WO2019049731A1 - パワーステアリング装置の制御装置 - Google Patents

パワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2019049731A1
WO2019049731A1 PCT/JP2018/031768 JP2018031768W WO2019049731A1 WO 2019049731 A1 WO2019049731 A1 WO 2019049731A1 JP 2018031768 W JP2018031768 W JP 2018031768W WO 2019049731 A1 WO2019049731 A1 WO 2019049731A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
unit
diagnosis
mode
control device
Prior art date
Application number
PCT/JP2018/031768
Other languages
English (en)
French (fr)
Inventor
健太 上阪
光昭 中田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019540904A priority Critical patent/JPWO2019049731A1/ja
Publication of WO2019049731A1 publication Critical patent/WO2019049731A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • the present invention relates to a control device of a power steering device configured to be redundant.
  • the assist motor is provided with a prediction unit for predicting a period in which the drive current does not flow, and when it is estimated that the period does not flow the drive current in the motor Diagnosis of the circuit related to vehicle operation during vehicle operation.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a control apparatus of a power steering apparatus capable of expanding a diagnosis range during driving of a vehicle and capable of early detection and notification of a failure. It is to do.
  • the control device of the power steering apparatus is, in one aspect thereof, a system of a redundant configuration provided with a plurality of drive units for driving the assist motors, respectively, during driving of the vehicle with a small required assist force output.
  • the drive power output is carried by a part of drive units of a plurality of systems, and the mode switching function unit is provided to make the drive units of the remaining systems transition to the diagnostic mode and diagnose the drive circuit or the power supply circuit. .
  • a control device of a power steering apparatus having a redundant configuration provided with a plurality of drive units
  • drive circuits or power supplies of drive units of the remaining systems when the drive units of a part of the systems are in the assist mode, drive circuits or power supplies of drive units of the remaining systems.
  • the circuit diagnosis can be performed, and the opportunity for diagnosis of the drive circuit and the power supply circuit can be increased. Therefore, the diagnostic range during driving of the vehicle can be expanded, early detection and notification of a failure can be performed, and safety can be improved.
  • FIG. 1 is a perspective view showing a schematic configuration by extracting main parts related to a power steering apparatus according to an embodiment of the present invention. It is a block diagram showing an example of composition of ECU for EPS control in a control device of a power steering device concerning an embodiment of the present invention. It is a functional block diagram of a control device of a power steering device concerning a 1st embodiment of the present invention. It is a block diagram which shows the structural example of the 1st microcontroller in FIG. 3A. It is a block diagram which shows the structural example of the 2nd microcontroller in FIG. 3A. It is a flowchart which shows roughly operation
  • FIG. 1 shows a schematic configuration by extracting main parts related to a power steering apparatus according to an embodiment of the present invention.
  • the power steering apparatus 10 includes a rack housing 11, a motor housing 12, an electric motor (three-phase brushless motor) 13 having two winding sets, a reduction gear 14, a pinion 15, dust boots 16, 16, tie rods 17, 17 and A steering mechanism 18 and the like are provided.
  • the rack housing 11 houses a pinion shaft and a rack bar (not shown) and a part of the steering shaft 19.
  • the motor housing 12 accommodates the electric motor 13 and the EPS control ECU 3. Then, the rotation of the electric motor 13 is decelerated by the reduction gear 14 and transmitted to the steering mechanism 18 to assist the steering force by the driver of the vehicle and apply it to the steered wheels.
  • the steering mechanism 18 has a steering shaft 19, a pinion shaft and a torsion bar.
  • the steering shaft 19 rotates integrally with the steering wheel.
  • a steering torque sensor 21 and a steering angle sensor 22 as a steering sensor for detecting the steering state of the steering mechanism 18 are attached.
  • the steering torque sensor 21 and the steering angle sensor 22 are respectively provided in pairs.
  • the steering torque sensor 21 detects a steering torque (torsion bar torque) generated in the steering mechanism 18 based on the amount of torsion of the torsion bar.
  • the steering angle sensor 22 detects a steering angle at the time of steering operation.
  • the pinion shaft is connected to the steering shaft 19 via a torsion bar.
  • the dust boots 16 and 16 are formed in a bellows shape using rubber or the like. Outer ends in the vehicle width direction of the dust boots 16, 16 are fixed to inner ends in the vehicle width direction of the tie rods 17, 17. The ends of the pair of tie rods 17, 17 are connected to both ends of the rack bar.
  • FIG. 2 is a block diagram showing a configuration example of the EPS control ECU 3 in FIG.
  • the EPS control ECU 3 has a logic circuit unit 3a mounted on a printed circuit board and a power circuit unit 3b mounted on a metal printed circuit board.
  • the logic circuit unit 3 a operates with an internal power supply voltage generated by a power supply IC or the like
  • the power circuit unit 3 b operates with an external power supply voltage supplied from the battery 31.
  • measures against heat radiation of power devices with large calorific value and measures against reliability of electronic parts by heat are taken.
  • the logic circuit unit 3a and the power circuit unit 3b have a redundant configuration including first and second drive units EPP1 and EPP2 having a dashed dotted line DL as a boundary.
  • the logic circuit unit 3a of the drive unit EPP1 of the first system is composed of a first microcontroller (in this example, dual core CPU) 32, a predriver 33, a CPU monitor 34, a virtual motor position detector (inductance detector) 35, etc. Be done.
  • the power circuit unit 3 b includes a first inverter 40 and a first current detection unit 42 of a 3-shunt system.
  • the current detection unit 42 is used as a motor phase current sensor and a primary current sensor.
  • the logic circuit unit 3a of the drive unit EPP2 of the second system includes a second microcontroller (dual core CPU in this example) 36, a predriver 37, a CPU monitor 38 and a virtual motor position detector (inductance detector) 39. And so on.
  • the power circuit unit 3 b includes a second inverter 41 and a three-shunt second current detection unit 43.
  • the current detection unit 43 is used as a motor phase current sensor and a primary current sensor.
  • the first and second microcontrollers 32 and 36 respectively perform EPS assist control calculation, motor current control, functional component abnormality detection, and transition processing to a safe state.
  • Power supply voltages are applied to the first and second microcontrollers 32 and 36 from the internal operation power supplies 48 and 49, respectively.
  • the CPU monitors 34 and 38 detect an abnormality that has occurred in the microcontrollers 32 and 36, and have a function of shutting off the power supply to the microcontrollers 32 and 36 when it is determined that they are abnormal.
  • the predrivers 33 and 37 drive the drive elements in the inverters 40 and 41 based on the commands from the microcontrollers 32 and 36, respectively.
  • the inverters 40 and 41 are composed of a plurality of drive elements for supplying current to the electric motor 13, and operate based on commands from the predrivers 33 and 37. In accordance with the drive current from the inverters 40 and 41, the electric motor 13 having the two winding sets is driven to generate motor torque.
  • the current detection units 42 and 43 have a function of monitoring whether the current value required by the motor control is as intended to output the required torque of the electric motor 13 obtained from the assist control and the primary current (from the battery 31 It has a function of monitoring the current (captured current) to the drive units EPP1 and EPP2.
  • a power supply voltage is applied to the first steering sensor 23a (the steering torque sensor 21a and the steering angle sensor 22a) of the drive unit EPP1 from the internal operation power supply 45 of the logic circuit unit 3a, and the detection output is the first and second microcontrollers 32. , 36, respectively.
  • a power supply voltage is applied to the second steering sensor 23b (the steering torque sensor 21b and the steering angle sensor 22b) of the drive unit EPP2 from the internal operation power supply 47 of the logic circuit unit 3a, and the detection output is the second and first micro The signals are supplied to the controllers 36 and 32, respectively.
  • dual sensors respectively corresponding to the dual core CPU can be used as the steering torque sensor 21a and the steering angle sensor 22a, and the steering torque sensor 21b and the steering angle sensor 22b.
  • the first and second microcontrollers 32 and 36 perform inter-microcomputer communication (inter-CPU communication) to transmit and receive a status signal and a sensor signal.
  • motor rotation angle sensors (dual motor position sensors) 50a and 50b are mounted on a printed circuit board. Power supply voltages are applied to the motor rotational angle sensors 50a and 50b from internal operation power supplies 51 and 52 provided in the logic circuit unit 3a, and detection outputs are supplied to the first and second microcontrollers 32 and 36, respectively. .
  • the first microcontroller 32 is based on the three-phase current detected by the current detection unit 42, the rotational position of the rotor detected by the virtual motor position detector 35, and the motor rotational angle detected by the motor rotational angle sensors 50a and 50b. , Generates a pulse signal for performing PWM (Pulse Width Modulation) control.
  • the pulse signal output from the first microcontroller 32 is supplied to the predriver 33.
  • the second microcontroller 36 is based on the phase current detected by the current detection unit 43, the rotational position of the rotor detected by the virtual motor position detector 39, and the motor rotational angle detected by the motor rotational angle sensors 50a and 50b. And generates a pulse signal for performing PWM control.
  • the pulse signal output from the second microcontroller 36 is supplied to the predriver 37.
  • the operation of the first microcontroller 32 is verified by the CPU monitor 34, and the operation of the second microcontroller 36 is verified by the CPU monitor 38.
  • the CPU monitors 34 and 38 are configured by timers called, for example, watchdogs, and constantly monitor whether the first and second microcontrollers 32 and 36 are normal or not.
  • the pulse signals (PWM signals) output from the predrivers 33 and 37 are respectively supplied to the inverters 40 and 41, and the electric motor 13 is driven according to the current from the inverters 40 and 41.
  • Three-phase currents at the time of driving the electric motor 13 are detected by the current detection units 42 and 43, respectively, and detection signals are supplied to the first and second microcontrollers 32 and 36 to perform feedback control.
  • the first and second microcontrollers 32, 36 calculate the total amount of current from the battery 31 based on the three-phase current.
  • the rotational position of the rotor is detected by the virtual motor position detectors 35 and 39 based on the neutral point voltage of the stator coil, and detection signals are supplied to the first and second microcontrollers 32 and 36.
  • the detection signals of the virtual motor position detectors 35 and 39 are used for verification of detection outputs of the current detection units 42 and 43 and the motor rotation angle sensors 50a and 50b and for backup at the time of sensor failure.
  • FIG. 3A is a functional block diagram of a control device of a power steering apparatus according to a first embodiment of the present invention, showing in detail an example of functional configuration of first and second drive units EPP1 and EPP2 in FIG.
  • the drive unit EPP1 of the first system includes a first sensor 54, a first microcontroller (first microprocessor) 32, a predriver 33, an inverter 40, a motor relay 44, a power relay (first power circuit) 29, and the electric motor 13 , And the like.
  • the pre-driver 33, the inverter 40 and the motor relay 44 function as a first drive circuit DR1 that drives the winding set 13a of the electric motor 13.
  • the drive unit EPP2 of the second system includes a second sensor 55, a second microcontroller (second microprocessor) 36, a predriver 37, an inverter 41, a motor relay 46, a power supply relay (second power supply circuit) 30, and an electric motor. It includes a winding set 13b of the motor 13 and the like.
  • the predriver 37, the inverter 41, and the motor relay 46 function as a second drive circuit DR2 that drives the winding set 13b of the electric motor 13.
  • the first sensor 54 detects a state quantity indicating the driving state of the vehicle, and the steering torque sensor 21 (21a, 21b), the steering angle sensor 22 (22a, 22b), and the motor rotation angle sensor 50 (50a, 50a, A power supply voltage monitor 81 and a temperature sensor 82 are included in addition to the motor phase current sensor and primary current sensor (current detection unit) 50b).
  • the second sensor 55 detects a state quantity indicating the driving state of the vehicle, and the steering torque sensor 21 (21a, 21b), the steering angle sensor 22 (22a, 22b), and the motor rotation angle sensor 50 ( In addition to the motor phase current sensor / primary current sensor (current detection unit) 43, a power supply voltage monitor 83 is included.
  • the first microcontroller 32 generates a pulse signal for PWM control of the winding set 13 a of the electric motor 13 based on the output signal of the first sensor 54.
  • the first microcontroller 32 has an input signal processing unit 61, a CAN communication unit (first transceiver and first controller) 62, an assist control / external command control unit 63, an assist limiting unit 64, and a motor.
  • the control unit 65, a diagnosis function unit (first diagnosis unit) 66, a mode switching function unit (first mode switching control unit) 67, an inter-microcomputer communication unit 68, a non-volatile memory 69, and the like are provided.
  • the assist control / external command control unit 63, the assist limiting unit 64, and the motor control unit 65 calculate a first motor command signal for driving and controlling the electric motor 13 based on a signal related to the driving state of the vehicle, and outputs the first drive circuit DR1. It works as a first motor command signal calculation unit to output.
  • the non-volatile memory 69 functions as a first diagnostic status storage unit that stores the diagnostic status in the diagnostic function unit 66.
  • the second microcontroller 36 generates a pulse signal for PWM control of the winding set 13 b of the electric motor 13 based on the output signal of the second sensor 55.
  • the second microcontroller 36 has an input signal processing unit 71, a CAN communication unit (second transceiver and second controller) 72, an assist control / external command control unit 73, an assist limiting unit 74, and a motor.
  • the control unit 75, a diagnostic function unit (second diagnostic unit) 76, a mode switching function unit (second mode switching control unit) 77, an inter-microcomputer communication unit 78, a non-volatile memory 79, and the like are provided.
  • the assist control / external command control unit 73, the assist limiting unit 74, and the motor control unit 75 calculate a second motor command signal for controlling the driving of the electric motor 13 based on a signal related to the driving state of the vehicle, and send it to the second drive circuit DR2. It works as a second motor command signal calculation unit to output.
  • the non-volatile memory 79 serves as a first diagnostic status storage unit that stores the diagnostic status in the diagnostic function unit 76.
  • Each CAN communication unit 62, 72 is connected to another ECU or a vehicle-mounted device via a CAN bus (communication network) 53.
  • the first and second microcontrollers 32 and 36 mutually monitor each other by inter-microcomputer communication. Further, diagnostic function units 66 and 76 provided in these microcontrollers 32 and 36 perform abnormality detection in the own system and abnormality detection in the other system through communication between microcomputers. Furthermore, each of the assist limiting units 64 and 74 reduces the motor torque command to a preset torque (upper limit output) with respect to the calculation result of the assist control when the EPS control ECU 3 is overheated or the like. Protect your own system.
  • An output signal of each sensor in the first sensor 54 is input to the input signal processing unit 61, for example, A / D converted and converted into a digital signal.
  • An output signal of the input signal processing unit 61 is supplied to the assist control / external command control unit 63.
  • the assist control / external command control unit 63 calculation of a first control amount for driving and controlling the electric motor 13 is performed based on the output signal of the first sensor 54.
  • the first control amount includes the assist amount of the driver's steering force and, for example, the amount of steering force output by an external command regardless of the driver's steering operation in the automatic parking system.
  • a signal output from the assist control / external command control unit 63 is supplied to the motor control unit 65 via the assist limiting unit 64.
  • the motor control unit 65 drives and controls the winding set 13 a of the electric motor 13 via the predriver 33, the inverter 40 and the motor relay 44 based on the first control amount.
  • An output signal of the input signal processing unit 61 and an output signal of the CAN communication unit 62 are supplied to the diagnosis function unit 66, and presence or absence of abnormality of the output signal of the predriver 33, the inverter 40, the winding set 13a or the first sensor 54 To judge.
  • the output signal of the diagnosis function unit 66 is supplied to the assist limiting unit 64 and the mode switching function unit 67, so that the assist of the steering force by the electric motor 13 is limited and switching to the failure diagnosis mode is executed.
  • the mode switching function unit 67 monitors the driving condition of the vehicle, and outputs a small amount of assist force while driving the vehicle, and when it is determined that no assist force by all the systems is required, the other system (drive unit EPP2 Request that the own system (drive unit EPP1) make a transition to the failure diagnosis mode. Then, when the transition to the failure diagnosis mode is determined, the assist function of the own system is distributed to another system, and then the diagnosis function unit 66 performs the failure diagnosis. The diagnosis result is recorded in the non-volatile memory 69. If it turns out to be normal after the diagnosis, the system returns to the assist power output mode, and if a failure is found out during the diagnosis, the abnormality is notified to other systems and other systems immediately.
  • the mode switching function unit 67 performs assist control and external command.
  • the calculation stop instruction is output to the control unit 63, the assist limiting unit 64, and the motor control unit 65 to stop the calculation.
  • the output signal of each sensor in the second sensor 55 is input to the input signal processing unit 71, for example, A / D converted and converted into a digital signal.
  • An output signal of the input signal processing unit 71 is supplied to the assist control / external command control unit 73.
  • the assist control / external command control unit 73 performs calculation of a second control amount for driving and controlling the winding set 13 a of the electric motor 13 based on the output signal of the second sensor 55.
  • the second control amount includes the assist amount of the driver's steering force and, for example, the amount of steering force output by the external command regardless of the driver's steering operation in the automatic parking system.
  • a signal output from the assist control / external command control unit 73 is supplied to the motor control unit 75 via the assist limiting unit 74.
  • the motor control unit 75 drives and controls the winding set 13b of the electric motor 13 through the predriver 37, the inverter 41, and the motor relay 46 based on the second control amount.
  • the diagnostic function unit 76 is supplied with the output signal of the input signal processing unit 71 and the output signal of the CAN communication unit 72, and there is an abnormality in the output signal of the predriver 37, the inverter 41, the winding set 13b or the second sensor 55 To judge.
  • the output signal of the diagnosis function unit 76 is supplied to the assist limiting unit 74 and the mode switching function unit 77, so that the assist of the steering force by the electric motor 13 is limited and switching to the failure diagnosis mode is executed.
  • the mode switching function unit 77 monitors the driving condition of the vehicle, and when it is determined that the required assist force output while driving the vehicle is small and the assist force by all the systems is not necessary, the other system (drive unit EPP1 Request that the own system (drive unit EPP2) make a transition to the failure diagnosis mode. Then, when the transition to the failure diagnosis mode is determined, the assist function of the own system is distributed to the other system, and then the diagnosis function unit 76 performs the failure diagnosis. The diagnosis result is recorded in the non-volatile memory 79. If it turns out to be normal after the diagnosis, the system returns to the assist power output mode, and if a failure is found out during the diagnosis, the abnormality is notified to other systems and other systems immediately.
  • the mode switching function unit 77 When the diagnostic function unit 76 determines that the output signal of the predriver 37, the inverter 41, the motor relay 46, the winding set 13b or the second sensor 55 is abnormal, the mode switching function unit 77 performs assist control and external command.
  • the calculation stop instruction is output to the control unit 73, the assist limiting unit 74, and the motor control unit 75 to stop the calculation.
  • the inter-microcomputer communication units (inter-CPU communication units) 68 and 78 perform transmission and reception of signals performed between the first microcontroller 32 and the second microcontroller 36.
  • the inter-microcomputer communication unit 68 exchanges data with the diagnostic function unit 66 and the mode switching function unit 67, and communicates with another ECU or vehicle-mounted device via the CAN communication unit 62 and the CAN bus 53.
  • the inter-microcomputer communication unit 78 exchanges data with the diagnostic function unit 76 and the mode switching function unit 77, and communicates with another ECU or vehicle-mounted device via the CAN communication unit 72 and the CAN bus 53. .
  • the mode switching function unit 67 receives a mode switching command from the microcontroller 36 via the inter-microcomputer communication units 78 and 68, and transmits mode switching completion information to the microcontroller 36 via the inter-microcomputer communication units 68 and 78.
  • the mode switching function unit 77 also receives a mode switching command from the microcontroller 32 via the inter-microcomputer communication unit 68, 78, and sends mode switching completion information to the microcontroller 32 via the inter-microcomputer communication unit 78, 68. Send.
  • FIG. 4 is a flow chart schematically showing the operation of the control device shown in FIGS. 3A, 3B and 3C.
  • Steps S2 to S5, S7 and S10 to S14 show the operation of mode switching function units 67 and 77
  • step S8 shows the operations of diagnostic function units 66 and 76
  • steps S9 and S15 show the operations of mode switching function units 67 and 77, respectively. ing.
  • step S1 it is determined whether "other system is in failure diagnosis mode" (step S2). That is, the mode switching function unit 67 determines whether the diagnostic function unit 76 of the other system is in the failure diagnosis mode based on its own state. Further, the mode switching function unit 77 determines whether the diagnostic function unit 66 of the other system is in the failure diagnosis mode based on its own state. If it is determined in step S2 that the failure diagnosis mode is not in effect, the diagnosis function unit of another system is accessed similarly via the inter-microcomputer communication unit 68, 78, and a failure diagnosis mode transition notification is sent from the diagnosis function unit of another system.
  • step S3 It is determined whether or not it has been received. If the other system is not in the failure diagnosis mode and no failure diagnosis mode transition notification is received from the other system, it is determined whether or not the own system can be switched to the failure diagnosis mode (fault diagnosis mode switching Determination) is performed (step S4).
  • the failure diagnosis mode switching determination determines whether or not to transition to the failure diagnosis mode based on, for example, the vehicle speed, the torque value, the steering angle, and the like.
  • the vehicle speed is input to the diagnostic function units 66 and 76 by CAN communication via the CAN bus 53 and the CAN communication unit 62 or the CAN bus 53 and the CAN communication unit 72, and acquired by the mode switching function units 67 and 77.
  • the torque value and the steering angle are acquired from the steering torque sensor 21 and the steering angle sensor 22 by the mode switching function unit 67 via the input signal processing unit 61 and the diagnostic function unit 66. Alternatively, it is acquired by the mode switching function unit 77 from the steering torque sensor 21 and the steering angle sensor 22 via the input signal processing unit 71 and the diagnostic function unit 76.
  • step S5 it is determined whether "fault diagnosis mode switching is possible" (step S5), and if it is determined that switching to the fault diagnosis mode is impossible, it is determined whether or not the assist force output ends (step S6). If it is determined in step S6 that the output of assist force is ended, the assist is ended, and if it is determined that the end is not ended, the process returns to step S1 and the output of assist force is continued. On the other hand, if it is determined in step S5 that switching to the failure diagnosis mode is possible, the mode switching function unit 67 or 77 stops its own assist and switches to the failure diagnosis mode (step S7), and executes failure diagnosis (step S8). ) And then return to the assist force output mode (step S9). Next, it is determined whether or not the assist force output is ended (step S6), and when it is determined that the assist force output is ended, the assist is ended, and when it is judged that it is not ended, the process returns to step S1 to output the assist force continue.
  • step S3 If it is determined in step S3 that the failure diagnosis mode transition notification has been received, the output of its own assist force is increased (step S10), and it is determined whether or not the assist force output is ended (step S6). If it is determined that the output is completed, the assist is ended, and if it is determined that the output is not ended, the process returns to step S1 to continue the output of the assist force. If it is determined in step S2 that the other system is in the failure diagnosis mode, it is determined whether the assist output mode return notification has been received (step S11). If not received, the failure diagnosis mode is in progress. Therefore, failure diagnosis mode interruption request determination is performed (step S12).
  • step S13 it is determined whether or not there is a "failure diagnosis mode interruption request", and if there is no request, the process proceeds to step S6 and it is determined whether or not the assist force output is ended. If it is determined in step S6 that the output of assist force is ended, the assist is ended, and if it is determined that the end is not ended, the process returns to step S1 and the output of assist force is continued.
  • step S13 If it is determined in step S13 that there is a "fault diagnosis mode interruption request", an interruption request is transmitted to the "in failure diagnosis mode" system (step S14), and the process proceeds to step S6 and the assist force output ends It is determined whether or not the output of assist force is determined to end, and the assist is ended. If it is determined that the end is not determined, the process returns to step S1 to continue the output of assist force. If it is determined in step S11 that the assist force output mode return notification has been received, the other system returns from the failure diagnosis mode. For this reason, since it is necessary to increase or decrease the assist force also in the system which is not in the failure diagnosis mode, the process proceeds to step S15 to execute the assist force output mode return.
  • step S6 it is determined whether or not the assist force output is ended. If it is determined that the assist force output is ended, the assist is ended. If it is determined that it is not ended, the process returns to step S1. To continue.
  • FIG. 5 is a flow chart showing an example of the failure diagnosis mode switching determination process of step S4 in FIG.
  • First it is determined whether the vehicle speed is the first predetermined speed or more (step S21). If the vehicle speed is the first predetermined speed or more, "fault diagnosis mode switchable" is returned (the second diagnosis mode is selected) and the process returns (return Step S27).
  • the first predetermined speed is set, for example, on the assumption that the vehicle is traveling at high speed.
  • step S21 If it is determined in step S21 that the vehicle speed is not the first predetermined speed or more, it is determined whether the vehicle speed is the second predetermined speed or less (step S22). If it is higher than the second predetermined speed, "fault diagnosis mode switchable" is returned and the process returns (step S27).
  • the second predetermined speed is set to a low speed on the assumption that, for example, a vehicle is parked, a temporary stop at an intersection, an idling stop, or the like.
  • step S23 If it is determined in step S22 that the speed is not lower than the second predetermined speed, it is determined whether the steering angle or torque is lower than a predetermined value (step S23). If lower than the predetermined value, "fault diagnosis mode switchable” is returned. And return (step S27).
  • the predetermined value for example, the steering angle or the torque is set on the assumption that the necessity for applying a large steering force is low, such as when traveling at high speed.
  • step S24 If it is determined in step S23 that the vehicle speed is not less than the predetermined value, it is determined whether mode switching is possible according to the vehicle operating condition received from another system (step S24). Is returned and returned (step S27). In step S24, it is determined from the signals of other related devices, such as an engine rotation number signal, a transmission position signal, a brake pedal stroke signal, a yaw rate sensor and a vehicle speed signal, that the need for applying a large steering force is low. Do. If it is determined in step S24 that mode switching is not possible, it is determined whether 100% assist output is possible outside the own system (step S25), and if assist output is available, "fault diagnosis mode switchable" is selected. It returns and returns (step S27).
  • step S25 If it is determined in step S24 that mode switching is not possible, it is determined whether 100% assist output is possible outside the own system (step S25), and if assist output is available, "fault diagnosis mode switchable" is selected. It returns and returns (step S27).
  • step S26 If it is determined that 100% assist output is not possible except in the own system, "failure diagnosis mode switching prohibition" is returned and the process returns (step S26). In step S25, if 100% assist output is possible in another system, it is possible to switch to the failure diagnosis mode, so this is determined.
  • FIG. 6 is a flowchart showing an example of the failure diagnosis mode interruption request determination process of step S12 in FIG.
  • the failure diagnosis mode interruption request determination process it is determined by the diagnosis function units 66 and 76 whether or not the system of “in assist output mode” is in normal operation (step S31), and if in normal operation It is judged by the assist control and external command control unit 63, 73 whether or not the system can be output only by the system of the assist force output mode (step S32).
  • step S31 If it is determined in step S31 that normal operation is not in progress, and if it is determined in step S32 that the necessary assist force can not be obtained only by the system of "assist power output mode", "failure diagnosis mode interruption request” Is returned and returned (step S33). On the other hand, when it is determined in step S32 that the necessary assist force can be obtained only by the system of the "assist force output mode", the "failure diagnosis mode continuation request" is returned and returned (step S34).
  • FIG. 7 is a flow chart showing an example of the failure diagnosis mode transition process of steps S7 and S10 in FIG.
  • the mode switching function units 67 and 77 determine whether or not the own system is a system for transition to the fault diagnosis mode (step S41), and if it is a system for transition to the fault diagnosis mode, a fault diagnosis mode transition notification is transmitted Step S42).
  • the assist control / external command control unit 63, 73 determines whether the currently required assist force output is equal to or less than a predetermined value (step S43), and if not equal to or less than the predetermined value, the assist force is gradually reduced (step S44). If not, the assist force is immediately reduced (step S45). Subsequently, the state is transitioned to "in failure diagnosis mode" (step S46), and the process returns.
  • step S41 If it is determined in step S41 that the system does not shift to the failure diagnosis mode, it is determined whether the currently required assist force output is equal to or less than a predetermined value (step S47). If it is equal to or less than the predetermined value (step S48), the assist force is immediately increased (step S49). Subsequently, the state is transitioned to “in assist force output mode” and “in other system in failure diagnosis mode” (step S50), and the process returns.
  • FIG. 8 is a flow chart showing an example of the assist force output mode return process of steps S9 and S15 in FIG.
  • the mode switching function units 67 and 77 determine whether or not the own system is a system to return to the assist force output mode (step S51), and if it is a system to return to the assist force output mode, the assist force output mode return notification It transmits (step S52).
  • the assist control / external command control unit 63, 73 determines whether the currently required assist force output is equal to or less than a predetermined value (step S53). If not, the assist force is gradually increased (step S54) If not, the assist force is immediately increased (step S55). Subsequently, the state is transitioned to "in the assist force output mode" (step S56), and the process returns.
  • step S51 If it is determined in step S51 that the system does not return to the assist force output mode, it is determined whether the currently required assist force output is equal to or less than a predetermined value (step S57). Gradually decrease (step S58), if it is less than a predetermined value, the assist force is immediately decreased (step S59). Subsequently, the state is transitioned to "in the assist force output mode" (step S56), and the process returns.
  • FIG. 9 is a flowchart showing an example of the failure diagnosis process of step S8 in FIG.
  • the failure diagnosis processing first, it is determined whether or not failure diagnosis mode interruption information is stored in the non-volatile memory 69, 79 (step S61), and if not stored, the diagnosis target is set from the beginning (step S62) If it is stored, the diagnosis target is set from the point at which it was interrupted (step S63). In the next step S64, it is judged whether or not a failure diagnosis mode interruption request has been received from the diagnostic function unit 66, 76 on the non-diagnostic side via the inter-microcomputer communication unit 68, 78. The mode interruption information is stored in the non-volatile memory 69, 79 (step S74), and the process returns.
  • step S65 it is determined whether the diagnosis target affects the reception of signals from other systems.
  • diagnosis target affects the reception of signals from other systems.
  • diagnosis is not performed on a diagnosis target that can not perform CAN communication. Specifically, for example, diagnosis of a power supply IC in which a driver for CAN communication is built can not be performed. If it is determined in step S65 that there is no influence, failure diagnosis is performed (step S66), and it is then determined whether a failure has occurred (step S67).
  • step S68 If no failure occurs, and if it is determined in step S65 that there is an influence on signal reception from other systems, the diagnosis target is changed (step S68), and it is determined whether all failure diagnosis has been completed. It determines (step S69). If all the fault diagnoses have not been completed, the process returns to step S64 to repeat the above-described process. If all the fault diagnoses have been completed, the fault diagnostic mode interruption information (step S70) is deleted and the process returns. .
  • step S67 If it is determined in step S67 that a failure has occurred, the state transitions to a failure state (step S71), and the failure is transferred to another system (vehicle-mounted device controlled by an ECU other than the EPS control ECU)
  • the notification is given (step S72), the failure is notified to the control module for external communication (step S73), and the process proceeds to step S70.
  • the control device of the power steering apparatus of the redundant configuration including the drive units of the first and second systems
  • the drive unit of one system is in the assist mode, the drive of the other system is performed.
  • the diagnostics of the unit's pre-driver, inverter, motor relay or power supply relay can be performed and the opportunity for these diagnostics can be increased. Therefore, the diagnostic range during driving of the vehicle can be expanded, early detection and notification of a failure can be performed, and safety can be improved.
  • FIG. 10A is a functional block diagram of a control device of a power steering apparatus according to a second embodiment of the present invention.
  • 10B and 10C respectively show configuration examples of the first and second microcontrollers in FIG. 10A.
  • the second embodiment differs from the above-described first embodiment in that the CAN communication units 62 and 72 are connected to other ECUs or vehicle-mounted devices via the CAN buses 53a and 53b, respectively. It is a point.
  • the other configuration is the same as that of the first embodiment. Therefore, in FIG. 10A, FIG. 10B and FIG. 10C, the same components as in FIG. 3A, FIG. 3B and FIG. Is omitted.
  • the drive units EPP1 and EPP2 can independently perform CAN communication by making the CAN communication units 62 and 72 and the CAN buses 53a and 53b redundant, so that one drive unit Even in the failure diagnosis mode, the other drive unit can perform CAN communication with the outside.
  • FIG. 11 is a functional block diagram of a control device of a power steering apparatus according to a third embodiment of the present invention.
  • the third embodiment is different from the first embodiment described above in that the three drive units EPP1, EPP2, EPP3 drive the winding sets 13a, 13b, 13c of the electric motor 13, respectively. is there.
  • the configuration of each of the drive units EPP1 and EPP2 is substantially the same as that of the first embodiment shown in FIGS. 3A, 3B and 3C.
  • the drive unit EPP3 is substantially similar to the drive unit EPP2.
  • each of the microcontrollers 32, 36-1 and 36-2 communicates via the inter-microcomputer communication unit to drive the electric motor 13.
  • the first and second drive units EPP1 and EPP2 carry the assist force output during a period in which the required assist force output during driving of the vehicle is small, and the failure diagnosis of the third drive unit EPP3 is performed. It is possible to make a transition to the mode to diagnose the drive circuit DR3 or the power supply circuit. As described above, even if the drive unit (ECU) is tripled and any system is in failure diagnosis mode, the drive unit in the assist force output mode can ensure redundant configuration, and all the driving situations depending on the output distribution of the assist force Transition to the fault diagnosis mode is possible. Of course, four or more multiplex drive units may be provided.
  • FIG. 12A is a functional block diagram of a control device of a power steering apparatus according to a fourth embodiment of the present invention.
  • 12B and 12C respectively show configuration examples of the first and second microcontrollers in FIG. 12A.
  • the communication network in the second embodiment described above is changed from CAN to Ethernet (registered trademark). That is, Ethernet communication units 62a and 72a are provided instead of CAN communication units 62 and 72, and Ethernet buses 53c and 53d are provided instead of CAN buses 53a and 53b, respectively, and are connected to other ECUs or vehicle-mounted devices . Since the other configuration is the same as that of the second embodiment, in FIGS. 12A, 12B, and 12C, the same components as those in FIGS.
  • 10A, 10B, and 10C are denoted by the same reference numerals. Is omitted. According to such a configuration, since the existing protocol is used, access to the Internet is facilitated in addition to the improvement of the communication speed. As a result, the system can be extended to a system that is equipped with an information communication system that can communicate with the Internet, called a connected car, or cooperate with devices such as smartphones and tablets.
  • FIG. 13A is a functional block diagram of a control device of a power steering apparatus according to a fifth embodiment of the present invention.
  • 13B and 13C respectively show configuration examples of the first and second microcontrollers in FIG. 13A.
  • the communication network in the second embodiment described above is changed from CAN to FlexRay (registered trademark). That is, FlexRay communication units 62b and 72b are provided instead of CAN communication units 62 and 72, and FlexRay buses 53e and 53f are provided instead of CAN buses 53a and 53b, respectively, and are connected to other ECUs or vehicle-mounted devices .
  • the other configuration is the same as that of the second embodiment, so in FIGS. 13A, 13B and 13C, the same components as in FIGS.
  • a control device of a power steering device includes an electric motor for applying a steering force to a steering wheel, and the control device of a power steering device for outputting a command signal for driving the electric motor
  • a first drive circuit including a first inverter for driving and controlling a motor; a second drive circuit including a second inverter for driving and controlling the electric motor; a first power supply circuit for supplying power to the first inverter;
  • a second power supply circuit for supplying power to a second inverter, a first microprocessor, a first motor command signal calculation unit, a first diagnosis unit, a first inter-microcomputer communication unit, and a first mode switching control
  • the first motor command signal calculation unit is configured to control the first motor command signal for driving and controlling the electric motor based on a signal related to the driving state of the vehicle.
  • the said 1st diagnostic part diagnoses the presence or absence of any abnormality in at least said 1st drive circuit, said 1st power supply circuit, or said 1st microprocessor.
  • the first mode switching control unit switches between a first assist mode and a first diagnosis mode, and in the first assist mode, the first motor command signal operation unit controls the first motor command signal. Is calculated, and the first motor command signal is output to the first drive circuit, and in the first diagnosis mode, the first diagnosis unit includes at least the first drive circuit, and the first power circuit.
  • the first microprocessor and the second microprocessor in a state of diagnosing the presence or absence of an abnormality of any one of the first microprocessors, wherein the second motor command signal Unit, a second diagnosis unit, a second microcomputer communication unit, and a second mode switching control unit, wherein the second motor command signal calculation unit controls the drive of the electric motor based on a signal related to the driving state of the vehicle A second motor command signal to the second drive circuit, and the second diagnosis unit is configured to at least one of the second drive circuit, the second power supply circuit, and the second microprocessor.
  • the second mode switching control unit switches between the second assist mode and the second diagnosis mode, and the first mode switching control unit is configured to diagnose the presence or absence of an abnormality of
  • the second diagnostic mode can be selected, and in the second assist mode, the second motor command signal calculation unit calculates the second motor command signal, and 2 A state in which a motor command signal is output to the second drive circuit, wherein in the second diagnostic mode, the second diagnostic unit at least outputs the second drive circuit, the second power supply circuit, or the second microprocessor And the second microprocessor, which is in a state of diagnosing the presence or absence of any one of the above.
  • the drive circuit or the power supply circuit is diagnosed in the other system.
  • the opportunity for diagnosis of the power supply circuit can be increased, and the safety of the device can be improved.
  • the first drive circuit includes the first inverter, a first predriver, and a first motor relay, and the first predriver is based on the first motor command signal.
  • the first motor relay has a function to shut off the power supply to the electric motor, and the first power supply circuit includes a battery of the vehicle and the first inverter.
  • the second drive circuit includes the second inverter, the second predriver, and the second motor relay, and the second predriver includes the second inverter, the second predriver, and the second motor relay.
  • the second power supply circuit is provided between the vehicle battery and the second inverter, and wherein the one having a function of shutting off the power supply to the inverter.
  • the second mode switching control unit selects the second diagnostic mode when the first motor command signal calculation unit does not output the first motor command signal to the first drive circuit. It is characterized by According to the above configuration, it is possible to safely diagnose the apparatus by selecting the diagnosis mode when it is determined that the application of the steering force (steering assist) is unnecessary and the motor command signal is not output.
  • the second mode switching control unit selects the second diagnostic mode when the vehicle speed is equal to or higher than a first predetermined speed. According to the above configuration, it is not necessary to apply a large steering force at the time of high speed traveling, and therefore, it is possible to suppress an increase in the driver's steering load due to the steering force not being applied in the system performing diagnosis. it can.
  • the second mode switching control unit selects the second diagnostic mode when the vehicle speed is equal to or less than a second predetermined speed.
  • the steering force in the system performing the diagnosis by selecting the diagnosis mode in a situation where the need for applying the steering force is low, such as during parking, pausing at an intersection, idling stop, etc. It is possible to suppress an increase in the driver's steering load due to the absence of the provision of.
  • the power steering apparatus includes a steering mechanism, and the steering mechanism steers the steered wheel along with a steering shaft that rotates based on a driver's steering operation and the steering shaft.
  • a steering shaft is included, the electric motor applies a steering force to the steered wheels through the steering mechanism, and the signal related to the driving state of the vehicle is a signal of a steering angle or a signal of a steering torque.
  • the signal of the steering angle is a signal of the rotation angle of the steering shaft, the signal of the steering torque is a signal of a torque generated in the steering mechanism, and the second mode switching control unit Is selected, or the second diagnosis mode is selected when the steering torque signal is less than a predetermined steering torque.
  • the signal related to the driving state of the vehicle is a signal related to equipment other than the power steering device mounted on the vehicle
  • the second mode switching control unit is the power steering device mounted on the vehicle
  • the second diagnostic mode is selected based on signals relating to devices other than the above. According to the above configuration, it is determined by the signals of other related devices that the need for applying a large steering force is low, whereby the driver is not given the application of steering force in the system performing diagnosis. An increase in steering load can be suppressed.
  • Signals of other related devices include an engine rotation number signal, a transmission position signal, a brake pedal stroke signal, a yaw rate sensor, a vehicle speed signal, and the like.
  • the first mode switching control unit is selecting the first assist mode
  • the second mode switching control unit is selecting the second diagnostic mode
  • the second mode When the switching control unit determines that switching to the second assist mode is necessary, the second diagnosis unit cancels the diagnosis of the second drive circuit, the second power supply circuit, or the second microprocessor.
  • the second motor command signal calculation unit is characterized in that the output of the second motor command signal to the drive circuit is started.
  • the power steering apparatus includes a steering mechanism, and the steering mechanism steers the steered wheel along with a steering shaft that rotates based on a driver's steering operation and the steering shaft.
  • a steering shaft is included, the electric motor applies a steering force to the steered wheels through the steering mechanism, and a signal related to an operating state of the vehicle is a signal of a steering torque, the steering torque Is a signal of torque generated in the steering mechanism, and the second mode switching control unit selects the second assist mode when the signal of the steering torque is equal to or greater than a predetermined steering torque.
  • the steering torque is one of the indicators that best represents the driver's steering load. Therefore, more appropriate mode switching is performed by switching the diagnosis mode and the assist mode based on the steering torque signal. be able to.
  • the second diagnostic unit further determines the presence or absence of an abnormality of the first microprocessor, and the second diagnostic unit determines that the first microprocessor has an abnormality.
  • the second mode switching control unit selects the second assist mode.
  • the second microprocessor includes a second diagnostic status storage unit, and the second diagnostic status storage unit stores a diagnostic status in the second diagnostic unit, and 2) The diagnosis unit temporarily suspends the diagnosis while performing diagnosis of the second drive circuit, the second power supply circuit, or the second microprocessor, and then restarts the diagnosis after that; 2) The diagnosis is resumed based on the diagnosis status stored in the diagnosis status storage unit.
  • the diagnosis is temporarily suspended in the middle of the diagnosis, and when the restart is resumed, the diagnostic status at the time of suspension is stored, and when the restart is performed, the diagnosis is repeated by continuing the diagnosis. Can be suppressed and efficient diagnosis can be performed.
  • a control device of a power steering apparatus includes a third drive circuit, a third power supply circuit, and a third microprocessor, and the third drive circuit drives and controls the electric motor.
  • An inverter is included, and the third power supply circuit supplies power to the third inverter, and the third microprocessor includes a third motor command signal calculation unit, a third diagnosis unit, and a third diagnosis unit.
  • the third motor command signal calculation unit includes a third motor command signal for driving and controlling the electric motor based on a signal related to the driving state of the vehicle.
  • the third diagnostic unit outputs at least the third drive circuit, the third power supply circuit, or the third microprocessor.
  • the third mode switching control unit is configured to switch between a third assist mode and a third diagnosis mode, and the first mode switching control unit is configured to perform the first assist mode.
  • the third diagnostic mode can be selected, and the third assist mode is the third assist mode.
  • the motor command signal calculation unit calculates the third motor command signal and outputs the third motor command signal to the third drive circuit, and the third diagnosis unit in the third diagnosis mode is: It is characterized in that it is in a state of diagnosing the presence or absence of any one of at least the third drive circuit, the third power supply circuit, and the third microprocessor.
  • the control device includes the third drive circuit, the third power supply circuit, and the third microprocessor so that the remaining two microprocessors can be selected even if one microprocessor is selecting the diagnostic mode. Can configure a redundant system.
  • the third mode switching control unit can select the third diagnostic mode regardless of the driving state of the vehicle. According to the above configuration, even if one microprocessor is selecting a diagnostic mode, a redundant system can be configured by the remaining two microprocessors, so that the diagnostic mode is selected regardless of the operating state. be able to.
  • the second motor command signal calculation unit is configured to:
  • the first motor command signal calculation unit is characterized in that the torque value instructed by the first motor command signal is increased while the torque value instructed by the second motor command signal is decreased.
  • the second motor command signal calculation unit is configured to: (2) The torque value instructed by the motor command signal is gradually decreased, and the first motor command signal calculating unit is characterized by gradually increasing the torque value instructed by the first motor command signal.
  • the power steering apparatus includes a steering mechanism, and the steering mechanism steers the steered wheel along with a steering shaft that rotates based on a driver's steering operation and the steering shaft.
  • a steering shaft is included, the electric motor applies a steering force to the steered wheels via the steering mechanism, and a signal related to an operating state of the vehicle is a signal of a steering torque, The signal is a signal of torque generated in the steering mechanism, and when the second diagnostic unit starts diagnosis of the second drive circuit, the second power circuit, or the second microprocessor, When the steering torque signal is less than a predetermined value, the second motor command signal calculation unit decreases the torque value instructed by the second motor command signal, and calculates the first motor command signal.
  • a control device of a power steering device includes a first transceiver, a first controller, a second transceiver, and a second controller
  • the vehicle includes a bus and a vehicle control device other than the power steering device.
  • the first transceiver is connected to the bus and transmits / receives signals to / from the bus, and the first controller transmits / receives signals to / from the first transceiver.
  • the second transceiver is connected to the bus, and transmits and receives signals to and from the bus, and the second controller transmits and receives signals to and from the second transceiver.
  • the first diagnosis unit is the first drive circuit, and the first power circuit
  • the first diagnosis unit is the first drive circuit, and the first power circuit
  • a signal relating to the first abnormality is transmitted to the vehicle control device
  • the second transceiver is configured to transmit the second diagnostic unit.
  • a signal related to the second abnormality is transmitted to the vehicle control device when a second abnormality that is an abnormality of the drive circuit, the second power supply circuit, or the second microprocessor is detected.
  • the second vehicle control device can appropriately cope with the second abnormality by sharing information with the second vehicle control device regarding the second abnormality.
  • the vehicle control device is a control module for external communication that transmits a signal to an apparatus other than the vehicle, and the signal regarding the second abnormality received from the first transceiver or the second transceiver. Are transmitted to devices other than the vehicle. According to the above configuration, by transmitting the information to the device other than the vehicle, for example, the network of the vehicle service, regarding the second abnormality, it is possible to receive the prompt and appropriate vehicle service for the second abnormality.
  • the first diagnostic circuit is configured to transmit the first drive circuit when at least one of the first transceiver and the second transceiver can transmit and receive signals to and from the bus. And diagnosing the presence or absence of an abnormality of the first power supply circuit or the first microprocessor, and the second diagnostic unit is configured to communicate signals between at least one of the first transceiver and the second transceiver with the bus. When in a state capable of transmission and reception, it is characterized in that presence or absence of abnormality of the second drive circuit, the second power supply circuit, or the second microprocessor is diagnosed. According to the above configuration, the first and second diagnosis units can perform appropriate diagnosis based on the signals from the other on-vehicle devices acquired via the bus.
  • a signal can be transmitted to another vehicle-mounted device regarding the occurrence of the second abnormality.
  • the first drive circuit via the communication unit between the first and second microcomputers
  • the second abnormality signal can be transmitted to the second microprocessor side, and the second transceiver can transmit a second abnormality signal to another vehicle-mounted device.
  • ECU for EPS control 10 ... power steering device, 13 ... electric motor, 13a, 13b, 13c ... winding assembly, 29, 30 ... power supply relay (power supply circuit), 31 ... battery, 32 ... first microcontroller (the first microcontroller) First microprocessor), 33 ... predriver (first predriver), 36 ... second microcontroller (second microprocessor), 37 ... predriver (second predriver), 40 ... inverter (first inverter), DESCRIPTION OF SYMBOLS 41 ... Inverter (2nd inverter) 44 ... Motor relay (1st motor relay) 46 ... Motor relay (2nd motor relay) 53, 53a, 53b ... CAN bus, 53c, 53d ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

車両の運転中における診断範囲を拡大でき、故障の早期発見と通知ができるパワーステアリング装置の制御装置を提供する。 パワーステアリング装置の制御装置は、アシスト用の電動モータをそれぞれ駆動する第1および第2系統の駆動ユニットを備えた冗長化構成である。これら駆動ユニットは、故障を診断する診断機能部と、必要なアシスト力出力が少ない車両運転中の期間に、一方の系統の駆動ユニットでアシスト力出力を担い、他方の系統の駆動ユニットを故障診断モードに遷移させて、上記診断機能部に駆動回路または電源回路の診断をさせるモード切換機能部とを備えている。

Description

パワーステアリング装置の制御装置
 本発明は、冗長化構成されたパワーステアリング装置の制御装置に関する。
 冗長系のシステムを持つEPS(Electric Power Steering)では、車両運転中は一部の機能および回路の故障診断については、アシスト力出力ができなくなるため実施できない。このため、故障診断は、運転開始時のアシスト力出力前にのみ行うものとしていた。従って、車両運転中は、当該機能や回路に故障が発生した場合でも、次回の起動時の診断まで発見できない。
 そこで、例えば特許文献1の電動パワーステアリング装置では、アシストモータに駆動電流が流れない期間を予測する予測部を設け、モータに駆動電流が流れない期間であると予測した場合に、モータへの通電に関わる回路の車両運転中の故障診断を実施している。
特開2016-113024号公報
 ところで、近年、EPSの普及に伴い、更なる商品力の向上が望まれるようになってきており、車両走行時の診断範囲をできるだけ広く、またより早い故障検出と故障通知機能を盛り込みたい、という要望がある。
 本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、車両の運転中における診断範囲を拡大でき、故障の早期発見と通知ができるパワーステアリング装置の制御装置を提供することにある。
 本発明のパワーステアリング装置の制御装置は、その一つの態様において、アシストモータをそれぞれ駆動する複数系統の駆動ユニットを備えた冗長化構成のシステムであって、必要なアシスト力出力が少ない車両運転中の期間に、複数系統のうち一部の駆動ユニットでアシスト力出力を担い、残りの系統の駆動ユニットを診断モードに遷移させて駆動回路または電源回路の診断を行うためのモード切換機能部を備える。
 本発明によれば、複数系統の駆動ユニットを備えた冗長化構成のパワーステアリング装置の制御装置において、一部の系統の駆動ユニットがアシストモードのとき、残りの系統の駆動ユニットの駆動回路または電源回路の診断を行うことができ、駆動回路や電源回路の診断の機会を増やすことができる。したがって、車両の運転中における診断範囲を拡大でき、故障の早期発見と通知ができ、安全性の向上を図ることができる。
本発明の実施形態に係るパワーステアリング装置に関係する要部を抽出して概略構成を示す斜視図である。 本発明の実施形態に係るパワーステアリング装置の制御装置におけるEPS制御用ECUの構成例を示すブロック図である。 本発明の第1の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。 図3Aにおける第1マイクロコントローラの構成例を示すブロック図である。 図3Aにおける第2マイクロコントローラの構成例を示すブロック図である。 図3A、図3Bおよび図3Cに示した制御装置における動作を概略的に示すフローチャートである。 図4における故障診断モード切換判定処理の一例を示すフローチャートである。 図4における故障診断モード中断要求判定処理の一例を示すフローチャートである。 図4における故障診断モード遷移処理の一例を示すフローチャートである。 図4におけるアシスト力出力モード復帰処理の一例を示すフローチャートである。 図4における故障診断処理の一例を示すフローチャートである。 本発明の第2の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。 図10Aにおける第1マイクロコントローラの構成例を示すブロック図である。 図10Aにおける第2マイクロコントローラの構成例を示すブロック図である。 本発明の第3の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。 本発明の第4の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。 図12Aにおける第1マイクロコントローラの構成例を示すブロック図である。 図12Aにおける第2マイクロコントローラの構成例を示すブロック図である。 本発明の第5の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。 図13Aにおける第1マイクロコントローラの構成例を示すブロック図である。 図13Aにおける第2マイクロコントローラの構成例を示すブロック図である。
 以下、本発明の実施形態について図面を参照して説明する。
[第1の実施形態]
 図1は、本発明の実施形態に係るパワーステアリング装置に関係する要部を抽出して概略構成を示している。パワーステアリング装置10は、ラックハウジング11、モータハウジング12、二系統の巻線組を有する電動モータ(三相ブラシレスモータ)13、減速機14、ピニオン15、ダストブーツ16,16、タイロッド17,17および操舵機構18などを備える。ラックハウジング11には、図示しないピニオンシャフトとラックバー、およびステアリングシャフト19の一部が収容されている。また、モータハウジング12には、電動モータ13とEPS制御用ECU3が収容されている。そして、電動モータ13の回転が減速機14で減速されて操舵機構18に伝達され、車両の運転者による操舵力をアシストして操舵輪に付与する。
 操舵機構18は、ステアリングシャフト19、ピニオンシャフトおよびトーションバーを有する。ステアリングシャフト19は、ステアリングホイールと一体に回転する。操舵軸20には、操舵機構18の操舵状態を検出する操舵センサとしての操舵トルクセンサ21と舵角センサ22が取り付けられている。これら操舵トルクセンサ21と舵角センサ22はそれぞれ、一対ずつ設けられている。操舵トルクセンサ21は、トーションバーの捩じれ量に基づいて操舵機構18に発生する操舵トルク(トーションバートルク)を検出する。舵角センサ22は、ステアリング操作時の舵角を検出する。
 ピニオンシャフトは、トーションバーを介してステアリングシャフト19と接続されている。ダストブーツ16,16は、ゴムなどを用いて蛇腹環状に形成されている。ダストブーツ16,16の車幅方向外側端は、タイロッド17,17の車幅方向内側端に固定されている。これら一対のタイロッド17,17の端部は、上記ラックバーの両端に接続されている。
 図2は、図1におけるEPS制御用ECU3の構成例を示すブロック図である。このEPS制御用ECU3は、プリント基板上に実装される論理回路部3aと、メタルプリント基板上に実装される電力回路部3bとを有する。論理回路部3aは電源ICなどで生成された内部電源電圧で動作し、電力回路部3bはバッテリー31から供給される外部電源電圧で動作する。そして、メタルプリント基板で、発熱量の大きいパワー系デバイスの放熱対策と熱による電子部品の信頼性対策を行っている。
 論理回路部3aと電力回路部3bは、一点鎖線DLを境界とする第1、第2系統の駆動ユニットEPP1,EPP2を備えた冗長化構成になっている。第1系統の駆動ユニットEPP1の論理回路部3aは、第1マイクロコントローラ(本例ではデュアルコアCPU)32、プリドライバ33、CPUモニタ34および仮想モータ位置検出器(インダクタンス検出器)35などで構成される。電力回路部3bは、第1インバータ40と3シャント方式の第1電流検出部42を備える。この電流検出部42は、モータ相電流センサおよび一次電流センサとして用いられる。
 同様に、第2系統の駆動ユニットEPP2の論理回路部3aは、第2マイクロコントローラ(本例ではデュアルコアCPU)36、プリドライバ37、CPUモニタ38および仮想モータ位置検出器(インダクタンス検出器)39などで構成される。電力回路部3bは、第2インバータ41と3シャント方式の第2電流検出部43を備える。この電流検出部43は、モータ相電流センサおよび一次電流センサとして用いられる。
 第1、第2マイクロコントローラ32,36はそれぞれ、EPSのアシスト制御の演算、モータ電流のコントロール、機能構成要素の異常検出、及び安全状態への移行処理などを行うものである。第1、第2マイクロコントローラ32,36にはそれぞれ、内部動作電源48,49から電源電圧が印加される。CPUモニタ34,38は、マイクロコントローラ32,36に発生した異常を検出するもので、異常と判断されたとき、マイクロコントローラ32,36への電源供給を遮断する機能を持っている。また、プリドライバ33,37はそれぞれ、マイクロコントローラ32,36からの指令に基づいて、インバータ40,41中の駆動素子を駆動する。インバータ40,41は、電動モータ13へ電流を流すための複数の駆動素子で構成され、プリドライバ33,37からの指令に基づいて作動する。これらインバータ40,41からの駆動電流に応じて、二系統の巻線組を有する電動モータ13が駆動されてモータトルクを発生する。
 電流検出部42,43は、アシスト制御から求めた電動モータ13での必要トルクを出力するために、モータ制御で必要な電流値が目標どおり出ているかモニタする機能と1次電流(バッテリー31から駆動ユニットEPP1,EPP2への取り込み電流)をモニタする機能を備える。
 駆動ユニットEPP1の第1操舵センサ23a(操舵トルクセンサ21aと舵角センサ22a)には、論理回路部3aの内部動作電源45から電源電圧が印加され、検出出力は第1、第2マイクロコントローラ32,36にそれぞれ供給される。また、駆動ユニットEPP2の第2操舵センサ23b(操舵トルクセンサ21bと舵角センサ22b)には、論理回路部3aの内部動作電源47から電源電圧が印加され、検出出力は第2、第1マイクロコントローラ36,32にそれぞれ供給される。
 ここで、操舵トルクセンサ21aと舵角センサ22a、および操舵トルクセンサ21bと舵角センサ22bには、デュアルコアCPUにそれぞれ対応するデュアルセンサを用いることができる。第1、第2マイクロコントローラ32,36は、マイクロコンピュータ間通信(CPU間通信)を行ってステータス信号とセンサ信号の送受信を行う。
 電動モータ13には、モータ回転角センサ(デュアルモータ位置センサ)50a,50bがプリント基板上に実装されて設けられている。このモータ回転角センサ50a,50bには、論理回路部3aに設けられた内部動作電源51,52から電源電圧が印加され、検出出力がそれぞれ第1、第2マイクロコントローラ32,36に供給される。
 第1マイクロコントローラ32は、電流検出部42で検出した3相電流、仮想モータ位置検出器35で検出したロータの回転位置、およびモータ回転角センサ50a,50bで検出したモータ回転角などに基づいて、PWM(Pulse Width Modulation)制御を行うためのパルス信号を生成する。第1マイクロコントローラ32から出力されるパルス信号は、プリドライバ33に供給される。また、第2マイクロコントローラ36は、電流検出部43で検出した相電流、仮想モータ位置検出器39で検出したロータの回転位置、およびモータ回転角センサ50a,50bで検出したモータ回転角などに基づいてPWM制御を行うためのパルス信号を生成する。第2マイクロコントローラ36から出力されるパルス信号は、プリドライバ37に供給される。
 第1マイクロコントローラ32の動作はCPUモニタ34によって検証され、第2マイクロコントローラ36の動作はCPUモニタ38によって検証される。これらCPUモニタ34,38は、例えばウォッチドッグと呼ばれるタイマで構成されており、第1、第2マイクロコントローラ32,36が正常か否かを常に監視している。
 プリドライバ33,37から出力されるパルス信号(PWM信号)はそれぞれ、インバータ40,41に供給され、電動モータ13がインバータ40,41からの電流に応じて駆動される。電動モータ13の駆動時の3相電流が電流検出部42,43でそれぞれ検出され、検出信号がフィードバック制御を行うために第1、第2マイクロコントローラ32,36に供給される。第1、第2マイクロコントローラ32,36では、3相電流に基づいてバッテリー31からの総電流量が算出される。また、仮想モータ位置検出器35,39により、ステータコイルの中性点電圧に基づいてロータの回転位置が検出され、検出信号が第1、第2マイクロコントローラ32,36に供給される。仮想モータ位置検出器35,39の検出信号は、電流検出部42,43およびモータ回転角センサ50a,50bの検出出力の検証用とセンサ故障時のバックアップ用に用いられる。
 図3Aは、本発明の第1の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図であり、図2における第1、第2の駆動ユニットEPP1,EPP2の機能構成例を詳細に示している。また、図3Bおよび図3Cはそれぞれ、図3Aにおける第1、第2マイクロコントローラの構成例を示している。第1系統の駆動ユニットEPP1は、第1センサ54、第1マイクロコントローラ(第1マイクロプロセッサ)32、プリドライバ33、インバータ40、モータリレー44、電源リレー(第1電源回路)29および電動モータ13の巻線組13aなどを含んでいる。プリドライバ33、インバータ40およびモータリレー44は、電動モータ13の巻線組13aを駆動する第1駆動回路DR1として働く。
 更に、第2系統の駆動ユニットEPP2は、第2センサ55、第2マイクロコントローラ(第2マイクロプロセッサ)36、プリドライバ37、インバータ41、モータリレー46、電源リレー(第2電源回路)30および電動モータ13の巻線組13bなどを含んでいる。プリドライバ37、インバータ41およびモータリレー46は、電動モータ13の巻線組13bを駆動する第2駆動回路DR2として働く。
 第1センサ54は、車両の運転状態を示す状態量を検出するもので、上述した操舵トルクセンサ21(21a,21b)、舵角センサ22(22a,22b)、モータ回転角センサ50(50a,50b)、モータ相電流センサ・一次電流センサ(電流検出部)42に加えて、電源電圧モニタ81と温度センサ82が含まれている。第2センサ55も同様に、車両の運転状態を示す状態量を検出するもので、上述した操舵トルクセンサ21(21a,21b)、舵角センサ22(22a,22b)、モータ回転角センサ50(50a,50b)、モータ相電流センサ・一次電流センサ(電流検出部)43に加えて、電源電圧モニタ83が含まれている。
 第1マイクロコントローラ32は、第1センサ54の出力信号に基づき電動モータ13の巻線組13aをPWM制御するパルス信号を生成する。この第1マイクロコントローラ32は、図3Bに示すように、入力信号処理部61、CAN通信部(第1トランシーバー及び第1コントローラ)62、アシスト制御・外部指令制御部63、アシスト制限部64、モータ制御部65、診断機能部(第1診断部)66、モード切換機能部(第1モード切換制御部)67、マイコン間通信部68および不揮発性メモリ69などを備えている。アシスト制御・外部指令制御部63、アシスト制限部64およびモータ制御部65は、車両の運転状態に関する信号に基づき電動モータ13を駆動制御する第1モータ指令信号を算出し、第1駆動回路DR1に出力する第1モータ指令信号演算部として働くものである。不揮発性メモリ69は、診断機能部66における診断状況を記憶する第1診断状況記憶部として働く。
 同様に、第2マイクロコントローラ36は、第2センサ55の出力信号に基づき電動モータ13の巻線組13bをPWM制御するパルス信号を生成する。この第2マイクロコントローラ36は、図3Cに示すように、入力信号処理部71、CAN通信部(第2トランシーバー及び第2コントローラ)72、アシスト制御・外部指令制御部73、アシスト制限部74、モータ制御部75、診断機能部(第2診断部)76、モード切換機能部(第2モード切換制御部)77、マイコン間通信部78および不揮発性メモリ79などを備えている。アシスト制御・外部指令制御部73、アシスト制限部74およびモータ制御部75は、車両の運転状態に関する信号に基づき電動モータ13を駆動制御する第2モータ指令信号を算出し、第2駆動回路DR2に出力する第2モータ指令信号演算部として働くものである。不揮発性メモリ79は、診断機能部76における診断状況を記憶する第1診断状況記憶部として働く。
 各CAN通信部62,72は、CANバス(通信ネットワーク)53を介して、他のECUあるいは車両搭載機器に接続される。
 第1、第2マイクロコントローラ32,36は、マイコン間通信により相互監視を行っている。また、これらマイクロコントローラ32,36内に設けられている診断機能部66,76は自系統内の異常検出と、マイコン間通信を介した他方の系統における異常検出を行っている。更に、アシスト制限部64,74はそれぞれ、EPS制御用ECU3が過熱などを起こした場合に、アシスト制御の算出結果に対し、予め設定されたトルク(上限出力)までモータトルク指令を低減させることで自系統の保護を行う。
 第1センサ54中の各センサの出力信号は、入力信号処理部61に入力され、例えばA/D変換されてデジタル信号に変換される。入力信号処理部61の出力信号は、アシスト制御・外部指令制御部63に供給される。アシスト制御・外部指令制御部63では、第1センサ54の出力信号に基づき電動モータ13を駆動制御するための第1制御量の演算が行われる。第1制御量には、運転者の操舵力のアシスト量と、例えば自動駐車システムにおいて運転者のステアリング操作とは無関係に外部指令により出力される操舵力量が含まれる。アシスト制御・外部指令制御部63から出力される信号は、アシスト制限部64を介してモータ制御部65に供給される。モータ制御部65は、第1制御量に基づきプリドライバ33、インバータ40およびモータリレー44を介して電動モータ13の巻線組13aを駆動制御する。
 診断機能部66には、入力信号処理部61の出力信号およびCAN通信部62の出力信号が供給され、プリドライバ33、インバータ40、巻線組13aまたは第1センサ54の出力信号の異常の有無を判断する。診断機能部66の出力信号は、アシスト制限部64とモード切換機能部67に供給され、電動モータ13による操舵力のアシストが制限されると共に、故障診断モードへの切り換えが実行される。モード切換機能部67は、車両の運転状況を監視しており、車両運転中の必要なアシスト力出力が少なく、全ての系統によるアシスト力が必要ないと判断した場合に、他系統(駆動ユニットEPP2)に対して自系統(駆動ユニットEPP1)が故障診断モードへ遷移することを要求する。そして、故障診断モードへの遷移が確定した場合には、他系統へ自系統のアシスト力を分配した上で、診断機能部66によって故障診断を行う。この診断結果は、不揮発性メモリ69に記録する。診断後に正常と判明した場合はアシスト力出力モードへ復帰し、また診断中に故障が判明した場合は速やかに他系統及び他システムへ異常通知を行う。
 モード切換機能部67は、診断機能部66でプリドライバ33、インバータ40、モータリレー44、巻線組13aまたは第1センサ54の出力信号に異常有りと判断されたときに、アシスト制御・外部指令制御部63、アシスト制限部64およびモータ制御部65にそれぞれ演算停止指令を出力して演算を停止させる。
 また、第2センサ55中の各センサの出力信号は、入力信号処理部71に入力され、例えばA/D変換されてデジタル信号に変換される。入力信号処理部71の出力信号は、アシスト制御・外部指令制御部73に供給される。アシスト制御・外部指令制御部73では、第2センサ55の出力信号に基づき電動モータ13の巻線組13aを駆動制御するための第2制御量の演算が行われる。第2制御量には、運転者の操舵力のアシスト量と、例えば自動駐車システムにおいて運転者のステアリング操作とは無関係に外部指令により出力される操舵力量が含まれる。アシスト制御・外部指令制御部73から出力される信号は、アシスト制限部74を介してモータ制御部75に供給される。モータ制御部75は、第2制御量に基づきプリドライバ37、インバータ41およびモータリレー46を介して電動モータ13の巻線組13bを駆動制御する。
 診断機能部76には、入力信号処理部71の出力信号およびCAN通信部72の出力信号が供給され、プリドライバ37、インバータ41、巻線組13bまたは第2センサ55の出力信号の異常の有無を判断する。診断機能部76の出力信号は、アシスト制限部74とモード切換機能部77に供給され、電動モータ13による操舵力のアシストが制限されると共に、故障診断モードへの切り換えが実行される。モード切換機能部77は、車両の運転状況を監視しており、車両運転中の必要なアシスト力出力が少なく、全ての系統によるアシスト力が必要ないと判断した場合に、他系統(駆動ユニットEPP1)に対して自系統(駆動ユニットEPP2)が故障診断モードへ遷移することを要求する。そして、故障診断モードへの遷移が確定した場合には、他系統へ自系統のアシスト力を分配した上で、診断機能部76によって故障診断を行う。この診断結果は、不揮発性メモリ79に記録する。診断後に正常と判明した場合はアシスト力出力モードへ復帰し、また診断中に故障が判明した場合は速やかに他系統及び他システムへ異常通知を行う。
 モード切換機能部77は、診断機能部76でプリドライバ37、インバータ41、モータリレー46、巻線組13bまたは第2センサ55の出力信号に異常有りと判断されたときに、アシスト制御・外部指令制御部73、アシスト制限部74およびモータ制御部75にそれぞれ演算停止指令を出力して演算を停止させるようになっている。
 マイコン間通信部(CPU間通信部)68,78は、第1マイクロコントローラ32と第2マイクロコントローラ36の間で行われる信号の送受信を行うものである。マイコン間通信部68は、診断機能部66およびモード切換機能部67とデータの授受を行うと共に、CAN通信部62とCANバス53を介して他のECUあるいは車両搭載機器との通信を行う。また、マイコン間通信部78は、診断機能部76およびモード切換機能部77とデータの授受を行うと共に、CAN通信部72とCANバス53を介して他のECUあるいは車両搭載機器との通信を行う。
 モード切換機能部67は、マイクロコントローラ36からマイコン間通信部78,68を介してモード切換指令を受信し、モード切換完了情報をマイコン間通信部68,78を介してマイクロコントローラ36に送信する。また、モード切換機能部77は、マイクロコントローラ32からマイコン間通信部68,78を介してモード切換指令を受信し、モード切換完了情報を、マイコン間通信部78,68を介してマイクロコントローラ32に送信する。
 次に、上記のような構成において、図4乃至図9のフローチャートにより制御動作を説明する。図4は、図3A、図3Bおよび図3Cに示した制御装置における動作を概略的に示すフローチャートである。ステップS2~S5,S7,S10~S14はモード切換機能部67,77の動作、ステップS8は診断機能部66,76の動作、ステップS9,S15はモード切換機能部67,77の動作をそれぞれ示している。
 ここでは、車両の運転状態で、操舵のアシスト力が出力されているものとする(ステップS1)。まず、モード切換機能部で自身の状態を基に「他系統が故障診断モード中」であるか否かを判断する(ステップS2)。すなわち、モード切換機能部67で、自身の状態を基に他系統の診断機能部76が故障診断モード中であるか否かを判断する。また、モード切換機能部77で、自身の状態を基に他系統の診断機能部66が故障診断モード中であるか否かを判断する。
 ステップS2で故障診断モード中でないと判定されると、同様にしてマイコン間通信部68,78を介して他系統の診断機能部をアクセスし、他系統の診断機能部から故障診断モード遷移通知を受信したか否かを判断する(ステップS3)。他系統が故障診断モード中ではなく、且つ他系統から故障診断モード遷移通知も受信していない場合には、自身の系統が故障診断モードに切り換えることができるか否かの判定(故障診断モード切換判定)を行う(ステップS4)。
 上記故障診断モード切換判定は、例えば車速、トルク値、舵角などを元に故障診断モードに遷移して良いか否かを判定する。車速は、CANバス53とCAN通信部62またはCANバス53とCAN通信部72を介してCAN通信で診断機能部66,76に入力し、これをモード切換機能部67,77で取得する。トルク値および舵角は、操舵トルクセンサ21および舵角センサ22から、入力信号処理部61と診断機能部66を介してモード切換機能部67で取得する。あるいは操舵トルクセンサ21および舵角センサ22から入力信号処理部71と診断機能部76を介してモード切換機能部77で取得する。
 続いて、「故障診断モード切換可能」か否かを判定し(ステップS5)、故障診断モードに切り換え不可能と判定されると、アシスト力出力終了か否かを判定する(ステップS6)。ステップS6で、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
 一方、ステップS5で故障診断モードに切り換え可能と判定されると、モード切換機能部67または77により自身のアシストを停止させて故障診断モードに遷移させ(ステップS7)、故障診断を実行(ステップS8)した後、アシスト力出力モードに復帰する(ステップS9)。次に、アシスト力出力終了か否かを判定し(ステップS6)、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
 ステップS3で故障診断モード遷移通知を受信したと判定された場合には、自身のアシスト力の出力を増加させ(ステップS10)、アシスト力出力終了か否かを判定し(ステップS6)、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
 また、ステップS2で、他系統が故障診断モード中であると判定された場合には、アシスト出力モード復帰通知を受信したか否か判定し(ステップS11)、受信していなければ故障診断モード中であるので、故障診断モード中断要求判定を実施する(ステップS12)。次のステップS13では、「故障診断モード中断要求」か否かを判定し、要求が無ければステップS6に進んでアシスト力出力終了か否かを判定する。ステップS6で、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
 ステップS13で、「故障診断モード中断要求」が有りと判定された場合には、「故障診断モード中」の系統へ中断要求を送信し(ステップS14)、ステップS6に進んでアシスト力出力終了か否かを判定し、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
 ステップS11でアシスト力出力モード復帰通知を受信したと判定された場合には、他系統が故障診断モードから復帰してくる。このため、故障診断モードに入っていない系統の方もアシスト力の増加又は減少をする必要があるので、ステップS15に進んでアシスト力出力モード復帰を実行する。続いて、ステップS6に進んでアシスト力出力終了か否かを判定し、アシスト力出力終了と判定されるとアシストを終了し、終了でないと判定されるとステップS1に戻って、アシスト力の出力を継続する。
<故障診断モード切換判定処理>
 図5は、図4におけるステップS4の故障診断モード切換判定処理の一例を示すフローチャートである。まず、車両速度が第1所定速度以上か否か判定し(ステップS21)、第1所定速度以上であれば「故障診断モード切換可能」を返却(第2診断モードを選択)してリターンする(ステップS27)。ここで、第1所定速度は、例えば車両が高速走行時を想定して設定する。
 ステップS21で第1所定速度以上ではないと判定されると、車両速度が第2所定速度以下か否か判定する(ステップS22)。第2所定速度以上であれば「故障診断モード切換可能」を返却してリターンする(ステップS27)。ここで、第2所定速度は、例えば車両が駐車中、交差点での一時停止中、アイドリングストップ中などを想定して低速に設定する。
 ステップS22で第2所定速度以下ではないと判定されると、舵角もしくはトルクが所定値以下か否か判定し(ステップS23)、所定値以下であれば「故障診断モード切換可能」を返却してリターンする(ステップS27)。ここで、所定値は、例えば高速走行時などのように大きな操舵力を付与する必要性が低い状況を想定して舵角もしくはトルクを設定する。
 ステップS23で所定値以下ではないと判定されると、他システムから受信した車両運転状態によってモード切り換えが可能か否か判定し(ステップS24)、モード切り換えが可能であれば「故障診断モード切換可能」を返却してリターンする(ステップS27)。ステップS24では、他の関連機器の信号、例えばエンジン回転数信号、変速機のポジション信号、ブレーキペダルのストローク信号、ヨーレートセンサおよび車速信号などから、大きな操舵力の付与の必要性が低いことを判断する。
 ステップS24でモード切り換えが不可能と判定されると、自系統以外で100%のアシスト出力が可能か否か判定し(ステップS25)、アシスト出力が可能であれば「故障診断モード切換可能」を返却してリターンする(ステップS27)。自系統以外で100%のアシスト出力が不可能と判定された場合には、「故障診断モード切換禁止」を返却してリターンする(ステップS26)。ステップS25では、他系統で100%のアシスト出力が可能であれば、故障診断モードへの切り換えが可能であるので、それを判定している。
<故障診断モード中断要求判定処理>
 図6は、図4におけるステップS12の故障診断モード中断要求判定処理の一例を示すフローチャートである。故障診断モード中断要求判定処理では、診断機能部66,76により「アシスト出力モード中」の系統が正常動作中か否か判定し(ステップS31)、正常動作中であれば必要なアシスト力が「アシスト力出力モード」の系統のみで出せるか否かアシスト制御・外部指令制御部63,73で判定する(ステップS32)。ステップS31において正常動作中では無いと判定された場合、およびステップS32において必要なアシスト力が「アシスト力出力モード」の系統のみで出せないと判定された場合には、「故障診断モード中断要求」を返却してリターンする(ステップS33)。
 一方、ステップS32において必要なアシスト力が「アシスト力出力モード」の系統のみで出せると判定された場合には、「故障診断モード継続要求」を返却してリターンする(ステップS34)。
<故障診断モード遷移処理>
 図7は、図4におけるステップS7,S10の故障診断モード遷移処理の一例を示すフローチャートである。故障診断モード遷移処理では、自系統が故障診断モードに入るときには、他系統にアシストを徐々に移譲して減少させる動作を行い、他系統が故障診断モードに入るときには、自系統のアシストを徐々に増加させる動作を行う。
 まず、モード切換機能部67,77で自系統が故障診断モードへ遷移する系統か否かを判定し(ステップS41)、故障診断モードへ遷移する系統であれば故障診断モード遷移通知を送信する(ステップS42)。次に、アシスト制御・外部指令制御部63,73で、現在必要なアシスト力出力が所定値以下か否か判定し(ステップS43)、所定値以下でなければアシスト力を漸減し(ステップS44)、所定値以下であればアシスト力を即時減少させる(ステップS45)。続いて、状態を「故障診断モード中」に遷移(ステップS46)させてリターンする。
 ステップS41で、故障診断モードへ遷移する系統でないと判定された場合には、現在必要なアシスト力出力が所定値以下か否か判定し(ステップS47)、所定値以下でなければアシスト力を漸増し(ステップS48)、所定値以下であればアシスト力を即時増加させる(ステップS49)。続いて、状態を「アシスト力出力モード中」かつ「他系統が故障診断モード中」に遷移(ステップS50)させてリターンする。
<アシスト力出力モード復帰処理>
 図8は、図4におけるステップS9,S15のアシスト力出力モード復帰処理の一例を示すフローチャートである。アシスト力出力モード復帰処理では、上述したアシスト力出力モード遷移処理とは逆に、自系統がアシスト力出力モードに復帰するときには、他系統のアシストを徐々に増加させる動作を行い、他系統がアシスト力出力モードに復帰するときには、自系統のアシストを徐々に減少させる動作を行う。
 まず、モード切換機能部67,77で自系統がアシスト力出力モードへ復帰する系統か否かを判定し(ステップS51)、アシスト力出力モードへ復帰する系統であればアシスト力出力モード復帰通知を送信する(ステップS52)。次に、アシスト制御・外部指令制御部63,73で、現在必要なアシスト力出力が所定値以下か否か判定し(ステップS53)、所定値以下でなければアシスト力を漸増し(ステップS54)、所定値以下であればアシスト力を即時増加させる(ステップS55)。続いて、状態を「アシスト力出力モード中」に遷移(ステップS56)させてリターンする。
 ステップS51で、アシスト力出力モードへ復帰する系統でないと判定された場合には、現在必要なアシスト力出力が所定値以下か否か判定し(ステップS57)、所定値以下でなければアシスト力を漸減し(ステップS58)、所定値以下であればアシスト力を即時減少させる(ステップS59)。続いて、状態を「アシスト力出力モード中」に遷移(ステップS56)させてリターンする。
<故障診断処理>
 図9は、図4におけるステップS8の故障診断処理の一例を示すフローチャートである。故障診断処理では、まず、故障診断モード中断情報が不揮発性メモリ69,79に保存されているか否か判定し(ステップS61)、保存されていない場合には診断対象を最初からに設定し(ステップS62)、保存されている場合には診断対象を中断した箇所からに設定する(ステップS63)。次のステップS64では、診断していない側の診断機能部66,76からマイコン間通信部68,78を介して故障診断モード中断要求を受信したか否か判定し、受信した場合には故障診断モード中断情報を不揮発性メモリ69,79に保存(ステップS74)してリターンする。
 ステップS64で、故障診断モード中断要求を受信していないと判定された場合には、診断対象は他のシステムからの信号受信に影響があるか否か判定する(ステップS65)。このステップS65では、CAN通信を維持した状態のまま診断を行いたいので、CAN通信ができなくなるような診断対象については診断を行わないようにしている。具体的には、例えばCAN通信のドライバが内蔵されている電源ICの診断はできない。
 ステップS65で影響がないと判定されると、故障診断を実施した後(ステップS66)、故障が発生しているか否か判定する(ステップS67)。故障が発生していない場合、およびステップS65で他システムからの信号受信に影響があると判定された場合には、診断対象を変更し(ステップS68)、故障診断が全て完了したか否かを判定する(ステップS69)。故障診断が全て完了していない場合には、ステップS64に戻って上述した処理を繰り返し、故障診断が全て完了している場合には、故障診断モード中断情報(ステップS70)を削除してリターンする。
 ステップS67で故障が発生していると判定された場合には、故障状態へ遷移し(ステップS71)、故障を他システム(EPS制御用ECUとは別のECUで制御される車両搭載機器)へ通知し(ステップS72)、故障を車外通信用のコントロールモジュールへ通知(ステップS73)してステップS70へ進む。
 上述したような構成によれば、第1、第2系統の駆動ユニットを備えた冗長化構成のパワーステアリング装置の制御装置において、一方の系統の駆動ユニットがアシストモードのとき、他方の系統の駆動ユニットのプリドライバ、インバータ、モータリレーまたは電源リレーの診断を行うことができ、これらの診断の機会を増やすことができる。したがって、車両の運転中における診断範囲を拡大でき、故障の早期発見と通知ができ、安全性の向上を図ることができる。
[第2の実施形態]
 図10Aは、本発明の第2の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。また、図10Bおよび図10Cはそれぞれ、図10Aにおける第1、第2マイクロコントローラの構成例を示している。本第2の実施形態が上述した第1の実施形態と異なるのは、各CAN通信部62,72を、CANバス53a,53bをそれぞれ介して、他のECUあるいは車両搭載機器に接続している点である。他の構成は、第1の実施形態と同様であるので、図10A、図10Bおよび図10Cにおいて図3A、図3Bおよび図3Cと同一構成部には同じ符号を付して、その詳細な説明は省略する。
 このような構成によれば、CAN通信部62,72とCANバス53a,53bを冗長化したことで、駆動ユニットEPP1とEPP2が独立してCAN通信を行うことができるので、一方の駆動ユニットが故障診断モード中であっても、他方の駆動ユニットが外部とCAN通信を行うことができる。
[第3の実施形態]
 図11は、本発明の第3の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。本第3の実施形態が上述した第1の実施形態と異なるのは、3系統の駆動ユニットEPP1,EPP2,EPP3で電動モータ13の巻線組13a,13b,13cをそれぞれ駆動している点である。図11では詳細な構成は省略するが、各駆動ユニットEPP1,EPP2の構成は、図3A、図3Bおよび図3Cに示した第1の実施形態と実質的に同様な構成になっている。また、駆動ユニットEPP3は、駆動ユニットEPP2と実質的に同様である。そして、各マイクロコントローラ32,36-1,36-2が、マイコン間通信部を介して通信を行って電動モータ13を駆動する。
 このような構成によれば、車両運転中の必要なアシスト力出力が少ない期間に第1及び第2系統の駆動ユニットEPP1,EPP2でアシスト力出力を担い、第3系統の駆動ユニットEPP3を故障診断モードに遷移させて駆動回路DR3または電源回路の診断を行うことができる。
 上述したように、駆動ユニット(ECU)を3重化し、いずれかの系統が故障診断モード中でもアシスト力出力モードの駆動ユニットが冗長構成を確保でき、またアシスト力の出力配分によってはすべての運転状況において故障診断モードへの遷移が可能となる。
 なお、4系統以上の多重系の駆動ユニットを設けても良いのは勿論である。
[第4の実施形態]
 図12Aは、本発明の第4の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。また、図12Bおよび図12Cはそれぞれ、図12Aにおける第1、第2マイクロコントローラの構成例を示している。本第4の実施形態は、上述した第2の実施形態における通信ネットワークを、CANからEthernet(登録商標)に変更したものである。すなわち、CAN通信部62,72に代えてEthernet通信部62a,72aを設け、CANバス53a,53bに代えてEthernetバス53c,53dをそれぞれ設けて、他のECUあるいは車両搭載機器に接続している。他の構成は、第2の実施形態と同様であるので、図12A、図12Bおよび図12Cにおいて図10A、図10Bおよび図10Cと同一構成部には同じ符号を付して、その詳細な説明は省略する。
 このような構成によれば、既存のプロトコルを使うため、通信速度の向上に加えてインターネット上へのアクセスが容易になる。これによって、コネクティッドカーと呼ばれるインターネット通信が可能な情報通信システムを搭載したり、スマートフォンやタブレットなどのデバイスと連携したりするシステムへの拡張が可能になる。
[第5の実施形態]
 図13Aは、本発明の第5の実施形態に係るパワーステアリング装置の制御装置の機能ブロック図である。また、図13Bおよび図13Cはそれぞれ、図13Aにおける第1、第2マイクロコントローラの構成例を示している。本第5の実施形態は、上述した第2の実施形態における通信ネットワークを、CANからFlexRay(登録商標)に変更したものである。すなわち、CAN通信部62,72に代えてFlexRay通信部62b,72bを設け、CANバス53a,53bに代えてFlexRayバス53e,53fをそれぞれ設けて、他のECUあるいは車両搭載機器に接続している。他の構成は、第2の実施形態と同様であるので、図13A、図13Bおよび図13Cにおいて図10A、図10Bおよび図10Cと同一構成部には同じ符号を付して、その詳細な説明は省略する。
 このような構成によれば、車載ネットワーク通信プロトコル「FlexRay」を用いることで、CAN通信に比べて転送速度の向上、ネットワーク構成の柔軟性の向上や信頼性の向上が図れる。
 以上のように、複数のセンサ及び複数のCPUを用いたパワーステアリング装置の制御装置において、運転中においても故障診断の範囲拡大、故障の早期検出及び通知による安全性、安定性の向上が可能となる。特に、自動運転を行う車両で、自動運転時に故障が発生した場合にも他システムとの協調を行うことで、車両制御の維持が可能であり、高信頼性システムとすることができる。
 ここで、上記各実施形態から把握し得る技術的思想について、以下にその効果と共に記載する。
 パワーステアリング装置の制御装置は、その一つの態様において、操舵輪に操舵力を付与する電動モータを備えており、前記電動モータを駆動する指令信号を出力するパワーステアリング装置の制御装置において、前記電動モータを駆動制御する第1インバータを含む第1駆動回路と、前記電動モータを駆動制御する第2インバータを含む第2駆動回路と、前記第1インバータに電力を供給する第1電源回路と、前記第2インバータに電力を供給する第2電源回路と、第1マイクロプロセッサであって、第1モータ指令信号演算部と、第1診断部と、第1マイコン間通信部と、第1モード切換制御部を備え、前記第1モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第1モータ指令信号を前記第1駆動回路に出力するものであって、前記第1診断部は、少なくとも前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサのうち何れかの異常の有無を診断するものであって、前記第1モード切換制御部は、第1アシストモードと、第1診断モードとを切換えるものであり、前記第1アシストモードは、前記第1モータ指令信号演算部が前記第1モータ指令信号を演算し、前記第1モータ指令信号を前記第1駆動回路に出力する状態であって、前記第1診断モードは、前記第1診断部が、少なくとも前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサのうちの何れかの異常の有無を診断する状態である、前記第1マイクロプロセッサと、第2マイクロプロセッサであって、第2モータ指令信号演算部と、第2診断部と、第2マイコン間通信部と、第2モード切換制御部を備え、前記第2モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第2モータ指令信号を前記第2駆動回路に出力するものであって、前記第2診断部は、少なくとも前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサのうち何れかの異常の有無を診断するものであって、前記第2モード切換制御部は、第2アシストモードと、第2診断モードとを切換えるものであって、前記第1モード切換制御部が前記第1アシストモードを選択しているとき、前記第2診断モードを選択可能なものであり、前記第2アシストモードは、前記第2モータ指令信号演算部が前記第2モータ指令信号を演算し、前記第2モータ指令信号を前記第2駆動回路に出力する状態であって、前記第2診断モードは、前記第2診断部が、少なくとも前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサのうちの何れかの異常の有無を診断する状態である、前記第2マイクロプロセッサと、を有することを特徴とする。
 上記構成によると、マイクロプロセッサ、駆動回路、電源回路を複数有する冗長系のシステムにおいて、一方の系統においてアシストモードのとき、他方の系統において駆動回路または電源回路の診断を行うことにより、駆動回路や電源回路の診断の機会を増やすことができ、装置の安全性の向上を図ることができる。
 パワーステアリング装置の制御装置の好ましい態様では、前記第1駆動回路は、前記第1インバータ、第1プリドライバ、第1モータリレーを含み、前記第1プリドライバは、前記第1モータ指令信号に基づき、前記第1インバータを駆動するものであり、前記第1モータリレーは、前記電動モータへの電力供給の遮断機能を有するものであり、前記第1電源回路は、車両のバッテリーと前記第1インバータの間に設けられ、前記インバータへの電力供給の遮断機能を有するものであり、前記第2駆動回路は、前記第2インバータ、第2プリドライバ、第2モータリレーを含み、前記第2プリドライバは、前記第2モータ指令信号に基づき、前記第2インバータを駆動するものであり、前記第2モータリレーは、前記電動モータへの電力供給の遮断機能を有するものであり、前記第2電源回路は、車両のバッテリーと前記第2インバータの間に設けられ、前記インバータへの電力供給の遮断機能を有するものであることを特徴とする。
 上記構成によると、第1、第2診断部によって、上記構成の診断機会を増やすことができ、装置の安全性の向上を図ることができる。
 さらに別の好ましい態様では、前記第2モード切換制御部は、前記第1モータ指令信号演算部が、前記第1モータ指令信号を前記第1駆動回路に出力しないとき、前記第2診断モードを選択することを特徴とする。
 上記構成によると、操舵力の付与(操舵アシスト)が不要と判断され、モータ指令信号が出力されないときに、診断モードを選択することにより、安全に装置の診断を行うことができる。
 さらに別の好ましい態様では、前記第2モード切換制御部は、車両速度が第1所定速度以上のとき、前記第2診断モードを選択することを特徴とする。
 上記構成によると、高速走行時では、大きな操舵力の付与は不要となるため、診断を実施している系統において操舵力の付与がなされないことによる運転者の操舵負荷の増大を抑制することができる。
 さらに別の好ましい態様では、前記第2モード切換制御部は、車両速度が第2所定速度以下のとき、前記第2診断モードを選択することを特徴とする。
 上記構成によると、駐車中、交差点での一時停止中、アイドリングストップ中など、操舵力の付与の必要性が低い状況において、診断モードを選択することにより、診断を実施している系統において操舵力の付与がなされないことによる運転者の操舵負荷の増大を抑制することができる。
 さらに別の好ましい態様では、前記パワーステアリング装置は、操舵機構を含み、前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、前記車両の運転状態に関する信号は、操舵角の信号または操舵トルクの信号であって、前記操舵角の信号は、前記操舵軸の回転角の信号であり、前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であり、前記第2モード切換制御部は、前記操舵角の信号が所定操舵角未満、または前記操舵トルクの信号が所定操舵トルク未満のとき、前記第2診断モードを選択することを特徴とする。
 上記構成によると、大きな操舵力の付与の必要性が低い状況において、診断モードを選択することにより、診断を実施している系統において操舵力の付与がなされないことによる運転者の操舵負荷の増大を抑制することができる。
 さらに別の好ましい態様では、車両の運転状態に関する信号は、車両に搭載された前記パワーステアリング装置以外の機器に関する信号であり、前記第2モード切換制御部は、車両に搭載された前記パワーステアリング装置以外の機器に関する信号に基づき、前記第2診断モードを選択することを特徴とする。
 上記構成によると、他の関連機器の信号から、大きな操舵力の付与の必要性が低いことを判断することにより、診断を実施している系統において操舵力の付与がなされないことによる運転者の操舵負荷の増大を抑制することができる。他の関連機器の信号には、エンジン回転数信号、変速機のポジション信号、ブレーキペダルのストローク信号、ヨーレートセンサ、車速信号などが含まれる。
 さらに別の好ましい態様では、前記第1モード切換制御部が前記第1アシストモードを選択中であり、前記第2モード切換制御部が前記第2診断モードを選択中であって、前記第2モード切換制御部が前記第2アシストモードへの切換えが必要であると判断するとき、前記第2診断部は、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を中止すると共に、前記第2モータ指令信号演算部は、前記第2モータ指令信号の前記駆動回路への出力を開始することを特徴とする。
 上記構成によると、より大きな操舵力の付与が必要と判断されるときは、診断モードからアシストモードに切換えることにより、状況に応じた操舵力の付与を行い、運転者の操舵負荷の増大を抑制することができる。
 さらに別の好ましい態様では、前記パワーステアリング装置は、操舵機構を含み、前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、前記車両の運転状態に関する信号は、操舵トルクの信号であって、前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であり、前記第2モード切換制御部は、前記操舵トルクの信号が所定操舵トルク以上のとき、前記第2アシストモードを選択することを特徴とする。
 上記構成によると、操舵トルクは、運転者の操舵負荷を最もよく表す指標の1つであるため、操舵トルクの信号に基づき、診断モードとアシストモードを切換えることにより、より適切なモード切換えを行うことができる。
 さらに別の好ましい態様では、前記第2診断部は、更に前記第1マイクロプロセッサの異常の有無を判断するものであって、前記第2診断部が、前記第1マイクロプロセッサに異常有りと判断するとき、前記第2モード切換制御部は、前記第2アシストモードを選択することを特徴とする。
 上記構成によると、第1マイクロプロセッサに異常が発生しているときは、第1モータ指令信号演算部によって適切な操舵力の付与ができない虞があるため、第2アシストモードを選択することで、第1マクロプロセッサの異常発生時においても運転者の操舵負荷の増大を抑制することができる。
 さらに別の好ましい態様では、前記第2マイクロプロセッサは、第2診断状況記憶部を備え、前記第2診断状況記憶部は、前記第2診断部における診断状況を記憶するものであって、前記第2診断部は、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を実施中、前記診断を一時的に中止し、その後、更に前記診断を再開するとき、前記第2診断状況記憶部に記憶された前記診断状況に基づき、前記診断を再開することを特徴とする。
 上記構成によると、診断の途中で診断を一時的に中止し、その後、再開するとき、中止時の診断状況を記憶しておき、再開時は、その続きから診断を行うことにより、診断の重複を抑制し、効率のよい診断を行うことができる。
 さらに別の好ましい態様では、パワーステアリング装置の制御装置は、第3駆動回路と、第3電源回路と、第3マイクロプロセッサを備え、前記第3駆動回路は、前記電動モータを駆動制御する第3インバータを含むものであり、前記第3電源回路は、前記第3インバータに電力を供給するものであり、前記第3マイクロプロセッサは、第3モータ指令信号演算部と、第3診断部と、第3マイコン間通信部と、第3モード切換制御部を備え、前記第3モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第3モータ指令信号を前記第3駆動回路に出力するものであって、前記第3診断部は、少なくとも前記第3駆動回路、前記第3電源回路、または前記第3マイクロプロセッサのうち何れかの異常の有無を診断するものであって、前記第3モード切換制御部は、第3アシストモードと、第3診断モードとを切換えるものであって、前記第1モード切換制御部が前記第1アシストモードを選択しているとき、または前記第2モード切換制御部が前記第2アシストモードを選択しているとき、前記第3診断モードを選択可能なものであり、前記第3アシストモードは、前記第3モータ指令信号演算部が前記第3モータ指令信号を演算し、前記第3モータ指令信号を前記第3駆動回路に出力する状態であって、前記第3診断モードは、前記第3診断部が、少なくとも前記第3駆動回路、前記第3電源回路、または前記第3マイクロプロセッサのうちの何れかの異常の有無を診断する状態であることを特徴とする。
 上記構成によると、制御装置が第3駆動回路、第3電源回路、および第3のマイクロプロセッサを有することにより、1つのマイクロプロセッサが診断モードを選択中であっても、残りの2つのマイクロプロセッサによって冗長系のシステムを構成することができる。
 さらに別の好ましい態様では、前記第3モード切換制御部は、車両の運転状態に拘わらず、前記第3診断モードを選択可能であることを特徴とする。
 上記構成によると、1つのマイクロプロセッサが診断モードを選択中であっても、残りの2つのマイクロプロセッサによって冗長系のシステムを構成することができるため、運転状態に拘わらず、診断モードを選択することができる。
 さらに別の好ましい態様では、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を減少させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を増加させることを特徴とする。
 上記構成によると、第2診断部の診断の開始に伴い、第2マイクロプロセッサ側の操舵力補助の割合を減少させ、第1マイクロプロセッサ側の操舵力補助の割合を増加させることにより、第2マイクロプロセッサ、第2駆動回路側の操舵力の減少を第1マイクロプロセッサ、第1駆動回路側の操舵力の増加によって補い、運転者の操舵負荷の増加を抑制することができる。
 さらに別の好ましい態様では、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を漸減させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を漸増させることを特徴とする。
 上記構成によると、第2診断部の診断の開始に伴い、第2マイクロプロセッサ、第2駆動回路側の操舵力補助の割合を減少させ、第1マイクロプロセッサ、第1駆動回路側の操舵力補助の割合を増加させるとき、その出力の変更を徐々に行うことにより、操舵力の変化に伴う操舵違和感の発生を抑制することができる。
 さらに別の好ましい態様では、前記パワーステアリング装置は、操舵機構を含み、前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、前記車両の運転状態に関する信号は、操舵トルクの信号であり、前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であって、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するときであって、前記操舵トルクの信号が所定値未満のとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を減少させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を増加させることを特徴とする。
 上記構成によると、操舵トルクの値が小さいとき、操舵アシスト力も小さいため、第1マイクロプロセッサ、第1駆動回路側と第2マイクロプロセッサ、第2駆動回路側の操舵力の割合を変化させることによる出力の変化も小さい。よって、操舵違和感の発生を抑制することができる。
 さらに別の好ましい態様では、パワーステアリング装置の制御装置は、第1トランシーバー、第1コントローラ、第2トランシーバー、第2コントローラを備え、前記車両は、バスおよび前記パワーステアリング装置以外の車両制御装置を備えており、前記第1トランシーバーは、前記バスと接続されており、前記バスとの間で信号の送受信を行うものであり、前記第1コントローラは、前記第1トランシーバーとの間で信号の送受信を行うものであり、前記第2トランシーバーは、前記バスと接続されており、前記バスとの間で信号の送受信を行うものであり、前記第2コントローラは、前記第2トランシーバーとの間で信号の送受信を行うものであり、前記第1トランシーバーは、前記第1診断部が前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサの異常である第1の異常を検出したとき、前記第1の異常に関する信号を前記車両制御装置に送信し、前記第2トランシーバーは、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの異常である第2の異常を検出したとき、前記第2の異常に関する信号を前記車両制御装置に送信することを特徴とする。
 上記構成によると、第2の異常について第2の車両制御装置と情報を共有することにより、第2の異常に対し第2の車両制御装置において適切な対応をすることができる。
 さらに別の好ましい態様では、前記車両制御装置は、前記車両以外の機器に信号を送信する車外通信用コントロールモジュールであり、前記第1トランシーバーまたは前記第2トランシーバーから受信した前記第2の異常に関する信号を、前記車両以外の機器に送信することを特徴とする。
 上記構成によると、第2の異常について、車両以外の機器、例えば、車両サービスのネットワークに情報を送信することにより、第2の異常に対して迅速かつ適切な車両サービスを受けることができる。
 さらに別の好ましい態様では、前記第1診断部は、前記第1トランシーバーと前記第2トランシーバーのうち少なくとも一方が前記バスとの間で信号の送受信が可能な状態であるとき、前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサの異常の有無を診断し、前記第2診断部は、前記第1トランシーバーと前記第2トランシーバーのうち少なくとも一方が前記バスとの間で信号の送受信が可能な状態であるとき、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの異常の有無を診断することを特徴とする。
 上記構成によると、第1、第2診断部は、バス経由で入手した他の車両搭載機器からの信号に基づき、適切な診断を行うことができる。または、第2の異常の発生について、他の車両搭載機器に対し信号を送信することができる。例えば、第1トランシーバーがバスとの間で信号の送受信が不可能な状況において、第1駆動回路に異常が発生した場合には、第1、第2マイコン間通信部を介して第1駆動回路の異常を第2マイクロプロセッサ側に送信し、第2トランシーバーから他の車両搭載機器に対し第2の異常の信号を送信することができる。
 3…EPS制御用ECU、10…パワーステアリング装置、13…電動モータ、13a,13b,13c…巻線組、29,30…電源リレー(電源回路)、31…バッテリー、32…第1マイクロコントローラ(第1マイクロプロセッサ)、33…プリドライバ(第1プリドライバ)、36…第2マイクロコントローラ(第2マイクロプロセッサ)、37…プリドライバ(第2プリドライバ)、40…インバータ(第1インバータ)、41…インバータ(第2インバータ)、44…モータリレー(第1モータリレー)、46…モータリレー(第2モータリレー)、53,53a,53b…CANバス、53c,53d…Ethernetバス、53e,53f…FlexRayバス、54…第1センサ、55…第2センサ、61…入力信号処理部、62,72…CAN通信部、62a,72a…Ethernet通信部、62b,72b…FlexRay通信部、63…アシスト制御・外部指令制御部、65…モータ制御部、66…診断機能部(第1診断部)、67…モード切換機能部(第1モード切換制御部)、68,78…マイコン間通信部、71…入力信号処理部、73…アシスト制御・外部指令制御部、75…モータ制御部、76…診断機能部(第2診断部)、77…モード切換機能部(第2モード切換制御部)、EPP1,EPP2,EPP3…駆動ユニット

Claims (19)

  1.  パワーステアリング装置の制御装置であって、前記パワーステアリング装置は、操舵輪に操舵力を付与する電動モータを備えており、前記電動モータを駆動する指令信号を出力するパワーステアリング装置の制御装置において、
     前記電動モータを駆動制御する第1インバータを含む第1駆動回路と、
     前記電動モータを駆動制御する第2インバータを含む第2駆動回路と、
     前記第1インバータに電力を供給する第1電源回路と、
     前記第2インバータに電力を供給する第2電源回路と、
     第1マイクロプロセッサであって、第1モータ指令信号演算部と、第1診断部と、第1マイコン間通信部と、第1モード切換制御部を備え、
      前記第1モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第1モータ指令信号を前記第1駆動回路に出力するものであって、
      前記第1診断部は、少なくとも前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサのうち何れかの異常の有無を診断するものであって、
      前記第1モード切換制御部は、第1アシストモードと、第1診断モードとを切換えるものであり、
       前記第1アシストモードは、前記第1モータ指令信号演算部が前記第1モータ指令信号を演算し、前記第1モータ指令信号を前記第1駆動回路に出力する状態であって、
       前記第1診断モードは、前記第1診断部が、少なくとも前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサのうちの何れかの異常の有無を診断する状態である、
     前記第1マイクロプロセッサと、
     第2マイクロプロセッサであって、第2モータ指令信号演算部と、第2診断部と、第2マイコン間通信部と、第2モード切換制御部を備え、
      前記第2モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第2モータ指令信号を前記第2駆動回路に出力するものであって、
      前記第2診断部は、少なくとも前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサのうち何れかの異常の有無を診断するものであって、
      前記第2モード切換制御部は、第2アシストモードと、第2診断モードとを切換えるものであって、前記第1モード切換制御部が前記第1アシストモードを選択しているとき、前記第2診断モードを選択可能なものであり、
       前記第2アシストモードは、前記第2モータ指令信号演算部が前記第2モータ指令信号を演算し、前記第2モータ指令信号を前記第2駆動回路に出力する状態であって、
       前記第2診断モードは、前記第2診断部が、少なくとも前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサのうちの何れかの異常の有無を診断する状態である、
     前記第2マイクロプロセッサと、
    を有することを特徴とするパワーステアリング装置の制御装置。
  2.  請求項1に記載のパワーステアリング装置の制御装置において、前記第1駆動回路は、前記第1インバータ、第1プリドライバ、第1モータリレーを含み、
      前記第1プリドライバは、前記第1モータ指令信号に基づき、前記第1インバータを駆動するものであり、
      前記第1モータリレーは、前記電動モータへの電力供給の遮断機能を有するものであり、
     前記第1電源回路は、車両のバッテリーと前記第1インバータの間に設けられ、前記インバータへの電力供給の遮断機能を有するものであり、
     前記第2駆動回路は、前記第2インバータ、第2プリドライバ、第2モータリレーを含み、
      前記第2プリドライバは、前記第2モータ指令信号に基づき、前記第2インバータを駆動するものであり、
      前記第2モータリレーは、前記電動モータへの電力供給の遮断機能を有するものであり、
     前記第2電源回路は、車両のバッテリーと前記第2インバータの間に設けられ、前記インバータへの電力供給の遮断機能を有するものであることを特徴とするパワーステアリング装置の制御装置。
  3.  請求項1に記載のパワーステアリング装置の制御装置において、前記第2モード切換制御部は、前記第1モータ指令信号演算部が、前記第1モータ指令信号を前記第1駆動回路に出力しないとき、前記第2診断モードを選択することを特徴とするパワーステアリング装置の制御装置。
  4.  請求項3に記載のパワーステアリング装置の制御装置において、前記第2モード切換制御部は、車両速度が第1所定速度以上のとき、前記第2診断モードを選択することを特徴とするパワーステアリング装置の制御装置。
  5.  請求項3に記載のパワーステアリング装置の制御装置において、前記第2モード切換制御部は、車両速度が第2所定速度以下のとき、前記第2診断モードを選択することを特徴とするパワーステアリング装置の制御装置。
  6.  請求項3に記載のパワーステアリング装置の制御装置において、前記パワーステアリング装置は、操舵機構を含み、
     前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、
     前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、
     前記車両の運転状態に関する信号は、操舵角の信号または操舵トルクの信号であって、
     前記操舵角の信号は、前記操舵軸の回転角の信号であり、
     前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であり、
     前記第2モード切換制御部は、前記操舵角の信号が所定操舵角未満、または前記操舵トルクの信号が所定操舵トルク未満のとき、前記第2診断モードを選択することを特徴とするパワーステアリング装置の制御装置。
  7.  請求項3に記載のパワーステアリング装置の制御装置において、車両の運転状態に関する信号は、車両に搭載された前記パワーステアリング装置以外の機器に関する信号であり、
     前記第2モード切換制御部は、車両に搭載された前記パワーステアリング装置以外の機器に関する信号に基づき、前記第2診断モードを選択することを特徴とするパワーステアリング装置。
  8.  請求項1に記載のパワーステアリング装置の制御装置において、前記第1モード切換制御部が前記第1アシストモードを選択中であり、前記第2モード切換制御部が前記第2診断モードを選択中であって、前記第2モード切換制御部が前記第2アシストモードへの切換えが必要であると判断するとき、前記第2診断部は、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を中止すると共に、前記第2モータ指令信号演算部は、前記第2モータ指令信号の前記駆動回路への出力を開始することを特徴とするパワーステアリング装置の制御装置。
  9.  請求項8に記載のパワーステアリング装置の制御装置において、前記パワーステアリング装置は、操舵機構を含み、
     前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、
     前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、
     前記車両の運転状態に関する信号は、操舵トルクの信号であって、
     前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であり、
     前記第2モード切換制御部は、前記操舵トルクの信号が所定操舵トルク以上のとき、前記第2アシストモードを選択することを特徴とするパワーステアリング装置の制御装置。
  10.  請求項8に記載のパワーステアリング装置の制御装置において、前記第2診断部は、更に前記第1マイクロプロセッサの異常の有無を判断するものであって、
     前記第2診断部が、前記第1マイクロプロセッサに異常有りと判断するとき、前記第2モード切換制御部は、前記第2アシストモードを選択することを特徴とするパワーステアリング装置の制御装置。
  11.  請求項8に記載のパワーステアリング装置の制御装置において、前記第2マイクロプロセッサは、第2診断状況記憶部を備え、
     前記第2診断状況記憶部は、前記第2診断部における診断状況を記憶するものであって、
     前記第2診断部は、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を実施中、前記診断を一時的に中止し、その後、更に前記診断を再開するとき、前記第2診断状況記憶部に記憶された前記診断状況に基づき、前記診断を再開することを特徴とするパワーステアリング装置の制御装置。
  12.  請求項1に記載のパワーステアリング装置の制御装置は、第3駆動回路と、第3電源回路と、第3マイクロプロセッサを備え、
     前記第3駆動回路は、前記電動モータを駆動制御する第3インバータを含むものであり、
     前記第3電源回路は、前記第3インバータに電力を供給するものであり、
     前記第3マイクロプロセッサは、第3モータ指令信号演算部と、第3診断部と、第3マイコン間通信部と、第3モード切換制御部を備え、
     前記第3モータ指令信号演算部は、車両の運転状態に関する信号に基づき前記電動モータを駆動制御する第3モータ指令信号を前記第3駆動回路に出力するものであって、
     前記第3診断部は、少なくとも前記第3駆動回路、前記第3電源回路、または前記第3マイクロプロセッサのうち何れかの異常の有無を診断するものであって、
     前記第3モード切換制御部は、第3アシストモードと、第3診断モードとを切換えるものであって、前記第1モード切換制御部が前記第1アシストモードを選択しているとき、または前記第2モード切換制御部が前記第2アシストモードを選択しているとき、前記第3診断モードを選択可能なものであり、
      前記第3アシストモードは、前記第3モータ指令信号演算部が前記第3モータ指令信号を演算し、前記第3モータ指令信号を前記第3駆動回路に出力する状態であって、
      前記第3診断モードは、前記第3診断部が、少なくとも前記第3駆動回路、前記第3電源回路、または前記第3マイクロプロセッサのうちの何れかの異常の有無を診断する状態であることを特徴とするパワーステアリング装置の制御装置。
  13.  請求項12に記載のパワーステアリング装置の制御装置において、前記第3モード切換制御部は、車両の運転状態に拘わらず、前記第3診断モードを選択可能であることを特徴とするパワーステアリング装置の制御装置。
  14.  請求項1に記載のパワーステアリング装置の制御装置において、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を減少させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を増加させることを特徴とするパワーステアリング装置の制御装置。
  15.  請求項14に記載のパワーステアリング装置の制御装置において、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を漸減させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を漸増させることを特徴とするパワーステアリング装置の制御装置。
  16.  請求項14に記載のパワーステアリング装置の制御装置において、前記パワーステアリング装置は、操舵機構を含み、
     前記操舵機構は、運転者の操舵操作に基づき回転する操舵軸と、前記操舵軸の回転に伴い前記操舵輪を転舵させる転舵軸を含み、
     前記電動モータは、前記操舵機構を介して前記操舵輪に操舵力を付与するものであり、
     前記車両の運転状態に関する信号は、操舵トルクの信号であり、
     前記操舵トルクの信号は、前記操舵機構に生じるトルクの信号であって、
     前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの診断を開始するときであって、前記操舵トルクの信号が所定値未満のとき、前記第2モータ指令信号演算部は、前記第2モータ指令信号で指示されるトルク値を減少させると共に、前記第1モータ指令信号演算部は、前記第1モータ指令信号で指示されるトルク値を増加させることを特徴とするパワーステアリング装置の制御装置。
  17.  請求項1に記載のパワーステアリング装置の制御装置は、第1トランシーバー、第1コントローラ、第2トランシーバー、第2コントローラを備え、
     前記車両は、バスおよび前記パワーステアリング装置以外の車両制御装置を備えており、
     前記第1トランシーバーは、前記バスと接続されており、前記バスとの間で信号の送受信を行うものであり、
     前記第1コントローラは、前記第1トランシーバーとの間で信号の送受信を行うものであり、
     前記第2トランシーバーは、前記バスと接続されており、前記バスとの間で信号の送受信を行うものであり、
     前記第2コントローラは、前記第2トランシーバーとの間で信号の送受信を行うものであり、
      前記第1トランシーバーは、前記第1診断部が前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサの異常である第1の異常を検出したとき、前記第1の異常に関する信号を前記車両制御装置に送信し、
      前記第2トランシーバーは、前記第2診断部が前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの異常である第2の異常を検出したとき、前記第2の異常に関する信号を前記車両制御装置に送信することを特徴とするパワーステアリング装置の制御装置。
  18.  請求項17に記載のパワーステアリング装置の制御装置において、前記車両制御装置は、前記車両以外の機器に信号を送信する車外通信用コントロールモジュールであり、前記第1トランシーバーまたは前記第2トランシーバーから受信した前記第2の異常に関する信号を、前記車両以外の機器に送信することを特徴とするパワーステアリング装置の制御装置。
  19.  請求項17に記載のパワーステアリング装置の制御装置において、前記第1診断部は、前記第1トランシーバーと前記第2トランシーバーのうち少なくとも一方が前記バスとの間で信号の送受信が可能な状態であるとき、前記第1駆動回路、前記第1電源回路、または前記第1マイクロプロセッサの異常の有無を診断し、
     前記第2診断部は、前記第1トランシーバーと前記第2トランシーバーのうち少なくとも一方が前記バスとの間で信号の送受信が可能な状態であるとき、前記第2駆動回路、前記第2電源回路、または前記第2マイクロプロセッサの異常の有無を診断することを特徴とするパワーステアリング装置の制御装置。
PCT/JP2018/031768 2017-09-11 2018-08-28 パワーステアリング装置の制御装置 WO2019049731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540904A JPWO2019049731A1 (ja) 2017-09-11 2018-08-28 パワーステアリング装置の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174104 2017-09-11
JP2017-174104 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049731A1 true WO2019049731A1 (ja) 2019-03-14

Family

ID=65635307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031768 WO2019049731A1 (ja) 2017-09-11 2018-08-28 パワーステアリング装置の制御装置

Country Status (2)

Country Link
JP (1) JPWO2019049731A1 (ja)
WO (1) WO2019049731A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059436A1 (ja) * 2019-09-26 2021-04-01 三菱電機株式会社 交流回転機装置
JP2021125557A (ja) * 2020-02-05 2021-08-30 マツダ株式会社 車両用制御装置および車両用制御システム
WO2021192936A1 (ja) * 2020-03-27 2021-09-30 日立Astemo株式会社 車両用作動機構の制御装置及び制御方法
JP2021167123A (ja) * 2020-04-09 2021-10-21 株式会社ジェイテクト 制御装置
WO2023197197A1 (zh) * 2022-04-13 2023-10-19 华为技术有限公司 一种转向控制装置、转向***和汽车
WO2024057728A1 (ja) * 2022-09-15 2024-03-21 日立Astemo株式会社 電動モータの制御装置及び電動モータの制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274548A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 車両の電源装置
JP2012111474A (ja) * 2009-12-25 2012-06-14 Denso Corp 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP2014221600A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 電動パワーステアリング装置
WO2015136918A1 (ja) * 2014-03-11 2015-09-17 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
WO2016039368A1 (ja) * 2014-09-11 2016-03-17 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
JP2016113024A (ja) * 2014-12-15 2016-06-23 トヨタ自動車株式会社 電動パワーステアリング装置
WO2017037779A1 (ja) * 2015-08-28 2017-03-09 三菱電機株式会社 電動パワーステアリング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099595B2 (ja) * 2014-04-22 2017-03-22 本田技研工業株式会社 車内通信システム
JP2016021186A (ja) * 2014-07-15 2016-02-04 株式会社オートネットワーク技術研究所 故障通知システム、故障通知装置及び車載通知装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274548A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 車両の電源装置
JP2012111474A (ja) * 2009-12-25 2012-06-14 Denso Corp 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP2014221600A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 電動パワーステアリング装置
WO2015136918A1 (ja) * 2014-03-11 2015-09-17 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
WO2016039368A1 (ja) * 2014-09-11 2016-03-17 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
JP2016113024A (ja) * 2014-12-15 2016-06-23 トヨタ自動車株式会社 電動パワーステアリング装置
WO2017037779A1 (ja) * 2015-08-28 2017-03-09 三菱電機株式会社 電動パワーステアリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059436A1 (ja) * 2019-09-26 2021-04-01 三菱電機株式会社 交流回転機装置
JPWO2021059436A1 (ja) * 2019-09-26 2021-11-25 三菱電機株式会社 交流回転機装置
CN114450885A (zh) * 2019-09-26 2022-05-06 三菱电机株式会社 交流旋转电机装置
JP7101902B2 (ja) 2019-09-26 2022-07-15 三菱電機株式会社 交流回転機装置
CN114450885B (zh) * 2019-09-26 2024-02-06 三菱电机株式会社 交流旋转电机装置
JP2021125557A (ja) * 2020-02-05 2021-08-30 マツダ株式会社 車両用制御装置および車両用制御システム
JP7425615B2 (ja) 2020-02-05 2024-01-31 マツダ株式会社 車両用制御システム
WO2021192936A1 (ja) * 2020-03-27 2021-09-30 日立Astemo株式会社 車両用作動機構の制御装置及び制御方法
JP2021167123A (ja) * 2020-04-09 2021-10-21 株式会社ジェイテクト 制御装置
JP7359070B2 (ja) 2020-04-09 2023-10-11 株式会社ジェイテクト 制御装置
WO2023197197A1 (zh) * 2022-04-13 2023-10-19 华为技术有限公司 一种转向控制装置、转向***和汽车
WO2024057728A1 (ja) * 2022-09-15 2024-03-21 日立Astemo株式会社 電動モータの制御装置及び電動モータの制御方法

Also Published As

Publication number Publication date
JPWO2019049731A1 (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6709326B2 (ja) 車両制御装置
WO2019049731A1 (ja) パワーステアリング装置の制御装置
US11545925B2 (en) Rotary electric machine control device and electric power steering device using same
JP6848239B2 (ja) モータ制御装置および電動パワーステアリング装置
JP6606780B1 (ja) 車両用電動制動装置およびその制御方法
JP5406377B2 (ja) 制御システム、及び電動パワーステアリング制御装置
JP7205352B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
US20210129855A1 (en) Electronic control device, control system, and reset determination method
CN113460152B (zh) 一种电动助力转向装置及其控制方法
JP7192646B2 (ja) 回転電機制御装置
JP7205373B2 (ja) 回転電機制御装置
JP2009262609A (ja) 車両用操舵装置
US11770089B2 (en) Rotary electric machine control device
JP2005096745A (ja) 車両用操舵装置
US11541930B2 (en) Rotary electric machine control device
JP6282452B2 (ja) 車両操舵用制御装置
JP2020108327A (ja) 制御装置
US11949360B2 (en) Control device
WO2020149035A1 (ja) 車両搭載機器の制御装置
JP6898807B2 (ja) 車両の制御装置
JP2009029284A (ja) 車両用操舵制御装置
JP2020039201A (ja) 車両制御装置
JP2020129851A (ja) モータ制御装置
JP2004276834A (ja) 車両用操舵装置
JP2021054304A (ja) 電動パワーステアリング制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854860

Country of ref document: EP

Kind code of ref document: A1