WO2019053825A1 - Control device and control method for elevators - Google Patents

Control device and control method for elevators Download PDF

Info

Publication number
WO2019053825A1
WO2019053825A1 PCT/JP2017/033100 JP2017033100W WO2019053825A1 WO 2019053825 A1 WO2019053825 A1 WO 2019053825A1 JP 2017033100 W JP2017033100 W JP 2017033100W WO 2019053825 A1 WO2019053825 A1 WO 2019053825A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
temperature rise
current
estimated
unit
Prior art date
Application number
PCT/JP2017/033100
Other languages
French (fr)
Japanese (ja)
Inventor
直彦 三富
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780094417.0A priority Critical patent/CN111051231B/en
Priority to JP2019541553A priority patent/JP6781503B2/en
Priority to PCT/JP2017/033100 priority patent/WO2019053825A1/en
Publication of WO2019053825A1 publication Critical patent/WO2019053825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present invention relates to an elevator control apparatus and control method for controlling lifting and lowering of an elevator car.
  • the elevator control device has an inverter device that drives and controls a motor that drives an elevator car in the vertical direction.
  • the semiconductor element which comprises this inverter apparatus heat
  • the present invention has been made to solve the above-described problems, and a temperature rise at the time of re-flooring of semiconductor elements constituting an inverter is accurately detected with a simple configuration, and after re-flooring
  • An object of the present invention is to obtain an elevator control device and control method to be reflected in control.
  • a main control section for controlling an inverter composed of multi-phase semiconductor elements to drive a motor to raise and lower a car, and to make the car reflooring operation after arrival on the floor;
  • a temperature detection unit for detecting a current of each phase;
  • a temperature rise estimation unit for obtaining a first estimated temperature rise of the semiconductor element before rebed operation from the detection result of the current of the current detection unit;
  • a time detection unit that detects the time during which the current of each phase flows during the alignment operation, and a current that calculates the current effective value of each phase from the current detected by the current detection unit and the time detected by the time detection unit
  • An effective value calculation unit ;
  • a temperature rise information storage unit storing a relationship between an effective current value and an estimated temperature rise value of a semiconductor element of the inverter at the time of the realignment operation; a first estimated temperature rise value; ,
  • the current effective value A heating judgment unit which judges that a value obtained by adding a second temperature rise estimated value which is a temperature rise estimated
  • an elevator control device and control method for accurately detecting the temperature rise at the time of re-flooring of semiconductor elements constituting an inverter with a simple configuration and reflecting the control after the re-flooring.
  • the temperature rise of the semiconductor element constituting the inverter at the time of re-flooring can be detected more accurately and easily, and the next operation after the re-flooring operation is adjusted based on the detection result.
  • an elevator control device and control method according to the present invention will be described according to each embodiment with reference to the drawings.
  • the same or corresponding portions are denoted by the same reference numerals, and redundant descriptions will be omitted.
  • FIG. 1 is a view showing an example of the configuration of a control device of an elevator according to an embodiment of the present invention, which is shown together with the main configuration of the elevator.
  • the motor 11, the hoisting machine 20, the main rope 22, the car 24 and the counterweight 26 correspond to the main configuration of the elevator.
  • AC power supply 1, converter 3, capacitor 5 and inverter 7 constitute a drive circuit of motor 11.
  • the remaining part constitutes the control device of the elevator.
  • the control unit 300 including the temperature rise estimation unit 50, the time detection unit 60, the current effective value calculation unit 70, the selection unit 80, the temperature rise information storage unit 90, the heating determination unit 100, and the main control unit 200 is one or more. Or one or more computers with a processor and a memory.
  • an AC voltage from AC power supply 1 is converted into a DC voltage in converter 3.
  • the pulsating current voltage is smoothed by the capacitor 5 for the direct current voltage converted by the converter 3.
  • the smoothed DC voltage is converted into a variable AC voltage of variable frequency by the inverter 7 and applied to the motor 11 which is a motor.
  • the inverter 7 includes two semiconductor elements 7a connected in series of an upper arm and a lower arm for each phase, and for example, in the case of three phases, it comprises a bridge circuit of six semiconductor elements 7a of 2 ⁇ 3 phases.
  • the variable AC voltage from the inverter 7 is applied to the motor 11 so that the motor 11 generates torque to drive the hoisting machine 20 to rotate.
  • the car 24 connected to one end of the main rope 22 and the counterweight 26 connected to the other end rise and fall in the hoistway in opposite directions.
  • a detection plate 30 is provided on each floor, and the car 24 is provided with a position detection unit 28 for detecting the detection plate 30.
  • the landing error indicates, for example, the amount of deviation between the car floor surface and the floor surface.
  • the position detection unit 28 generates the re-flooring signal RAL instructing the re-flooring operation of the car and the main control unit 200 It is configured to send to
  • the current detectors 9 u, 9 v, 9 w constituting the current detection unit detect current values Iu, Iv, Iw of the current flowing in each phase of the motor 11.
  • the temperature rise estimation unit 50 estimates the temperature rise value of the semiconductor element 7a during normal traveling before the car re-bed alignment operation based on the current values Iu, Iv, Iw of each phase as described in the above-mentioned patent document 1 Thus, an estimated temperature rise value ⁇ e is obtained.
  • the estimation of the temperature rise may be held as a data table from the test results, or the switching loss and the conduction loss may be calculated from the current as in the reference.
  • the time detection unit 60 detects time tu, tv, tw, which is the length of time in which the current of each phase flows during the re-bedding operation.
  • the current effective value calculation unit 70 obtains integrated current effective values Iurms, Ivrms, Iwrms of the respective phases obtained by integrating the current values Iu, Iv, Iw of the currents of the respective phases at times tu, tv, tw.
  • the selection unit 80 selects the maximum current effective value Irms that is determined to be the highest in the heating degree among the current effective values Iurms, Ivrms, and Iwrms of each phase at the time of the re-bedding operation of the car 24.
  • the temperature rise information storage unit 90 stores tables in which temperature rise estimated values ⁇ n corresponding to current effective values Irms1, Irms2,..., Irmsn at preset intervals are respectively set. That is, in the temperature rise information storage unit 90, the relationship between the current effective value and the temperature rise estimated value ⁇ n resulting therefrom is stored. Then, it is possible to obtain the estimated temperature rise value ⁇ n corresponding to the current effective value Irms obtained from the phase currents Iu, Iv, Iw and the times tu, tv, tw at the time of re-flooring.
  • the information stored in the temperature rise information storage unit 90 is, for example, obtained in advance by experiments or simulations, and stored as a table.
  • the heating determination unit 100 reads the temperature increase effective value ⁇ n corresponding to the current effective value Irms closest to the maximum current effective value Irms selected by the selection unit 80 from the temperature increase information storage unit 90. Then, the temperature at which the sum of the temperature rise estimated value ⁇ e before the rebed operation from the temperature rise estimation unit 50 and the temperature rise estimated value ⁇ n at the time of the rebed operation from the temperature rise information storage unit 90 is predetermined It is determined whether the threshold value ⁇ th is exceeded, and if it exceeds the threshold value ⁇ th, the suppression signal SUP is output to the main control unit 200.
  • the main control unit 200 normally controls the drive of the motor 11 by controlling the inverter 7 indicated by the inverter control signal INC, and similar to the car 24 through the door control circuit (not shown) indicated by the car door control signal DCC. Control of the main configuration of the elevator, such as door opening and closing control of the door, not shown.
  • the suppression signal SUP is input, the main control unit 200 controls the raising and lowering operation of the car 24 after the re-floor alignment of the car 24 is finished and the door opening and closing operation of the door to be different from normal times. For example, the door closing speed of the door of the car 24 is reduced. Also, the maximum speed of the elevator 24 is lowered. Alternatively, the vertical acceleration of the car 24 is reduced.
  • the semiconductor element 7a is preferably formed of a wide band gap semiconductor.
  • a wide band gap semiconductor has high voltage resistance and a high allowable current density, which enables miniaturization.
  • a semiconductor module incorporating these devices, and hence the inverter 7.
  • As a wide band gap semiconductor there are silicon carbide (SiC), a gallium nitride based material, diamond and the like.
  • the temperature rise estimation unit 50 obtains a first estimated temperature rise value ⁇ e until the re-bedding operation starts (step S100). That is, the temperature rise of the semiconductor element 7a during normal traveling is estimated from the current value of each phase.
  • the current detectors 9u, 9v, 9w detect the current values Iu, Iv, Iw of the respective phases.
  • the time detection unit 60 detects each phase time tu, tv, tw at the time of current detection.
  • the detected current values Iu, Iv, Iw of the respective phases and the respective phase times tu, tv, tw are inputted to the current effective value calculator 70 (step S103).
  • the current effective value calculation unit 70 calculates the current effective value in the time length of each phase and inputs the calculated value to the selection unit 80 (step S105).
  • the selection unit 80 selects the highest current effective value Irms among the current effective values of each phase (step S107), and inputs the current effective value Irms to the temperature rise information storage unit 90.
  • heating determination unit 100 among temperature increase estimated values ⁇ n in temperature increase information storage unit 90, the temperature increase estimated value corresponding to the current effective value closest to the highest current effective value selected by selection unit 80 is selected.
  • the temperature rise estimated value ⁇ n is read as 2 (step S109).
  • heating determination unit 100 is the sum of temperature rise estimated value ⁇ e before rebedding operation from temperature rise estimation unit 50 and temperature rise estimated value ⁇ n at the time of rebedded operation from temperature rise information storage unit 90. It is determined whether or not T has exceeded a predetermined temperature threshold ⁇ th (step S111). Then, the heating determination unit 100 inputs the suppression signal SUP to the main control unit 200 if ⁇ n + ⁇ e exceeds the temperature threshold ⁇ th.
  • the main control unit 200 adjusts the door opening / closing operation of the car 24 and the raising and lowering operation of the car 24 after the re-flooring operation so as to reduce the load of the semiconductor element 7 a of the inverter 7. That is, the temperature rise of the semiconductor element 7a is suppressed.
  • the door opening / closing control of the car 24 for example, after the re-flooring operation, the door closing speed from the door opening state of the car 24 is made slower than the normal speed.
  • the maximum speed of the elevation speed of the car 24 is reduced.
  • the vertical acceleration of the car 24 is reduced (step S113).
  • two threshold values may be provided in the heating determination unit 100, and the suppression of control of the car 24 in the main control unit 200 may be changed according to the degree of temperature rise of the semiconductor element 7a.
  • the heating determination unit 100 sets a first threshold ⁇ th1 and a second threshold ⁇ th2 larger than the first threshold ⁇ th1. Then, in the main control unit 200, when the temperature increase estimated value ⁇ n + ⁇ e exceeds the first threshold value ⁇ th1 in the determination of the heating determination unit 100, the maximum speed of the car 24 is decreased. Then, when the estimated temperature rise value ⁇ n + ⁇ e exceeds the second threshold value ⁇ th2, the main control unit 200 reduces the maximum speed and acceleration of the car 24. On the other hand, when the suppression signal SUP is not input, the main control unit 200 controls the normal car 24 (step S115).
  • control device for an elevator provided with a three-phase inverter has been described, but the present invention can be applied to a control device for an elevator provided with a multiphase inverter for two or four or more phases. It plays the same effect.
  • the elevator control device and control method according to the present invention are applicable to many types of elevator control.
  • SYMBOLS 1 AC power supply 3 converter, 5 capacitor, 7 inverter, 7a semiconductor element, 9u, 9v, 9w electric current detector, 11 motor (motor), 20 winding machines, 22 main ropes, 24 baskets, 26 balance weights, 28 Position detection unit, 30 detection plate, 50 temperature rise estimation unit, 60 time detection unit, 70 current effective value calculation unit, 80 selection unit, 90 temperature rise information storage unit, 100 heating determination unit, 200 main control unit, 300 control Department.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Inverter Devices (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Elevator Door Apparatuses (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided is an elevator that causes a car to be lifted by controlling an inverter configured by a multiphase semiconductor element and causing a motor to be driven and that further causes the car to perform a floor releveling action after arriving at a landing floor, wherein: a first estimated temperature increase (θe) for the semiconductor element before the floor releveling action is found from the results of detecting electric currents for each phase of the inverter; the effective values of the currents for each phase are calculated from the currents and the time during which the currents for each phase flow during the floor releveling action; the occurrence of heating is determined when a value obtained by adding up the first estimated temperature increase (θe) and a second estimated temperature increase (θn) relative to the calculated effective values of the currents exceeds a threshold value (θth), the second estimated temperature increase (θn) being in accordance with a pre-stored relationship between the effective value of the current and an estimated temperature increase (θn) for the semiconductor element at the time of the floor releveling action; and the elevator action after the floor releveling action is controlled so that temperature increases of the semiconductor element are suppressed.

Description

エレベータの制御装置および制御方法Control device and control method for elevator
 この発明は、エレベータのかごの昇降を制御するエレベータの制御装置および制御方法に関するものである。 The present invention relates to an elevator control apparatus and control method for controlling lifting and lowering of an elevator car.
 エレベータ制御装置は、エレベータかごを上下方向に運転するモータを駆動制御するインバータ装置を有する。このインバータ装置を構成する半導体素子は半導体素子に流れる電流により発熱する。
 そこで従来のエレベータの制御装置において、インバータ装置を構成する半導体素子のスイッチングする時の瞬時のスイッチングロスを演算するスイッチングロス演算器と、半導体素子がオンし、一定電流が流れている時の瞬時のオンロスを演算するオンロス演算器と、を備え、これらスイッチングロス及びオンロスより瞬時のジャンクション温度上昇を推定し、このジャンクション温度に応じて半導体素子に対する負荷を軽減するものが知られている(例えば下記特許文献1参照)。
The elevator control device has an inverter device that drives and controls a motor that drives an elevator car in the vertical direction. The semiconductor element which comprises this inverter apparatus heat | fever-generates with the electric current which flows into a semiconductor element.
Therefore, in a conventional elevator control device, a switching loss calculator that calculates an instantaneous switching loss when switching a semiconductor element that constitutes an inverter device, and an instant when the semiconductor element is turned on and a constant current flows. It is known to provide an on-loss computing unit for computing on-loss, estimate instantaneous junction temperature rise from the switching loss and on-loss, and reduce the load on the semiconductor element according to the junction temperature (for example, Reference 1).
 このようなエレベータの制御装置によれば、スイッチングロス及びオンロスより瞬時のジャンクション温度上昇を推定することにより、ジャンクション温度に応じて半導体素子に対する負荷を軽減することが可能となる。 According to such an elevator control device, it is possible to reduce the load on the semiconductor element according to the junction temperature by estimating the instantaneous junction temperature rise from the switching loss and the on loss.
特開平11-255442号公報JP-A-11-255442
 しかしながら、上記エレベータの制御装置では、ジャンクション温度の演算が複雑であると共に、通常の運転と再床合わせの際の温度上昇を区別していなかった。すなわち、かごの再床合わせにおける動作時にはかごの最高速度が通常に比較して1/10以下に設定されているため、モータの駆動周波数が低くなる。このため、インバータの特定二相の半導体素子に直流に近い電流が流れることになる。したがって、特定の半導体素子にのみ急激な温度上昇が発生するという課題があった。 However, in the elevator control device, calculation of the junction temperature is complicated, and it has not been possible to distinguish between temperature increase during normal operation and re-flooring. That is, since the maximum speed of the car is set to 1/10 or less of the normal speed during operation in regrounding of the car, the driving frequency of the motor is lowered. For this reason, a current close to direct current flows in the specific two-phase semiconductor element of the inverter. Therefore, there is a problem that a rapid temperature rise occurs only in a specific semiconductor element.
 この発明は、上記のような課題を解決されるためになされたもので、インバータを構成する半導体素子の再床合わせ時の温度上昇を簡単な構成により精度よく検出して、再床合わせ後の制御に反映させるエレベータの制御装置および制御方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and a temperature rise at the time of re-flooring of semiconductor elements constituting an inverter is accurately detected with a simple configuration, and after re-flooring An object of the present invention is to obtain an elevator control device and control method to be reflected in control.
 この発明は、多相の半導体素子で構成されるインバータを制御してモータを駆動させてかごを昇降させ、さらに前記かごを階床到着後に再床合わせ動作をさせる主制御部と、前記インバータの各相の電流を検出する電流検出部と、前記電流検出部の電流の検出結果より再床合わせ動作前の前記半導体素子の第1の温度上昇推定値を求める温度上昇推定部と、前記再床合わせ動作時に各相の電流が流れている時間を検出する時間検出部と、前記電流検出部で検出された電流と前記時間検出部で検出された時間より各相の電流実効値を演算する電流実効値演算部と、前記再床合わせ動作時の、電流実効値と前記インバータの半導体素子の温度上昇推定値との関係を記憶した温度上昇情報記憶部と、前記第1の温度上昇推定値と、前記電流実効値演算部で演算された電流実効値に対する前記温度上昇情報記憶部から得られる温度上昇推定値である第2の温度上昇推定値とを加えた値が閾値を越えたことを判定する加熱判定部と、を備え、前記主制御部が、前記第1の温度上昇推定値と前記第2の温度上昇推定値を加えた値が閾値を越えると、前記再床合わせ動作後の前記エレベータの動作を調整して制御する、エレベータの制御装置等にある。 According to the present invention, there is provided a main control section for controlling an inverter composed of multi-phase semiconductor elements to drive a motor to raise and lower a car, and to make the car reflooring operation after arrival on the floor; A temperature detection unit for detecting a current of each phase; a temperature rise estimation unit for obtaining a first estimated temperature rise of the semiconductor element before rebed operation from the detection result of the current of the current detection unit; A time detection unit that detects the time during which the current of each phase flows during the alignment operation, and a current that calculates the current effective value of each phase from the current detected by the current detection unit and the time detected by the time detection unit An effective value calculation unit; a temperature rise information storage unit storing a relationship between an effective current value and an estimated temperature rise value of a semiconductor element of the inverter at the time of the realignment operation; a first estimated temperature rise value; , The current effective value A heating judgment unit which judges that a value obtained by adding a second temperature rise estimated value which is a temperature rise estimated value obtained from the temperature rise information storage unit to a current effective value calculated by an arithmetic unit exceeds a threshold value; , And the main control unit adjusts the operation of the elevator after the realignment operation when a value obtained by adding the first temperature rise estimation value and the second temperature rise estimation value exceeds a threshold value. Control of the elevator, etc.
 この発明では、インバータを構成する半導体素子の再床合わせ時の温度上昇を簡単な構成により精度よく検出して、再床合わせ後の制御に反映させるエレベータの制御装置および制御方法を提供できる。 According to the present invention, it is possible to provide an elevator control device and control method for accurately detecting the temperature rise at the time of re-flooring of semiconductor elements constituting an inverter with a simple configuration and reflecting the control after the re-flooring.
エレベータ主要構成と共に示されたこの発明の一実施の形態によるエレベータの制御装置の全体図である。It is a general view of the control device of the elevator by one embodiment of this invention shown with an elevator main structure. 図1に示すエレベータの制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus of the elevator shown in FIG.
 この発明では、インバータを構成する半導体素子の再床合わせ時の温度上昇をより精度よく簡単に検出すると共に、検出結果に基づいて再床合わせ動作後の次の動作を調整する。
 以下、この発明によるエレベータの制御装置および制御方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、また重複する説明は省略する。
In the present invention, the temperature rise of the semiconductor element constituting the inverter at the time of re-flooring can be detected more accurately and easily, and the next operation after the re-flooring operation is adjusted based on the detection result.
Hereinafter, an elevator control device and control method according to the present invention will be described according to each embodiment with reference to the drawings. In each of the embodiments, the same or corresponding portions are denoted by the same reference numerals, and redundant descriptions will be omitted.
 実施の形態1.
 図1はエレベータ主要構成と共に示された、この発明の一実施の形態によるエレベータの制御装置の構成の一例を示す図である。
 図1において概略、モータ11、巻上機20、主ロープ22、かご24および釣合錘26がエレベータの主要構成に当たる。交流電源1、コンバータ3、コンデンサ5およびインバータ7がモータ11の駆動回路を構成する。そして残りの部分がエレベータの制御装置を構成する。例えば、温度上昇推定部50、時間検出部60、電流実効値演算部70、選択部80、温度上昇情報記憶部90、加熱判定部100および主制御部200を含む制御部300は、1個以上のディジタル回路、またはプロセッサとメモリを備えた1個以上のコンピュータで構成され得る。
Embodiment 1
FIG. 1 is a view showing an example of the configuration of a control device of an elevator according to an embodiment of the present invention, which is shown together with the main configuration of the elevator.
In FIG. 1, the motor 11, the hoisting machine 20, the main rope 22, the car 24 and the counterweight 26 correspond to the main configuration of the elevator. AC power supply 1, converter 3, capacitor 5 and inverter 7 constitute a drive circuit of motor 11. And the remaining part constitutes the control device of the elevator. For example, the control unit 300 including the temperature rise estimation unit 50, the time detection unit 60, the current effective value calculation unit 70, the selection unit 80, the temperature rise information storage unit 90, the heating determination unit 100, and the main control unit 200 is one or more. Or one or more computers with a processor and a memory.
 図1において、交流電源1からの交流電圧がコンバータ3において直流電圧に変換される。コンバータ3で変換された直流電圧はコンデンサ5により脈流電圧が平滑化される。そして平滑化された直流電圧は、インバータ7により可変周波数の可変交流電圧に変換されて電動機であるモータ11に印加される。インバータ7は、相毎に上アームと下アームの直列接続された2個の半導体素子7aを備え、例えば3相であれば2個×3相の6つの半導体素子7aのブリッジ回路からなる。
 インバータ7からの可変交流電圧がモータ11に印加されることでモータ11がトルクを発生して巻上機20を回転駆動させる。巻上機20が駆動されて回転すると、主ロープ22の一端に連結されたかご24と他端に連結された釣合錘26が昇降路内を互いに逆方向に昇降する。
In FIG. 1, an AC voltage from AC power supply 1 is converted into a DC voltage in converter 3. The pulsating current voltage is smoothed by the capacitor 5 for the direct current voltage converted by the converter 3. The smoothed DC voltage is converted into a variable AC voltage of variable frequency by the inverter 7 and applied to the motor 11 which is a motor. The inverter 7 includes two semiconductor elements 7a connected in series of an upper arm and a lower arm for each phase, and for example, in the case of three phases, it comprises a bridge circuit of six semiconductor elements 7a of 2 × 3 phases.
The variable AC voltage from the inverter 7 is applied to the motor 11 so that the motor 11 generates torque to drive the hoisting machine 20 to rotate. When the hoisting machine 20 is driven to rotate, the car 24 connected to one end of the main rope 22 and the counterweight 26 connected to the other end rise and fall in the hoistway in opposite directions.
 昇降路内には、被検出板30が各階に設けられており、かご24には被検出板30を検知する位置検出部28が設けられている。位置検出部28で被検出板30を検知することにより、かご24が目的階に到着すると着床誤差が許容範囲内か否かが検知される。着床誤差とは例えばかご床表面と階床表面のずれ量を示す。そして着床誤差が許容範囲を超えてかご24が停止されている場合には、例えば位置検出部28で、かごの再床合わせ動作を指示する再床合わせ信号RALを発生して主制御部200に送るように構成されている。 In the hoistway, a detection plate 30 is provided on each floor, and the car 24 is provided with a position detection unit 28 for detecting the detection plate 30. By detecting the detection plate 30 by the position detection unit 28, when the car 24 arrives at the destination floor, it is detected whether or not the landing error is within the allowable range. The landing error indicates, for example, the amount of deviation between the car floor surface and the floor surface. When the landing error exceeds the allowable range and the car 24 is stopped, for example, the position detection unit 28 generates the re-flooring signal RAL instructing the re-flooring operation of the car and the main control unit 200 It is configured to send to
 電流検出部を構成する電流検出器9u,9v,9wは、モータ11の各相に流れる電流の電流値Iu,Iv,Iwを検出する。
 温度上昇推定部50は、上述の特許文献1に記載のように、各相の電流値Iu,Iv,Iwよりかご再床合わせ動作前の通常走行中における半導体素子7aの温度上昇値を推定して温度上昇推測値θeを求める。温度上昇の推定は試験結果からデータテーブルとして保持していても良いし、参考文献のように電流からスイッチング損失と導通損失を計算しても良い。
 時間検出部60は、再床合わせ動作時の間の各相の電流の流れている時間長である時間tu,tv,twを検出する。
The current detectors 9 u, 9 v, 9 w constituting the current detection unit detect current values Iu, Iv, Iw of the current flowing in each phase of the motor 11.
The temperature rise estimation unit 50 estimates the temperature rise value of the semiconductor element 7a during normal traveling before the car re-bed alignment operation based on the current values Iu, Iv, Iw of each phase as described in the above-mentioned patent document 1 Thus, an estimated temperature rise value θe is obtained. The estimation of the temperature rise may be held as a data table from the test results, or the switching loss and the conduction loss may be calculated from the current as in the reference.
The time detection unit 60 detects time tu, tv, tw, which is the length of time in which the current of each phase flows during the re-bedding operation.
 電流実効値演算部70は、各相の電流の電流値Iu,Iv,Iwを時間tu,tv,twで積分した各相の積算電流実効値Iurms,Ivrms,Iwrmsを求める。
 選択部80は、かご24の再床合わせ動作時の各相の電流実効値Iurms,Ivrms,Iwrmsのうちの加熱程度が最も高いと判断される最大電流実効値Irmsを選択する。
The current effective value calculation unit 70 obtains integrated current effective values Iurms, Ivrms, Iwrms of the respective phases obtained by integrating the current values Iu, Iv, Iw of the currents of the respective phases at times tu, tv, tw.
The selection unit 80 selects the maximum current effective value Irms that is determined to be the highest in the heating degree among the current effective values Iurms, Ivrms, and Iwrms of each phase at the time of the re-bedding operation of the car 24.
 温度上昇情報記憶部90には、予め設定された間隔の電流実効値Irms1,Irms2,…、Irmsnに対応する温度上昇推定値θnがそれぞれに設定されたテーブルが格納されている。すなわち温度上昇情報記憶部90には、電流実効値とそれによる温度上昇推定値θnとの関係が記憶されている。そして、再床合わせ時の各相電流Iu,Iv,Iwおよび時間tu,tv,twにより求められた電流実効値Irmsに対応した温度上昇推定値θnを求めることができる。
 温度上昇情報記憶部90に格納された情報は、例えば予め実験またはシミュレーション等により求められ、テーブルとして記憶されている。
The temperature rise information storage unit 90 stores tables in which temperature rise estimated values θn corresponding to current effective values Irms1, Irms2,..., Irmsn at preset intervals are respectively set. That is, in the temperature rise information storage unit 90, the relationship between the current effective value and the temperature rise estimated value θn resulting therefrom is stored. Then, it is possible to obtain the estimated temperature rise value θn corresponding to the current effective value Irms obtained from the phase currents Iu, Iv, Iw and the times tu, tv, tw at the time of re-flooring.
The information stored in the temperature rise information storage unit 90 is, for example, obtained in advance by experiments or simulations, and stored as a table.
 加熱判定部100では、温度上昇情報記憶部90から、選択部80で選択された最大電流実効値Irmsに最も近い電流実効値Irmsに対応する温度上昇実効値θnを読みだす。そして温度上昇推定部50からの再床合わせ動作前の温度上昇推定値θeと、温度上昇情報記憶部90からの再床合わせ動作時の温度上昇推定値θnと、の和が予め定められた温度閾値θthを越えているか否かを判断して、越えていると、抑制信号SUPを主制御部200に出力する。 The heating determination unit 100 reads the temperature increase effective value θn corresponding to the current effective value Irms closest to the maximum current effective value Irms selected by the selection unit 80 from the temperature increase information storage unit 90. Then, the temperature at which the sum of the temperature rise estimated value θe before the rebed operation from the temperature rise estimation unit 50 and the temperature rise estimated value θn at the time of the rebed operation from the temperature rise information storage unit 90 is predetermined It is determined whether the threshold value θth is exceeded, and if it exceeds the threshold value θth, the suppression signal SUP is output to the main control unit 200.
 主制御部200は通常、インバータ制御信号INCで示したインバータ7を制御することによるモータ11の駆動制御、かご扉制御信号DCCで示した図示を省略した扉制御回路を介して、かご24の同様に図示を省略した扉の戸開閉制御、等のエレベータの主要構成の制御を行う。
 主制御部200は、抑制信号SUPが入力されると、かご24の再床合わせ終了後のかご24の昇降動作、扉の戸開閉動作を通常時と異なるように制御する。例えば、かご24の扉の戸閉速度を遅くする。また、かご24の昇降速度の最高速度を低下させる。または、かご24の昇降加速度を低下させる。
The main control unit 200 normally controls the drive of the motor 11 by controlling the inverter 7 indicated by the inverter control signal INC, and similar to the car 24 through the door control circuit (not shown) indicated by the car door control signal DCC. Control of the main configuration of the elevator, such as door opening and closing control of the door, not shown.
When the suppression signal SUP is input, the main control unit 200 controls the raising and lowering operation of the car 24 after the re-floor alignment of the car 24 is finished and the door opening and closing operation of the door to be different from normal times. For example, the door closing speed of the door of the car 24 is reduced. Also, the maximum speed of the elevator 24 is lowered. Alternatively, the vertical acceleration of the car 24 is reduced.
 なお、半導体素子7aは、ワイドバンドギャップ半導体によって形成されることが好ましい。ワイドバンドギャップ半導体は耐電圧性が高く、許容電流密度も高いため、小型化が可能となる。小型化された半導体素子を用いることにより、これらの素子を組み込んだ半導体モジュール、ひいてはインバータ7の小型化が可能となる。
 ワイドバンドギャップ半導体としては、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドなどがある。
The semiconductor element 7a is preferably formed of a wide band gap semiconductor. A wide band gap semiconductor has high voltage resistance and a high allowable current density, which enables miniaturization. By using a miniaturized semiconductor device, it is possible to miniaturize a semiconductor module incorporating these devices, and hence the inverter 7.
As a wide band gap semiconductor, there are silicon carbide (SiC), a gallium nitride based material, diamond and the like.
 上記のように構成されたエレベータの制御装置の動作を図2の動作フローチャートを参照して説明する。
 まず、温度上昇推定部50が、再床合わせ動作に入るまでの第1の温度上昇推定値θeを求める(ステップS100)。すなわち、各相の電流値より通常走行中の半導体素子7aの温度上昇を推定する。
 ここで、例えば主制御部200の制御により、かご24が再床合わせ動作になったとする(ステップS101)。電流検出器9u,9v,9wでは各相の電流値Iu,Iv,Iwが検出されている。時間検出部60では電流検出時の各相時間tu,tv,twが検出されている。検出された各相の電流値Iu,Iv,Iwおよび各相時間tu,tv,twは電流実効値演算部70に入力される(ステップS103)。
The operation of the elevator control device configured as described above will be described with reference to the operation flowchart of FIG.
First, the temperature rise estimation unit 50 obtains a first estimated temperature rise value θe until the re-bedding operation starts (step S100). That is, the temperature rise of the semiconductor element 7a during normal traveling is estimated from the current value of each phase.
Here, for example, under the control of the main control unit 200, it is assumed that the car 24 becomes a re-flooring operation (step S101). The current detectors 9u, 9v, 9w detect the current values Iu, Iv, Iw of the respective phases. The time detection unit 60 detects each phase time tu, tv, tw at the time of current detection. The detected current values Iu, Iv, Iw of the respective phases and the respective phase times tu, tv, tw are inputted to the current effective value calculator 70 (step S103).
 電流実効値演算部70は、各相の時間長における電流実効値をそれぞれ演算して選択部80に入力する(ステップS105)。
 選択部80は、各相の電流実効値のうち最も高い電流実効値Irmsを選択して(ステップS107)、温度上昇情報記憶部90に入力する。
The current effective value calculation unit 70 calculates the current effective value in the time length of each phase and inputs the calculated value to the selection unit 80 (step S105).
The selection unit 80 selects the highest current effective value Irms among the current effective values of each phase (step S107), and inputs the current effective value Irms to the temperature rise information storage unit 90.
 加熱判定部100では、温度上昇情報記憶部90中の温度上昇推定値θnのうちの、選択部80で選択された最も高い電流実効値に最も近い電流実効値に対応した温度上昇推定値を第2の温度上昇推定値θnとして読みだす(ステップS109)。
 そして加熱判定部100は、温度上昇推定部50からの再床合わせ動作前の温度上昇推定値θeと、温度上昇情報記憶部90からの再床合わせ動作時の温度上昇推定値θnと、の和が予め定められた温度閾値θthを越えたか否かを判断する(ステップS111)。
 そして加熱判定部100は、θn+θeが温度閾値θthを越えていれば、抑制信号SUPを主制御部200に入力する。
In heating determination unit 100, among temperature increase estimated values θn in temperature increase information storage unit 90, the temperature increase estimated value corresponding to the current effective value closest to the highest current effective value selected by selection unit 80 is selected. The temperature rise estimated value θ n is read as 2 (step S109).
Then, heating determination unit 100 is the sum of temperature rise estimated value θe before rebedding operation from temperature rise estimation unit 50 and temperature rise estimated value θn at the time of rebedded operation from temperature rise information storage unit 90. It is determined whether or not T has exceeded a predetermined temperature threshold θth (step S111).
Then, the heating determination unit 100 inputs the suppression signal SUP to the main control unit 200 if θn + θe exceeds the temperature threshold θth.
 主制御部200は、抑制信号SUPが入力されると、再床合わせ動作後のかご24の戸開閉およびかごの昇降動作を、インバータ7の半導体素子7aの負荷を軽減するように調整する。すなわち半導体素子7aの温度上昇を抑えるようにする。かご24の戸開閉制御に関して、例えば、再床合わせ動作後、かご24の扉の戸開状態からの戸閉速度を通常の速度よりも遅くする。またかご24の昇降動作制御に関しては、かご24の昇降速度の最高速度を低下させる。またさらに、かご24の昇降加速度を低下させる(ステップS113)。 When the suppression signal SUP is input, the main control unit 200 adjusts the door opening / closing operation of the car 24 and the raising and lowering operation of the car 24 after the re-flooring operation so as to reduce the load of the semiconductor element 7 a of the inverter 7. That is, the temperature rise of the semiconductor element 7a is suppressed. With regard to the door opening / closing control of the car 24, for example, after the re-flooring operation, the door closing speed from the door opening state of the car 24 is made slower than the normal speed. In addition, with regard to the elevation operation control of the car 24, the maximum speed of the elevation speed of the car 24 is reduced. Furthermore, the vertical acceleration of the car 24 is reduced (step S113).
 なお、加熱判定部100において2つの閾値を設け、半導体素子7aの温度上昇の程度により主制御部200におけるかご24の制御の抑制を変えるようにしてもよい。
 加熱判定部100において例えば、第1の閾値θth1と、第1の閾値θth1よりも大きい第2の閾値θth2を設定する。そして主制御部200では、加熱判定部100の判定において、温度上昇推定値θn+θeが第1の閾値θth1を越えると、かご24の最高速度を低下させる。そして温度上昇推定値θn+θeが第2の閾値θth2を超えると、主制御部200はかご24の最高速度及び加速度を低下させる。
 一方、主制御部200は、抑制信号SUPが入力されなければ、通常のかご24の制御を行う(ステップS115)。
Note that two threshold values may be provided in the heating determination unit 100, and the suppression of control of the car 24 in the main control unit 200 may be changed according to the degree of temperature rise of the semiconductor element 7a.
For example, the heating determination unit 100 sets a first threshold θth1 and a second threshold θth2 larger than the first threshold θth1. Then, in the main control unit 200, when the temperature increase estimated value θn + θe exceeds the first threshold value θth1 in the determination of the heating determination unit 100, the maximum speed of the car 24 is decreased. Then, when the estimated temperature rise value θn + θe exceeds the second threshold value θth2, the main control unit 200 reduces the maximum speed and acceleration of the car 24.
On the other hand, when the suppression signal SUP is not input, the main control unit 200 controls the normal car 24 (step S115).
 なお、上記実施の形態では3相のインバータを備えたエレベータの制御装置について説明したが、この発明は2相でも4相以上でも多相のインバータを備えたエレベータの制御装置において適用可能であり、同様の効果を奏する。 In the above embodiment, a control device for an elevator provided with a three-phase inverter has been described, but the present invention can be applied to a control device for an elevator provided with a multiphase inverter for two or four or more phases. It plays the same effect.
産業上の利用の可能性Industrial Applicability
 この発明によるエレベータの制御装置および制御方法は多くの種類のエレベータ制御に適用可能である。 The elevator control device and control method according to the present invention are applicable to many types of elevator control.
 1 交流電源、3 コンバータ、5 コンデンサ、7 インバータ、7a 半導体素子、9u,9v,9w 電流検出器、11 モータ(電動機)、20 巻上機、22 主ロープ、24 かご、26 釣合錘、28 位置検出部、30 被検出板、50 温度上昇推定部、60 時間検出部、70 電流実効値演算部、80 選択部、90 温度上昇情報記憶部、100 加熱判定部、200 主制御部、300 制御部。 DESCRIPTION OF SYMBOLS 1 AC power supply, 3 converter, 5 capacitor, 7 inverter, 7a semiconductor element, 9u, 9v, 9w electric current detector, 11 motor (motor), 20 winding machines, 22 main ropes, 24 baskets, 26 balance weights, 28 Position detection unit, 30 detection plate, 50 temperature rise estimation unit, 60 time detection unit, 70 current effective value calculation unit, 80 selection unit, 90 temperature rise information storage unit, 100 heating determination unit, 200 main control unit, 300 control Department.

Claims (6)

  1.  多相の半導体素子で構成されるインバータを制御してモータを駆動させてかごを昇降させ、さらに前記かごを階床到着後に再床合わせ動作をさせる主制御部と、
     前記インバータの各相の電流を検出する電流検出部と、
     前記電流検出部の電流の検出結果より再床合わせ動作前の前記半導体素子の第1の温度上昇推定値を求める温度上昇推定部と、
     前記再床合わせ動作時に各相の電流が流れている時間を検出する時間検出部と、
     前記電流検出部で検出された電流と前記時間検出部で検出された時間より各相の電流実効値を演算する電流実効値演算部と、
     前記再床合わせ動作時の、電流実効値と前記インバータの半導体素子の温度上昇推定値との関係を記憶した温度上昇情報記憶部と、
     前記第1の温度上昇推定値と、前記電流実効値演算部で演算された電流実効値に対する前記温度上昇情報記憶部から得られる温度上昇推定値である第2の温度上昇推定値とを加えた値が閾値を越えたことを判定する加熱判定部と、
     を備え、
     前記主制御部が、前記第1の温度上昇推定値と前記第2の温度上昇推定値を加えた値が閾値を越えると、前記再床合わせ動作後のエレベータの動作を調整して制御する、
     エレベータの制御装置。
    A main control unit that controls an inverter composed of multi-phase semiconductor elements to drive a motor to raise and lower a car, and further causes the car to perform re-sorting operation after arrival on the floor;
    A current detection unit that detects the current of each phase of the inverter;
    A temperature rise estimation unit for obtaining a first estimated temperature rise value of the semiconductor element before rebed operation from the detection result of the current of the current detection unit;
    A time detection unit that detects a time during which the current of each phase flows during the rebed operation;
    A current effective value calculation unit that calculates the current effective value of each phase from the current detected by the current detection unit and the time detected by the time detection unit;
    A temperature rise information storage unit storing the relationship between the current effective value and the estimated temperature rise of the semiconductor element of the inverter at the time of the realignment operation;
    The first temperature rise estimated value and a second temperature rise estimated value, which is a temperature rise estimated value obtained from the temperature rise information storage unit with respect to the current effective value calculated by the current effective value calculation unit, are added. A heating determination unit that determines that the value exceeds a threshold;
    Equipped with
    When the sum of the first estimated temperature rise and the second estimated temperature rise exceeds a threshold, the main control unit adjusts and controls the operation of the elevator after the realignment operation.
    Control device of elevator.
  2.  前記電流実効値演算部で演算された各相の電流実効値のうち最も大きな値の電流実効値を選択する選択部をさらに備え、
     前記加熱判定部は、前記温度上昇情報記憶部に従って前記選択部で選択された最も大きな値の電流実効値から第2の温度上昇推定値を求める、
     請求項1に記載のエレベータの制御装置。
    And a selection unit for selecting the current effective value of the largest value among the current effective values of each phase calculated by the current effective value calculation unit,
    The heating determination unit determines a second estimated temperature increase value from the current effective value selected by the selection unit according to the temperature increase information storage unit.
    The control device of the elevator according to claim 1.
  3.  前記加熱判定部が、前記閾値として第1の閾値と、前記第1の閾値よりも大きい第2の閾値とを有し、
     前記主制御部が、前記第1の温度上昇推定値と前記第2の温度上昇推定値を加えた値が、前記第1の閾値を越えると、前記かごの最高速度を低下させ、前記第2の閾値を越えると、前記かごの最高速度及び加速度を低下させる、
     請求項1又は2に記載のエレベータの制御装置。
    The heating determination unit has a first threshold as the threshold and a second threshold larger than the first threshold,
    When the value obtained by the main control unit adding the first estimated temperature rise and the second estimated temperature rise exceeds the first threshold, the maximum speed of the car is reduced, and the second Above the threshold, the maximum speed and acceleration of the car is reduced,
    The control device of the elevator according to claim 1 or 2.
  4.  前記主制御部が、前記第1の温度上昇推定値と前記第2の温度上昇推定値を加えた値が、設定された前記閾値を越えると、再床合わせ動作後の前記かごの扉の戸閉速度を通常の速度よりも遅くする、
     請求項1から3までのいずれか1項に記載のエレベータの制御装置。
    When the value obtained by adding the first estimated temperature rise value and the second estimated temperature rise value to the main control unit exceeds the set threshold value, the door of the car door after the re-flooring operation Make the closing speed slower than normal speed,
    The control apparatus of the elevator of any one of Claim 1 to 3.
  5.  前記インバータの半導体素子が、ワイドバンドギャップ半導体からなる、請求項1から4までのいずれか1項に記載のエレベータの制御装置。 The elevator control device according to any one of claims 1 to 4, wherein the semiconductor element of the inverter is made of a wide band gap semiconductor.
  6.  多相の半導体素子で構成されるインバータを制御してモータを駆動させてかごを昇降させ、さらに前記かごを階床到着後に再床合わせ動作をさせるエレベータにおいて、
     前記インバータの各相の電流を検出し、
     前記電流の検出結果より再床合わせ動作前の前記半導体素子の第1の温度上昇推定値を求め、
     前記再床合わせ動作時に各相の電流が流れている時間を検出し、
     検出された電流と時間より各相の電流実効値を演算し、
     前記再床合わせ動作時の、電流実効値と前記インバータの半導体素子の温度上昇推定値との関係を記憶し、
     前記第1の温度上昇推定値と、前記記憶された電流実効値と前記インバータの半導体素子の温度上昇推定値の関係に従った、演算された前記電流実効値に対する温度上昇推定値である第2の温度上昇推定値とを加えた値が閾値を越えたことを判定し、
     前記第1の温度上昇推定値と前記第2の温度上昇推定値を加えた値が閾値を越えると、前記再床合わせ動作後の前記エレベータの動作を調整して制御する、
     エレベータの制御方法。
    In an elevator which controls an inverter composed of multi-phase semiconductor elements to drive a motor to raise and lower a car and further to re-set the car after arrival on the floor,
    Detecting the current of each phase of the inverter,
    Based on the detection result of the current, a first estimated temperature rise value of the semiconductor element before rebed operation is obtained.
    Detecting the time during which the current of each phase flows during the rebed operation;
    Calculate the current effective value of each phase from the detected current and time,
    Storing the relationship between the current effective value and the estimated temperature rise value of the semiconductor element of the inverter at the time of the realignment operation;
    A second estimated temperature increase value for the calculated current effective value according to a relationship between the first estimated temperature increase value, the stored current effective value, and the estimated temperature increase value of the semiconductor element of the inverter; Determining that the value obtained by adding the temperature rise estimated value of
    If the sum of the first temperature rise estimated value and the second temperature rise estimated value exceeds a threshold value, the operation of the elevator after the realignment operation is adjusted and controlled.
    Control method of elevator.
PCT/JP2017/033100 2017-09-13 2017-09-13 Control device and control method for elevators WO2019053825A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780094417.0A CN111051231B (en) 2017-09-13 2017-09-13 Elevator control device and control method
JP2019541553A JP6781503B2 (en) 2017-09-13 2017-09-13 Elevator controller and control method
PCT/JP2017/033100 WO2019053825A1 (en) 2017-09-13 2017-09-13 Control device and control method for elevators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033100 WO2019053825A1 (en) 2017-09-13 2017-09-13 Control device and control method for elevators

Publications (1)

Publication Number Publication Date
WO2019053825A1 true WO2019053825A1 (en) 2019-03-21

Family

ID=65723295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033100 WO2019053825A1 (en) 2017-09-13 2017-09-13 Control device and control method for elevators

Country Status (3)

Country Link
JP (1) JP6781503B2 (en)
CN (1) CN111051231B (en)
WO (1) WO2019053825A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022188919A (en) * 2021-06-10 2022-12-22 東芝エレベータ株式会社 Elevator control device and elevator control method
JP2022189295A (en) * 2021-06-11 2022-12-22 東芝エレベータ株式会社 Inverter deterioration diagnostic device and inverter deterioration diagnostic method
JP7395678B1 (en) 2022-08-09 2023-12-11 東芝エレベータ株式会社 Elevator control device and elevator control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638544A (en) * 1992-07-20 1994-02-10 Okuma Mach Works Ltd Servocontroller for ac motor
WO2007023546A1 (en) * 2005-08-25 2007-03-01 Mitsubishi Denki Kabushiki Kaisha Elevator operation control device
WO2011052623A1 (en) * 2009-11-02 2011-05-05 株式会社 東芝 Inverter device
WO2015033386A1 (en) * 2013-09-03 2015-03-12 三菱電機株式会社 Elevator control device
JP2016015832A (en) * 2014-07-02 2016-01-28 日立オートモティブシステムズ株式会社 Inverter device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214595A (en) * 1988-02-24 1989-08-28 Hitachi Ltd Fluid pressure elevator controller
JPH1081450A (en) * 1996-09-06 1998-03-31 Hitachi Building Syst Co Ltd Control device of dc elevator
KR100237611B1 (en) * 1997-01-14 2000-01-15 이종수 Apparatus of preventing inverter disorder for elevator
WO2007039925A1 (en) * 2005-09-30 2007-04-12 Mitsubishi Denki Kabushiki Kaisha Device for controlling elevator operation
JP2011057320A (en) * 2009-09-07 2011-03-24 Toshiba Elevator Co Ltd Elevator
JP2012111611A (en) * 2010-11-26 2012-06-14 Toshiba Elevator Co Ltd Elevator
JP2012175857A (en) * 2011-02-23 2012-09-10 Toshiba Elevator Co Ltd Elevator
JP2016079011A (en) * 2014-10-21 2016-05-16 三菱電機株式会社 Elevator control device and temperature condition estimation method for elevator driving electric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638544A (en) * 1992-07-20 1994-02-10 Okuma Mach Works Ltd Servocontroller for ac motor
WO2007023546A1 (en) * 2005-08-25 2007-03-01 Mitsubishi Denki Kabushiki Kaisha Elevator operation control device
WO2011052623A1 (en) * 2009-11-02 2011-05-05 株式会社 東芝 Inverter device
WO2015033386A1 (en) * 2013-09-03 2015-03-12 三菱電機株式会社 Elevator control device
JP2016015832A (en) * 2014-07-02 2016-01-28 日立オートモティブシステムズ株式会社 Inverter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022188919A (en) * 2021-06-10 2022-12-22 東芝エレベータ株式会社 Elevator control device and elevator control method
JP2022189295A (en) * 2021-06-11 2022-12-22 東芝エレベータ株式会社 Inverter deterioration diagnostic device and inverter deterioration diagnostic method
JP7395678B1 (en) 2022-08-09 2023-12-11 東芝エレベータ株式会社 Elevator control device and elevator control method

Also Published As

Publication number Publication date
CN111051231B (en) 2022-03-29
JPWO2019053825A1 (en) 2020-05-28
CN111051231A (en) 2020-04-21
JP6781503B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP5547866B2 (en) Induction motor drive device, motor drive system, and lifting system
JP4896992B2 (en) Elevator control device
WO2019053825A1 (en) Control device and control method for elevators
US8348020B2 (en) Elevator control device with carrier frequency switch circuit
JPH05260793A (en) Speed controlling device of elevator
JP2009005553A (en) System and method for controlling permanent magnet motor, and method for controlling elevator
JPWO2005093943A1 (en) Control device for permanent magnet synchronous motor
JP5036147B2 (en) Elevator speed control device, speed control method, and speed control program
JP2009215012A (en) Emergency deceleration control system of elevator
JP4397721B2 (en) Elevator control device
JP2016167966A (en) Inverter supplying load adaptive boost voltage
JP5835493B2 (en) Elevator power converter
JP5115705B2 (en) PWM cycloconverter and control method thereof
JP6759830B2 (en) Power converter
JPH10164884A (en) Inverter control apparatus
JP2011173704A (en) Methods and system for measuring secondary time constant of induction electric motor for driving elevator
JPWO2018211665A1 (en) Elevator control device
JP2010058865A (en) Elevator control device
JP2005145637A (en) Elevator driving system
JP2015016933A (en) Drive control device of elevator
CN110482343B (en) Motor control method for elevator system
JP2017121132A (en) Electric power conversion system
WO2023188035A1 (en) Elevator door control device
WO2023188030A1 (en) Elevator door control device
JPH0592875A (en) Elevator control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925477

Country of ref document: EP

Kind code of ref document: A1