち、1種は前記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aを用い、併用するその他の分散剤が、前記一般式(1)で表される構造を有していない分散剤とすること、すなわち構造の異なる2種以上の分散剤を適用することにより、更に優れた長期保存安定性(ホスホン酸銅錯体粒子の分散安定性と近赤外線カット安定性)を有する近赤外線吸収性組成物を得ることができ点で好ましい。
 また、ホスホン酸銅錯体を構成するホスホン酸として、特定構造のアルキルホスホン酸を適用することが、本願発明の目的である優れた近赤外線吸収能をより発現させることができる点で好ましい。
 また、近赤外線吸収性組成物全質量に対する固形分の比率を、10~34質量%の範囲内とすることが、適切な固形物(例えば、ホスホン酸銅錯体粒子)の濃度となり、長期間にわたる保存期間中でも粒子凝集性が抑制され、より優れた長期保存安定性(ホスホン酸銅錯体粒子の分散安定性と近赤外線カット安定性)を得ることができる点で好ましい。
 また、ホスホン酸銅錯体を構成する銅に対するリンのモル比(リン/銅)の値を、1.5以下とすることが、より優れた近赤外線吸収能を得ることができる点で好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《近赤外線吸収性組成物の構成》
 本発明の近赤外線吸収性組成物は、ホスホン酸銅錯体と、2種以上の分散剤を含有し、分散剤の少なくとも1種が前記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする。
 以下、本発明の近赤外線吸収性組成物の代表的な構成成分であるホスホン酸銅錯体及び適用する分散剤について説明する。ただし、本発明はここで例示する構成にのみ限定されるものではない。
 〔ホスホン酸銅錯体〕
 本発明の近赤外線吸収性組成物では、ホスホン酸銅錯体を含有することを特徴とする。
 はじめに、本発明に係るホスホン酸銅錯体を構成するホスホン酸化合物について説明する。
 〈ホスホン酸化合物〉
 本発明の近赤外線吸収性組成物は、下記一般式(2)で表される構造を有するホスホン酸化合物を含むものである。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(2)において、Rは、炭素数が1~30である分岐状、直鎖状又は環状のアルキル基、アルケニル基、アルキニル基、アリール基又はアリル基を表し、少なくとも一つの水素原子が、ハロゲン原子、オキシアルキル基、ポリオキシアルキル基、オキシアリール基、ポリオキシアリール基、アシル基、アルデヒド基、カルボキシル基、ヒドロキシル基、又は、芳香環を有する基で置換されていても、置換されていなくてもよい。
 一般式(2)で表される構造を有するホスホン酸化合物の例としては、ホスホン酸群Aで表されるエチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、オクチルホスホン酸、2-エチルヘキシルホスホン酸、2-クロロエチルホスホン酸、3-ブロモプロピルホスホン酸、3-メトキシブチルホスホン酸、1,1-ジメチルプロピルホスホン酸、1,1-ジメチルエチルホスホン酸、1-メチルプロピルホスホン酸や、ホスホン酸群Bで表されるフェニルホスホン酸、4-メトキシフェニルホスホン酸、(4-アミノフェニル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノ安息香酸、4-ホスホノ安息香酸、(4-ヒドロキシフェニル)ホスホン酸等が挙げられ、その一例を、下記化合物(H-1)~(H-8)として例示する。
Figure JPOXMLDOC01-appb-C000004
 本発明においては、ホスホン酸銅錯体を構成するホスホン酸が、下記ホスホン酸群から選ばれる少なくとも1種のアルキルホスホン酸であることが好ましい。
 エチルホスホン酸
 プロピルホスホン酸
 ブチルホスホン酸
 ペンチルホスホン酸
 ヘキシルホスホン酸
 オクチルホスホン酸
 2-エチルヘキシルホスホン酸
 2-クロロエチルホスホン酸
 3-ブロモプロピルホスホン酸
 3-メトキシブチルホスホン酸
 1,1-ジメチルプロピルホスホン酸
 1,1-ジメチルエチルホスホン酸
 1-メチルプロピルホスホン酸
 〈ホスホン酸銅錯体〉
 本発明に係るホスホン酸銅錯体は、下記一般式(3)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(3)において、Rはアルキル基、フェニル基、又はベンジル基である。
 一般式(3)で表される構造を有するホスホン酸銅錯体の形成に用いられる銅塩としては、2価の銅イオンを供給することが可能な銅塩が用いられる。例えば、無水酢酸銅、無水ギ酸銅、無水ステアリン酸銅、無水安息香酸銅、無水アセト酢酸銅、無水エチルアセト酢酸銅、無水メタクリル酸銅、無水ピロリン酸銅、無水ナフテン酸銅、無水クエン酸銅等の有機酸の銅塩、該有機酸の銅塩の水和物若しくは水化物;酸化銅、塩化銅、硫酸銅、硝酸銅、リン酸銅、塩基性硫酸銅、塩基性炭酸銅等の無機酸の銅塩、該無機酸の銅塩の水和物若しくは水化物;水酸化銅が挙げられる。
 本発明においては、ホスホン酸銅錯体を構成するホスホン酸が、アルキルホスホン酸であることが好ましく、例えば、エチルホスホン酸銅錯体、プロピルホスホン酸銅錯体、ブチルホスホン酸銅錯体、ペンチルホスホン酸銅錯体、ヘキシルホスホン酸銅錯体、オクチルホスホン酸銅錯体、2-エチルヘキシルホスホン酸銅錯体、2-クロロエチルホスホン酸銅錯体、3-ブロモプロピルホスホン酸銅錯体、3-メトキシブチルホスホン酸銅錯体、1,1-ジメチルプロピルホスホン酸銅錯体、1,1-ジメチルエチルホスホン酸銅錯体、1-メチルプロピルホスホン酸銅錯体、フェニルホスホン酸銅錯体、4-メトキシフェニルホスホン酸銅錯体、(4-アミノフェニル)ホスホン酸銅錯体、(4-ブロモフェニル)ホスホン酸銅錯体、3-ホスホノ安息香酸銅錯体、4-ホスホノ安息香酸銅錯体、(4-ヒドロキシフェニル)ホスホン酸銅錯体等を挙げることができる。
 〔分散剤〕
 本発明の近赤外線吸収性組成物においては、ホスホン酸銅錯体とともに、2種以上の分散剤を含有することを特徴とする。
 2種以上の分散剤のうち、少なくとも1種は、下記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする。この分散剤Aと併用するその他の分散剤としては、特に制限はないが、一つとしては、下記官能基群から選ばれる少なくとも一つの官能基を有する分散剤Bであることが好ましい。
 官能基群:ヒドロキシ基、チオール基、カルボニル基、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びピリジル基。
 また、分散剤Aで構造の異なる2種以上の分散剤を併用しても、又は他方の1種を、分散剤Aで規定する一般式(1)で表される構造を有していない分散剤を併用してもよい。
 (分散剤A)
 本発明の近赤外線吸収性組成物においては、2種以上の分散剤のうち、少なくとも1種が、下記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)において、Rは水素原子又は1~4価の有機基を表す。Rは炭素数2~4のアルキレン基を表す。Rは、水素原子、アルキル基又はアシル基を表す。aは0~10の整数である。bは1~4の整数である。aは好ましくは1~10の整数である。bが2以上の場合、括弧内で表される構造は、同じであっても異なっていてもよい。
 上記一般式(1)で表される化合物の中でも、bが1である化合物が好ましい。
 更には、一般式(1)において、分子量が190以下となる範囲で、Rは、水素原子又は、1~4価の有機基としては、炭素数が2~10のアシル基、炭素数が1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数が6~10のアリール基若しくはアラルキル基が挙げられ、アルキル基を構成する炭素原子に結合した少なくとも一つの水素原子が、ハロゲン原子、ヘテロ原子又は芳香環で置換されていてもよい。Rは炭素数が2~4のアルキレン基を示し、nは1~10を示す。アシル基の炭素数は、好ましくは2~10である。アルキル基の炭素数は、好ましくは1~15である。アリール基又はアラルキル基の炭素数は、好ましくは6~20である。Rで示されるアルキレン基の炭素数は、好ましくは2~3、更に好ましくは2である。
 上記一般式(1)において、Rで表されるアシル基としてはジカルボン酸から誘導される2価の酸基も含まれ、例えば、2-エチルブタノイル基、(メタ)アクリロイル基、プロピオニル基、ブチリル基、バレリル基、イソバレリル基、ヘキサノイル基、ヘプタンジオイル基が挙げられる。これらの中でも、(メタ)アクリロイル基、2-エチルヘキサノイル基が好ましい。また、Rで表されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基、ノニル基が挙げられる。これらの中でも、メチル基、ラウリル基が好ましい。またさらに、Rで表されるアリール基若しくはアラルキル基としては、フェニル基、4-ノニルフェニル基が好ましい。さらに、Rで表されるアルキレン基としては、エチレン基、プロピレン基、ブチレン基、テトラメチレン基が好適である。このような基を採用することで、銅を含むリン化合物の樹脂への溶解性及び分散性を顕著に向上させることができる。
 本発明に係る分散剤Aで表される化合物例を以下に示す。
 1)PGMEA:プロピレングリコールモノメチルエーテルアセテート(分子量:132)
 2)PGEEA:プロピレングリコールモノエチルエーテルアセテート(分子量:146)
 3)PGBEA:プロピレングリコールモノブチルエーテルアセテート(分子量:174)
 4)エチレングリコールジアセテート(分子量:146)
 5)エチレングリコールジグリシジルエーテル(分子量:174)
 6)エチレングリコールモノメチルエーテルアセテート(分子量:118)
 7)エチレングリコールモノエチルエーテルアセテート(分子量:132)
 8)エチレングリコールモノブチルエーテルアセテート(分子量:160)
 9)エチレングリコールジブチルエーテル(分子量:174)
 10)エチレングリコールモノアセテート(分子量:104)
 11)エチレングリコールモノイソプロピルエーテル(分子量:104)
 12)エチレングリコールモノエチルエーテル(分子量:90)
 13)エチレングリコールモノメトキシメチルエーテル(分子量:106)
 14)グリセリン1,3-ジアセテート(分子量:176)
 15)グリセリン1,2-ジメチルエーテル(分子量:120)
 16)グリセリン1,3-ジメチルエーテル(分子量:120)
 17)グリセリン1,3-ジエチルエーテル(分子量:148)
 18)2-クロロ-1,3-プロパンジオール(分子量110)
 19)3-クロロ-1,2-プロパンジオール(分子量110)
 20)ジエチレングリコールエチルメチルエーテル(分子量:148)
 21)ジエチレングリコールジメチルエーテル(分子量:134)
 22)ジエチレングリコールモノエチルエーテルアセテート(分子量:176)
 23)ジエチレングリコールモノブチルエーテル(分子量:162)
 24)ジエチレングリコールモノメチルエーテル(分子量:120)
 25)ジプロピレングリコール(分子量:134)
 26)ジプロピレングリコールモノプロピルエーテル(分子量:176)
 27)トリエチレングリコール(分子量:150)
 28)トリエチレングリコールジメチルエーテル(分子量:178)
 29)トリエチレングリコールモノエチルエーテル(分子量:178)
 30)トリエチレングリコールモノメチルエーテル(分子量:164)
 31)プロピレングリコール(分子量:76)
 32)プロピレングリコールモノエチルエーテル(分子量:104)
 上記分散剤の中でも、特に、1)~17)、20)~24)、26)、28)~30)、32)で示す分散剤が好ましい。
 (分散剤B)
 本発明の近赤外線吸収性組成物においては、2種以上の分散剤の少なくとも1種が、上記説明した一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴の一つとするが、更に、2種以上の分散剤のうちの少なくとも1種が、下記官能基群から選ばれる少なくとも一つの官能基を有する分散剤Bであることが好ましい態様である。
 分散剤Bが有する官能基は、ヒドロキシ基、チオール基、カルボニル基、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びピリジル基から選ばれる少なくとも1種である。
 本発明に係る上記官能基を有する分散剤Bの例として、以下の各分散剤を挙げることができる。
 1)アルキルイミダゾリン
 2)ポリオキシエチレン(2)ラウリルエーテル
 3)ソルビタンモノパリミテート
 4)ポリオキシエチレンアルキル(C8)エーテルリン酸エステル
 5)スチレンーマレイン酸
 6)ポリビニルピロリドン
 7)ポリオキシエチレンスチレン化フェニルエーテル
 8)ポリオキシエチレントリデシルエーテル
 9)2-エチルヘキシルカルボン酸
 10)トリメチル-1-ヘキサノール
 11)フェノキシエタノール等。
 また、分散液Bとしては市販品も用いることができる。例えば、花王製のエマルゲンシリーズ(例えば、102KG、103、105、106、108、109等)、レオドールSP-P10、アミートシリーズ(102、302)など、第一工業製薬製のプライサーフシリーズ(A208F、A208N)、DKSディスコートN-14、ピッツコールK-30、ノイゲンシリーズ(EA-157、TDS-100等)などを挙げることができる。
 (その他の分散剤)
 上記分散剤Aと併用可能なその他の分散剤としては、例えば、分子量が190を超えるジオキシエチレンラウリルエーテル、トリオキシエチレンラウリルエーテル、テトラオキシエチレンラウリルエーテル、ペンタオキシエチレンラウリルエーテル、ヘキサオキシエチレンラウリルエーテル、ヘプタオキシエチレンラウリルエーテル、オクタオキシエチレンラウリルエーテル、ノナオキシエチレンラウリルエーテル、デカオキシエチレンラウリルエーテル、ウンデカオキシエチレンラウリルエーテル、ドデカオキシエチレンラウリルエーテル、トリデカオキシエチレンラウリルエーテル、テトラデカオキシエチレンラウリルエーテル等のエーテル系化合物や、ジエチレングリコールジメタクリレート(NKエステル2G、新中村化学工業社製、分子量:242)、トリエチレングリコールジメタクリレート(分子量:286)、ポリエチレングリコール#200ジメタクリレート(NKエステル4G、新中村化学工業社製、分子量:330)、トリプロピレングリコールプロピルエーテル、トリエチレングリコールビス(2-エチルヘキサネート)(アクロス社製)、1,3-ブチレングリコールジメタクリレート等を挙げることができる。
 《近赤外線吸収性組成物の調製方法》
 ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物の調製方法としては、特に制限はないが、例えば、下記の方法に従って調製することができる。
 銅を供給する銅塩として、例えば、酢酸銅を用い、溶媒として、例えば、テトラヒドロフラン(略称:THF)と、本発明に係る分散剤Aとして、例えば、プロピレングリコールモノメチルエーテルアセテート(略称:PGMEA、分子量:132)を混合及び溶解する。この際、濾過操作により、不溶解状態の銅塩(例えば、酢酸銅)を除去して、酢酸銅溶液を調製する。次に、この酢酸銅溶液に対して、分散剤Bを加えて撹拌し、A液を調製する。また、アルキルホスホン酸にTHFを加えて撹拌し、B液を調製する。次に、A液を撹拌しながらB液を添加し、室温で一定時間撹拌する。次に、高温環境下、例えば、85℃で3時間を要して、溶媒であるTHFを揮発させて、分散物Aとその他の分散剤である分散剤Bとアルキルホスホン酸銅の微粒子を含む、近赤外線吸収性組成物を調製することができる。
 《近赤外線吸収性膜とその適用分野》
 本発明においては、本発明の近赤外線吸収性組成物を用いて、近赤外線吸収性膜を形成することを一つの特徴とする。
 本発明の近赤外線吸収性膜は、本発明の2種以上の分散剤とホスホン酸銅錯体を含む近赤外線吸収性組成物に、マトリクス樹脂を添加し、マトリクス樹脂にホスホン酸銅の微粒子が分散している状態とすることによって形成されている。また、吸収波形調整用の添加剤として、650~800nmの波長域に吸収極大波長を有する近赤外色素を少なくとも1種、添加することができる。近赤外色素としては、例えば、シアニン色素、スクアリリウム色素、クロコニウム色素、フロシアニン色素、ナフタロシアニン色素等を挙げることができる。
 上記構成よりなる近赤外線吸収性膜形成用塗布液をスピンコーティング又はディスペンサーによる塗布方法で基板上に塗布して、近赤外線吸収性膜を形成する。その後、この塗膜に対して所定の加熱処理を行って塗膜を硬化させて、近赤外線吸収性膜を形成する。
 近赤外線吸収性膜の形成に用いるマトリクス樹脂は、可視光線及び近赤外線に対し光透明性を有し、かつ、ホスホン酸銅錯体微粒子の分散が可能な樹脂である。ホスホン酸銅錯体は、比較的極性が低い物質であり、疎水性材料に良好に分散する。このため、近赤外線吸収性膜形成用のマトリクス樹脂としては、アクリル基、エポキシ基、又はフェニル基を有する樹脂を用いることができる。その中でも、特に、近赤外線吸収性膜のマトリクス樹脂としては、フェニル基を有する樹脂を用いることが好ましい。この場合、近赤外線吸収性膜のマトリクス樹脂は高い耐熱性を発揮する。また、ポリシロキサンシリコーン樹脂は、熱分解しにくく、可視光線及び近赤外線に対して高い光透過性を有し、耐熱性も高いので、固体撮像素子用イメージセンサー用の材料として好適な特性を有する。このため、近赤外線吸収性膜のマトリクス樹脂として、ポリシロキサンを用いることも好ましい。近赤外線吸収性膜のマトリクス樹脂として使用可能なポリシロキサンの具体例としては、KR-255、KR-300、KR-2621-1、KR-211、KR-311、KR-216、KR-212、及びKR-251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。
 また、シリコーン樹脂としては、例えば、SS-6203、SS-6309、VS-9301、VS-9506を挙げることができ、これらはいずれもサンユレック社製のシリコーン樹脂である。
 本発明の近赤外線吸収性膜の形成に用いるマトリクス樹脂としては、低ガス透過性の観点から、エポキシ基を有するマトリックス樹脂を含有することが好ましい態様である。
 この場合、近赤外線吸収性膜を構成するエポキシ基を有するマトリクス樹脂は、高い耐湿性を発揮するため、固体撮像素子用イメージセンサー用の材料として好適な特性を有する。
 近赤外線吸収性膜のマトリクス樹脂として使用可能なエポキシ基を有する樹脂の具体例としては、KJC-X5(信越化学工業社製)、NLD-L-672(サンユレック社製)、LE-1421(サンユレック社製)、EpiFineシリーズ(KISCO社製)を挙げることができる。
 また、近赤外線吸収性膜のマトリクス樹脂として、上記に挙げたポリシロキサンとエポキシ基の両方を有する樹脂を用いることも好ましい。
 この場合、これらのポリシロキサンとエポキシ基の両方を有するマトリクス樹脂は、高い耐熱性、耐湿性を発揮するため、固体撮像素子用イメージセンサー用の材料として好適な特性を有する。
 近赤外線吸収性膜のマトリクス樹脂として使用可能なポリシロキサンとエポキシ基の両方を有する樹脂の具体例としては、EpiFineシリーズ(KISCO社製)、ILLUMIKAシリーズ(カネカ社製)を挙げることができる。
 (その他の添加剤)
 本発明の近赤外線吸収性膜には、本発明の目的効果を損なわない範囲で、従来公知の各種添加剤を適用することができ、例えば、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
 これらの成分を適宜含有させることにより、目的とする近赤外線吸収フィルターの安定性、膜物性などの性質を調整することができる。
 これらの成分は、例えば、特開2012-003225号公報の段落番号(0183)~(0260)、特開2008-250074号公報の段落番号(0101)~(0102)、特開2008-250074号公報の段落番号(0103)~(0104)、特開2008-250074号公報の段落番号(0107)~(0109)等の記載を参酌できる。
 本発明の近赤外線吸収性組成物は、液状とすることができるため、例えば、スピンコーティングすることにより膜を形成するという簡単な工程によって、近赤外線吸収性膜、例えば、近赤外線カットフィルターを容易に製造できる。
 《固体撮像素子用イメージセンサーへの適用》
 本発明の近赤外線吸収性膜は、例えば、CCD用、CMOS用、又は他の受光素子用の視感度補正部材、測光用部材、熱線吸収用部材、複合光学フィルター、レンズ部材(例えば、眼鏡、サングラス、ゴーグル、光学系、光導波系等)、ファイバ部材(例えば、光ファイバ等)、ノイズカット用部材、プラズマディスプレイ前面板等のディスプレイカバー又はディスプレイフィルター、プロジェクタ前面板、光源熱線カット部材、色調補正部材、照明輝度調節部材、光学素子(例えば、光増幅素子、波長変換素子等)、ファラデー素子、アイソレータ等の光通信機能デバイス、光ディスク用素子等を構成するものとして好適である。
 本発明の近赤外線吸収性組成物の用途は、特に、固体撮像素子基板の受光側に配置する近赤外線カットフィルター用(例えば、ウエハーレベルレンズに対する近赤外線カットフィルター用等)、固体撮像素子基板の裏面側(受光側とは反対側)における近赤外線カットフィルター用などとして、固体撮像素子用イメージセンサーに適用することが特徴である。
 詳しくは、本発明の近赤外線吸収性膜(近赤外線カットフィルター)は、固体撮像素子用イメージセンサー上に配置する。
 図1は、本発明の近赤外線吸収性膜である赤外線カットフィルターを具備した固体撮像素子を備えたカメラモジュールの構成を示す概略断面図である。なお、図1の説明において、構成要素の末尾に括弧内で記載した数字は、各図における符号を表す。
 図1に示すカメラモジュール(1)は、実装基板である回路基板(12)に接続部材であるハンダボール(60)を介して接続されている。
 詳細には、カメラモジュール(1)は、シリコーン基板の第1の主面に撮像素子部を備えた固体撮像素子基板(10)と、固体撮像素子基板(10)の第1の主面側(受光側)に設けられた平坦化層(8)と、平坦化層(8)の上に設けられた近赤外線カットフィルター(9、近赤外線吸収性膜)と、近赤外線カットフィルター(9)の上方に配置されるガラス基板(3、光透過性基板)と、ガラス基板(3)の上方に配置され内部空間に撮像レンズ(4)を有するレンズホルダー(5)と、固体撮像素子基板(10)及びガラス基板(3)の周囲を囲うように配置された遮光兼電磁シールド(6)と、を備えて構成されている。各部材は、接着剤(2、7)により接着されている。
 本発明は、固体撮像素子基板と、上記固体撮像素子基板の受光側に配置された赤外線カットフィルターとを有するカメラモジュールの製造方法であって、固体撮像素子基板の受光側において、上記本発明の赤外線吸収性液状組成物をスピンコーティングすることにより、近赤外線吸収性膜を形成することができる。
 よって、カメラモジュール(1)においては、例えば、平坦化層(8)の上に、本発明の近赤外線吸収性組成物をスピンコーティングすることにより近赤外線吸収性膜を形成して、近赤外線カットフィルター(9)を形成する。
 カメラモジュール(1)では、外部からの入射光(L)が、撮像レンズ(4)、ガラス基板(3)、近赤外線カットフィルター(9)、平坦化層(8)を順次透過した後、固体撮像素子基板(10)の撮像素子部に到達するようになっている。
 また、カメラモジュール(1)は、固体撮像素子基板(10)の第2の主面側で、ハンダボール(11、接続材料)を介して回路基板(12)に接続されている。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行った。
 実施例1
 《近赤外線吸収性組成物の調製》
 (近赤外線吸収性組成物1の調製)
 近赤外線吸収性組成物1を下記の方法に従って調製した。
 酢酸銅を1.8g、溶媒としてのテトラヒドロフラン(略称:THF)を60g、分散剤Aとしてプロピレングリコールモノメチルエーテルアセテート(略称:PGMEA、以下、「分散剤A1」と称す。)を12gのそれぞれを混合し、超音波照射機を用いて溶解し、遠心分離による濾過操作を行って、不溶解である酢酸銅を除去して、分散剤A1(PGMEA)を含む酢酸銅溶液を調製した。
 次いで、上記調製した酢酸銅溶液の60gに対して、分散剤Bとして、官能基としてカルボキシ基を有するポリカルボン酸型高分子分散剤(花王社製、製品名:ホモゲノールL18、以下、「分散剤B1」と称す。)を1.0g加えて撹拌し、A液を得た。一方、アルキルホスホン酸としてプロピルホスホン酸の0.63gにTHF6.0gを加えて撹拌し、B液を調製した。
 次に、A液を撹拌しながらB液を添加し、室温で16時間撹拌した。次いで、85℃の環境下で3時間かけて溶媒であるTHFを揮発させた。このようにして、プロピルホスホン酸銅微粒子と、分散剤A及び分散剤Bを含む近赤外線吸収性組成物1の5.4gを調製した。最後に、プロピルホスホン酸銅微粒子以外の非固形成分の添加量を適宜調整し、最終的な固形分比率が20質量%となるようにして、近赤外線吸収性組成物1を調製した。
 (近赤外線吸収性組成物2の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Bである分散剤B1(ポリカルボン酸型高分子分散剤)に代えて、第2の分散剤として下記分散剤C1を用いた以外は同様にして、近赤外線吸収性組成物2を調製した。
 分散剤C1:リン酸エーテル系分散剤、プライサーフA208F(第一工業製薬社製、ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、一般式(1)で表される構造を有する化合物)
 (近赤外線吸収性組成物3の調製)
 上記近赤外線吸収性組成物1の調製において、アルキルホスホン酸として、プロピルホスホン酸に代えて、オクチルホスホン酸を用いた以外は同様にして、近赤外線吸収性組成物3を調製した。
 (近赤外線吸収性組成物4の調製)
 上記近赤外線吸収性組成物1の調製において、アルキルホスホン酸として、プロピルホスホン酸に代えて、ヘキシルホスホン酸を用いた以外は同様にして、近赤外線吸収性組成物4を調製した。
 (近赤外線吸収性組成物5の調製)
 上記近赤外線吸収性組成物1の調製において、アルキルホスホン酸として、プロピルホスホン酸に代えて、エチルホスホン酸を用いた以外は同様にして、近赤外線吸収性組成物5を調製した。
 (近赤外線吸収性組成物6の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Bである分散剤B1(ポリカルボン酸型高分子分散剤)を除いた以外は同様にして、比較例の近赤外線吸収性組成物6を調製した。
 (近赤外線吸収性組成物7の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Aである分散剤A1(PGMEA)に代えて、同量のトルエン(分子量:92)を用いた以外は同様にして、比較例の近赤外線吸収性組成物7を調製した。
 (近赤外線吸収性組成物8の調製)
 上記近赤外線吸収性組成物1の調製において、プロピルホスホン酸銅微粒子以外の非固形成分の添加量を適宜調整し、最終的な固形分比率が35質量%となるように変更した以外は同様にして、近赤外線吸収性組成物8を調製した。
 (近赤外線吸収性組成物9の調製)
 上記近赤外線吸収性組成物1の調製において、プロピルホスホン酸銅微粒子以外の非固形成分の添加量を適宜調整し、最終的な固形分比率が5質量%となるように変更した以外は同様にして、近赤外線吸収性組成物9を調製した。
 (近赤外線吸収性組成物10の調製)
 上記近赤外線吸収性組成物1の調製において、プロピルホスホン酸銅錯体調製時の酢酸銅と、プロピルホスホン酸の添加量を、銅に対するリンのモル比が2.0となるように適宜変更した以外は同様にして、近赤外線吸収性組成物10を調製した。
 (近赤外線吸収性組成物11の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Aである分散剤A1(PGMEA)に代えて、下記分散剤A2を用いた以外は同様にして、近赤外線吸収性組成物11を調製した。
 分散剤A2:プロピレングリコールモノエチルエーテルアセテート(分子量:146)
 (近赤外線吸収性組成物12の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Aである分散剤A1(PGMEA)に代えて、下記分散剤A3を用いた以外は同様にして、近赤外線吸収性組成物12を調製した。
 分散剤A3: プロピレングリコールモノブチルエーテルアセテート(分子量:174)
 (近赤外線吸収性組成物13の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Bとして、分散剤B1(ポリカルボン酸型高分子分散剤)に代えて、下記分散剤B2を用いた以外は同様にして、近赤外線吸収性組成物13を調製した。
 分散剤B2:ネオハイテノールL-30(第一工業製薬社製、ポリオキシエチレンスルホコハク酸、官能基:スルホン基)
 (近赤外線吸収性組成物14の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Bとして、分散剤B1(ポリカルボン酸型高分子分散剤)に代えて、下記分散剤B3を用いた以外は同様にして、近赤外線吸収性組成物14を調製した。
 分散剤B3:カチオーゲンTML(第一工業製薬社製、ラウリルトリメチルアンモニウムクロザイド、官能基:アミノ基)
 (近赤外線吸収性組成物15の調製)
 2-エチルヘキシル-2-エチルヘキシルホスホネートの10.0gをトルエンの15gに溶解させた溶液に、酢酸銅一水和物の3.29gを加え、この溶液を加熱還流しながら酢酸を溜去して、2-エチルヘキシル-2-エチルヘキシルホスホネートの銅錯体(表Iには、*1と表示)が固形分比で40質量%である近赤外線吸収性組成物15を調製した。
 (近赤外線吸収性組成物16の調製)
 上記近赤外線吸収性組成物1の調製において、分散剤Aである分散剤A1(PGMEA)に代えて、下記分散剤A4を用いた以外は同様にして、近赤外線吸収性組成物16を調製した。
 分散剤A4:1,3-ブチレングリコールジメタクリレート(分子量:226)
 (近赤外線吸収性組成物17の調製)
 上記近赤外線吸収性組成物1の調製において、プロピルホスホン酸の0.63gを、フェニルホスホン酸の0.87gに変更した以外は同様にして、近赤外線吸収性組成物17を調製した。
 (近赤外線吸収性組成物18の調製)
 上記近赤外線吸収性組成物2の調製において、プロピルホスホン酸の0.63gを、フェニルホスホン酸の0.87gに変更した以外は同様にして、近赤外線吸収性組成物18を調製した。
 上記作製した近赤外線吸収性組成物1~18の基本構成を表Iに示す。
 なお、表Iに略称で記載した各添加剤の詳細は、以下のとおりである。
 〈ホスホン酸銅塩〉
 *1:2-エチルヘキシル-2-エチルヘキシルホスホネートの銅錯体
 〈分散剤A〉
 分散剤A1:プロピレングリコールモノメチルエーテルアセテート(PGMEA、分子量:132)
 分散剤A2:プロピレングリコールモノエチルエーテルアセテート(分子量:146)
 分散剤A3:プロピレングリコールモノブチルエーテルアセテート(分子量:174)
 分散剤A4:1,3-ブチレングリコールジメタクリレート(分子量:226)
 〈分散剤B〉
 分散剤B1:ホモゲノールL18(花王社製、ポリカルボン酸型高分子界面活性剤)
 分散剤B2:ネオハイテノールL-30(第一工業製薬社製、ポリオキシエチレンスルホコハク酸、官能基:スルホン基)
 分散剤B3:カチオーゲンTML(第一工業製薬社製、ラウリルトリメチルアンモニウムクロザイド、官能基:アミノ基)
 〈分散剤C:その他の分散剤〉
 分散剤C1:プライサーフA208F(第一工業製薬社製、ポリオキシエチレンアルキル(C8)エーテルリン酸エステル)
 《近赤外線吸収性組成物の評価》
 上記調製した各近赤外線吸収性組成物について、下記の方法に従って、粒径安定性及び可視光透過率安定性の評価を行った。
 〔粒径安定性の評価〕
 (調製直後の平均粒径の測定)
 近赤外線吸収性組成物について、粒子であるアルキルホスホン酸銅錯体の粒子濃度が1.0質量%となるように、近赤外線吸収性組成物の溶媒成分で希釈したサンプル1を調製した。
 次いで、サンプル1の平均粒径を、測定装置として大塚電子株式会社製のELSZ-1000を用い、動的光散乱法により測定した。
 上記方法で測定した調製直後の平均粒径を、下記の基準に従ってランク付けを行った。
 ◎:平均粒径が、10~300nmの範囲内である
 ○:平均粒径が、301~500nmの範囲内である
 △:平均粒径が、501~700nmの範囲内である
 ×:平均粒径が、701nm以上である
 (保存後の平均粒径の測定)
 近赤外線吸収性組成物の原液をガラス容器に収納し、容器内を窒素ガスで充填した状態で密閉し、このガラス容器を5℃で3日間暗所保存した後、上記と同様の方法で、粒子であるアルキルホスホン酸銅錯体の粒子濃度が1.0質量%となるように、近赤外線吸収性組成物の溶媒成分で希釈した保存処理後のサンプル2を調製した。
 次いで、サンプル2について、上記と同様の方法で平均粒径を測定し、同様のランク付けを行った。
 〔可視光透過率安定性の評価〕
 (調製直後の可視光透過率の測定)
 近赤外線吸収性組成物について、粒子であるアルキルホスホン酸銅錯体の粒子濃度が1.0質量%となるように、近赤外線吸収性組成物の溶媒成分で希釈したサンプル1を調製した。
 次いで、サンプル1を、測定装置として日本分光社製の分光光度計V-570を用い、380~1200nmの波長域における分光透過率を測定した。次いで、750~1100nmの波長域における平均分光透過率を1.0%としたときの、可視光領域(400~750nm)における最大透過率Tmax1を測定した。
 次いで、上記方法で測定した調製直後の近赤外線吸収性組成物の可視光領域での最大透過率Tmax1を、下記の基準に従ってランク付けを行った。
 ◎:最大透過率Tmax1が、95%以上である
 ○:最大透過率Tmax1が、93%以上、95%未満である
 △:最大透過率Tmax1が、90%以上、93%未満である
 ×:最大透過率Tmax1が、90%未満である
 (保存後の可視光透過率の測定)
 近赤外線吸収性組成物の原液を、ガラス容器に収納し、容器内を窒素ガスで充填した状態で密閉し、このガラス容器を、5℃で3日間暗所保存した後、上記と同様の方法で、粒子であるアルキルホスホン酸銅錯体の粒子濃度が1.0質量%となるように、近赤外線吸収性組成物の溶媒成分で希釈した保存処理後のサンプル2を調製した。
 次いで、サンプル2について、上記と同様の方法で380~1200nmの波長域における分光透過率を測定し、750~1100nmの波長域における平均分光透過率を1.0%としたときの、保存後の可視光領域(400~750nm)における最大透過率Tmax2を測定した。
 次いで、上記測定した調製直後のサンプル1の最大透過率Tmax1に対する、保存後のサンプル2の最大透過率Tmax2の可視光透過率の低下幅ΔT(Tmax1-Tmax2)を求め、下記の基準に従って、保存後の可視光透過率のランク付けを行った。
 ◎:可視光透過率の低下幅ΔTが、1.0%未満である
 ○:可視光透過率の低下幅ΔTが、1.0%以上、3.0%未満である
 △:可視光透過率の低下幅ΔTが、3.0%以上、5.0%未満である
 ×:可視光透過率の低下幅ΔTが、5.0%未満である
 以上により得られた結果を、表Iに示す。
Figure JPOXMLDOC01-appb-T000007
 表Iに記載の結果より明らかなように、本発明の近赤外線吸収性組成物は、比較例に対し、調製直後のアルキルホスホン酸銅錯体粒子の平均粒子が小さく、かつ、保存されたのちの平均粒径の劣化率が低く、保存安定性に優れていることが分かる。更に、本発明の近赤外線吸収性組成物は、比較例に対し、近赤外領域の透過率に対する可視光領域における透過率が高く、可視光の透過率への影響が少なく、優れた近赤外光のカット能を有していることが分かる。更に、保存処理を行っても、その特性は変化しないことが分かる。
 実施例2
 《近赤外線吸収性膜の作製》
 実施例1で調製した各近赤外線吸収性組成物に、ポリシロキサンシリコーン樹脂(KR-255、信越化学工業社製)を加えて撹拌して、近赤外線吸収性膜形成用の塗布液を調製した。調製した塗布液をスピンコーティング法により基板上に塗布して近赤外線吸収性膜を形成した。
 次いで、形成した近赤外線吸収性膜に対し、所定の加熱処理を行って塗膜を硬化させ、固体撮像素子用イメージセンサーに適用可能な近赤外線カットフィルターを作製した。
 次いで、実施例1に記載の方法と同様にして保存処理後の各近赤外線吸収性組成物を用いて、同様にして、近赤外線カットフィルターを作製した。
 上記作製した各近赤外線カットフィルターについて、実施例1に記載の方法と同様にして、可視光透過率安定性の評価した結果、フィルム系でも同様の効果が得られることを確認した。
 実施例3
 《近赤外線吸収性膜の作製》
 実施例1で調製した各近赤外線吸収性組成物に、エポキシ基を有する樹脂(KJC-X5、信越化学工業社製)を加えて撹拌して、近赤外線吸収性膜形成用の塗布液を調製した。調製した塗布液をスピンコーティング法により基板上に塗布して近赤外線吸収性膜を形成した。
 次いで、形成した近赤外線吸収性膜に対し、所定の加熱処理を行って塗膜を硬化させ、固体撮像素子用イメージセンサーに適用可能な近赤外線カットフィルターを作製した。
 次いで、実施例1に記載の方法と同様にして保存処理後の各近赤外線吸収性組成物を用いて、同様にして、近赤外線カットフィルターを作製した。
 上記作製した各近赤外線カットフィルターについて、実施例1に記載の方法と同様にして、可視光透過率安定性の評価した結果、フィルム系でも同様の効果が得られることを確認した。
 本発明の近赤外線吸収性組成物は、長期間にわたる保存における、構成材料の分散安定性及び近赤外線カット安定性に優れ、近赤外線吸収性組成物により作製された近赤外線吸収性膜は、ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などに適用される固体撮像素子用イメージセンサー等に好適に利用できる。
 1 カメラモジュール
 2、7 接着剤
 3 ガラス基板
 4 撮像レンズ
 5 レンズホルダー
 6 遮光兼電磁シールド
 8 平坦化層
 9 近赤外線吸収性膜(近赤外線カットフィルター)
 10 固体撮像素子基板
 11 ハンダボール
 12 回路基板

Claims (11)

  1.  ホスホン酸銅錯体と、2種以上の分散剤を含有する近赤外線吸収性組成物であって、当該分散剤の少なくとも1種が、下記一般式(1)で表される構造を有し、かつ分子量が190以下の分散剤Aであることを特徴とする近赤外線吸収性組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは水素原子又は1~4価の有機基を表す。Rは炭素数2~4のアルキレン基を表す。Rは、水素原子、アルキル基又はアシル基を表す。aは0~10の整数である。bは1~4の整数である。〕
  2.  前記2種以上の分散剤のうちの少なくとも1種が、下記官能基群から選ばれる少なくとも一つの官能基を有する分散剤Bであることを特徴とする請求項1に記載の近赤外線吸収性組成物。
     官能基群:ヒドロキシ基、チオール基、カルボニル基、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びピリジル基。
  3.  前記2種以上の分散剤のうち、前記分散剤Aを除く分散剤が、前記一般式(1)で表される構造を有していない分散剤であることを特徴とする請求項1又は請求項2に記載の近赤外線吸収性組成物。
  4.  前記ホスホン酸銅錯体を構成するホスホン酸が、下記ホスホン酸群Aから選ばれる少なくとも1種のホスホン酸であることを特徴とする請求項1から請求項3までのいずれか一項に記載の近赤外線吸収性組成物。
     ホスホン酸群A:エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、オクチルホスホン酸、2-エチルヘキシルホスホン酸、2-クロロエチルホスホン酸、3-ブロモプロピルホスホン酸、3-メトキシブチルホスホン酸、1,1-ジメチルプロピルホスホン酸、1,1-ジメチルエチルホスホン酸、1-メチルプロピルホスホン酸。
  5.  前記ホスホン酸銅錯体を構成するホスホン酸が、下記ホスホン酸群Bから選ばれる少なくとも1種のホスホン酸であることを特徴とする請求項1から請求項3までのいずれか一項に記載の近赤外線吸収性組成物。
     ホスホン酸群B:フェニルホスホン酸、4-メトキシフェニルホスホン酸、(4-アミノフェニル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノ安息香酸、4-ホスホノ安息香酸、及び(4-ヒドロキシフェニル)ホスホン酸。
  6.  近赤外線吸収性組成物全質量に対する固形分の比率が、10~34質量%の範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の近赤外線吸収性組成物。
  7.  前記ホスホン酸銅錯体を構成するリンの銅に対するモル比(リン/銅)の値が、1.5以下であることを特徴とする請求項1から請求項6までのいずれか一項に記載の近赤外線吸収性組成物。
  8.  少なくとも請求項1から請求項7までのいずれか一項に記載の近赤外線吸収性組成物を用いたことを特徴とする近赤外線吸収性膜。
  9.  ポリシロキサンを有するマトリックス樹脂を含有することを特徴とする請求項8に記載の近赤外線吸収性膜。
  10.  エポキシ基を有するマトリックス樹脂を含有することを特徴とする請求項8に記載の近赤外線吸収性膜。
  11.  請求項8から請求項10までのいずれか一項に記載の近赤外線吸収性膜を具備していることを特徴とする固体撮像素子用イメージセンサー。
PCT/JP2018/033735 2017-09-14 2018-09-12 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー WO2019054394A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019542077A JP7103362B2 (ja) 2017-09-14 2018-09-12 近赤外線吸収性組成物及び近赤外線吸収性膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-176412 2017-09-14
JP2017176412 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054394A1 true WO2019054394A1 (ja) 2019-03-21

Family

ID=65723355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033735 WO2019054394A1 (ja) 2017-09-14 2018-09-12 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー

Country Status (2)

Country Link
JP (1) JP7103362B2 (ja)
WO (1) WO2019054394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195701A1 (ja) * 2019-03-26 2020-10-01

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242650A (ja) * 2008-03-31 2009-10-22 Kureha Corp 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
JP2012185385A (ja) * 2011-03-07 2012-09-27 Kureha Corp 近赤外線吸収剤分散液の製造方法
WO2016068037A1 (ja) * 2014-10-28 2016-05-06 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタ、固体撮像素子、カメラモジュール
JP2016124903A (ja) * 2014-12-26 2016-07-11 株式会社クレハ 近赤外線吸収剤微粒子分散液の製造方法、近赤外線吸収剤微粒子分散液およびその用途
WO2017006571A1 (ja) * 2015-07-09 2017-01-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
WO2017056803A1 (ja) * 2015-09-28 2017-04-06 富士フイルム株式会社 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、および固体撮像素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242650A (ja) * 2008-03-31 2009-10-22 Kureha Corp 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
JP2012185385A (ja) * 2011-03-07 2012-09-27 Kureha Corp 近赤外線吸収剤分散液の製造方法
WO2016068037A1 (ja) * 2014-10-28 2016-05-06 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタ、固体撮像素子、カメラモジュール
JP2016124903A (ja) * 2014-12-26 2016-07-11 株式会社クレハ 近赤外線吸収剤微粒子分散液の製造方法、近赤外線吸収剤微粒子分散液およびその用途
WO2017006571A1 (ja) * 2015-07-09 2017-01-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
WO2017056803A1 (ja) * 2015-09-28 2017-04-06 富士フイルム株式会社 近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、および固体撮像素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195701A1 (ja) * 2019-03-26 2020-10-01
WO2020195701A1 (ja) * 2019-03-26 2020-10-01 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
CN113614195A (zh) * 2019-03-26 2021-11-05 柯尼卡美能达株式会社 近红外线吸收性组合物、近红外线吸收性膜及固体摄像元件用图像传感器
CN113614195B (zh) * 2019-03-26 2023-10-20 柯尼卡美能达株式会社 近红外线吸收性组合物、近红外线吸收性膜及固体摄像元件用图像传感器
JP7452530B2 (ja) 2019-03-26 2024-03-19 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー

Also Published As

Publication number Publication date
JPWO2019054394A1 (ja) 2020-10-29
JP7103362B2 (ja) 2022-07-20

Similar Documents

Publication Publication Date Title
CN105308124B (zh) 硬化性组合物、硬化膜、近红外线截止滤波器、照相机模块及这些的制造方法
JP2024020208A (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
WO2019054394A1 (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
JP7099251B2 (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
JP7103213B2 (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
JP7156366B2 (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
KR102532381B1 (ko) 근적외선 흡수성 조성물, 근적외선 흡수성 막 및 고체 촬상 소자용 이미지 센서
JP7452530B2 (ja) 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
JP2015017193A (ja) 固体撮像素子用高屈折率膜形成組成物
TWI810616B (zh) 近紅外線吸收性組成物、阻隔近紅外線之濾波器、固體攝像元件用影像感測器及相機模組
TW202346373A (zh) 近紅外線吸收性組成物、近紅外線吸收性硬化膜及光學構件
CN108026402A (zh) 颜料分散物的制造方法、固化性组合物的制造方法、固化膜的制造方法、具备固化膜的固体摄像元件的制造方法、具备固化膜的滤色器的制造方法及具备固化膜的图像显示装置的制造方法
JP2010018700A (ja) 光学素子、及び電子機器の製造方法
TW202323488A (zh) 鏡頭模組之製造方法及熱硬化型接著劑
JP2015017194A (ja) アルコキシシランを含有する固体撮像素子用高屈折率膜形成組成物
JP2009265232A (ja) 光学素子、およびそれを用いた電子機器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855633

Country of ref document: EP

Kind code of ref document: A1