WO2019047505A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019047505A1
WO2019047505A1 PCT/CN2018/080124 CN2018080124W WO2019047505A1 WO 2019047505 A1 WO2019047505 A1 WO 2019047505A1 CN 2018080124 W CN2018080124 W CN 2018080124W WO 2019047505 A1 WO2019047505 A1 WO 2019047505A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
image side
Prior art date
Application number
PCT/CN2018/080124
Other languages
English (en)
French (fr)
Inventor
张凯元
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710801831.2A external-priority patent/CN107436477B/zh
Priority claimed from CN201721142627.6U external-priority patent/CN207164346U9/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/229,231 priority Critical patent/US11112585B2/en
Publication of WO2019047505A1 publication Critical patent/WO2019047505A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens comprising six lenses.
  • a reduction in the size of the pixel means that the amount of light passing through the lens will become smaller during the same exposure time.
  • the lens needs to have a large amount of light to ensure image quality.
  • the present application provides a large aperture optical imaging lens that is adaptable to at least one of the above-discussed shortcomings of the prior art that is applicable to portable electronic products.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens. And a sixth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the second lens has a power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the third lens and the fourth lens both have a light focus
  • the fifth lens may have a positive power
  • the image side may be a convex surface
  • the sixth lens may have a negative power, both the object side and the image side may be concave
  • the entrance lens diameter EPD of the imaging lens can satisfy f/EPD ⁇ 1.6.
  • the on-axis distance TTL of the object side of the first lens to the imaging surface of the optical imaging lens is half the ImgH of the diagonal of the effective pixel area on the imaging surface of the optical imaging lens, which can satisfy TTL/ImgH ⁇ 1.5.
  • the effective focal length f1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy 3 ⁇ f1/CT1 ⁇ 4.
  • the center thickness CT2 of the second lens on the optical axis and the separation distance T12 of the first lens and the second lens on the optical axis may satisfy 4 ⁇ CT2/T12 ⁇ 6.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy 1.5 ⁇ R3/R4 ⁇ 2.5.
  • the second lens may have a negative power with an effective focal length f2 and a total effective focal length f of the optical imaging lens that may satisfy -2 ⁇ f2 / f ⁇ -1.
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image may satisfy -1 ⁇ (R7-R8)/(R7+R8) ⁇ 2.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the side of the fifth lens image may satisfy -3 ⁇ f / R10 ⁇ -2.5.
  • the effective focal length f5 of the fifth lens and the total effective focal length f of the optical imaging lens may satisfy 0.5 ⁇ f5 / f ⁇ 1.
  • the radius of curvature R11 of the side surface of the sixth lens object and the radius of curvature R12 of the side surface of the sixth lens image may satisfy -2 ⁇ R11/R12 ⁇ -1.5.
  • the on-axis distance TTL of the imaging surface of the imaging lens can satisfy 0.5 ⁇ CT/TTL ⁇ 0.7.
  • the present application provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens and the fifth lens may each have a positive power; the second lens and the sixth lens may each have a negative power; at least one of the third lens and the fourth lens may have a positive power; the first lens At least one of the object side and the image side may be a convex surface; the object side and the image side of the sixth lens may both be concave; the image side of the fifth lens may be a convex surface, and the curvature radius R10 of the image side and the total of the optical imaging lens
  • the effective focal length f can satisfy -3 ⁇ f / R10 ⁇ - 2.5.
  • the object side of the first lens may be convex.
  • the object side of the second lens may be convex, and the image side may be concave.
  • the present application employs a plurality of (for example, six) lenses, and provides a high pixel by appropriately allocating the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • An optical imaging lens having at least one advantageous effect such as a large aperture, an ultra-thin, a miniaturization, and an easy processing.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 7.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens includes, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface.
  • the first lens may have a positive power, and at least one of the object side and the image side is a convex surface.
  • the effective focal length f1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy 3 ⁇ f1/CT1 ⁇ 4, and more specifically, f1 and CT1 may further satisfy 3.65 ⁇ f1/CT1 ⁇ 3.90.
  • the object side of the first lens may be a convex surface
  • the image side may be a convex surface or a concave surface
  • the second lens can have positive or negative power.
  • the second lens has a negative power
  • the effective focal length f2 and the total effective focal length f of the optical imaging lens can satisfy -2 ⁇ f2/f ⁇ -1, and more specifically, f2 and f can further satisfy -1.69 ⁇ f2 / f ⁇ - 1.44.
  • the object side of the second lens may be a convex surface, and the image side may be a concave surface.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy 1.5 ⁇ R3 / R4 ⁇ 2.5, and more specifically, R3 and R4 may further satisfy 1.91 ⁇ R3 / R4 ⁇ 2.15.
  • the center thickness CT2 of the second lens on the optical axis and the separation distance T12 of the first lens and the second lens on the optical axis may satisfy 4 ⁇ CT2/T12 ⁇ 6, and more specifically, CT2 and T12 may further satisfy 4.30. ⁇ CT2 / T12 ⁇ 5.69.
  • the third lens has a positive power or a negative power.
  • the third lens may have positive power.
  • the fourth lens has a positive power or a negative power.
  • the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy -1 ⁇ (R7-R8)/(R7+R8) ⁇ 2, and more specifically, R7 and R8 further It can satisfy -0.55 ⁇ (R7-R8) / (R7 + R8) ⁇ 1.81.
  • the fifth lens may have a positive power, and an effective focal length f5 thereof may satisfy 0.5 ⁇ f5/f ⁇ 1 between the total effective focal length f of the optical imaging lens, and more specifically, f5 and f may further satisfy 0.64 ⁇ f5/f ⁇ . 0.66.
  • the contribution amount of the fifth lens power can be reasonably controlled, and the contribution amount of the negative lens of the fifth lens can be reasonably controlled, so that the negative spherical aberration generated by the fifth lens can be
  • the positive spherical aberration produced by each of the negative members i.e., the lenses having negative power in the lens
  • the image side of the fifth lens may be convex.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the fifth lens image side surface S10 may satisfy -3 ⁇ f/R10 ⁇ -2.5, and more specifically, f and R10 may further satisfy -2.81 ⁇ f/R10 ⁇ -2.67.
  • the sixth lens may have a negative power, the object side may be a concave surface, and the image side may be a concave surface.
  • the radius of curvature R11 of the object side of the sixth lens and the radius of curvature R12 of the image side of the sixth lens may satisfy -2 ⁇ R11/R12 ⁇ -1.5, and more specifically, R11 and R12 may further satisfy -1.85 ⁇ R11/ R12 ⁇ -1.73.
  • the sum of the center thicknesses of the respective lenses on the optical axis ⁇ CT and the optical total length TTL of the optical imaging lens (ie, the distance from the center of the side of the first lens to the on-axis of the lens imaging surface) It can satisfy 0.5 ⁇ CT/TTL ⁇ 0.7, more specifically, ⁇ 0.57 ⁇ CT/TTL ⁇ 0.58.
  • the optical total length TTL of the optical imaging lens can satisfy TTL/ImgH ⁇ 1.5 between half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, and more specifically, TTL and ImgH can further satisfy 1.46 ⁇ TTL/ImgH. ⁇ 1.49.
  • TTL/ImgH ⁇ 1.5 between half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens
  • TTL and ImgH can further satisfy 1.46 ⁇ TTL/ImgH. ⁇ 1.49.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens can satisfy f/EPD ⁇ 1.6, and more specifically, f and EPD can further satisfy 1.57 ⁇ f / EPD ⁇ 1.59.
  • the smaller the aperture number Fno of the optical imaging lens ie, the total effective focal length of the lens f/the diameter of the lens entrance EPD), the larger the aperture of the lens, and the greater the amount of light entering the same unit time.
  • the reduction of the aperture number Fno can effectively enhance the brightness of the image surface, so that the lens can better meet the shooting requirements when the light is insufficient.
  • the lens is configured to satisfy the conditional expression f/EPD ⁇ 1.6, which can make the lens have a large aperture advantage in the process of increasing the amount of light passing through, thereby enhancing the imaging effect under the dark environment of the lens.
  • the optical imaging lens may also be provided with a stop for limiting the beam to further enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the diaphragm can be disposed at any position between the object side and the image side as needed, that is, the arrangement of the diaphragm should not be limited to between the first lens and the second lens.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the six described above.
  • a plurality of lenses such as the six described above.
  • an ultra-thin large aperture Fno is about 1.5, which is suitable for portable electronic products.
  • the imaging system not only has the characteristics of high pixel, ultra-thin, easy processing, but also has a large aperture advantage, which can enhance the imaging effect in a dark environment.
  • the optical imaging lens also ensures better matching with large image CCD chips.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the optical imaging lens is not limited to including six lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • CT2/T12 5.02.
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S12 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, and the optical total length TTL of the optical imaging lens (i.e., from the center of the object side S1 of the first lens E1 to imaging)
  • the distance of the surface S15 on the optical axis) and the half of the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens are 1 mgH.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens. Half of ImgH.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 13 shows the surface type, curvature radius, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 5, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 1 2C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO may be disposed between the first lens E1 and the second lens E2 to further improve the imaging quality of the lens.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • Embodiments 1 to 7 respectively satisfy the relationships shown in Table 22 below.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。第一透镜(E1)具有正光焦度,其物侧面(S1)为凸面;第二透镜(E2)具有光焦度,其物侧面(S3)为凸面,像侧面(S4)为凹面;第三透镜(E3)和第四透镜(E4)均具有光焦度;第五透镜(E5)具有正光焦度,其像侧面(S10)为凸面;第六透镜(E6)具有负光焦度,其物侧面(S11)和像侧面(S12)均为凹面;以及光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD满足f/EPD≤1.6。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年9月7日提交于中国国家知识产权局(SIPO)的、专利申请号为201710801831.2的中国专利申请以及于2017年9月7日提交至SIPO的、专利申请号为201721142627.6的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的光学成像镜头。
背景技术
随着手机、平板电脑等电子产品的普及,同时满足人们日常生活对电子产品的便携式要求,电子产品轻薄化趋向需求越来越高。由于便携式电子产品趋于小型化,限制了相配套的镜头的总长,从而增加了镜头的设计难度。
同时,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对于相配套的光学成像镜头的高成像品质提出了更高的要求。
像元尺寸的减小意味着在相同曝光时间内,镜头的通光量将会变小。但是,在环境昏暗(如阴雨天、黄昏等)的条件下,镜头需要具有较大的通光量才能确保成像品质。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的大孔径光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,该光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第 四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜和第四透镜均具有光焦度;第五透镜可具有正光焦度,其像侧面可为凸面;第六透镜可具有负光焦度,其物侧面和像侧面均可为凹面;以及光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.6。
在一个实施方式中,第一透镜的物侧面至光学成像镜头成像面的轴上距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.5。
在一个实施方式中,第一透镜的有效焦距f1与第一透镜于光轴上的中心厚度CT1可满足3<f1/CT1<4。
在一个实施方式中,第二透镜于光轴上的中心厚度CT2与第一透镜和第二透镜在光轴上的间隔距离T12可满足4<CT2/T12<6。
在一个实施方式中,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4可满足1.5<R3/R4<2.5。
在一个实施方式中,第二透镜可具有负光焦度,其有效焦距f2与光学成像镜头的总有效焦距f可满足-2<f2/f<-1。
在一个实施方式中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8可满足-1<(R7-R8)/(R7+R8)<2。
在一个实施方式中,光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10可满足-3<f/R10<-2.5。
在一个实施方式中,第五透镜的有效焦距f5与光学成像镜头的总有效焦距f可满足0.5<f5/f<1。
在一个实施方式中,第六透镜物侧面的曲率半径R11与第六透镜像侧面的曲率半径R12可满足-2<R11/R12<-1.5。
在一个实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜分别于光轴上的中心厚度的总和∑CT与第一透镜的物侧面至光学成像镜头成像面的轴上距离TTL可满足0.5<∑CT/TTL<0.7。
另一方面,本申请提供了这样一种光学成像镜头,该光学成像镜 头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜和第五透镜均可具有正光焦度;第二透镜和第六透镜均可具有负光焦度;第三透镜和第四透镜中的至少一个可具有正光焦度;第一透镜的物侧面和像侧面中的至少一个可为凸面;第六透镜的物侧面和像侧面均可为凹面;第五透镜的像侧面可为凸面,其像侧面的曲率半径R10与光学成像镜头的总有效焦距f可满足-3<f/R10<-2.5。
在一个实施方式中,第一透镜的物侧面可为凸面。
在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,提供一种具有高像素、大孔径、超薄、小型化、容易加工等至少一个有益效果的光学成像镜头。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/ 或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“…中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。光学成像镜头还可包括设置于成像面的感光元件。
第一透镜可具有正光焦度,其物侧面和像侧面中的至少一个为凸面。第一透镜的有效焦距f1与第一透镜在光轴上的中心厚度CT1之间可满足3<f1/CT1<4,更具体地,f1和CT1进一步可满足3.65≤f1/CT1≤3.90。通过将第一透镜的有效焦距与第一透镜在光轴上的中心厚度的比值控制在合理范围内,能够保证第一透镜的可加工性;同时,还能够有效地将第一透镜的球差贡献率控制在合理范围内,从而使得***在轴上视场及附近范围具有较优的成像质量。
可选地,第一透镜的物侧面可为凸面,像侧面可为凸面或凹面。
第二透镜可具有正光焦度或负光焦度。可选地,第二透镜具有负光焦度,其有效焦距f2与光学成像镜头的总有效焦距f之间可满足-2 <f2/f<-1,更具体地,f2和f进一步可满足-1.69≤f2/f≤-1.44。通过合理控制第二透镜光焦度的大小和方向,使得第二透镜球差的贡献大小和球差的方向能够用以抵消平衡第一透镜产生的大部分三阶球差,从而能够有效地提升镜头的成像质量。
第二透镜的物侧面可为凸面,像侧面可为凹面。第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4之间可满足1.5<R3/R4<2.5,更具体地,R3和R4进一步可满足1.91≤R3/R4≤2.15。通过控制第二透镜物侧面和像侧面的曲率半径,能够将边缘视场在这两个表面的总偏转角度控制在合理的范围内,从而有效地降低***的敏感度。
第二透镜在光轴上的中心厚度CT2与第一透镜和第二透镜在光轴上的间隔距离T12之间可满足4<CT2/T12<6,更具体地,CT2和T12进一步可满足4.30≤CT2/T12≤5.69。通过约束第二透镜在光轴上的中心厚度CT2和第一透镜和第二透镜光轴上的间隔距离T12的比值范围,控制第一透镜的畸变贡献量,以对后续各透镜所产生的畸变量进行补偿。
第三透镜具有正光焦度或负光焦度。可选地,第三透镜可具有正光焦度。
第四透镜具有正光焦度或负光焦度。第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8之间可满足-1<(R7-R8)/(R7+R8)<2,更具体地,R7和R8进一步可满足-0.55≤(R7-R8)/(R7+R8)≤1.81。通过控制第四透镜物侧面和像侧面曲率半径的比值,能够有效地控制第四透镜物侧面和像侧面像散量的贡献量,进而对中间视场和孔径带的像质进行合理有效的控制。
第五透镜可具有正光焦度,其有效焦距f5与光学成像镜头的总有效焦距f之间可满足0.5<f5/f<1,更具体地,f5和f进一步可满足0.64≤f5/f≤0.66。通过控制第五透镜有效焦距的范围,能够合理地控制第五透镜光焦度的贡献量,同时能够合理地控制第五透镜负球差的贡献量,使得第五透镜所产生的负球差能够有效地平衡由各负组员(即,镜头中具有负光焦度的各透镜)所产生的正球差。
第五透镜的像侧面可为凸面。光学成像镜头的总有效焦距f与第五透镜像侧面S10的曲率半径R10之间可满足-3<f/R10<-2.5,更具体地,f和R10进一步可满足-2.81≤f/R10≤-2.67。通过控制第五透镜的像侧面的曲率半径,能够很好的控制其五阶球差的贡献量,进而对前面透镜组员(即,物侧与第五透镜之间的各透镜)产生的三阶球差进行补偿和平衡,使得镜头的轴上视场区域具有良好的成像质量。
第六透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面。第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12之间可满足-2<R11/R12<-1.5,更具体地,R11和R12进一步可满足-1.85≤R11/R12≤-1.73。通过控制第六透镜物侧面和像侧面曲率半径的比值范围,能够对第六透镜非球面的厚薄比走势进行合理控制,使得其落在容易加工的区间范围内,进而提高镜头的可加工性。
具有光焦度的各透镜分别于光轴上的中心厚度的总和∑CT与光学成像镜头的光学总长度TTL(即,从第一透镜物侧面的中心至镜头成像面的轴上距离)之间可满足0.5<∑CT/TTL<0.7,更具体地,∑0.57≤CT/TTL≤0.58。通过控制具有光焦度的各透镜的总的中心厚度的范围,能够将经各透镜平衡后的剩余畸变控制在合理范围,从而使得光学成像***具有良好的消畸变表现。
光学成像镜头的光学总长度TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足TTL/ImgH≤1.5,更具体地,TTL和ImgH进一步可满足1.46≤TTL/ImgH≤1.49。通过对镜头的光学总长度和像高比例的控制,可有效地压缩成像镜头的总尺寸,以实现光学成像镜头的超薄特性与小型化,从而使得该光学成像镜头能够较好地适用于例如便携式电子产品等尺寸受限的***。
光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间可满足f/EPD≤1.6,更具体地,f和EPD进一步可满足1.57≤f/EPD≤1.59。光学成像镜头的光圈数Fno(即,镜头的总有效焦距f/镜头的入瞳直径EPD)越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。光圈数Fno的缩小,可有效地提升像面亮度,使得镜头能够更好地满足光线不足时的拍摄需求。镜头配置成满足条件式 f/EPD≤1.6,可在加大通光量的过程中,使镜头具有大光圈优势,从而增强镜头暗环境下的成像效果。
在示例性实施方式中,光学成像镜头还可设置有用于限制光束的光阑,以进一步提升镜头的成像质量。可选地,光阑可设置在第一透镜与第二透镜之间。然而,本领域技术人员应当理解的是,光阑可根据需要设置于物侧与像侧之间的任意位置处,即,光阑的设置不应局限于第一透镜与第二透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜光焦度、面型,各透镜的中心厚度以及各透镜之间的轴上间距等,提出一种可适用于便携带电子产品的,光圈数Fno为1.5左右的超薄大孔径成像镜头。该成像***不仅具有高像素、超薄、容易加工等特点,还具有大光圈优势,可以增强暗环境下的成像效果。另外,该光学成像镜头还可保证与大像面CCD芯片的较好匹配。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018080124-appb-000001
Figure PCTCN2018080124-appb-000002
表1
由表1可得,第二透镜E2的物侧面S3的曲率半径R3与第二透镜E2的像侧面S4的曲率半径R4之间满足R3/R4=2.15;第四透镜E4的物侧面S7的曲率半径R7与第四透镜E4的像侧面S8的曲率半径R8之间满足(R7-R8)/(R7+R8)=0.02;第六透镜E6的物侧面S11的曲率半径R11与第六透镜E6的像侧面S12的曲率半径R12之间满足R11/R12=-1.73;第二透镜E2在光轴上的中心厚度CT2与第一透镜E1和第二透镜E2在光轴上的间隔距离T12之间满足CT2/T12=5.02。
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018080124-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.7020E-03 4.4192E-02 -1.3489E-01 2.5140E-01 -3.0986E-01 2.4767E-01 -1.2425E-01 3.5285E-02 -4.3435E-03
S2 -8.2259E-02 4.7163E-01 -1.3543E+00 2.5475E+00 -3.2559E+00 2.7741E+00 -1.5029E+00 4.6683E-01 -6.3194E-02
S3 -1.9362E-01 7.1298E-01 -1.8224E+00 3.3934E+00 -4.3845E+00 3.8205E+00 -2.1272E+00 6.8225E-01 -9.5745E-02
S4 -1.2362E-01 2.2567E-01 1.9805E-01 -2.5060E+00 7.7675E+00 -1.2952E+01 1.2499E+01 -6.5613E+00 1.4565E+00
S5 -8.4184E-02 1.2175E-01 -6.1130E-01 1.5563E+00 -2.4294E+00 2.0559E+00 -6.6541E-01 -1.8866E-01 1.3951E-01
S6 -1.4918E-01 1.6592E-02 2.0867E-01 -7.4065E-01 1.0917E+00 -9.3678E-01 4.8594E-01 -1.3563E-01 1.3819E-02
S7 -2.3726E-01 1.5269E-01 -1.7304E-01 4.0197E-01 -8.2364E-01 8.8057E-01 -4.8428E-01 1.3398E-01 -1.5477E-02
S8 -1.8006E-01 4.8760E-02 2.9053E-02 5.7143E-03 -1.0489E-01 1.1709E-01 -5.5693E-02 1.2814E-02 -1.2067E-03
S9 -2.8364E-02 -5.2148E-02 -1.7460E-02 1.0235E-01 -1.0326E-01 4.8986E-02 -1.1788E-02 1.3556E-03 -5.8329E-05
S10 -1.1066E-01 1.6340E-01 -2.4597E-01 2.2430E-01 -1.1458E-01 3.4559E-02 -6.2157E-03 6.2367E-04 -2.7167E-05
S11 -1.2883E-01 2.7898E-02 2.7316E-03 8.9221E-03 -7.2077E-03 2.2121E-03 -3.4822E-04 2.8272E-05 -9.4439E-07
S12 -1.2299E-01 7.9771E-02 -4.5396E-02 2.0197E-02 -6.5858E-03 1.4698E-03 -2.0979E-04 1.7094E-05 -5.9836E-07
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离)以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000004
表3
由表3可得,第二透镜E2的有效焦距f2与光学成像镜头的总有效焦距f之间满足f2/f=-1.44;第五透镜E5的有效焦距f5与光学成像镜头的总有效焦距f之间满足f5/f=0.64;光学成像镜头的光学总长度TTL与光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH=1.49。
结合表1和表3可知,光学成像镜头的总有效焦距f与第五透镜E5的像侧面S10的曲率半径R10之间满足f/R10=-2.78;第一透镜E1的有效焦距f1与第一透镜E1在光轴上的中心厚度CT1之间满足f1/CT1=3.65;第一透镜E1至第六透镜E6分别于光轴上的中心厚度的总和∑CT与光学成像镜头的光学总长度TTL之间满足∑CT/TTL=0.57。
在实施例1中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD=1.58。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12 为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.3101E-03 3.1439E-02 -8.9566E-02 1.5435E-01 -1.8151E-01 1.4256E-01 -7.2716E-02 2.1542E-02 -2.8330E-03
S2 -9.2268E-02 5.4352E-01 -1.6241E+00 3.1817E+00 -4.2279E+00 3.7432E+00 -2.1076E+00 6.8094E-01 -9.5964E-02
S3 -1.9744E-01 7.6443E-01 -2.0778E+00 4.1021E+00 -5.6244E+00 5.2100E+00 -3.0933E+00 1.0612E+00 -1.5982E-01
S4 -1.1838E-01 1.9991E-01 2.9053E-01 -2.7826E+00 8.3617E+00 -1.3811E+01 1.3289E+01 -6.9782E+00 1.5519E+00
S5 -7.5923E-02 6.8477E-02 -3.5453E-01 8.1482E-01 -1.0732E+00 4.8030E-01 4.6040E-01 -6.4471E-01 2.2079E-01
S6 -1.4081E-01 -8.5931E-03 2.1680E-01 -6.0420E-01 7.5269E-01 -5.5242E-01 2.5005E-01 -6.1268E-02 4.7835E-03
S7 -2.2472E-01 8.8168E-02 -9.5755E-02 4.2407E-01 -9.5762E-01 9.9998E-01 -5.2144E-01 1.3225E-01 -1.3205E-02
S8 -1.6598E-01 1.1222E-02 4.5843E-02 7.5553E-02 -2.4169E-01 2.3158E-01 -1.0678E-01 2.4636E-02 -2.3229E-03
S9 -2.2140E-02 -5.1336E-02 -5.0694E-02 1.8526E-01 -1.9912E-01 1.1086E-01 -3.4800E-02 5.9631E-03 -4.4251E-04
S10 -1.0020E-01 1.3369E-01 -2.0158E-01 1.8463E-01 -9.3479E-02 2.7770E-02 -4.9039E-03 4.8213E-04 -2.0530E-05
S11 -1.2241E-01 2.1709E-02 5.7886E-03 7.2993E-03 -6.4772E-03 2.0076E-03 -3.1549E-04 2.5490E-05 -8.4626E-07
S12 -1.1308E-01 7.0053E-02 -3.7150E-02 1.4919E-02 -4.3075E-03 8.4665E-04 -1.0698E-04 7.8073E-06 -2.4806E-07
表5
Figure PCTCN2018080124-appb-000006
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为 凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000007
Figure PCTCN2018080124-appb-000008
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.6320E-03 4.2162E-02 -1.2865E-01 2.4608E-01 -3.1443E-01 2.6379E-01 -1.4009E-01 4.2462E-02 -5.6230E-03
S2 -8.0542E-02 4.4699E-01 -1.2798E+00 2.4335E+00 -3.1689E+00 2.7715E+00 -1.5517E+00 5.0109E-01 -7.0899E-02
S3 -1.7819E-01 6.3982E-01 -1.6557E+00 3.1674E+00 -4.2575E+00 3.9138E+00 -2.3318E+00 8.1089E-01 -1.2489E-01
S4 -1.0658E-01 1.6579E-01 3.0978E-01 -2.5703E+00 7.4932E+00 -1.2146E+01 1.1514E+01 -5.9673E+00 1.3114E+00
S5 -7.1994E-02 7.0692E-02 -4.2131E-01 1.1357E+00 -1.8958E+00 1.7499E+00 -7.1414E-01 -4.0835E-02 8.7490E-02
S6 -1.5281E-01 -3.9631E-03 2.9851E-01 -8.8206E-01 1.2499E+00 -1.1032E+00 6.3003E-01 -2.1103E-01 3.0452E-02
S7 -2.2938E-01 8.4816E-02 9.8406E-03 1.1087E-01 -4.9323E-01 5.8834E-01 -2.9957E-01 6.4548E-02 -4.1625E-03
S8 -1.6578E-01 9.1442E-03 1.0467E-01 -8.6646E-02 -3.2912E-02 7.7218E-02 -3.9213E-02 8.3595E-03 -6.6061E-04
S9 -2.2478E-02 -5.0185E-02 -2.2082E-02 1.2258E-01 -1.3640E-01 7.4855E-02 -2.2358E-02 3.5164E-03 -2.3145E-04
S10 -1.0162E-01 1.3472E-01 -1.9858E-01 1.8208E-01 -9.3459E-02 2.8323E-02 -5.1157E-03 5.1401E-04 -2.2277E-05
S11 -1.2920E-01 2.8849E-02 2.2501E-03 8.4625E-03 -6.7319E-03 2.0391E-03 -3.1662E-04 2.5336E-05 -8.3322E-07
S12 -1.0730E-01 6.2564E-02 -3.0571E-02 1.1335E-02 -3.0617E-03 5.7030E-04 -6.9216E-05 4.9269E-06 -1.5482E-07
表8
Figure PCTCN2018080124-appb-000009
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜 头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000010
Figure PCTCN2018080124-appb-000011
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.7477E-03 3.7494E-02 -1.1806E-01 2.3699E-01 -3.1728E-01 2.7739E-01 -1.5228E-01 4.7390E-02 -6.4045E-03
S2 -7.3915E-02 3.7606E-01 -1.0274E+00 1.9235E+00 -2.5140E+00 2.2296E+00 -1.2722E+00 4.1963E-01 -6.0698E-02
S3 -1.7138E-01 5.7533E-01 -1.4219E+00 2.6899E+00 -3.6466E+00 3.4130E+00 -2.0776E+00 7.3885E-01 -1.1643E-01
S4 -1.0802E-01 1.8623E-01 1.8514E-01 -2.0921E+00 6.3942E+00 -1.0617E+01 1.0253E+01 -5.4034E+00 1.2074E+00
S5 -7.3524E-02 8.4458E-02 -4.4967E-01 1.1804E+00 -1.9425E+00 1.7697E+00 -6.8553E-01 -8.7327E-02 1.0779E-01
S6 -1.5869E-01 4.2668E-02 1.3659E-01 -5.1225E-01 6.8022E-01 -5.3751E-01 2.7964E-01 -8.5310E-02 1.0240E-02
S7 -2.3669E-01 1.1880E-01 -7.2324E-02 2.2107E-01 -5.6943E-01 5.8364E-01 -2.5181E-01 3.5433E-02 1.3755E-03
S8 -1.6945E-01 2.9734E-02 5.9894E-02 -2.7645E-02 -8.6924E-02 1.1376E-01 -5.6398E-02 1.3109E-02 -1.2224E-03
S9 -2.4034E-02 -4.8191E-02 -6.7236E-03 8.6577E-02 -9.9652E-02 5.4117E-02 -1.5789E-02 2.4389E-03 -1.6141E-04
S10 -1.0394E-01 1.3592E-01 -1.9129E-01 1.7041E-01 -8.5530E-02 2.5369E-02 -4.4856E-03 4.4153E-04 -1.8781E-05
S11 -1.3271E-01 3.9358E-02 -9.3007E-03 1.5104E-02 -9.0156E-03 2.5279E-03 -3.8065E-04 3.0046E-05 -9.8253E-07
S12 -1.0663E-01 6.3151E-02 -3.1647E-02 1.2025E-02 -3.3170E-03 6.2901E-04 -7.7517E-05 5.5859E-06 -1.7714E-07
表11
Figure PCTCN2018080124-appb-000012
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。 图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率 半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000013
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.8592E-03 3.9455E-02 -1.2493E-01 2.5518E-01 -3.4688E-01 3.0746E-01 -1.7070E-01 5.3604E-02 -7.2944E-03
S2 -9.7394E-02 5.0600E-01 -1.4157E+00 2.6897E+00 -3.5407E+00 3.1505E+00 -1.8000E+00 5.9380E-01 -8.5838E-02
S3 -1.9426E-01 7.1008E-01 -1.8279E+00 3.4927E+00 -4.7357E+00 4.4150E+00 -2.6731E+00 9.4467E-01 -1.4780E-01
S4 -1.1079E-01 1.9965E-01 2.2466E-01 -2.4925E+00 7.6641E+00 -1.2811E+01 1.2454E+01 -6.6082E+00 1.4870E+00
S5 -6.8889E-02 1.0668E-02 -2.0201E-02 -3.9764E-01 1.7836E+00 -3.8487E+00 4.5276E+00 -2.7934E+00 7.0906E-01
S6 -1.4088E-01 -2.0997E-02 3.1098E-01 -9.2031E-01 1.4043E+00 -1.4238E+00 9.5946E-01 -3.7343E-01 6.1222E-02
S7 -2.3060E-01 9.8543E-02 -7.1579E-02 3.3327E-01 -8.2682E-01 8.4259E-01 -3.7416E-01 5.6234E-02 2.0729E-03
S8 -1.7305E-01 4.8929E-02 -1.4729E-02 1.4514E-01 -3.2423E-01 3.1426E-01 -1.5860E-01 4.1767E-02 -4.5935E-03
S9 -1.9063E-02 -6.9338E-02 4.9969E-02 -6.8252E-03 -1.0110E-02 3.0170E-03 1.3110E-03 -6.5156E-04 7.0989E-05
S10 -9.3099E-02 1.1356E-01 -1.5358E-01 1.2798E-01 -5.8007E-02 1.5042E-02 -2.2508E-03 1.8149E-04 -6.1370E-06
S11 -1.2528E-01 3.6091E-02 -1.0099E-02 1.6027E-02 -9.3050E-03 2.5756E-03 -3.8560E-04 3.0398E-05 -9.9627E-07
S12 -9.9583E-02 5.6747E-02 -2.7487E-02 1.0241E-02 -2.8039E-03 5.2968E-04 -6.4879E-05 4.6187E-06 -1.4380E-07
表14
Figure PCTCN2018080124-appb-000014
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000015
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.8281E-03 3.6876E-02 -1.0835E-01 2.0766E-01 -2.7063E-01 2.3469E-01 -1.2954E-01 4.0847E-02 -5.6230E-03
S2 -9.3182E-02 4.5481E-01 -1.1757E+00 2.0690E+00 -2.5594E+00 2.1774E+00 -1.2085E+00 3.9224E-01 -5.6326E-02
S3 -1.8854E-01 6.3093E-01 -1.3921E+00 2.1696E+00 -2.2841E+00 1.5713E+00 -6.5704E-01 1.4565E-01 -1.2118E-02
S4 -1.0917E-01 1.8442E-01 2.8453E-01 -2.5844E+00 7.6362E+00 -1.2507E+01 1.2004E+01 -6.3134E+00 1.4110E+00
S5 -6.7554E-02 -1.2717E-02 9.4002E-02 -7.1702E-01 2.3115E+00 -4.3263E+00 4.6922E+00 -2.7405E+00 6.6704E-01
S6 -1.3891E-01 -2.6550E-02 3.0919E-01 -9.1860E-01 1.4561E+00 -1.5507E+00 1.0870E+00 -4.3415E-01 7.2580E-02
S7 -2.2905E-01 1.1315E-01 -1.5911E-01 5.2835E-01 -1.0516E+00 9.8080E-01 -4.1142E-01 5.4647E-02 4.2529E-03
S8 -1.7228E-01 5.9087E-02 -5.9262E-02 2.3223E-01 -4.2258E-01 3.8456E-01 -1.9035E-01 4.9998E-02 -5.5162E-03
S9 -1.8275E-02 -7.4312E-02 6.3354E-02 -2.9358E-02 1.1803E-02 -9.3703E-03 5.3327E-03 -1.3474E-03 1.2076E-04
S10 -9.2252E-02 1.1344E-01 -1.5259E-01 1.2508E-01 -5.5374E-02 1.3872E-02 -1.9686E-03 1.4577E-04 -4.2683E-06
S11 -1.2532E-01 3.5202E-02 -7.7502E-03 1.3899E-02 -8.3140E-03 2.3103E-03 -3.4416E-04 2.6879E-05 -8.7032E-07
S12 -9.7087E-02 5.3126E-02 -2.4378E-02 8.6328E-03 -2.2740E-03 4.1795E-04 -5.0335E-05 3.5586E-06 -1.1084E-07
表1 7
Figure PCTCN2018080124-appb-000016
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图1 2C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置光阑STO,以进一步提升镜头的成像质量。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21示出了实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018080124-appb-000017
Figure PCTCN2018080124-appb-000018
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.2163E-03 4.7778E-02 -1.5359E-01 3.1270E-01 -4.1804E-01 3.6276E-01 -1.9706E-01 6.0683E-02 -8.1171E-03
S2 -8.2891E-02 3.8899E-01 -9.8901E-01 1.7470E+00 -2.1956E+00 1.9076E+00 -1.0824E+00 3.5878E-01 -5.2551E-02
S3 -1.7995E-01 5.8990E-01 -1.3580E+00 2.3768E+00 -3.0203E+00 2.7006E+00 -1.6002E+00 5.6347E-01 -8.9270E-02
S4 -1.0856E-01 1.8610E-01 2.2088E-01 -2.1842E+00 6.3788E+00 -1.0219E+01 9.5642E+00 -4.8971E+00 1.0655E+00
S5 -7.8082E-02 7.9847E-02 -4.0847E-01 1.0240E+00 -1.6081E+00 1.3510E+00 -3.9842E-01 -1.7467E-01 1.1195E-01
S6 -1.3982E-01 -3.0139E-02 2.6502E-01 -6.4907E-01 7.3669E-01 -4.9018E-01 2.0741E-01 -5.1297E-02 4.5966E-03
S7 -2.2309E-01 1.1855E-01 -3.2774E-01 1.1586E+00 -2.3043E+00 2.4827E+00 -1.4824E+00 4.6915E-01 -6.2488E-02
S8 -1.5787E-01 2.9574E-02 -4.1876E-02 2.6687E-01 -5.0897E-01 4.7292E-01 -2.3936E-01 6.4224E-02 -7.1981E-03
S9 -1.3250E-02 -6.5640E-02 6.0150E-03 8.1440E-02 -1.0213E-01 6.0359E-02 -2.0214E-02 3.8287E-03 -3.2400E-04
S10 -9.0615E-02 1.0629E-01 -1.5028E-01 1.3025E-01 -6.0855E-02 1.6296E-02 -2.5448E-03 2.1866E-04 -8.1571E-06
S11 -1.1954E-01 1.9865E-02 1.0517E-02 2.2858E-03 -4.0042E-03 1.3397E-03 -2.1288E-04 1.7036E-05 -5.5513E-07
S12 -9.8764E-02 5.3664E-02 -2.4681E-02 8.8794E-03 -2.4112E-03 4.6130E-04 -5.7971E-05 4.2578E-06 -1.3656E-07
表20
Figure PCTCN2018080124-appb-000019
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例7分别满足以下表22示的关系。
条件式\实施例 1 2 3 4 5 6 7
f/EPD 1.58 1.57 1.58 1.58 1.57 1.58 1.59
TTL/ImgH 1.49 1.48 1.49 1.48 1.46 1.46 1.46
CT2/T12 5.02 5.69 5.34 4.30 5.08 5.10 4.42
f1/CT1 3.65 3.76 3.85 3.89 3.85 3.84 3.90
(R7-R8)/(R7+R8) 0.02 0.07 0.01 0.01 1.81 -0.55 -0.05
f/R10 -2.78 -2.71 -2.67 -2.73 -2.72 -2.72 -2.81
R11/R12 -1.73 -1.78 -1.83 -1.85 -1.80 -1.83 -1.81
f5/f 0.64 0.66 0.66 0.65 0.65 0.66 0.65
∑CT/TTL 0.57 0.58 0.57 0.58 0.58 0.58 0.58
f2/f -1.44 -1.49 -1.67 -1.68 -1.69 -1.68 -1.69
R3/R4 2.15 2.08 1.91 1.91 1.99 2.00 1.99
表22
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜和所述第四透镜均具有光焦度;
    所述第五透镜具有正光焦度,其像侧面为凸面;
    所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面;以及
    所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.6。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头成像面的轴上距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜于所述光轴上的中心厚度CT1满足3<f1/CT1<4。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足4<CT2/T12<6。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4满足1.5<R3/R4<2.5。
  6. 根据权利要求1、4或5中任一项所述的光学成像镜头,其特 征在于,所述第二透镜具有负光焦度,其有效焦距f2与所述光学成像镜头的总有效焦距f满足-2<f2/f<-1。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8满足-1<(R7-R8)/(R7+R8)<2。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜像侧面的曲率半径R10满足-3<f/R10<-2.5。
  9. 根据权利要求1或8所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述光学成像镜头的总有效焦距f满足0.5<f5/f<1。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜物侧面的曲率半径R11与所述第六透镜像侧面的曲率半径R12满足-2<R11/R12<-1.5。
  11. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜分别于所述光轴上的中心厚度的总和∑CT与所述第一透镜的物侧面至所述光学成像镜头成像面的轴上距离TTL满足0.5<∑CT/TTL<0.7。
  12. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜和所述第五透镜均具有正光焦度;
    所述第二透镜和所述第六透镜均具有负光焦度;
    所述第三透镜和所述第四透镜中的至少一个具有正光焦度;
    所述第一透镜的物侧面和像侧面中的至少一个为凸面;
    所述第六透镜的物侧面和像侧面均为凹面;以及
    所述第五透镜的像侧面为凸面,其像侧面的曲率半径R10与所述光学成像镜头的总有效焦距f满足-3<f/R10<-2.5。
  13. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜的物侧面为凸面。
  14. 根据权利要求12所述的光学成像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与像侧面的曲率半径R4满足1.5<R3/R4<2.5。
  15. 根据权利要求14所述的光学成像镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面。
  16. 根据权利要求12所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述光学成像镜头的总有效焦距f满足-2<f2/f<-1。
  17. 根据权利要求12所述的光学成像镜头,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8满足-1<(R7-R8)/(R7+R8)<2。
  18. 根据权利要求12所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述光学成像镜头的总有效焦距f满足0.5<f5/f<1。
  19. 根据权利要求12所述的光学成像镜头,其特征在于,所述第六透镜物侧面的曲率半径R11与所述第六透镜像侧面的曲率半径R12满足-2<R11/R12<-1.5。
  20. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜于所述光轴上的中心厚度CT1满足3<f1/CT1<4。
  21. 根据权利要求12所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足4<CT2/T12<6。
  22. 根据权利要求12至21中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.6。
  23. 根据权利要求12至21中任一项所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜分别于所述光轴上的中心厚度的总和∑CT与所述第一透镜的物侧面至所述光学成像镜头成像面的轴上距离TTL满足0.5<∑CT/TTL<0.7。
  24. 根据权利要求12至21中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头成像面的轴上距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
PCT/CN2018/080124 2017-09-07 2018-03-23 光学成像镜头 WO2019047505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/229,231 US11112585B2 (en) 2017-09-07 2018-12-21 Optical imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710801831.2 2017-09-07
CN201721142627.6 2017-09-07
CN201710801831.2A CN107436477B (zh) 2017-09-07 2017-09-07 光学成像镜头
CN201721142627.6U CN207164346U9 (zh) 2017-09-07 2017-09-07 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/229,231 Continuation US11112585B2 (en) 2017-09-07 2018-12-21 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019047505A1 true WO2019047505A1 (zh) 2019-03-14

Family

ID=65634664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080124 WO2019047505A1 (zh) 2017-09-07 2018-03-23 光学成像镜头

Country Status (2)

Country Link
US (1) US11112585B2 (zh)
WO (1) WO2019047505A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700513B (zh) * 2020-01-21 2020-08-01 新鉅科技股份有限公司 六片式成像鏡片組
CN113495341A (zh) * 2020-03-19 2021-10-12 新巨科技股份有限公司 六片式成像镜片组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231704B (zh) * 2019-08-06 2019-11-08 瑞声光电科技(常州)有限公司 广角镜头
CN117406394A (zh) * 2020-12-02 2024-01-16 浙江舜宇光学有限公司 摄像镜头
TWI823112B (zh) * 2021-07-02 2023-11-21 先進光電科技股份有限公司 光學成像系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278086A (zh) * 2014-07-21 2016-01-27 先进光电科技股份有限公司 光学成像***
CN105487201A (zh) * 2015-12-14 2016-04-13 浙江舜宇光学有限公司 超薄镜头
CN106199927A (zh) * 2014-09-26 2016-12-07 先进光电科技股份有限公司 光学成像***
CN106443962A (zh) * 2015-08-10 2017-02-22 三星电机株式会社 光学***
CN106556919A (zh) * 2015-09-30 2017-04-05 大立光电股份有限公司 成像用光学***、取像装置及电子装置
CN107436477A (zh) * 2017-09-07 2017-12-05 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437258B (zh) * 2011-08-05 2014-05-11 Largan Precision Co Ltd 拾像光學鏡組
TWI477807B (zh) * 2014-05-23 2015-03-21 Largan Precision Co Ltd 取像用光學鏡頭、取像裝置及可攜裝置
JP2016004196A (ja) * 2014-06-18 2016-01-12 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN104570284B (zh) 2015-01-07 2017-05-31 浙江舜宇光学有限公司 摄像镜头
TWI565967B (zh) * 2015-09-30 2017-01-11 大立光電股份有限公司 成像用光學系統、取像裝置及電子裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278086A (zh) * 2014-07-21 2016-01-27 先进光电科技股份有限公司 光学成像***
CN106199927A (zh) * 2014-09-26 2016-12-07 先进光电科技股份有限公司 光学成像***
CN106443962A (zh) * 2015-08-10 2017-02-22 三星电机株式会社 光学***
CN106556919A (zh) * 2015-09-30 2017-04-05 大立光电股份有限公司 成像用光学***、取像装置及电子装置
CN105487201A (zh) * 2015-12-14 2016-04-13 浙江舜宇光学有限公司 超薄镜头
CN107436477A (zh) * 2017-09-07 2017-12-05 浙江舜宇光学有限公司 光学成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700513B (zh) * 2020-01-21 2020-08-01 新鉅科技股份有限公司 六片式成像鏡片組
CN113495341A (zh) * 2020-03-19 2021-10-12 新巨科技股份有限公司 六片式成像镜片组
CN113495341B (zh) * 2020-03-19 2022-12-16 新巨科技股份有限公司 六片式成像镜片组

Also Published As

Publication number Publication date
US11112585B2 (en) 2021-09-07
US20190113719A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2019169853A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学***
WO2019100868A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像***
WO2019101052A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019210739A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2019196572A1 (zh) 光学成像***
WO2018192126A1 (zh) 摄像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019052220A1 (zh) 光学成像镜头
CN113311570B (zh) 光学成像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019169856A1 (zh) 摄像镜头组
WO2019233143A1 (zh) 光学成像镜片组
WO2020164247A1 (zh) 光学成像***
WO2019218628A1 (zh) 光学成像镜头
WO2019047505A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855040

Country of ref document: EP

Kind code of ref document: A1