WO2019049296A1 - 波動歯車装置のウエーブベアリング - Google Patents

波動歯車装置のウエーブベアリング Download PDF

Info

Publication number
WO2019049296A1
WO2019049296A1 PCT/JP2017/032381 JP2017032381W WO2019049296A1 WO 2019049296 A1 WO2019049296 A1 WO 2019049296A1 JP 2017032381 W JP2017032381 W JP 2017032381W WO 2019049296 A1 WO2019049296 A1 WO 2019049296A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
wave
rigid
peripheral surface
bearing
Prior art date
Application number
PCT/JP2017/032381
Other languages
English (en)
French (fr)
Inventor
教夫 城越
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to KR1020207006107A priority Critical patent/KR20200032741A/ko
Priority to CN201780094228.3A priority patent/CN111051733A/zh
Priority to US16/640,197 priority patent/US20200173532A1/en
Priority to JP2019540228A priority patent/JPWO2019049296A1/ja
Priority to PCT/JP2017/032381 priority patent/WO2019049296A1/ja
Priority to EP17924333.2A priority patent/EP3680513A4/en
Priority to TW107125968A priority patent/TW201920844A/zh
Publication of WO2019049296A1 publication Critical patent/WO2019049296A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor

Definitions

  • the present invention relates to a wave gear device, and more particularly to a wave bearing of a wave generator of a wave gear device.
  • Patent Document 1 discloses a wave reducer provided with a wave bearing made of a ball bearing.
  • the distance between adjacent balls is kept constant by the retainer.
  • the retainer is provided with partition walls of a predetermined thickness at regular intervals in the circumferential direction, and pockets between the adjacent partition walls serve as pockets for holding the balls one by one. Therefore, the number of balls that can be inserted between the inner and outer rings is restricted by the partition wall.
  • An object of the present invention is to provide a wave gear device capable of increasing the load capacity of a wave bearing to improve the reliability during high load operation.
  • the present invention is characterized in that a full ball-shaped ball bearing provided with radially deflectable inner and outer rings, which has not been noted up until now, is used as a wave bearing of a wave gear device.
  • the rigid gear, the flexible gear, and the flexible gear are bent in a non-circular manner and partially engaged with the rigid gear, and the engagement position of the flexible gear to the rigid gear is the circle of the rigid gear.
  • the wave generator comprises a rigid cam plate having a non-circular outer peripheral surface or a non-circular inner peripheral surface, a non-circular outer peripheral surface and flexibility It is mounted between the inner circumferential surface of the gear or between the non-circular inner circumferential surface and the outer circumferential surface of the flexible gear, and holds the rigid cam plate and the flexible gear in a relatively rotatable state.
  • the wave bearing is a full ball-shaped ball bearing provided with radially deflectable inner and outer rings.
  • the wave bearing in the wave gear device of the present invention is not provided with a retainer, and adjacent balls are in contact with each other in the ball raceway between the inner and outer rings.
  • the rigid cam plate and the flexible gear rotate relative to each other while the adjacent balls are in rolling contact with each other.
  • the partition wall of the retainer By the partition wall of the retainer, the number of balls mounted on the ball raceways between the inner and outer rings is not restricted, and the maximum number of balls can be mounted. Accordingly, a wave bearing with a large load capacity can be realized, and the reliability of the wave gear device at high load operation is increased.
  • the wave bearing of the present invention is suitable for a wave gear device which performs low speed and heavy load operation.
  • the inner and outer rings are bent non-circularly by the rigid cam plate, but the retainer between the inner and outer rings remains annular. It is necessary to limit the amount of deflection of the inner and outer rings so that the radially bent inner and outer rings do not interfere with the retainer.
  • a rigid gear and a flexible gear with a small number of teeth are used, and the amount of radial deflection of the flexible gear is large.
  • the amount of deflection of the inner and outer rings also increases, which may cause interference with the retainer.
  • the present invention since the retainer is not provided, the amount of bending of the flexible gear can be increased without being restricted by the interference between the inner and outer rings and the retainer.
  • the present invention is advantageous for application to wave gear devices of low reduction ratio design.
  • semicircular notches for inserting the balls from the outer side of the inner and outer rings into the ball raceways are formed in one or both of the inner and outer rings.
  • FIG. 1 is a longitudinal section showing a cup type wave gearing device to which the present invention is applied. It is an end elevation of the wave gear apparatus of FIG. 1A.
  • 1 is a longitudinal sectional view showing a flat wave gear device to which the present invention is applied. It is an end elevation of the wave gear apparatus of FIG. 2A.
  • It is an explanatory view showing a wave gear device to which the present invention is applied. It is an explanatory view showing a wave gear device to which the present invention is applied. It is an explanatory view showing a wave gear device to which the present invention is applied. It is an explanatory view showing a wave gear device to which the present invention is applied.
  • FIG. 1A is a longitudinal sectional view showing an example of a cup type wave gear device to which the present invention is applied, and FIG. 1B is an end view thereof.
  • the invention is equally applicable to top hat wave gear devices.
  • the wave gear device 1 includes a rigid internal gear 2 (rigid gear) and a cup-shaped flexible external gear 3 (flexible gear) disposed inside the gear 2. There is an elliptical contour wave generator 4 fitted inside this.
  • the cylindrical portion of the external gear 3 on which the external teeth 3 a are formed is elliptically bent by the wave generator 4. Both end portions of the outer teeth 3 a in the direction of the major axis L max of the oval mesh with the inner teeth 2 a of the annular internal gear 2.
  • the wave generator 4 includes a rigid cam plate 6 fixed to the outer peripheral surface of the rotary input shaft 5 and a wave bearing 8 mounted on the elliptical outer peripheral surface 7 (non-circular outer peripheral surface) of the rigid cam plate 6 .
  • the wave bearing 8 is fitted inside the external gear 3 in a state of being elliptically bent by the rigid cam plate 6 and holds the external gear 3 and the rigid cam plate 6 in a relatively rotatable state. ing.
  • the wave bearing 8 is a full ball ball bearing, for example, a full ball deep groove ball bearing. That is, the wave bearing 8 is inserted in the state capable of rolling on the radially deflectable circular inner ring 9 and the radially deflectable circular outer ring 10 and the annular ball race formed between them. And a plurality of balls 11. The balls 11 are inserted into the ball raceway grooves with adjacent balls 11 in contact with each other. In one or both of the inner ring 9 and the outer ring 10, semicircular notches (not shown) are formed for inserting the ball 11 into the ball raceway groove from the outside.
  • a high speed rotation input shaft such as a motor shaft is connected to the rotation input shaft 5 of the wave generator 4.
  • the wave generator 4 rotates, the meshing position of the gears 2 and 3 moves in the circumferential direction, and a relative rotation occurs due to the difference in the number of teeth between the gears 2 and 3.
  • the internal gear 2 is fixed so as not to rotate, the external gear 3 is connected to the load-side member, and the decelerating rotation is extracted from the external gear 3 and transmitted to the load-side member.
  • FIG. 2A is a longitudinal sectional view showing an example of a flat wave gear device to which the present invention can be applied, and FIG. 2B is an end view thereof.
  • the wave gear device 20 includes a first internal gear 21 and a second internal gear 22 as rigid internal gears (rigid gears).
  • the first and second internal gear wheels 21 and 22 are coaxially arranged in parallel, and a cylindrical flexible external gear 23 (flexible gear wheel) is arranged inside them.
  • An elliptical contour wave generator 24 is fitted inside the external gear 23.
  • the external gear 23 is elliptically bent by the wave generator 24, and the external teeth 23 a are the internal teeth 21 a of the first internal gear 21 and the second internal gear 22 at both end portions of the elliptical major axis Lmax. It meshes with both of the internal teeth 22a of.
  • the number of teeth of the first internal gear 21 is 2 n (n is a positive integer) more than the number of teeth of the second internal gear 22, and the number of teeth of the external gear 23 is that of the second internal gear 22. It is the same as the number of teeth.
  • the external teeth 23a mesh with the internal teeth 21a, 22a.
  • the wave generator 24 includes a rigid plug 25 and a wave bearing 27 mounted on the elliptical outer peripheral surface 26.
  • the wave bearing 27 is a full ball-shaped ball bearing, and includes an inner ring raceway surface 29 formed on the elliptical outer peripheral surface of the rigid plug 25, a circular outer ring 30 which can be bent in the radial direction, an inner ring raceway surface 29 and an outer ring 30. And a plurality of balls 31 inserted in an annular ball track formed between the two. Each ball 31 is inserted into the ball trajectory with adjacent balls 31 in contact with each other.
  • FIGS. 3A, 3B, and 3C are explanatory diagrams each showing an example of a wave gear device to which the present invention can be applied. The following description is based on the case where the wave gear device shown in these figures is used as a cup or top hat wave gear device, but it can also be used as a flat wave gear device.
  • a rigid external gear 42 (a rigid gear) is disposed at the innermost side.
  • a ring-shaped flexible internal gear 43 (flexible gear) is disposed in a state of concentrically surrounding the external gear 42.
  • An annular wave generator 44 is disposed concentrically surrounding the internal gear 43.
  • the internal gear 43 is elliptically bent by the wave generator 44.
  • meshing portions 45a, 45b for the external gear 42 are formed at two ends of the elliptical short axis Lmin.
  • the wave generator 44 comprises an annular rigid cam plate 46 and a wave bearing 47 mounted on the inside.
  • the wave bearing 47 is a full ball type deep groove ball bearing.
  • the outer ring of the wave bearing 47 is integrally formed with the rigid cam plate 46.
  • the wave gear device 50 shown in FIG. 3B is fitted into a rigid internal gear 52 (rigid gear), a flexible external gear 53 (flexible gear) disposed inside the rigid gear, and an internal gear 52 (rigid gear).
  • the wave generator 54 has a non-circular contour. The portion of the external gear 53 where the external teeth are formed is bent non-circularly by the wave generator 54.
  • the wave generator 54 comprises a rigid cam plate 56 of non-circular contour and a wave bearing 57 mounted on the outer periphery.
  • the wave bearing 57 is a full ball type deep groove ball bearing.
  • the non-circular outer peripheral surface 56 a of the rigid cam plate 56 is defined by a closed curve which can be inscribed at a plurality of equally spaced points along the circumferential direction with respect to a true circle.
  • the non-circular outer peripheral surface 56a has a three-lobed shape (three-lobe shape), and is defined by a closed curve which can be inscribed at three locations equidistantly along the circumferential direction with respect to a true circle.
  • With respect to a true circle it is also possible to define a non-circular outer peripheral surface by means of inscribed inscribed curves at four or more equally spaced points along the circumferential direction.
  • the external gear 53 is bent to a shape along the non-circular contour of the wave generator 54, and is rotated relative to the internal gear 52 at three angular intervals of 120 °.
  • Engaging portions 55a, 55b, 55c are formed.
  • the wave generator 54 is connected to a high-speed rotation input shaft such as a motor shaft.
  • a high-speed rotation input shaft such as a motor shaft.
  • the wave generator 54 rotates, the meshing position of the gears 52 and 53 moves in the circumferential direction, and a relative rotation occurs between the gears 52 and 53 due to the difference in the number of teeth.
  • the internal gear 52 is fixed so as not to rotate, the external gear 53 is connected to the member on the load side, and the decelerating rotation is extracted from the external gear 53 and transmitted to the member on the load.
  • the difference in the number of teeth of both gears 52 and 53 in this case is set to 3n (n is a positive integer).
  • the flexible internal gear 63 (flexible gear) is disposed outside the rigid external gear 62 (rigid gear), and the outer peripheral side of the internal gear 63 is A wave generator 64 is arranged with an inner circumferential surface of non-circular contour.
  • the wave generator 64 comprises a rigid cam plate 66 having a non-circular inner circumferential surface 66a, and a wave bearing 67 mounted on the non-circular inner circumferential surface 66a.
  • the wave bearing 67 is a full ball type deep groove ball bearing.
  • the noncircular inner peripheral surface 66a of the rigid cam plate 66 is defined by a closed curve which can be circumscribed at a plurality of equally spaced points along the circumferential direction with respect to a true circle.
  • the non-circular inner peripheral surface 66a has a three-leaf shape (three-lobe shape), and is defined by a closed curve that can circumscribe at three equal intervals along the circumferential direction with respect to a true circle.
  • With respect to a true circle it is also possible to define a non-circular inner circumferential surface by closed curves that can be circumscribed at four or more equally spaced points along the circumferential direction.
  • the internal gear 63 is flexed to a shape along the non-circular contour of the wave generator 64 to the external gear 62 at three angular intervals of 120 °.
  • Engaging portions 65a, 65b, 65c are formed.
  • the wave generator 64 is rotated by a rotational drive source such as a motor and fixed so as not to rotate the external gear 62, the meshing position of the gears 62 and 63 moves in the circumferential direction.
  • a relative rotation according to the difference in the number of teeth occurs between the two gears. This rotation can be taken out from the internal gear 63.
  • the difference in the number of teeth of both the gears 62 and 63 is set to 3n (n is a positive integer).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

波動歯車装置(1)の波動発生器(4)は、剛性カム板(6)と、剛性カム板(6)の楕円状外周面(7)と外歯歯車(3)の内周面との間に装着され、剛性カム板(6)と外歯歯車(3)とを相対回転可能な状態に保持しているウエーブベアリング(8)とを備えている。ウエーブベアリング(8)は、半径方向に撓み可能な内輪(9)・外輪(10)を備えた総ボール形のボールベアリングからなる。ウエーブベアリング(8)はリテーナが備わっておらず、リテーナの仕切り壁によってボール軌道内に挿入されるボール数が制約を受けることが無く、最大数のボールを装着できる。大きな荷重容量のウエーブベアリング(8)を実現でき、波動歯車装置(1)の高荷重運転時に信頼性が増す。

Description

波動歯車装置のウエーブベアリング
 本発明は波動歯車装置に関し、更に詳しくは、波動歯車装置の波動発生器のウエーブベアリングに関する。
 波動歯車装置のウエーブベアリングとして、半径方向に撓み可能な内外輪の間に、多数個のボールがリテーナによって一定の間隔となるように保持されているボールベアリングが使用されている。特許文献1には、ボールベアリングからなるウエーブベアリングを備えた波動減速機が開示されている。
特開2017-36747号公報
 ボールベアリングからなるウエーブベアリングでは、リテーナによって隣接するボールの間隔が一定に保持される。リテーナは円周方向に一定の間隔で所定厚さの仕切り壁を備え、隣接する仕切り壁の間が、1個ずつボールを保持するためのポケットとなっている。したがって、内外輪の間に挿入可能なボール数が、仕切り壁によって制約される。
 特許文献1に開示のウエーブベアリングにおいては、その寿命を延ばすために、ボール間の隙間寸法を小さくして、ボール数を増やして、定格荷重(負荷容量)を高めている。換言すると、リテーナの仕切り壁を薄くして、ボール数を増やしている。しかしながら、リテーナの仕切り壁によって、ボール数が制約されることには変わりがない。
 本発明の目的は、ウエーブベアリングの荷重容量を上げて高荷重運転時の信頼性を高めることのできる波動歯車装置を提供することにある。
 本発明は、波動歯車装置のウエーブベアリングとして、今まで着目されていなかった半径方向に撓み可能な内外輪を備えた総ボール形のボールベアリングを用いることを特徴としている。
 すなわち、本発明は、剛性歯車と、可撓性歯車と、可撓性歯車を非円形に撓めて剛性歯車に部分的にかみ合わせ、可撓性歯車の剛性歯車に対するかみ合い位置を剛性歯車の円周方向に移動させるための波動発生器とを備えた波動歯車装置において、波動発生器は、非円形外周面あるいは非円形内周面を備えた剛性カム板と、非円形外周面と可撓性歯車の内周面との間、あるいは、非円形内周面と可撓性歯車の外周面との間に装着され、剛性カム板と可撓性歯車とを相対回転可能な状態に保持しているウエーブベアリングとを備えており、ウエーブベアリングは、半径方向に撓み可能な内輪・外輪を備えた総ボール形のボールベアリングである。
 本発明の波動歯車装置におけるウエーブベアリングはリテーナが備わっておらず、内外輪の間のボール軌道内において、隣接するボールが相互に接している。隣接するボールが相互に転がり接触しながら、剛性カム板と可撓性歯車とが相対回転する。リテーナの仕切り壁によって、内外輪の間のボール軌道に装着されるボール数が制約を受けることが無く、最大数のボールを装着できる。よって、大きな荷重容量のウエーブベアリングを実現でき、波動歯車装置の高荷重運転時に信頼性が増す。特に、本発明のウエーブベアリングは、低速・高荷重運転を行う波動歯車装置に適している。
 また、リテーナを備えたウエーブベアリングにおいては、内外輪は剛性カム板によって非円形に撓められるが、内外輪の間のリテーナは円環形状のままである。半径方向に撓められる内外輪がリテーナに干渉しないように、内外輪の撓み量を制限する必要がある。低減速比設計の波動歯車装置の場合には、歯数の少ない剛性歯車および可撓性歯車が使用され、可撓性歯車の半径方向の撓み量が大きくなる。内外輪の撓み量も大きくなり、リテーナに干渉するおそれがある。本発明によれば、リテーナが備わっていないので、内外輪とリテーナとの間の干渉による制約を受けることなく、可撓性歯車の撓み量を大きくできる。よって、本発明は、低減速比設計の波動歯車装置に適用するのに有利である。
 なお、内外輪の間のボール軌道にボールを挿入するために、内外輪の一方あるいは双方に、ボール軌道に内外輪の外側からボールを挿入するための半円状の切り欠きが形成される。
本発明を適用したカップ型の波動歯車装置を示す縦断面図である。 図1Aの波動歯車装置の端面図である。 本発明を適応したフラット型の波動歯車装置を示す縦断面図である。 図2Aの波動歯車装置の端面図である。 本発明を適用した波動歯車装置を示す説明図である。 本発明を適用した波動歯車装置を示す説明図である。 本発明を適用した波動歯車装置を示す説明図である。
 図1Aは本発明を適用したカップ型の波動歯車装置の一例を示す縦断面であり、図1Bはその端面図である。本発明は、シルクハット型の波動歯車装置に対しても同様に適用可能である。
 本実施の形態に係る波動歯車装置1は、剛性の内歯歯車2(剛性歯車)と、この内側に配置されているカップ形状をした可撓性の外歯歯車3(可撓性歯車)と、この内側に嵌め込まれている楕円形輪郭の波動発生器4を有している。外歯歯車3における外歯3aが形成されている円筒状の部分は、波動発生器4によって楕円形に撓められている。外歯3aにおける楕円形の長軸Lmax方向の両端部分が、円環状の内歯歯車2の内歯2aに噛み合っている。
 波動発生器4は、回転入力軸5の外周面に固定された剛性カム板6と、剛性カム板6の楕円状外周面7(非円形外周面)に装着したウエーブベアリング8とを備えている。ウエーブベアリング8は、剛性カム板6によって楕円形に撓められた状態で外歯歯車3の内側に嵌め込まれており、外歯歯車3と剛性カム板6とを相対回転可能な状態に保持している。
 ウエーブベアリング8は総ボール形のボールベアリングからなり、例えば、総ボール形の深溝ボールベアリングからなる。すなわち、ウエーブベアリング8は、半径方向に撓み可能な円形の内輪9および半径方向に撓み可能な円形の外輪10と、これらの間に形成される円環状のボール軌道に転動可能な状態で挿入されている複数個のボール11とを備えている。隣接するボール11が相互に接した状態で、各ボール11がボール軌道溝に挿入されている。内輪9、外輪10の一方あるいは双方には、ボール11をボール軌道溝に外側から挿入するための半円形の切り欠き(図示せず)が形成されている。
 波動発生器4の回転入力軸5にはモータ軸などの高速回転入力軸(図示せず)が連結される。波動発生器4が回転すると、両歯車2、3の噛み合い位置が円周方向に移動して、両歯車2、3の間には、それらの歯数差に起因する相対回転が発生する。例えば、内歯歯車2が回転しないように固定され、外歯歯車3が負荷側の部材に連結され、外歯歯車3から減速回転が取り出されて負荷側の部材に伝達される。
 図2Aは、本発明を適用可能なフラット型の波動歯車装置の一例を示す縦断面図であり、図2Bはその端面図である。
 波動歯車装置20は、剛性の内歯歯車(剛性歯車)として、第1内歯歯車21および第2内歯歯車22を備えている。第1、第2内歯歯車21、22は同軸に並列配置され、これらの内側には、円筒形状の可撓性の外歯歯車23(可撓性歯車)が配置されている。外歯歯車23の内側には楕円状輪郭の波動発生器24が嵌め込まれている。波動発生器24によって、外歯歯車23は楕円状に撓められ、楕円形状の長軸Lmaxの両端部分において、外歯23aが第1内歯歯車21の内歯21aおよび第2内歯歯車22の内歯22aの双方にかみ合っている。例えば、第1内歯歯車21の歯数は、第2内歯歯車22の歯数よりも2n枚(nは正の整数)多く、外歯歯車23の歯数は第2内歯歯車22の歯数と同一である。外歯歯車23の楕円形状の長軸Lmaxの位置において、外歯23aは内歯21a、22aにかみ合う。
 波動発生器24は、剛性プラグ25と、この楕円状外周面26に装着したウエーブベアリング27とを備えている。ウエーブベアリング27は、総ボール形のボールベアリングからなり、剛性プラグ25の楕円状外周面に形成した内輪軌道面29と、半径方向に撓み可能な円形の外輪30と、内輪軌道面29と外輪30の間に形成される円環状のボール軌道に挿入された複数個のボール31とを備えている。隣接するボール31が相互に接した状態で、各ボール31はボール軌道内に挿入されている。
 図3A、3B、3Cは、それぞれ、本発明を適用可能な波動歯車装置の例を示す説明図である。以下の説明は、これらの図に示す波動歯車装置を、カップ型あるいはシルクハット型の波動歯車装置として用いた場合であるが、フラット型の波動歯車装置として用いることもできる。
 図3Aに示す波動歯車装置40は、最も内側に剛性の外歯歯車42(剛性歯車)が配置されている。外歯歯車42を同心状に取り囲む状態に、円環状の可撓性の内歯歯車43(可撓性歯車)が配置されている。内歯歯車43を同心状に取り囲む状態に、環状の波動発生器44が配置されている。内歯歯車43は、波動発生器44によって、楕円状に撓められている。波動発生器44によって撓められた内歯歯車43には、楕円形状の短軸Lminの両端の2か所に、外歯歯車42に対するかみ合い部分45a、45bが形成される。
 波動発生器44は円環状の剛性カム板46と、この内側に装着されたウエーブベアリング47とを備えている。ウエーブベアリング47は、総ボール形の深溝ボールベアリングからなる。図示の例では、ウエーブベアリング47の外輪は剛性カム板46に一体形成されている。例えば、波動発生器44をモータなどの回転駆動源によって回転し、外歯歯車42を回転しないように固定すると、両歯車42、43のかみ合い位置が周方向に移動し、両歯車の歯数差に応じた相対回転が両歯車の間に発生する。この回転を内歯歯車43から取り出すことができる。
 図3Bに示す波動歯車装置50は、剛性の内歯歯車52(剛性歯車)と、この内側に配置されている可撓性の外歯歯車53(可撓性歯車)と、この内側に嵌め込まれている非円形輪郭の波動発生器54を有している。外歯歯車53における外歯が形成されている部分は、波動発生器54によって非円形に撓められている。
 波動発生器54は、非円形輪郭の剛性カム板56と、この外周に装着したウエーブベアリング57とを備えている。ウエーブベアリング57は、総ボール形の深溝ボールベアリングからなる。剛性カム板56の非円形外周面56aは、真円に対して、その円周方向に沿って等間隔の複数箇所において内接可能な閉曲線によって規定されている。本例では、非円形外周面56aは、三つ葉形状(3ローブ形状)であり、真円に対して、その円周方向に沿って等間隔の3箇所において内接可能な閉曲線によって規定されている。真円に対して、その円周方向に沿って等間隔の4か所以上の複数箇所において内接可能な閉曲線によって非円形外周面を規定することも可能である。
 この形状の波動発生器54によって、外歯歯車53は、当該波動発生器54の非円形輪郭に沿った形状に撓められて、120°の角度間隔の3か所で、内歯歯車52に対するかみ合い部分55a、55b、55cが形成されている。
 波動発生器54にはモータ軸などの高速回転入力軸が連結される。波動発生器54が回転すると、両歯車52、53の噛み合い位置が円周方向に移動して、両歯車52、53の間には、それらの歯数差に起因する相対回転が発生する。例えば、内歯歯車52が回転しないように固定され、外歯歯車53が負荷側の部材に連結され、外歯歯車53から減速回転が取り出されて負荷側の部材に伝達される。この場合の両歯車52、53の歯数差は3n枚(nは正の整数)に設定される。
 図3Cに示す波動歯車装置60は、可撓性の内歯歯車63(可撓性歯車)が剛性の外歯歯車62(剛性歯車)の外側に配置されており、内歯歯車63の外周側に、非円形輪郭の内周面を備えた波動発生器64が配置されている。
 波動発生器64は、非円形内周面66aを備えた剛性カム板66と、この非円形内周面66aに装着したウエーブベアリング67とを備えている。ウエーブベアリング67は、総ボール形の深溝ボールベアリングである。剛性カム板66の非円形内周面66aは、真円に対して、その円周方向に沿って等間隔の複数箇所において外接可能な閉曲線によって規定されている。本例では、非円形内周面66aは、三つ葉形状(3ローブ形状)であり、真円に対して、その円周方向に沿って等間隔の3箇所において外接可能な閉曲線によって規定されている。真円に対して、その円周方向に沿って等間隔の4か所以上の複数箇所において外接可能な閉曲線によって非円形内周面を規定することも可能である。
 この形状の波動発生器64によって、内歯歯車63は、当該波動発生器64の非円形輪郭に沿った形状に撓められて、120°の角度間隔の3か所で、外歯歯車62に対するかみ合い部分65a、65b、65cが形成される。例えば、波動発生器64をモータなどの回転駆動源によって回転し、外歯歯車62を回転しないように固定しておくと、両歯車62、63のかみ合い位置が周方向に移動し、両歯車の歯数差に応じた相対回転が両歯車の間に発生する。この回転を内歯歯車63から取り出すことができる。この場合の両歯車62、63の歯数差は3n枚(nは正の整数)に設定される。

Claims (3)

  1.  剛性歯車と、可撓性歯車と、前記可撓性歯車を非円形に撓めて前記剛性歯車に部分的にかみ合わせ、前記可撓性歯車の前記剛性歯車に対するかみ合い位置を前記剛性歯車の円周方向に移動させるための波動発生器とを備えた波動歯車装置において、
     前記波動発生器は、非円形外周面あるいは非円形内周面を備えた剛性カム板と、前記非円形外周面と前記可撓性歯車の内周面との間、あるいは、前記非円形内周面と前記可撓性歯車の外周面との間に装着され、前記剛性カム板と前記可撓性歯車とを相対回転可能な状態に保持しているウエーブベアリングとを備えており、
     前記ウエーブベアリングは、半径方向に撓み可能な内輪・外輪の間に、隣接するボールが相互に接した状態で挿入されている総ボール形のボールベアリングである波動歯車装置。
  2.  剛性の内歯歯車と、可撓性の外歯歯車と、前記外歯歯車を楕円状に撓めて前記内歯歯車に部分的にかみ合わせ、前記外歯歯車の前記内歯歯車に対するかみ合い位置を前記内歯歯車の円周方向に移動させるための波動発生器とを備えた波動歯車装置において、
     前記波動発生器は、楕円形外周面を備えた剛性カム板と、前記楕円形外周面と前記外歯歯車の内周面との間に装着され、前記剛性カム板と前記外歯歯車とを相対回転可能な状態に保持しているウエーブベアリングとを備えており、
     前記ウエーブベアリングは、半径方向に撓み可能な内輪・外輪の間に、隣接するボールが相互に接した状態で挿入されている総ボール形のボールベアリングである波動歯車装置。
  3.  請求項2において、
     前記内輪および前記外輪のうち、少なくとも一方には、前記ボールを前記内輪および前記外輪の間に形成されるボール軌道内に挿入するための半円形の切り欠きが形成されている波動歯車装置。
PCT/JP2017/032381 2017-09-07 2017-09-07 波動歯車装置のウエーブベアリング WO2019049296A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207006107A KR20200032741A (ko) 2017-09-07 2017-09-07 파동기어장치의 웨이브 베어링
CN201780094228.3A CN111051733A (zh) 2017-09-07 2017-09-07 波动齿轮装置的波轮轴承
US16/640,197 US20200173532A1 (en) 2017-09-07 2017-09-07 Wave bearing for strain wave gearing
JP2019540228A JPWO2019049296A1 (ja) 2017-09-07 2017-09-07 波動歯車装置のウエーブベアリング
PCT/JP2017/032381 WO2019049296A1 (ja) 2017-09-07 2017-09-07 波動歯車装置のウエーブベアリング
EP17924333.2A EP3680513A4 (en) 2017-09-07 2017-09-07 WAVE BEARING FOR WAVE-MOVING GEAR DEVICE
TW107125968A TW201920844A (zh) 2017-09-07 2018-07-27 諧波齒輪裝置的波動軸承

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032381 WO2019049296A1 (ja) 2017-09-07 2017-09-07 波動歯車装置のウエーブベアリング

Publications (1)

Publication Number Publication Date
WO2019049296A1 true WO2019049296A1 (ja) 2019-03-14

Family

ID=65633810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032381 WO2019049296A1 (ja) 2017-09-07 2017-09-07 波動歯車装置のウエーブベアリング

Country Status (7)

Country Link
US (1) US20200173532A1 (ja)
EP (1) EP3680513A4 (ja)
JP (1) JPWO2019049296A1 (ja)
KR (1) KR20200032741A (ja)
CN (1) CN111051733A (ja)
TW (1) TW201920844A (ja)
WO (1) WO2019049296A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003369B1 (ja) * 2021-01-05 2022-02-10 泰一 岡田 玉軸受

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857235A (zh) 2021-02-04 2022-08-05 盟英科技股份有限公司 谐波减速装置
TWM625103U (zh) * 2021-02-04 2022-04-01 盟英科技股份有限公司 諧波減速裝置
CN114370486B (zh) * 2022-01-13 2023-08-11 珠海格力电器股份有限公司 一种谐波减速器上的三波凸轮波发生器及谐波减速器
EP4249770A1 (en) * 2022-03-25 2023-09-27 C and M Robotics Co., Ltd. Strain wave generator for harmonic reducer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325060A (ja) * 1998-05-12 1999-11-26 Nippon Seiko Kk 総ボール転がり軸受
JP2011190826A (ja) * 2010-03-11 2011-09-29 Matex Kk 波動歯車装置
WO2013018121A1 (ja) * 2011-07-29 2013-02-07 株式会社ハーモニック・ドライブ・システムズ 複合転がり軸受付き内歯歯車ユニットおよび波動歯車装置
JP2017036747A (ja) 2015-08-07 2017-02-16 株式会社ジェイテクト 波動減速機、玉軸受、及び治具
JP2018168655A (ja) * 2017-03-30 2018-11-01 公立大学法人大阪市立大学 土質判定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214999A (en) * 1964-04-09 1965-11-02 Roger H Lapp Harmonic drive
US3166949A (en) * 1964-04-09 1965-01-26 Roger H Lapp Harmonic drive adjusting means
US3986412A (en) * 1974-02-13 1976-10-19 Usm Corporation Redundant motor reducer drive
JPS5492246U (ja) * 1977-12-14 1979-06-29
JP2681182B2 (ja) * 1987-12-15 1997-11-26 光洋精工株式会社 玉軸受
JP4807689B2 (ja) * 2001-05-23 2011-11-02 株式会社ハーモニック・ドライブ・システムズ 無潤滑型波動歯車装置
US20120085188A1 (en) * 2009-07-02 2012-04-12 Harmonic Drive Systems Inc. Noncircular bearing, wave generator, and wave gear device
KR101280291B1 (ko) * 2012-10-31 2013-07-01 이윤규 탄성체와 핀이 결합된 치차를 구비한 플렉스플라인 및 이를 구비한 하모닉 드라이브
JP2017026021A (ja) * 2015-07-22 2017-02-02 株式会社ジェイテクト 波動減速機、及び波動減速機用の玉軸受

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325060A (ja) * 1998-05-12 1999-11-26 Nippon Seiko Kk 総ボール転がり軸受
JP2011190826A (ja) * 2010-03-11 2011-09-29 Matex Kk 波動歯車装置
WO2013018121A1 (ja) * 2011-07-29 2013-02-07 株式会社ハーモニック・ドライブ・システムズ 複合転がり軸受付き内歯歯車ユニットおよび波動歯車装置
JP2017036747A (ja) 2015-08-07 2017-02-16 株式会社ジェイテクト 波動減速機、玉軸受、及び治具
JP2018168655A (ja) * 2017-03-30 2018-11-01 公立大学法人大阪市立大学 土質判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680513A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003369B1 (ja) * 2021-01-05 2022-02-10 泰一 岡田 玉軸受

Also Published As

Publication number Publication date
CN111051733A (zh) 2020-04-21
KR20200032741A (ko) 2020-03-26
EP3680513A1 (en) 2020-07-15
EP3680513A4 (en) 2021-01-27
JPWO2019049296A1 (ja) 2020-08-20
US20200173532A1 (en) 2020-06-04
TW201920844A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2019049296A1 (ja) 波動歯車装置のウエーブベアリング
KR101616518B1 (ko) 파동 기어 장치의 파동 발생기
US8833205B2 (en) Wave generator of wave gear device
US9163710B2 (en) Wave gear device and flexible externally toothed gear
US10281007B2 (en) Speed reducer
US9309921B2 (en) Internally-toothed gear unit with composite roller bearing, and wave gear device
JP2013057397A (ja) 波動歯車減速機
WO2013175532A1 (ja) 波動歯車装置の波動発生器
WO2005100818A1 (ja) 波動歯車装置
JP5950649B2 (ja) 波動歯車装置
JP6602504B2 (ja) 波動発生器および波動歯車装置
KR20150005944A (ko) 파동 기어 장치의 파동 발생기
US9145919B2 (en) Speed-reduction transmission bearing
EP3492774B1 (en) Wave generator, and wave gear device
KR101724659B1 (ko) 역 사이클로이드 감속기
JP2008025687A (ja) 波動歯車装置用軸受
JP6338538B2 (ja) 撓み噛合い式歯車装置
EP2837849A1 (en) Wave gear mechanism
JP2010014215A (ja) 波動歯車装置
JP2020051541A (ja) 歯車減速機
CN114017473B (zh) 一种偏置型行星减速装置
KR20150025165A (ko) 속도-감소 변속 베어링
JP2021099126A (ja) 可撓性軸受および減速機
JP2010019283A (ja) 減速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540228

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017924333

Country of ref document: EP

Effective date: 20200407