WO2019049775A1 - Lithium boron sulfate compound, additive for lithium secondary battery, non-aqueous electrolyte solution for battery, and lithium secondary battery - Google Patents

Lithium boron sulfate compound, additive for lithium secondary battery, non-aqueous electrolyte solution for battery, and lithium secondary battery Download PDF

Info

Publication number
WO2019049775A1
WO2019049775A1 PCT/JP2018/032272 JP2018032272W WO2019049775A1 WO 2019049775 A1 WO2019049775 A1 WO 2019049775A1 JP 2018032272 W JP2018032272 W JP 2018032272W WO 2019049775 A1 WO2019049775 A1 WO 2019049775A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery
group
carbonate
formula
Prior art date
Application number
PCT/JP2018/032272
Other languages
French (fr)
Japanese (ja)
Inventor
涵 張
雄介 清水
後藤 謙一
三尾 茂
仁志 大西
玄 宮田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019540926A priority Critical patent/JP6842557B2/en
Publication of WO2019049775A1 publication Critical patent/WO2019049775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a novel lithium boron sulfate compound, an additive for a lithium secondary battery, a non-aqueous electrolyte for a battery, and a lithium secondary battery.
  • Boron compounds are used, for example, in the field of electrochemistry.
  • a non-aqueous electrolyte for a lithium secondary battery containing a borate ester selected from the group consisting of alkyl borate esters and halogen-containing borate esters is known (see, for example, Patent Document 1).
  • Non-aqueous electrolytes containing organic boron compounds having a specific structure are known (see, for example, Patent Document 2).
  • a non-aqueous electrolytic solution battery comprising a non-aqueous electrolytic solution containing a boronic acid ester and / or a borinic acid ester (see, for example, Patent Document 3).
  • lithium batteries, lithium ion batteries, as an electrolyte for electrochemical devices such as an electric double layer capacitor compounds such as LiBF 3 (PO 2 F 2) has been known (e.g., see Patent Document 4).
  • a compound such as CH 3 SO 3 BF 3 Li is known as an electrolyte used for a non-aqueous electrolyte solution of a storage device such as a lithium secondary battery (see, for example, Patent Document 5).
  • Patent Document 1 Patent No. 4187959
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-3728
  • Patent Document 3 Patent No. 3439002
  • Patent Document 4 Patent No. 5544748
  • Patent Document 5 Patent No. 6075374
  • An object of the present disclosure is to provide a novel lithium boron sulfate compound, an additive for a lithium secondary battery containing the lithium boron sulfate compound, a non-aqueous electrolyte for battery that can reduce battery resistance and improve battery life, And providing a lithium secondary battery with reduced battery resistance and improved battery life.
  • Means for solving the above problems include the following aspects.
  • R 0 represents an alkoxy group having 1 to 20 carbon atoms or a group represented by formula (II).
  • * represents a bonding position.
  • a non-aqueous electrolytic solution for battery comprising the lithium boron sulfate compound according to any one of ⁇ 1> to ⁇ 3>.
  • R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
  • ⁇ 7> positive electrode Lithium metal, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping and dedoping lithium ion, transition metal nitride capable of doping and dedoping lithium ion, lithium
  • a negative electrode including, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
  • a novel lithium boron sulfate compound, a lithium secondary battery additive containing the lithium boron sulfate compound, a non-aqueous electrolyte for battery that can reduce battery resistance and improve battery life, And a lithium secondary battery with reduced battery resistance and improved battery life.
  • FIG. 1 is a schematic perspective view showing an example of a laminate type battery, which is an example of a lithium secondary battery of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view in the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing which shows an example of a coin-type battery which is another example of the lithium secondary battery of this indication.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.
  • the lithium boron sulfate compound of the present disclosure is a lithium boron sulfate compound represented by the following formula (I).
  • R 0 represents an alkoxy group having 1 to 20 carbon atoms or a group represented by formula (II).
  • * represents a bonding position.
  • the lithium boron sulfate compound of the present disclosure is a novel compound different from conventional boron compounds.
  • Patent Document 5 discloses compounds such as CH 3 SO 3 BF 3 Li.
  • Compounds of CH like 3 SO 3 BF 3 Li described in Patent Document 5 a compound having an SO 3 group, i.e., while the sulfonic acid lithium borohydride, compounds of the present disclosure, boron sulphate having SO 4 group It differs in that it is a lithium compound.
  • the alkoxy group having 1 to 20 carbon atoms represented by R 0 may be substituted by an unsubstituted alkoxy group having 1 to 20 carbon atoms and a fluorine atom having 1 to 20 carbon atoms A good alkoxy group is mentioned.
  • the carbon number of the alkoxy group having 1 to 20 carbon atoms represented by R 0 is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 or 2.
  • the alkoxy group having 1 to 20 carbon atoms represented by R 0 may be a linear alkoxy group, a branched alkoxy group, or a cyclic alkoxy group. .
  • the alkoxy group having 1 to 20 carbon atoms represented by R 0 may be substituted by a fluorine atom.
  • a C1-C20 alkoxy group in R 0 Methoxy group, ethoxy group, n-propoxy group, isopropoxy group, 1-ethylpropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, 2-methylbutoxy group, 3, 3-dimethyl Butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, 1-methylpentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, n -Heptyloxy, isoheptyloxy, sec-heptyloxy, tert-heptyloxy, n-octyloxy, isooctyloxy, sec-octyloxy, tert-octyloxy, nonyloxy, de
  • the alkoxy group having 1 to 20 carbon atoms represented by R 0 is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or an n-butoxy group, more preferably a methoxy group or an ethoxy group.
  • R 0 a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group or a group represented by the above formula (II) is preferable.
  • lithium boron sulfate compounds represented by the formula (I) include compounds represented by the following formula (I-1), the following formula (I-2), or the following formula (I-3) .
  • the lithium boron sulfate compound represented by the formula (I) is not limited to these specific examples.
  • Production method X is a lithium lithium boron sulfate compound of the present disclosure (ie, a compound of the present disclosure) by reacting a lithium sulfate salt compound optionally having an alkyl group having 1 to 20 carbon atoms with a boron trifluoride compound in a solvent. And a reaction step of obtaining a lithium boron sulfate compound represented by the formula (I); hereinafter, also simply referred to as "lithium lithium sulfate compound”.
  • the lithium sulfate salt compound in the reaction step has, for example, lithium sulfate; lithium methyl sulfate, lithium ethyl sulfate, lithium propyl sulfate, lithium isopropyl sulfate, lithium n-butyl sulfate, lithium octyl sulfate, lithium dodecyl sulfate, etc. And lithium sulfate compounds having an alkyl group of -20. Among them, lithium sulfate, methyl lithium sulfate or lithium ethyl sulfate is preferable.
  • gaseous trifluoride boron and a boron trifluoride complex are mentioned.
  • the boron trifluoride complex include boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex, boron trifluoride dimethyl ether complex, boron trifluoride dibutyl ether complex and the like, and boron trifluoride diethyl ether Complexes are preferred.
  • Examples of the solvent in the reaction step include acetone, ethyl acetate, acetonitrile, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, hexane, heptane, octane, nonane, decane, toluene, xylene (ortho, meta, para), ethylbenzene, butyl Non-aqueous solvents such as benzene, pentylbenzene, hexylbenzene, heptylbenzene, propylbenzene, isopropylbenzene (cumene), cyclohexylbenzene, tetralin, mesitylene methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, cyclononane .
  • the reaction in the reaction step can be carried out under normal pressure or reduced pressure.
  • the reaction in the reaction step is preferably carried out under an inert atmosphere (for example, under a nitrogen atmosphere, under an argon atmosphere, etc.) from the viewpoint of preventing the mixing of components (for example, water) that inhibit the formation of the lithium boron sulfate compound.
  • the reaction temperature in the reaction step is preferably 20 ° C. to 150 ° C., more preferably 40 ° C. to 120 ° C., and still more preferably 60 ° C. to 100 ° C.
  • the reaction temperature is 20 ° C. or more, the formation of a lithium boron sulfate compound is likely to be promoted.
  • the reaction temperature is 150 ° C. or less, the decomposition of the produced lithium boron sulfate compound is suppressed, and the production rate is likely to be improved.
  • the reaction time in the reaction step is preferably 30 minutes to 12 hours, and more preferably 1 hour to 8 hours, from the viewpoint of efficiently advancing the reaction between the lithium sulfate salt compound and the boron trifluoride compound. .
  • lithium boron sulfate compound after a reaction process.
  • the solid or liquid may be removed without special treatment.
  • the lithium boron sulfate compound can be taken out by separating the solvent from the slurry and drying it.
  • the lithium boron sulfate compound can be taken out by distilling the solvent out of the solution by heat concentration or the like.
  • a lithium boron sulfate compound is precipitated by adding a solvent in which the lithium boron sulfate compound is not dissolved to the solution.
  • the lithium boron sulfate compound can also be removed by separating the solvent from the solution and drying.
  • the pressure at the time of drying the removed lithium boron sulfate compound may be either normal pressure or reduced pressure.
  • the temperature for drying the lithium lithium borate compound taken out is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 100 ° C., and still more preferably 20 ° C. to 60 ° C. When the temperature is 20 ° C. or more, the drying efficiency is excellent.
  • disassembly of the produced lithium boron sulfate compound is suppressed as temperature is 150 degrees C or less, and it is easy to take out a lithium boron sulfate compound stably.
  • the lithium boron sulfate compound removed may be used as it is, for example, may be dispersed or dissolved in a solvent, or may be used in combination with other solid substances.
  • the lithium boron sulfate compound of the present disclosure is an additive for lithium battery (preferably an additive for lithium secondary battery, more preferably an additive for non-aqueous electrolyte of lithium secondary battery), a reagent, a synthesis reaction catalyst It can be usefully used for applications such as electrolytes for various electrochemical devices, doping agents, and additives for lubricating oils.
  • the additive for a secondary battery of the present disclosure includes the lithium boron sulfate compound described above.
  • the additive for a secondary battery of the present disclosure is particularly suitable as an additive for a non-aqueous electrolyte of a lithium secondary battery.
  • Non-aqueous electrolyte for batteries contains the lithium boron sulfate compound of the present disclosure.
  • the non-aqueous electrolyte of the present disclosure can reduce battery resistance by containing the lithium boron sulfate compound of the present disclosure. Furthermore, the non-aqueous electrolyte of the present disclosure can maintain a high discharge capacity of the battery by containing the lithium boron sulfate compound of the present disclosure.
  • the battery resistance can be reduced compared to the non-aqueous electrolyte containing CH 3 SO 3 BF 3 Li described in Patent Document 5 described above. Excellent. Furthermore, the non-aqueous electrolyte of the present disclosure has higher discharge capacity and discharge capacity retention rate of the battery as compared with the non-aqueous electrolyte containing CH 3 SO 3 BF 3 Li described in Patent Document 5 described above. It is excellent in the effect that it can maintain.
  • the non-aqueous electrolytic solution of the present disclosure may contain only one type of the lithium boron sulfate compound, or may contain two or more types.
  • the content (total content in the case of two or more types) of the lithium boron sulfate compound in the non-aqueous electrolyte of the present disclosure is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte Is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 5% by mass, and 0.4 to 5% by mass.
  • the amount of the lithium boron sulfate compound may be reduced as compared to the amount added to the non-aqueous electrolyte. Therefore, when the lithium boron sulfate compound can be detected even in a small amount in the non-aqueous electrolyte removed from the battery, it is included in the range of the non-aqueous electrolyte of the present disclosure. In addition, even when the lithium borohydride compound can not be detected from the non-aqueous electrolytic solution, the compound derived from the decomposition product of the lithium borate lithium compound is also detected in the non-aqueous electrolytic solution or in the film of the electrode.
  • non-aqueous electrolyte of the present disclosure The handling is the same for compounds other than the above-mentioned lithium boron sulfate compound that can be contained in the non-aqueous electrolytic solution.
  • the non-aqueous electrolyte generally contains a non-aqueous solvent.
  • Non-aqueous solvent Although various well-known things can be suitably selected as a non-aqueous solvent, It is preferable to use at least one chosen from a cyclic
  • cyclic aprotic solvent cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, cyclic ether can be used.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • the mixing ratio of the cyclic aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting the ratio as such, the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can be increased.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is more preferable.
  • cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone, and alkyl-substituted products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte. Therefore, the conductivity of the electrolyte, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolyte. Therefore, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Among cyclic carboxylic acid esters, ⁇ -butyrolactone is most preferred.
  • the cyclic carboxylic acid ester is preferably used in combination with other cyclic aprotic solvents. For example, a mixture of cyclic carboxylic acid ester and cyclic carbonate and / or linear carbonate can be mentioned.
  • cyclic sulfones examples include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethylsulfone, diethylsulfone, dipropylsulfone, methylethylsulfone, methylpropylsulfone and the like.
  • Dioxolane can be mentioned as an example of cyclic ether.
  • Linear aprotic solvent As the chain-like aprotic solvent, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphoric acid ester and the like can be used.
  • the mixing ratio of the chain-like aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.
  • linear carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, methyl trifluoroethyl carbonate and the like. These linear carbonates may be used as a mixture of two or more.
  • chain carboxylic acid esters include methyl pivalate and the like.
  • chain ether include dimethoxyethane and the like.
  • linear phosphate ester include trimethyl phosphate.
  • the non-aqueous solvent used in the non-aqueous electrolyte of the present disclosure may be used alone or in combination of two or more.
  • the solvents may be mixed and used.
  • the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can also be enhanced by the combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
  • combinations of cyclic carbonate and linear carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate and dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbon
  • the mixing ratio of the cyclic carbonate to the linear carbonate is, in terms of mass ratio, cyclic carbonate: linear carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, particularly preferably 15:85. It is ⁇ 55: 45.
  • the ratio By setting the ratio as such, the increase in viscosity of the electrolyte can be suppressed, and the degree of dissociation of the electrolyte can be increased, so that the conductivity of the electrolyte related to the charge and discharge characteristics of the battery can be increased.
  • the solubility of the electrolyte can be further enhanced. Therefore, since it can be set as the electrolyte solution excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery in normal temperature to low temperature can be improved.
  • examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or linear carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, ⁇ -butyrolactone and ethylene carbonate and methyl ethyl Carbonate, ⁇ -butyrolactone and ethylene carbonate and diethyl carbonate, ⁇ -butyrolactone and propylene carbonate, ⁇ -butyrolactone and propylene carbonate and dimethyl carbonate, ⁇ -butyrolactone and propylene carbonate and methyl ethyl carbonate, ⁇ -butyrolactone and propylene carbonate and diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate and propylene carbonate, ⁇ -butyrolactone Ethylene carbonate and propylene carbonate and dimethyl carbonate, ⁇ -butyrolactone and ethylene carbonate and propylene carbonate,
  • non-aqueous solvent As the non-aqueous solvent, other solvents other than the above may also be mentioned.
  • amides such as dimethylformamide, linear carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone and the like
  • examples include cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, boron compounds such as trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • the non-aqueous electrolyte of the present disclosure may contain various known electrolytes. Any electrolyte can be used as long as it is usually used as an electrolyte for non-aqueous electrolytes. As an electrolyte, a lithium salt is preferable.
  • R 11 to R 17 are a C 1-8 perfluoroalkyl group.
  • R 11 to R 13 may be identical to or different from one another.
  • R 14 and R 15 may be identical to or different from each other.
  • R 16 and R 17 may be identical to or different from each other.
  • LiPF 6 LiPF 6 , LiBF 4 and LiN (SO 2 C k F (2k + 1 ) 2 ) 2 (k is an integer of 1 to 8) are preferable.
  • the lithium salt concentration of the non-aqueous electrolyte of the present disclosure is preferably 0.1 mol / L to 3 mol / L, and more preferably 0.5 mol / L to 2 mol / L.
  • the lithium salts may be used alone or in combination of two or more.
  • the non-aqueous electrolytic solution of the present disclosure may further contain an additive C which is a compound represented by the following formula (C).
  • R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
  • R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
  • Examples of the compound represented by the formula (C) include vinylene carbonate, methylvinylene carbonate, ethylvinylene carbonate, bropyruvylene carbonate, dimethylvinylene carbonate, diethylvinylene carbonate, dipropylvinylene carbonate and the like.
  • vinylene carbonate in the formula (C), a compound in which R c1 and R c2 are both hydrogen atoms is particularly preferable.
  • the content of the additive C (total content when the additive C is a compound of two or more types) is relative to the total amount of the non-aqueous electrolyte 0.001% by mass to 10% by mass is preferable, 0.001% by mass to 5% by mass is more preferable, and 0.001% by mass to 3% by mass is more preferable, and 0.01% by mass to 5% by mass %, More preferably 0.1 to 3% by mass.
  • the non-aqueous electrolyte solution of the present disclosure is not only suitable as a non-aqueous electrolyte solution for batteries, but also for non-aqueous electrolyte solutions for primary batteries and secondary batteries, non-aqueous electrolyte solutions for electrochemical capacitors, electricity It can also be used as an electrolyte solution for multilayer capacitors and aluminum electrolytic capacitors.
  • the lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present disclosure. According to the lithium secondary battery of the present disclosure, battery resistance is reduced by including the non-aqueous electrolyte of the present disclosure.
  • the negative electrode may include a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material in the negative electrode metal lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping / dedoping lithium ion, capable of doping / dedoping lithium ion
  • At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping and de-doping lithium ions (may be used alone or as a mixture containing two or more of these) Good) can be used.
  • metals or alloys that can be alloyed with lithium (or lithium ion) include silicon, silicon alloys, tin, tin alloys and the like.
  • lithium titanate may be used.
  • carbon materials capable of doping and dedoping lithium ions are preferable.
  • examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of fibrous, spherical, potato-like, and flake-like forms.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) calcined to 1500 ° C. or less, mesophase pitch carbon fiber (MCF) and the like.
  • MCMB mesocarbon microbeads
  • MCF mesophase pitch carbon fiber
  • These carbon materials may be used alone or in combination of two or more.
  • a carbon material having an interplanar spacing d (002) of (002) plane of 0.340 nm or less measured by X-ray analysis is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having a property close thereto is also preferable. The use of the above carbon materials can increase the energy density of the battery.
  • the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel plated steel. Among them, copper is particularly preferred in view of processability.
  • the positive electrode may include a positive electrode active material and a positive electrode current collector.
  • Polyaniline Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof.
  • complex oxides composed of lithium and a transition metal are particularly preferable.
  • the negative electrode is lithium metal or lithium alloy
  • a carbon material can also be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • the positive electrode active material may be used alone or in combination of two or more. When the positive electrode active material is insufficient in conductivity, it can be used together with a conductive aid to form a positive electrode.
  • a conductive support agent carbon materials, such as carbon black, an amorphous whisker, and a graphite, can be illustrated.
  • the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium and tantalum; carbon materials such as carbon cloth and carbon paper; and the like.
  • the lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include porous films and polymer electrolytes.
  • a microporous polymer film is preferably used as the porous membrane, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
  • porous polyolefins are preferable, and specifically, porous polyethylene films, porous polypropylene films, or multilayer films of porous polyethylene films and polypropylene films can be exemplified.
  • the polymer electrolyte may, for example, be a polymer in which a lithium salt is dissolved, or a polymer swollen in an electrolytic solution.
  • the non-aqueous electrolyte of the present disclosure may be used for the purpose of swelling a polymer to obtain a polymer electrolyte.
  • the lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical, coin, square, laminate, film, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and design changes can be made according to the purpose.
  • FIG. 1 is a schematic perspective view showing an example of a laminate type battery which is an example of the lithium secondary battery of the present disclosure
  • FIG. 2 is a thickness of a laminate type electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing of a direction.
  • the laminate type battery shown in FIG. 1 the non-aqueous electrolyte (not shown in FIG. 1) and the laminated electrode body (not shown in FIG. 1) are housed inside, and the peripheral portion is sealed.
  • the laminated exterior body 1 by which the inside was sealed is provided.
  • the laminate case 1 for example, a laminate case made of aluminum is used.
  • the laminate type electrode body housed in the laminate outer package 1 is, as shown in FIG. 2, a laminate in which the positive electrode plate 5 and the negative electrode plate 6 are alternately laminated via the separator 7, and And a separator 8 surrounding the periphery.
  • the non-aqueous electrolytic solution of the present disclosure is impregnated in the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8.
  • the plurality of positive electrode plates 5 in the laminated electrode assembly are all electrically connected to the positive electrode terminal 2 through the positive electrode tab (not shown), and a part of the positive electrode terminal 2 is the laminate case 1. Projecting outward from the peripheral edge ( Figure 1). A portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
  • each of the plurality of negative electrode plates 6 in the laminated electrode assembly is electrically connected to the negative electrode terminal 3 through the negative electrode tab (not shown), and a part of the negative electrode terminal 3 is in the laminate exterior It protrudes outward from the peripheral end of the body 1 (FIG. 1).
  • the part where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
  • the number of the positive electrode plates 5 is five
  • the number of the negative electrode plates 6 is six
  • the positive electrode plate 5 and the negative electrode plate 6 have the separator 7 interposed therebetween.
  • the outer layers are all stacked in an arrangement to be the negative electrode plate 6.
  • the number of positive electrode plates, the number of negative electrode plates, and the arrangement of the laminate type battery are not limited to this example, and various modifications may be made.
  • the laminated electrode body accommodated in the laminate outer package 1 is a laminated electrode body in which one positive electrode plate 5 and one negative electrode plate 6 are laminated via one separator 7. Good.
  • FIG. 3 is a schematic perspective view showing an example of a coin-type battery which is another example of the lithium secondary battery of the present disclosure.
  • a disk-shaped negative electrode 12 a separator 15 into which a non-aqueous electrolyte is injected
  • a disk-shaped positive electrode 11 disk-shaped positive electrode 11
  • spacer plates 17 and 18 of stainless steel or aluminum, etc.
  • the positive electrode can 13 hereinafter also referred to as “battery can”
  • the sealing plate 14 hereinafter also referred to as “battery can lid”.
  • the positive electrode can 13 and the sealing plate 14 are crimped and sealed via the gasket 16.
  • the non-aqueous electrolyte of the present disclosure can be used as the non-aqueous electrolyte to be injected into the separator 15.
  • the lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (lithium secondary battery before charge and discharge) including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present disclosure.
  • a lithium secondary battery lithium secondary battery before charge and discharge
  • a lithium secondary battery before charge and discharge including the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present disclosure is manufactured, and then, before the charge and discharge.
  • It may be a lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging the lithium secondary battery one or more times.
  • the application of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known applications.
  • wt% represents mass%.
  • the “added amount” represents the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).
  • Example 1 Synthesis of a Compound Represented by Formula (I-1)
  • a 50 mL flask equipped with a stirrer, a thermometer, a gas inlet line, and an exhaust line was purged with dry nitrogen gas, and then dimethyl dimethyl ether was added thereto.
  • 7.5 g of carbonate (solvent) and 2.41 g (0.017 mol) of boron trifluoride diethyl etherate were added and mixed by stirring at room temperature (25 ° C., the same shall apply hereinafter) to obtain a mixed liquid .
  • To the resulting mixture 2.01 g (0.017 mol) of lithium lithium sulfate was added, and the resulting liquid was heated to 90 ° C.
  • reaction step methyl lithium sulfate was completely dissolved in the mixture.
  • the liquid was cooled to room temperature, and then the solvent was distilled off from the liquid under conditions of 10 kPa or less and 30 ° C. The resulting residue was further dried under conditions of 10 kPa or less and 30 ° C. to obtain 3.16 g of a solid product.
  • the differential scanning calorimetry (DSC) measurement from room temperature to 600 degreeC was performed about the obtained solid product.
  • DSC differential scanning calorimetry
  • an endothermic thermal decomposition behavior at 198 ° C. peak was observed, which was not observed when each of boron trifluoride diethyl ether complex and methyl methyl sulfate was measured alone.
  • the endothermic thermal decomposition behavior was observed using a differential scanning calorimeter (DSC 220 C type) manufactured by Seiko Instruments Inc. The same applies to the following.
  • Example 1 From the above results, in Example 1, it was confirmed that the compound represented by Formula (I-1), which is a specific example of the compound represented by Formula (I), was generated by the following reaction scheme. .
  • Example 2 Synthesis of a Compound Represented by Formula (I-3)
  • 15 g of carbonate (solvent) and 2.55 g (0.018 mol) of boron trifluoride diethyl etherate were added and mixed by stirring at room temperature to obtain a mixed solution.
  • 0.99 g (0.009 mol) of lithium sulfate was added, and the obtained liquid was heated to 90 ° C. with stirring, and stirred at a liquid temperature of 90 ° C. under solvent reflux for 3 hours (Reaction process).
  • the liquid after stirring for 3 hours was cooled to room temperature, and then the liquid was filtered to remove insoluble components from the liquid.
  • the solvent was distilled off from the obtained filtrate under the conditions of a pressure of 10 kPa or less and a temperature of 30 ° C.
  • the remaining residue was further dried under conditions of a pressure of 10 kPa or less and a temperature of 30 ° C. to obtain 2.08 g of a solid product.
  • a 3.9 mg sample is taken from the obtained solid product, and the taken sample is dissolved in a heavy dimethyl sulfoxide solvent together with 6.5 mg (0.04 mmol) of trifluoromethylbenzene as an internal standard substance, and the obtained sample
  • the solutions were each subjected to 19 F-NMR analysis and 11 B-NMR analysis.
  • the chemical shifts [ppm] of the spectra obtained by each of 19 F-NMR analysis and 11 B-NMR analysis were as follows.
  • the integral value of the spectrum of the sample when the integral value of the spectrum of the internal standard substance was 30 F was as follows.
  • the 19 F-NMR and 11 B-NMR confirmed a spectrum derived from the fluoroborane skeleton. Based on the relationship between the mass of each of the sample and internal standard substance and the spectral integration value of each of the sample and internal standard substance in 19 F-NMR analysis, the formula (I ⁇ ) in the sample (ie, solid product) was determined. As a result, the purity was 99.4%.
  • Example 2 it was confirmed that the compound represented by Formula (I-3), which is a specific example of the compound represented by Formula (I), was generated by the following reaction scheme. .
  • the compounds obtained in each example were identified chemical composition by NMR analysis, and endothermic thermal decomposition behavior not observed in the starting compounds was observed. That is, it was confirmed that the compounds obtained in the respective examples were not mere mixtures of the compounds of the respective raw materials, but were novel lithium boron sulfate compounds having thermal properties different from them.
  • Example 101 The coin-type battery which is a lithium secondary battery was produced in the following procedures. ⁇ Fabrication of negative electrode> 100 parts by mass of natural graphite-based graphite, 1 part by mass of carboxymethyl cellulose and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode material mixture slurry is applied to a negative electrode current collector made of a 18 ⁇ m thick copper foil and dried, and then compressed by a roll press to form a sheet comprising the negative electrode current collector and the negative electrode active material layer. The negative electrode was obtained. The application density of the negative electrode active material layer at this time was 12 mg / cm 2 , and the packing density was 1.5 g / mL.
  • the coating density of the positive electrode active material layer at this time was 22 mg / cm 2 , and the packing density was 2.9 g / mL.
  • a mixed solvent was obtained by mixing ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (EMC) as non-aqueous solvents.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • the LiPF 6 as the electrolyte
  • electrolyte concentration in the non-aqueous electrolyte solution obtained was dissolved at a 1 mol / L.
  • a mixture of the compound (additive) represented by the above-mentioned formula (I-1) and DMC was added to obtain a non-aqueous electrolyte.
  • the addition amount of the compound represented by the formula (I-1) (that is, the content with respect to the total amount of the final non-aqueous electrolyte) was 0.2 mass%.
  • the above-mentioned negative electrode was punched out in a disk shape with a diameter of 14.5 mm and the above-mentioned positive electrode with a diameter of 13 mm to obtain coin-shaped electrodes (a negative electrode and a positive electrode). Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 16 mm to obtain a separator.
  • the obtained coin-like negative electrode, separator and coin-like positive electrode are stacked in this order in a stainless steel battery can (2032 size), and 40 ⁇ l of the above non-aqueous electrolyte is injected to the separator, positive electrode and negative electrode. I let it go.
  • the above coin-type battery was CC-CV charged at a charge rate of 0.2 C to 4.2 V at 25 ° C. in a thermostat, and then CC discharge at a discharge rate of 0.2 C was repeated four times.
  • Initial discharge capacity maintenance rate (Initial discharge capacity maintenance rate (0.2C-2C)) The initial discharge capacity (2 C) was measured in the same manner as the initial discharge capacity (0.2 C) except that the discharge rate was changed from 0.2 C to 2 C.
  • the initial discharge capacity retention rate (0.2C-2C) was determined based on the following equation.
  • Initial discharge capacity retention rate (0.2C-2C) (initial discharge capacity (2C)) / (initial discharge capacity (0.2C))
  • the initial discharge capacity retention ratio (0.2C-2C) of the coin-type battery was similarly determined for Comparative Example 101 described later. As a relative value when the initial discharge capacity retention rate (0.2C-2C) of the coin-type battery in Comparative Example 101 is 100, the initial discharge capacity retention rate (0.2C- of the coin-type battery in Example 101) 2C) (relative value) was determined. The results are shown in Table 1.
  • the discharge capacity (2 C) after the low temperature cycle was measured in the same manner as the discharge capacity (0.2 C) after the low temperature cycle except that the discharge rate was changed from 0.2 C to 2 C.
  • the discharge capacity retention ratio (0.2C-1C) after the high temperature cycle of the coin battery was similarly determined for Comparative Example 101 described later.
  • the discharge capacity retention ratio of the coin-type battery in Example 101 after the high temperature cycle as a relative value when the discharge capacity retention ratio (0.2 C-1 C) after the high temperature cycle of the coin battery in Comparative Example 101 is 100 ( 0.2C-1C) (relative value) was determined. The results are shown in Table 1.
  • Initial cell resistance was measured at 25 ° C. by the following method using the coin-type battery after conditioning. First, CC 10 s was discharged at a discharge rate of 0.2 C from 50% of SOC (abbreviation of State of Charge), and CC-CV 10 s was performed at a charge rate of 0.2 C. Next, CC 10s discharge was performed at a discharge rate 1C, and CC-CV 10s charging was performed at a charge rate 1C. Next, CC 10 s was discharged at a discharge rate 2 C, and CC-CV 10 s was charged at a charge rate 2 C.
  • SOC abbreviation of State of Charge
  • CC 10 s was discharged at a discharge rate of 5 C, and CC-CV 10 s charging was performed at a charge rate of 5 C.
  • CC10s discharge means discharging for 10 seconds by a constant current (Constant Current).
  • the CC-CV 10 s charging means charging for 10 seconds at a constant current and constant voltage.
  • the direct current resistance was determined from each charge and discharge rest current and each charge and discharge rest voltage, and the obtained direct current resistance was taken as the initial cell resistance of the coin-type battery.
  • the initial battery resistance of the coin battery was determined in the same manner for Comparative Example 101 described later.
  • the initial cell resistance (relative value) of the coin-type battery in Example 101 was determined as a relative value when the initial cell resistance of the coin-type battery in Comparative Example 101 was 100. The results are shown in Table 1.
  • the battery resistance after the low temperature cycle was measured by the method similar to the initial stage direct current resistance using the coin type battery after the low temperature cycle test.
  • the battery resistance of the coin battery after the low temperature cycle was measured in the same manner as in Comparative Example 101 described later.
  • the battery resistance (relative value) after the low temperature cycle of the coin battery in Example 101 was determined as a relative value when the battery resistance after the low temperature cycle of the coin battery in Comparative Example 101 was 100. The results are shown in Table 1.
  • the battery resistance after the high temperature cycling was measured by the method similar to the initial stage direct current resistance using the coin type battery after the high temperature cycle test.
  • the battery resistance of the coin battery after the high temperature cycle was measured in the same manner as in Comparative Example 101 described later.
  • the battery resistance (relative value) after the high temperature cycle of the coin battery in Example 101 was determined as a relative value when the battery resistance after the high temperature cycle of the coin battery in Comparative Example 101 was 100. The results are shown in Table 1.
  • Example 102 The addition amount of the compound represented by the formula (I-1) is 0.5 mass% (Example 102), 1.0 mass% (Example 103), and 1.5 mass% (Example 104). The same operation as in Example 101 was performed except that each was changed. The results are shown in Table 1.
  • Example 105 The compound represented by the formula (I-1) used for the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) was added to the compound represented by the formula (I-3) described above (addition amount: 0.5) The same operation as in Example 101 was carried out except that it was changed to% by mass. The results are shown in Table 1.
  • Example 106 The same operation as in Example 105 was performed, except that the addition amount of the compound represented by the formula (I-3) was changed to 1.0% by mass. The results are shown in Table 1.
  • Comparative Example 101 The same operation as in Example 101 was performed except that the compound represented by the formula (I-1) was not added. The results are shown in Table 1.
  • Comparative Example 102 The compound represented by the formula (I-1) used in the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) is represented by the compound represented by the following formula (C1) (addition amount: 0.5% by mass) The same operation as in Example 101 was performed except that the above was changed to The results are shown in Table 1.
  • Comparative Example 103 The same operation as in Comparative Example 102 was performed except that the addition amount of the compound represented by the above formula (C1) was changed to 1.0% by mass. The results are shown in Table 1.
  • the coin batteries of Examples 101 to 106 have battery resistance (specifically, initial battery resistance, battery resistance after a low temperature cycle, in comparison with the coin batteries of Comparative Examples 101 to 103. And cell resistance after high temperature cycling) was reduced.
  • the coin-type batteries of Examples 101 to 106 are different from the coin-type batteries of Comparative Examples 101 to 103 in the discharge capacity of the battery (specifically, the initial discharge capacity, the initial discharge capacity maintenance rate, and the low temperature cycle It is also excellent in the later discharge capacity maintenance rate and the discharge capacity maintenance rate after the high temperature cycle.
  • Example 201 A coin-type battery was produced in the same manner as in Example 101 except that vinylene carbonate (VC) (addition amount: 1.0 wt%) was further added to the non-aqueous electrolytic solution. With respect to the obtained coin-type battery, the initial discharge capacity (0.2 C), the initial discharge capacity retention rate (0.2 C-2 C), and the discharge capacity retention rate after low temperature cycle (0 2C-2C), discharge capacity retention ratio after high temperature cycle (0.2C-1C), initial cell resistance, cell resistance after low temperature cycle, and cell resistance after high temperature cycle were determined. The coin-type battery was evaluated in the same manner for Comparative Example 201 described later, and the relative value when the result of Comparative Example 201 was 100 was determined.
  • VC vinylene carbonate
  • additive A a lithium boron sulfate compound contained in the non-aqueous electrolytic solution
  • VC vinylene carbonate
  • Example 201 is similar to Example 201 except that the addition amount of the compound represented by the formula (I-1) is changed to 0.5% by mass (Example 202) and 1.0% by mass (Example 203). I did the operation. The results are shown in Table 2.
  • Example 204 The compound represented by the formula (I-1) used for the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) was added to the compound represented by the formula (I-3) described above (addition amount: 0.5) The same operation as in Example 201 was carried out except that it was changed to% by mass. The results are shown in Table 2.
  • Example 205 and 206 The same as Example 204 except that the addition amount of the compound represented by Formula (I-3) was changed to 1.0% by mass (Example 205) and 1.5% by mass (Example 206). I did the operation. The results are shown in Table 2.
  • Comparative Example 201 The same operation as in Example 201 was carried out except that the compound represented by the formula (I-1) was not added. The results are shown in Table 2.
  • the coin-type batteries of Examples 201 to 206 have battery resistance (specifically, initial battery resistance, battery resistance after low temperature cycle, and battery resistance after comparison with the coin-type batteries of Comparative Example 201; Battery resistance after high temperature cycling was reduced.
  • the coin-type batteries of Examples 201 to 206 have the discharge capacity of the battery (specifically, the initial discharge capacity, the initial discharge capacity retention rate, and the discharge after the low temperature cycle) as compared with the comparative example 201 coin-type battery.
  • the capacity retention rate and the discharge capacity retention rate after the high temperature cycle were also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a lithium boron sulfate compound represented by formula (I). In formula (I), R0 represents a C1–20 alkoxy group, or a group represented by formula (II). In formula (II), * indicates a bond position.

Description

硫酸ホウ素リチウム化合物、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池Lithium boron sulfate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
 本開示は、新規な硫酸ホウ素リチウム化合物、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池に関する。 The present disclosure relates to a novel lithium boron sulfate compound, an additive for a lithium secondary battery, a non-aqueous electrolyte for a battery, and a lithium secondary battery.
 ホウ素化合物は、例えば電気化学の分野において利用されている。
 例えば、アルキルホウ酸エステル類及びハロゲン含有ホウ酸エステル類からなる群から選ばれたホウ酸エステルを含むリチウム二次電池用非水電解液が知られている(例えば、特許文献1参照)。
 特定構造の有機ホウ素化合物を含有する非水電解液が知られている(例えば、特許文献2参照)。
 ボロン酸エステル及び/又はボリン酸エステルを含有する非水系電解液を備える非水系電解液電池が知られている(例えば、特許文献3参照)。
 また、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学デバイス用の電解質として、LiBF(PO)等の化合物が知られている(例えば、特許文献4参照)。
 また更には、リチウム二次電池等蓄電デバイスの非水電解液に用いられる電解質として、CHSOBFLi等の化合物が知られている(例えば、特許文献5参照)。
Boron compounds are used, for example, in the field of electrochemistry.
For example, a non-aqueous electrolyte for a lithium secondary battery containing a borate ester selected from the group consisting of alkyl borate esters and halogen-containing borate esters is known (see, for example, Patent Document 1).
Non-aqueous electrolytes containing organic boron compounds having a specific structure are known (see, for example, Patent Document 2).
There is known a non-aqueous electrolytic solution battery comprising a non-aqueous electrolytic solution containing a boronic acid ester and / or a borinic acid ester (see, for example, Patent Document 3).
Further, lithium batteries, lithium ion batteries, as an electrolyte for electrochemical devices such as an electric double layer capacitor, compounds such as LiBF 3 (PO 2 F 2) has been known (e.g., see Patent Document 4).
Furthermore, a compound such as CH 3 SO 3 BF 3 Li is known as an electrolyte used for a non-aqueous electrolyte solution of a storage device such as a lithium secondary battery (see, for example, Patent Document 5).
 特許文献1:特許4187959号公報
 特許文献2:特開平11-3728号公報
 特許文献3:特許3439002号公報
 特許文献4:特許5544748号公報
 特許文献5:特許6075374号公報
Patent Document 1: Patent No. 4187959 Patent Document 2: Japanese Patent Application Laid-Open No. 11-3728 Patent Document 3: Patent No. 3439002 Patent Document 4: Patent No. 5544748 Patent Document 5: Patent No. 6075374
 本開示の課題は、新規な硫酸ホウ素リチウム化合物、硫酸ホウ素リチウム化合物を含むリチウム二次電池用添加剤、電池抵抗を低減させ、かつ、電池寿命を向上することができる電池用非水電解液、及び、電池抵抗が低減され、かつ、電池寿命が向上したリチウム二次電池を提供することである。 An object of the present disclosure is to provide a novel lithium boron sulfate compound, an additive for a lithium secondary battery containing the lithium boron sulfate compound, a non-aqueous electrolyte for battery that can reduce battery resistance and improve battery life, And providing a lithium secondary battery with reduced battery resistance and improved battery life.
 上記課題を解決するための手段には、以下の態様が含まれる。 Means for solving the above problems include the following aspects.
<1> 下記式(I)で表される硫酸ホウ素リチウム化合物。 <1> Lithium boron sulfate compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Rは、炭素数1~20のアルコキシ基、又は、式(II)で表される基を表す。
 式(II)中、*は、結合位置を表す。
In formula (I), R 0 represents an alkoxy group having 1 to 20 carbon atoms or a group represented by formula (II).
In formula (II), * represents a bonding position.
<2> 前記Rが、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、又は前記式(II)で表される基である<1>に記載の硫酸ホウ素リチウム化合物。
<3> 下記式(I-1)、下記式(I-2)、又は下記式(I-3)で表される化合物である<1>又は<2>に記載の硫酸ホウ素リチウム化合物。
<2> The lithium boron sulfate compound according to <1>, wherein R 0 is a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, or a group represented by the formula (II).
The lithium boron sulfate compound as described in <1> or <2> which is a compound represented by <3> following formula (I-1), following formula (I-2), or following formula (I-3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
<4> <1>~<3>のいずれか1つに記載の硫酸ホウ素リチウム化合物を含むリチウム二次電池用添加剤。 <4> An additive for a lithium secondary battery comprising the lithium boron sulfate compound according to any one of <1> to <3>.
<5> <1>~<3>のいずれか1つに記載の硫酸ホウ素リチウム化合物を含む電池用非水電解液。
<6> 更に、下記式(C)で表される化合物である添加剤Cを含有する<5>に記載の電池用非水電解液。
<5> A non-aqueous electrolytic solution for battery comprising the lithium boron sulfate compound according to any one of <1> to <3>.
<6> The nonaqueous electrolyte for a battery according to <5>, further containing an additive C which is a compound represented by the following formula (C).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。 In formula (C), R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
<7> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
 <5>又は<6>に記載の電池用非水電解液と、
を含むリチウム二次電池。
<8> <7>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
<7> positive electrode,
Lithium metal, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping and dedoping lithium ion, transition metal nitride capable of doping and dedoping lithium ion, lithium A negative electrode including, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
The nonaqueous electrolyte for a battery according to <5> or <6>,
Lithium secondary battery including.
<8> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to <7>.
 本開示によれば、新規な硫酸ホウ素リチウム化合物、硫酸ホウ素リチウム化合物を含むリチウム二次電池用添加剤、電池抵抗を低減させ、かつ、電池寿命を向上することができる電池用非水電解液、及び、電池抵抗が低減され、かつ、電池寿命が向上したリチウム二次電池が提供される。 According to the present disclosure, a novel lithium boron sulfate compound, a lithium secondary battery additive containing the lithium boron sulfate compound, a non-aqueous electrolyte for battery that can reduce battery resistance and improve battery life, And a lithium secondary battery with reduced battery resistance and improved battery life.
本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of a laminate type battery, which is an example of a lithium secondary battery of the present disclosure. 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。FIG. 2 is a schematic cross-sectional view in the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG. 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a coin-type battery which is another example of the lithium secondary battery of this indication.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. Means
〔硫酸ホウ素リチウム化合物〕
 本開示の硫酸ホウ素リチウム化合物は、下記式(I)で表される硫酸ホウ素リチウム化合物である。
[Lithium boron sulfate compound]
The lithium boron sulfate compound of the present disclosure is a lithium boron sulfate compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 式(I)中、Rは、炭素数1~20のアルコキシ基、又は、式(II)で表される基を表す。
 式(II)中、*は、結合位置を表す。
In formula (I), R 0 represents an alkoxy group having 1 to 20 carbon atoms or a group represented by formula (II).
In formula (II), * represents a bonding position.
 本開示の硫酸ホウ素リチウム化合物は、従来のホウ素化合物とは異なる新規な化合物である。 The lithium boron sulfate compound of the present disclosure is a novel compound different from conventional boron compounds.
 前述の特許文献5には、CHSOBFLi等の化合物が開示されている。
 特許文献5に記載のCHSOBFLi等の化合物が、SO基を有する化合物、即ち、スルホン酸ホウ素リチウムであるのに対し、本開示の化合物は、SO基を有する硫酸ホウ素リチウム化合物である点で異なる。
Patent Document 5 mentioned above discloses compounds such as CH 3 SO 3 BF 3 Li.
Compounds of CH like 3 SO 3 BF 3 Li described in Patent Document 5, a compound having an SO 3 group, i.e., while the sulfonic acid lithium borohydride, compounds of the present disclosure, boron sulphate having SO 4 group It differs in that it is a lithium compound.
 式(I)中、Rで表される炭素数1~20のアルコキシ基としては、炭素数1~20の無置換のアルコキシ基、及び炭素数1~20のフッ素原子で置換されていてもよいアルコキシ基が挙げられる。 In the formula (I), the alkoxy group having 1 to 20 carbon atoms represented by R 0 may be substituted by an unsubstituted alkoxy group having 1 to 20 carbon atoms and a fluorine atom having 1 to 20 carbon atoms A good alkoxy group is mentioned.
 Rで表される炭素数1~20のアルコキシ基の炭素数は、好ましくは1~12であり、より好ましくは1~6であり、更に好ましくは1又は2である。 The carbon number of the alkoxy group having 1 to 20 carbon atoms represented by R 0 is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 or 2.
 Rで表される炭素数1~20のアルコキシ基は、直鎖状のアルコキシ基であってもよいし、分岐状のアルコキシ基であってもよいし、環状のアルコキシ基であってもよい。
 また、Rで表される炭素数1~20のアルコキシ基は、フッ素原子によって置換されていてもよい。
The alkoxy group having 1 to 20 carbon atoms represented by R 0 may be a linear alkoxy group, a branched alkoxy group, or a cyclic alkoxy group. .
In addition, the alkoxy group having 1 to 20 carbon atoms represented by R 0 may be substituted by a fluorine atom.
 Rにおける炭素数1~20のアルコキシ基の具体例としては、
メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、1-エチルプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、2-メチルブトキシ基、3,3-ジメチルブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、1-メチルペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、sec-ヘプチルオキシ基、tert-ヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、sec-オクチルオキシ基、tert-オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基などの、直鎖状又は分岐状であって無置換のアルコキシ基;
シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基などの、環状であって無置換のアルコキシ基;
トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、パーフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,4,4,4-ヘキサフルオロブトキシ基、4,4,5,5,5-ペンタフルオロペンチルオキシ基 、2,2,3,3,4,4,5,5-オクタフルオロペンチルオキシ基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシルオキシ基、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルオキシ基など、フッ素原子で置換されたアルコキシ基;
などが挙げられる。
As a specific example of a C1-C20 alkoxy group in R 0 ,
Methoxy group, ethoxy group, n-propoxy group, isopropoxy group, 1-ethylpropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, 2-methylbutoxy group, 3, 3-dimethyl Butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, 1-methylpentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, n -Heptyloxy, isoheptyloxy, sec-heptyloxy, tert-heptyloxy, n-octyloxy, isooctyloxy, sec-octyloxy, tert-octyloxy, nonyloxy, decyloxy , Undecyloxy, dodecyloxy Of a straight-chain or branched unsubstituted alkoxy group;
Cyclic and unsubstituted alkoxy groups such as cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group and the like;
Trifluoromethoxy, 2,2,2-trifluoroethoxy, perfluoroethoxy, 2,2,3,3-tetrafluoropropoxy, 2,2,3,4,4,4- hexafluorobutoxy 4,4,5,5,5-pentafluoropentyloxy, 2,2,3,3,4,4,5,5-octafluoropentyloxy, 3,3,4,4,5,5 A fluorine atom such as 6,6,6,6-nonafluorohexyloxy group, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyloxy group, etc. Substituted alkoxy group;
Etc.
 Rで表される炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、又はn-ブトキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。 The alkoxy group having 1 to 20 carbon atoms represented by R 0 is preferably a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group or an n-butoxy group, more preferably a methoxy group or an ethoxy group.
 Rとしては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、又は上記式(II)で表される基が好ましい。 As R 0 , a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group or a group represented by the above formula (II) is preferable.
 式(I)で表される硫酸ホウ素リチウム化合物の具体例としては、下記式(I-1)、下記式(I-2)、又は下記式(I-3)で表される化合物が挙げられる。
 但し、式(I)で表される硫酸ホウ素リチウム化合物は、これらの具体例には限定されない。
Specific examples of lithium boron sulfate compounds represented by the formula (I) include compounds represented by the following formula (I-1), the following formula (I-2), or the following formula (I-3) .
However, the lithium boron sulfate compound represented by the formula (I) is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔硫酸ホウ素リチウム化合物の製造方法の一例(製法X)〕
 以下、本開示の硫酸ホウ素リチウム化合物の製造方法の一例(製法X)を示す。但し、本開示の硫酸ホウ素リチウム化合物の製造方法は、製法Xには限定されない。
[One Example of Method for Producing Lithium Boron Sulfate Compound (Process X)]
Hereinafter, an example (production method X) of the method for producing a lithium boron sulfate compound of the present disclosure will be shown. However, the method for producing the lithium boron sulfate compound of the present disclosure is not limited to the production method X.
 製法Xは、炭素数1~20のアルキル基を有していてもよい硫酸リチウム塩化合物と、三フッ化ホウ素化合物と、を溶媒中で反応させることにより、本開示の硫酸ホウ素リチウム化合物(即ち、式(I)で表される硫酸ホウ素リチウム化合物;以下、単に「硫酸ホウ素リチウム化合物」とも称する)を得る反応工程を含む。 Production method X is a lithium lithium boron sulfate compound of the present disclosure (ie, a compound of the present disclosure) by reacting a lithium sulfate salt compound optionally having an alkyl group having 1 to 20 carbon atoms with a boron trifluoride compound in a solvent. And a reaction step of obtaining a lithium boron sulfate compound represented by the formula (I); hereinafter, also simply referred to as "lithium lithium sulfate compound".
 反応工程における硫酸リチウム塩化合物としては、例えば、硫酸リチウム;メチル硫酸リチウム、エチル硫酸リチウム、プロピル硫酸リチウム、イソプロピル硫酸リチウム、n-ブチル硫酸リチウム、オクチル硫酸リチウム、ドデシル硫酸リチウムなどの、炭素数1~20のアルキル基を有する硫酸リチウム化合物;等が挙げられる。
 中でも、硫酸リチウム、メチル硫酸リチウム、又はエチル硫酸リチウムが好ましい。
The lithium sulfate salt compound in the reaction step has, for example, lithium sulfate; lithium methyl sulfate, lithium ethyl sulfate, lithium propyl sulfate, lithium isopropyl sulfate, lithium n-butyl sulfate, lithium octyl sulfate, lithium dodecyl sulfate, etc. And lithium sulfate compounds having an alkyl group of -20.
Among them, lithium sulfate, methyl lithium sulfate or lithium ethyl sulfate is preferable.
 反応工程における三フッ化ホウ素化合物としては、気体状態の三フッ化ホウ素、及び、三フッ化ホウ素錯体が挙げられる。
 三フッ化ホウ素錯体としては、例えば、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、三フッ化ホウ素ジメチルエーテル錯体、三フッ化ホウ素ジブチルエーテル錯体などが挙げられ、三フッ化ホウ素ジエチルエーテル錯体が好ましい。
As a boron trifluoride compound in a reaction process, gaseous trifluoride boron and a boron trifluoride complex are mentioned.
Examples of the boron trifluoride complex include boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex, boron trifluoride dimethyl ether complex, boron trifluoride dibutyl ether complex and the like, and boron trifluoride diethyl ether Complexes are preferred.
 反応工程における溶媒としては、例えば、アセトン、酢酸エチル、アセトニトリル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トルエン、キシレン(オルト、メタ、パラ)、エチルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、ヘプチルベンゼン、プロピルベンゼン、イソプロピルベンゼン(キュメン)、シクロヘキシルベンゼン、テトラリン、メシチレンメチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン等の非水溶媒が挙げられる。 Examples of the solvent in the reaction step include acetone, ethyl acetate, acetonitrile, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, hexane, heptane, octane, nonane, decane, toluene, xylene (ortho, meta, para), ethylbenzene, butyl Non-aqueous solvents such as benzene, pentylbenzene, hexylbenzene, heptylbenzene, propylbenzene, isopropylbenzene (cumene), cyclohexylbenzene, tetralin, mesitylene methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, cyclononane .
 反応工程における反応は、常圧下、減圧下のいずれでも行える。
 反応工程における反応は、硫酸ホウ素リチウム化合物の生成を阻害する成分(例えば水分)の混入を防ぐ観点から、不活性雰囲気下(例えば、窒素雰囲気下、アルゴン雰囲気下、等)で行うことが好ましい。
The reaction in the reaction step can be carried out under normal pressure or reduced pressure.
The reaction in the reaction step is preferably carried out under an inert atmosphere (for example, under a nitrogen atmosphere, under an argon atmosphere, etc.) from the viewpoint of preventing the mixing of components (for example, water) that inhibit the formation of the lithium boron sulfate compound.
 反応工程における反応温度は、20℃~150℃であることが好ましく、40℃~120℃であることがより好ましく、60℃~100℃であることがさらに好ましい。
 反応温度が20℃以上であると、硫酸ホウ素リチウム化合物の生成が促進されやすい。
 反応温度が150℃以下であると、生成した硫酸ホウ素リチウム化合物の分解が抑制され、生成率が向上しやすい。
The reaction temperature in the reaction step is preferably 20 ° C. to 150 ° C., more preferably 40 ° C. to 120 ° C., and still more preferably 60 ° C. to 100 ° C.
When the reaction temperature is 20 ° C. or more, the formation of a lithium boron sulfate compound is likely to be promoted.
When the reaction temperature is 150 ° C. or less, the decomposition of the produced lithium boron sulfate compound is suppressed, and the production rate is likely to be improved.
 反応工程における反応時間は、硫酸リチウム塩化合物と三フッ化ホウ素化合物との反応を効率よく進行させる観点から、30分~12時間であることが好ましく、1時間~8時間であることがより好ましい。 The reaction time in the reaction step is preferably 30 minutes to 12 hours, and more preferably 1 hour to 8 hours, from the viewpoint of efficiently advancing the reaction between the lithium sulfate salt compound and the boron trifluoride compound. .
 反応工程後、硫酸ホウ素リチウム化合物を取り出す方法については特に制限はない。
 例えば、反応工程により、硫酸ホウ素リチウム化合物が、目的とする成分(即ち、硫酸ホウ素リチウム化合物自体)のみの固体又は液体として得られた場合には、その固体又は液体を、特段の処理なく取り出すことができる。
 また、反応工程により、硫酸ホウ素リチウム化合物が溶媒に分散されたスラリーが得られた場合には、スラリーから溶媒を分離し、乾燥させることにより、硫酸ホウ素リチウム化合物を取り出すことができる。
 また、反応工程により、硫酸ホウ素リチウム化合物が溶媒に溶解された溶液が得られた場合には、加熱濃縮等によって溶液から溶媒を留去することによって硫酸ホウ素リチウム化合物を取り出すことができる。
 また、反応工程により、硫酸ホウ素リチウム化合物が溶媒に溶解された溶液が得られた場合には、溶液に対し、硫酸ホウ素リチウム化合物が溶解しない溶媒を加えることによって硫酸ホウ素リチウム化合物を析出させ、次いで溶液から溶媒を分離し、乾燥させることにより、硫酸ホウ素リチウム化合物を取り出すこともできる。
There is no restriction | limiting in particular about the method of taking out lithium boron sulfate compound after a reaction process.
For example, when lithium borosulphate compound is obtained as a solid or liquid of only the target component (that is, lithium borosulphonate compound itself) by the reaction step, the solid or liquid may be removed without special treatment. Can.
Further, when a slurry in which a lithium boron sulfate compound is dispersed in a solvent is obtained by the reaction step, the lithium boron sulfate compound can be taken out by separating the solvent from the slurry and drying it.
When a solution in which a lithium boron sulfate compound is dissolved in a solvent is obtained by the reaction step, the lithium boron sulfate compound can be taken out by distilling the solvent out of the solution by heat concentration or the like.
In addition, when a solution in which a lithium boron sulfate compound is dissolved in a solvent is obtained by the reaction step, a lithium boron sulfate compound is precipitated by adding a solvent in which the lithium boron sulfate compound is not dissolved to the solution. The lithium boron sulfate compound can also be removed by separating the solvent from the solution and drying.
 取り出された硫酸ホウ素リチウム化合物を乾燥する方法としては、棚段式乾燥機での静置乾燥法;コニカル乾燥機での流動乾燥法;ホットプレート、オーブン等の装置を用いて乾燥させる方法;ドライヤーなどの乾燥機で温風又は熱風を供給する方法;等を適用できる。 As a method of drying the lithium boron sulfate compound which has been taken out, stationary drying in a tray drier; fluid drying in a conical drier; drying using an apparatus such as a hot plate or an oven; drier A method of supplying warm air or hot air with a dryer such as
 取り出された硫酸ホウ素リチウム化合物を乾燥する際の圧力は、常圧、減圧のいずれであってもよい。
 取り出された硫酸ホウ素リチウム化合物を乾燥する際の温度は、20℃~150℃であることが好ましく、20℃~100℃であることがより好ましく、20℃~60℃であることがさらに好ましい。
 温度が20℃以上であると乾燥効率に優れる。
 温度が150℃以下であると、生成した硫酸ホウ素リチウム化合物の分解が抑制され、硫酸ホウ素リチウム化合物を安定して取り出しやすい。
The pressure at the time of drying the removed lithium boron sulfate compound may be either normal pressure or reduced pressure.
The temperature for drying the lithium lithium borate compound taken out is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 100 ° C., and still more preferably 20 ° C. to 60 ° C.
When the temperature is 20 ° C. or more, the drying efficiency is excellent.
The decomposition | disassembly of the produced | generated lithium boron sulfate compound is suppressed as temperature is 150 degrees C or less, and it is easy to take out a lithium boron sulfate compound stably.
 取り出された硫酸ホウ素リチウム化合物は、そのまま用いてもよいし、例えば、溶媒中に分散又は溶解させて用いてもよいし、他の固体物質と混合して用いてもよい。 The lithium boron sulfate compound removed may be used as it is, for example, may be dispersed or dissolved in a solvent, or may be used in combination with other solid substances.
 本開示の硫酸ホウ素リチウム化合物は、リチウム電池用添加剤(好ましくはリチウム二次電池用添加剤、より好ましはリチウム二次電池の非水電解液用の添加剤)、反応試剤、合成反応触媒、各種電気化学デバイス用電解質、ドーピング剤、潤滑油の添加剤などの用途に有用に使用できる。 The lithium boron sulfate compound of the present disclosure is an additive for lithium battery (preferably an additive for lithium secondary battery, more preferably an additive for non-aqueous electrolyte of lithium secondary battery), a reagent, a synthesis reaction catalyst It can be usefully used for applications such as electrolytes for various electrochemical devices, doping agents, and additives for lubricating oils.
〔リチウム二次電池用添加剤〕
 本開示の二次電池用添加剤は、上述した硫酸ホウ素リチウム化合物を含む。本開示の二次電池用添加剤は、特にリチウム二次電池の非水電解液用の添加剤として好適である。
[Additive for lithium secondary battery]
The additive for a secondary battery of the present disclosure includes the lithium boron sulfate compound described above. The additive for a secondary battery of the present disclosure is particularly suitable as an additive for a non-aqueous electrolyte of a lithium secondary battery.
〔電池用非水電解液〕
 本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、本開示の硫酸ホウ素リチウム化合物を含む。
 本開示の非水電解液は、本開示の硫酸ホウ素リチウム化合物を含有することにより、電池抵抗を低減させることができる。
 更に、本開示の非水電解液は、本開示の硫酸ホウ素リチウム化合物を含有することにより、電池の放電容量を高く維持できる。
[Non-aqueous electrolyte for batteries]
The non-aqueous electrolytic solution for battery of the present disclosure (hereinafter, also simply referred to as "non-aqueous electrolytic solution") contains the lithium boron sulfate compound of the present disclosure.
The non-aqueous electrolyte of the present disclosure can reduce battery resistance by containing the lithium boron sulfate compound of the present disclosure.
Furthermore, the non-aqueous electrolyte of the present disclosure can maintain a high discharge capacity of the battery by containing the lithium boron sulfate compound of the present disclosure.
 更に、本開示の非水電解液は、前述の特許文献5に記載のCHSOBFLiを含有させた非水電解液と比較して、電池抵抗を低減させることができるという効果に優れる。
 更に、本開示の非水電解液は、前述の特許文献5に記載のCHSOBFLiを含有させた非水電解液と比較して、電池の放電容量及び放電容量維持率を高く維持できるという効果に優れる。
Furthermore, in the non-aqueous electrolyte of the present disclosure, the battery resistance can be reduced compared to the non-aqueous electrolyte containing CH 3 SO 3 BF 3 Li described in Patent Document 5 described above. Excellent.
Furthermore, the non-aqueous electrolyte of the present disclosure has higher discharge capacity and discharge capacity retention rate of the battery as compared with the non-aqueous electrolyte containing CH 3 SO 3 BF 3 Li described in Patent Document 5 described above. It is excellent in the effect that it can maintain.
 本開示の非水電解液は、上記硫酸ホウ素リチウム化合物を1種のみ含有していてもよいし、2種以上含有していてもよい。
 本開示の非水電解液における、上記硫酸ホウ素リチウム化合物の含有量(2種以上である場合には総含有量)は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.01質量%~10質量%がより好ましく、0.05質量%~5質量%が更に好ましく、0.1質量%~5質量%が更に好ましく、0.4質量%~5質量%が更に好ましく、0.5質量%~5質量%が更に好ましく、0.5質量%~3質量%が更に好ましく、0.5質量%~2質量%が更に好ましい。
The non-aqueous electrolytic solution of the present disclosure may contain only one type of the lithium boron sulfate compound, or may contain two or more types.
The content (total content in the case of two or more types) of the lithium boron sulfate compound in the non-aqueous electrolyte of the present disclosure is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte Is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 5% by mass, and 0.4 to 5% by mass. % Is more preferably 0.5 to 5% by mass, still more preferably 0.5 to 3% by mass, and still more preferably 0.5 to 2% by mass.
 なお、実際に電池を解体して採取した非水電解液を分析しても、上記硫酸ホウ素リチウム化合物の量が、非水電解液への添加量と比較して減少している場合がある。従って、電池から取り出した非水電解液中に少量でも上記硫酸ホウ素リチウム化合物が検出できる場合には、本開示の非水電解液の範囲に含まれる。
 また、非水電解液から上記硫酸ホウ素リチウム化合物が検出できない場合であっても、非水電解液中や電極の被膜中に、上記硫酸ホウ素リチウム化合物の分解物由来の化合物が検出される場合も、本開示の非水電解液の範囲に含まれるとみなされる。
 これらの取り扱いは、非水電解液に含有され得る上記硫酸ホウ素リチウム化合物以外の化合物についても同様である。
In addition, even when the battery is disassembled and the non-aqueous electrolyte solution thus collected is analyzed, the amount of the lithium boron sulfate compound may be reduced as compared to the amount added to the non-aqueous electrolyte. Therefore, when the lithium boron sulfate compound can be detected even in a small amount in the non-aqueous electrolyte removed from the battery, it is included in the range of the non-aqueous electrolyte of the present disclosure.
In addition, even when the lithium borohydride compound can not be detected from the non-aqueous electrolytic solution, the compound derived from the decomposition product of the lithium borate lithium compound is also detected in the non-aqueous electrolytic solution or in the film of the electrode. And are considered to fall within the scope of the non-aqueous electrolyte of the present disclosure.
The handling is the same for compounds other than the above-mentioned lithium boron sulfate compound that can be contained in the non-aqueous electrolytic solution.
 次に、非水電解液の他の成分について説明する。
 非水電解液は、一般的には、非水溶媒を含有する。
Next, other components of the non-aqueous electrolyte will be described.
The non-aqueous electrolyte generally contains a non-aqueous solvent.
<非水溶媒>
 非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
 電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
<Non-aqueous solvent>
Although various well-known things can be suitably selected as a non-aqueous solvent, It is preferable to use at least one chosen from a cyclic | annular aprotic solvent and a chain | strand-shaped aprotic solvent.
When aiming to improve the flash point of the solvent to improve the safety of the battery, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent.
(環状の非プロトン性溶媒)
 環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
(Cyclic aprotic solvent)
As the cyclic aprotic solvent, cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, cyclic ether can be used.
 環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
The cyclic aprotic solvent may be used alone or in combination of two or more.
The mixing ratio of the cyclic aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting the ratio as such, the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can be increased.
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。 Specific examples of cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like. Among these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is more preferable. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。 Specific examples of cyclic carboxylic acid esters include γ-butyrolactone, δ-valerolactone, and alkyl-substituted products such as methyl γ-butyrolactone, ethyl γ-butyrolactone and ethyl δ-valerolactone.
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、上記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ-ブチロラクトンが最も好ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。
The cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte. Therefore, the conductivity of the electrolyte, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolyte. Therefore, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Among cyclic carboxylic acid esters, γ-butyrolactone is most preferred.
The cyclic carboxylic acid ester is preferably used in combination with other cyclic aprotic solvents. For example, a mixture of cyclic carboxylic acid ester and cyclic carbonate and / or linear carbonate can be mentioned.
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 環状エーテルの例としてジオキソランを挙げることができる。
Examples of cyclic sulfones include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethylsulfone, diethylsulfone, dipropylsulfone, methylethylsulfone, methylpropylsulfone and the like.
Dioxolane can be mentioned as an example of cyclic ether.
(鎖状の非プロトン性溶媒)
 鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
(Linear aprotic solvent)
As the chain-like aprotic solvent, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphoric acid ester and the like can be used.
 鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。 The mixing ratio of the chain-like aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。 Specific examples of linear carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, methyl trifluoroethyl carbonate and the like. These linear carbonates may be used as a mixture of two or more.
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
Specific examples of chain carboxylic acid esters include methyl pivalate and the like.
Specific examples of the chain ether include dimethoxyethane and the like.
Specific examples of the linear phosphate ester include trimethyl phosphate.
(溶媒の組み合わせ)
 本開示の非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類若しくは複数種類用いても、鎖状の非プロトン性溶媒のみを1種類若しくは複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
(Combination of solvents)
The non-aqueous solvent used in the non-aqueous electrolyte of the present disclosure may be used alone or in combination of two or more. In addition, even if only one or more types of cyclic aprotic solvents are used, and even if only one or more types of linear aprotic solvents are used, or cyclic aprotic solvents and linear protonic compounds The solvents may be mixed and used. When intended to improve the load characteristics and low temperature characteristics of the battery, it is preferable to use a combination of a cyclic aprotic solvent and a linear aprotic solvent as a non-aqueous solvent.
 さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。 Furthermore, in view of the electrochemical stability of the electrolyte, it is most preferable to apply a cyclic carbonate to the cyclic aprotic solvent and a linear carbonate to the chain aprotic solvent. In addition, the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can also be enhanced by the combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。 Specific examples of combinations of cyclic carbonate and linear carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate and dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl Examples thereof include carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate.
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。 The mixing ratio of the cyclic carbonate to the linear carbonate is, in terms of mass ratio, cyclic carbonate: linear carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, particularly preferably 15:85. It is ~ 55: 45. By setting the ratio as such, the increase in viscosity of the electrolyte can be suppressed, and the degree of dissociation of the electrolyte can be increased, so that the conductivity of the electrolyte related to the charge and discharge characteristics of the battery can be increased. In addition, the solubility of the electrolyte can be further enhanced. Therefore, since it can be set as the electrolyte solution excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery in normal temperature to low temperature can be improved.
 環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。 Specifically, examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or linear carbonates include γ-butyrolactone and ethylene carbonate, γ-butyrolactone and ethylene carbonate and dimethyl carbonate, γ-butyrolactone and ethylene carbonate and methyl ethyl Carbonate, γ-butyrolactone and ethylene carbonate and diethyl carbonate, γ-butyrolactone and propylene carbonate, γ-butyrolactone and propylene carbonate and dimethyl carbonate, γ-butyrolactone and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and propylene carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate and propylene carbonate, γ-butyrolactone Ethylene carbonate and propylene carbonate and dimethyl carbonate, γ-butyrolactone and ethylene carbonate and propylene carbonate and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and ethylene carbonate and propylene carbonate and diethyl carbonate, and γ-butyrolactone and ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and ethylene carbonate And Pyrene carbonate, dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, propylene carbonate and dimethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and ethylene carbonate, Propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and sulfolane, γ-butyrolactone, ethylene carbonate and sulfolane, γ-butyrolactone, propylene carbonate and sulfolane, γ-butyrolactone, ethylene carbonate, propylene carbonate and sulfolane, γ -Butyrolactone and su Such Horan and dimethyl carbonate.
(その他の溶媒)
 非水溶媒としては、上記以外のその他の溶媒も挙げられる。
 その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
 上記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。
(Other solvents)
As the non-aqueous solvent, other solvents other than the above may also be mentioned.
As other solvents, specifically, amides such as dimethylformamide, linear carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone and the like Examples include cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, boron compounds such as trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
HO (CH 2 CH 2 O) a H
HO [CH 2 CH (CH 3 ) O] b H
CH 3 O (CH 2 CH 2 O) c H
CH 3 O [CH 2 CH (CH 3 ) O] d H
CH 3 O (CH 2 CH 2 O) e CH 3
CH 3 O [CH 2 CH (CH 3 ) O] f CH 3
C 9 H 19 PhO (CH 2 CH 2 O) g [CH (CH 3 ) O] h CH 3
(Ph is phenyl)
CH 3 O [CH 2 CH ( CH 3) O] i CO [OCH (CH 3) CH 2] j OCH 3
In the above formulas, a to f are integers of 5 to 250, g to j are integers of 2 to 249, 5 ≦ g + h ≦ 250, 5 ≦ i + j ≦ 250.
<電解質>
 本開示の非水電解液は、種々の公知の電解質を含んでいてもよい。電解質は、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。電解質としては、リチウム塩が好ましい。
<Electrolyte>
The non-aqueous electrolyte of the present disclosure may contain various known electrolytes. Any electrolyte can be used as long as it is usually used as an electrolyte for non-aqueous electrolytes. As an electrolyte, a lithium salt is preferable.
 リチウム塩の具体例としては、LiPF、LiBF、LiClO、LiAsFLiSiF、LiOSO(2k+1)(k=1~8の整数)、LiN(SOF)、LiN(SO(2k+1))(k=1~8の整数)、LiPF(C(2k+1))(6-n)(n=1~5の整数、k=1~8の整数)、LiBF(2k+1)(n=1~3の整数、k=1~8の整数)、LiB(C)2 (リチウムビスオキサリルボレート)、LiBF(C)(リチウムジフルオロオキサリルボレート)、LiPF(C)(リチウムトリフルオロオキサリルフォスフェート);下記一般式で示されるリチウム塩;が挙げられる。
  LiC(SO11)(SO12)(SO13)
  LiN(SOOR14)(SOOR15)
  LiN(SO16)(SOOR17)
 式中、R11~R17は、炭素数1~8のパーフルオロアルキル基である。R11~R13は、互いに同一であっても異なっていてもよい。R14とR15は、互いに同一であっても異なっていてもよい。R16とR17は、互いに同一であっても異なっていてもよい。
Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k is an integer of 1 to 8), LiN (SO 2 F) 2 , LiN (SO 2 C k F ( 2k + 1)) 2 ( integers k = 1 ~ 8), LiPF n (C k F (2k + 1)) (6-n) (n = 1 ~ 5 an integer, k = 1 ~ LiBF n C k F (2k + 1) (n is an integer of 1 to 3, k is an integer of 1 to 8), LiB (C 2 O 4 ) 2 (lithium bis oxalyl borate), LiBF 2 (C 2 O 4 ) (lithium difluoro oxalyl borate), LiPF 3 (C 2 O 4 ) (lithium trifluoro oxalyl phosphate); lithium salts represented by the following general formula.
LiC (SO 2 R 11) ( SO 2 R 12) (SO 2 R 13)
LiN (SO 2 OR 14 ) (SO 2 OR 15 )
LiN (SO 2 R 16 ) (SO 2 OR 17 )
In the formula, R 11 to R 17 are a C 1-8 perfluoroalkyl group. R 11 to R 13 may be identical to or different from one another. R 14 and R 15 may be identical to or different from each other. R 16 and R 17 may be identical to or different from each other.
 リチウム塩としては、LiPF、LiBF、LiN(SO(2k+1))(k=1~8の整数)が好ましい。 As the lithium salt, LiPF 6 , LiBF 4 and LiN (SO 2 C k F (2k + 1 ) 2 ) 2 (k is an integer of 1 to 8) are preferable.
 本開示の非水電解液のリチウム塩濃度は、0.1mol/L~3mol/Lが好ましく、0.5mol/L~2mol/Lがより好ましい。
 リチウム塩は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The lithium salt concentration of the non-aqueous electrolyte of the present disclosure is preferably 0.1 mol / L to 3 mol / L, and more preferably 0.5 mol / L to 2 mol / L.
The lithium salts may be used alone or in combination of two or more.
 本開示の非水電解液は、更に、下記式(C)で表される化合物である添加剤Cを含有してもよい。 The non-aqueous electrolytic solution of the present disclosure may further contain an additive C which is a compound represented by the following formula (C).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。 In formula (C), R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
 式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。 In formula (C), R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group.
 式(C)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。
 これらのうちでビニレンカーボネート(式(C)中、Rc1及びRc2がいずれも水素原子である化合物)が特に好ましい。
Examples of the compound represented by the formula (C) include vinylene carbonate, methylvinylene carbonate, ethylvinylene carbonate, bropyruvylene carbonate, dimethylvinylene carbonate, diethylvinylene carbonate, dipropylvinylene carbonate and the like.
Among these, vinylene carbonate (in the formula (C), a compound in which R c1 and R c2 are both hydrogen atoms) is particularly preferable.
 本開示の非水電解液が添加剤Cを含有する場合、添加剤Cの含有量(添加剤Cが2種以上の化合物である場合は総含有量)は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5質量%がより好ましく、0.001質量%~3質量%であることが更に好ましく、0.01質量%~5質量%であることが更に好ましく、0.1~3質量%であることが更に好ましい。 When the non-aqueous electrolyte of the present disclosure contains the additive C, the content of the additive C (total content when the additive C is a compound of two or more types) is relative to the total amount of the non-aqueous electrolyte 0.001% by mass to 10% by mass is preferable, 0.001% by mass to 5% by mass is more preferable, and 0.001% by mass to 3% by mass is more preferable, and 0.01% by mass to 5% by mass %, More preferably 0.1 to 3% by mass.
 本開示の非水電解液は、電池用の非水電解液として好適であるばかりでなく、一次電池用及び二次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。 The non-aqueous electrolyte solution of the present disclosure is not only suitable as a non-aqueous electrolyte solution for batteries, but also for non-aqueous electrolyte solutions for primary batteries and secondary batteries, non-aqueous electrolyte solutions for electrochemical capacitors, electricity It can also be used as an electrolyte solution for multilayer capacitors and aluminum electrolytic capacitors.
〔リチウム二次電池〕
 本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
 本開示のリチウム二次電池によれば、本開示の非水電解液を含むことにより、電池抵抗が低減される。
Lithium secondary battery
The lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present disclosure.
According to the lithium secondary battery of the present disclosure, battery resistance is reduced by including the non-aqueous electrolyte of the present disclosure.
(負極)
 負極は、負極活物質及び負極集電体を含んでもよい。
 負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
(Negative electrode)
The negative electrode may include a negative electrode active material and a negative electrode current collector.
As the negative electrode active material in the negative electrode, metal lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping / dedoping lithium ion, capable of doping / dedoping lithium ion At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping and de-doping lithium ions (may be used alone or as a mixture containing two or more of these) Good) can be used.
Examples of metals or alloys that can be alloyed with lithium (or lithium ion) include silicon, silicon alloys, tin, tin alloys and the like. Also, lithium titanate may be used.
Among these, carbon materials capable of doping and dedoping lithium ions are preferable. Examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like. The form of the carbon material may be any of fibrous, spherical, potato-like, and flake-like forms.
 上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) calcined to 1500 ° C. or less, mesophase pitch carbon fiber (MCF) and the like.
As said graphite material, natural graphite and artificial graphite are mentioned. As artificial graphite, graphitized MCMB, graphitized MCF, etc. are used. Further, as a graphite material, one containing boron can be used. Moreover, as a graphite material, what was coat | covered with metals, such as gold | metal | money, platinum, silver, copper, tin, what was coat | covered with amorphous carbon, and what mixed amorphous carbon and graphite can be used.
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
These carbon materials may be used alone or in combination of two or more.
As the above-mentioned carbon material, a carbon material having an interplanar spacing d (002) of (002) plane of 0.340 nm or less measured by X-ray analysis is particularly preferable. In addition, as the carbon material, graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having a property close thereto is also preferable. The use of the above carbon materials can increase the energy density of the battery.
 負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
There is no restriction | limiting in particular in the material of the negative electrode collector in a negative electrode, A well-known thing can be used arbitrarily.
Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel plated steel. Among them, copper is particularly preferred in view of processability.
(正極)
 正極は、正極活物質及び正極集電体を含んでもよい。
 正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、α-NaFeO型結晶構造を有するLi1+αMe1-α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1-α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(Positive electrode)
The positive electrode may include a positive electrode active material and a positive electrode current collector.
As a positive electrode active material in the positive electrode, transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi X 2 Co (1-X) O 2 [0 <X <1], Li 1 + α Me 1-α O 2 (Me is a transition metal element including Mn, Ni and Co, 1.0 having an α-NaFeO 2 type crystal structure, 1.0 ≦ (1 + α) / (1−α) ≦ 1.6), LiNi x Co y Mn z O 2 [x + y + z = 1, 0 <x <1, 0 <y <1, 0 <z <1] (for example, Composite oxides of lithium and transition metals such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, etc., LiFePO 4 , LiMnPO 4, etc. Polyaniline, Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof. Among these, complex oxides composed of lithium and a transition metal are particularly preferable. When the negative electrode is lithium metal or lithium alloy, a carbon material can also be used as the positive electrode. Alternatively, a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
The positive electrode active material may be used alone or in combination of two or more. When the positive electrode active material is insufficient in conductivity, it can be used together with a conductive aid to form a positive electrode. As a conductive support agent, carbon materials, such as carbon black, an amorphous whisker, and a graphite, can be illustrated.
 正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
There is no restriction | limiting in particular in the material of the positive electrode collector in a positive electrode, A well-known thing can be used arbitrarily.
Specific examples of the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium and tantalum; carbon materials such as carbon cloth and carbon paper; and the like.
(セパレータ)
 本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
 セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(Separator)
The lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include porous films and polymer electrolytes.
A microporous polymer film is preferably used as the porous membrane, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
In particular, porous polyolefins are preferable, and specifically, porous polyethylene films, porous polypropylene films, or multilayer films of porous polyethylene films and polypropylene films can be exemplified. Another resin excellent in heat stability may be coated on the porous polyolefin film.
The polymer electrolyte may, for example, be a polymer in which a lithium salt is dissolved, or a polymer swollen in an electrolytic solution.
The non-aqueous electrolyte of the present disclosure may be used for the purpose of swelling a polymer to obtain a polymer electrolyte.
(電池の構成)
 本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。
 なお、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
(Battery configuration)
The lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical, coin, square, laminate, film, or any other shape.
The basic structure of the battery is the same regardless of the shape, and design changes can be made according to the purpose.
 本開示のリチウム二次電池の例として、ラミネート型電池が挙げられる。
 図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
 図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
 ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
 上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
 同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
 なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。
 しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。例えば、ラミネート外装体1に収容される積層型電極体は、1枚の正極板5と1枚の負極板6とが1枚のセパレータ7を介して積層された積層型電極体であってもよい。
As an example of the lithium secondary battery of the present disclosure, a laminate type battery can be mentioned.
FIG. 1 is a schematic perspective view showing an example of a laminate type battery which is an example of the lithium secondary battery of the present disclosure, and FIG. 2 is a thickness of a laminate type electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing of a direction.
In the laminate type battery shown in FIG. 1, the non-aqueous electrolyte (not shown in FIG. 1) and the laminated electrode body (not shown in FIG. 1) are housed inside, and the peripheral portion is sealed. The laminated exterior body 1 by which the inside was sealed is provided. As the laminate case 1, for example, a laminate case made of aluminum is used.
The laminate type electrode body housed in the laminate outer package 1 is, as shown in FIG. 2, a laminate in which the positive electrode plate 5 and the negative electrode plate 6 are alternately laminated via the separator 7, and And a separator 8 surrounding the periphery. The non-aqueous electrolytic solution of the present disclosure is impregnated in the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8.
The plurality of positive electrode plates 5 in the laminated electrode assembly are all electrically connected to the positive electrode terminal 2 through the positive electrode tab (not shown), and a part of the positive electrode terminal 2 is the laminate case 1. Projecting outward from the peripheral edge (Figure 1). A portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
Similarly, each of the plurality of negative electrode plates 6 in the laminated electrode assembly is electrically connected to the negative electrode terminal 3 through the negative electrode tab (not shown), and a part of the negative electrode terminal 3 is in the laminate exterior It protrudes outward from the peripheral end of the body 1 (FIG. 1). The part where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
In the laminate type battery according to the above example, the number of the positive electrode plates 5 is five, the number of the negative electrode plates 6 is six, and the positive electrode plate 5 and the negative electrode plate 6 have the separator 7 interposed therebetween. The outer layers are all stacked in an arrangement to be the negative electrode plate 6.
However, it is needless to say that the number of positive electrode plates, the number of negative electrode plates, and the arrangement of the laminate type battery are not limited to this example, and various modifications may be made. For example, even if the laminated electrode body accommodated in the laminate outer package 1 is a laminated electrode body in which one positive electrode plate 5 and one negative electrode plate 6 are laminated via one separator 7. Good.
 本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
 図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
 図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
 この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いることができる。
Another example of the lithium secondary battery of the present disclosure also includes a coin-type battery.
FIG. 3 is a schematic perspective view showing an example of a coin-type battery which is another example of the lithium secondary battery of the present disclosure.
In the coin-type battery shown in FIG. 3, a disk-shaped negative electrode 12, a separator 15 into which a non-aqueous electrolyte is injected, a disk-shaped positive electrode 11, and, if necessary, spacer plates 17 and 18 of stainless steel or aluminum, etc. In the laminated state, it is housed between the positive electrode can 13 (hereinafter also referred to as “battery can”) and the sealing plate 14 (hereinafter also referred to as “battery can lid”). The positive electrode can 13 and the sealing plate 14 are crimped and sealed via the gasket 16.
In this example, the non-aqueous electrolyte of the present disclosure can be used as the non-aqueous electrolyte to be injected into the separator 15.
 なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
The lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (lithium secondary battery before charge and discharge) including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present disclosure. It may be a lithium secondary battery.
That is, in the lithium secondary battery of the present disclosure, first, a lithium secondary battery before charge and discharge including the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present disclosure is manufactured, and then, before the charge and discharge. It may be a lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging the lithium secondary battery one or more times.
 本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。 The application of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known applications. For example, laptop computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic organizers, calculators, radios, backup power applications, motors, cars, electric cars, bikes, electric bikes, bicycles, electric cars It can be widely used regardless of small portable devices or large devices such as bicycles, lighting fixtures, game machines, watches, electric tools, cameras and the like.
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
 以下の実施例及び比較例において、「wt%」は質量%を表す。
 以下の実施例及び比較例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
Examples of the present disclosure will be shown below, but the present disclosure is not limited to the following examples.
In the following examples and comparative examples, "wt%" represents mass%.
In the following examples and comparative examples, the "added amount" represents the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).
〔実施例1〕式(I-1)で表される化合物の合成
 撹拌装置、温度計、ガス導入ライン、及び排気ラインを備えた50mLのフラスコを乾燥窒素ガスでパージした後、ここに、ジメチルカーボネート(溶媒)7.5gと、三フッ化ホウ素ジエチルエーテル錯体2.41g(0.017mol)とを入れ、室温(25℃。以下同じ。)で攪拌することにより混合し、混合液を得た。得られた混合液に、メチル硫酸リチウム2.01g(0.017mol)を加え、得られた液体を撹拌しながら90℃に加熱し、液温90℃の条件下、溶媒還流状態で1時間撹拌した(反応工程)。この1時間の攪拌の過程で、混合液にメチル硫酸リチウムが完全に溶解した。上記1時間の撹拌後、液体を室温まで冷却し、次いでこの液体から、10kPa以下及び30℃の条件で溶媒を留去した。得られた残留物を、更に、10kPa以下及び30℃の条件で乾燥させることにより、固体生成物3.16gを得た。
Example 1 Synthesis of a Compound Represented by Formula (I-1) A 50 mL flask equipped with a stirrer, a thermometer, a gas inlet line, and an exhaust line was purged with dry nitrogen gas, and then dimethyl dimethyl ether was added thereto. 7.5 g of carbonate (solvent) and 2.41 g (0.017 mol) of boron trifluoride diethyl etherate were added and mixed by stirring at room temperature (25 ° C., the same shall apply hereinafter) to obtain a mixed liquid . To the resulting mixture, 2.01 g (0.017 mol) of lithium lithium sulfate was added, and the resulting liquid was heated to 90 ° C. with stirring, and stirred at a liquid temperature of 90 ° C. under solvent reflux for 1 hour (Reaction step). In the course of the one hour stirring, methyl lithium sulfate was completely dissolved in the mixture. After stirring for 1 hour, the liquid was cooled to room temperature, and then the solvent was distilled off from the liquid under conditions of 10 kPa or less and 30 ° C. The resulting residue was further dried under conditions of 10 kPa or less and 30 ° C. to obtain 3.16 g of a solid product.
 得られた固体生成物から16.4mgのサンプルを採取し、採取したサンプルを、内部標準物質のトリフルオロメチルベンゼン24.8mg(0.17mmol)とともに重ジメチルスルホキシド溶媒に溶解させ、得られたサンプル溶液について、H-NMR分析、19F-NMR分析、及び11B-NMR分析の各々を行った。
 H-NMR分析、19F-NMR分析及び11B-NMR分析の各々によって得られたスペクトルのケミカルシフト〔ppm〕は以下のとおりであった。
 また、H-NMR分析において、内部標準物質のスペクトル積分値を50Hとした場合のサンプルのスペクトル積分値は以下のとおりであった。
 また、19F-NMR分析において、内部標準物質のスペクトル積分値を30Fとした場合のサンプルのスペクトル積分値は以下のとおりであった。
A 16.4 mg sample was collected from the obtained solid product, and the collected sample was dissolved in heavy dimethyl sulfoxide solvent together with 24.8 mg (0.17 mmol) of trifluoromethylbenzene as an internal standard substance, and the obtained sample The solutions were each subjected to 1 H-NMR analysis, 19 F-NMR analysis, and 11 B-NMR analysis.
The chemical shifts [ppm] of the spectra obtained by 1 H-NMR analysis, 19 F-NMR analysis and 11 B-NMR analysis were as follows.
Further, in 1 H-NMR analysis, the spectral integration value of the sample when the spectral integration value of the internal standard substance was 50 H was as follows.
Further, in the 19 F-NMR analysis, the spectral integration value of the sample when the spectral integration value of the internal standard substance was 30 F was as follows.
 H-NMR:3.4ppm(サンプル:15.4H)、7.5~7.7ppm(内部標準物質:50H)。
 19F-NMR:-148ppm(サンプル:15.4F)、-61ppm(内部標準物質:30F)。
 11B-NMR:-2.2ppm(サンプル)。
1 H-NMR: 3.4 ppm (sample: 15.4 H), 7.5 to 7.7 ppm (internal standard substance: 50 H).
19 F-NMR: -148 ppm (sample: 15.4 F), -61 ppm (internal standard: 30 F).
11 B-NMR: -2.2 ppm (sample).
 H-NMRから、硫酸エステル化合物中のメチル基に由来するスペクトルが確認された。
 19F-NMR及び11B-NMRから、フルオロボラン骨格に由来するスペクトルが確認された。
 H-NMR分析及び19F-NMR分析における、サンプル及び内部標準物質の各々の質量と、サンプル及び内部標準物質の各々のスペクトル積分値と、の関係に基づき、サンプル(即ち、固体生成物)中における式(I-1)で表される化合物の純度を求めた。その結果、純度は、98.9%であった。
From 1 H-NMR, a spectrum derived from the methyl group in the sulfuric acid ester compound was confirmed.
The 19 F-NMR and 11 B-NMR confirmed a spectrum derived from the fluoroborane skeleton.
Sample (ie, solid product) based on the relationship between the mass of each of the sample and internal standard substance and the spectral integration value of each of the sample and internal standard substance in 1 H-NMR analysis and 19 F-NMR analysis The purity of the compound represented by the formula (I-1) in was determined. As a result, the purity was 98.9%.
 また、得られた固体生成物について、室温から600℃までの示差走査熱量(DSC)測定を行った。その結果、得られた生成物には、三フッ化ホウ素ジエチルエーテル錯体及びメチル硫酸リチウムの各々を単独で測定する際には認められない、198℃ピークの吸熱熱分解挙動が観測された。
 なお、吸熱熱分解挙動の観測は、セイコーインスツル(株)製の示差走査熱量計(DSC220C型)を用いて行った。以下同様である。
Moreover, the differential scanning calorimetry (DSC) measurement from room temperature to 600 degreeC was performed about the obtained solid product. As a result, in the obtained product, an endothermic thermal decomposition behavior at 198 ° C. peak was observed, which was not observed when each of boron trifluoride diethyl ether complex and methyl methyl sulfate was measured alone.
The endothermic thermal decomposition behavior was observed using a differential scanning calorimeter (DSC 220 C type) manufactured by Seiko Instruments Inc. The same applies to the following.
 以上の結果から、本実施例1では、下記反応スキームにより、式(I)で表される化合物の具体例である式(I-1)で表される化合物が生成されたことが確認された。
Figure JPOXMLDOC01-appb-C000010
From the above results, in Example 1, it was confirmed that the compound represented by Formula (I-1), which is a specific example of the compound represented by Formula (I), was generated by the following reaction scheme. .
Figure JPOXMLDOC01-appb-C000010
〔実施例2〕式(I-3)で表される化合物の合成
 撹拌装置、温度計、ガス導入ライン、及び排気ラインを備えた50mLのフラスコを乾燥窒素ガスでパージした後、ここに、ジメチルカーボネート(溶媒)15gと、三フッ化ホウ素ジエチルエーテル錯体2.55g(0.018mol)とを入れ、室温で攪拌することにより混合し、混合液を得た。得られた混合液に、硫酸リチウム0.99g(0.009mol)を加え、得られた液体を撹拌しながら90℃に加熱し、液温90℃の条件下、溶媒還流状態で3時間撹拌した(反応工程)。
 上記3時間の攪拌後の液体を室温まで冷却し、次いでこの液体を濾過することにより、液体中から不溶成分を除去した。得られた濾液から、圧力10kPa以下及び温度30℃の条件で溶媒を留去した。残った残留物を、更に、圧力10kPa以下及び温度30℃の条件で乾燥させることにより、固体生成物2.08gを得た。
Example 2 Synthesis of a Compound Represented by Formula (I-3) A 50 mL flask equipped with a stirrer, thermometer, gas inlet line, and exhaust line was purged with dry nitrogen gas, and then dimethyl carbonate was used. 15 g of carbonate (solvent) and 2.55 g (0.018 mol) of boron trifluoride diethyl etherate were added and mixed by stirring at room temperature to obtain a mixed solution. To the obtained mixture, 0.99 g (0.009 mol) of lithium sulfate was added, and the obtained liquid was heated to 90 ° C. with stirring, and stirred at a liquid temperature of 90 ° C. under solvent reflux for 3 hours (Reaction process).
The liquid after stirring for 3 hours was cooled to room temperature, and then the liquid was filtered to remove insoluble components from the liquid. The solvent was distilled off from the obtained filtrate under the conditions of a pressure of 10 kPa or less and a temperature of 30 ° C. The remaining residue was further dried under conditions of a pressure of 10 kPa or less and a temperature of 30 ° C. to obtain 2.08 g of a solid product.
 得られた固体生成物から3.9mgのサンプルを採取し、採取したサンプルを、内部標準物質のトリフルオロメチルベンゼン6.5mg(0.04mmol)とともに重ジメチルスルホキシド溶媒に溶解させ、得られたサンプル溶液について、19F-NMR分析及び11B-NMR分析の各々を行った。
 19F-NMR分析及び11B-NMR分析の各々によって得られたスペクトルのケミカルシフト〔ppm〕は以下のとおりであった。
 また、19F-NMR分析において、内部標準物質のスペクトルの積分値を30Fとした場合のサンプルのスペクトルの積分値は以下のとおりであった。
A 3.9 mg sample is taken from the obtained solid product, and the taken sample is dissolved in a heavy dimethyl sulfoxide solvent together with 6.5 mg (0.04 mmol) of trifluoromethylbenzene as an internal standard substance, and the obtained sample The solutions were each subjected to 19 F-NMR analysis and 11 B-NMR analysis.
The chemical shifts [ppm] of the spectra obtained by each of 19 F-NMR analysis and 11 B-NMR analysis were as follows.
Further, in the 19 F-NMR analysis, the integral value of the spectrum of the sample when the integral value of the spectrum of the internal standard substance was 30 F was as follows.
 19F-NMR:-148ppm(サンプル:21.3F)、-61ppm(内部標準物質:30F)。
 11B-NMR:-2.2ppm(サンプル)。
19 F-NMR: -148 ppm (sample: 21.3 F), -61 ppm (internal standard substance: 30 F).
11 B-NMR: -2.2 ppm (sample).
 19F-NMR及び11B-NMRから、フルオロボラン骨格に由来するスペクトルが確認された。
 19F-NMR分析における、サンプル及び内部標準物質の各々の質量と、サンプル及び内部標準物質の各々のスペクトル積分値と、の関係に基づき、サンプル(即ち、固体生成物)中における式(I-3)で表される化合物の純度を求めた。その結果、純度は、99.4%であった。
The 19 F-NMR and 11 B-NMR confirmed a spectrum derived from the fluoroborane skeleton.
Based on the relationship between the mass of each of the sample and internal standard substance and the spectral integration value of each of the sample and internal standard substance in 19 F-NMR analysis, the formula (I−) in the sample (ie, solid product) The purity of the compound represented by 3) was determined. As a result, the purity was 99.4%.
 また、得られた生成物について、室温から600℃までの示差走査熱量(DSC)測定を行った。その結果、得られた生成物には、三フッ化ホウ素ジエチルエーテル錯体及び硫酸リチウムの各々を単独で測定する際には認められない、148℃ピークの吸熱熱分解挙動が観測された。 Moreover, the differential scanning calorimetry (DSC) measurement from room temperature to 600 degreeC was performed about the obtained product. As a result, in the obtained product, an endothermic thermal decomposition behavior of a peak at 148 ° C. was observed, which was not observed when each of boron trifluoride diethyl ether complex and lithium sulfate was measured alone.
 以上の結果から、本実施例2では、下記反応スキームにより、式(I)で表される化合物の具体例である式(I-3)で表される化合物が生成されたことが確認された。
Figure JPOXMLDOC01-appb-C000011

 
From the above results, in Example 2, it was confirmed that the compound represented by Formula (I-3), which is a specific example of the compound represented by Formula (I), was generated by the following reaction scheme. .
Figure JPOXMLDOC01-appb-C000011

 以上に示すように、各実施例で得られた化合物は、NMR分析から化学組成が同定される他、原料の化合物には認められない吸熱熱分解挙動が観測された。即ち、各実施例で得られた化合物は、各原料の化合物の単なる混合物ではなく、それらとは熱的物性を異にする新規な硫酸ホウ素リチウム化合物であることが確認された。 As described above, the compounds obtained in each example were identified chemical composition by NMR analysis, and endothermic thermal decomposition behavior not observed in the starting compounds was observed. That is, it was confirmed that the compounds obtained in the respective examples were not mere mixtures of the compounds of the respective raw materials, but were novel lithium boron sulfate compounds having thermal properties different from them.
〔実施例101〕
 以下の手順にて、リチウム二次電池であるコイン型電池を作製した。
<負極の作製>
 天然黒鉛系黒鉛100質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cmであり、充填密度は1.5g/mLであった。
Example 101
The coin-type battery which is a lithium secondary battery was produced in the following procedures.
<Fabrication of negative electrode>
100 parts by mass of natural graphite-based graphite, 1 part by mass of carboxymethyl cellulose and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, this negative electrode material mixture slurry is applied to a negative electrode current collector made of a 18 μm thick copper foil and dried, and then compressed by a roll press to form a sheet comprising the negative electrode current collector and the negative electrode active material layer. The negative electrode was obtained. The application density of the negative electrode active material layer at this time was 12 mg / cm 2 , and the packing density was 1.5 g / mL.
<正極の作製>
 LiNi0.5Mn0.3Co0.2を90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部を、N-メチルピロリドンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は22mg/cmであり、充填密度は2.9g/mLであった。
<Fabrication of positive electrode>
90 parts by mass of LiNi 0.5 Mn 0.3 Co 0.2 O 2 , 5 parts by mass of acetylene black and 5 parts by mass of polyvinylidene fluoride are mixed using N-methylpyrrolidone as a solvent to prepare a paste-like positive electrode mixture A slurry was prepared.
Next, this positive electrode material mixture slurry is applied to a positive electrode current collector of strip-like aluminum foil having a thickness of 20 μm and dried, and then compressed by a roll press to form a sheet-like positive electrode comprising the positive electrode current collector and the positive electrode active material. Obtained. The coating density of the positive electrode active material layer at this time was 22 mg / cm 2 , and the packing density was 2.9 g / mL.
<非水電解液の調製>
 非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とを混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に得られる非水電解液中における電解質濃度が1mol/Lとなるように溶解させた。
 上記で得られた溶液に対して、上述した式(I-1)で表される化合物(添加剤)とDMCとの混合物を添加し、非水電解液を得た。この際、式(I-1)で表される化合物の添加量(即ち、最終的な非水電解液の全量に対する含有量)は、0.2質量%となるようにした。
 また、最終的な非水電解液において、EC、DMC、及びEMCの質量比は、EC:DMC:EMC=30:35:35(質量比)となるように調整した。
<Preparation of Nonaqueous Electrolyte>
A mixed solvent was obtained by mixing ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (EMC) as non-aqueous solvents.
To the resulting mixed solvent, the LiPF 6 as the electrolyte, eventually electrolyte concentration in the non-aqueous electrolyte solution obtained was dissolved at a 1 mol / L.
To the solution obtained above, a mixture of the compound (additive) represented by the above-mentioned formula (I-1) and DMC was added to obtain a non-aqueous electrolyte. At this time, the addition amount of the compound represented by the formula (I-1) (that is, the content with respect to the total amount of the final non-aqueous electrolyte) was 0.2 mass%.
In the final non-aqueous electrolyte, the mass ratio of EC, DMC, and EMC was adjusted to be EC: DMC: EMC = 30: 35: 35 (mass ratio).
<コイン型電池の作製>
 上述の負極を直径14.5mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径16mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記非水電解液40μlを注入してセパレータと正極と負極に含漬させた。
 さらに、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池を作製した。
<Fabrication of coin-type battery>
The above-mentioned negative electrode was punched out in a disk shape with a diameter of 14.5 mm and the above-mentioned positive electrode with a diameter of 13 mm to obtain coin-shaped electrodes (a negative electrode and a positive electrode). Further, a microporous polyethylene film having a thickness of 20 μm was punched into a disk shape having a diameter of 16 mm to obtain a separator.
The obtained coin-like negative electrode, separator and coin-like positive electrode are stacked in this order in a stainless steel battery can (2032 size), and 40 μl of the above non-aqueous electrolyte is injected to the separator, positive electrode and negative electrode. I let it go.
Furthermore, an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring are placed on the positive electrode, and the battery can is sealed by caulking the battery can lid via a polypropylene gasket, diameter 20 mm, height A coin battery having the configuration shown in FIG. 3 of 3.2 mm was produced.
<コイン型電池の評価>
 得られたコイン型電池について、ASKA充放電装置(ASKA CHARGE DISCHARGE SYSTEM ACD-M01A, ASKA ElectronicCo.,Ltd.,Japan)と恒温槽(LU-113,ESPEC CORP.,Japan)とを用いて、以下の評価を行った。
<Evaluation of coin-type battery>
About the obtained coin type battery, using the ASKA charge and discharge device (ASKA CHARGE DISCHARGE SYSTEM ACD-M01A, ASKA Electronic Co., Ltd., Japan) and a thermostat (LU-113, ESPEC CORP., Japan) The evaluation of
(コンディショニング)
 上記コイン型電池を、恒温槽内で25℃にて、充電レート0.2Cで4.2VまでCC-CV充電してから放電レート0.2CでCC放電する操作を4回繰り返した。
(conditioning)
The above coin-type battery was CC-CV charged at a charge rate of 0.2 C to 4.2 V at 25 ° C. in a thermostat, and then CC discharge at a discharge rate of 0.2 C was repeated four times.
(初期の放電容量(0.2C))
 コンディショニング後のコイン型電池を充電レート0.2CにてSOC(State of Chargeの略)100%まで充電させた後、25℃にて、放電レート0.2Cにて、初期の放電容量(0.2C)を測定した。
 後述する比較例101についても同様にして、コイン型電池の初期の放電容量(0.2C)を測定した。
 比較例101におけるコイン型電池の初期の放電容量(0.2C)を100とした場合の相対値として、実施例101におけるコイン型電池の初期の放電容量(0.2C)(相対値)を求めた。
 結果を表1に示す。
(Initial discharge capacity (0.2 C))
After the coin-type battery after conditioning is charged to SOC (abbreviation of State of Charge) 100% at a charge rate of 0.2 C, an initial discharge capacity (0. 0%) is obtained at a discharge rate of 0.2 C at 25 ° C. 2C) was measured.
The initial discharge capacity (0.2 C) of the coin-type battery was similarly measured for Comparative Example 101 described later.
The initial discharge capacity (0.2 C) (relative value) of the coin-type battery in Example 101 is determined as a relative value when the initial discharge capacity (0.2 C) of the coin-type battery in Comparative Example 101 is 100. The
The results are shown in Table 1.
(初期の放電容量維持率(0.2C-2C))
 放電レートを0.2Cから2Cに変更したこと以外は初期の放電容量(0.2C)と同様にして、初期の放電容量(2C)を測定した。
 下記式に基づき、初期の放電容量維持率(0.2C-2C)を求めた。
 初期の放電容量維持率(0.2C-2C)=(初期の放電容量(2C))/(初期の放電容量(0.2C))
(Initial discharge capacity maintenance rate (0.2C-2C))
The initial discharge capacity (2 C) was measured in the same manner as the initial discharge capacity (0.2 C) except that the discharge rate was changed from 0.2 C to 2 C.
The initial discharge capacity retention rate (0.2C-2C) was determined based on the following equation.
Initial discharge capacity retention rate (0.2C-2C) = (initial discharge capacity (2C)) / (initial discharge capacity (0.2C))
 後述する比較例101についても同様にして、コイン型電池の初期の放電容量維持率(0.2C-2C)を求めた。
 比較例101におけるコイン型電池の初期の放電容量維持率(0.2C-2C)を100とした場合の相対値として、実施例101におけるコイン型電池の初期の放電容量維持率(0.2C-2C)(相対値)を求めた。
 結果を表1に示す。
The initial discharge capacity retention ratio (0.2C-2C) of the coin-type battery was similarly determined for Comparative Example 101 described later.
As a relative value when the initial discharge capacity retention rate (0.2C-2C) of the coin-type battery in Comparative Example 101 is 100, the initial discharge capacity retention rate (0.2C- of the coin-type battery in Example 101) 2C) (relative value) was determined.
The results are shown in Table 1.
(低温サイクル後の放電容量維持率(0.2C-2C))
 上記コンディショニング後のコイン型電池に対し、低温サイクル試験を施した。
 ここで、低温サイクル試験は、-10℃にて、コイン型電池を充電レート0.2Cで充電させて放電レート0.5Cで放電させるサイクルを、50サイクル行う操作とした。
 低温サイクル試験後のコイン型電池を用い、初期の放電容量(0.2C)と同様の方法により、低温サイクル後の放電容量(0.2C)を測定した。
(Discharge capacity maintenance rate after low temperature cycle (0.2C-2C))
A low temperature cycle test was performed on the coin-type battery after the above conditioning.
Here, in the low temperature cycle test, an operation of charging the coin-type battery at a charge rate of 0.2 C and discharging it at a discharge rate of 0.5 C at −10 ° C. was performed for 50 cycles.
Using the coin-type battery after the low temperature cycle test, the discharge capacity (0.2 C) after the low temperature cycle was measured by the same method as the initial discharge capacity (0.2 C).
 放電レートを0.2Cから2Cに変更したこと以外は低温サイクル後の放電容量(0.2C)と同様にして、低温サイクル後の放電容量(2C)を測定した。
 下記式に基づき、低温サイクル後の放電容量維持率(0.2C-2C)を求めた。
 低温サイクル後の放電容量維持率(0.2C-2C)=(低温サイクル後の放電容量(2C))/(低温サイクル後の放電容量(0.2C))
The discharge capacity (2 C) after the low temperature cycle was measured in the same manner as the discharge capacity (0.2 C) after the low temperature cycle except that the discharge rate was changed from 0.2 C to 2 C.
The discharge capacity retention ratio (0.2 C-2 C) after the low temperature cycle was determined based on the following equation.
Discharge capacity retention rate after low temperature cycle (0.2C-2C) = (discharge capacity after low temperature cycle (2C)) / (discharge capacity after low temperature cycle (0.2C))
 後述する比較例101についても同様にして、コイン型電池の低温サイクル後の放電容量維持率(0.2C-2C)を求めた。
 比較例101におけるコイン型電池の低温サイクル後の放電容量維持率(0.2C-2C)を100とした場合の相対値として、実施例101におけるコイン型電池の低温サイクル後の放電容量維持率(0.2C-2C)(相対値)を求めた。
 結果を表1に示す。
The discharge capacity retention ratio (0.2 C-2 C) after the low temperature cycle of the coin battery was similarly determined for Comparative Example 101 described later.
Discharge capacity retention ratio after low temperature cycle of coin type battery in Example 101 as a relative value when discharge capacity retention ratio (0.2C-2C) after low temperature cycle of coin type battery in Comparative Example 101 is 100 0.2C-2C) (relative value) was determined.
The results are shown in Table 1.
(高温サイクル後の放電容量維持率(0.2C-1C))
 上記コンディショニング後のコイン型電池に対し、高温サイクル試験を施した。
 ここで、高温サイクル試験は、55℃にて、コイン型電池を充電レート1Cで充電させて放電レート1Cで放電させるサイクルを、150サイクル行う操作とした。
 高温サイクル試験後のコイン型電池を用い、初期の放電容量(0.2C)と同様の方法により、高温サイクル後の放電容量(0.2C)を測定した。
(Discharge capacity retention rate after high temperature cycle (0.2C-1C))
A high temperature cycle test was performed on the coin-type battery after the above conditioning.
Here, in the high temperature cycle test, 150 cycles of charging the coin-type battery at a charge rate of 1 C and discharging it at a discharge rate of 1 C at 55 ° C. were performed.
Using the coin-type battery after the high temperature cycle test, the discharge capacity (0.2 C) after the high temperature cycle was measured by the same method as the initial discharge capacity (0.2 C).
 放電レートを0.2Cから1Cに変更したこと以外は高温サイクル後の放電容量(0.2C)と同様にして、高温サイクル後の放電容量(1C)を測定した。
 下記式に基づき、高温サイクル後の放電容量維持率(0.2C-1C)を求めた。
 高温サイクル後の放電容量維持率(0.2C-1C)=(高温サイクル後の放電容量(1C))/(高温サイクル後の放電容量(0.2C))
The discharge capacity (1 C) after the high temperature cycle was measured in the same manner as the discharge capacity (0.2 C) after the high temperature cycle except that the discharge rate was changed from 0.2 C to 1 C.
Based on the following equation, the discharge capacity retention ratio (0.2C-1C) after the high temperature cycle was determined.
Discharge capacity retention ratio after high temperature cycle (0.2C-1C) = (discharge capacity after high temperature cycle (1C)) / (discharge capacity after high temperature cycle (0.2C))
 後述する比較例101についても同様にして、コイン型電池の高温サイクル後の放電容量維持率(0.2C-1C)を求めた。
 比較例101におけるコイン型電池の高温サイクル後の放電容量維持率(0.2C-1C)を100とした場合の相対値として、実施例101におけるコイン型電池の高温サイクル後の放電容量維持率(0.2C-1C)(相対値)を求めた。
 結果を表1に示す。
The discharge capacity retention ratio (0.2C-1C) after the high temperature cycle of the coin battery was similarly determined for Comparative Example 101 described later.
The discharge capacity retention ratio of the coin-type battery in Example 101 after the high temperature cycle as a relative value when the discharge capacity retention ratio (0.2 C-1 C) after the high temperature cycle of the coin battery in Comparative Example 101 is 100 ( 0.2C-1C) (relative value) was determined.
The results are shown in Table 1.
(初期の電池抵抗)
 コンディショニング後のコイン型電池を用いて、以下の方法により、25℃にて初期の電池抵抗を測定した。
 まず、SOC(State of Chargeの略)50%から放電レート0.2CでCC10s放電を行い、充電レート0.2CでCC-CV10s充電を行った。
 次に、放電レート1CでCC10s放電を行い、充電レート1CでCC-CV10s充電を行った。
 次に、放電レート2CでCC10s放電を行い、充電レート2CでCC-CV10s充電を行った。
 次に、放電レート5CでCC10s放電を行い、充電レート5CでCC-CV10s充電を行った。
 なお、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。CC-CV10s充電とは、定電流定電圧(Constant Current - Constant Voltage)にて10秒間充電することを意味する。
 各充放電休止電流と各充放電休止電圧とから直流抵抗を求め、得られた直流抵抗を、コイン型電池の初期の電池抵抗とした。
(Initial battery resistance)
Initial cell resistance was measured at 25 ° C. by the following method using the coin-type battery after conditioning.
First, CC 10 s was discharged at a discharge rate of 0.2 C from 50% of SOC (abbreviation of State of Charge), and CC-CV 10 s was performed at a charge rate of 0.2 C.
Next, CC 10s discharge was performed at a discharge rate 1C, and CC-CV 10s charging was performed at a charge rate 1C.
Next, CC 10 s was discharged at a discharge rate 2 C, and CC-CV 10 s was charged at a charge rate 2 C.
Next, CC 10 s was discharged at a discharge rate of 5 C, and CC-CV 10 s charging was performed at a charge rate of 5 C.
In addition, CC10s discharge means discharging for 10 seconds by a constant current (Constant Current). The CC-CV 10 s charging means charging for 10 seconds at a constant current and constant voltage.
The direct current resistance was determined from each charge and discharge rest current and each charge and discharge rest voltage, and the obtained direct current resistance was taken as the initial cell resistance of the coin-type battery.
 後述する比較例101についても同様にして、コイン型電池の初期の電池抵抗を求めた。
 比較例101におけるコイン型電池の初期の電池抵抗を100とした場合の相対値として、実施例101におけるコイン型電池の初期の電池抵抗(相対値)を求めた。
 結果を表1に示す。
The initial battery resistance of the coin battery was determined in the same manner for Comparative Example 101 described later.
The initial cell resistance (relative value) of the coin-type battery in Example 101 was determined as a relative value when the initial cell resistance of the coin-type battery in Comparative Example 101 was 100.
The results are shown in Table 1.
(低温サイクル後の電池抵抗)
-低温サイクル試験-
 上記コンディショニング後のコイン型電池に対し、低温サイクル試験を実施した。
 ここで、低温サイクル試験は、-10℃にて、コイン型電池を充電レート0.2Cで充電させて放電レート0.5Cで放電させるサイクルを、50サイクル行う操作とした。
(Battery resistance after low temperature cycle)
-Low temperature cycle test-
A low temperature cycle test was performed on the coin-type battery after the above conditioning.
Here, in the low temperature cycle test, an operation of charging the coin-type battery at a charge rate of 0.2 C and discharging it at a discharge rate of 0.5 C at −10 ° C. was performed for 50 cycles.
-電池抵抗の測定-
 低温サイクル試験後のコイン型電池を用い、初期の直流抵抗と同様の方法により、低温サイクル後の電池抵抗を測定した。
 後述する比較例101についても同様にして、コイン型電池の低温サイクル後の電池抵抗を測定した。
 比較例101におけるコイン型電池の低温サイクル後の電池抵抗を100とした場合の相対値として、実施例101におけるコイン型電池の低温サイクル後の電池抵抗(相対値)を求めた。
 結果を表1に示す。
-Measurement of battery resistance-
The battery resistance after the low temperature cycle was measured by the method similar to the initial stage direct current resistance using the coin type battery after the low temperature cycle test.
The battery resistance of the coin battery after the low temperature cycle was measured in the same manner as in Comparative Example 101 described later.
The battery resistance (relative value) after the low temperature cycle of the coin battery in Example 101 was determined as a relative value when the battery resistance after the low temperature cycle of the coin battery in Comparative Example 101 was 100.
The results are shown in Table 1.
(高温サイクル後の電池抵抗)
-高温サイクル試験-
 上記コンディショニング後のコイン型電池に対し、高温サイクル試験を実施した。
 ここで、高温サイクル試験は、55℃にて、コイン型電池を充電レート1Cで充電させて放電レート1Cで放電させるサイクルを、150サイクル行う操作とした。
(Battery resistance after high temperature cycle)
-High temperature cycle test-
A high temperature cycle test was performed on the coin-type battery after the above conditioning.
Here, in the high temperature cycle test, 150 cycles of charging the coin-type battery at a charge rate of 1 C and discharging it at a discharge rate of 1 C at 55 ° C. were performed.
-電池抵抗の測定-
 高温サイクル試験後のコイン型電池を用い、初期の直流抵抗と同様の方法により、高温サイクル後の電池抵抗を測定した。
 後述する比較例101についても同様にして、コイン型電池の高温サイクル後の電池抵抗を測定した。
 比較例101におけるコイン型電池の高温サイクル後の電池抵抗を100とした場合の相対値として、実施例101におけるコイン型電池の高温サイクル後の電池抵抗(相対値)を求めた。
 結果を表1に示す。
-Measurement of battery resistance-
The battery resistance after the high temperature cycling was measured by the method similar to the initial stage direct current resistance using the coin type battery after the high temperature cycle test.
The battery resistance of the coin battery after the high temperature cycle was measured in the same manner as in Comparative Example 101 described later.
The battery resistance (relative value) after the high temperature cycle of the coin battery in Example 101 was determined as a relative value when the battery resistance after the high temperature cycle of the coin battery in Comparative Example 101 was 100.
The results are shown in Table 1.
〔実施例102、103、及び104〕
 式(I-1)で表される化合物の添加量を、0.5質量%(実施例102)、1.0質量%(実施例103)、及び1.5質量%(実施例104)にそれぞれ変更したこと以外は実施例101と同様の操作を行った。
 結果を表1に示す。
[Examples 102, 103, and 104]
The addition amount of the compound represented by the formula (I-1) is 0.5 mass% (Example 102), 1.0 mass% (Example 103), and 1.5 mass% (Example 104). The same operation as in Example 101 was performed except that each was changed.
The results are shown in Table 1.
〔実施例105〕
 非水電解液の調製に用いた式(I-1)で表される化合物(添加量0.2質量%)を、上述した式(I-3)で表される化合物(添加量0.5質量%)に変更したこと以外は実施例101と同様の操作を行った。
 結果を表1に示す。
[Example 105]
The compound represented by the formula (I-1) used for the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) was added to the compound represented by the formula (I-3) described above (addition amount: 0.5) The same operation as in Example 101 was carried out except that it was changed to% by mass.
The results are shown in Table 1.
〔実施例106〕
 式(I-3)で表される化合物の添加量を、1.0質量%に変更したこと以外は実施例105と同様の操作を行った。
 結果を表1に示す。
[Example 106]
The same operation as in Example 105 was performed, except that the addition amount of the compound represented by the formula (I-3) was changed to 1.0% by mass.
The results are shown in Table 1.
〔比較例101〕
 式(I-1)で表される化合物を添加しなかったこと以外は実施例101と同様の操作を行った。
 結果を表1に示す。
Comparative Example 101
The same operation as in Example 101 was performed except that the compound represented by the formula (I-1) was not added.
The results are shown in Table 1.
〔比較例102〕
 非水電解液の調製に用いた式(I-1)で表される化合物(添加量0.2質量%)を、下記式(C1)で表される化合物(添加量0.5質量%)に変更したこと以外は実施例101と同様の操作を行った。
 結果を表1に示す。
Comparative Example 102
The compound represented by the formula (I-1) used in the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) is represented by the compound represented by the following formula (C1) (addition amount: 0.5% by mass) The same operation as in Example 101 was performed except that the above was changed to
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
〔比較例103〕
 上記式(C1)で表される化合物の添加量を、1.0質量%に変更したこと以外は比較例102と同様の操作を行った。
 結果を表1に示す。
Comparative Example 103
The same operation as in Comparative Example 102 was performed except that the addition amount of the compound represented by the above formula (C1) was changed to 1.0% by mass.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1に示すように、実施例101~106のコイン型電池は、比較例101~103のコイン型電池と比較して、電池抵抗(詳細には、初期の電池抵抗、低温サイクル後の電池抵抗、及び高温サイクル後の電池抵抗)が低減されていた。
 また、実施例101~106のコイン型電池は、比較例101~103のコイン型電池と比較して、電池の放電容量(詳細には、初期の放電容量、初期の放電容量維持率、低温サイクル後の放電容量維持率、及び高温サイクル後の放電容量維持率)にも優れていた。
As shown in Table 1, the coin batteries of Examples 101 to 106 have battery resistance (specifically, initial battery resistance, battery resistance after a low temperature cycle, in comparison with the coin batteries of Comparative Examples 101 to 103. And cell resistance after high temperature cycling) was reduced.
In addition, the coin-type batteries of Examples 101 to 106 are different from the coin-type batteries of Comparative Examples 101 to 103 in the discharge capacity of the battery (specifically, the initial discharge capacity, the initial discharge capacity maintenance rate, and the low temperature cycle It is also excellent in the later discharge capacity maintenance rate and the discharge capacity maintenance rate after the high temperature cycle.
〔実施例201〕
 非水電解液に対し、更に、ビニレンカーボネート(VC)(添加量1.0wt%)を含有させたこと以外は実施例101と同様にして、コイン型電池を作製した。
 得られたコイン型電池について、実施例101と同様にして、初期の放電容量(0.2C)、初期の放電容量維持率(0.2C-2C)、低温サイクル後の放電容量維持率(0.2C-2C)、高温サイクル後の放電容量維持率(0.2C-1C)、初期の電池抵抗、低温サイクル後の電池抵抗、及び高温サイクル後の電池抵抗を求めた。
 後述する比較例201についても同様にして、コイン型電池の評価を行い、比較例201における結果を100とした場合の相対値を求めた。
 以下、非水電解液に含有される硫酸ホウ素リチウム化合物を「添加剤A」とし、非水電解液に含有されるビニレンカーボネート(VC)を「添加剤B」とする。
 結果を表2に示す。
Example 201
A coin-type battery was produced in the same manner as in Example 101 except that vinylene carbonate (VC) (addition amount: 1.0 wt%) was further added to the non-aqueous electrolytic solution.
With respect to the obtained coin-type battery, the initial discharge capacity (0.2 C), the initial discharge capacity retention rate (0.2 C-2 C), and the discharge capacity retention rate after low temperature cycle (0 2C-2C), discharge capacity retention ratio after high temperature cycle (0.2C-1C), initial cell resistance, cell resistance after low temperature cycle, and cell resistance after high temperature cycle were determined.
The coin-type battery was evaluated in the same manner for Comparative Example 201 described later, and the relative value when the result of Comparative Example 201 was 100 was determined.
Hereinafter, a lithium boron sulfate compound contained in the non-aqueous electrolytic solution is referred to as “additive A”, and vinylene carbonate (VC) contained in the non-aqueous electrolytic solution is referred to as “additive B”.
The results are shown in Table 2.
〔実施例202及び203〕
 式(I-1)で表される化合物の添加量を、0.5質量%(実施例202)、及び1.0質量%(実施例203)に変更したこと以外は実施例201と同様の操作を行った。
 結果を表2に示す。
[Examples 202 and 203]
Example 201 is similar to Example 201 except that the addition amount of the compound represented by the formula (I-1) is changed to 0.5% by mass (Example 202) and 1.0% by mass (Example 203). I did the operation.
The results are shown in Table 2.
〔実施例204〕
 非水電解液の調製に用いた式(I-1)で表される化合物(添加量0.2質量%)を、上述した式(I-3)で表される化合物(添加量0.5質量%)に変更したこと以外は実施例201と同様の操作を行った。
 結果を表2に示す。
[Example 204]
The compound represented by the formula (I-1) used for the preparation of the non-aqueous electrolyte (addition amount: 0.2% by mass) was added to the compound represented by the formula (I-3) described above (addition amount: 0.5) The same operation as in Example 201 was carried out except that it was changed to% by mass.
The results are shown in Table 2.
〔実施例205及び206〕
 式(I-3)で表される化合物の添加量を、1.0質量%(実施例205)、及び1.5質量%(実施例206)に変更したこと以外は実施例204と同様の操作を行った。
 結果を表2に示す。
[Examples 205 and 206]
The same as Example 204 except that the addition amount of the compound represented by Formula (I-3) was changed to 1.0% by mass (Example 205) and 1.5% by mass (Example 206). I did the operation.
The results are shown in Table 2.
〔比較例201〕
 式(I-1)で表される化合物を添加しなかったこと以外は実施例201と同様の操作を行った。
 結果を表2に示す。
Comparative Example 201
The same operation as in Example 201 was carried out except that the compound represented by the formula (I-1) was not added.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2に示すように、実施例201~206のコイン型電池は、比較例201のコイン型電池と比較して、電池抵抗(詳細には、初期の電池抵抗、低温サイクル後の電池抵抗、及び高温サイクル後の電池抵抗)が低減されていた。
 また、実施例201~206のコイン型電池は、比較例201コイン型電池と比較して、電池の放電容量(詳細には、初期の放電容量、初期の放電容量維持率、低温サイクル後の放電容量維持率、及び高温サイクル後の放電容量維持率)にも優れていた。
As shown in Table 2, the coin-type batteries of Examples 201 to 206 have battery resistance (specifically, initial battery resistance, battery resistance after low temperature cycle, and battery resistance after comparison with the coin-type batteries of Comparative Example 201; Battery resistance after high temperature cycling was reduced.
In addition, the coin-type batteries of Examples 201 to 206 have the discharge capacity of the battery (specifically, the initial discharge capacity, the initial discharge capacity retention rate, and the discharge after the low temperature cycle) as compared with the comparative example 201 coin-type battery. The capacity retention rate and the discharge capacity retention rate after the high temperature cycle were also excellent.
 2017年9月5日に出願された日本国特許出願2017-170545及び2018年3月30日に出願された日本国特許出願2018-068561の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2017-170545 filed on September 5, 2017 and Japanese Patent Application No. 2018-068561 filed on March 30, 2018 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  下記式(I)で表される硫酸ホウ素リチウム化合物。
    Figure JPOXMLDOC01-appb-C000001

    〔式(I)中、Rは、炭素数1~20のアルコキシ基、又は、式(II)で表される基を表す。
     式(II)中、*は、結合位置を表す。〕
    Lithium boron sulfate compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In the formula (I), R 0 represents an alkoxy group having 1 to 20 carbon atoms or a group represented by the formula (II).
    In formula (II), * represents a bonding position. ]
  2.  前記Rが、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、又は前記式(II)で表される基である請求項1に記載の硫酸ホウ素リチウム化合物。 The lithium boron sulfate compound according to claim 1, wherein the R 0 is a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, or a group represented by the formula (II).
  3.  下記式(I-1)、下記式(I-2)、又は下記式(I-3)で表される化合物である請求項1又は請求項2に記載の硫酸ホウ素リチウム化合物。
    Figure JPOXMLDOC01-appb-C000002
    It is a compound represented by following formula (I-1), following formula (I-2), or following formula (I-3), The lithium boron sulfate compound of Claim 1 or Claim 2.
    Figure JPOXMLDOC01-appb-C000002
  4.  請求項1~請求項3のいずれか1項に記載の硫酸ホウ素リチウム化合物を含むリチウム二次電池用添加剤。 An additive for a lithium secondary battery comprising the lithium boron sulfate compound according to any one of claims 1 to 3.
  5.  請求項1~請求項3のいずれか1項に記載の硫酸ホウ素リチウム化合物を含む電池用非水電解液。 A non-aqueous electrolytic solution for battery comprising the lithium boron sulfate compound according to any one of claims 1 to 3.
  6.  更に、下記式(C)で表される化合物である添加剤Cを含有する請求項5に記載の電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000003

    〔式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。〕
    Furthermore, the nonaqueous electrolyte for batteries of Claim 5 which contains the additive C which is a compound represented by a following formula (C).
    Figure JPOXMLDOC01-appb-C000003

    [In formula (C), R c1 and R c2 each independently represent a hydrogen atom, a methyl group, an ethyl group or a propyl group. ]
  7.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
     請求項5又は請求項6に記載の電池用非水電解液と、
    を含むリチウム二次電池。
    Positive electrode,
    Lithium metal, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping and dedoping lithium ion, transition metal nitride capable of doping and dedoping lithium ion, lithium A negative electrode including, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
    A non-aqueous electrolyte for a battery according to claim 5 or 6;
    Lithium secondary battery including.
  8.  請求項7に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。 A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to claim 7.
PCT/JP2018/032272 2017-09-05 2018-08-30 Lithium boron sulfate compound, additive for lithium secondary battery, non-aqueous electrolyte solution for battery, and lithium secondary battery WO2019049775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540926A JP6842557B2 (en) 2017-09-05 2018-08-30 Lithium sulphate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017170545 2017-09-05
JP2017-170545 2017-09-05
JP2018068561 2018-03-30
JP2018-068561 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019049775A1 true WO2019049775A1 (en) 2019-03-14

Family

ID=65634019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032272 WO2019049775A1 (en) 2017-09-05 2018-08-30 Lithium boron sulfate compound, additive for lithium secondary battery, non-aqueous electrolyte solution for battery, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP6842557B2 (en)
WO (1) WO2019049775A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029653A (en) * 2019-12-20 2020-04-17 东莞市杉杉电池材料有限公司 Lithium ion battery electrolyte and lithium ion battery containing same
CN111883827A (en) * 2020-07-16 2020-11-03 香河昆仑化学制品有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN112194601A (en) * 2019-07-08 2021-01-08 杉杉新材料(衢州)有限公司 Method for synthesizing sulfuric acid monoalkyl ester salt derivative
CN112349951A (en) * 2019-08-08 2021-02-09 杉杉新材料(衢州)有限公司 Non-aqueous electrolyte containing sulfur-containing lithium salt derivative additive and lithium ion battery
JP2021022525A (en) * 2019-07-30 2021-02-18 三井化学株式会社 Non-aqueous electrolyte for battery and lithium secondary battery
CN112390732A (en) * 2019-08-19 2021-02-23 杉杉新材料(衢州)有限公司 Method for synthesizing sulfuric acid mono-alkyl ester lithium salt derivative
CN112531207A (en) * 2019-09-17 2021-03-19 杉杉新材料(衢州)有限公司 Electrolyte for high-voltage lithium ion battery and lithium ion battery containing electrolyte
CN112670582A (en) * 2020-12-23 2021-04-16 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with high and low temperature consideration
CN112830498A (en) * 2020-11-13 2021-05-25 厦门永力鑫新能源科技有限公司 Lithium salt and preparation method thereof, lithium ion battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery
CN114695960A (en) * 2020-12-31 2022-07-01 浙江蓝天环保高科技股份有限公司 Novel additive with high and low temperature performance, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272703A (en) * 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd Electrolyte and nonaqueous electrolyte secondary battery
JP2006150346A (en) * 2004-09-23 2006-06-15 Air Products & Chemicals Inc Ionic liquid based mixture for gas storage and delivery
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188220B1 (en) * 2013-04-01 2020-12-08 우베 고산 가부시키가이샤 Nonaqueous electrolyte solution and electricity storage device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272703A (en) * 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd Electrolyte and nonaqueous electrolyte secondary battery
JP2006150346A (en) * 2004-09-23 2006-06-15 Air Products & Chemicals Inc Ionic liquid based mixture for gas storage and delivery
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUTMANN, V. ET AL.: "Reactions of oxoanions with boron trifluoride", SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY, vol. 4, no. 6, 1974, pages 523 - 533, DOI: 10.1080/00945717408069685 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194601A (en) * 2019-07-08 2021-01-08 杉杉新材料(衢州)有限公司 Method for synthesizing sulfuric acid monoalkyl ester salt derivative
JP2021022525A (en) * 2019-07-30 2021-02-18 三井化学株式会社 Non-aqueous electrolyte for battery and lithium secondary battery
JP7326681B2 (en) 2019-07-30 2023-08-16 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
CN112349951B (en) * 2019-08-08 2022-06-03 杉杉新材料(衢州)有限公司 Non-aqueous electrolyte containing sulfur-containing lithium salt derivative additive and lithium ion battery
CN112349951A (en) * 2019-08-08 2021-02-09 杉杉新材料(衢州)有限公司 Non-aqueous electrolyte containing sulfur-containing lithium salt derivative additive and lithium ion battery
CN112390732A (en) * 2019-08-19 2021-02-23 杉杉新材料(衢州)有限公司 Method for synthesizing sulfuric acid mono-alkyl ester lithium salt derivative
CN112531207A (en) * 2019-09-17 2021-03-19 杉杉新材料(衢州)有限公司 Electrolyte for high-voltage lithium ion battery and lithium ion battery containing electrolyte
CN111029653A (en) * 2019-12-20 2020-04-17 东莞市杉杉电池材料有限公司 Lithium ion battery electrolyte and lithium ion battery containing same
CN111883827A (en) * 2020-07-16 2020-11-03 香河昆仑化学制品有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN112830498A (en) * 2020-11-13 2021-05-25 厦门永力鑫新能源科技有限公司 Lithium salt and preparation method thereof, lithium ion battery electrolyte additive, lithium ion battery electrolyte and lithium ion battery
CN112670582A (en) * 2020-12-23 2021-04-16 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with high and low temperature consideration
CN112670582B (en) * 2020-12-23 2022-08-30 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with high and low temperature consideration
CN114695960A (en) * 2020-12-31 2022-07-01 浙江蓝天环保高科技股份有限公司 Novel additive with high and low temperature performance, preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2019049775A1 (en) 2020-10-29
JP6842557B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6842557B2 (en) Lithium sulphate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
JP6879812B2 (en) Lithium salt complex compounds, battery additives, non-aqueous electrolytes for batteries, and lithium secondary batteries
JP5956680B2 (en) Non-aqueous electrolyte for battery, novel compound, polymer electrolyte, and lithium secondary battery
EP2876723B1 (en) Lithium secondary battery
WO2015045989A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
CN110506358B (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2018156761A (en) Nonaqueous electrolyte solution for battery, and lithium secondary battery
JP2017045724A (en) Nonaqueous electrolyte for battery and lithium secondary battery
WO2019013140A1 (en) Lithium boron fluorophosphate complex compound, composition containing lithium boron fluorophosphate, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6457205B2 (en) Lithium secondary battery
WO2020121850A1 (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7120507B2 (en) Lithium borate composition, additive for lithium secondary battery, method for producing lithium borate composition, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery
JP2019179609A (en) Electrolyte solution for batteries and lithium secondary battery
JP7216805B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018170237A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2021048006A (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP2019179614A (en) Electrolyte solution for batteries and lithium secondary battery
JP2019175576A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2018190569A (en) Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery
JP2019179613A (en) Electrolyte solution for batteries and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854108

Country of ref document: EP

Kind code of ref document: A1