WO2019050245A1 - 바이오 전극 및 그 형성 방법 - Google Patents

바이오 전극 및 그 형성 방법 Download PDF

Info

Publication number
WO2019050245A1
WO2019050245A1 PCT/KR2018/010269 KR2018010269W WO2019050245A1 WO 2019050245 A1 WO2019050245 A1 WO 2019050245A1 KR 2018010269 W KR2018010269 W KR 2018010269W WO 2019050245 A1 WO2019050245 A1 WO 2019050245A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell nanowire
polymer
polymer composite
insulating layer
Prior art date
Application number
PCT/KR2018/010269
Other languages
English (en)
French (fr)
Inventor
김대형
현택환
정동준
최수지
한상인
Original Assignee
서울대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 기초과학연구원 filed Critical 서울대학교산학협력단
Priority to CN201880057440.7A priority Critical patent/CN111093492B/zh
Priority to US16/643,429 priority patent/US11491327B2/en
Publication of WO2019050245A1 publication Critical patent/WO2019050245A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/265Bioelectric electrodes therefor characterised by the electrode materials containing silver or silver chloride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • A61N1/0597Surface area electrodes, e.g. cardiac harness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37512Pacemakers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators

Definitions

  • the present invention relates to a bioelectrode and a method of forming the same.
  • the heart is one of the most important organs activated by the propagation of electrical conduction through the His-Purkinje conduction system. Monitoring cardiac electrical activity helps doctors to diagnose certain diseases that are determined by the waveform of action potentials in clinical practice by providing insight into heart disease. In particular, the local activation map provides information on the location of the damaged myocardium, thus requiring a large number of spatially distributed records to interpret comprehensive heart disease. Conventional anatomical approaches to catheter electrodes through blood vessels make electrical pacing difficult at the desired site of the heart.
  • the present invention provides a bioelectrode having excellent performance.
  • the present invention provides a bioelectrode excellent in biocompatibility.
  • the present invention provides a method for forming the bioelectrode.
  • the bioelectrode according to embodiments of the present invention includes a first core-shell nanowire / polymer composite including a first core-shell nanowire and a first polymer.
  • a method of forming a bioelectrode according to embodiments of the present invention includes forming a core-shell nanowire by epitaxially growing a biocompatible metal on a surface of a core including a conductive metal.
  • the bioelectrode according to the embodiments of the present invention may have high conductivity and good biocompatibility and stretchability.
  • the bioelectrode may be applied to various in vivo and in vitro electrodes or devices.
  • the bioelectrode can be used as a cardiac mesh electrode, and the cardiac mesh electrode can be applied to cardiac synchronization therapy for patients who are not effective with conventional treatment methods.
  • FIG. 1 schematically shows a process of forming a gold shell on a silver nanowire without a galvanic reaction according to an embodiment of the present invention.
  • FIG. 2 shows a stretchable conductor composed of an Ag @ Au NW / SBS composite according to an embodiment of the present invention.
  • FIG 3 shows an SEM image of Ag @ Au NW according to an embodiment of the present invention.
  • FIG. 4 illustrates an EDS mapping for identifying a core-shell structure of an Ag @ Au NW according to an embodiment of the present invention.
  • FIG. 5 shows inductively coupled plasma mass spectroscopy (ICP-MS) data for analyzing Ag ion leaching from Ag NW, Ag @ Au NW, and Ag @ Au NW / SBS complexes.
  • ICP-MS inductively coupled plasma mass spectroscopy
  • FIG. 7 shows an SEM image of the Ag @ Au NW / SBS composite of FIG. 6 with 30% elongation.
  • FIG. 9 shows the stretchability and conductivity of the Ag @ Au NW / SBS composite according to the Ag @ Au NW content.
  • Figure 10 shows the change in conductivity when the Ag @ Au NW / SBS complex is mechanically stretched.
  • FIG. 11 schematically shows a process of electrodeposition of PEDOT on an Ag @ Au NW / SBS electrode.
  • FIG. 12 shows the impedance and phase of Ag @ Au NW / SBS electrode and elongated Ag @ Au NW / SBS electrode before and after PEDOT deposition.
  • Figure 14 shows charge injection under Ag 2 Au 2/2 S phase current stimulation with 2 mA current before and after PEDOT deposition.
  • Figure 15 shows intracardiac electrograms recorded from PEDOT coated Ag @ Au NW / SBS electrodes in a rat heart.
  • Figure 16 shows the surface ECG (lead 1) of the mouse heart during pacing (260 cycles length) with a PEDOT coated Ag @ Au NW / SBS electrode.
  • FIG. 17 shows a design of a heart mesh electrode according to an embodiment of the present invention.
  • FIG. 18 shows an unfolded cardioid electrode connected to a flexible PCB.
  • Figure 19 shows an MRI image of a live pig heart.
  • FIG 20 shows the process of customizing the cardiac mesh electrode and the cardiac mesh electrode.
  • Figure 21 shows the resistance of the cardiomy electrode line before and after customization.
  • Figure 22 shows the resistance change of the heart mesh electrode under strain.
  • Figure 23 shows cyclic test results of the cardiac mesh electrode under 30% strain.
  • Figure 24 compares the modulus of the cardiac electrode with the modulus of the porcine heart according to the layer cross-section of the cardiac mesh electrode.
  • FIG. 25 shows an image of a heart mesh electrode implanted in a left anterior descending coronary artery (LAD) occluded porcine heart.
  • LAD left anterior descending coronary artery
  • Figure 26 shows intracardiac electrograms of cardiac mesh electrodes one hour after LAD occlusion.
  • Figure 27 shows surface ECG and intracardiac electrograms of healthy tissue and injured tissue.
  • FIG. 28 shows the arrangement of the bipolar electrodes by the 3D reconstruction image of the MRI
  • FIG. 29 shows the activation map of the 3D model
  • FIG. 30 shows the voltage map of the 3D model.
  • Fig. 31 shows shrinkability under a three-dimensional coordinated electrical stimulation.
  • Figure 32 shows a single pressure curve by means of stationary pacing.
  • Ag @ Au is a core-shell structure, Ag before the core represents the core, and Au after @ represents the shell.
  • Ag NW means silver nanowire
  • Ag @ Au NW means Ag @ Au nanowire.
  • the core-shell nanowire / polymer composite refers to a composite formed by mixing a core-shell nanowire and a polymer.
  • Ag @ Au NW / SBS refers to a complex formed by mixing Ag @ Au nanowire with SBS (styrene-butadiene-styrene) rubber.
  • the bioelectrode according to embodiments of the present invention includes a first core-shell nanowire / polymer composite including a first core-shell nanowire and a first polymer.
  • the bioelectrode includes a first insulating layer disposed on the first core-shell nanowire / polymer composite and a second core disposed on the first insulating layer, the second core comprising the second core-shell nanowire and the second polymer, Shell nanowire / polymer complex.
  • the core may comprise a conductive metal
  • the shell may comprise a biocompatible metal.
  • the conductive metal may comprise silver
  • the biocompatible metal may comprise gold.
  • the first polymer and the second polymer may include a polymer rubber.
  • the polymeric rubber may include SBS rubber.
  • first core-shell nanowire / polymer composite has a mesh shape and may include a plurality of first line electrodes
  • the second core-shell nanowire / polymer composite has a mesh shape, Line electrodes.
  • the bioelectrode may further include a polymer conductive layer disposed above or below at least one of the first line electrode and the second line electrode.
  • the polymer conductive layer may include PEDOT.
  • the first line electrode and the second line electrode may have a serpentine shape.
  • the bioelectrode may further include a second insulating layer disposed under the first core-shell nanowire / polymer composite, and a third insulating layer disposed over the second core-shell nanowire / polymer composite,
  • the first insulating layer, the second insulating layer, and the third insulating layer may include a polymer rubber.
  • the first insulating layer, the second insulating layer, and the third insulating layer may have a mesh shape.
  • the bioelectrode may have a fan shape.
  • the bioelectrode may be a heart mesh electrode.
  • a method of forming a bioelectrode according to embodiments of the present invention includes forming a core-shell nanowire by epitaxially growing a biocompatible metal on a surface of a core including a conductive metal.
  • the epitaxial growth can be performed using a gold sulfite complex.
  • the galvanic reaction between the conductive metal and the biocompatible metal can be inhibited by the sulfite complex.
  • the conductive metal may include silver
  • the biocompatible metal may include gold
  • the sulfurous gold complex may include Na 2 Au (SO 3 ) 2 .
  • the method of forming the bioelectrode may further include forming the mesh-shaped first core-shell nanowire / macromolecule composite by mixing the core-shell nanowire and the first polymer followed by molding.
  • the method for forming the bioelectrode includes the steps of: mixing the core-shell nanowire and the second polymer and molding the same to form a mesh-shaped second core-shell nanowire / polymer composite; molding the third polymer to form a mesh- Shell nanowire / polymer composite, the first insulating layer, and the second core-shell nanowire / polymer composite.
  • the first core-shell nanowire / polymer composite, the first core layer, and the second core-shell nanowire / polymer composite may be laminated.
  • the method for forming a bioelectrode further includes forming a polymer conductive layer on or under at least one of the first core-shell nanowire / polymer composite and the second core-shell nanowire / polymer composite can do.
  • the method for forming the bioelectrode includes the steps of: forming a mesh-shaped second insulating layer by molding a fourth polymer; molding a fifth polymer to form a mesh-shaped third insulating layer; Shell nanowire / polymer composite, the first insulation layer, the second core-shell nanowire / polymer composite, and the third insulation layer may be stacked on the first core-shell nanowire / polymer composite.
  • the first to fifth polymers may include a polymer rubber.
  • Ag NW can form a good electrical percolation network as a high conductivity material with a high aspect ratio.
  • Ag NW is encapsulated in an Au nanoshell, silver ion leaching can be reduced while maintaining good conductivity.
  • the bioelectrode can have stable electrical characteristics even under mechanical deformation by localization of a conductive material without using a surfactant that can lower the conductivity of Ag NW.
  • the core-shell nanowire / polymer composites can be applied to large sized hearts by enabling molding and welding processes to create large devices with multiple electrode arrays.
  • the bioelectrode can perform simultaneous analysis through cardiac mapping and a stereotaxic pacing effect to provide position-independent pacing, and can be used as a flexible electrode in a biomedical device for treating various heart diseases.
  • the Ag @ Au NW / SBS complex can be formed in the following manner.
  • the Ag NW solution is diluted with water (1: 4) and centrifuged at 3000 RPM for 10 minutes. The cleaning process is repeated three times to remove the PVP of the Ag NW.
  • the cleaned Ag NW is encapsulated with an Au nanoshell to form Ag @ Au NW.
  • Ag @ Au NW is dispersed in toluene at 30 mg / ml.
  • Ag @ Au NW solution is mixed with SBS dissolved solution (SBS: toluene 1:10).
  • the optimized concentration exhibiting the highest elongation is about 45% by weight of Ag @ Au NW in the Ag @ Au NW / SBS composite.
  • the mixed solution is poured into a glass mold and dried on a hot plate.
  • the heart mesh electrode is described as an example of a bioelectrode, but the present invention is not limited thereto.
  • the bioelectrode may be applied to various in-vivo and in vitro electrodes or devices.
  • FIG. 1 schematically shows a process of forming a gold shell on a silver nanowire without a galvanic reaction according to an embodiment of the present invention.
  • Au is epitaxially deposited on the surface of Ag NW using a gold sulfite complex, for example, Na 2 Au (SO 3 ) 2 . It is very difficult to form an Ag @ Au NW without a galvanic reaction between Ag and Au, and the hollow Au / Ag alloy nanostructure formed by the galvanic reaction degrades the electrical properties and biocompatibility of the Ag @ Au NW .
  • a gold sulfite complex for example, Na 2 Au (SO 3 ) 2 .
  • the sulfite ligand selectively binds to Au cations and has a high stability, thus lowering the reduction potential, and plays an important role in the deposition of Au epitaxial on the Ag surface by preventing the oxidation etching by the ligand.
  • the thickness of the Au shell deposited on the Ag surface can be controlled by adjusting the concentration of Ag NW in the reaction.
  • the synthesized Ag @ Au NW may have an average Au shell thickness of about 30 nm and an average overall diameter of about 180 nm.
  • Ag NW has high inherent electrical conductivity and good mechanical flexibility, but is limited in biomedical applications due to its toxicity due to the leaching of Ag + ions.
  • gold (Au) is biocompatible and oxidation resistant, its application to biomedical devices is limited due to its low inherent conductivity.
  • the Ag @ Au NW according to the embodiments of the present invention is excellent in both electric conductivity and biocompatibility by encapsulating Ag NW into a thick shell of Au.
  • FIG. 2 shows a stretchable conductor composed of an Ag @ Au NW / SBS composite according to an embodiment of the present invention.
  • the Ag @ Au NW was dispersed in toluene and mixed with the SBS solution. Then, the toluene was dried to obtain Ag @ Au NW / SBS complex .
  • the weight of the toluene may be greater than the weight of the SBS solution (e.g., about 10 times).
  • the Ag @ Au NW / SBS complexes can have high conductivity, biocompatibility, and stretchability.
  • FIG 3 shows an SEM image of Ag @ Au NW according to an embodiment of the present invention.
  • the SEM image shows the Ag @ Au NW
  • the embedded image shows a clear contrast between the Ag NW core and the Au shell as backscattered images.
  • FIG. 4 illustrates an EDS mapping for identifying a core-shell structure of an Ag @ Au NW according to an embodiment of the present invention.
  • the energy-dispersive X-ray spectroscopy (EDS) mapping shows signals of Ag and Au elements confirming the core-shell structure of Ag @ Au NW.
  • the galvanic substitution reaction is suppressed and no etching of Ag NW or formation of a hollow structure is observed.
  • FIG. 5 shows inductively coupled plasma mass spectroscopy (ICP-MS) data for analyzing Ag ion leaching from Ag NW, Ag @ Au NW, and Ag @ Au NW / SBS complexes.
  • Ag NW, Ag @ Au NW and Ag @ Au NW / SBS complexes were dispersed in a DMEM (Dulbecco Modified Eagle 's Medium) solution for 3 days in a cell incubator and the amount of leached silver ions (Ag + And analyzed by inductively coupled plasma mass spectroscopy.
  • DMEM Dynamic Eagle 's Medium
  • the Au shell effectively prevented the leaching of silver ions.
  • silver leaching decreased to 5.8% for Ag @ Au NW, and silver leaching decreased to 1.2% for Ag @ Au NW / SBS complex.
  • FIG. 6 shows an SEM image of the Ag @ Au NW / SBS composite according to the manufacturing process temperature
  • FIG. 7 shows an SEM image of the Ag @ Au NW / SBS composite of FIG.
  • the Ag @ Au NW / SBS composite has excellent biocompatibility, stable electrical performance and high stretchability.
  • Ag @ Au NW exhibits clustering effect that densifies the electron path even under mechanical deformation.
  • a mixture of Ag @ Au NW and SBS in toluene with appropriate concentration is placed in a glass mold. Drying at low temperature (room temperature, 20 ° C) may result in longer clustering effect due to longer drying time for 2 days.
  • the SEM image shows a clustering island composed mainly of Ag @ Au NW. During stretching, most of the strain is applied between the clustering areas, which are primarily associated with SBS, to form an SBS bridge (Fig. 7).
  • the electrical conductivity is maintained by a very long Ag @ Au NW percolation structure on the SBS bridge.
  • the Ag @ Au NW / SBS composites show a uniform distribution of Ag @ Au NW when dried at 55 ° C and 85 ° C and do not show clustering islands and SBS bridges.
  • the Ag @ Au NW / SBS composite exhibits a rigid strain-stress curve, but the SBS bridge structure absorbs the applied strain and covers the hardened island region strengthened to induce a low modulus of Ag @ Au NW / SBS composite do.
  • FIG. 9 shows the stretchability and conductivity of the Ag @ Au NW / SBS composite according to the Ag @ Au NW content.
  • the conductivity of Ag @ Au NW / SBS composite tends to increase with increasing the content of Ag @ Au NW, and the highest conductivity (35,000 S / cm) when Ag @ Au NW content is 70 wt% .
  • the Ag @ Au NW / SBS composite exhibited the highest elongation (180%) when the content of Ag @ Au NW was 45 wt%, indicating that the SBS required to form an SBS bridge with still high conductivity of 19,783 S / &Quot;
  • Figure 10 shows the change in conductivity when the Ag @ Au NW / SBS complex is mechanically stretched.
  • the densified Ag @ Au NW clustering region at 20 ° C drying (RT Drying) and the percolated conductive network on the SBS bridge exhibit stable conductivity performance while extending up to 180%.
  • FIG. 11 schematically shows a process of electrodeposition of PEDOT on an Ag @ Au NW / SBS electrode.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the PEDOT may be formed through electrochemical polymerization of 3,4-EDOT (Ethylenedioxythiophene).
  • PEDOT can be deposited on the electrode surface by performing galvanostatic electrodeposition for 1000 seconds under a current of 0.1 mA using an Ag / AgCl reference electrode.
  • the Ag @ Au NW / SBS complex and SBS are patterned using a twisted mold, and the Ag @ Au NW / SBS composite is sandwiched by the SBS layer without covering the electrode area.
  • the electrode lines may be encapsulated with silicone rubber or the like for insulation.
  • FIG. 12 shows the impedance and phase of Ag @ Au NW / SBS electrode and elongated Ag @ Au NW / SBS electrode before and after PEDOT deposition.
  • the impedance of the pericardial electrode decreases after deposition of PEDOT. Pericardial electrodes retain their electrochemical properties even when stretched to 30%.
  • the negative electrode charge storage capacity increased from 12.98 mC / cm 2 to 80.11 mC / cm 2 after PEDOT deposition, and the CV curve was maintained even at 30% elongation.
  • Figure 14 shows charge injection under Ag 2 Au 2/2 S phase current stimulation with 2 mA current before and after PEDOT deposition.
  • the same amount of charge injection occurs at a low potential applied to a PEDOT coated pericardial electrode under 2 mA of 2-phase current conditions for 20 ms.
  • the pericardium electrode can have high electrochemical properties as well as high conductivity due to inherent materials, and can accurately measure signals from the heart.
  • FIG. 15 shows intracardiac electrograms recorded from a PEDOT coated Ag @ Au NW / SBS electrode in a rat heart
  • FIG. 16 shows pacing (260 cycles length) with a PEDOT coated Ag @ Au NW / Represents the surface ECG of the mouse heart (lead 1).
  • an intracardiac signal can be measured from the surface of the pericardium by a pair of electrodes, and the heart rate can be accelerated by the pacing rate when electrical stimulation is applied at a cycle of 260 ms.
  • FIG. 17 shows a design of a heart mesh electrode according to an embodiment of the present invention.
  • the cardiac mesh electrode may include a plurality of unit mesh electrodes, and the unit mesh electrode may include a plurality of line electrodes.
  • the heart mesh electrode may include seven unit mesh electrodes, and the unit mesh electrode may include six pairs of line electrodes.
  • the pair of line electrodes may be arranged up and down with the SBS layer interposed therebetween.
  • the line electrode has a serpentine shape.
  • SBS mesh and Ag @ Au NW / SBS composite are laminated and a unit mesh electrode composed of six pairs of line electrodes is formed through the welding process. Due to the thermoplastic nature of the SBS rubber, SBS in the SBS mesh and Ag @ Au NW / SBS composite can be dispersed and welded under heat and pressure.
  • a plurality of unit mesh electrodes are aligned and welded to each other to form a heart mesh electrode.
  • it is coated with silicone rubber except for the open electrode area.
  • the heart mesh electrode may have a shape (fan shape) in which a plurality of unit mesh electrodes combine to form a fan shape to surround the heart.
  • Figure 18 shows an open cardioid electrode connected to a flexible PCB
  • Figure 19 shows an MRI image of a live pig heart.
  • a cardiac mesh electrode can be formed to match the shape and size of the heart based on the MRI cardiac image.
  • the block copolymer structure of SBS rubbers has a shape memory effect as the polymer has a soft segment for switching and a hard segment for cross link. Therefore, at the temperature above the glass transition temperature, the block copolymer of SBS rubber can be deformed to meet the size of the heart due to deformation of the polymer chain, and the shape can be fixed by lowering the temperature below the glass transition temperature.
  • FIG 20 shows the process of customizing the cardiac mesh electrode and the cardiac mesh electrode.
  • the heart mesh electrode can maintain the shape of the heart through heating and cooling processes using a 3D printed heart model.
  • Figure 21 shows the resistance of the cardiomy electrode line before and after customization.
  • the cardiac mesh electrode extends to the original size of the heart, the resistance of the electrode is hardly changed after the customizing process.
  • Fig. 22 shows the resistance change of the heart mesh electrode under strain
  • Fig. 23 shows the cyclic test result of the heart mesh electrode under 30% strain.
  • Each resistance of the electrode line was measured under a 30% strain that occurred in the circumferential strain during systole and dilator cycles, and the resistance change of the middle electrode line was measured during the cyclic strain test.
  • the cardiac mesh electrode can also measure heart signals and stimulate the heart under mechanical strain and cyclic strain.
  • the cardiac mesh electrode since the modulus of the cardiac mesh electrode is much lower than the modulus of the pig heart (myocardium), the cardiac mesh electrode does not inhibit pumping activity of the heart and does not interfere with ventricular motion and LV pressure .
  • FIG. 25 shows an image of a cardiac mesh electrode implanted in a left anterior descending coronary artery (LAD) occluded pig heart
  • FIG. 26 shows an intracardiac electrogram of a cardiac mesh electrode one hour after LAD occlusion.
  • LAD left anterior descending coronary artery
  • LAD left anterior descending coronary artery
  • intracardiac electrograms were simultaneously measured at each location after 1 hour LAD occlusion. Due to the LAD occlusion, a wide QRS period can provide information that myocardial tissue is damaged in the LVa compared with the normal position. In particular, at 3-5 positions, delayed conduction and ST elevation due to myocardial damage are seen.
  • Figure 27 shows surface ECG and intracardiac electrograms of healthy tissue and injured tissue.
  • VT ventricular tachycardia
  • VF ventricular fibrillation
  • FIG. 28 shows the arrangement of the bipolar electrodes by the 3D reconstruction image of the MRI
  • FIG. 29 shows the activation map of the 3D model
  • FIG. 30 shows the voltage map of the 3D model.
  • an isochronous cardiac activation mapping can detect a damaged cardiac muscle and corresponds to a voltage map that is a difference map of the highest and lowest voltages.
  • Fig. 31 shows shrinkability under a three-dimensional co-ordinated electric stimulus
  • Fig. 32 shows a single pressure curve by the orientation pacing.
  • the average contractive force (dP / dtmax) is calculated under a three-dimensionally coordinated electrical stimulus based on a pressure curve during pacing simultaneously, and the pacing along the side of the left ventricle restores cardiac function .
  • stereotactic pacing using a cardiac mesh electrode can be applied to cardiac synchronization therapy for patients who are not effective with the existing cardiac catheter catheter method.
  • the cardiac mesh electrode according to embodiments of the present invention may have excellent biocompatibility and stretchability while having high conductivity.
  • the cardiac mesh electrode can be applied to cardiac synchronous therapy for patients who are not effective with conventional treatment methods.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

바이오 전극 및 그 형성 방법이 제공된다. 상기 바이오 전극은, 제1 코어-쉘 나노와이어와 제1 고분자를 포함하는 제1 코어-쉘 나노와이어/고분자 복합체를 포함한다. 상기 바이오 전극의 형성 방법은, 전도성 금속을 포함하는 코어 표면에 생체적합성 금속을 에피택시얼 성장시켜 코어-쉘 나노와이어를 형성하는 단계를 포함한다.

Description

바이오 전극 및 그 형성 방법
본 발명은 바이오 전극 및 그 형성 방법에 관한 것이다.
심장은 푸르키네(His-Purkinje) 전도 시스템을 통한 전기 전도의 전파에 의해 활성화되는 가장 중요한 장기 중 하나이다. 심장의 전기 활동을 모니터링하는 것은 의사에게 심장 질환에 대한 통찰력을 제공하여 임상 진료에서 활동 전위의 파형에 의해 결정되는 특정 질병을 진단하는데 도움이 된다. 특히, 국소 활성화 맵은 손상된 심근의 위치 정보를 제공하므로, 종합적인 심장 질환을 해석하는데 다수의 공간적으로 분포된 기록이 요구된다. 종래의 혈관을 통한 카테터 전극의 해부학적 접근은 심장의 원하는 부위에서 전기 페이싱을 어렵게 한다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 성능이 우수한 바이오 전극을 제공한다.
본 발명은 생체 적합성이 우수한 바이오 전극을 제공한다.
본 발명은 상기 바이오 전극의 형성 방법을 제공한다.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.
본 발명의 실시예들에 따른 바이오 전극은, 제1 코어-쉘 나노와이어와 제1 고분자를 포함하는 제1 코어-쉘 나노와이어/고분자 복합체를 포함한다.
본 발명의 실시예들에 따른 바이오 전극의 형성 방법은, 전도성 금속을 포함하는 코어 표면에 생체적합성 금속을 에피택시얼 성장시켜 코어-쉘 나노와이어를 형성하는 단계를 포함한다.
본 발명의 실시예들에 따른 바이오 전극은 높은 전도성을 가지면서, 우수한 생체 적합성과 신축성을 가질 수 있다. 상기 바이오 전극은 다양한 생체 내 및 생체 외 전극 또는 장치에 적용될 수 있다. 예를 들어, 상기 바이오 전극은 심장 메시 전극으로 사용될 수 있으며, 상기 심장 메시 전극은 종래의 치료 방법으로 효과가 없는 환자들을 위한 심장 동기화 치료에 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따라 갈바닉 반응 없이 은 나노와이어에 금 쉘을 형성하는 공정을 개략적으로 나타낸다.
도 2는 본 발명의 일 실시예에 따른 Ag@Au NW/SBS 복합체로 구성되는 신축성 전도체를 나타낸다.
도 3은 본 발명의 일 실시예에 따른 Ag@Au NW의 SEM 이미지를 나타낸다.
도 4는 본 발명의 일 실시예에 따른 Ag@Au NW의 코어-쉘 구조를 확인하기 위한 EDS 매핑을 나타낸다.
도 5는 Ag NW, Ag@Au NW, 및 Ag@Au NW/SBS 복합체로부터의 Ag 이온 침출을 분석하기 위한 ICP-MS(Inductively coupled plasma mass spectroscopy) 데이터를 나타낸다.
도 6은 제조 공정 온도에 따른 Ag@Au NW/SBS 복합체의 SEM 이미지를 나타낸다.
도 7은 도 6의 Ag@Au NW/SBS 복합체가 30% 신장된 경우의 SEM 이미지를 나타낸다.
도 8은 제조 공정 온도에 따른 Ag@Au NW/SBS 복합체의 스트레인-스트레스 곡선을 나타낸다.
도 9는 Ag@Au NW 함량에 따른 Ag@Au NW/SBS 복합체의 신축도(stretchability) 및 전도도(conductivity)를 나타낸다.
도 10은 Ag@Au NW/SBS 복합체가 기계적으로 신장된 경우에 전도도 변화를 나타낸다.
도 11은 Ag@Au NW/SBS 전극 위에 PEDOT을 전착(electrodeposition)하는 공정을 개략적으로 나타낸다.
도 12는 PEDOT 증착 전후의 Ag@Au NW/SBS 전극 및 신장된 Ag@Au NW/SBS 전극의 임피던스와 위상을 나타낸다.
도 13은 PEDOT 증착 전후의 Ag@Au NW/SBS 전극 및 신장된 Ag@Au NW/SBS 전극의 사이클릭 볼타메트리(Cyclic voltammetry)를 나타낸다.
도 14는 PEDOT 증착 전후의 Ag@Au NW/SBS 전극에 2mA 2상 전류 자극 하에서 전하 주입을 나타낸다.
도 15는 쥐 심장에서 PEDOT 코팅된 Ag@Au NW/SBS 전극으로부터 기록된 심장내 일렉트로그램(electrogram)을 나타낸다.
도 16은 PEDOT 코팅된 Ag@Au NW/SBS 전극으로 페이싱(260 사이클 길이)하는 동안 쥐 심장의 표면 ECG(lead 1)를 나타낸다.
도 17은 본 발명의 일 실시예에 따른 심장 메시 전극의 디자인을 나타낸다.
도 18은 유연성 PCB에 연결된 펼쳐진 심장 메시 전극을 나타낸다.
도 19는 살아있는 돼지 심장의 MRI 이미지를 나타낸다.
도 20은 심장 메시 전극과 상기 심장 메시 전극의 커스토마이징 과정을 나타낸다.
도 21은 커스토마이징 전후 심장 메시 전극 라인의 저항을 나타낸다.
도 22는 스트레인 하에서 심장 메시 전극의 저항 변화를 나타낸다.
도 23은 30% 스트레인 하에서 심장 메시 전극의 사이클릭 테스트 결과를 나타낸다.
도 24는 심장 메시 전극의 층 단면에 따른 심장 메시 전극의 모듈러스와 돼지 심장의 모듈러스를 비교하여 나타낸다.
도 25는 LAD(left anterior descending coronary artery) 폐색된 돼지 심장에 이식된 심장 메시 전극의 이미지를 나타낸다.
도 26은 LAD 폐색 1시간 후 심장 메시 전극의 심장내 일렉트로그램을 나타낸다.
도 27은 표면 ECG 및 건강한 조직과 손상된 조직의 심장내 일렉트로그램을 나타낸다.
도 28은 MRI의 3D 재구성 이미지에 의한 바이폴라 전극 배열을 나타내고, 도 29는 3D 모델의 활성화 맵을 나타내며, 도 30은 3D 모델의 전압 맵을 나타낸다.
도 31은 3차원 조율된 전기 자극 하에서의 수축성을 나타낸다.
도 32는 정위 페이싱에 의한 단일 압력 곡선을 나타낸다.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.
본 명세서에서 제1, 제2 등의 용어가 다양한 요소들(elements)을 기술하기 위해서 사용되었지만, 상기 요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이러한 용어들은 단지 상기 요소들을 서로 구별시키기 위해서 사용되었을 뿐이다. 또, 어떤 요소가 다른 요소 위에 있다고 언급되는 경우에 그것은 다른 요소 위에 직접 형성될 수 있거나 또는 그들 사이에 제3의 요소가 개재될 수도 있다는 것을 의미한다.
도면들에서 요소의 크기, 또는 요소들 사이의 상대적인 크기는 본 발명에 대한 더욱 명확한 이해를 위해서 다소 과장되게 도시될 수 있다. 또, 도면들에 도시된 요소의 형상이 제조 공정상의 변이 등에 의해서 다소 변경될 수 있을 것이다. 따라서, 본 명세서에서 개시된 실시예들은 특별한 언급이 없는 한 도면에 도시된 형상으로 한정되어서는 안 되며, 어느 정도의 변형을 포함하는 것으로 이해되어야 한다.
본 명세서에서 사용된 용어인 Ag@Au는 코어-쉘 구조체로 @앞에 기재된 Ag는 코어를 나타내고, @뒤에 기재된 Au는 쉘을 나타낸다. Ag NW는 은 나노와이어를 의미하고, Ag@Au NW는 Ag@Au 나노와이어를 의미한다. 또, 코어-쉘 나노와이어/고분자 복합체는 코어-쉘 나노와이어와 고분자를 혼합하여 형성된 복합체(composite)를 의미한다. 예를 들어, Ag@Au NW/SBS는 Ag@Au 나노와이어와 SBS(스티렌-부타디엔-스티렌) 고무를 혼합하여 형성된 복합체를 의미한다.
본 발명의 실시예들에 따른 바이오 전극은, 제1 코어-쉘 나노와이어와 제1 고분자를 포함하는 제1 코어-쉘 나노와이어/고분자 복합체를 포함한다. 상기 바이오 전극은 상기 제1 코어-쉘 나노와이어/고분자 복합체 위에 배치되는 제1 절연층 및 상기 제1 절연층 위에 배치되고, 제2 코어-쉘 나노와이어와 제2 고분자를 포함하는 제2 코어-쉘 나노와이어/고분자 복합체를 더 포함할 수 있다.
상기 제1 코어-쉘 나노와이어 및 상기 제2 코어-쉘 나노와이어에서, 상기 코어는 전도성 금속을 포함할 수 있고, 상기 쉘은 생체적합성 금속을 포함할 수 있다. 상기 전도성 금속은 은을 포함할 수 있고, 상기 생체적합성 금속은 금을 포함할 수 있다.
상기 제1 고분자 및 상기 제2 고분자는 고분자 고무를 포함할 수 있다. 상기 고분자 고무는 SBS 고무를 포함할 수 있다.
상기 제1 코어-쉘 나노와이어/고분자 복합체는 메시 형상을 갖고, 복수개의 제1 라인 전극을 포함할 수 있고, 상기 제2 코어-쉘 나노와이어/고분자 복합체는 메시 형상을 갖고, 복수개의 제2 라인 전극을 포함할 수 있다.
상기 바이오 전극은, 상기 제1 라인 전극 및 상기 제2 라인 전극 중 적어도 어느 하나의 위 또는 아래에 배치되는 고분자 전도층을 더 포함할 수 있다. 상기 고분자 전도층은 PEDOT을 포함할 수 있다. 상기 제1 라인 전극 및 상기 제2 라인 전극은 구불구불한 형상을 가질 수 있다.
상기 바이오 전극은, 상기 제1 코어-쉘 나노와이어/고분자 복합체 아래에 배치되는 제2 절연층, 및 상기 제2 코어-쉘 나노와이어/고분자 복합체 위에 배치되는 제3 절연층을 더 포함할 수 있고, 상기 제1 절연층, 상기 제2 절연층, 및 상기 제3 절연층은 고분자 고무를 포함할 수 있다. 상기 제1 절연층, 상기 제2 절연층, 및 상기 제3 절연층은 메시 형상을 가질 수 있다.
상기 바이오 전극은 팬 형상을 가질 수 있다. 상기 바이오 전극은 심장 메시 전극일 수 있다.
본 발명의 실시예들에 따른 바이오 전극의 형성 방법은, 전도성 금속을 포함하는 코어 표면에 생체적합성 금속을 에피택시얼 성장시켜 코어-쉘 나노와이어를 형성하는 단계를 포함한다.
상기 에피택시얼 성장은 아황산 금 복합체(gold sulfite complex)를 사용하여 수행될 수 있다. 상기 아황산 금 복합체에 의해 상기 전도성 금속과 상기 생체적합성 금속 간 갈바닉 반응이 억제될 수 있다. 상기 전도성 금속은 은을 포함할 수 있고, 상기 생체적합성 금속은 금을 포함할 수 있으며, 상기 아황산 금 복합체는 Na2Au(SO3)2를 포함할 수 있다.
상기 바이오 전극의 형성 방법은, 상기 코어-쉘 나노와이어와 제1 고분자를 혼합한 후 몰딩하여 메시 형상의 제1 코어-쉘 나노와이어/고분자 복합체를 형성하는 단계를 더 포함할 수 있다.
상기 바이오 전극의 형성 방법은, 상기 코어-쉘 나노와이어와 제2 고분자를 혼합한 후 몰딩하여 메시 형상의 제2 코어-쉘 나노와이어/고분자 복합체를 형성하는 단계, 제3 고분자를 몰딩하여 메시 형상의 제1 절연층을 형성하는 단계, 및 상기 제1 코어-쉘 나노와이어/고분자 복합체, 제1 절연층 및 상기 제2 코어-쉘 나노와이어/고분자 복합체를 적층하는 단계를 더 포함할 수 있다.
상기 바이오 전극의 형성 방법은, 상기 제1 코어-쉘 나노와이어/고분자 복합체 및 상기 제2 코어-쉘 나노와이어/고분자 복합체 중 적어도 어느 하나의 위 또는 아래에 고분자 전도층을 형성하는 단계를 더 포함할 수 있다.
상기 바이오 전극의 형성 방법은, 제4 고분자를 몰딩하여 메시 형상의 제2 절연층을 형성하는 단계, 제5 고분자를 몰딩하여 메시 형상의 제3 절연층을 형성하는 단계, 및 상기 제2 절연층, 상기 제1 코어-쉘 나노와이어/고분자 복합체, 제1 절연층, 상기 제2 코어-쉘 나노와이어/고분자 복합체, 및 상기 제3 절연층을 적층하는 단계를 더 포함할 수 있다.
상기 제1 내지 제5 고분자는 고분자 고무를 포함할 수 있다.
Ag NW는 높은 종횡비를 갖는 고전도성 물질로서 양호한 전기적 퍼콜레이션 네트워크(percolation network)를 형성할 수 있다. Ag NW가 Au 나노쉘(nanoshell)로 캡슐화됨에 따라 우수한 전도성을 유지하면서 은 이온 침출을 감소시킬 수 있다. 또, 상기 바이오 전극은 Ag NW의 전도성을 저하시킬 수 있는 계면 활성제를 사용하지 않고, 전도성 물질의 로컬라이제이션(localization)에 의해 기계적 변형 하에서도 안정된 전기적 특성을 가질 수 있다. 상기 코어-쉘 나노와이어/고분자 복합체는 다중 전극 어레이를 갖는 대형 장치를 만들기 위한 몰딩 및 용접 공정을 가능하게 하여 큰 크기의 심장에 적용될 수 있다. 상기 바이오 전극은 위치에 상관없는 페이싱을 제공하는 심장 매핑 및 정위적 페이싱 효과를 통한 동시 분석을 수행할 수 있고, 다양한 심장 질환 치료를 위한 생체 의학 장치에 신축성 전극으로 사용될 수 있다.
예를 들어, Ag@Au NW/SBS 복합체는 다음과 같은 방법으로 형성될 수 있다.
에틸렌 글리콜(ethylene glycol) 100ml를 260rpm으로 저으면서 175℃에서 예열한다. 폴리 비닐피롤리돈(PVP, MW 360k)을 30ml의 에틸렌 글리콜에 용해시키고, 800㎕의 4mM 구리 클로라이드(CuCl2·2H2O) 용액을 첨가한다. 에틸렌 글리콜에 0.095M 농도의 질산은(AgNO3) 용액과 구리 용액을 주입한 10분 후에 상기 용액을 180ml/hr로 주입한다. 상기 주입이 완료된 후, 교반을 중지하고 20분 동안 합성 반응을 수행하여 Ag NW를 형성한다. 상기 반응이 끝난 후, Ag NW 용액을 물(1:4)로 희석하고 3000RPM에서 10분 동안 원심 분리한다. 세정 공정을 3회 반복하여 Ag NW의 PVP를 제거한다. 세정된 Ag NW를 Au 나노쉘로 캡슐화하여 Ag@Au NW를 형성한다. Ag@Au NW를 톨루엔에 30mg/ml로 분산시킨다. Ag@Au NW 용액을 SBS가 용해된 용액(SBS:톨루엔이 1:10)과 혼합한다. 가장 높은 신축성을 나타내는 최적화된 농도는 Ag@Au NW/SBS 복합체 내에서 Ag@Au NW가 약 45중량%이다. 상기 혼합 용액을 유리 몰드에 부어 핫 플레이트에서 건조시킨다.
이하에서는 심장 메시 전극을 바이오 전극의 일 예로 설명하고 있으나 이에 한정되지 않으며, 상기 바이오 전극은 다양한 생체 내 및 생체 외 전극 또는 장치에 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따라 갈바닉 반응없이 은 나노와이어에 금 쉘을 형성하는 공정을 개략적으로 나타낸다.
도 1을 참조하면, 아황산 금 복합체(gold sulfite complex), 예를 들어, Na2Au(SO3)2를 사용하여 Ag NW 표면에 Au을 에피택시얼 증착시킨다. Ag와 Au 사이의 갈바닉 반응(galvanic reaction) 없이 Ag@Au NW를 형성하는 것은 매우 어렵고, 상기 갈바닉 반응에 의해 형성되는 중공 Au/Ag 합금 나노구조는 Ag@Au NW의 전기적 특성 및 생체 적합성을 저하시킬 수 있다. 그러나, 본 발명의 실시예들에 따르면 아황산염 리간드를 사용하는 것에 의해 갈바닉 치환 반응을 억제하면서 Ag NW에 Au 나노쉘을 형성할 수 있다. Au 나노쉘은 Ag NW의 전체 표면을 덮도록 두껍게 형성될 수 있다.
아황산염 리간드는 Au 양이온에 선택적으로 결합하여 높은 안정성으로 환원 전위를 낮춘고, 리간드에 의한 산화 에칭을 방지하는 등 Ag 표면에서의 Au 에피택시얼 증착에 중요한 역할을 한다.
아황산염 리간드로 배위된 Au 전구체는 높은 안정성을 나타내기 때문에 Au 전구체가 반드시 느리게 주입되어야 하는 것이 아니므로 대규모 합성이 가능해진다. 또한 반응에서 Ag NW의 농도를 조절함으로써 Ag 표면에 증착되는 Au 쉘의 두께를 조절할 수 있다. 합성된 Ag@Au NW는 약 30nm의 평균 Au 쉘 두께와 약 180nm의 평균 전체 직경을 가질 수 있다.
Ag NW는 높은 고유 전기 전도성 및 우수한 기계적 유연성을 가지고 있으나 Ag+ 이온의 침출로 인한 독성에 의해 생의학적 응용에 제한을 받고 있다. 또, 금(Au)은 생체 적합성 및 산화 저항성이 있지만 낮은 고유 전도도 때문에 생체 의료 장치로의 적용에 제한이 있다. 그러나, 본 발명의 실시예들에 따른 Ag@Au NW는 Ag NW가 Au의 두꺼운 쉘로 캡슐화되어 전기 전도도와 생체 적합성이 모두 우수하다.
도 2는 본 발명의 일 실시예에 따른 Ag@Au NW/SBS 복합체로 구성되는 신축성 전도체를 나타낸다.
도 2를 참조하면, 합성된 Ag@Au NW의 리간드를 헥실 아민으로 교환한 후, 상기 Ag@Au NW를 톨루엔에 분산시켜 SBS 용액과 혼합한 후 상기 톨루엔을 건조시켜 Ag@Au NW/SBS 복합체를 형성한다. 상기 톨루엔의 무게는 SBS 용액의 무게보다 더 클 수 있다(예를 들어 약 10배). 상기 Ag@Au NW/SBS 복합체는 높은 전도성, 생체 적합성, 및 신축성을 가질 수 있다.
도 3은 본 발명의 일 실시예에 따른 Ag@Au NW의 SEM 이미지를 나타낸다.
도 3을 참조하면, SEM 이미지는 Ag@Au NW를 보여주며, 삽입된 그림은 후방 산란 이미지로 Ag NW 코어와 Au 쉘 사이의 명확한 대비를 보여준다.
도 4는 본 발명의 일 실시예에 따른 Ag@Au NW의 코어-쉘 구조를 확인하기 위한 EDS 매핑을 나타낸다.
도 4를 참조하면, EDS(Energy-dispersive X-ray spectroscopy) 매핑은 Ag@Au NW의 코어-쉘 구조를 확인하는 Ag, Au 원소의 신호를 보여준다. 갈바닉 치환 반응이 억제되어 Ag NW의 에칭이나 중공 구조의 형성이 관찰되지 않는다.
도 5는 Ag NW, Ag@Au NW, 및 Ag@Au NW/SBS 복합체로부터의 Ag 이온 침출을 분석하기 위한 ICP-MS(Inductively coupled plasma mass spectroscopy) 데이터를 나타낸다. Ag NW, Ag@Au NW, Ag@Au NW/SBS 복합체를 세포 배양기에서 3일 동안 DMEM(Dulbecco Modified Eagle 's Medium) 용액에 분산시키고 침출된 은이온(Ag+)의 양을 유도 결합 플라즈마 질량 분광법(inductively coupled plasma mass spectroscopy)으로 분석하였다.
도 5를 참조하면, Au 쉘은 은이온이 침출되는 것을 효과적으로 막는 것으로 나타났다. Ag NW의 은이온 침출에 대하여 Ag@Au NW는 은이온 침출이 5.8%로 감소하였고, Ag@Au NW/SBS 복합체는 은이온 침출이 1.2%로 감소하였다.
도 6은 제조 공정 온도에 따른 Ag@Au NW/SBS 복합체의 SEM 이미지를 나타내고, 도 7은 도 6의 Ag@Au NW/SBS 복합체가 30% 신장된 경우의 SEM 이미지를 나타낸다.
도 6 및 도 7을 참조하면, Ag@Au NW/SBS 복합체는 우수한 생체 적합성을 가지며, 안정한 전기적 성능과 높은 신축성을 보인다. 용액의 건조 과정에서, Ag@Au NW는 기계적 변형 하에서도 전자 경로를 치밀화하는 클러스터링 효과를 나타낸다. 적절한 농도를 갖는 톨루엔 내 Ag@Au NW 및 SBS의 혼합물을 유리 몰드에 붇는다. 저온(실온, 20℃)에서 건조하면 2일 동안 건조 시간이 길어 클러스터링 효과가 더욱 좋아질 수 있다. SEM 이미지는 주로 Ag@Au NW로 구성된 클러스터링 아일랜드를 보여준다. 스트레칭하는 동안, 대부분의 스트레인(strain)은 주로 SBS와 결합된 클러스터링 영역 사이에 적용되어 SBS 브리지를 형성한다(도 7). 그러나 전기 전도도는 SBS 브리지 상의 매우 긴 Ag@Au NW 퍼콜레이션 구조에 의해 유지된다. Ag@Au NW/SBS 복합체는 55℃와 85℃에서 건조될 때 Ag@Au NW의 균일한 분포를 보이고, 클러스터링 아일랜드와 SBS 브리지를 보이지 않는다.
도 8은 제조 공정 온도에 따른 Ag@Au NW/SBS 복합체의 스트레인-스트레스 곡선을 나타낸다.
도 8을 참조하면, Ag@Au NW/SBS 복합체는 경직된 스트레인-스트레스 곡선을 보이나, SBS 브리지 구조는 가해진 스트레인을 흡수하여 강화된 딱딱한 아일랜드 영역을 덮어 Ag@Au NW/SBS 복합체의 낮은 모듈러스를 유도한다.
도 9는 Ag@Au NW 함량에 따른 Ag@Au NW/SBS 복합체의 신축도(stretchability) 및 전도도(conductivity)를 나타낸다.
도 9를 참조하면, 전도도는 Ag@Au NW의 함량 증가에 따라 상승 경향을 보이고, Ag@Au NW/SBS 복합체는 Ag@Au NW의 함량이 70wt%일 때 가장 높은 전도도(35,000S/cm)를 나타낸다. 또, Ag@Au NW/SBS 복합체는 Ag@Au NW의 함량이 45wt%일 때 가장 높은 신축성(180%)을 나타내고, 이는 19,783S/cm의 여전히 높은 전도성을 갖는 SBS 브리지를 형성하는데 요구되는 SBS의 임계 함유량을 의미한다.
도 10은 Ag@Au NW/SBS 복합체가 기계적으로 신장된 경우에 전도도 변화를 나타낸다.
도 10을 참조하면, 20℃ 건조 공정(RT Drying)에서 고밀도화된 Ag@Au NW 클러스터링 영역과 SBS 브리지 상의 퍼콜레이트된 전도성 네트워크는 최대 180%까지 신장하는 동안 전도도의 안정된 성능을 나타낸다.
도 11은 Ag@Au NW/SBS 전극 위에 PEDOT을 전착(electrodeposition)하는 공정을 개략적으로 나타낸다.
도 11을 참조하면, Ag@Au NW/SBS 복합체를 심막 전극으로 이용하기 위해, 전극 표면에 PEDOT(Poly(3,4-ethylenedioxythiophene))을 증착하여 전하 주입을 증가시켜 임피던스를 낮출 수 있다. 상기 PEDOT은 3,4-EDOT(Ethylenedioxythiophene)의 전기 중합을 통해 형성될 수 있다. 예를 들어, 0.01M의 3,4-EDOT(Ethylenedioxythiophene)와 0.01M 과염소산 리튬 (LiClO4)을 아세토니트릴(acetonitrile)에 용해시킨 후, 제조된 메시 전극을 상기 용액에 담그고 2 전극 시스템(전위 대 Ag/AgCl 기준 전극)을 이용하여 0.1mA의 전류 하에서 1000초 동안 갈바노스태틱 전착(galvanostatic electrodeposition)을 수행하는 것에 의해, 상기 전극 표면에 상기 PEDOT이 증착될 수 있다.
Ag@Au NW/SBS 복합체와 SBS는 구불구불한 모양의 몰드를 이용하여 패터닝되고, Ag@Au NW/SBS 복합체는 전극 영역이 덮히지 않고 SBS층에 의해 샌드위치된다. 상기 전극 라인은 절연을 위해 실리콘 고무 등으로 캡슐화될 수 있다.
도 12는 PEDOT 증착 전후의 Ag@Au NW/SBS 전극 및 신장된 Ag@Au NW/SBS 전극의 임피던스와 위상을 나타낸다.
도 12를 참조하면, 심막 전극의 임피던스는 PEDOT의 증착 후 감소한다. 심막 전극은 30%까지 신장되어도 전기 화학적 성질이 유지된다.
도 13은 PEDOT 증착 전후의 Ag@Au NW/SBS 전극 및 신장된 Ag@Au NW/SBS 전극의 사이클릭 볼타메트리(Cyclic voltammetry)를 나타낸다.
도 13을 참조하면, 사이클릭 볼타모그램(cyclic voltammogram)에서, 음극 전하 저장 용량은 PEDOT 증착 후 12.98mC/㎠에서 80.11mC/㎠로 증가하였으며 30% 신장하여도 CV 곡선이 유지된다.
도 14는 PEDOT 증착 전후의 Ag@Au NW/SBS 전극에 2mA 2상 전류 자극하에서 전하 주입을 나타낸다.
도 14를 참조하면, 20ms 동안 2mA의 2상 전류 조건 하에서 PEDOT 코팅된 심막 전극에 적용된 낮은 전위에 같은 양의 전하 주입이 발생한다. 상기 심막 전극은 고유한 재료에 의해 높은 전도성을 가질 뿐만 아니라 우수한 전기 화학적 성질을 가질 수 있고, 심장으로부터 신호를 정확하게 측정할 수 있다.
도 15는 쥐 심장에서 PEDOT 코팅된 Ag@Au NW/SBS 전극으로부터 기록된 심장내 일렉트로그램(electrogram)을 나타내고, 도 16은 PEDOT 코팅된 Ag@Au NW/SBS 전극으로 페이싱(260 사이클 길이)하는 동안 쥐 심장의 표면 ECG(lead 1)를 나타낸다.
도 15 및 도 16을 참조하면, 한 쌍의 전극에 의해 심막 표면으로부터 심장내 신호가 측정될 수 있고, 260ms의 주기로 전기 자극을 가했을 때 심장 속도가 페이싱 속도에 의해 가속될 수 있다.
도 17은 본 발명의 일 실시예에 따른 심장 메시 전극의 디자인을 나타낸다.
도 17을 참조하면, 심장 메시 전극은 복수개의 단위 메시 전극을 포함할 수 있고, 상기 단위 메시 전극은 복수개의 라인 전극을 포함할 수 있다. 예를 들어, 상기 심장 메시 전극은 7개의 단위 메시 전극을 포함할 수 있고, 상기 단위 메시 전극은 6쌍의 라인 전극을 포함할 수 있다. 상기 1쌍의 라인 전극은 SBS 층을 사이에 두고 위 아래로 배치될 수 있다. 상기 라인 전극은 구불구불한 형상을 갖는다. SBS 메시와 Ag@Au NW/SBS 복합체(전극)가 적층되고 용접 과정을 통해 6쌍의 라인 전극으로 구성되는 하나의 단위 메시 전극이 형성된다. SBS 고무의 열가소성으로 인해, SBS 메시와 Ag@Au NW/SBS 복합체 내 SBS는 열과 압력 하에서 분산되고 용접될 수 있다. 복수개의 단위 메시 전극들이 정렬되고 서로 용접되어 심장 메시 전극이 형성된다. 전도층의 측면을 확실하게 캡슐화하기 위해, 개방된 전극 영역을 제외하고 실리콘 고무로 코팅된다. 상기 심장 메시 전극은 심장 주위를 감싸기 위해 복수개의 단위 메시 전극들이 결합하여 팬 모양으로 퍼져 나가는 형상(팬 형상)을 가질 수 있다.
도 18은 유연성 PCB에 연결된 펼쳐진 심장 메시 전극을 나타내고, 도 19는 살아있는 돼지 심장의 MRI 이미지를 나타낸다.
도 18 및 도 19를 참조하면, 심장 메시 전극은 MRI 심장 이미지에 기반하여 심장의 형상과 크기에 맞도록 형성될 수 있다. SBS 고무의 블록 공중합체 구조는 상기 중합체가 스위칭을 위한 소프트 세그먼트와 크로스 링크를 위한 하드 세그먼트를 갖는 바와 같이 형상 기억 효과를 갖는다. 따라서 유리전이온도 이상의 온도에서 SBS 고무의 블록 공중합체는 폴리머 체인에 변형이 일어나서 심장의 크기에 맞춰지도록 변형될 수 있고 그 상태에서 유리전이온도 이하로 온도를 내리면 형상이 고정될 수 있다.
도 20은 심장 메시 전극과 상기 심장 메시 전극의 커스토마이징 과정을 나타낸다.
도 20을 참조하면, 3D 인쇄된 심장 모형을 이용한 가열 및 냉각 과정을 통하여 상기 심장 메시 전극은 심장의 형상을 유지할 수 있다.
도 21은 커스토마이징 전후 심장 메시 전극 라인의 저항을 나타낸다.
도 21을 참조하면, 심장 메시 전극이 심장의 원래 크기에 맞게 신장하여도, 전극의 저항은 커스토마이징(customizing) 과정 후에 거의 변하지 않는다.
도 22는 스트레인 하에서 심장 메시 전극의 저항 변화를 나타내고, 도 23은 30% 스트레인 하에서 심장 메시 전극의 사이클릭 테스트 결과를 나타낸다. 전극 라인의 각 저항은 수축기 및 확장기 사이클 동안 원주 방향 변형에서 발생하는 30% 변형 하에서 측정하였고, 중간 크기 전극 라인의 저항 변화는 주기 변형 테스트 중에 측정하였다.
도 22 및 도 23을 참조하면, 상기 심장 메시 전극은 기계적 변형 및 주기적 변형에 하에서도 심장 신호를 측정하고 심장을 자극할 수 있다.
도 24는 심장 메시 전극의 층 단면에 따른 심장 메시 전극의 모듈러스와 돼지 심장의 모듈러스를 비교하여 나타낸다.(PC: Porcine circumferential direction; PL: Porcine longitudinal direction)
도 24를 참조하면, 심장 메시 전극의 모듈러스가 돼지 심장(심근)의 모듈러스보다 훨씬 낮기 때문에, 심장 메시 전극은 심장의 펌핑 활동을 억제하지 않고, 심실의 움직임과 좌심실(LV) 압력을 방해하지 않는다.
도 25는 LAD(left anterior descending coronary artery) 폐색된 돼지 심장에 이식된 심장 메시 전극의 이미지를 나타내고, 도 26은 LAD 폐색 1시간 후 심장 메시 전극의 심장내 일렉트로그램을 나타낸다.
도 25를 참조하면, 심장 메시를 이식하기 전에 돼지 심장에 좌전 하행 관상 동맥(left anterior descending coronary artery, LAD)을 풍선 카테터로 폐색시켜 급성 심근 경색을 유도하였다.
도 26을 참조하면, 심장내 일렉트로그램(Intracardiac electrogram)은 1시간 LAD 폐색 후 각 위치에서 동시에 측정하였다. LAD 폐색으로 인해, 넓은 QRS 기간은 심근 조직이 정상 위치와 비교하여 전방 좌심실(LVa)에서 손상되었다는 정보를 제공할 수 있다. 특히 3-5 번 위치에서 심근 손상으로 인한 지연 전도 및 ST 상승을 보인다.
도 27은 표면 ECG 및 건강한 조직과 손상된 조직의 심장내 일렉트로그램을 나타낸다.
도 27을 참조하면, 심근 경색이 심해짐에 따라 심장 기능이 악화되어 빠른 심장 박동을 의미하는 심실 빈맥(ventricular tachycardia, VT) 및 무질서한 심장 박동을 의미하는 심실 세동(ventricular fibrillation, VF)으로 유도된다. 심실 빈맥이 시작될 때, 정상 조직으로부터의 신호는 규칙적이고 빠른 심장 박동을 보이나, 손상된 조직으로부터의 신호는 무질서한 패턴을 보인다.
도 28은 MRI의 3D 재구성 이미지에 의한 바이폴라 전극 배열을 나타내고, 도 29는 3D 모델의 활성화 맵을 나타내며, 도 30은 3D 모델의 전압 맵을 나타낸다.
도 28 내지 도 30을 참조하면, 국소 전기 활동은 외심막 위의 24쌍의 전극으로부터 기록되고, 활성화 지도는 표면 ECG(lead II)에 기초한 전압의 최대 기울기의 시간차를 보여주는 기록된 바이폴라 심장내 일렉트로그램에 의해 구성된다. 등시성 심장 활성화 매핑은 손상된 심장 근육을 검출할 수 있고, 최고 전압과 최저 전압의 차이 맵인 전압 맵과 상응한다.
도 31은 3차원 조율된 전기 자극 하에서의 수축성을 나타내고, 도 32는 정위 페이싱에 의한 단일 압력 곡선을 나타낸다.
도 31 및 도 32를 참조하면, 평균 수축력(dP/dtmax)은 페이싱이 동시에 발생하는 동안 압력 곡선을 기반으로 삼차원 조율된 전기 자극 하에서 계산되고, 좌심실의 측면에 따른 페이싱이 심장 기능을 회복시키는데 상대적으로 효과적이다.
이와 같이, 본 발명의 실시예들에 따른 심장 메시 전극을 이용한 흉부 정형 (stereotactical) 페이싱은 기존의 심장 페이싱 카테터 방법으로는 효과가 없는 환자들을 위한 심장 동기화 치료에 적용될 수 있다.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 실시예들에 따른 심장 메시 전극은 높은 전도성을 가지면서, 우수한 생체 적합성과 신축성을 가질 수 있다. 상기 심장 메시 전극은 종래의 치료 방법으로 효과가 없는 환자들을 위한 심장 동기화 치료에 적용될 수 있다.

Claims (23)

  1. 제1 코어-쉘 나노와이어와 제1 고분자를 포함하는 제1 코어-쉘 나노와이어/고분자 복합체를 포함하는 바이오 전극.
  2. 제 1 항에 있어서,
    상기 제1 코어-쉘 나노와이어/고분자 복합체 위에 배치되는 제1 절연층 및
    상기 제1 절연층 위에 배치되고, 제2 코어-쉘 나노와이어와 제2 고분자를 포함하는 제2 코어-쉘 나노와이어/고분자 복합체를 더 포함하는 바이오 전극.
  3. 제 2 항에 있어서,
    상기 제1 코어-쉘 나노와이어 및 상기 제2 코어-쉘 나노와이어에서,
    상기 코어는 전도성 금속을 포함하고,
    상기 쉘은 생체적합성 금속을 포함하는 것을 특징으로 하는 바이오 전극.
  4. 제 3 항에 있어서,
    상기 전도성 금속은 은을 포함하고,
    상기 생체적합성 금속은 금을 포함하는 것을 특징으로 하는 바이오 전극.
  5. 제 2 항에 있어서,
    상기 제1 고분자 및 상기 제2 고분자는 고분자 고무를 포함하는 것을 특징으로 하는 바이오 전극.
  6. 제 5 항에 있어서,
    상기 고분자 고무는 SBS 고무를 포함하는 것을 특징으로 하는 바이오 전극.
  7. 제 2 항에 있어서,
    상기 제1 코어-쉘 나노와이어/고분자 복합체는 메시 형상을 갖고, 복수개의 제1 라인 전극을 포함하고,
    상기 제2 코어-쉘 나노와이어/고분자 복합체는 메시 형상을 갖고, 복수개의 제2 라인 전극을 포함하는 것을 특징으로 하는 바이오 전극.
  8. 제 7 항에 있어서,
    상기 제1 라인 전극 및 상기 제2 라인 전극 중 적어도 어느 하나의 위 또는 아래에 배치되는 고분자 전도층을 더 포함하는 바이오 전극.
  9. 제 8 항에 있어서,
    상기 고분자 전도층은 PEDOT을 포함하는 것을 특징으로 하는 바이오 전극.
  10. 제 7 항에 있어서,
    상기 제1 라인 전극 및 상기 제2 라인 전극은 구불구불한 형상을 갖는 것을 특징으로 하는 바이오 전극.
  11. 제 2 항에 있어서,
    상기 제1 코어-쉘 나노와이어/고분자 복합체 아래에 배치되는 제2 절연층, 및
    상기 제2 코어-쉘 나노와이어/고분자 복합체 위에 배치되는 제3 절연층을 더 포함하고,
    상기 제1 절연층, 상기 제2 절연층, 및 상기 제3 절연층은 고분자 고무를 포함하는 것을 특징으로 하는 바이오 전극.
  12. 제 11 항에 있어서,
    상기 제1 절연층, 상기 제2 절연층, 및 상기 제3 절연층은 메시 형상을 갖는 것을 특징으로 하는 바이오 전극.
  13. 제 1 항에 있어서,
    상기 바이오 전극은 팬 형상을 갖는 것을 특징으로 하는 바이오 전극.
  14. 제 1 항에 있어서,
    상기 바이오 전극은 심장 메시 전극인 것을 특징으로 하는 바이오 전극.
  15. 전도성 금속을 포함하는 코어 표면에 생체적합성 금속을 에피택시얼 성장시켜 코어-쉘 나노와이어를 형성하는 단계를 포함하는 바이오 전극의 형성 방법.
  16. 제 15 항에 있어서,
    상기 에피택시얼 성장은 아황산 금 복합체를 사용하여 수행되는 것을 특징으로 하는 바이오 전극의 형성 방법.
  17. 제 16 항에 있어서,
    상기 아황산 금 복합체에 의해 상기 전도성 금속과 상기 생체적합성 금속 간 갈바닉 반응이 억제되는 것을 특징으로 하는 바이오 전극의 형성 방법.
  18. 제 16 항에 있어서,
    상기 전도성 금속은 은을 포함하고,
    상기 생체적합성 금속은 금을 포함하며,
    상기 아황산 금 복합체는 Na2Au(SO3)2를 포함하는 것을 특징으로 하는 바이오 전극의 형성 방법.
  19. 제 15 항에 있어서,
    상기 코어-쉘 나노와이어와 제1 고분자를 혼합한 후 몰딩하여 메시 형상의 제1 코어-쉘 나노와이어/고분자 복합체를 형성하는 단계를 더 포함하는 바이오 전극의 형성 방법.
  20. 제 19항에 있어서,
    상기 코어-쉘 나노와이어와 제2 고분자를 혼합한 후 몰딩하여 메시 형상의 제2 코어-쉘 나노와이어/고분자 복합체를 형성하는 단계,
    제3 고분자를 몰딩하여 메시 형상의 제1 절연층을 형성하는 단계, 및
    상기 제1 코어-쉘 나노와이어/고분자 복합체, 제1 절연층 및 상기 제2 코어-쉘 나노와이어/고분자 복합체를 적층하는 단계를 더 포함하는 바이오 전극의 형성 방법.
  21. 제 20 항에 있어서,
    상기 제1 코어-쉘 나노와이어/고분자 복합체 및 상기 제2 코어-쉘 나노와이어/고분자 복합체 중 적어도 어느 하나의 위 또는 아래에 고분자 전도층을 형성하는 단계를 더 포함하는 바이오 전극의 형성 방법.
  22. 제 20 항에 있어서,
    제4 고분자를 몰딩하여 메시 형상의 제2 절연층을 형성하는 단계,
    제5 고분자를 몰딩하여 메시 형상의 제3 절연층을 형성하는 단계, 및
    상기 제2 절연층, 상기 제1 코어-쉘 나노와이어/고분자 복합체, 제1 절연층, 상기 제2 코어-쉘 나노와이어/고분자 복합체, 및 상기 제3 절연층을 적층하는 단계를 더 포함하는 바이오 전극의 형성 방법.
  23. 제 22 항에 있어서,
    상기 제1 내지 제5 고분자는 고분자 고무를 포함하는 것을 특징으로 하는 바이오 전극의 형성 방법.
PCT/KR2018/010269 2017-09-05 2018-09-04 바이오 전극 및 그 형성 방법 WO2019050245A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880057440.7A CN111093492B (zh) 2017-09-05 2018-09-04 生物电极及其形成方法
US16/643,429 US11491327B2 (en) 2017-09-05 2018-09-04 Bio electrode and method of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170113523 2017-09-05
KR10-2017-0113523 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019050245A1 true WO2019050245A1 (ko) 2019-03-14

Family

ID=65635184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010269 WO2019050245A1 (ko) 2017-09-05 2018-09-04 바이오 전극 및 그 형성 방법

Country Status (4)

Country Link
US (1) US11491327B2 (ko)
KR (1) KR102170151B1 (ko)
CN (1) CN111093492B (ko)
WO (1) WO2019050245A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120032521A (ko) * 2009-06-09 2012-04-05 뉴로나노 아베 조직내로 약물을 방출하기 위한 수단을 포함하는 미소 전극 및 다중 미소 전극
KR20120061305A (ko) * 2010-12-03 2012-06-13 연세대학교 산학협력단 나노와이어 신경탐침 전극 및 그 제조방법
KR20130045843A (ko) * 2010-02-12 2013-05-06 조지타운 유니버시티 중합체 필름 바이오전극, 및 그의 제조 및 사용 방법
KR20140107809A (ko) * 2013-02-28 2014-09-05 한국과학기술원 단결정 금 나노선을 포함하는 신경신호 측정용 신경전극
JP2014215150A (ja) * 2013-04-25 2014-11-17 大日本印刷株式会社 バイオセンサ用電極、バイオセンサ、バイオセンサ用導電性樹脂組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030509A (en) * 1975-09-30 1977-06-21 Mieczyslaw Mirowski Implantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US6907297B2 (en) * 2001-09-28 2005-06-14 Ethicon, Inc. Expandable intracardiac return electrode and method of use
US7181272B2 (en) * 2002-04-22 2007-02-20 Medtronic, Inc. Cardiac restraint with electrode attachment sites
US7972616B2 (en) * 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
WO2006105478A2 (en) * 2005-03-31 2006-10-05 New York University Conducting polymer nanowire brain-machine interface systems and methods
CN101689568B (zh) 2007-04-20 2014-02-26 凯博瑞奥斯技术公司 复合透明导体及其形成方法
KR101153748B1 (ko) * 2008-05-07 2012-06-14 재단법인서울대학교산학협력재단 바이오센서로 유용한 새로운 형태의 금/은 코어쉘 복합체
US20180003709A1 (en) 2008-05-07 2018-01-04 Seoul National University Industry Foundation Heterodimeric core-shell nanoparticle in which raman-active molecules are located at a binding portion of a nanoparticle heterodimer, use thereof, and method for preparing same
US20110281070A1 (en) * 2008-08-21 2011-11-17 Innova Dynamics, Inc. Structures with surface-embedded additives and related manufacturing methods
US9907475B2 (en) 2010-06-18 2018-03-06 The Regents Of The University Of Michigan Implantable micro-component electrodes
CN102178513B (zh) * 2011-05-05 2013-02-27 长沙三诺生物传感技术股份有限公司 夹心式生物传感器
CN103242063B (zh) * 2013-05-10 2015-02-25 济南大学 一种压电陶瓷表面电极的制备方法
KR101741187B1 (ko) * 2014-11-11 2017-05-30 서울대학교산학협력단 심장의 재동기화 치료를 위한 그물망 전극 및 이의 제조 방법
US10588569B2 (en) * 2015-01-14 2020-03-17 Toyobo Co., Ltd. Conductive fabric
CN105618785B (zh) * 2016-01-15 2018-03-09 浙江大学 一种铜/银核壳结构纳米线的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120032521A (ko) * 2009-06-09 2012-04-05 뉴로나노 아베 조직내로 약물을 방출하기 위한 수단을 포함하는 미소 전극 및 다중 미소 전극
KR20130045843A (ko) * 2010-02-12 2013-05-06 조지타운 유니버시티 중합체 필름 바이오전극, 및 그의 제조 및 사용 방법
KR20120061305A (ko) * 2010-12-03 2012-06-13 연세대학교 산학협력단 나노와이어 신경탐침 전극 및 그 제조방법
KR20140107809A (ko) * 2013-02-28 2014-09-05 한국과학기술원 단결정 금 나노선을 포함하는 신경신호 측정용 신경전극
JP2014215150A (ja) * 2013-04-25 2014-11-17 大日本印刷株式会社 バイオセンサ用電極、バイオセンサ、バイオセンサ用導電性樹脂組成物

Also Published As

Publication number Publication date
CN111093492A (zh) 2020-05-01
CN111093492B (zh) 2023-01-03
KR102170151B1 (ko) 2020-10-28
US11491327B2 (en) 2022-11-08
KR20190026628A (ko) 2019-03-13
US20200360689A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
Choi et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics
Wang et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs
Llerena Zambrano et al. Soft electronics based on stretchable and conductive nanocomposites for biomedical applications
Sunwoo et al. Stretchable low‐impedance nanocomposite comprised of Ag–Au core–shell nanowires and Pt black for epicardial recording and stimulation
Xue et al. Mechanically‐Compliant Bioelectronic Interfaces through Fatigue‐Resistant Conducting Polymer Hydrogel Coating
Koo et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics
Lienemann et al. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation
Lin et al. Graphene biointerface for cardiac arrhythmia diagnosis and treatment
WO2019083294A1 (ko) 코어-쉘 나노와이어, 상기 코어-쉘 나노와이어의 형성 방법, 및 상기 코어-쉘 나노와이어를 포함하는 신축성 복합체
Sunwoo et al. Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed pt nanoparticles for wearable and implantable device
WO2016076485A1 (ko) 심장의 재동기화 치료를 위한 그물망 전극 및 이의 제조 방법
Sunwoo et al. Soft bioelectronics for the management of cardiovascular diseases
KR102170154B1 (ko) 코어-쉘 나노와이어, 상기 코어-쉘 나노와이어의 형성 방법, 및 상기 코어-쉘 나노와이어를 포함하는 신축성 복합체
WO2019050245A1 (ko) 바이오 전극 및 그 형성 방법
JP7402152B2 (ja) イン・ビトロおよびイン・ビボにおける組織伝導の増強のための導電性安息香酸系ポリマー含有生体材料
CN112530626B (zh) 一种可降解柔性导线及其制备方法和应用
KR102102575B1 (ko) 코어-쉘 나노와이어, 상기 코어-쉘 나노와이어의 형성 방법, 및 상기 코어-쉘 나노와이어를 포함하는 신축성 복합체
Nam et al. Needle‐like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics
Rauhala et al. E‐Suture: Mixed‐Conducting Suture for Medical Devices
US20220363860A1 (en) Poroelastic materials, biosensors comprising poroelastic materials, and methods of making and using poroelastic materials and biosensors
Chen Soft Transparent Microelectrode Platforms for Electrical and Optical Bio-Interfacing
WO2023075689A2 (en) Bioinspired water shrink film for shape-adaptive bioelectronics
Lu et al. Self-encapsulated hydrogel bioelectrode for arrhythmic management
KR20240117429A (ko) 코어-이중 쉘 나노와이어, 전도성 나노복합체 및 그 형성 방법
Lim et al. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853607

Country of ref document: EP

Kind code of ref document: A1