WO2019049594A1 - 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法 - Google Patents

積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法 Download PDF

Info

Publication number
WO2019049594A1
WO2019049594A1 PCT/JP2018/029779 JP2018029779W WO2019049594A1 WO 2019049594 A1 WO2019049594 A1 WO 2019049594A1 JP 2018029779 W JP2018029779 W JP 2018029779W WO 2019049594 A1 WO2019049594 A1 WO 2019049594A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
resistant alloy
alloy powder
corrosion resistant
based corrosion
Prior art date
Application number
PCT/JP2018/029779
Other languages
English (en)
French (fr)
Inventor
雄三 太期
菅原 克生
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US16/643,798 priority Critical patent/US20200206816A1/en
Priority to SG11202001546WA priority patent/SG11202001546WA/en
Priority to CN201880058162.7A priority patent/CN111050957B/zh
Priority to EP18852954.9A priority patent/EP3680043B1/en
Publication of WO2019049594A1 publication Critical patent/WO2019049594A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • a member for a semiconductor manufacturing device typically, in a semiconductor manufacturing apparatus handling a halogen-based gas having strong corrosiveness such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr, these gases are in direct contact with each other.
  • a member / part for a semiconductor manufacturing device hereinafter referred to simply as “a member for a semiconductor manufacturing device”
  • a member for a semiconductor manufacturing device which relates to a member or the like, and which is required for laminating and modeling the member Furthermore, it is related with the manufacturing method.
  • halogen-based gases such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr
  • HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr is as a semiconductor manufacturing process gas, for which ultra-high purity is used .
  • the allowable size of particles due to the corrosion of metal members by corrosive gases becomes smaller, and the corrosion resistance of the metal materials constituting the device members and piping members is required. It is getting tougher. Therefore, the material is upgraded from the conventional SUS316L to a more corrosion resistant Ni-based corrosion resistant alloy.
  • Ni, Cr 14.5% by mass 50% or more of Ni, Cr 14.5% by mass (hereinafter,% indicates mass%) as a bellows member of a corrosion resistant valve for controlling ultrahigh purity gas in a semiconductor manufacturing apparatus.
  • Ni base alloy consisting of 1 to 16.5%, Mo 15.0 to 17.0%, W 3.0 to 4.5%, Fe 4.0 to 7.0%, low carbon, low silicon, or Ni 50% or more
  • Ni-based alloy consisting of 20.0-22.5% Cr, 12.5-14.5% Mo, 2.5-3.5% W, 2.0-6.0% Fe, low carbon, low silicon Has been proposed.
  • Ni which is also known as UNS N06625 (corresponding to Inconel 625 (registered trademark)
  • UNS N06625 corresponding to Inconel 625 (registered trademark)
  • an ultrahigh purity gas control valve used in the semiconductor manufacturing apparatus.
  • Base alloy Ni: 58% or more, Cr: 20 to 23%, Fe: 5.0% or less, Mo: 8.0 to 10.0%, Nb (+ Ta): 3.15 to 4.15%, low Ni-based alloy (Ni: 50% or more, Cr: 14.5 to 16.5%, Mo: 15) known as carbon, Ni-based alloy consisting of low silicon, UNS N 10 276 (corresponding to Hastelloy C 276 (registered trademark)) .0 to 17.0%, W: 3.0 to 4.5%, Fe: 4.0 to 7.0%, low carbon, low silicon Ni-based alloy), further, UNS N 06022 (Hastelloy C22) Ni-based alloy (Ni: 50% or more, Cr: 20 to 22.5%, Mo: 12.5 to 14.5%, W: 2.5 to 3.5%) known as a registered trademark) Ni-based alloys such as Ni-based alloys (Fe: 2.0 to 6.0%, low carbon, low silicon) have been proposed.
  • Ni-based alloys such as Ni-based alloys (Fe: 2.0 to 6.0%, low
  • NUS representing the alloy type of the Ni alloy is “Unified Numbering System” defined in ASEHS-1086 and ASTM DS-566, and the above N06625, N10276, N06022, N07718 (to be described later), etc. It is an alloy unique number registered in this.
  • Patent Document 2 manufactures a valve attached to a cylinder for filling, storing and transporting a halogen compound gas having strong corrosiveness such as HCl, HF, HBr, etc., and further a halogen gas such as chlorine, fluorine, bromine, etc.
  • Cr 14.5 to 24%
  • Mo 12 to 23%
  • Fe 0.01 to 6%
  • Mg 0.001 to 0.05%
  • N 0.001 to 0. 04%
  • Mn 0.05 to 0.5%
  • Si 0.01 to 0.1%
  • Al 0.01 to 0.5
  • Ti 0.001 to 0.5%
  • Cu 0..
  • V 0.01 to 0.5%
  • B 5 to 50 ppm
  • Ta more than 1% to 3.4%
  • W 2 to 5%
  • Co Containing 0.01 to 5% the balance being Ni and unavoidable impurities, and the above-mentioned unavoidable impurities Ni, which has a component composition in which C, S and P contained are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01%, and excellent in corrosion resistance and mold forgeability Base corrosion resistant alloys have been proposed.
  • the Ni-based alloy in the prior art described above is formed into a member of a predetermined shape by machining or welding a forged product or a rolled plate as a material, but it is formed into a member by machining, welding, etc. It is difficult to provide complicated shapes with high accuracy.
  • the technology of additive manufacturing called 3D printer has been advanced, and it is possible to give complex shapes that are difficult or impossible to be shaped by machining of shaped materials such as plates, rods and pipes. It has become And metal powder is also adopted as a raw material applied to lamination molding at the time of manufacture of a comparatively small-sized article which needs accuracy.
  • Ni-based alloy of a heat resistant system known as UNS N07718 corresponding to Inconel 718 (registered trademark)
  • Patent Document 3 nominal composition is Ni-19% Cr-3% Mo-5% (Nb + Ta)
  • Ni-based heat-resistant alloy powder having a composition corresponding to) -0.9% Ti-0.5% Al-19% Fe has already been applied as a powder for laminate molding, and heat resistance is mainly required. It has been used to make complex shaped components for aircraft.
  • the halogen-based gas used as the process gas in the semiconductor manufacturing technology is ultra-purified gas, but as the wiring width of the semiconductor chip becomes finer, the control of contamination becomes more strictly required. Became. For this reason, as a member for a semiconductor manufacturing apparatus, it is desirable to manufacture with a Ni-based corrosion-resistant alloy excellent in corrosion resistance which is proposed by the said patent document 2.
  • FIG. Furthermore, with the advancement of semiconductor manufacturing equipment, the design of members and parts constituting them becomes more complicated, and in particular not only the shape on the outer surface side but also the shape giving on the inner surface side directly in contact with gas is required. In the case of die forging and machining, requirements have been raised beyond the range that can be manufactured.
  • Ni-based corrosion resistant alloy powder which is excellent in corrosion resistance and capable of giving a complicated shape is strongly required, and development of a laminate shaped article using the Ni-based corrosion resistant alloy powder is strongly demanded. ing.
  • a Ni-based corrosion resistant alloy powder for a laminate-molded article used as a member for a semiconductor manufacturing apparatus when it is used as a laminate-molded article, it is required to be excellent in corrosion resistance and to have very few defects.
  • Ni-based corrosion resistant alloy powder having a particle diameter of 100 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, is excellent in laminate formability
  • a member for a semiconductor manufacturing device is manufactured by lamination molding using the Ni-based corrosion resistant alloy powder for lamination molding of the present invention
  • a member for a semiconductor manufacturing device comprising a lamination molded article having no defects and having high corrosion resistance
  • the degree of freedom in design of members for semiconductor manufacturing equipment is significantly increased, so that advancement of semiconductor manufacturing equipment can be realized, and an excellent effect in industry is brought about.
  • Cr has the effect of improving the corrosion resistance to halogen-based gases such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr.
  • halogen-based gases such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr.
  • the upper limit of Cr is preferably 22.5%, more preferably 20.5%. Further, the lower limit of Cr is preferably 15.0%, more preferably 18.0%.
  • Mo has the effect of improving the corrosion resistance to halogen gases such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr.
  • halogen gases such as HCl, Cl 2 , HF, F 2 , NF 3 , ClF 3 and HBr.
  • Mo exhibits its corrosion resistance, especially in the medium to high concentration range.
  • the content is set to 12.0% to 23.0%.
  • the upper limit of Mo is preferably 20.5%, more preferably 19.5%.
  • the lower limit of Mo is preferably 14.0%, more preferably 16.0%.
  • Fe and Co have a higher melting point than Ni, and have the effect of increasing the melt viscosity.
  • the production of the powder can be obtained, for example, by blowing and cooling the molten metal in the atmosphere gas in a mist form.
  • Fe and Co when manufacturing a powder, while particle size control becomes easy, formation of the fine powder (particle size less than 5 micrometers) which is easy to make layered modeling difficult can be suppressed.
  • it is necessary to contain 0.01% or more of Fe but when it is contained over 7.00%, the corrosion resistance is deteriorated with respect to the hydrated acid, so its content is 0.01% to It is 7.00%.
  • the upper limit of Fe is preferably 5.50%, more preferably 1.00%.
  • the lower limit of preferable Fe is 0.05%, More preferably, it is 0.10%.
  • the content of Co is set to 0.001 to 2.500%.
  • the upper limit of Co is preferably 1.000%, more preferably 0.500%.
  • the lower limit of Co is preferably 0.005%, more preferably 0.010%.
  • N, Mn and Mg The coexistence of N, Mn and Mg has the effect of suppressing microsegregation.
  • the individual powders are instantaneously molten by the laser, while being shaped by relatively rapid solidification. At this time, there is a concern that microsegregation may occur.
  • the occurrence of microsegregation forms a dilute region of an element exhibiting corrosion resistance such as Cr and Mo, and the corrosion resistance is controlled by this dilute region, so that microsegregation should be suppressed as much as possible.
  • N, Mn and Mg have the effect of stabilizing the matrix Ni-fcc phase and promoting the solution of Cr and Mo, and as a result, the occurrence of microsegregation during rapid solidification is suppressed.
  • the content of N is less than 0.001%, there is no effect to suppress microsegregation during additive manufacturing, while if it is contained in excess of 0.040%, nitrides are formed and defects increase in laminate-formed articles
  • the content is set to 0.001% to 0.040% because it is a cause.
  • the upper limit of N is preferably 0.030%, more preferably 0.020%.
  • the lower limit of N is preferably 0.003%, more preferably 0.005%.
  • the content of Mn is less than 0.005%, there is no effect of suppressing microsegregation during additive manufacturing, while if it is contained in excess of 0.50%, microsegregation will be promoted to the contrary, and lamination will occur.
  • the content of Mg is less than 0.0001%, there is no effect of suppressing microsegregation at the time of additive manufacturing, and therefore, a tendency to deteriorate the corrosion resistance of the laminate formed article appears, while containing more than 0.0050% On the contrary, since microsegregation is promoted and the corrosion resistance of the laminate-molded article tends to be deteriorated, the content is made 0.0001% to 0.0050%.
  • the upper limit of Mg is preferably 0.0030%, more preferably 0.0020%.
  • the lower limit of Mg is preferably 0.0003%, more preferably 0.0005%.
  • Si, Al and Ti The addition of Si, Al and Ti as deoxidizers has the effect of enhancing the cleanliness in the alloy. Thereby, joining of powder
  • Si exhibits its effect by containing 0.001% or more, but when it is contained in excess of 0.200%, it tends to segregate in grain boundaries and the corrosion resistance appears to deteriorate, so the content of Si is 0 .001% to 0.200%.
  • the upper limit of Si is preferably 0.100%, more preferably less than 0.010%.
  • the lower limit of Si is preferably 0.002%, more preferably 0.005%.
  • the content of Al is set to 0.01% to 0.50%.
  • the upper limit of Al is preferably 0.40%, more preferably 0.30%.
  • the lower limit of Al is preferably 0.03%, and more preferably 0.05%.
  • the content of Ti is set to 0.001% to 0.500%.
  • the upper limit of Ti is preferably 0.200%, more preferably 0.100%.
  • the lower limit of Ti is preferably 0.003%, more preferably 0.005%.
  • Cu has an effect of improving the corrosion resistance in a reducing wet corrosive environment such as hydrochloric acid or hydrofluoric acid. Therefore, it is effective against the electrochemical corrosion formed by the process gas and the moisture adsorbed on the metal surface.
  • the effect is shown by containing 0.001% or more of Cu, but when it is contained more than 0.25%, the produced oxide on the powder surface makes the defects of the laminated molded article manifest, so the Cu content is included.
  • the amount is 0.001% to 0.250%.
  • the upper limit of Cu is preferably 0.100%, more preferably 0.010%. Further, the lower limit of Cu is preferably 0.002%, more preferably 0.005%.
  • V has the effect of suppressing the formation of a coarse-sized powder when the powder is produced in a mist form from a molten metal.
  • the powder having an excessively large diameter is not preferable because the gaps between the particles become large at the time of additive manufacturing, so that defects become apparent. Therefore, although it is removed when classifying the powder, its yield (powder yield) decreases, which is a problem in industrial production. If V is not added by 0.001% or more, the suppressing effect of coarse powder can not be obtained, but if it is contained in excess of 0.300%, the pulverization proceeds conversely, and the yield of the required particle diameter also increases (Powder yield) is unfavorably reduced. Therefore, the content of V is set to 0.001% to 0.300%.
  • the upper limit of V is preferably 0.200%, more preferably 0.100%.
  • the lower limit of V is preferably 0.003%, more preferably 0.005%.
  • B and Zr serves as a nucleus in the solidification process, and is effective in preventing shrinkage.
  • the process of melting and solidifying individual powders is repeated when molding the layered product, but if shrinkage spots are generated in the process of solidification, these defects become sources of particles, which are members for semiconductor manufacturing equipment. It becomes unsuitable as a laminate molding thing used as and parts.
  • the inclusion of B in an amount of 0.0001% or more shows the effect of preventing shrinkage, but when it is contained in excess of 0.0050%, segregation occurs in grain boundaries and the corrosion resistance tends to deteriorate, so the B content Is set to be 0.0001% to 0.0050%.
  • the upper limit of B is preferably 0.0040%, more preferably less than 0.0030%.
  • the lower limit of B is preferably 0.0002%, more preferably 0.0005%.
  • containing Zr at a content of 0.0001% or more shows the effect of preventing shrinkage, but if it is contained at more than 0.0100%, it tends to segregate in grain boundaries and deteriorate corrosion resistance as in the case of B.
  • the content of Zr is set to be 0.0001% to 0.0100%.
  • the upper limit of preferable Zr is 0.0080%, more preferably 0.0060%.
  • the lower limit of preferable Zr is 0.0005%, and more preferably 0.0008%. The effects of these two elements are not equivalent to each other, and it has been confirmed that when the two elements are not simultaneously contained in a predetermined range, there is no effect of preventing the generation of shrinkage.
  • O In the high temperature state immediately after solidification in the molten metal spray process at the time of powder production, O is instantaneously mainly associated with Cr mainly, and by forming an extremely thin strong oxide film on the powder surface, the progress of further oxidation is suppressed Have an effect. Thereby, the quantity of the powder origin oxide which mixes in a laminate-molded article as a foreign material is suppressed extremely low. The effect is shown by containing 0.0010% or more of O, but when it is contained in excess of 0.0300%, the oxide on the powder surface causes the defects of the laminate-molded article to appear, so Content of 0.0010% to 0.0300%.
  • the upper limit of O is preferably 0.0200%, more preferably 0.0100%.
  • the lower limit of O is preferably 0.0020%, more preferably 0.0050%.
  • Ta has the effect of improving the corrosion resistance with reducing and oxidizing acids, and the corrosion resistance against pitting corrosion and crevice corrosion, so it is added as necessary, but containing by exceeding 1.0%, the corrosion resistance If the content exceeds 2.5%, the amount of oxidation formed on the powder surface at the time of powder production increases, which causes the defects of the laminate to become apparent, Amount of more than 1.0% to 2.5%.
  • the upper limit of Ta is preferably 2.3%, more preferably 2.2%. Further, the lower limit of preferable Ta is 1.1%, more preferably 1.2%.
  • W W, like Mo, has the effect of improving the corrosion resistance to reducing acids, and at the same time, when the viscosity of the molten metal is increased by raising the melting point, the particle size control becomes easy and layered modeling It can be added as necessary because it can suppress the formation of fine powder (particle size less than 5 ⁇ m) which tends to be difficult, but in order to obtain its effect, addition of 2.0% or more is required. However, if the content is more than 5.0%, the melting point becomes higher than necessary, and the powder tends to be coarsened, and the yield for classifying the proper powder diameter (powder yield) is not preferable.
  • the amount is 2% to 5%.
  • the upper limit of W is preferably 4.9%, more preferably 4.5%.
  • the lower limit of W is preferably 2.2%, more preferably 2.5%.
  • Unavoidable impurities As an unavoidable impurity, C forms carbides with Cr in the vicinity of grain boundaries to increase the deterioration of corrosion resistance. Therefore, C: less than 0.05%. In addition, S and P segregate at grain boundaries and cause high temperature cracking, and therefore, must be suppressed to less than 0.01%. The content of these unavoidable impurities is preferably small, and may be 0%.
  • Powder Particle Size Layer-by-layer modeling is a shaping method in which individual powders are shaped by repeating melting and solidification, but if the particle size of the Ni-based corrosion resistant alloy powder is less than 5 ⁇ m, it is necessary for one melting and solidification. Volume is difficult to obtain, so it is difficult to obtain a sound layered molded product. On the other hand, when the particle size of the Ni-based corrosion resistant alloy powder exceeds 100 ⁇ m, the volume required for one melt solidification is too large, and it is difficult to obtain a sound laminate-shaped article. Therefore, the particle diameter of the Ni-based corrosion resistant alloy powder is preferably 5 to 100 ⁇ m. More preferably, it is 20 to 80 ⁇ m. In addition, the powder obtained by the gas atomization method from which spherical shape is obtained is preferable. Further, with regard to the particle size of the powder, the particle size distribution was measured using a laser diffraction type particle size distribution measuring apparatus.
  • the component composition of the Ni-based corrosion resistant alloy powder for laminate molding of the present invention can be determined by the following measurement method. As described later in Examples, the powder for layered modeling after classification was dissolved in an appropriate aqueous solution, and the content of the predetermined component was measured by analyzing the aqueous solution by high frequency inductively coupled plasma (ICP). In addition, about C, S, N, and O, the gas analysis by the combustion method was performed, and the content was calculated
  • ICP inductively coupled plasma
  • the Ni-based corrosion resistant alloy powder for lamination molding of the present invention is supplied to a lamination molding apparatus, for example, a lamination molding apparatus of powder bed fusion bonding method (Powder Bed Fusion method) shown in FIG.
  • a lamination molding apparatus for example, a lamination molding apparatus of powder bed fusion bonding method (Powder Bed Fusion method) shown in FIG.
  • a high energy such as a laser, an electron beam or the like
  • the valve member of a cylinder filled with a halogen gas and a halogen compound gas exhibiting excellent corrosion resistance in a wet environment or a semiconductor process gas environment by lamination molding using the Ni-based corrosion resistant alloy powder for lamination molding of the present invention.
  • the member for semiconductor manufacturing apparatuses such as a gas contact member in a mass flow meter, a gas block member, and a gas joint, can be obtained.
  • the layered manufacturing apparatus not only the one shown in FIG. 1 but also the layered modeling apparatus of the directed energy deposition method (Directed energy deposiion method) shown in FIG.
  • the type of the additive manufacturing apparatus and the like.
  • FIG. 1 shows a schematic view of an additive manufacturing apparatus known as powder bed fusion bonding method (Powder Bed Fusion method).
  • FIG. 1 shows a schematic view of an additive manufacturing apparatus known as Directed Energy Deposiion.
  • a high purity melting material is prepared and melted using a normal high frequency vacuum melting furnace to make about 10 kg of a master alloy respectively, and the component compositions shown in Tables 1 and 2 are prepared using a gas atomizing method in an argon atmosphere.
  • An element powder for producing the Ni-based corrosion resistant alloy powder for laminate molding of the present invention was produced.
  • a basic powder for producing a Ni-based corrosion resistant alloy powder for comparative laminate molding having the component composition shown in Table 3 and Table 4 was produced.
  • Each elementary powder as gas atomized obtained above was classified into a powder having a particle size of 20 to 80 ⁇ m for layered modeling and other powders using a plurality of sieves. There is no conventional product as a Ni-based corrosion resistant alloy powder for layered modeling.
  • Powder yield (%) The powder yield (%) of the powder having a particle size of 20 to 80 ⁇ m for layered modeling obtained by classification is (mass of powder having a particle size of 20 to 80 ⁇ m) ⁇ 100 / (mass of powder as it is gas atomized) Calculated as a value. Tables 5 and 6 show values of powder yield (%). In addition, although the particle size distribution was measured before classification, about the powder excellent in the yield, the ratio of the powder less than 5 micrometers was 10% or less, and the ratio of the powder 5 micrometers or more was high by adjustment of composition.
  • the classified powders having a particle diameter of 20 to 80 ⁇ m are respectively a Ni-based corrosion resistant alloy powder for the present invention for laminate shaping (hereinafter referred to as “the present alloy powder”) 1 to 40 and a Ni-based corrosion resistant alloy for comparative laminate shaping. Powders (hereinafter referred to as “comparative alloy powder”) 1 to 30 were used.
  • Corrosion resistance evaluation for semiconductor process gas The surface of a plate material (30 ⁇ 30 ⁇ 5 mm) as a layered product for evaluation was polished to finally make a water-resistant emery paper # 400 finish. After that, electrolytic polishing was performed, and the polished sample was kept in ultrasonic vibration in acetone for 5 minutes and degreased to prepare a corrosion test piece. These corrosion test pieces were placed in a small test chamber made of a Ni-based alloy (UNS N06022), evacuated, and then filled with corrosive gas (Cl 2 , HBr, NF 3 ), respectively, according to the type of corrosive gas.
  • corrosive gas Cl 2 , HBr, NF 3
  • the Ni-based corrosion resistant alloy powder for laminate molding of the present invention has a production yield, a defect ratio of laminate molded articles manufactured using the powder, corrosion resistance (wet environment, It has been confirmed that all of the semiconductor process gasses) are superior to the Ni-based corrosion resistant alloy powder for comparative lamination molding and the lamination molded product manufactured using the powder.
  • Ni-based corrosion resistant alloy powder of the present invention can be used as a raw material powder for laminate molding, and can provide a member for a semiconductor manufacturing apparatus comprising a laminate molded article having excellent corrosion resistance and extremely few defects.
  • applications as corrosion-resistant metal powders for layered modeling of members having complicated shapes are expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

積層造形用に好適なNi基耐食合金粉末を提供するとともに、この粉末を用いた耐食性に優れ、かつ欠陥が少ない積層造形品、半導体製造装置用部材を提供する。質量%で、Cr:14.5~24.0%,Mo:12.0~23.0%,Fe:0.01~7.00%,Co:0.001~2.500%,Mg:0.0001~0.0050%,N:0.001~0.040%,Mn:0.005~0.50%,Si:0.001~0.200%,Al:0.01~0.50%,Ti:0.001~0.500%,Cu:0.001~0.250%,V:0.001~0.300%,B:0.0001~0.0050%,Zr:0.0001~0.0100%,O:0.0010~0.0300%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC、S、Pは、それぞれ、C:0.05%未満、S:0.01%未満およびP:0.01%未満である積層造形用Ni基耐食合金粉末およびこのNi基耐食合金粉末を用いて積層造形する積層造形品、半導体製造装置用部材の製造方法。

Description

積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
 この発明は、代表的には、HCl,Cl,HF,F,NF,ClFおよびHBrなどの強い腐食性を有するハロゲン系ガスを扱う半導体製造装置における、これらのガスが直接接触する部材等に係り、その部材を積層造形するために必要となる積層造形用Ni基耐食合金粉末および積層造形品からなる半導体製造装置用部材・部品(以下、単に、「半導体製造装置用部材」という)、さらに、その製造方法に関するものである。
 HCl,Cl,HF,F,NF,ClFおよびHBrなどのハロゲン系ガスの需要の多くは、半導体製造プロセスガスとしてであり、そのためには超高純度化されたものが使用される。半導体の微細化・3D化などの高精細化が進むに従い、腐食性ガスによる金属部材の腐食に起因したパーティクルの許容サイズが小さくなり、装置部材・配管部材を構成する金属材料の耐食性の要求が厳しくなってきている。そのため、従来のSUS316Lから、より耐食性の優れたNi基耐食合金へと材料のアップグレードが図られている。
 例えば、特許文献1に示されるように、半導体製造装置における超高純度ガス制御用耐食性バルブのベローズ部材として、質量%(以下、%は質量%を示す。)で、Ni50%以上、Cr14.5~16.5%、Mo15.0~17.0%、W3.0~4.5%、Fe4.0~7.0%、低炭素、低シリコンからなるNi基合金、あるいは、Ni50%以上、Cr20.0~22.5%、Mo12.5~14.5%、W2.5~3.5%、Fe2.0~6.0%、低炭素、低シリコンからなるNi基合金を使用することが提案されている。
 また、同じく半導体製造プロセス用超高純度ガス製造装置および半導体製造装置に使用される超高純度ガス制御用バルブのベローズ部材として、UNS N06625(インコネル625(登録商標)に相当。)として知られるNi基合金(Ni:58%以上、Cr:20~23%、Fe:5.0%以下、Mo:8.0~10.0%、Nb(+Ta):3.15~4.15%、低炭素、低シリコンからなるNi基合金)、UNS N10276(ハステロイC276(登録商標)に相当)として知られるNi基合金(Ni:50%以上、Cr:14.5~16.5%、Mo:15.0~17.0%、W:3.0~4.5%、Fe:4.0~7.0%、低炭素、低シリコンからなるNi基合金)、さらに、UNS N06022(ハステロイC22(登録商標)に相当)として知られるNi基合金(Ni:50%以上、Cr:20~22.5%、Mo:12.5~14.5%、W:2.5~3.5%、Fe:2.0~6.0%、低炭素、低シリコンからなるNi基合金)などのNi基合金が提案されている。
 なお、前記Ni合金の合金種別を表す「UNS」は、ASEHS-1086とASTMDS-566に規定された「Unified Numbering System」のことであり、前記N06625,N10276,N06022,(後記する)N07718等はこれに登録された合金固有の番号である。
 また、特許文献2には、HCl、HF、HBrなどの強い腐食性を有するハロゲン化合物ガス、さらに塩素、フッ素、臭素などのハロゲンガスなどを充填し貯蔵および運搬するためのボンベに取り付けるバルブを製造するための部材として、Cr:14.5~24%、Mo:12~23%、Fe:0.01~6%、Mg:0.001~0.05%、N:0.001~0.04%、Mn:0.05~0.5%、Si:0.01~0.1%、Al:0.01~0.5、Ti:0.001~0.5%、Cu:0.01~1.8%、V:0.01~0.5%、B:5~50ppmを含有し、あるいは、さらに、Ta:1%超~3.4%、W:2~5%、Co:0.01~5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有し、耐食性・型鍛造性に優れたNi基耐食合金が提案されている。そして、このNi基耐食合金に型鍛造を行うことにより、型鍛造による割れ発生がなく、最小限の最終仕上げ機械加工を行うだけで、寸法精度の優れたハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブを作製し得ると記載されている。
 ただ、前掲の従来技術におけるNi基合金は、鍛造品や圧延板を素材に機械加工や溶接等を施すことにより所定の形状の部材に成形しているが、機械加工、溶接等によって、部材に精度高く複雑形状を付与することは困難である。
 しかし、近年、3Dプリンタと呼ばれる積層造形(Additive Manufacturing)の技術が進歩し、板や棒、パイプのような素形材の機械加工では、形状付与が困難あるいは不可能な複雑形状の付与が可能になってきている。
 そして、精度の必要な比較的小型品の製作に際しは、積層造形に適用する原料として、金属粉末も採用されている。
 例えば、特許文献3に示されるようなUNS N07718(インコネル718(登録商標)に相当)として知られる耐熱系のNi基合金(公称組成は、Ni-19%Cr-3%Mo-5%(Nb+Ta)-0.9%Ti-0.5%Al-19%Fe)に相当する組成からなるNi基耐熱合金粉末が、積層造形用粉末として既に適用されており、主として、耐熱性が要求される航空機用の複雑形状の部材の製作に供されている。
特公平7-47989号公報 特開2010-1558号公報 米国特許第3046108号明細書
 半導体製造技術においてプロセスガスとして使用されるハロゲン系ガスは、超高純度化されたものが使用されているが、半導体チップの配線幅が微細になるに従い、コンタミの管理が格段に厳しく問われるようになった。
 このため、半導体製造装置用部材としては、前記特許文献2で提案されているような耐食性にすぐれたNi基耐食合金で作製することが望まれる。
 さらに、半導体製造装置の高度化に伴い、それらを構成する部材・部品の設計が複雑さを増し、特に外表面側の形状のみならず、直接ガスに接する内面側の形状付与も要求されるようになってきているため、型鍛造や機械加工では製作可能な範囲を超えた要求がもたらされている。
 そのため、耐食性にすぐれ、かつ、複雑形状の付与が可能となる積層造形に適したNi基耐食合金粉末が強く求められるとともに、このNi基耐食合金粉末を用いた積層造形品の開発が強く要望されている。
 特に、半導体製造装置用部材として用いられる積層造形品用のNi基耐食合金粉末に関しては、それを積層造形品としたときに、耐食性に優れること、欠陥が極めて少ないことが求められる。
 そこで、本発明者らは、かかる課題を解決し、所定の特性を有する積層造形を可能にするNi基耐食合金粉末およびこの粉末を用いた積層造形品について鋭意研究を行った結果、以下の知見を得たのである。
 即ち、質量%で、Cr;14.5~24.0%と、Mo;12.0~23.0%と、Fe;0.01~7.00%と、Co;0.001~2.500%と、Mg;0.0001~0.0050%と、N;0.001~0.040%と、Mn;0.005~0.50%と、Si;0.001~0.200%と、Al;0.01~0.50%と、Ti;0.001~0.500%と、Cu;0.001~0.25%と、V;0.001~0.300と、B;0.0001~0.0050%と、Zr;0.0001~0.0100%と、O;0.0010~0.0300%を含有せしめ、さらに、必要に応じて、Ta;1.0超~2.5%、W;2.0~5.0%のいずれかを含有せしめ、残部がNiおよび不可避不純物からなり、不可避不純物として含有されるC、SおよびPを、C;0.05%未満、S;0.01%未満、P;0.01%未満に低減したNi基耐食合金粉末、好ましくはその粒径が5~100μm、さらに好ましくはその粒径が20~80μmのNi基耐食合金粉末は、積層造形した際の欠陥発生が極めて少ないなどの積層造形性に優れ、さらに、積層造形によって製作した積層造形品(例えば、半導体製造装置用部材等)は、湿潤環境下においても、Cl,HBr,NF等の半導体プロセスガス環境下においても、すぐれた耐食性を示すことを見出したのである。
 この発明の積層造形用Ni基耐食合金粉末を用いて、積層造形により半導体製造装置用部材を製作した場合には、欠陥がなく、かつ、高耐食性の積層造形品からなる半導体製造装置用部材を製作し得るため、半導体製造装置用部材のデザインの自由度が格段に増し、半導体製造装置の高度化を実現できるようになり、産業上、優れた効果がもたらされる。
 以下に、この発明のNi基耐食合金粉末の成分組成及び粉末粒径の限定理由について詳述する。
Cr:
 Crは、HCl,Cl,HF,F,NF,ClFおよびHBrなどのハロゲン系ガスに対して、耐食性を向上させる効果がある。特に、半導体製造装置部材が、開放時に一旦外気に触れた際に、金属表面に大気起源の水分が吸着し、吸着した水分とハロゲン系プロセスガスが水和し、電気化学的腐食が発生する。水和した酸に対して、Crは特に比較的濃度が希薄な領域でその耐食性を発揮する。その場合、Crは14.5%以上含有することが必要であるが、24.0%を超えて含有するとMoとの組み合わせにおいて、積層造形時に相安定性を損ない単一相維持が困難となり、粗大なμ相を形成してしまい耐食性劣化をもたらすので、その含有量を14.5%~24.5%とした。
 好ましいCrの上限は、22.5%であり、さらに好ましくは20.5%である。また、好ましいCrの下限は、15.0%であり、さらに好ましくは18.0%である。
Mo:
 Moは、HCl,Cl,HF,F,NF,ClFおよびHBrなどのハロゲン系ガスに対して、耐食性を向上させる効果がある。特に、半導体製造装置部材が、開放時に一旦外気に触れた際に、金属表面に大気起源の水分が吸着し、吸着した水分とハロゲン系プロセスガスが水和し、電気化学的腐食が発生する。水和した酸に対して、Moは特に中~高濃度領域でその耐食性を発揮する。その場合、Moは12.0%以上含有することが必要であるが、23.0%を超えて含有すると、Moは高温における酸化性が劣るため、ガスアトマイズ法によって粉末を製造する際に、個々の粉末表面に形成される酸化膜が厚くなり、その粉末を用いて製造された積層造形品に酸化物起因の欠陥が顕在化してくため好ましくない。そのため、その含有量を12.0%~23.0%とした。
 好ましいMoの上限は、20.5%であり、さらに好ましくは19.5%である。また、好ましいMoの下限は、14.0%であり、さらに好ましくは16.0%である。
FeおよびCo:
 FeおよびCoは、Niよりも融点が高く、溶湯粘度を高める効果がある。粉末の製造は、例えば、雰囲気ガス中、溶湯を霧吹き状に吹いて急冷させることで得られる。FeおよびCoを添加することにより、粉末を製造する際に、粒径制御が容易になるとともに、積層造形が困難となりやすい微粉(粒径5μm未満)の生成を抑制できる。その場合、Feは0.01%以上含有することが必要であるが、7.00%を超えて含有すると水和した酸に対して耐食性劣化をもたらすので、その含有量を0.01%~7.00%とした。
 好ましいFeの上限は、5.50%であり、さらに好ましくは1.00%である。また、好ましいFeの下限は、0.05%であり、さらに好ましくは0.10%である。
 同様に、Coは0.001%以上含有することが必要であるが、2.500%を超えて含有すると、積層造形時における粉末の凝固の際のミクロレベルでの引け巣に起因した欠陥が顕在化してくるので好ましくない。そのため、Coの含有量を0.001~2.500%とした。
 好ましいCoの上限は、1.000%であり、さらに好ましくは0.500%である。また、好ましいCoの下限は、0.005%であり、さらに好ましくは0.010%である。
N、MnおよびMg:
 N、MnおよびMgを共存させることにより、ミクロ偏析を抑制する効果がある。積層造形する際、個々の粉末はレーザーにより瞬間的に溶湯となり、一方、比較的急冷で凝固することにより造形される。この時に、ミクロ偏析が生じる懸念がある。ミクロ偏析が生じることにより、Cr,Mo等の耐食性を発揮する元素の希薄領域が形成され、この希薄領域に耐食性が支配されるので、ミクロ偏析はできるだけ抑制されなければならない。N、MnおよびMgは母相であるNi-fcc相を安定化させ、CrおよびMoの固溶化を促進する効果があるため、結果として、急冷凝固時のミクロ偏析の発生を抑制する。
 しかし、Nの含有量が0.001%未満では、積層造形時にミクロ偏析を抑制する効果は無く、一方0.040%を超えて含有すると窒化物を形成し、積層造形品に欠陥が増大する原因となるため、その含有量を0.001%~0.040%とした。
 好ましいNの上限は、0.030%であり、さらに好ましくは0.020%である。また、好ましいNの下限は、0.003%であり、さらに好ましくは0.005%である。
 同様に、Mnの含有量が0.005%未満では、積層造形時にミクロ偏析を抑制する効果は無く、一方0.50%を超えて含有すると、逆にミクロ偏析を促進するようになり、積層造形品の耐食性を劣化させる傾向となるため、その含有量を0.005%~0.50%とした。
 好ましいMnの上限は、0.40%であり、さらに好ましくは0.35%である。また、好ましいMnの下限は、0.006%であり、さらに好ましくは0.007%である。
 同様に、Mgの含有量が0.0001%未満では、積層造形時にミクロ偏析を抑制する効果は無く、したがって積層造形品の耐食性を劣化させる傾向が現れる、一方0.0050%を超えて含有すると、逆にミクロ偏析を促進するようになり、積層造形品の耐食性を劣化させる傾向となるため、その含有量を0.0001%~0.0050%とした。
 好ましいMgの上限は、0.0030%であり、さらに好ましくは0.0020%である。また、好ましいMgの下限は、0.0003%であり、さらに好ましくは0.0005%である。
 なお、これら前記の3元素の効果はそれぞれ等価ではなく、3元素が同時に所定の範囲で含有されていない場合には、ミクロ偏析を抑制する効果が無いことを確認している。
Si,AlおよびTi:
 Si,AlおよびTiは、それぞれ脱酸剤として添加することにより、合金内の清浄度を高める効果がある。これにより、積層造形時に粉と粉の接合が滑らかとなり、結果、積層造形品の欠陥が抑制される。
 Siは、0.001%以上含有することで、その効果を示すが、0.200%を超えて含有すると、粒界中に偏析し耐食性が劣化する傾向が現れるため、Siの含有量を0.001%~0.200%とした。
 好ましいSiの上限は、0.100%であり、さらに好ましくは0.010%未満である。また、好ましいSiの下限は、0.002%であり、さらに好ましくは0.005%である。
 同様に、Alを0.01%以上含有することで、合金内の清浄効果を示すが、0.5%を超えて含有すると、積層造形時の酸化物形成が顕在化し、積層造形品の欠陥が増大する。そのため、Alの含有量を0.01%~0.50%とした。
 好ましいAlの上限は、0.40%であり、さらに好ましくは0.30%である。また、好ましいAlの下限は、0.03%であり、さらに好ましくは0.05%である。
 同様に、Tiを0.001%以上含有することで、合金内の清浄効果を示すが、0.500%を超えて含有すると、積層造形時の酸化物形成が顕在化し、積層造形品の欠陥が増大する。そのため、Tiの含有量を0.001%~0.500%とした。
 好ましいTiの上限は、0.200%であり、さらに好ましくは0.100%である。また、好ましいTiの下限は、0.003%であり、さらに好ましくは0.005%である。
Cu:
 Cuは、塩酸やフッ酸などの還元性の湿潤腐食環境で耐食性を向上させる効果がある。そのため、プロセスガスと金属表面に吸着した水分にて形成される電気化学腐食に対して有効となる。Cuを0.001%以上含有することで、効果を示すが、0.25%を超えて含有すると製造した粉末表面の酸化物が積層造形品の欠陥を顕在化させてしまうため、Cuの含有量を0.001%~0.250%とした。
 好ましいCuの上限は、0.100%であり、さらに好ましくは0.010%である。また、好ましいCuの下限は、0.002%であり、さらに好ましくは0.005%である。
V:
 Vは、粉末を溶湯から霧吹き状に製造する際に粗大な径の粉末が生成されることを抑制する効果がある。大き過ぎる径の粉末は、積層造形の際に粒子間の隙間が大きくなることで、欠陥が顕在化してしまうため好ましくない。そのため、粉末を分級する際に除かれるが、その収率(粉末歩留まり)が低下するため、工業生産上の課題となる。Vを0.001%以上添加しなければ、粗大粉末の抑制効果が得られないが、0.300%を超えて含有すると、逆に微粉化が進行し、これも必要な粒径の収率(粉末歩留まり)を低下させることとなるために好ましくない。そのため、Vの含有量を0.001%~0.300%とした。
 好ましいVの上限は、0.200%であり、さらに好ましくは0.100%である。また、好ましいVの下限は、0.003%であり、さらに好ましくは0.005%である。
BおよびZr:
 BおよびZrは、それぞれ凝固過程で核となり引け巣発生防止に効果がある。積層造形物を成形する際に、個々の粉末が溶解凝固していく過程が繰り返されるが、凝固過程で引け巣が発生すると、それら欠陥がパーティクルの発生源となるために半導体製造装置用の部材や部品として用いる積層造形物としては不適となってしまう。
 Bを0.0001%以上含有することで、引け巣発生防止効果を示すが、0.0050%を超えて含有すると、粒界中に偏析し耐食性が劣化する傾向が現れるため、Bの含有量を0.0001%~0.0050%とした。
 好ましいBの上限は、0.0040%であり、さらに好ましくは0.0030%未満である。また、好ましいBの下限は、0.0002%であり、さらに好ましくは0.0005%である。
 同様に、Zrを0.0001%以上含有することで、引け巣発生防止効果を示すが、0.0100%を超えて含有すると、Bと同様に粒界中に偏析し耐食性が劣化する傾向が現れるため、Zrの含有量を0.0001%~0.0100%とした。
 好ましいZrの上限は、0.0080%であり、さらに好ましくは0.0060%である。また、好ましいZrの下限は、0.0005%であり、さらに好ましくは0.0008%である。
 なお、これら前記の2元素の効果はそれぞれ等価ではなく、2元素が同時に所定の範囲で含有されていない場合には、引け巣発生を防止する効果が無いことを確認している。
O:
 Oは、粉末製造時の溶湯霧吹き工程で凝固直後の高温状態で、主にCrと瞬時に結びつき、粉末表面に極薄く強固な酸化皮膜を形成することで、それ以上の酸化の進行が抑制される効果がある。これにより、積層造形品に異物として混入してしまう粉末起源の酸化物の量は極めて低く抑制される。Oを0.0010%以上含有することで、その効果を示すが、0.0300%を超えて含有すると粉末表面の酸化物が積層造形品の欠陥を顕在化させてしまうこととなるため、Oの含有量を0.0010%~0.0300%とした。
 好ましいOの上限は、0.0200%であり、さらに好ましくは0.0100%である。また、好ましいOの下限は、0.0020%であり、さらに好ましくは0.0050%である。
Ta:
 Taは、還元性・酸化性酸での耐食性や、孔食やすきま腐食に対する耐食性を改善する効果があるため、必要に応じて添加するが、1.0%を超えて含有することにより、耐食性を著しく改善する効果が発揮されるが、2.5%を超えて含有すると、粉末製造時に粉末表面に形成される酸化量が増大し、それにより積層品の欠陥が顕在化するため、その含有量を1.0%超~2.5%とした。
 好ましいTaの上限は、2.3%であり、さらに好ましくは2.2%である。また、好ましいTaの下限は、1.1%であり、さらに好ましくは1.2%である。
W:
 Wは、Moと同様に還元性酸に対する耐食性を向上させる効果があると同時に、融点を高めることで溶湯の粘度を高め粉末を製造する際に、粒径制御が容易になるとともに、積層造形が困難となりやすい微粉(粒径5μm未満)の生成を抑制できるため、必要に応じて添加するが、その効果を得るには、2.0%以上の添加を必要とする。しかし、5.0%を超えて含有すると融点が必要以上に高くなるため、粉末が粗大化する傾向となり、適正な粉末径を分級する収率(粉末歩留まり)が落ちるため好ましくないので、その含有量を2%~5%とした。
 好ましいWの上限は、4.9%であり、さらに好ましくは4.5%である。また、好ましいWの下限は、2.2%であり、さらに好ましくは2.5%である。
不可避不純物:
 不可避不純物として、Cは、結晶粒界近傍でCrと炭化物を形成し、耐食性の劣化を増大させる。そのため、C;0.05%未満とした。また、SやPは粒界に偏析し、高温割れの原因となるため、0.01%未満に抑制しなければならない。
 また、これら不可避不純物の含有量は少ないほうが好ましく、0%であっても良い。
粉末粒径
 積層造形は、個々の粉末について溶融・凝固を繰り返すことにより形状付与をしていく造形法であるが、Ni基耐食合金粉末の粒径が5μm未満だと1回の溶融凝固に必要な容積が得にくくなるため、健全な積層造形品が得にくい。一方、Ni基耐食合金粉末の粒径が100μmを超えると、1回の溶融凝固に必要な容積が大き過ぎ、健全な積層造形品が得にくい。
 したがって、Ni基耐食合金粉末の粒径は、5~100μmとするのが好ましい。より好ましくは、20~80μmである。
 なお、球形形状が得られるガスアトマイズ法で得られた粉末が好ましい。また、粉末の粒径については、レーザ回折式粒度分布測定装置を用いて粒度分布を測定した。
 本発明の積層造形用Ni基耐食合金粉末の成分組成は、以下の測定手法により求めることができる。
 後記実施例でも述べるように、分級後の積層造形用の粉末を適切な水溶液中で溶解し、この水溶液を高周波誘導結合プラズマ(ICP)分析することにより、所定の成分の含有量を測定した。
 なお、C、S、N、Oについては、燃焼法によるガス分析を行って、その含有量を求めた。
 本発明では、積層造形装置、例えば、図1に示す粉末床溶融結合方式(Powder Bed Fusion法。)の積層造形装置に、本発明の積層造形用Ni基耐食合金粉末を供給し、粉末を敷いた領域にレーザ、電子ビーム等の高エネルギーを照射して、合金粉末を選択的に溶融結合させることによって、所望形状の造形品を積層造形することができる。
 本発明の積層造形用Ni基耐食合金粉末を用いた積層造形によって、欠陥が極めて少なく、湿潤環境下あるいは半導体プロセスガス環境下においてすぐれた耐食性を示すハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、マスフローメーター内の接ガス部材、ガスブロック部材、ガス継手等の半導体製造装置用部材を得ることができる。
 なお、積層造形装置としては、図1に示すものばかりではなく、積層造形品の形状等に応じて、図2に示す指向性エネルギー堆積方式(Directed energy deposiion法。)の積層造形装置等を使用することもでき、積層造形装置の型式等については特に制限されるものではない。
粉末床溶融結合方式(Powder Bed Fusion法。)として知られている積層造形装置の概略図を示す。 指向性エネルギー堆積方式(Directed energy deposiion法。)として知られている積層造形装置の概略図を示す。
 次に、本発明の実施例について説明する。
 高純度溶解原料を準備し、通常の高周波真空溶解炉を用いて溶解し、母合金をそれぞれ約10kg作製し、アルゴン雰囲気中、ガスアトマイズ法を用いて、表1、表2に示される成分組成を有する本発明積層造形用Ni基耐食合金粉末を得るための素粉末を製造した。
 同様の方法で、表3、表4に示される成分組成を有する比較積層造形用Ni基耐食合金粉末を得るための素粉末を製造した。
 上記で得たガスアトマイズしたままのそれぞれの素粉末を、複数のふるいを用いて、積層造形用の粒径20~80μmの粉末とそれ以外の粉末に分級した。
 なお、積層造形用Ni基耐食合金粉末としての従来品は存在しない。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
粉末歩留まり(%):
 分級して得た積層造形用の粒径20~80μmの粉末について、その粉末歩留まり(%)を、(粒径20~80μmの粉末の質量)×100/(ガスアトマイズしたままの粉末の質量)の値として求めた。
 表5および表6に、粉末歩留まり(%)の値を示す。なお、分級前に粒度分布を測定したが、歩留まりに優れた粉末については、5μm未満の粉末の割合が10%以下というもので、組成の調整により5μm以上の粉末の割合が高かった。
 また、これらの分級した粒径20~80μmの粉末をもって、それぞれ、本発明積層造形用Ni基耐食合金粉末(以下、「本発明合金粉末」という)1~40および比較積層造形用Ni基耐食合金粉末(以下、「比較合金粉末」という)1~30とした。
 次に、図1に示す粉末床溶融結合方式(PowderBed Fusion法。)の積層造形装置により、本発明合金粉末1~40および比較合金粉末1~30を用いて、評価用積層造形品としての板材(30×30×5mm)を、各粉末につきそれぞれ10枚ずつ製作した。
 これら評価用積層造形品としての板材(30×30×5mm)について、以下の評価を行った。
欠陥率(面積%)の測定:
 評価用積層造形品としての板材(30×30×5mm)の断面を切断し、樹脂に埋め込み、耐水エメリー紙で#1500まで研磨後、さらに粒径1μmのダイヤモンドペーストにて研磨し、鏡面仕上げ面とした。
 上記鏡面仕上げ面を光学顕微鏡にて観察し、1mm×1mmの範囲内にある欠陥(空孔、巣)を画像解析により特定し、その面積比率を欠陥率(面積%)として求めた。
 なお、解像度は1024x1280pixelで、画像解析ソフトにより、二値化処理をし、8pixel以上の黒色部分を欠陥とした。
 表5および表6に、欠陥率(面積%)の値を示す。
湿潤環境における耐食性評価:
 評価用積層造形品としての板材(30×30×5mm)の表面を研磨し、最終的に耐水エメリー紙#400仕上げとした。その後、電解研磨をし、研磨後の試料をアセトン中超音波振動状態に5分間保持し脱脂することにより、腐食試験片を作成した。
 これら腐食試験片を用いて、沸騰した1%HCl,35%HCl中で24時間の腐食試験を実施した。
 その試験前後の重量減少量を測定することにより、試験前表面積と試験期間から腐食速度(mm/year)を算出した。
 表5および表6に、その結果を示す。
半導体プロセスガスに対する耐食性評価:
 評価用積層造形品としての板材(30×30×5mm)の表面を研磨し、最終的に耐水エメリー紙#400仕上げとした。その後、電解研磨をし、研磨後の試料をアセトン中超音波振動状態に5分間保持し脱脂することにより、腐食試験片を作成した。
 これら腐食試験片を、Ni基合金(UNS N06022)製試験用小型チャンバー内に設置し、真空引き後、腐食ガス(Cl,HBr,NF)をそれぞれ充填し、腐食ガスの種類に応じた所定の温度(Cl:250℃,HBr:250℃,NF:350℃)に24時間保持し、その後、室温まで冷却し、アルゴンガスに置換後、素早く真空デシケータに保管した。
 腐食試験片を、順次、SEM観察に供し、撮影した写真から島状に観察される腐食部分の面積率を画像解析により測定した。
 なお、解像度は1024x1280、倍率は500倍で、8ピクセル以上を腐食領域とした。
 表5および表6に、その結果を示す。
 なお、粉末歩留まりが低い場合や欠陥率が高い比較合金粉末については、腐食試験片は作成せず、耐食性評価も行わなかった。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 表5、表6に示される結果からも明らかなように、本発明積層造形用Ni基耐食合金粉末は、製造歩留まり、その粉末を用いて製作した積層造形品の欠陥率、耐食性(湿潤環境・半導体プロセスガス)のいずれも、比較積層造形用Ni基耐食合金粉末およびその粉末を用いて製作した積層造形品に比べて優れていることが確認できた。
 この発明のNi基耐食合金粉末は、積層造形用の原料粉末として用いることで、耐食性が優れ、かつ欠陥が極めて少ない積層造形品からなる半導体製造装置用部材を提供することが可能であるが、半導体製造装置用部材ばかりでなく、化学プラント、医薬品製造設備やオイル、ガス分野などの幅広い分野において、複雑形状の部材の積層造形用の耐食性金属粉末としての応用が期待される。

Claims (6)

  1.  質量%で、
    Cr:14.5~24.0%,
    Mo:12.0~23.0%,
    Fe:0.01~7.00%,
    Co:0.001~2.500%,
    Mg:0.0001~0.0050%,
    N:0.001~0.040%,
    Mn:0.005~0.50%,
    Si:0.001~0.200%,
    Al:0.01~0.50%,
    Ti:0.001~0.500%,
    Cu:0.001~0.250%,
    V:0.001~0.300%,
    B:0.0001~0.0050%,
    Zr:0.0001~0.0100%,
    O:0.0010~0.0300%
    を含有し、残部がNiおよび不可避不純物からなり、
     前記不可避不純物として含有されるC、SおよびPについては、それぞれの含有量を、C:0.05%未満、S:0.01%未満およびP:0.01%未満とした成分組成を有するNi基合金からなる積層造形用Ni基耐食合金粉末。
  2.  前記Ni基合金の前記成分組成が、Ta:1.0超~2.5%をさらに含有する請求項1に記載の積層造形用Ni基耐食合金粉末。
  3.  前記Ni基合金の前記成分組成が、W:2.0~5.0%をさらに含有する請求項1に記載の積層造形用Ni基耐食合金粉末。
  4.  前記積層造形用Ni基耐食合金粉末の粉末粒径が、5~100μmである請求項1乃至3のいずれか一項に記載の積層造形用Ni基耐食合金粉末。
  5.  請求項1乃至4のいずれか一項に記載の積層造形用Ni基耐食合金粉末を原料粉末とし、この原料粉末を積層造形する積層造形品の製造方法。
  6.  請求項1乃至4のいずれか一項に記載の積層造形用Ni基耐食合金粉末を原料粉末とし、この原料粉末を積層造形する半導体製造装置用部材の製造方法。
     
PCT/JP2018/029779 2017-09-07 2018-08-08 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法 WO2019049594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/643,798 US20200206816A1 (en) 2017-09-07 2018-08-08 Ni-BASED CORROSION-RESISTANT ALLOY POWDER FOR ADDITIVE MANUFACTURING, AND METHOD FOR PRODUCING ADDITIVE MANUFACTURING PRODUCT OR MEMBER FOR SEMICONDUCTOR PRODUCTION DEVICES USING THE POWDER
SG11202001546WA SG11202001546WA (en) 2017-09-07 2018-08-08 Ni-BASED CORROSION-RESISTANT ALLOY POWDER FOR ADDITIVE MANUFACTURING, AND METHOD FOR PRODUCING ADDITIVE MANUFACTURING PRODUCT OR MEMBER FOR SEMICONDUCTOR PRODUCTION DEVICES USING THE POWDER
CN201880058162.7A CN111050957B (zh) 2017-09-07 2018-08-08 层叠造型用Ni基耐腐蚀合金粉末、使用其的层叠造型品和半导体制造装置用构件的制造方法
EP18852954.9A EP3680043B1 (en) 2017-09-07 2018-08-08 Ni-based corrosion-resistant alloy powder for additive manufacturing, and method for producing an additive manufacturing product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-172343 2017-09-07
JP2017172343A JP6519961B2 (ja) 2017-09-07 2017-09-07 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法

Publications (1)

Publication Number Publication Date
WO2019049594A1 true WO2019049594A1 (ja) 2019-03-14

Family

ID=65633761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029779 WO2019049594A1 (ja) 2017-09-07 2018-08-08 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法

Country Status (7)

Country Link
US (1) US20200206816A1 (ja)
EP (1) EP3680043B1 (ja)
JP (1) JP6519961B2 (ja)
CN (1) CN111050957B (ja)
SG (1) SG11202001546WA (ja)
TW (1) TWI683909B (ja)
WO (1) WO2019049594A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918992A (zh) * 2019-12-17 2020-03-27 中国航发动力股份有限公司 一种高温合金粉末、增材制造方法和零件
WO2020179154A1 (ja) * 2019-03-04 2020-09-10 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
JP2021046584A (ja) * 2019-09-19 2021-03-25 大同特殊鋼株式会社 粉末材料、積層造形物、および粉末材料の製造方法
JPWO2021201118A1 (ja) * 2020-03-31 2021-10-07
JPWO2021201106A1 (ja) * 2020-03-31 2021-10-07
CN113795603A (zh) * 2019-09-06 2021-12-14 日立金属株式会社 Ni基合金、Ni基合金粉末、Ni基合金构件和具备Ni基合金构件的制造物
US20220001449A1 (en) * 2019-03-04 2022-01-06 Hitachi Metals, Ltd. Ni-BASED ALLOY MEMBER INCLUDING ADDITIVELY MANUFACTURED BODY, METHOD FOR MANUFACTURING Ni-BASED ALLOY MEMBER, AND MANUFACTURED PRODUCT USING Ni-BASED ALLOY MEMBER
JP2022532738A (ja) * 2019-07-05 2022-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
CN115786774A (zh) * 2022-11-30 2023-03-14 安徽工程大学 Slm用合金粉末、高机械性能镍基合金及其制备方法
US11767579B2 (en) 2019-07-05 2023-09-26 Vdm Metals International Gmbh Nickel based alloy for powder and method for producing a powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289338B1 (ko) * 2019-11-29 2021-08-12 창원대학교 산학협력단 적층 가공법을 이용한 산화물 분산 강화형 니오븀 함유 니켈기 초내열합금의 제조방법 및 이에 의해 제조된 산화물 분산 강화형 니오븀 함유 니켈기 초내열합금
WO2022177035A1 (ko) * 2021-02-16 2022-08-25 창원대학교 산학협력단 적층 가공법을 이용한 산화물 분산 강화형 니오븀 함유 니켈기 초내열합금의 제조방법 및 이에 의해 제조된 산화물 분산 강화형 니오븀 함유 니켈기 초내열합금
EP4382230A1 (en) * 2022-12-07 2024-06-12 Siemens Energy Global GmbH & Co. KG Single-phase nickel alloy for additive manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046108A (en) 1958-11-13 1962-07-24 Int Nickel Co Age-hardenable nickel alloy
JPH0747989B2 (ja) 1992-12-28 1995-05-24 富士精工株式会社 超高純度ガス制御用耐食性バルブ
JP2010001558A (ja) 2008-05-22 2010-01-07 Mitsubishi Materials Corp ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材
JP2016194143A (ja) * 2015-03-31 2016-11-17 山陽特殊製鋼株式会社 球状粒子からなる金属粉末
WO2017026519A1 (ja) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
JP2017043838A (ja) * 2015-07-21 2017-03-02 アンサルド エネルジア アイ・ピー ユー・ケイ リミテッドAnsaldo Energia Ip Uk Limited 粉末ベースの製造プロセスにおいて用いるための高温ニッケル基超合金
JP6353978B1 (ja) * 2016-12-26 2018-07-04 技術研究組合次世代3D積層造形技術総合開発機構 金属積層造形用粉末およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083670A (ja) * 1994-06-17 1996-01-09 Mitsubishi Materials Corp 加工性および耐食性に優れたNi基合金
US6860948B1 (en) * 2003-09-05 2005-03-01 Haynes International, Inc. Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
EP1857204B1 (en) * 2006-05-17 2012-04-04 MEC Holding GmbH Nonmagnetic material for producing parts or coatings adapted for high wear and corrosion intensive applications, nonmagnetic drill string component, and method for the manufacture thereof
JP5725630B1 (ja) * 2014-02-26 2015-05-27 日立金属Mmcスーパーアロイ株式会社 熱間鍛造性および耐食性に優れたNi基合金
WO2016099390A1 (en) * 2014-12-17 2016-06-23 Uddeholms Ab A wear resistant alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046108A (en) 1958-11-13 1962-07-24 Int Nickel Co Age-hardenable nickel alloy
JPH0747989B2 (ja) 1992-12-28 1995-05-24 富士精工株式会社 超高純度ガス制御用耐食性バルブ
JP2010001558A (ja) 2008-05-22 2010-01-07 Mitsubishi Materials Corp ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材
JP2016194143A (ja) * 2015-03-31 2016-11-17 山陽特殊製鋼株式会社 球状粒子からなる金属粉末
JP2017043838A (ja) * 2015-07-21 2017-03-02 アンサルド エネルジア アイ・ピー ユー・ケイ リミテッドAnsaldo Energia Ip Uk Limited 粉末ベースの製造プロセスにおいて用いるための高温ニッケル基超合金
WO2017026519A1 (ja) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
JP6353978B1 (ja) * 2016-12-26 2018-07-04 技術研究組合次世代3D積層造形技術総合開発機構 金属積層造形用粉末およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680043A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179154A1 (ja) * 2019-03-04 2020-09-10 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
US20220001449A1 (en) * 2019-03-04 2022-01-06 Hitachi Metals, Ltd. Ni-BASED ALLOY MEMBER INCLUDING ADDITIVELY MANUFACTURED BODY, METHOD FOR MANUFACTURING Ni-BASED ALLOY MEMBER, AND MANUFACTURED PRODUCT USING Ni-BASED ALLOY MEMBER
US11767579B2 (en) 2019-07-05 2023-09-26 Vdm Metals International Gmbh Nickel based alloy for powder and method for producing a powder
JP7311633B2 (ja) 2019-07-05 2023-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
JP2022532738A (ja) * 2019-07-05 2022-07-19 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末用ニッケル基合金および粉末の製造方法
CN113795603A (zh) * 2019-09-06 2021-12-14 日立金属株式会社 Ni基合金、Ni基合金粉末、Ni基合金构件和具备Ni基合金构件的制造物
US11821059B2 (en) 2019-09-06 2023-11-21 Proterial, Ltd. Ni-based alloy, Ni-based alloy powder, Ni-based alloy member, and product including Ni-based alloy member
CN113795603B (zh) * 2019-09-06 2022-11-01 日立金属株式会社 Ni基合金、Ni基合金粉末、Ni基合金构件和具备Ni基合金构件的制造物
EP4015105A4 (en) * 2019-09-19 2023-09-20 Daido Steel Co., Ltd. POWDERED MATERIAL, LAYERED ARTICLE AND METHOD FOR PRODUCING POWDERED MATERIAL
CN114423540A (zh) * 2019-09-19 2022-04-29 大同特殊钢株式会社 粉末材料、层叠成形品、以及粉末材料的制造方法
TWI770592B (zh) * 2019-09-19 2022-07-11 日商大同特殊鋼股份有限公司 粉末材料、積層造型物及粉末材料之製造方法
JP7487458B2 (ja) 2019-09-19 2024-05-21 大同特殊鋼株式会社 粉末材料、積層造形物、および粉末材料の製造方法
JP2021046584A (ja) * 2019-09-19 2021-03-25 大同特殊鋼株式会社 粉末材料、積層造形物、および粉末材料の製造方法
WO2021054014A1 (ja) * 2019-09-19 2021-03-25 大同特殊鋼株式会社 粉末材料、積層造形物、および粉末材料の製造方法
CN110918992A (zh) * 2019-12-17 2020-03-27 中国航发动力股份有限公司 一种高温合金粉末、增材制造方法和零件
WO2021201106A1 (ja) * 2020-03-31 2021-10-07 日立金属株式会社 Ni-Cr-Mo系合金部材、Ni-Cr-Mo系合金粉末、および、複合部材
JPWO2021201118A1 (ja) * 2020-03-31 2021-10-07
JP7176661B2 (ja) 2020-03-31 2022-11-22 日立金属株式会社 合金、合金粉末、合金部材および複合部材
JPWO2021201106A1 (ja) * 2020-03-31 2021-10-07
JP7103548B2 (ja) 2020-03-31 2022-07-20 日立金属株式会社 Ni-Cr-Mo系合金部材、Ni-Cr-Mo系合金粉末、および、複合部材
US11883880B2 (en) 2020-03-31 2024-01-30 Proterial, Ltd. Alloy, alloy powder, alloy member, and composite member
EP4129533A4 (en) * 2020-03-31 2024-02-21 Proterial, Ltd. ALLOY, ALLOY POWDER, ALLOY ELEMENT AND COMPOSITE ELEMENT
WO2021201118A1 (ja) * 2020-03-31 2021-10-07 日立金属株式会社 合金、合金粉末、合金部材および複合部材
CN115786774A (zh) * 2022-11-30 2023-03-14 安徽工程大学 Slm用合金粉末、高机械性能镍基合金及其制备方法

Also Published As

Publication number Publication date
JP6519961B2 (ja) 2019-05-29
TWI683909B (zh) 2020-02-01
US20200206816A1 (en) 2020-07-02
JP2019049015A (ja) 2019-03-28
CN111050957B (zh) 2022-07-29
TW201920705A (zh) 2019-06-01
CN111050957A (zh) 2020-04-21
EP3680043B1 (en) 2021-12-22
SG11202001546WA (en) 2020-03-30
EP3680043A1 (en) 2020-07-15
EP3680043A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6519961B2 (ja) 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
WO2020179388A1 (ja) 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
JP6690789B2 (ja) 合金材、該合金材を用いた製造物、および該製造物を有する流体機械
TWI624551B (zh) 金屬粉末、積層造形物之製造方法及積層造形物
JP6948584B2 (ja) 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品の製造方法
WO2020179724A1 (ja) 積層造形体および積層造形体の製造方法
JP4831468B2 (ja) Moターゲット材の製造方法
JP7323010B2 (ja) 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物
JP6835036B2 (ja) チタン素材
JP6164736B2 (ja) 熱間鍛造性、耐高温酸化性および高温ハロゲンガス腐食性に優れたNi基合金およびこのNi基合金を用いた部材
TWI600772B (zh) Titanium composite material and hot processing titanium material
WO2023167231A1 (ja) 積層造形用Ni基合金粉末、積層造形品、及び積層造形品の製造方法
TWI615486B (zh) 低碳鋼合金組成物、粉體及含其之工件的製造方法
JP6094725B1 (ja) チタン複合材および熱間加工用チタン材
WO2024075443A1 (ja) 積層造形用Fe-Cr-Al系合金粉末、Fe-Cr-Al系合金部材およびFe-Cr-Al系合金部材の製造方法
JP7355189B2 (ja) Ni基合金積層造形物
JP6137424B1 (ja) チタン複合材および熱間加工用チタン材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852954

Country of ref document: EP

Effective date: 20200407