WO2019052200A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019052200A1
WO2019052200A1 PCT/CN2018/085632 CN2018085632W WO2019052200A1 WO 2019052200 A1 WO2019052200 A1 WO 2019052200A1 CN 2018085632 W CN2018085632 W CN 2018085632W WO 2019052200 A1 WO2019052200 A1 WO 2019052200A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
image
satisfy
Prior art date
Application number
PCT/CN2018/085632
Other languages
English (en)
French (fr)
Inventor
贾远林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721177364.2U external-priority patent/CN207148398U/zh
Priority claimed from CN201710828050.2A external-priority patent/CN107436478B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/273,852 priority Critical patent/US11269159B2/en
Publication of WO2019052200A1 publication Critical patent/WO2019052200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including four lenses.
  • CMOS complementary oxidized metal semiconductor element
  • the aperture number Fno (the total effective focal length of the lens/the entrance pupil diameter of the lens) which is usually configured by the existing imaging lens is 2.0 or more, in order to achieve miniaturization while having good optical performance.
  • the number of apertures Fno Imaging lenses of 2.0 or higher have been unable to meet higher-order imaging requirements.
  • the imaging lens has a high degree of contrast while ensuring a small size and a large aperture to meet the requirements of the lens for applications such as detection and recognition.
  • the present application provides a large aperture camera lens that is adaptable to at least one of the above-described disadvantages of the prior art that is applicable to portable electronic products.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power;
  • the third lens may have a positive power;
  • at least one of the second lens and the fourth lens may have a positive power;
  • a center thickness CT2 of the second lens on the optical axis is The center thickness CT4 of the fourth lens on the optical axis satisfies CT2/CT4 ⁇ 0.5.
  • the image side of the first lens may be concave.
  • the radius of curvature R2 of the side of the first lens image and the total effective focal length f of the optical imaging lens may satisfy 0.7 ⁇ R2 / f ⁇ 1.3.
  • the image side surface of the third lens may be convex, and the radius of curvature R2 of the first lens image side and the curvature radius R6 of the third lens image side may satisfy -1 ⁇ R2/R6 ⁇ -0.5.
  • the center thickness CT2 of the second lens on the optical axis and the edge thickness ET2 of the second lens may satisfy 0.5 ⁇ CT2/ET2 ⁇ 1.
  • the effective half-diameter DT21 of the side of the second lens object and the effective half-diameter DT32 of the side of the third lens image may satisfy 0.8 ⁇ DT21/DT32 ⁇ 1.4.
  • the object side of the fourth lens may be convex.
  • the effective half-diameter DT42 of the side of the fourth lens image and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens may satisfy 0.7 ⁇ DT42/ImgH ⁇ 1.0.
  • the distance SAG41 on the optical axis between the intersection of the object side and the optical axis of the fourth lens to the effective half-diameter apex of the fourth lens side is the intersection of the image side and the optical axis of the fourth lens to the fourth
  • the distance SAG42 on the optical axis between the apexes of the effective half-diameters of the lens image side can satisfy 1.0 ⁇ SAG41/SAG42 ⁇ 1.5.
  • the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy -1.2 ⁇ f1/f3 ⁇ -0.5.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.6.
  • a half of the diagonal length ImgH of the effective pixel area on the imaging surface of the optical imaging lens and the total effective focal length f of the optical imaging lens may satisfy ImgH/f>1.
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power; the second lens may have a power; the third lens may have a positive power, and both the object side and the image side may be convex; the fourth lens may have a power, the object
  • the side surface may be convex; the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.6.
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power; the second lens may have a power; the third lens may have a positive power; the fourth lens may have a power; wherein the second lens has a center thickness CT2 on the optical axis
  • the edge thickness ET2 with the second lens can satisfy 0.5 ⁇ CT2/ET2 ⁇ 1.
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power; the second lens may have a power; the third lens may have a positive power; the fourth lens may have a power; wherein the effective half-length DT42 of the fourth lens image side is On the imaging surface of the optical imaging lens, half of the diagonal length of the effective pixel area ImgH can satisfy 0.7 ⁇ DT42/ImgH ⁇ 1.0.
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power; the second lens may have a power; the third lens may have a positive power; the fourth lens may have a power; wherein the intersection of the object side and the optical axis of the fourth lens
  • the distance SAG42 on the optical axis between the distance SAG41 of the effective half-caliber apex of the fourth lens side and the intersection of the image side of the fourth lens and the optical axis to the apex of the effective half-diameter of the side of the fourth lens image SAG42 Can satisfy 1.0 ⁇ SAG41/SAG42 ⁇ 1.5.
  • the above optical imaging lens has at least one beneficial effect of miniaturization, large aperture, large field of view, high phase contrast, etc. while achieving good imaging quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Embodiment 2;
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Embodiment 4.
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Embodiment 5.
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging lens of Example 6.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • An optical imaging lens includes, for example, four lenses having powers, that is, a first lens, a second lens, a third lens, and a fourth lens.
  • the four lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the optical imaging lens may further include a photosensitive member disposed on the imaging surface.
  • the first lens may have a negative power, and at least one of the object side and the image side may be a concave surface.
  • the image side of the first lens may be concave. Arranging the image side of the first lens as a concave surface can have a large negative power under the condition that the first lens has good processing technology, so that the imaging system has a large angle of view and high image quality.
  • the radius of curvature R2 of the side of the first lens image and the total effective focal length f of the optical imaging lens may satisfy 0.7 ⁇ R2 / f ⁇ 1.3, and more specifically, R2 and f may further satisfy 0.85 ⁇ R2 / f ⁇ 1.11. Satisfying the conditional expression 0.7 ⁇ R2/f ⁇ 1.3 can further ensure the first lens has better processing technology while realizing the wide-angle characteristics of the imaging system and ensuring that the first lens has a large negative power.
  • the second lens may have positive or negative power, and at least one of the object side and the image side may be convex. In one embodiment, the object side of the second lens may be convex.
  • the center thickness CT2 of the second lens on the optical axis and the edge thickness ET2 of the second lens may satisfy 0.5 ⁇ CT2/ET2 ⁇ 1, and more specifically, CT2 and ET2 may further satisfy 0.57 ⁇ CT2/ET2 ⁇ 0.98. Satisfying the conditional expression 0.5 ⁇ CT2/ET2 ⁇ 1 is advantageous for ensuring the processing property of the second lens and improving the processing precision of the second lens.
  • the third lens can have a negative power.
  • the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy -1.2 ⁇ f1/f3 ⁇ -0.5, and more specifically, f1 and f3 may further satisfy -1.14 ⁇ f1/f3 ⁇ -0.73. Satisfying the conditional expression -1.2 ⁇ f1/f3 ⁇ -0.5, it is ensured that the first lens and the third lens have opposite signs and approximate approximate sizes, and constitute a reverse photo consisting of the front negative lens group and the rear positive lens group.
  • Far optical structure Such a structure facilitates expanding the field of view of the imaging system and improving image quality.
  • the object side surface of the third lens may be a convex surface, and the image side surface may be a convex surface.
  • the radius of curvature R2 of the side surface of the first lens image and the radius of curvature R6 of the side surface of the third lens image may satisfy -1 ⁇ R2/R6 ⁇ -0.5, and more specifically, R2 and R6 may further satisfy -0.90 ⁇ R2/R6 ⁇ -0.51.
  • the image side of the first lens and the image side of the third lens have oppositely sized and approximately equal radii of curvature, which may facilitate aberration compensation and image quality improvement.
  • the effective half diameter DT21 of the object side surface of the second lens and the image side effective half diameter DT32 of the third lens may satisfy 0.8 ⁇ DT21 / DT32 ⁇ 1.4, and more specifically, DT21 and DT32 may further satisfy 0.82 ⁇ DT21 / DT32 ⁇ 1.30.
  • the object side of the second lens and the image side of the third lens have an effective half-caliber of a size, which is advantageous for assembly of the imaging system and improves assembly precision; at the same time, such an arrangement is also advantageous for improving the imaging quality of the imaging system.
  • the fourth lens has a positive power or a negative power.
  • the fourth lens may have positive power.
  • At least one of the object side and the image side of the fourth lens may be a convex surface.
  • the object side of the fourth lens may be convex. Arranging the object side of the fourth lens as a convex surface is advantageous for ensuring that the chief ray of the imaging system has a small incident angle when incident on the imaging surface, and is also advantageous for improving the contrast of the imaging surface.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy CT2/CT4 ⁇ 0.5, and more specifically, CT2 and CT4 may further satisfy 0.10 ⁇ CT2/CT4 ⁇ 0.44. .
  • Reasonably distributing the center thicknesses of the second lens and the fourth lens enables the lenses to have better processability while ensuring the image quality of the lens.
  • the distance SAG41 on the optical axis between the intersection of the object side surface and the optical axis of the fourth lens to the effective half-diameter apex of the fourth lens object side and the intersection of the image side surface of the fourth lens and the optical axis to the effective side of the fourth lens image side can satisfy 1.0 ⁇ SAG41/SAG42 ⁇ 1.5, and more specifically, SAG41 and SAG42 can further satisfy 1.10 ⁇ SAG41/SAG42 ⁇ 1.44. Satisfying Conditional Formula ⁇ SAG41/SAG42 ⁇ 1.5 is advantageous for the imaging system to have a smaller chief ray angle and a higher phase contrast. In addition, proper configuration of SAG41 and SAG42 is also advantageous for making the fourth lens have better processability.
  • the effective half-diameter DT42 of the side of the fourth lens image can satisfy 0.7 ⁇ DT42/ImgH ⁇ 1.0 between half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, and more specifically, DT42 and ImgH can further satisfy 0.73. ⁇ DT42 / ImgH ⁇ 0.95. Satisfying the conditional expression 0.7 ⁇ DT42/ImgH ⁇ 1.0, it can ensure that the effective half diameter of the fourth lens is approximately equal to half the diagonal length of the effective pixel area on the imaging surface, thereby ensuring that the chief ray angle of the imaging system is incident to the imaging. The face has a smaller angle, which improves the contrast of the imaging system.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens can satisfy f/EPD ⁇ 1.6, and more specifically, f and EPD can further satisfy 1.19 ⁇ f / EPD ⁇ 1.48. Satisfying the conditional expression f/EPD ⁇ 1.6 can effectively improve the image surface energy density on the imaging surface, thereby improving the signal-to-noise ratio of the image sensor output signal, that is, improving the accuracy of the measurement depth.
  • half of the diagonal length of the effective pixel area ImgH and the total effective focal length f of the optical imaging lens can satisfy ImgH/f>1, and more specifically, ImgH and f can further satisfy 1.34 ⁇ ImgH/f. ⁇ 1.91. Satisfying the conditional ImgH/f>1 can ensure that the imaging system has a large angle of view and achieve wide-angle characteristics of the lens.
  • the optical imaging lens may further include at least one aperture to improve imaging quality.
  • the aperture may be disposed at any position as needed, for example, the aperture may be disposed between the second lens and the third lens.
  • the optical imaging lens described above may further include a filter and/or a cover glass.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the four described above.
  • a plurality of lenses such as the four described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens configured by the above has the beneficial effects such as a large aperture, a large angle of view, and a high imaging quality, and can be preferably applied to fields such as infrared detection and recognition.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including four lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S8 in the embodiment 1.
  • Table 3 below shows the total effective focal length f of the optical imaging lens of Embodiment 1, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the effective pixel area diagonal length on the imaging plane S11, and the maximum half angle of view HFOV.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • 2D shows a phase contrast curve of the optical imaging lens of Embodiment 1, which shows the relative illuminance corresponding to different angles of view. 2A to 2D, the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the total effective focal length f of the optical imaging lens of Embodiment 2, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the effective pixel area diagonal length on the imaging plane S11, and the maximum half angle of view HFOV.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • 4D shows a phase contrast curve of the optical imaging lens of Embodiment 2, which shows the relative illuminance corresponding to different angles of view. 4A to 4D, the optical imaging lens given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are both aspherical surfaces.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 shows the total effective focal length f of the optical imaging lens of Embodiment 3, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the diagonal length of the effective pixel area on the imaging plane S11, and the maximum half angle of view HFOV.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • Fig. 6D shows a phase contrast curve of the optical imaging lens of Embodiment 3, which shows the degree of contrast corresponding to different angles of view. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power, the object side surface S7 is a convex surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the total effective focal length f of the optical imaging lens of Example 4, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the effective pixel area diagonal length on the imaging plane S11, and the maximum half angle of view HFOV.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • Fig. 8D shows a phase contrast curve of the optical imaging lens of Embodiment 4, which shows the degree of contrast corresponding to different angles of view. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the total effective focal length f of the optical imaging lens of Embodiment 5, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the effective pixel area diagonal length on the imaging plane S11, and the maximum half angle of view HFOV.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • Fig. 10D shows a phase contrast curve of the optical imaging lens of Embodiment 5, which shows the degree of contrast corresponding to different angles of view. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an imaging surface S11 from the object side to the imaging side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S11.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens L3 are aspherical surfaces.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the optical imaging lens may further include a filter L5 having an object side S9 and an image side S10. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • a stop STO may be provided between the second lens L2 and the third lens L3 to improve image quality.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the total effective focal length f of the optical imaging lens of Example 6, the effective focal lengths f1 to f4 of the respective lenses, the half ImgH of the effective pixel area diagonal length on the imaging plane S11, and the maximum half angle of view HFOV.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • Fig. 12D shows a phase contrast curve of the optical imaging lens of Embodiment 6, which shows the degree of contrast corresponding to different angles of view. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • Embodiments 1 to 6 respectively satisfy the relationships shown in Table 19 below.
  • CT2/CT4 0.25 0.44 0.37 0.10 0.30 0.38
  • CT2/ET2 0.79 0.96 0.98 0.57 0.79 0.97
  • DT21/DT32 0.98 0.87 1.30 0.87 0.83 0.82
  • DT42/ImgH 0.91 0.95 0.73 0.90 0.90 0.95 SAG41/SAG42 1.44 1.18 1.10 1.43 1.20 1.27
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone or tablet.
  • the imaging device is equipped with the imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜(L1)、第二透镜(L2)、第三透镜(L3)和第四透镜(L4)。第一透镜(L1)具有负光焦度;第三透镜(L3)具有正光焦度;第二透镜(L2)和第四透镜(L4)中的至少一个具有正光焦度;第二透镜(L2)于光轴上的中心厚度CT2与第四透镜(L4)于光轴上的中心厚度CT4满足CT2/CT4<0.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年9月14日提交于中国国家知识产权局(SIPO)的、专利申请号为201710828050.2的中国专利申请以及于2017年9月14日提交至SIPO的、专利申请号为201721177364.2的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括四片透镜的光学成像镜头。
背景技术
随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,对于相配套的成像镜头的小型化、轻量化以及高成像品质等方面均提出了更高的要求。
现有成像镜头通常配置的光圈数Fno(镜头的总有效焦距/镜头的入瞳直径)均在2.0或2.0以上,以在实现小型化的同时具有良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对相配套的成像镜头提出了更高的要求,特别是在针对光线不足(如阴雨天、黄昏等)、手抖等情况下,光圈数Fno为2.0或2.0以上的成像镜头已经无法满足更高阶的成像要求。特别地,在红外相机领域,还需要成像镜头在保证小尺寸、大孔径的同时具有高相对照度,以满足探测、识别等应用对镜头的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的大孔径摄像镜头。
一方面,本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。第一透镜可具有负光焦度;第三透镜可具有正光焦度;第二透镜和第四透镜中的至少一个可具有正光焦度;其中,第二透镜于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4满足CT2/CT4<0.5。
在一个实施方式中,第一透镜的像侧面可为凹面。
在一个实施方式中,第一透镜像侧面的曲率半径R2与光学成像镜头的总有效焦距f可满足0.7<R2/f<1.3。
在一个实施方式中,第三透镜的像侧面可为凸面,第一透镜像侧面的曲率半径R2与第三透镜像侧面的曲率半径R6可满足-1<R2/R6<-0.5。
在一个实施方式中,第二透镜于光轴上的中心厚度CT2与第二透镜的边缘厚度ET2可满足0.5<CT2/ET2<1。
在一个实施方式中,第二透镜物侧面的有效半口径DT21与第三透镜像侧面的有效半口径DT32可满足0.8<DT21/DT32<1.4。
在一个实施方式中,第四透镜的物侧面可为凸面。
在一个实施方式中,第四透镜像侧面的有效半口径DT42与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足0.7<DT42/ImgH≤1.0。
在一个实施方式中,第四透镜的物侧面和光轴的交点至第四透镜物侧面的有效半口径顶点之间在光轴上的距离SAG41与第四透镜的像侧面和光轴的交点至第四透镜像侧面的有效半口径顶点之间在光轴上的距离SAG42可满足1.0<SAG41/SAG42<1.5。
在一个实施方式中,第一透镜的有效焦距f1和第三透镜的有效焦距f3可满足-1.2<f1/f3<-0.5。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD<1.6。
在一个实施方式中,光学成像镜头成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f可满足ImgH/f>1。
另一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着 光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。第一透镜可具有负光焦度;第二透镜可具有光焦度;第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第四透镜可具有光焦度,其物侧面可为凸面;光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD<1.6。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。第一透镜可具有负光焦度;第二透镜可具有光焦度;第三透镜可具有正光焦度;第四透镜可具有光焦度;其中,第二透镜于光轴上的中心厚度CT2与第二透镜的边缘厚度ET2可满足0.5<CT2/ET2<1。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。第一透镜可具有负光焦度;第二透镜可具有光焦度;第三透镜可具有正光焦度;第四透镜可具有光焦度;其中,第四透镜像侧面的有效半口径DT42与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足0.7<DT42/ImgH≤1.0。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。第一透镜可具有负光焦度;第二透镜可具有光焦度;第三透镜可具有正光焦度;第四透镜可具有光焦度;其中,第四透镜的物侧面和光轴的交点至第四透镜物侧面的有效半口径顶点之间在光轴上的距离SAG41与第四透镜的像侧面和光轴的交点至第四透镜像侧面的有效半口径顶点之间在光轴上的距离SAG42可满足1.0<SAG41/SAG42<1.5。
通过合理配置,使上述光学成像镜头在实现良好成像质量的同时,具有小型化、大孔径、大视场角、高相对照度等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作 第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头包括例如四个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜和第四透镜。这四个透镜沿着光轴从物侧至像侧依序排列。该光学成像镜头还可进一步包 括设置于成像面的感光元件。
第一透镜可具有负光焦度,其物侧面和像侧面中的至少一个可为凹面。在一个实施方式中,第一透镜的像侧面可为凹面。将第一透镜的像侧面布置为凹面,可在保证第一透镜具有较好的加工工艺性的条件下,具有较大的负光焦度,从而使得成像***具有大视场角、高像质的优势。
第一透镜像侧面的曲率半径R2与光学成像镜头的总有效焦距f之间可满足0.7<R2/f<1.3,更具体地,R2和f进一步可满足0.85≤R2/f≤1.11。满足条件式0.7<R2/f<1.3,可在实现成像***的广角特性并保证第一透镜具有较大的负光焦度的同时,进一步保证第一透镜具有较好的加工工艺性。
第二透镜可具有正光焦度或负光焦度,其物侧面和像侧面中的至少一个可为凸面。在一个实施方式中,第二透镜的物侧面可为凸面。
第二透镜于光轴上的中心厚度CT2与第二透镜的边缘厚度ET2之间可满足0.5<CT2/ET2<1,更具体地,CT2和ET2进一步可满足0.57≤CT2/ET2≤0.98。满足条件式0.5<CT2/ET2<1,有利于保证第二透镜的加工工艺性,提高第二透镜的加工精度。
第三透镜可具有负光焦度。第一透镜的有效焦距f1与第三透镜的有效焦距f3之间可满足-1.2<f1/f3<-0.5,更具体地,f1和f3进一步可满足-1.14≤f1/f3≤-0.73。满足条件式-1.2<f1/f3<-0.5,可保证第一透镜和第三透镜具有符号相反且大小近似相当的光焦度,构成由前负透镜组以及后正透镜组所组成的反摄远光学结构。这样的结构有利于扩大成像***的视场并提高成像质量。
第三透镜的物侧面可为凸面,像侧面可为凸面。第一透镜像侧面的曲率半径R2与第三透镜像侧面的曲率半径R6之间可满足-1<R2/R6<-0.5,更具体地,R2和R6进一步可满足-0.90≤R2/R6≤-0.51。第一透镜的像侧面和第三透镜的像侧面具有符号相反且大小近似相当的曲率半径,可有利于像差的补偿和成像质量的提升。
第二透镜的物侧面的有效半口径DT21与第三透镜的像侧面有效半口径DT32之间可满足0.8<DT21/DT32<1.4,更具体地,DT21和 DT32进一步可满足0.82≤DT21/DT32≤1.30。第二透镜的物侧面和第三透镜的像侧面具有大小相当的有效半口径,有利于成像***的装配,提高装配精度;同时,这样的布置还有利于提高成像***的成像质量。
第四透镜具有正光焦度或负光焦度。可选地,第四透镜可具有正光焦度。
第四透镜的物侧面和像侧面中的至少一个可为凸面。在一个实施方式中,第四透镜的物侧面可为凸面。将第四透镜的物侧面布置为凸面,有利于保证成像***的主光线在入射至成像面时具有较小入射角度,还有利于提升成像面的相对照度。
第二透镜于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4之间可满足CT2/CT4<0.5,更具体地,CT2和CT4进一步可满足0.10≤CT2/CT4≤0.44。合理分配第二透镜和第四透镜的中心厚度,可在保证镜头成像质量的前提下,使得各透镜具有较佳的工艺性。
第四透镜的物侧面和光轴的交点至第四透镜物侧面的有效半口径顶点之间在光轴上的距离SAG41与第四透镜的像侧面和光轴的交点至第四透镜像侧面的有效半口径顶点之间在光轴上的距离SAG42可满足1.0<SAG41/SAG42<1.5,更具体地,SAG41和SAG42进一步可满足1.10≤SAG41/SAG42≤1.44。满足条件式1<SAG41/SAG42<1.5,有利于使成像***具有较小的主光线角度和较高的相对照度。另外,合理配置SAG41和SAG42,还有利于使第四透镜具有较佳的加工性。
第四透镜像侧面的有效半口径DT42与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足0.7<DT42/ImgH≤1.0,更具体地,DT42和ImgH进一步可满足0.73≤DT42/ImgH≤0.95。满足条件式0.7<DT42/ImgH≤1.0,可保证第四透镜的有效半口径和成像面上有效像素区域对角线长的一半大小近似相当,进而能保证成像***的主光线角在入射至成像面时具有较小角度,提高成像***的相对照度。
光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间可满足f/EPD<1.6,更具体地,f和EPD进一步可满足1.19≤f/EPD ≤1.48。满足条件式f/EPD<1.6,可以有效地提升成像面上的像面能量密度,进而提高像方传感器输出信号的信噪比,即,提高测量深度的精度。
光学成像镜头成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f之间可满足ImgH/f>1,更具体地,ImgH和f进一步可满足1.34≤ImgH/f≤1.91。满足条件式ImgH/f>1,能保证成像***具有较大的视场角,实现镜头的广角特性。
可选地,光学成像镜头还可包括至少一个光阑,以提高成像质量。光阑可根据需要设置于任意位置处,例如,光阑可设置在第二透镜与第三透镜之间。
可选地,上述光学成像镜头还可包括滤光片和/或保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的四片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地减小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得该镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头,还具有例如大孔径、大视场角、高成像品质等有益效果,能够较好的应用于红外探测、识别等领域。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该光学成像镜头不限于包括四个透镜。如果需要,光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018085632-appb-000001
Figure PCTCN2018085632-appb-000002
表1
由表1可得,第一透镜L1的像侧面S2的曲率半径R2与第三透镜L3的像侧面S6的曲率半径R6之间满足R2/R6=-0.63;第二透镜L2于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4之间满足CT2/CT4=0.25。
在实施例1中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018085632-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.3881E-02 -1.0376E-02 2.3068E-03 -3.0035E-04 2.3028E-05 -9.5925E-07 1.6728E-08
S2 5.5580E-02 6.7232E-02 -1.5390E-01 1.2259E-01 -5.3244E-02 1.1872E-02 -1.0351E-03
S3 -6.0199E-02 1.2438E-02 -3.6378E-02 7.0939E-02 -4.7642E-02 1.4781E-02 -1.8372E-03
S4 -5.5698E-02 2.4854E-01 -9.5137E-01 2.3584E+00 -3.0815E+00 2.0701E+00 -5.3969E-01
S5 -6.3203E-02 7.6266E-02 -1.4136E-01 1.5507E-01 -9.9525E-02 3.7971E-02 -6.5824E-03
S6 -6.0869E-02 1.8807E-02 -2.3483E-02 1.1263E-02 2.4715E-03 -4.6087E-03 1.2545E-03
S7 -3.8045E-02 1.5354E-02 -1.1502E-02 4.6124E-03 -1.0751E-03 1.2745E-04 -5.5876E-06
S8 9.2110E-02 -5.0657E-02 2.3420E-02 -8.2491E-03 1.8216E-03 -2.2155E-04 1.1284E-05
表2
下表3给出实施例1中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以 及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000004
表3
由表1和表3可得,第一透镜L1的有效焦距f1与第三透镜L3的有效焦距f3之间满足f1/f3=-0.86;成像面S11上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f之间满足ImgH/f=1.79;第一透镜L1的像侧面S2的曲率半径R2与光学成像镜头的总有效焦距f之间满足R2/f=0.85。
在实施例1中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD=1.37;第二透镜L2于光轴上的中心厚度CT2与第二透镜L2的边缘厚度ET2之间满足CT2/ET2=0.79;第二透镜L2物侧面S3的有效半口径DT21与第三透镜L3像侧面S6的有效半口径DT32之间满足DT21/DT32=0.98;第四透镜L4像侧面S8的有效半口径DT42与成像面S11上有效像素区域对角线长的一半ImgH之间满足DT42/ImgH=0.91;第四透镜L4的物侧面S7和光轴的交点至第四透镜L4物侧面S7的有效半口径顶点的轴上距离SAG41与第四透镜L4的像侧面S8和光轴的交点至第四透镜L4像侧面S8的有效半口径顶点的轴上距离SAG42满足SAG41/SAG42=1.44。
在实施例1中,光学成像镜头的最大半视场角HFOV=80.1°,具有广角特性。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图2D示出了实施例1的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.7776E-02 -9.4783E-03 1.7128E-03 -1.8409E-04 1.1936E-05 -4.2886E-07 6.5065E-09
S2 6.6834E-02 -2.4077E-02 -1.1094E-02 9.6166E-03 -3.3734E-03 7.4245E-04 -7.1898E-05
S3 -1.9620E-02 -3.7381E-02 7.3131E-02 -6.1671E-02 2.9243E-02 -7.1735E-03 6.9348E-04
S4 -5.9313E-02 3.8040E-01 -1.7185E+00 4.4836E+00 -6.4092E+00 4.7316E+00 -1.4060E+00
S5 -6.5877E-02 6.9202E-02 -1.7761E-01 2.6497E-01 -2.3735E-01 1.1387E-01 -2.3129E-02
S6 -7.7150E-02 3.9368E-02 -1.3219E-02 4.0253E-04 1.5308E-03 -5.5756E-04 6.4620E-05
S7 -7.9211E-02 3.8506E-02 -2.2380E-02 8.3239E-03 -1.9424E-03 2.5064E-04 -1.3752E-05
S8 8.8430E-02 -5.8249E-02 2.5311E-02 -8.0056E-03 1.5952E-03 -1.7339E-04 7.7465E-06
表5
Figure PCTCN2018085632-appb-000006
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图4D示出了实施例2的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实 现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000007
Figure PCTCN2018085632-appb-000008
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 7.8114E-03 -8.7117E-04 7.7884E-05 -4.6945E-06 1.6850E-07 -3.2499E-09 2.6435E-11
S2 7.9625E-02 -2.7186E-02 7.6673E-03 -1.4753E-03 1.8897E-04 -1.8010E-05 9.2952E-07
S3 1.6752E-03 -4.9169E-02 4.3065E-02 -2.0018E-02 5.8328E-03 -9.4966E-04 6.3067E-05
S4 9.2638E-02 -2.2513E-01 3.9866E-01 -4.1070E-01 2.5288E-01 -8.4070E-02 1.1798E-02
S5 9.0718E-03 -3.3073E-02 7.5884E-02 -1.0921E-01 8.2668E-02 -3.1478E-02 4.7208E-03
S6 4.8323E-02 -7.3135E-02 6.9179E-02 -4.2669E-02 1.6199E-02 -3.4309E-03 3.0463E-04
S7 4.6008E-02 -3.1320E-02 1.6428E-02 -5.7079E-03 1.2064E-03 -1.4127E-04 6.9419E-06
S8 3.1256E-02 -1.0354E-02 2.9840E-03 -1.0454E-03 2.5780E-04 -3.6544E-05 2.1305E-06
表8
Figure PCTCN2018085632-appb-000009
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图6D示出了实施例3的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000010
Figure PCTCN2018085632-appb-000011
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.1333E-03 8.7601E-04 -3.0458E-04 5.2519E-05 -5.0687E-06 2.5785E-07 -5.3999E-09
S2 4.7766E-02 -6.9272E-02 1.1528E-01 -9.4857E-02 4.2403E-02 -9.4150E-03 7.9327E-04
S3 -7.5276E-02 2.8128E-02 -2.3937E-02 3.6464E-02 -2.9086E-02 1.1107E-02 -1.6234E-03
S4 -5.9739E-02 1.0183E-01 -2.3753E-01 4.1965E-01 -4.0250E-01 1.9828E-01 -3.9125E-02
S5 -9.1203E-03 1.0113E-02 -1.1411E-02 6.1062E-03 -1.6721E-03 2.7059E-04 -2.4307E-05
S6 9.3936E-03 -3.4242E-03 -4.6735E-03 5.8714E-03 -3.1370E-03 7.9506E-04 -7.4892E-05
S7 1.4023E-02 -9.9200E-03 4.4130E-03 -1.5485E-03 3.3519E-04 -3.9104E-05 1.8133E-06
S8 2.4576E-02 4.1503E-04 -1.7959E-03 1.0955E-03 -3.8345E-04 6.2629E-05 -3.8958E-06
表11
Figure PCTCN2018085632-appb-000012
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图8D示出了实施例4的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜 头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了实施例5中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000013
Figure PCTCN2018085632-appb-000014
表13
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.5400E-03 -5.3624E-04 -1.4910E-05 1.7887E-05 -2.5896E-06 1.5808E-07 -3.6392E-09
S2 4.4641E-02 -3.2483E-02 5.6725E-02 -4.9217E-02 2.3141E-02 -5.3211E-03 4.5733E-04
S3 -3.2870E-02 -9.5164E-03 4.7532E-02 -6.8414E-02 4.8439E-02 -1.6496E-02 2.1575E-03
S4 -3.1480E-02 1.4375E-01 -3.7668E-01 6.5893E-01 -6.6403E-01 3.5847E-01 -7.8597E-02
S5 -1.2423E-02 4.0228E-03 -8.0603E-04 -4.3021E-03 4.1936E-03 -1.4591E-03 1.7929E-04
S6 8.3009E-03 -5.1026E-03 8.2095E-04 1.1760E-04 -1.2137E-04 1.6078E-05 8.7169E-07
S7 5.2285E-03 -2.0828E-03 -1.4501E-03 1.0758E-03 -3.3693E-04 4.9948E-05 -2.8871E-06
S8 1.5788E-02 2.8522E-03 -2.9971E-03 1.5274E-03 -4.8658E-04 7.6796E-05 -4.6875E-06
表14
Figure PCTCN2018085632-appb-000015
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图10D示出了实施例5的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿光轴由物侧至成像侧依序包括第一 透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和成像面S11。光学成像镜头还可包括设置于成像面S11的感光元件。
第一透镜L1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。
第二透镜L2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜L2的物侧面S3和像侧面S4均为非球面。
第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜L3的物侧面S5和像侧面S6均为非球面。
第四透镜L4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
可选地,可在第二透镜L2与第三透镜L3之间设置光阑STO,以提升成像质量。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6中光学成像镜头的总有效焦距f、各透镜的有效焦距f1至f4、成像面S11上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2018085632-appb-000016
Figure PCTCN2018085632-appb-000017
表16
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.3757E-02 -7.2283E-03 1.3820E-03 -1.6669E-04 1.2338E-05 -5.0722E-07 8.8125E-09
S2 2.5422E-02 8.7594E-02 -1.6320E-01 1.4784E-01 -7.5523E-02 2.0181E-02 -2.1608E-03
S3 -3.7117E-02 1.1130E-02 -6.4491E-02 1.2129E-01 -1.0089E-01 4.1578E-02 -6.8791E-03
S4 -2.9738E-02 -5.3272E-02 6.4035E-01 -2.1272E+00 3.5357E+00 -2.8668E+00 9.1160E-01
S5 -5.5391E-02 2.8572E-02 -3.5312E-02 2.7512E-02 -1.2867E-02 4.4917E-03 -7.8006E-04
S6 -1.0383E-01 3.3561E-02 2.4952E-02 -5.5329E-02 3.9310E-02 -1.3183E-02 1.7516E-03
S7 -9.9204E-02 4.8038E-02 -2.6240E-02 9.0335E-03 -1.9715E-03 2.4638E-04 -1.3575E-05
S8 5.0984E-02 -1.9611E-02 4.8247E-03 -1.4225E-03 3.4463E-04 -4.6596E-05 2.5287E-06
表17
Figure PCTCN2018085632-appb-000018
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。图12D示出了实施例6的光学成像镜头的相对照度曲线,其表示不同视场角所对应的相对照度。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足以下表19所示的关系。
条件式\实施例 1 2 3 4 5 6
f/EPD 1.37 1.28 1.19 1.38 1.38 1.48
f1/f3 -0.86 -0.92 -1.05 -0.97 -1.14 -0.73
ImgH/f 1.79 1.71 1.91 1.54 1.34 1.62
R2/R6 -0.63 -0.55 -0.87 -0.82 -0.90 -0.51
R2/f 0.85 1.06 1.11 0.94 0.94 0.98
CT2/CT4 0.25 0.44 0.37 0.10 0.30 0.38
CT2/ET2 0.79 0.96 0.98 0.57 0.79 0.97
DT21/DT32 0.98 0.87 1.30 0.87 0.83 0.82
DT42/ImgH 0.91 0.95 0.73 0.90 0.90 0.95
SAG41/SAG42 1.44 1.18 1.10 1.43 1.20 1.27
表19
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机、平板电脑等移动电子设备上的成像模块。该成像装置装配有以上描述的成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (23)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第三透镜具有正光焦度;
    所述第二透镜和所述第四透镜中的至少一个具有正光焦度;
    所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足CT2/CT4<0.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的像侧面为凹面。
  3. 根据权利要求2所述的光学成像镜头,其特征在于,所述第一透镜像侧面的曲率半径R2与所述光学成像镜头的总有效焦距f满足0.7<R2/f<1.3。
  4. 根据权利要求2所述的光学成像镜头,其特征在于,所述第三透镜的像侧面为凸面,所述第一透镜像侧面的曲率半径R2与所述第三透镜像侧面的曲率半径R6满足-1<R2/R6<-0.5。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足0.5<CT2/ET2<1。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜物侧面的有效半口径DT21与所述第三透镜像侧面的有效半口径DT32满足0.8<DT21/DT32<1.4。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四 透镜的物侧面为凸面。
  8. 根据权利要求7所述的光学成像镜头,其特征在于,所述第四透镜像侧面的有效半口径DT42与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足0.7<DT42/ImgH≤1.0。
  9. 根据权利要求7所述的光学成像镜头,其特征在于,满足1.0<SAG41/SAG42<1.5,
    其中,SAG41为所述第四透镜的物侧面和所述光轴的交点至所述第四透镜物侧面的有效半口径顶点之间在所述光轴上的距离;以及
    SAG42为所述第四透镜的像侧面和所述光轴的交点至所述第四透镜像侧面的有效半口径顶点之间在所述光轴上的距离。
  10. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1和所述第三透镜的有效焦距f3满足-1.2<f1/f3<-0.5。
  11. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<1.6。
  12. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f>1。
  13. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜具有光焦度;
    所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第四透镜具有光焦度,其物侧面为凸面;
    所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD<1.6。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1和所述第三透镜的有效焦距f3满足-1.2<f1/f3<-0.5。
  15. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的像侧面为凹面,其像侧面的曲率半径R2与所述光学成像镜头的总有效焦距f满足0.7<R2/f<1.3。
  16. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜像侧面的曲率半径R2与所述第三透镜像侧面的曲率半径R6满足-1<R2/R6<-0.5。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的像侧面为凹面,所述第三透镜的像侧面为凸面。
  18. 根据权利要求13至17中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f>1。
  19. 根据权利要求18所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足0.5<CT2/ET2<1。
  20. 根据权利要求19所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足CT2/CT4<0.5。
  21. 根据权利要求18所述的光学成像镜头,其特征在于,所述第二透镜物侧面的有效半口径DT21与所述第三透镜像侧面的有效半口径DT32满足0.8<DT21/DT32<1.4。
  22. 根据权利要求18所述的光学成像镜头,其特征在于,所述第四透镜像侧面的有效半口径DT42与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足0.7<DT42/ImgH≤1.0。
  23. 根据权利要求18所述的光学成像镜头,其特征在于,满足1.0<SAG41/SAG42<1.5,
    其中,SAG41为所述第四透镜的物侧面和所述光轴的交点至所述第四透镜物侧面的有效半口径顶点之间在所述光轴上的距离;以及
    SAG42为所述第四透镜的像侧面和所述光轴的交点至所述第四透镜像侧面的有效半口径顶点之间在所述光轴上的距离。
PCT/CN2018/085632 2017-09-14 2018-05-04 光学成像镜头 WO2019052200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/273,852 US11269159B2 (en) 2017-09-14 2019-02-12 Optical imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721177364.2U CN207148398U (zh) 2017-09-14 2017-09-14 光学成像镜头
CN201721177364.2 2017-09-14
CN201710828050.2 2017-09-14
CN201710828050.2A CN107436478B (zh) 2017-09-14 2017-09-14 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,852 Continuation US11269159B2 (en) 2017-09-14 2019-02-12 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019052200A1 true WO2019052200A1 (zh) 2019-03-21

Family

ID=65722385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085632 WO2019052200A1 (zh) 2017-09-14 2018-05-04 光学成像镜头

Country Status (2)

Country Link
US (1) US11269159B2 (zh)
WO (1) WO2019052200A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687733B (zh) 2018-12-20 2020-03-11 大立光電股份有限公司 成像鏡片系統、辨識模組及電子裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076308A1 (en) * 2005-10-05 2007-04-05 Konica Minolta Opto, Inc. Image pickup optical system
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
CN202433590U (zh) * 2011-10-12 2012-09-12 舜宇光学(中山)有限公司 一种日、夜两用型高分辨率监视镜头
CN104730690A (zh) * 2013-12-24 2015-06-24 Kolen株式会社 照相镜头光学***及使用此照相镜头光学***的照相设备
CN107436478A (zh) * 2017-09-14 2017-12-05 浙江舜宇光学有限公司 光学成像镜头
CN207123643U (zh) * 2017-07-25 2018-03-20 浙江舜宇光学有限公司 摄像镜头
CN207148398U (zh) * 2017-09-14 2018-03-27 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933802A (ja) 1995-07-24 1997-02-07 Hitachi Ltd 広角レンズ
JP3441567B2 (ja) 1995-08-21 2003-09-02 ペンタックス株式会社 内視鏡対物レンズ
JP3450544B2 (ja) 1995-09-01 2003-09-29 ペンタックス株式会社 内視鏡対物レンズ
CN101408662B (zh) * 2007-10-11 2010-06-02 鸿富锦精密工业(深圳)有限公司 广角镜头
JP5253126B2 (ja) * 2008-12-12 2013-07-31 日東光学株式会社 レンズシステムおよび表示装置
TWI416197B (zh) * 2010-06-28 2013-11-21 Largan Precision Co Ltd 廣視角攝像鏡頭
WO2012174786A1 (zh) 2011-06-24 2012-12-27 浙江舜宇光学有限公司 一种近红外镜头
JP5754670B2 (ja) * 2011-06-29 2015-07-29 株式会社オプトロジック 撮像レンズ
JP2013120193A (ja) 2011-12-06 2013-06-17 Konica Minolta Advanced Layers Inc 撮像レンズ
KR101838988B1 (ko) 2015-05-22 2018-03-16 주식회사 소모비전 광시야 비열화 적외선 렌즈모듈
WO2017064751A1 (ja) * 2015-10-13 2017-04-20 オリンパス株式会社 撮像装置及びそれを備えた光学装置
CN106970454B (zh) 2016-01-14 2019-07-09 新巨科技股份有限公司 四片式红外单波长镜片组
TWI628461B (zh) * 2016-10-19 2018-07-01 先進光電科技股份有限公司 光學成像系統

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076308A1 (en) * 2005-10-05 2007-04-05 Konica Minolta Opto, Inc. Image pickup optical system
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
CN202433590U (zh) * 2011-10-12 2012-09-12 舜宇光学(中山)有限公司 一种日、夜两用型高分辨率监视镜头
CN104730690A (zh) * 2013-12-24 2015-06-24 Kolen株式会社 照相镜头光学***及使用此照相镜头光学***的照相设备
CN207123643U (zh) * 2017-07-25 2018-03-20 浙江舜宇光学有限公司 摄像镜头
CN107436478A (zh) * 2017-09-14 2017-12-05 浙江舜宇光学有限公司 光学成像镜头
CN207148398U (zh) * 2017-09-14 2018-03-27 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20190179113A1 (en) 2019-06-13
US11269159B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CN108594407B (zh) 摄像镜头
WO2019169853A1 (zh) 光学成像镜头
CN114779443B (zh) 摄像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学***
WO2019091170A1 (zh) 摄像透镜组
CN109782418B (zh) 光学成像镜头
CN107436478B (zh) 光学成像镜头
CN114137693B (zh) 光学成像镜头
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2018192126A1 (zh) 摄像镜头
WO2018153012A1 (zh) 摄像镜头
WO2020073703A1 (zh) 光学透镜组
WO2019100768A1 (zh) 光学成像镜头
CN110554482B (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
CN110361854B (zh) 光学成像***
WO2019019626A1 (zh) 成像镜头
WO2019080610A1 (zh) 摄像镜头
CN108398767B (zh) 摄像镜头
WO2018218889A1 (zh) 光学成像***
WO2018209855A1 (zh) 光学成像***
WO2019056775A1 (zh) 摄像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856252

Country of ref document: EP

Kind code of ref document: A1